2020年河北省中考数学试卷(有详细解析)
2020年河北省中考数学试题和答案
![2020年河北省中考数学试题和答案](https://img.taocdn.com/s3/m/7340b9eba8956bec0875e366.png)
2020年河北省中考数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条2.(3分)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷3.(3分)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x ﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.(3分)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9B.8C.7D.66.(3分)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b>DE的长C.a有最小限制,b无限制D.a≥0,b<DE的长7.(3分)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=8.(3分)在如图所示的网格中,以点O为位似中心,四边形ABCD 的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR9.(3分)若=8×10×12,则k=()A.12B.10C.8D.610.(3分)如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB=CDC.应补充:且AB∥CDD.应补充:且OA=OC11.(2分)若k为正整数,则=()A.k2k B.k2k+1C.2k k D.k2+k 12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7 14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)已知:﹣=a﹣=b,则ab=.18.(3分)正六边形的一个内角是正n边形一个外角的4倍,则n =.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=(x<0)的图象为曲线L.(1)若L过点T1,则k=;(2)若L过点T4,则它必定还过另一点T m,则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m的值.21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.22.(9分)如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD 上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠1,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA=2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S扇形EOD(答案保留π).23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O 最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tanC =.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N 时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P 到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=,请直接写出点K被扫描到的总时长.答案一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.参考答案:解:在同一平面内,与已知直线垂直的直线有无数条,所以作已知直线m的垂线,可作无数条.故选:D.2.参考答案:解:∵x3x=x2(x≠0),∴覆盖的是:÷.故选:D.3.参考答案:解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.4.参考答案:解:解法一:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.解法二:第一个几何体的三视图如图所示第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选:D.5.参考答案:解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,故选:B.6.参考答案:解:以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为半径画弧时,b必须大于DE,否则没有交点,故选:B.7.参考答案:解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.8.参考答案:解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC==,OM==2,OD=,OB==,OA==,OR==,OQ=2,OP==2,OH==3,ON==2,∵==2,∴点D对应点Q,点B对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A.9.参考答案:解:方程两边都乘以k,得(92﹣1)(112﹣1)=8×10×12k,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k,∴80×120=8×10×12k,∴k=10.经检验k=10是原方程的解.故选:B.10.参考答案:解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故应补充“AB=CD”,故选:B.11.参考答案:解:=((k•k)k=(k2)k=k2k,故选:A.12.参考答案:解:如图,由题意可得△PAB是腰长6km的等腰直角三角形,则AB=6km,如图所示,过P点作AB的垂线PC,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后到达BP中点D,此时CD为△PAB的中位线,故CD=AP=3,故再向西走3km到达l,选项D正确.13.参考答案:解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.14.参考答案:解:如图所示:∠A还应有另一个不同的值∠A′与∠A 互补.故∠A′=180°﹣65°=115°.故选:A.15.参考答案:解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;16.参考答案:解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.参考答案:解:原式=3﹣=a﹣=b,故a=3,b=2,则ab=6.故答案为:6.18.参考答案:解:正六边形的一个内角为:,∵正六边形的一个内角是正n边形一个外角的4倍,∴正n边形一个外角为:120°÷4=30°,∴n=360°÷30°=12.故答案为:12.19.参考答案:解:(1)∵每个台阶的高和宽分别是1和2,∴T1(﹣16,1),T2(﹣14,2),T3(﹣12,3),T4(﹣10,4),T5(﹣8,5),T6(﹣6,6),T7(﹣4,7),T8(﹣2,8),∵L过点T1,∴k=﹣16×1=﹣16,故答案为:﹣16;(2)∵L过点T4,∴k=﹣10×4=﹣40,∴反比例函数解析式为:y=﹣,当x=﹣8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(﹣16,1),T8(﹣2,8)时,k=﹣16,若曲线L过点T2(﹣14,2),T7(﹣4,7)时,k=﹣14×2=﹣28,若曲线L过点T3(﹣12,3),T5(﹣8,5)时,k=﹣12×3=﹣36,若曲线L过点T4(﹣10,4),T5(﹣8,5)时,k=﹣40,∵曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,∴﹣36<k<﹣28,∴整数k=﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个,∴答案为:7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.参考答案:解:(1)==﹣2;(2)根据题意得,<m,∴﹣4+m<3m,∴m﹣3m<4,∴﹣2m<4,∴m>﹣2,∵m是负整数,∴m=﹣1.21.参考答案:解:(1)A区显示的结果为:25+2a2,B区显示的结果为:﹣16﹣6a;(2)这个和不能为负数,理由:根据题意得,25+4a2+(﹣16﹣12a)=25+4a2﹣16﹣12a=4a2﹣12a+9;∵(2a﹣3)2≥0,∴这个和不能为负数.22.参考答案:解:(1)①在△AOE和△POC中,,∴△AOE≌△POC(SAS);②∠1+∠C=∠2,理由是:∵△AOE≌△POC,∴∠E=∠C,∵∠1+∠E=∠2,∴∠1+∠C=∠2;(2)当∠C最大时,CP与小半圆相切,如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴.23.参考答案:解:(1)设W=kx2(k≠0).∵当x=3时,W=3,∴3=9k,解得k=,∴W与x的函数关系式为W=x2;(2)①设薄板的厚度为x厘米,则厚板的厚度为(6﹣x)厘米,∴Q=W厚﹣W薄=(6﹣x)2﹣x2=﹣4x+12,即Q与x的函数关系式为Q=﹣4x+12;②∵Q是W薄的3倍,∴﹣4x+12=3×x2,整理得,x2+4x﹣12=0,解得,x1=2,x2=﹣6(不合题意舍去),故x为2时,Q是W薄的3倍.24.参考答案:解:(1)∵直线l:y=kx+b中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线l的解析式为y=3x+1;(2)依题意可得直线l′的解析式为y=x+3如图,解得,∴两直线的交点为A(1,4),∵直线l′:y=x+3与y轴的交点为B(0,3),∴直线l'被直线l和y轴所截线段的长为:AB==;(3)把y=a代入y=3x+1得,a=3x+1,解得x=;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;分三种情况:①当第三点在y轴上时,a﹣3+=0,解得a=;②当第三点在直l上时,2×=a﹣3,解得a=7;③当第三点在直线l'上时,2×(a﹣3)=,解得a=;∴直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为或7或.25.参考答案:解:(1)∵经过第一次移动游戏,甲的位置停留在正半轴上,∴必须甲对乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,∴P甲对乙错=.(2)根据题意可得,n次答对,向西移动4n,(10﹣n)次答错,向东移了2(10﹣n),∴m=5﹣4n+2(10﹣n)=25﹣6n.n=4时,离原点最近.(3)起初,甲乙的距离是8,易知,当甲乙一对一错时,二者之间距离缩小2,当甲乙同时答对打错时,二者之间的距离缩小2,∴当进行了k次移动游戏后,甲与乙的位置相距2个单位时,共缩小了6个单位或10个单位,∴6÷2=3或10÷2=5,∴k=3或k=5.26.参考答案:解:(1)如图1中,过点A作AH⊥BC于H.∵AB=AC,AH⊥BC,∴BH=CH=4,∠B=∠C,∴tan∠B=tan∠C==,∴AH=3,AB=AC===5.∴当点P在BC上时,PA⊥BC时,点P到A的最短距离为3.(2)如图1中,∵∠APQ=∠B,∴PQ∥BC,∴△APQ∽△ABC,∵PQ将△ABC的面积分成上下4:5,∴=()2=,∴=,∴AP=,∴PM=AP﹣AM=﹣2=.(3)当0≤x≤3时,如图1﹣1中,过点P作PJ⊥CA交CA的延长线于J.∵PQ∥BC,∴=,∠AQP=∠C,∴=,∴PQ=(x+2),∵sin∠AQP=sin∠C=,∴PJ=PQ•sin∠AQP=(x+2).当3≤x≤9时,如图2中,过点P作PJ⊥AC于J.同法可得PJ=PC•sin∠C=(11﹣x).综上,PJ=;(4)由题意点P的运动速度==单位长度/秒.当3<x≤9时,设点P移动的路程为x,CQ=y.∵∠APC=∠B+∠BAP=∠APQ+∠CPQ,∠APQ=∠B,∴∠BAP=∠CPQ,∵∠B=∠C,∴△ABP∽△PCQ,∴=,∴=,∴y=﹣(x﹣7)2+,∵﹣<0,∴x=7时,y有最大值,最大值=,∵AK=,∴CK=5﹣=<当y=时,=﹣(x﹣7)2+,解得x=7±,∴点K被扫描到的总时长=(+6﹣3)÷=23秒.。
2020年部编人教版河北省中考数学试题及答案(Word精析版)
![2020年部编人教版河北省中考数学试题及答案(Word精析版)](https://img.taocdn.com/s3/m/298089e31ed9ad51f11df239.png)
2020年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.气温由-1℃上升2℃后是A.-1℃B.1℃C.2℃D.3℃答案:B解析:上升2℃,在原温度的基础上加2℃,即:-1+2=1,选B。
2. 截至2020年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为A.0.423×107B.4.23×106C.42.3×105D.423×104答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.4 230 000=4.23×106 3.下列图形中,既是轴对称图形又是中心对称图形的是答案:C解析:A是只中心对称图形,B、D只是轴对称图形,只有C既是轴对称图形又是中心对称图形。
4.下列等式从左到右的变形,属于因式分解的是A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)答案:D解析:因式分解是把一个多项式化为几个最简整式的积的形式,所以,A、B、C都不符合,选D。
x-4=5.若x=1,则||A.3B.-3C.5D.-5答案:A解析:当x=1时,|x-4|=|1-4|=3。
河北省2020年中考数学试题(解析版)
![河北省2020年中考数学试题(解析版)](https://img.taocdn.com/s3/m/2541b394a1c7aa00b52acb9f.png)
2020年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线m 的垂线,可作垂线的条数有( )A. 0条B. 1条C. 2条D. 无数条 【答案】D【解析】【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D .【点睛】此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义.2.墨迹覆盖了等式“3x 2x x =(0x ≠)”中的运算符号,则覆盖的是( ) A. +B. -C. ×D. ÷【答案】D【解析】【分析】直接利用同底数幂的除法运算法则计算得出答案.【详解】∵3x 2x x =(0x ≠), 32x x x ÷=,∴覆盖的是:÷.故选:D .【点睛】本题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.3.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( )A. 都是因式分解B. 都是乘法运算C. ①是因式分解,②是乘法运算D. ①是乘法运算,②是因式分解【答案】C【解析】【分析】根据因式分解的定义进行判断即可;【详解】①左边多项式,右边整式乘积形式,属于因式分解;②左边整式乘积,右边多项式,属于整式乘法;故答案选C.【点睛】本题主要考查了因式分解的定义理解,准确理解因式分解的定义是解题的关键.4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A. 仅主视图不同B. 仅俯视图不同C. 仅左视图不同D. 主视图、左视图和俯视图都相同【答案】D【解析】【分析】分别画出所给两个几何体的三视图,然后比较即可得答案.【详解】第一个几何体的三视图如图所示:第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选D.【点睛】本题考查了几何体的三视图,正确得出各几何体的三视图是解题的关键.5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A. 9B. 8C. 7D. 6【答案】B【解析】【分析】根据统计图中的数据结合中位数和众数的定义,确定a的值即可.【详解】解:由条形统计图可知,前三次的中位数是8∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数∴a=8.故答案为B.【点睛】本题考查条形统计图、中位数和众数的定义,掌握中位数和众数的定义是解答本题的关键.∠,用尺规作它的角平分线.6.如图1,已知ABC如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A. a ,b 均无限制B. 0a >,12b DE >的长 C. a 有最小限制,b 无限制D. 0a ≥,12b DE <的长 【答案】B【解析】【分析】根据作角平分线的方法进行判断,即可得出结论. 【详解】第一步:以B 为圆心,适当长为半径画弧,分别交射线BA ,BC 于点D ,E ;∴0a >;第二步:分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在ABC ∠内部交于点P ; ∴12b DE >的长; 第三步:画射线BP .射线BP 即为所求. 综上,答案为:0a >;12b DE >的长, 故选:B .【点睛】本题主要考查了基本作图,解决问题的关键是掌握作角平分线的方法.7.若a b ,则下列分式化简正确的是( ) A. 22a a b b +=+ B. 22a a b b -=- C. 22a a b b = D. 1212a a bb = 【答案】D【解析】【分析】根据a≠b,可以判断各个选项中的式子是否正确,从而可以解答本题.【详解】∵a≠b,∴22a ab b +≠+,选项A错误;22a ab b-≠-,选项B错误;22a ab b≠,选项C错误;1212a abb=,选项D正确;故选:D.【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A. 四边形NPMQB. 四边形NPMRC. 四边形NHMQD. 四边形NHMR【答案】A【解析】【分析】以O为位似中心,作四边形ABCD的位似图形,根据图像可判断出答案.【详解】解:如图所示,四边形ABCD的位似图形是四边形NPMQ.故选:A【点睛】此题考查了位似图形的作法,画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,确定位似图形.9.若()()229111181012k --=⨯⨯,则k =( ) A. 12 B. 10 C. 8 D. 6【答案】B【解析】【分析】利用平方差公式变形即可求解.【详解】原等式()()229111181012k --=⨯⨯变形得: ()()229111181012k --=⨯⨯()()()()919111111181012-+-+=⨯⨯ 810101281012⨯⨯⨯=⨯⨯ 10=.故选:B .【点睛】本题考查了平方差公式的应用,灵活运用平方差公式是解题的关键.10.如图,将ABC ∆绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的CDA ∆与ABC ∆构成平行四边形,并推理如下: 点A ,C 分别转到了点C ,A 处,而点B 转到了点D 处.∵CB AD =,∴四边形ABCD 是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中“∵CB AD =,”和“∴四边形……”之间作补充.下列正确的是( )A. 嘉淇推理严谨,不必补充B. 应补充:且AB CD =, C . 应补充:且//AB CDD. 应补充:且OA OC =,【答案】B【解析】【分析】 根据平行四边形的判定方法“两组对边分别相等的四边形是平行四边形”即可作答.【详解】根据旋转的性质得: CB=AD ,AB=CD ,∴四边形ABDC 是平行四边形;故应补充“AB=CD ”,故选:B .【点睛】本题主要考查了平行四边形的判定和旋转的性质,牢记旋转前、后的图形全等,熟练掌握平行四边形的判定方法是解题的关键.11.若k 为正整数,则()k k k k k k ++⋅⋅⋅+=个( ) A. 2k k B. 21k k + C. 2k k D. 2k k +【答案】A【解析】【分析】根据乘方的定义及幂的运算法则即可求解.【详解】()k k kk k k ++⋅⋅⋅+=个()()2k k k k k ⋅==2k k , 故选A .【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.12.如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错.误.的是( )A. 从点P 向北偏西45°走3km 到达lB. 公路l的走向是南偏西45° C. 公路l 走向是北偏东45°D. 从点P 向北走3km 后,再向西走3km 到达l【答案】A【解析】【分析】根据方位角的定义及勾股定理逐个分析即可.【详解】解:如图所示,过P 点作AB 的垂线PH ,选项A :∵BP=AP=6km ,且∠BPA=90°,∴△PAB 为等腰直角三角形,∠PAB=∠PBA=45°,又PH ⊥AB ,∴△PAH 为等腰直角三角形,∴PH=2=PA ,故选项A 错误; 选项B :站在公路上向西南方向看,公路l 的走向是南偏西45°,故选项B 正确;选项C :站在公路上向东北方向看,公路l 的走向是北偏东45°,故选项C 正确;选项D :从点P 向北走3km 后到达BP 中点E ,此时EH 为△PEH 的中位线,故EH=12AP=3,故再向西走3km 到达l ,故选项D 正确.故选:A .【点睛】本题考查了方位角问题及等腰直角三角形、中位线等相关知识点,方向角一般以观测者的位置为中心,所以观测者不同,方向就正好相反,但角度不变.13.已知光速为300000千米秒,光经过t 秒(110t ≤≤)传播的距离用科学记数法表示为10n a ⨯千米,则n 可能为( )A. 5B. 6C. 5或6D. 5或6或7【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:当t=1时,传播的距离为300000千米,写成科学记数法为:5310⨯千米,当t=10时,传播的距离为3000000千米,写成科学记数法为:6310⨯千米,∴n 的值为5或6,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.有一题目:“已知;点O 为ABC ∆的外心,130BOC ∠=︒,求A ∠.”嘉嘉的解答为:画ABC ∆以及它的外接圆O ,连接OB ,OC ,如图.由2130BOC A ∠=∠=︒,得65A ∠=︒.而淇淇说:“嘉嘉考虑的不周全,A ∠还应有另一个不同的值.”,下列判断正确的是( )A. 淇淇说的对,且A ∠的另一个值是115°B. 淇淇说的不对,A ∠就得65°C. 嘉嘉求的结果不对,A ∠应得50°D. 两人都不对,A ∠应有3个不同值【答案】A【解析】【分析】直接利用圆内接四边形的性质结合圆周角定理得出答案.【详解】解:如图所示:∵∠BOC=130°,∴∠A=65°,∠A 还应有另一个不同的值∠A′与∠A 互补.故∠A′=180°−65°=115°.故选:A .【点睛】此题主要考查了三角形的外接圆,正确分类讨论是解题关键. 15.如图,现要在抛物线(4)y x x =-上找点(,)P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下,甲:若5b =,则点P 的个数为0;乙:若4b =,则点P 的个数为1;丙:若3b =,则点P 的个数为1.下列判断正确的是( )A. 乙错,丙对B. 甲和乙都错C. 乙对,丙错D. 甲错,丙对【答案】C【解析】【分析】分别令x(4-x)的值为5,4,3,得到一元二次方程后,利用根的判别式确定方程的根有几个,即可得到点P的个数.【详解】当b=5时,令x(4-x)=5,整理得:x2-4x+5=0,△=(-4)2-4×5=-6<0,因此点P的个数为0,甲的说法正确;当b=4时,令x(4-x)=4,整理得:x2-4x+4=0,△=(-4)2-4×4=0,因此点P有1个,乙的说法正确;当b=3时,令x(4-x)=3,整理得:x2-4x+3=0,△=(-4)2-4×3=4>0,因此点P有2个,丙的说法不正确;故选:C.【点睛】本题考查二次函数与一元二次方程,解题的关键是将二次函数与直线交点个数,转化成一元二次方程根的判别式.16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是()A. 1,4,5B. 2,3,5C. 3,4,5D. 2,2,4【答案】B【解析】【分析】根据勾股定理,222+=a b c ,则小的两个正方形的面积等于大三角形的面积,再分别进行判断,即可得到面积最大的三角形.【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,由勾股定理,得222+=a b c ,A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯;B 、∵2+3=512C 、∵3+4≠5,则不符合题意;D 、∵2+2=4112=;1>, 故选:B .【点睛】本题考查了正方形的性质,勾股定理的应用,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,以及正方形的性质进行解题.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.==,则ab =_________.【答案】6【解析】【分析】根据二次根式的运算法则即可求解.-==∴a=3,b=2∴ab =6故答案为:6.【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.18.正六边形的一个内角是正n 边形一个外角的4倍,则n =_________.【答案】12【解析】【分析】先根据外角和定理求出正六边形的外角为60°,进而得到其内角为120°,再求出正n 边形的外角为30°,再根据外角和定理即可求解.【详解】解:由多边形的外角和定理可知,正六边形的外角为:360°÷6=60°,故正六边形的内角为180°-60°=120°,又正六边形的一个内角是正n 边形一个外角的4倍,∴正n 边形的外角为30°,∴正n 边形的边数为:360°÷30°=12.故答案为:12.【点睛】本题考查了正多边形的外角与内角的知识,熟练掌握正多边形的内角和和外角和定理是解决此类题目的关键.19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~8的整数).函数k y x=(0x <)的图象为曲线L .(1)若L 过点1T ,则k =_________;(2)若L 过点4T ,则它必定还过另一点m T ,则m =_________;(3)若曲线L 使得18~T T 这些点分布在它的两侧,每侧各4个点,则k 的整数值有_________个.【答案】 (1). -16 (2). 5 (3). 7【解析】【分析】(1)先确定T 1的坐标,然后根据反比例函数k y x=(0x <)即可确定k 的值; (2)观察发现,在反比例函数图像上的点,横纵坐标只积相等,即可确定另一点;(3)先分别求出T 1~T 8的横纵坐标积,再从小到大排列,然后让k 位于第4个和第5个点的横纵坐标积之间,即可确定k 的取值范围和k 的整数值的个数.【详解】解:(1)由图像可知T 1(-16,1)又∵.函数k y x =(0x <)的图象经过T 1 ∴116k =-,即k=-16; (2)由图像可知T 1(-16,1)、T 2(-14,2)、T 3(-12,3)、T 4(-10,4)、T 5(-8,5)、T 6(-6,6)、T 7(-4,7)、T 8(-2,8)∵L 过点4T∴k=-10×4=40 观察T 1~T 8,发现T 5符合题意,即m=5;(3)∵T 1~T 8的横纵坐标积分别为:-16,-28,-36,-40,-40,-36,-28,-16∴要使这8个点为于L 的两侧,k 必须满足-36<k <-28∴k 可取-29、-30、-31、-32、-33、-34、-35共7个整数值.故答案为:(1)-16;(2)5;(3)7.【点睛】本题考查了反比例函数图像的特点,掌握反比例函数图像上的点的横纵坐标积等于k 是解答本题的关键.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.已知两个有理数:-9和5.(1)计算:(9)52-+; (2)若再添一个负整数m ,且-9,5与m 这三个数的平均数仍小于m ,求m 的值. 【答案】(1)-2;(2)1m =-.【解析】【分析】(1)根据有理数的混合运算法则即可求解;(2)根据平均数的定义列出不等式即可求出m 的取值,故可求解.【详解】(1)(9)52-+=422-=-; (2)依题意得(9)53m -++<m 解得m >-2∴负整数m =-1.【点睛】此题主要考查有理数、不等式及平均数,解题的关键是熟知有理数、不等式的运算法则. 21.有一电脑程序:每按一次按键,屏幕的A 区就会自动加上2a ,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和-16,如图.如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.【答案】(1)2252a +;166a --;(2)24a 12a+9-;和不能为负数,理由见解析.【解析】【分析】(1)根据题意,每按一次按键,屏幕的A 区就会自动加上2a ,B 区就会自动减去3a ,可直接求出初始状态按2次后A ,B 两区显示的结果.(2)依据题意,分别求出初始状态下按4次后A ,B 两区显示的代数式,再求A ,B 两区显示的代数式的和,判断能否为负数即可.【详解】解:(1)A 区显示结果为:22225+a +a =25+2a ,B 区显示结果为:163a 3a=166a ﹣--﹣-;(2)初始状态按4次后A 显示为:2222225+a +a +a a 254a +=+B 显示为:163a 3a 3a 3a=1612a ﹣----﹣-∴A+B=225+4a +(-1612a)-=24a 12a+9-=2(2a 3)-∵2(2a 3)0≥-恒成立,∴和不能为负数.【点睛】本题考查了代数式运算,合并同类项,完全平方公式问题,解题关键在于理解题意,列出代数式进行正确运算,并根据完全平方公式判断正负.22.如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC OD =.以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP .(1)①求证:AOE POC ∆∆≌;②写出∠1,∠2和C ∠三者间的数量关系,并说明理由.(2)若22OC OA ==,当C ∠最大时,直接..指出CP 与小半圆的位置关系,并求此时EOD S 扇形(答案保留π).【答案】(1)①见详解;②∠2=∠C+∠1;(2)CP 与小半圆相切,43π. 【解析】【分析】(1)①直接由已知即可得出AO=PO ,∠AOE=∠POC ,OE=OC ,即可证明;②由(1)得△AOE ≌△POC ,可得∠1=∠OPC ,根据三角形外角的性质可得∠2=∠C+∠OPC ,即可得出答案;(2)当C ∠最大时,可知此时CP 与小半圆相切,可得CP⊥OP,然后根据222OC OA OP ===,可得在Rt △POC 中,∠C=30°,∠POC=60°,可得出∠EOD ,即可求出S 扇EOD .【详解】(1)①在△AOE 和△POC 中=AO PO AOE POC OE OC =⎧⎪⎨⎪=⎩∠∠,∴△AOE ≌△POC ;②∠2=∠C+∠1,理由如下:由(1)得△AOE ≌△POC ,∴∠1=∠OPC ,根据三角形外角的性质可得∠2=∠C+∠OPC ,∴∠2=∠C+∠1;(2)在P 点的运动过程中,只有CP 与小圆相切时∠C 有最大值,∴当C ∠最大时,可知此时CP 与小半圆相切,由此可得CP ⊥OP ,又∵222OC OA OP ===,∴可得在Rt △POC 中,∠C=30°,∠POC=60°,∴∠EOD=180°-∠POC=120°,∴S 扇EOD =2120360R π⨯⨯=43π. 【点睛】本题考查了全等三角形的性质和判定,三角形的外角,切线的性质,扇形面积的计算,掌握知识点灵活运用是解题关键.23.用承重指数W 衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度x (厘米)的平方成正比,当3x =时,3W =.(1)求W 与x 的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x (厘米),Q W W =-厚薄.①求Q 与x 的函数关系式;②x 为何值时,Q 是W 薄的3倍?【注:(1)及(2)中的①不必写x 的取值范围】【答案】(1)213W x =;(2)①124Q x =-;②2cm x =. 【解析】【分析】(1)设W=kx 2,利用待定系数法即可求解;(2)①根据题意列出函数,化简即可;②根据题意列出方程故可求解.【详解】(1)设W=kx 2,∵3x =时,3W =∴3=9k∴k=13∴W 与x 的函数关系式为213W x =; (2)①∵薄板的厚度为xcm ,木板的厚度为6cm∴厚板的厚度为(6-x )cm ,∴Q=2211(6)41233x x x ⨯=-+-- ∴Q 与x 的函数关系式为124Q x =-;②∵Q 是W 薄的3倍∴-4x+12=3×213x解得x1=2,x2=-6(不符题意,舍去)经检验,x=2是原方程的解,∴x=2时,Q 是W 薄的3倍.【点睛】此题主要考查函数与方程的应用,解题的关键是根据题意找到等量关系列出函数或方程求解.24.表格中的两组对应值满足一次函数y kx b =+,现画出了它的图象为直线l ,如图.而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线l '.(1)求直线l 的解析式;(2)请在图上画出..直线l '(不要求列表计算),并求直线l '被直线l 和y 轴所截线段的长; (3)设直线y a =与直线l ,l '及y 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值. 【答案】(1)l :31y x ;(22;(3)a 的值为52或175或7 【解析】【分析】(1)根据待定系数法即可求解;(2)根据题意得到直线l ',联立两直线求出交点坐标,再根据两点间的距离公式即可求解;(3)分对称点在直线l ,直线l '和y 轴分别列式求解即可.【详解】(1)依题意把(-1,-2)和(0,1)代入y kx b =+, 得21k b b -=-+⎧⎨=⎩, 解得31k b =⎧⎨=⎩, ∴直线l 的解析式为31y x , (2)依题意可得直线l '的解析式为3y x ,作函数图像如下:令x=0,得y=3,故B (0,3), 令313y x y x =+⎧⎨=+⎩,解得14x y =⎧⎨=⎩, ∴A (1,4),∴直线l '被直线l 和y 轴所截线段的长AB=22(10)(43)2-+-=;(3)①当对称点在直线l 上时,令31a x ,解得x=13a -, 令3a x =+,解得x=3a -,∴2×13a -=a-3, 解得a=7;②当对称点在直线l '上时,则2×(a-3)=13a -, 解得a=175; ③当对称点在y 轴上时,则13a -+(3a -)=0, 解得a=52; 综上:a 的值为52或175或7. 【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法、一次函数的图像与性质及坐标的对称性.25.如图,甲、乙两人(看成点)分别在数轴-3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终..停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接..写出k的值.【答案】(1)14P=;(2)256m n=-;当4n=时,距离原点最近;(3)3k=或5【解析】【分析】(1)对题干中三种情况计算对应概率,分析出正确的概率即可;硬币朝上为正面、反面的概率均为12,甲和乙猜正反的情况也分为三种情况:①甲和乙都猜正面或反面,概率为12,②甲猜正,乙猜反,概率为14,③甲猜反,乙猜正,概率为14,(2)根据题意可知乙答了10次,答对了n次,则打错了(10-n)次,再根据平移的规则推算出结果即可;(3)刚开始的距离是8,根据三种情况算出缩小的距离,即可算出缩小的总距离,分别除以2即可得到结果;【详解】(1)题干中对应的三种情况的概率为:①11111+= 22222⨯⨯;②11111+= 24244⨯⨯;③11111+= 24244⨯⨯;甲的位置停留在正半轴上的位置对应情况②,故P =14. (2)根据题意可知乙答了10次,答对了n 次,则打错了(10-n )次,根据题意可得,n 次答对,向西移动4n ,10-n 次答错,向东移了2(10-n ),∴m=5-4n+2(10-n )=25-6n ,∴当n=4时,距离原点最近.(3)起初,甲乙的距离是8,易知,当甲乙一对一错时,二者之间距离缩小2,当甲乙同时答对打错时,二者之间的距离缩小2,∴当加一位置相距2个单位时,共缩小了6个单位或10个单位,∴62=3÷或102=5÷,∴3k =或5k =.【点睛】本题主要考查了概率的求解,通过数轴的理解进行准确分析是解题的关键. 26.如图1和图2,ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆的面积分成上下4:5两部分时,求MP 的长;(3)设点P 移动的路程为x ,当03x ≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长. 【答案】(1)3;(2)43MP =;(3)当03x ≤≤时,24482525d x =+;当39x ≤≤时,33355d x =-+;(4)23t s =【解析】【分析】(1)根据当点P 在BC 上时,PA ⊥BC 时PA 最小,即可求出答案;(2)过A 点向BC 边作垂线,交BC 于点E ,证明△APQ ∽△ABC ,可得2APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,根据S S 上下=45可得 24=9APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,可得23AP AB =,求出AB=5,即可解出MP ; (3)先讨论当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ ·sinC ,求解即可,再讨论当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,根据d=CP·sinC 即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3; (2)过A 点向BC 边作垂线,交BC 于点E ,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==, ∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭, ∴23AP AB =, AE=2BC ·tan 3C =, 根据勾股定理可得AB=5, ∴2253AP MP AB +==, 解得MP=43; (3)当0≤x≤3时,P BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35, ∴d=35PQ , ∵AP=x+2, ∴25AP x PQ AB BC+==, ∴PQ=285x +⨯, ∴d=23855x +⨯⨯=24482525x +, 当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335, 综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩; (4)AM=2<AQ=94, 移动的速度=936=14, ①从Q 平移到K ,耗时:92414-=1秒, ②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114, ∵∠APQ+∠QPC=∠B+∠BAP ,APQ B ∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-, 整理得y 2-8y=554-, (y-4)2=94, 解得y 1=52,y 2=112, 52÷14=10秒, 112÷14=22秒, ∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键。
2020年河北省中考数学试卷(有详细解析)
![2020年河北省中考数学试卷(有详细解析)](https://img.taocdn.com/s3/m/20e2408c0722192e4436f6a4.png)
2020年河北省中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共16小题,共42.0分)1.如图,在平面内作已知直线m的垂线,可作垂线的条数有()A. 0条B. 1条C. 2条D. 无数条2.墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A. +B. −C. ×D. ÷3.对于①x−3xy=x(1−3y),②(x+3)(x−1)=x2+2x−3,从左到右的变形,表述正确的是()A. 都是因式分解B. 都是乘法运算C. ①是因式分解,②是乘法运算D. ①是乘法运算,②是因式分解4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A. 仅主视图不同B. 仅俯视图不同C. 仅左视图不同D. 主视图、左视图和俯视图都相同5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A. 9B. 8C. 7D. 66.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()DE的长A. a,b均无限制B. a>0,b>12DE的长C. a有最小限制,b无限制D. a≥0,b<127.若a≠b,则下列分式化简正确的是()A. a+2b+2=abB. a−2b−2=abC. a2b2=abD. 12a12b=ab8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A. 四边形NPMQB. 四边形NPMRC. 四边形NHMQD. 四边形NHMR9.若(92−1)(112−1)k=8×10×12,则k=()A. 12B. 10C. 8D. 610.如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉洪的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A. 嘉淇推理严谨,不必补充B. 应补充:且AB=CDC. 应补充:且AB//CDD. 应补充:且OA=OC11.若k为正整数,则(k+k+⋯+k)k k个k=()A. k2kB. k2k+1C. 2k kD. k2+k12.如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A. 从点P向北偏西45°走3km到达lB. 公路l的走向是南偏西45°C. 公路l的走向是北偏东45°D. 从点P向北走3km后,再向西走3km到达l13.已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A. 5B. 6C. 5或6D. 5或6或714.有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A. 淇淇说的对,且∠A的另一个值是115°B. 淇淇说的不对,∠A就得65°C. 嘉嘉求的结果不对,∠A应得50°D. 两人都不对,∠A应有3个不同值15.如图,现要在抛物线y=x(4−x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A. 乙错,丙对B. 甲和乙都错C. 乙对,丙错D. 甲错,丙对16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A. 1,4,5B. 2,3,5C. 3,4,5D. 2,2,4二、填空题(本大题共3小题,共12.0分)17.已知:√18−√2=a√2−√2=b√2,则ab=______.18.正六边形的一个内角是正n边形一个外角的4倍,则n=______.19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的(x<0)的图象为曲线L.顶点记作T m(m为1~8的整数).函数y=kx(1)若L过点T1,则k=______;(2)若L过点T4,则它必定还过另一点T m,则m=______;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有______个.三、解答题(本大题共7小题,共66.0分)20.已知两个有理数:−9和5.(1)计算:(−9)+5;2(2)若再添一个负整数m,且−9,5与m这三个数的平均数仍小于m,求m的值.21.有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和−16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.22.如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA=2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S(答案保留π).扇形EOD23.用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚−W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]24.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l′.x−10y−21(2)请在图上画出直线l′(不要求列表计算),并求直线l′被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.25.如图,甲、乙两人(看成点)分别在数轴−3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值..点K在AC边上,点M,26.如图1和图2,在△ABC中,AB=AC,BC=8,tanC=34N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB−BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=9,请直接写出点K被扫描到的总时4长.答案和解析1.D解:在平面内,与已知直线垂直的直线有无数条,所以作已知直线的垂线,可作无数条.2.D解:∵x3x=x2(x≠0),∴覆盖的是:÷.3.C解:①x−3xy=x(1−3y),从左到右的变形是因式分解;②(x+3)(x−1)=x2+2x−3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.4.D解:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.5.B解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,6.B解:以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为半径画弧时,b必须大于12DE,否则没有交点,7.D解:∵a≠b,∴a+2b+2≠ab,故选项A错误;a−2 b−2≠ab,故选项B错误;a2 b2≠ab,故选项C错误;1 2a1 2b=ab,故选项D正确;解:∵以点O 为位似中心, ∴点C 对应点M ,设网格中每个小方格的边长为1,则OC =√22+12=√5,OM =√42+22=2√5,OD =√2,OB =√32+12=√10,OA =√32+22=√13,OR =√22+12=√5,OQ =2√2,OP =√62+22=2√10,OH =√62+32=3√5,ON =√62+42=2√13, ∵OM OC=√5√5=2,∴点D 对应点Q ,点B 对应点P ,点A 对应点N ,∴以点O 为位似中心,四边形ABCD 的位似图形是四边形NPMQ , 9. B解:方程两边都乘以k ,得(92−1)(112−1)=8×10×12k ,∴(9+1)(9−1)(11+1)(11−1)=8×10×12k , ∴80×120=8×10×12k , ∴k =10.经检验k =10是原方程的解. 10. B解:∵CB =AD ,AB =CD , ∴四边形ABCD 是平行四边形, 11. A 解:(k+k+⋯+k)kk 个k =((k ⋅k)k =(k 2)k =k 2k ,12. A解:如图,由题意可得△PAB 是腰长6km 的等腰直角三角形, 则AB =6√2km , 则PC =3√2km ,则从点P 向北偏西45°走3√2km 到达l ,选项A 错误;则公路l 的走向是南偏西45°或北偏东45°,选项B ,C 正确; 则从点P 向北走3km 后,再向西走3km 到达l ,选项D 正确. 13. C解:当t =1时,光传播的距离为1×300000=300000=3×105(千米),则n =5;当t =10时,光传播的距离为10×300000=3000000=3×106(千米),则n =6.因为1≤t ≤10,所以n 可能为5或6,解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°−65°=115°.15.C解:y=x(4−x)=−x2+4x=−(x−2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;16.B解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是√1×√42=√42,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是√2×√32=√62;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是√2×√22=√42,∵√62>√42,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,17.6解:原式=3√2−√2=a√2−√2=b√2,故a=3,b=2,则ab=6.18.12解:正六边形的一个内角为:(6−2)×180°6=120°,∵正六边形的一个内角是正n边形一个外角的4倍,∴正n边形一个外角为:120°÷4=30°,∴n=360°÷30°=12.19.−16 5 7解:(1)∵每个台阶的高和宽分别是1和2,∴T1(−16,1),T2(−14,2),T3(−12,3),T4(−10,4),T5(−8,5),T6(−6,6),T7(−4,7),T8(−2,8),∵L过点T1,∴k=−16×1=−16,故答案为:−16;(2)∵L过点T4,∴k=−10×4=−40,∴反比例函数解析式为:y=−40x,当x=−8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(−16,1),T8(−2,8)时,k=−16,若曲线L过点T2(−14,2),T7(−4,7)时,k=−14×2=−28,若曲线L过点T3(−12,3),T5(−8,5)时,k=−12×3=−36,若曲线L过点T4(−10,4),T5(−8,5)时,k=−40,∵曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,∴−36<k<−28,∴整数k=−35,−34,−33,−32,−31,−30,−29共7个,∴答案为:7.20.解:(1)(−9)+52=−42=−2;(2)根据题意得,−9+5+m3<m,∴−4+m<3m,∴m−3m<4,∴−2m<4,∴m>−2,∵m是负整数,∴m=−1.21.解:(1)A区显示的结果为:25+2a2,B区显示的结果为:−16−6a;(2)这个和不能为负数,理由:根据题意得,25+4a2+(−16−12a)=25+4a2−16−12a=4a2−12a+9;∵(2a−3)2≥0,∴这个和不能为负数.22.解:(1)①在△AOE和△POC中,{OA=OP∠AOE=∠POC OE=OC,∴△AOE≌△POC(SAS);②∵△AOE≌△POC,∴∠E=∠C,∵∠1+∠E=∠2,∴∠1+∠C=∠2;(2)当∠C最大时,直接指出CP与小半圆相切,如图,∵OC =2OA =2,∴OC =2OP ,∵CP 与小半圆相切,∴∠OPC =90°,∴∠OCP =30°,∴∠DOE =∠OPC +∠OCP =120°,∴S 扇形ODE =120π×22360=43π. 23. 解:(1)设W =kx 2(k ≠0).∵当x =3时,W =3,∴3=9k ,解得k =13,∴W 与x 的函数关系式为W =13x 2;(2)①设薄板的厚度为x 厘米,则厚板的厚度为(6−x)厘米,∴Q =W 厚−W 薄=13(6−x)2−13x 2=−4x +12,即Q 与x 的函数关系式为Q =−4x +12;②∵Q 是W 薄的3倍,∴−4x +12=3×13x 2, 整理得,x 2+4x −12=0,解得,x 1=2,x 2=−6(不合题意舍去),故x 为2时,Q 是W 薄的3倍.24. 解:(1)∵直线l :y =kx +b 中,当x =−1时,y =−2;当x =0时,y =1,∴{−k +b =−2b =1,解得{k =3b =1, ∴直线l 的解析式为y =3x +1;∴直线l′的解析式为y =x +3;(2)如图,解{y =x +3y =3x +1得{x =1y =4, ∴两直线的交点为(1,4),∵直线l′:y =x +3与y 轴的交点为(0,3),∴直线l′被直线l 和y 轴所截线段的长为:√12+(4−3)2=√2;(3)把y =a 代入y =3x +1得,a =3x +1,解得x =a−13; 把y =a 代入y =x +3得,a =x +3,解得x =a −3;当a −3+a−13=0时,a =52, 当12(a −3+0)=a−13时,a =7, 当12(a−13+0)=a −3时,a =175,∴直线y =a 与直线l ,l′及y 轴有三个不同的交点,且其中两点关于第三点对称,则a 的值为52或7或175.25. 解:(1)∵经过第一次移动游戏,求甲的位置停留在正半轴上的,∴必须甲胜乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,∴P 甲胜乙错=14.(2)由题意m =5−4n +2(10−n)=25−6n .n =4时,离原点最近.(3)不妨设甲连续k 次正确后两人相距2个单位,则有|8+2k −4k|=2,解得k =3或5.如果k 次中,有1次两人都对都错,则有|6+2(k −1)−4(k −1)|=2,解得k =3或5, 如果k 次中,有2次两人都对都错,则有|4+2(k −2)−4(k −2)|=2,解得k =3或5, …,综上所述,满足条件的k 的值为3或5.26. 解:(1)如图1中,过点A 作AH ⊥BC 于H .∵AB =AC ,AH ⊥BC ,∴BH =CH =4,∠B =∠C ,∴tan∠B =tan∠C =AH BH =34,∴AH =3,AB =AC =√AH 2+BH 2=√32+42=5.∴当点P 在BC 上时,点P 到A 的最短距离为3.(2)如图1中,∵∠APQ =∠B ,∴PQ//BC ,∴△APQ∽△ABC ,∵PQ 将△ABC 的面积分成上下4:5,∴S△APQS△ABC =(APAB)2=49,∴APAB =23,∴AP=103,∴PM=AP=AM=103−2=43.(3)当0≤x≤3时,如图1−1中,过点P作PJ⊥CA交CA的延长线于J.∵PQ//BC,∴APAB =PQBC,∠AQP=∠C,∴x+25=PQ8,∴PQ=85(x+2),∵sin∠AQP=sin∠C=35,∴PJ=PQ⋅sin∠AQP=2425(x+2).当3<x≤9时,如图2中,过点P作PJ⊥AC于J.同法可得PJ=PC⋅sin∠C=35(11−x).(4)由题意点P的运动速度=936=14单位长度/秒.当3<x≤9时,设CQ=y.∵∠APC=∠B+∠BAP=∠APQ+∠CPQ,∠APQ=∠B,∴∠BAP=∠CPQ,∵∠B=∠C,∴△ABP∽△PCQ,∴ABCP =BPCQ,∴511−x =x−3y,∴y=−15(x−7)2+165,∵−15<0,∴x=7时,y有最大值,最大值=165,∵AK=94,∴CK=5−94=114<165当y=114时,114=−15(x−7)2+165,解得x=7±32,∴点K被扫描到的总时长=(114+6−3)÷14=23秒.。
2020年河北省中考数学试卷和答案解析
![2020年河北省中考数学试卷和答案解析](https://img.taocdn.com/s3/m/5513b3a1763231126fdb1183.png)
2020年河北省中考数学试卷和答案解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条解析:根据垂直、垂线的定义,可直接得结论.参考答案:解:在同一平面内,与已知直线垂直的直线有无数条,所以作已知直线m的垂线,可作无数条.故选:D.点拨:本题考查了垂直和垂线的定义.掌握垂线的定义是解决本题的关键.2.(3分)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷解析:直接利用同底数幂的除法运算法则计算得出答案.参考答案:解:∵x3x=x2(x≠0),∴覆盖的是:÷.故选:D.点拨:此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.3.(3分)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x ﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解解析:根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式)判断即可.参考答案:解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.点拨:此题考查了因式分解.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.4.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同解析:根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.参考答案:解:解法一:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.解法二:第一个几何体的三视图如图所示第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选:D.点拨:本题考查了简单组合体的三视图,利用三视图的意义是解题关键.5.(3分)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9B.8C.7D.6解析:根据统计图中的数据和题意,可以得到a的值,本题得以解决.参考答案:解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,故选:B.点拨:本题考查条形统计图、中位数、众数,解答本题的关键是明确题意,利用数形结合的思想解答.6.(3分)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b>DE的长C.a有最小限制,b无限制D.a≥0,b<DE的长解析:根据角平分线的画法判断即可.参考答案:解:以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为半径画弧时,b必须大于DE,否则没有交点,故选:B.点拨:本题考查作图﹣基本作图,解题的关键是熟练掌握作角平分线的方法,属于中考常考题型.7.(3分)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=解析:根据a≠b,可以判断各个选项中的式子是否正确,从而可以解答本题.参考答案:解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.点拨:本题考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.熟练掌握分式的基本性质是解题的关键.8.(3分)在如图所示的网格中,以点O为位似中心,四边形ABCD 的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR解析:由以点O为位似中心,确定出点C对应点M,设网格中每个小方格的边长为1,则OC=,OM=2,OD=,OB=,OA=,OR=,OQ=2,OP=2,OH=3,ON=2,由=2,得点D对应点Q,点B对应点P,点A对应点N,即可得出结果.参考答案:解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC==,OM==2,OD=,OB==,OA==,OR==,OQ=2,OP==2,OH==3,ON==2,∵==2,∴点D对应点Q,点B对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A.点拨:本题考查了位似变换、勾股定理等知识;熟练掌握位似中心,找出点C对应点M是解题的关键.9.(3分)若=8×10×12,则k=()A.12B.10C.8D.6解析:根据平方差公式和分式方程的解法,即可得到k的值.参考答案:解:方程两边都乘以k,得(92﹣1)(112﹣1)=8×10×12k,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k,∴80×120=8×10×12k,∴k=10.经检验k=10是原方程的解.故选:B.点拨:此题考查了平方差公式和解分式方程,熟练掌握平方差公式和解分式方程的方法是解本题的关键.10.(3分)如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB=CDC.应补充:且AB∥CDD.应补充:且OA=OC解析:根据两组对边分别相等的四边形是平行四边形判定即可.参考答案:解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故应补充“AB=CD”,故选:B.点拨:本题考查平行四边形的判定,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.11.(2分)若k为正整数,则=()A.k2k B.k2k+1C.2k k D.k2+k解析:根据乘方的定义及幂的运算法则即可求解.参考答案:解:=((k•k)k=(k2)k=k2k,故选:A.点拨:本题考查了幂的乘方.解题的关键掌握幂的乘方的运算法则:底数不变,指数相乘.12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l解析:先作出图形,根据勾股定理和等腰直角三角形的性质即可求解.参考答案:解:如图,由题意可得△PAB是腰长6km的等腰直角三角形,则AB=6km,如图所示,过P点作AB的垂线PC,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后到达BP中点D,此时CD为△PAB的中位线,故CD=AP=3,故再向西走3km到达l,选项D正确.故选:A.点拨:本题考查的是勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.参考答案:解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.点拨:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值解析:直接利用圆内接四边形的性质结合圆周角定理得出答案.参考答案:解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A.点拨:此题主要考查了三角形的外接圆,正确分类讨论是解题关键.15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对解析:求出抛物线的顶点坐标为(2,4),由二次函数的性质对甲、乙、丙三人的说法分别进行判断,即可得出结论.参考答案:解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.点拨:本题考查了二次函数图象上点的坐标特征、抛物线的顶点坐标等知识;熟练掌握二次函数图象上点的坐标特征是解题的关键.16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4解析:根据题意可知,三块正方形的面积中,两个较小的面积之和等于最大的面积,再根据三角形的面积,分别计算出各个选项中围成的直角三角形的面积,比较大小,即可解答本题.参考答案:解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.点拨:本题考查勾股定理的逆定理,解答本题的关键是明确题意,利用勾股定理的逆定理解答.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)已知:﹣=a﹣=b,则ab=6.解析:直接化简二次根式进而得出a,b的值求出答案.参考答案:解:原式=3﹣=a﹣=b,故a=3,b=2,则ab=6.故答案为:6.点拨:此题主要考查了二次根式的加减,正确化简二次根式是解题关键.18.(3分)正六边形的一个内角是正n边形一个外角的4倍,则n =12.解析:根据多边形的内角和公式求出正六边形的一个内角等于120°,再根据多边形的外角和是360°即可解答.参考答案:解:正六边形的一个内角为:,∵正六边形的一个内角是正n边形一个外角的4倍,∴正n边形一个外角为:120°÷4=30°,∴n=360°÷30°=12.故答案为:12.点拨:本题主要考查了多边形的外角和定理,理解多边形外角和中外角的个数,以及正多边形的边数之间的关系,是解题关键.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=(x<0)的图象为曲线L.(1)若L过点T1,则k=﹣16;(2)若L过点T4,则它必定还过另一点T m,则m=5;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有7个.解析:(1)由题意可求T1~T8这些点的坐标,将点T1的坐标代入解析式可求解;(2)将点T4的坐标代入解析式可求k的值,将点T5代入,可求解;(3)由曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,可得T1,T2,T7,T8与T3,T4,T5,T6在曲线L的两侧,即可求解.参考答案:解:(1)∵每个台阶的高和宽分别是1和2,∴T1(﹣16,1),T2(﹣14,2),T3(﹣12,3),T4(﹣10,4),T5(﹣8,5),T6(﹣6,6),T7(﹣4,7),T8(﹣2,8),∵L过点T1,∴k=﹣16×1=﹣16,故答案为:﹣16;(2)∵L过点T4,∴k=﹣10×4=﹣40,∴反比例函数解析式为:y=﹣,当x=﹣8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(﹣16,1),T8(﹣2,8)时,k=﹣16,若曲线L过点T2(﹣14,2),T7(﹣4,7)时,k=﹣14×2=﹣28,若曲线L过点T3(﹣12,3),T5(﹣8,5)时,k=﹣12×3=﹣36,若曲线L过点T4(﹣10,4),T5(﹣8,5)时,k=﹣40,∵曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,∴﹣36<k<﹣28,∴整数k=﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个,∴答案为:7.点拨:本题考查了反比例函数的应用,求出各点的坐标是本题的关键.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m的值.解析:(1)根据有理数的加法、除法法则计算即可;(2)根据平均数的定义列不等式,解不等式,由m是负整数即可求出m的值.参考答案:解:(1)==﹣2;(2)根据题意得,<m,∴﹣4+m<3m,∴m﹣3m<4,∴﹣2m<4,∴m>﹣2,∵m是负整数,∴m=﹣1.点拨:此题考查了有理数的运算,解不等式和平均数.熟练掌握有理数的运算法则,解不等式的方法是解本题的关键.21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.解析:(1)根据题意列出代数式即可;(2)根据题意得到25+4a2+(﹣16﹣12a),根据整式加减的法则计算,然后配方,根据非负数的性质即可得到结论.参考答案:解:(1)A区显示的结果为:25+2a2,B区显示的结果为:﹣16﹣6a;(2)这个和不能为负数,理由:根据题意得,25+4a2+(﹣16﹣12a)=25+4a2﹣16﹣12a=4a2﹣12a+9;∵(2a﹣3)2≥0,∴这个和不能为负数.点拨:本题考查了配方法的应用,非负数的性质,整式的加减,正确的理解题意是解题的关键.22.(9分)如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD 上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠1,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA=2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S扇形EOD(答案保留π).解析:(1)①利用公共角相等,根据SAS证明三角形全等便可;②由全等三角形得∠C=∠E,再利用三角形外角性质得结论;(2)当CP与小半圆O相切时,∠C最大,求出∠DOE便可根据扇形的面积公式求得结果.参考答案:解:(1)①在△AOE和△POC中,,∴△AOE≌△POC(SAS);②∠1+∠C=∠2,理由是:∵△AOE≌△POC,∴∠E=∠C,∵∠1+∠E=∠2,∴∠1+∠C=∠2;(2)当∠C最大时,CP与小半圆相切,如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴.点拨:本题主要考查了圆的切线的性质,全等三角形的判定与性质,三角形的外角性质,直角三角形的性质,扇形的面积计算,关键在于掌握各个定理,灵活运用这些性质解题.23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W =3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]解析:(1)由木板承重指数W与木板厚度x(厘米)的平方成正比,可设W=kx2(k≠0).将x=3时,W=3代入,求出k=,即可得出W与x的函数关系式;(2)①设薄板的厚度为x厘米,则厚板的厚度为(6﹣x)厘米,将(1)中所求的解析式代入Q=W厚﹣W薄,化简即可得到Q与x的函数关系式;②根据Q是W薄的3倍,列出方程﹣4x+12=3×x2,求解即可.参考答案:解:(1)设W=kx2(k≠0).∵当x=3时,W=3,∴3=9k,解得k=,∴W与x的函数关系式为W=x2;(2)①设薄板的厚度为x厘米,则厚板的厚度为(6﹣x)厘米,∴Q=W厚﹣W薄=(6﹣x)2﹣x2=﹣4x+12,即Q与x的函数关系式为Q=﹣4x+12;②∵Q是W薄的3倍,∴﹣4x+12=3×x2,整理得,x2+4x﹣12=0,解得,x1=2,x2=﹣6(不合题意舍去),故x为2时,Q是W薄的3倍.点拨:本题考查了二次函数的应用,待定系数法求二次函数的解析式,求出W与x的函数关系式是解题的关键.24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.解析:(1)根据待定系数法求得即可;(2)画出直线l,求得两直线的交点,根据勾股定理即可求得直线l'被直线l和y轴所截线段的长;(3)求得两条直线与直线y=a的交点横坐标,分三种情况讨论求得即可.参考答案:解:(1)∵直线l:y=kx+b中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线l的解析式为y=3x+1;(2)依题意可得直线l′的解析式为y=x+3如图,解得,∴两直线的交点为A(1,4),∵直线l′:y=x+3与y轴的交点为B(0,3),∴直线l'被直线l和y轴所截线段的长为:AB==;(3)把y=a代入y=3x+1得,a=3x+1,解得x=;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;分三种情况:①当第三点在y轴上时,a﹣3+=0,解得a=;②当第三点在直l上时,2×=a﹣3,解得a=7;③当第三点在直线l'上时,2×(a﹣3)=,解得a=;∴直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为或7或.点拨:本题考查了一次函数图象与几何变换,两直线相交问题,待定系数法求一次函数的解析式,分类讨论是解题的关键.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O 最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.解析:(1)利用概率公式计算即可.(2)根据题意可知乙答了10次,答对了n次,则打错了(10﹣n)次,再根据平移的规则推算出结果即可;(3)刚开始的距离是8,根据三种情况算出缩小的距离,即可算出缩小的总距离,分别除以2即可得到结果.参考答案:解:(1)∵经过第一次移动游戏,甲的位置停留在正半轴上,∴必须甲对乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,∴P甲对乙错=.(2)根据题意可得,n次答对,向西移动4n,(10﹣n)次答错,向东移了2(10﹣n),∴m=5﹣4n+2(10﹣n)=25﹣6n.n=4时,离原点最近.(3)起初,甲乙的距离是8,易知,当甲乙一对一错时,二者之间距离缩小2,当甲乙同时答对打错时,二者之间的距离缩小2,∴当进行了k次移动游戏后,甲与乙的位置相距2个单位时,共缩小了6个单位或10个单位,∴6÷2=3或10÷2=5,∴k=3或k=5.点拨:本题考查概率公式,数轴,代数式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tanC =.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N 时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P 到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=,请直接写出点K被扫描到的总时长.解析:(1)在图1中,过点A作AH⊥BC于H.解直角三角形求出AH即可.(2)如图1,证明△APQ∽△ABC,可得,根据=可得,可得,根据(1)中AB=5,即可解出MP;(3)分两种情形:当0≤x≤3时,当3≤x≤9时,分别画出图形求解即可.(4)求出CK的长度,以及CQ的最大值,利用路程与速度的关系求解即可.参考答案:解:(1)如图1中,过点A作AH⊥BC于H.∵AB=AC,AH⊥BC,∴BH=CH=4,∠B=∠C,∴tan∠B=tan∠C==,∴AH=3,AB=AC===5.∴当点P在BC上时,PA⊥BC时,点P到A的最短距离为3.(2)如图1中,∵∠APQ=∠B,∴PQ∥BC,∴△APQ∽△ABC,∵PQ将△ABC的面积分成上下4:5,∴=()2=,∴=,∴AP=,∴PM=AP﹣AM=﹣2=.(3)当0≤x≤3时,如图1﹣1中,过点P作PJ⊥CA交CA的延长线于J.∵PQ∥BC,∴=,∠AQP=∠C,∴=,∴PQ=(x+2),∵sin∠AQP=sin∠C=,∴PJ=PQ•sin∠AQP=(x+2).当3≤x≤9时,如图2中,过点P作PJ⊥AC于J.同法可得PJ=PC•sin∠C=(11﹣x).综上,PJ=;(4)由题意点P的运动速度==单位长度/秒.当3<x≤9时,设点P移动的路程为x,CQ=y.∵∠APC=∠B+∠BAP=∠APQ+∠CPQ,∠APQ=∠B,∴∠BAP=∠CPQ,∵∠B=∠C,∴△ABP∽△PCQ,∴=,∴=,∴y =﹣(x﹣7)2+,∵﹣<0,∴x=7时,y 有最大值,最大值=,∵AK =,∴CK=5﹣=<当y =时,=﹣(x﹣7)2+,解得x=7±,∴点K 被扫描到的总时长=(+6﹣3)÷=23秒.点拨:本题属于三角形综合题,考查了等腰三角形的性质,解直角三角形,相似三角形的判定和性质,二次函数的性质等知识,解题的关键是理解题意,学会构建二次函数解决CQ的最值问题,属于中考压轴题.第31页(共31页)。
【解析版】2020年河北省中考数学试卷
![【解析版】2020年河北省中考数学试卷](https://img.taocdn.com/s3/m/a12daaa47cd184254b3535e0.png)
【解析版】2020年河北省中考数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【分析】根据垂直、垂线的定义,可直接得结论.【解答】解:在平面内,与已知直线垂直的直线有无数条,所以作已知直线的垂线,可作无数条.故选:D.【点评】本题考查了垂直和垂线的定义.掌握垂线的定义是解决本题的关键.2.(3分)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:∵x3x=x2(x≠0),∴覆盖的是:÷.故选:D.【点评】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.3.(3分)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式)判断即可.【解答】解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.【点评】此题考查了因式分解.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.4.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同【分析】根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.【解答】解:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.故选:D.【点评】本题考查了简单组合体的三视图,利用三视图的意义是解题关键.5.(3分)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9B.8C.7D.6【分析】根据统计图中的数据和题意,可以得到a的值,本题得以解决.【解答】解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,故选:B.【点评】本题考查条形统计图、中位数、众数,解答本题的关键是明确题意,利用数形结合的思想解答.6.(3分)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b>DE的长C.a有最小限制,b无限制D.a≥0,b<DE的长【分析】根据角平分线的画法判断即可.【解答】解:以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为半径画弧时,b必须大于DE,否则没有交点,故选:B.【点评】本题考查作图﹣基本作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.7.(3分)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【分析】根据a≠b,可以判断各个选项中的式子是否正确,从而可以解答本题.【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.【点评】本题考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.熟练掌握分式的基本性质是解题的关键.8.(3分)在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 【分析】由以点O为位似中心,确定出点C对应点M,设网格中每个小方格的边长为1,则OC=,OM=2,OD=,OB=,OA=,OR=,OQ=2,OP=2,OH=3,ON=2,由=2,得点D对应点Q,点B对应点P,点A对应点N,即可得出结果.【解答】解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC==,OM==2,OD=,OB==,OA==,OR==,OQ=2,OP==2,OH==3,ON==2,∵==2,∴点D对应点Q,点B对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A.【点评】本题考查了位似变换、等腰直角三角形的性质、勾股定理等知识;熟练掌握位似中心,找出点C对应点M是解题的关键.9.(3分)若=8×10×12,则k=()A.12B.10C.8D.6【分析】根据平方差公式和分式方程的解法,即可得到k的值.【解答】解:方程两边都乘以k,得(92﹣1)(112﹣1)=8×10×12k,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k,∴80×120=8×10×12k,∴k=10.经检验k=10是原方程的解.故选:B.【点评】此题考查了平方差公式和解分式方程,熟练掌握平方差公式和解分式方程的方法是解本题的关键.10.(3分)如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB=CDC.应补充:且AB∥CDD.应补充:且OA=OC【分析】根据两组对边分别相等的四边形是平行四边形判定即可.【解答】解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故选:B.【点评】本题考查平行四边形的判定,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.11.(2分)若k为正整数,则=()A.k2k B.k2k+1C.2k k D.k2+k【分析】根据幂的乘方的运算法则:底数不变,指数相乘解答即可.【解答】解:=((k•k)k=(k2)k=k2k,故选:A.【点评】本题考查了幂的乘方.解题的关键掌握幂的乘方的运算法则:底数不变,指数相乘.12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km 也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l【分析】先作出图形,根据勾股定理和等腰直角三角形的性质即可求解.【解答】解:如图,由题意可得△PAB是腰长6km的等腰直角三角形,则AB=6km,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后,再向西走3km到达l,选项D正确.故选:A.【点评】本题考查的是勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值【分析】直接利用圆内接四边形的性质结合圆周角定理得出答案.【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A.【点评】此题主要考查了三角形的外接圆,正确分类讨论是解题关键.15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对【分析】求出抛物线的顶点坐标为(2,4),由二次函数的性质对甲、乙、丙三人的说法分别进行判断,即可得出结论.【解答】解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.【点评】本题考查了二次函数图象上点的坐标特征、抛物线的顶点坐标等知识;熟练掌握二次函数图象上点的坐标特征是解题的关键.16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4【分析】根据题意可知,三块三角形的面积中,两个较小的面积之和等于最大的面积,再根据三角形的面积,分别计算出各个选项中围成的直角三角形的面积,比较大小,即可解答本题.【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.【点评】本题考查勾股定理的逆定理,解答本题的关键是明确题意,利用勾股定理的逆定理解答.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)已知:﹣=a﹣=b,则ab=6.【分析】直接化简二次根式进而得出a,b的值求出答案.【解答】解:原式=3﹣=a﹣=b,故a=3,b=2,则ab=6.故答案为:6.【点评】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.18.(3分)正六边形的一个内角是正n边形一个外角的4倍,则n=12.【分析】根据多边形的内角和公式求出正六边形的一个内角等于120°,再根据多边形的外角和是360°即可解答.【解答】解:正六边形的一个内角为:,∵正六边形的一个内角是正n边形一个外角的4倍,∴正n边形一个外角为:120°÷4=30°,∴n=360°÷30°=12.故答案为:12.【点评】本题主要考查了多边形的外角和定理,理解多边形外角和中外角的个数,以及正多边形的边数之间的关系,是解题关键.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=(x<0)的图象为曲线L.(1)若L过点T1,则k=﹣16;(2)若L过点T4,则它必定还过另一点T m,则m=5;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有7个.【分析】(1)由题意可求T1~T8这些点的坐标,将点T1的坐标代入解析式可求解;(2)将点T4的坐标代入解析式可求k的值,将点T5代入,可求解;(3)由曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,可得T1,T2,T7,T8与T3,T4,T5,T6在曲线L的两侧,即可求解.【解答】解:(1)∵每个台阶的高和宽分别是1和2,∴T1(﹣16,1),T2(﹣14,2),T3(﹣12,3),T4(﹣10,4),T5(﹣8,5),T6(﹣6,6),T7(﹣4,7),T8(﹣2,8),∵L过点T1,∴k=﹣16×1=﹣16,故答案为:﹣16;(2)∵L过点T4,∴k=﹣10×4=﹣40,∴反比例函数解析式为:y=﹣,当x=﹣8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(﹣16,1),T8(﹣2,8)时,k=﹣16,若曲线L过点T2(﹣14,2),T7(﹣4,7)时,k=﹣14×2=﹣28,若曲线L过点T3(﹣12,3),T5(﹣8,5)时,k=﹣12×3=﹣36,若曲线L过点T4(﹣10,4),T5(﹣8,5)时,k=﹣40,∵曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,∴﹣36<k<﹣28,∴整数k=﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个,∴答案为:7.【点评】本题考查了反比例函数的应用,求出各点的坐标是本题的关键.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m的值.【分析】(1)根据有理数的加法、除法法则计算即可;(2)根据题意列不等式,解不等式,由m是负整数即可求出m的值.【解答】解:(1)==﹣2;(2)根据题意得,<m,∴﹣4+m<3m,∴m﹣3m<4,∴﹣2m<4,∴m>﹣2,∵m是负整数,∴m=﹣1.【点评】此题考查了有理数的运算,解不等式.熟练掌握有理数的运算法则,解不等式的方法是解本题的关键.21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.【分析】(1)根据题意列出代数式即可;(2)根据题意得到25+4a2+(﹣16﹣12a),根据整式加减的法则计算,然后配方,根据非负数的性质即可得到结论.【解答】解:(1)A区显示的结果为:25+2a2,B区显示的结果为:﹣16﹣6a;(2)这个和不能为负数,理由:根据题意得,25+4a2+(﹣16﹣12a)=25+4a2﹣16﹣12a=4a2﹣12a+9;∵(2a﹣3)2≥0,∴这个和不能为负数.【点评】本题考查了配方法的应用,非负数的性质,整式的加减,正确的理解题意是解题的关键.22.(9分)如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA=2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S (答案保留π).扇形EOD【分析】(1)①利用公共角相等,根据SAS证明三角形全等便可;②由全等三角形得∠C=∠E,再利用三角形外角性质得结论;(2)当CP与小半圆O相切时,∠C最大,求出∠DOE便可根据扇形的面积公式求得结果.【解答】解:(1)①在△AOE和△POC中,,∴△AOE≌△POC(SAS);②∵△AOE≌△POC,∴∠E=∠C,∵∠1+∠E=∠2,∴∠1+∠C=∠2;(2)当∠C最大时,CP与小半圆相切,如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴.【点评】本题主要考查了圆的切线的性质,全等三角形的判定与性质,三角形的外角性质,直角三角形的性质,扇形的面积计算,关键在于掌握各个定理,灵活运用这些性质解题.23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x (厘米),Q =W 厚﹣W 薄.①求Q 与x 的函数关系式;②x 为何值时,Q 是W 薄的3倍?[注:(1)及(2)中的①不必写x 的取值范围]【分析】(1)由木板承重指数W 与木板厚度x (厘米)的平方成正比,可设W =kx 2(k≠0).将x =3时,W =3代入,求出k =,即可得出W 与x 的函数关系式;(2)①设薄板的厚度为x 厘米,则厚板的厚度为(6﹣x )厘米,将(1)中所求的解析式代入Q =W 厚﹣W 薄,化简即可得到Q 与x 的函数关系式;②根据Q 是W 薄的3倍,列出方程﹣4x+12=3×x 2,求解即可.【解答】解:(1)设W =kx 2(k≠0).∵当x =3时,W =3,∴3=9k ,解得k =,∴W 与x 的函数关系式为W =x 2;(2)①设薄板的厚度为x 厘米,则厚板的厚度为(6﹣x )厘米,∴Q =W 厚﹣W 薄=(6﹣x )2﹣x 2=﹣4x+12,即Q 与x 的函数关系式为Q =﹣4x+12;②∵Q 是W 薄的3倍,∴﹣4x+12=3×x 2,整理得,x 2+4x ﹣12=0,解得,x 1=2,x 2=﹣6(不合题意舍去),故x为2时,Q是W的3倍.薄【点评】本题考查了二次函数的应用,待定系数法求二次函数的解析式,求出W与x的函数关系式是解题的关键.24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【分析】(1)根据待定系数法求得即可;(2)画出直线l,求得两直线的交点,根据勾股定理即可求得直线l'被直线l和y轴所截线段的长;(3)求得两条直线与直线y=a的交点横坐标,分三种情况讨论求得即可.【解答】解:(1)∵直线l:y=kx+b中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线l的解析式为y=3x+1;∴直线l′的解析式为y=x+3;(2)如图,解得,∴两直线的交点为(1,4),∵直线l′:y=x+3与y轴的交点为(0,3),∴直线l'被直线l和y轴所截线段的长为:=;(3)把y=a代入y=3x+1得,a=3x+1,解得x=;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;当a﹣3+=0时,a=,当(a﹣3+0)=时,a=7,当(+0)=a﹣3时,a=,∴直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为或7或.【点评】本题考查了一次函数图象与几何变换,两直线相交问题,待定系数法求一次函数的解析式,分类讨论是解题的关键.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.【分析】(1)利用概率公式计算即可.(2)利用两点之间的距离公式计算即可.(3)不妨设甲连续k次正确移动后两人相距2个单位,则有|8+2k﹣4k|=2,解得k=3或5.如果k次中,有1次两人都对都错,则有|6+2(k﹣1)﹣4(k﹣1)|=2,解得k=3或5,如果k次中,有2次两人都对都错,则有|4+2(k﹣2)﹣4(k﹣2)|=2,解得k =3或5,探究规律,可得结论.【解答】解:(1)∵经过第一次移动游戏,甲的位置停留在正半轴上,∴必须甲对乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,=.∴P甲对乙错(2)由题意m=5﹣4n+2(10﹣n)=25﹣6n.n=4时,离原点最近.(3)不妨设甲连续k次正确移动后两人相距2个单位,则有|8+2k﹣4k|=2,解得k=3或5.如果k次中,有1次两人都对都错,则有|6+2(k﹣1)﹣4(k﹣1)|=2,解得k=3或5,如果k次中,有2次两人都对都错,则有|4+2(k﹣2)﹣4(k﹣2)|=2,解得k=3或5,…,综上所述,满足条件的k的值为3或5.【点评】本题考查概率公式,数轴,代数式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tanC=.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=,请直接写出点K被扫描到的总时长.【分析】(1)如图1中,过点A作AH⊥BC于H.解直角三角形求出AH即可.(2)利用相似三角形的性质求解即可.(3)分两种情形:当0≤x≤3时,当3<x≤9时,分别画出图形求解即可.(4)求出CK的长度,以及CQ的最大值,利用路程与速度的关系求解即可.【解答】解:(1)如图1中,过点A作AH⊥BC于H.∵AB=AC,AH⊥BC,∴BH=CH=4,∠B=∠C,∴tan∠B=tan∠C==,∴AH=3,AB=AC===5.∴当点P在BC上时,点P到A的最短距离为3.(2)如图1中,∵∠APQ=∠B,∴PQ∥BC,∴△APQ∽△ABC,∵PQ将△ABC的面积分成上下4:5,∴=()2=,∴=,∴AP=,∴PM=AP=AM=﹣2=.(3)当0≤x≤3时,如图1﹣1中,过点P作PJ⊥CA交CA的延长线于J.∵PQ∥BC,∴=,∠AQP=∠C,∴=,∴PQ=(x+2),∵sin∠AQP=sin∠C=,∴PJ=PQ•sin∠AQP=(x+2).当3≤x≤9时,如图2中,过点P作PJ⊥AC于J.同法可得PJ=PC•sin∠C=(11﹣x).(4)由题意点P的运动速度==单位长度/秒.当3<x≤9时,设CQ=y.∵∠APC=∠B+∠BAP=∠APQ+∠CPQ,∠APQ=∠B,∴∠BAP=∠CPQ,∵∠B=∠C,∴△ABP∽△PCQ,∴=,∴=,∴y=﹣(x﹣7)2+,∵﹣<0,∴x=7时,y有最大值,最大值=,∵AK=,∴CK=5﹣=<当y=时,=﹣(x﹣7)2+,解得x=7±,∴点K被扫描到的总时长=(+6﹣3)÷=23秒.方法二:①点P在AB上的时候,有11/4个单位长度都能扫描到点K;②在BN阶段,当x在3~5.5(即7﹣1.5)的过程,是能扫到K点的,在5.5~8.5(即7+1.5)的过程是扫不到点K的,但在8.5~9(即点M到N全部的路程)能扫到点K.所以扫到的时间是[(9﹣8.5)+(5.5﹣3)+]÷=23(秒).【点评】本题属于三角形综合题,考查了等腰三角形的性质,解直角三角形,相似三角形的判定和性质,二次函数的性质等知识,解题的关键是理解题意,学会构建二次函数解决CQ的最值问题,属于中考压轴题.。
2020年河北中考试卷
![2020年河北中考试卷](https://img.taocdn.com/s3/m/e8a2f0df7fd5360cba1adbb7.png)
2020年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线m 的垂线,可作垂线的条数有( )A. 0条B. 1条C. 2条D. 无数条【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D . 2.墨迹覆盖了等式“3x 2x x =(0x ≠)”中的运算符号,则覆盖的是( )A. +B. -C. ×D. ÷【详解】∵3x 2x x =(0x ≠),32x x x ÷=,∴覆盖的是:÷.故选:D . 3.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( ) A. 都是因式分解B. 都是乘法运算C. ①是因式分解,②是乘法运算D. ①是乘法运算,②是因式分解【详解】①左边多项式,右边整式乘积形式,属于因式分解; ②左边整式乘积,右边多项式,属于整式乘法;故答案选C .4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是( )A. 仅主视图不同B. 仅俯视图不同C. 仅左视图不同D. 主视图、左视图和俯视图都相同 选D . 5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a 元/千克,发现这四个单价的中位数恰好也是众数,则a =( )A. 9B. 8C. 7D. 6【详解】解:由条形统计图可知,前三次的中位数是8∵第四次又买的苹果单价是a 元/千克,这四个单价的中位数恰好也是众数∴a=8.故答案为B . 6.如图1,已知ABC ∠,用尺规作它的角平分线. 如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ; 第三步:画射线BP .射线BP 即为所求. 下列正确的是( )A. a ,b 均无限制B. 0a >,12b DE >的长 C. a 有最小限制,b 无限制D. 0a ≥,12b DE <的长【详解】第一步:以B 为圆心,适当长为半径画弧,分别交射线BA ,BC 于点D ,E ; ∴0a >;第二步:分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在ABC ∠内部交于点P ; ∴12b DE >的长; 第三步:画射线BP .射线BP 即为所求.综上,答案为:0a >;12b DE >的长,故选:B . 7.若a b ≠,则下列分式化简正确的是( )A.22a ab b+=+ B. 22a a b b -=-C. 22a a b b=D. 1212aab b =【详解】∵a ≠b ,∴22a a b b +≠+,选项A 错误;22a ab b-≠-,选项B 错误; 22a a b b ≠,选项C 错误;1212a ab b =,选项D 正确; 故选:D .8.在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A. 四边形NPMQB. 四边形NPMRC. 四边形NHMQD. 四边形NHMR【详解】解:如图所示,四边形ABCD 的位似图形是四边形NPMQ .故选:A9.若()()229111181012k--=⨯⨯,则k =( )A. 12B. 10C. 8D. 6【详解】原等式()()229111181012k--=⨯⨯变形得:()()229111181012k --=⨯⨯()()()()919111111181012-+-+=⨯⨯810101281012⨯⨯⨯=⨯⨯10=.故选:B .10.如图,将ABC ∆绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的CDA ∆与ABC ∆构成平行四边形,并推理如下:点A ,C 分别转到了点C ,A 处,而点B 转到了点D 处. ∵CB AD =,∴四边形ABCD 是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中“∵CB AD =,”和“∴四边形……”之间作补充.下列正确的是( )A. 嘉淇推理严谨,不必补充B. 应补充:且AB CD =,C. 应补充:且//AB CDD. 应补充:且OA OC =,【详解】根据旋转的性质得: CB=AD ,AB=CD ,∴四边形ABDC 是平行四边形;故应补充“AB=CD ”,故选:B . 11.若k 为正整数,则()kk kk k k ++⋅⋅⋅+=个( )A. 2k kB. 21k k +C. 2k kD. 2k k +【详解】()kk kk k k ++⋅⋅⋅+=个()()2k k k k k ⋅==2k k,故选A . 12.如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错.误.的是( )A. 从点P 向北偏西45°走3km 到达lB. 公路l 的走向是南偏西45°C. 公路l 的走向是北偏东45°D. 从点P 向北走3km 后,再向西走3km 到达l 【详解】解:如图所示,过P 点作AB 的垂线PH ,选项A :∵BP=AP=6km ,且∠BPA=90°,∴△PAB 为等腰直角三角形,∠PAB=∠PBA=45°, 又PH ⊥AB ,∴△PAH 为等腰直角三角形, ∴PH=2322=PA ,故选项A 错误; 选项B :站在公路上向西南方向看,公路l 的走向是南偏西45°,故选项B 正确; 选项C :站在公路上向东北方向看,公路l 的走向是北偏东45°,故选项C 正确; 选项D :从点P 向北走3km 后到达BP 中点E ,此时EH 为△PEH 的中位线,故EH=12AP=3,故再向西走3km 到达l ,故选项D 正确.故选:A .【点睛】本题考查了方位角问题及等腰直角三角形、中位线等相关知识点,方向角一般以观测者的位置为中心,所以观测者不同,方向就正好相反,但角度不变.13.已知光速为300000千米秒,光经过t 秒(110t ≤≤)传播的距离用科学记数法表示为10n a ⨯千米,则n 可能为( ) A. 5B. 6C. 5或6D. 5或6或7【详解】解:当t=1时,传播的距离为300000千米,写成科学记数法为:5310⨯千米,当t=10时,传播的距离为3000000千米,写成科学记数法为:6310⨯千米,∴n 的值为5或6,故选:C . 14.有一题目:“已知;点O 为ABC ∆的外心,130BOC ∠=︒,求A ∠.”嘉嘉的解答为:画ABC ∆以及它的外接圆O ,连接OB ,OC ,如图.由2130BOC A ∠=∠=︒,得65A ∠=︒.而淇淇说:“嘉嘉考虑的不周全,A ∠还应有另一个不同的值.”,下列判断正确的是( )A. 淇淇说的对,且A ∠的另一个值是115°B. 淇淇说的不对,A ∠就得65°C. 嘉嘉求的结果不对,A ∠应得50°D. 两人都不对,A ∠应有3个不同值 【详解】解:如图所示:∵∠BOC=130°,∴∠A=65°,∠A 还应有另一个不同的值∠A′与∠A 互补.故∠A′=180°−65°=115°. 故选:A .15.现要在抛物线(4)y x x =-上找点(,)P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下, 甲:若5b =,则点P 的个数为0;乙:若4b =,则点P 的个数为1;丙:若3b =,则点P 的个数为1. 下列判断正确的是( )A. 乙错,丙对B. 甲和乙都错C. 乙对,丙错D. 甲错,丙对【详解】当b =5时,令x (4-x )=5,整理得:x 2-4x +5=0,△=(-4)2-4×5=-6<0,因此点P 的个数为0,甲的说法正确;当b =4时,令x (4-x )=4,整理得:x 2-4x+4=0,△=(-4)2-4×4=0,因此点P 有1个,乙的说法正确; 当b =3时,令x (4-x )=3,整理得:x 2-4x +3=0,△=(-4)2-4×3=4>0,因此点P 有2个,丙的说法不正确; 故选:C .16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是( )A. 1,4,5B. 2,3,5C. 3,4,5D. 2,2,4【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,由勾股定理,得222+=a b c , A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯; B 、∵2+3=5,则两直角边分别为:2和3,则面积为:1623=22⨯⨯; C 、∵3+4≠5,则不符合题意;D 、∵2+2=4,则两直角边分别为:2和2,则面积为:12212⨯⨯=;∵612>,故选:B . 二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.已知:182222a b -=-=,则ab =_________. 【详解】∵18232222-=-=∴a=3,b=2∴ab =6故答案为:6.18.正六边形的一个内角是正n 边形一个外角的4倍,则n =_________.解:由多边形的外角和定理可知,正六边形的外角为:360°÷6=60°,故正六边形的内角为180°-60°=120°, 又正六边形的一个内角是正n 边形一个外角的4倍,∴正n 边形的外角为30°, ∴正n 边形的边数为:360°÷30°=12.故答案为:12.19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~8的整数).函数ky x=(0x <)的图象为曲线L .(1)若L 过点1T ,则k =_________;(2)若L 过点4T ,则它必定还过另一点m T ,则m =_________;(3)若曲线L 使得18~T T 这些点分布在它的两侧,每侧各4个点,则k 的整数值有_________个. 【详解】解:(1)由图像可知T 1(-16,1) 又∵.函数ky x=(0x <)的图象经过T 1 ∴116k=-,即k=-16; (2)由图像可知T 1(-16,1)、T 2(-14,2)、T 3(-12,3)、T 4(-10,4)、T 5(-8,5)、T 6(-6,6)、T 7(-4,7)、T 8(-2,8),∵L 过点4T ∴k=-10×4=40观察T 1~T 8,发现T 5符合题意,即m=5; (3)∵T 1~T 8的横纵坐标积分别为:-16,-28,-36,-40,-40,-36,-28,-16 ∴要使这8个点为于L 的两侧,k 必须满足-36<k <-28∴k 可取-29、-30、-31、-32、-33、-34、-35共7个整数值.故答案为:(1)-16;(2)5;(3)7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.已知两个有理数:-9和5.(1)计算:(9)52-+; (2)若再添一个负整数m ,且-9,5与m 这三个数的平均数仍小于m ,求m 的值.【详解】(1)(9)52-+=422-=-; (2)依题意得(9)53m-++<m ,解得m >-2∴负整数m =-1.【点睛】此题主要考查有理数、不等式及平均数,解题的关键是熟知有理数、不等式的运算法则. 21.有一电脑程序:每按一次按键,屏幕的A 区就会自动加上2a ,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和-16,如图.如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由. 【详解】解:(1)A 区显示结果为:22225+a +a =25+2a , B 区显示结果为:163a 3a=166a ﹣--﹣-;(2)初始状态按4次后A 显示为:2222225+a +a +a a 254a +=+ B 显示为:163a 3a 3a 3a=1612a ﹣----﹣-∴A+B=225+4a +(-1612a)-=24a 12a+9- =2(2a 3)-∵2(2a 3)0≥-恒成立,∴和不能为负数.22.如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC OD =.以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP .(1)①求证:AOE POC ∆∆≌;②写出∠1,∠2和C ∠三者间的数量关系,并说明理由.(2)若22OC OA ==,当C ∠最大时,直接..指出CP 与小半圆的位置关系,并求此时EOD S 扇形 (答案保留π).【详解】(1)①在△AOE 和△POC 中=AO POAOE POC OE OC =⎧⎪⎨⎪=⎩∠∠,∴△AOE ≌△POC ;②∠2=∠C+∠1,理由如下:由(1)得△AOE ≌△POC ,∴∠1=∠OPC ,根据三角形外角的性质可得∠2=∠C+∠OPC ,∴∠2=∠C+∠1; (2)在P 点的运动过程中,只有CP 与小圆相切时∠C 有最大值, ∴当C ∠最大时,可知此时CP 与小半圆相切,由此可得CP ⊥OP ,又∵222OC OA OP ===,∴可得在Rt △POC 中,∠C=30°,∠POC=60°,∴∠EOD=180°-∠POC=120°,∴S 扇EOD =2120360R π⨯⨯=43π.23.用承重指数W 衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度x (厘米)的平方成正比,当3x =时,3W =. (1)求W 与x 的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x (厘米),Q W W =-厚薄.①求Q 与x 的函数关系式; ②x 为何值时,Q 是W 薄的3倍? 【注:(1)及(2)中的①不必写x 的取值范围】 【详解】(1)设W=kx 2, ∵3x =时,3W =∴3=9k ∴k=13 ∴W 与x 的函数关系式为213W x =; (2)①∵薄板的厚度为xcm ,木板的厚度为6cm ∴厚板的厚度为(6-x )cm , ∴Q=2211(6)41233x x x ⨯=-+-- ∴Q 与x 的函数关系式为124Q x =-;②∵Q 是W 薄的3倍 ∴-4x+12=3×213x解得x1=2,x2=-6(不符题意,舍去) 经检验,x=2是原方程的解, ∴x=2时,Q 是W 薄的3倍.24.表格中的两组对应值满足一次函数y kx b =+,现画出了它的图象为直线l ,如图.而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线l '.x-1 0 y-21(1)求直线l 的解析式;(2)请在图上画出..直线l '(不要求列表计算),并求直线l '被直线l 和y 轴所截线段的长; (3)设直线y a =与直线l ,l '及y 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值. 【详解】(1)依题意把(-1,-2)和(0,1)代入y kx b =+, 得21k bb -=-+⎧⎨=⎩,解得31k b =⎧⎨=⎩,∴直线l 的解析式为31yx ,(2)依题意可得直线l '的解析式为3yx ,作函数图像如下:令x=0,得y=3,故B (0,3),令313y x y x =+⎧⎨=+⎩,解得14x y =⎧⎨=⎩,∴A (1,4),∴直线l '被直线l 和y 轴所截线段的长AB=22(10)(43)2-+-=;(3)①当对称点在直线l 上时,令31a x ,解得x=13a -, 令3a x =+,解得x=3a -,∴2×13a -=a-3,解得a=7; ②当对称点在直线l '上时,则2×(a-3)=13a -,解得a=175;③当对称点在y 轴上时,则13a -+(3a -)=0,解得a=52;综上:a 的值为52或175或7.25.如图,甲、乙两人(看成点)分别在数轴-3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动. ①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位; ②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位; ③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P ;(2)从图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n 次,且他最终..停留的位置对应的数为m ,试用含n 的代数式表示m ,并求该位置距离原点O 最近时n 的值; (3)从图的位置开始,若进行了k 次移动游戏后,甲与乙的位置相距2个单位,直接..写出k 的值. 【详解】(1)题干中对应的三种情况的概率为: ①11111+=22222⨯⨯;②11111+=24244⨯⨯;③11111+=24244⨯⨯; 甲的位置停留在正半轴上的位置对应情况②,故P=14. (2)根据题意可知乙答了10次,答对了n 次,则打错了(10-n )次,根据题意可得,n 次答对,向西移动4n ,10-n 次答错,向东移了2(10-n ),∴m=5-4n+2(10-n )=25-6n ,∴当n=4时,距离原点最近.(3)起初,甲乙的距离是8,易知,当甲乙一对一错时,二者之间距离缩小2,当甲乙同时答对打错时,二者之间的距离缩小2,∴当加一位置相距2个单位时,共缩小了6个单位或10个单位,∴62=3÷或102=5÷,∴3k =或5k = 26.如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆面积分成上下4:5两部分时,求MP 的长;(3)设点P 移动的路程为x ,当03x ≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长. 【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3; (2)过A 点向BC 边作垂线,交BC 于点E ,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC ==,∴2APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭, 当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,∴23AP AB =,AE=2BC ·tan 3C =, 根据勾股定理可得AB=5,∴2253AP MP AB +==,解得MP=43; (3)当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35, ∴d=35PQ ,∵AP=x+2,∴25AP x PQ AB BC +==,∴PQ=285x +⨯,∴d=23855x +⨯⨯=24482525x +, 当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335, 综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩; (4)AM=2<AQ=94,移动的速度=936=14,①从Q 平移到K ,耗时:92414-=1秒, ②P 在BC 上时,K 与Q 重合时,CQ=CK=5-94=114, ∵∠APQ+∠QPC=∠B+∠BAP ,APQ B ∠=∠∴∠QPC=∠BAP , 又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-,整理得y 2-8y=554-,(y-4)2=94,解得y 1=52,y 2=112,52÷14=10秒, 112÷14=22秒,∴点K 被扫描到的总时长36-(22-10)-1=23秒.。
2024年河北省中考真题数学试卷含答案解析
![2024年河北省中考真题数学试卷含答案解析](https://img.taocdn.com/s3/m/fee71db3b9f67c1cfad6195f312b3169a451ea36.png)
2024年河北省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D .【答案】A 【分析】本题考查了正负数的大小比较,熟练掌握正负数大小比较的方法解题的关键.由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-,则气温变化为先下降,然后上升,再上升,再下降.【详解】解:由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-∴气温变化为先下降,然后上升,再上升,再下降.故选:A .2.下列运算正确的是( )A .734a a a -=B .222326a a a ⋅=C .33(2)8a a -=-D .44a a a÷=【答案】C【分析】本题考查整式的运算,根据合并同类项,单项式乘以单项式,积的乘方,同底数幂的除法依次对各选项逐一分析判断即可.解题的关键是掌握整式运算的相关法则.【详解】解:A .7a ,4a 不是同类项,不能合并,故此选项不符合题意;B .224326a a a ⋅=,故此选项不符合题意;C .()3328a a -=-,故此选项符合题意;D .441a a ÷=,故此选项不符合题意.故选:C .3.如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC⊥B .AC PQ ⊥C .ABO CDO △≌△D .AC BD∥【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .4.下列数中,能使不等式516x -<成立的x 的值为( )A .1B .2C .3D .45.观察图中尺规作图的痕迹,可得线段BD 一定是ABC 的( )A .角平分线B .高线C .中位线D .中线【答案】B 【分析】本题考查的是三角形的高的定义,作线段的垂线,根据作图痕迹可得BD AC ⊥,从而可得答案.【详解】解:由作图可得:BD AC ⊥,∴线段BD 一定是ABC 的高线;故选B6.如图是由11个大小相同的正方体搭成的几何体,它的左视图是( )A .B .C .D .【答案】D【分析】本题考查简单组合体的三视图,左视图每一列的小正方体个数,由该方向上的小正方体个数最多的那个来确定,通过观察即可得出结论.掌握几何体三种视图之间的关系是解题的关键.【详解】解:通过左边看可以确定出左视图一共有3列,每列上小正方体个数从左往右分别为3、1、1.故选:D .7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是( )A .若5x =,则100y =B .若125y =,则4x =C .若x 减小,则y 也减小D .若x 减小一半,则y 增大一倍8.若a ,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是( )A .38a b+=B .38a b =C .83a b +=D .38a b=+【答案】A 【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:()8822a b ⨯=,利用同底数幂的乘法,幂的乘方化简即可.【详解】解:由题意得:()8822a b ⨯=,∴38222a b ⨯=,∴38a b +=,故选:A .9.淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A .1B 1C 1D .11【答案】C【分析】本题考查了一元二次方程的应用,解一元二次方程,熟练掌握知识点是解题的关键.由题意得方程221a a +=,利用公式法求解即可.【详解】解:由题意得:221a a +=,10.下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,ABC 中,AB AC =,AE 平分ABC 的外角CAN ∠,点M 是AC 的中点,连接BM 并延长交AE 于点D ,连接CD .求证:四边形ABCD 是平行四边形.证明:∵AB AC =,∴3ABC ∠=∠.∵3CAN ABC ∠=∠+∠,12CAN ∠=∠+∠,12∠=∠,∴①______.又∵45∠=∠,MA MC =,∴MAD MCB △≌△(②______).∴MD MB =.∴四边形ABCD 是平行四边形.若以上解答过程正确,①,②应分别为( )A .13∠=∠,AASB .13∠=∠,ASAC .23∠∠=,AASD .23∠∠=,ASA11.直线l 与正六边形ABCDEF 的边,AB EF 分别相交于点M ,N ,如图所示,则a β+=( )A .115︒B .120︒C .135︒D .144︒12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )A .点AB .点BC .点CD .点D13.已知A 为整式,若计算22A y xy y x xy -++的结果为x y xy -,则A =( )A .x B .y C .x y +D .x y -14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120︒时,扇面面积为S 、该折扇张开的角度为n ︒时,扇面面积为n S ,若n m SS =,则m 与n 关系的图象大致是( )D.15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法⨯,运算结果为3036.图运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132232表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +则由题意得:20,5,2,mz nz ny nx a ====,∴4mz nz=,即4=m n ,∴当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍;当1,2n y ==时,则4,5,m z x a ===,如图:,∴A 、“20”左边的数是248⨯=,故本选项不符合题意;B 、“20”右边的“□”表示4,故本选项不符合题意;∴a 上面的数应为4a ,如图:∴运算结果可以表示为:()1000411002541001025a a a +++=+,∴D 选项符合题意,当2a =时,计算的结果大于6000,故C 选项不符合题意,故选:D .16.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”()2,1P 按上述规则连续平移3次后,到达点()32,2P ,其平移过程如下:若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7-或()8,0C .()6,0或()8,0D .()5,1或()7,1【答案】D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照16Q 的反向运动理解去分类讨论:①16Q 先向右1个单位,不符合题意;②16Q 先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.【详解】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位 ,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立;②16Q 先向下1个单位得到()151,8Q -,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98-+-,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1,故选:D .二、填空题17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为.【答案】89【分析】本题考查了众数,众数是一组数据中次数出现最多的数.根据众数的定义求解即可判断.【详解】解:几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,89出现的次数最多,∴以上数据的众数为89.故答案为:89.18.已知a,b,n均为正整数.(1)若1<<+,则n=;n n(2)若1,1-<<<<+,则满足条件的a的个数总比b的个数少个.n n n n2n 与()21n +之间的整数有2n 个,∴满足条件的a 的个数总比b 的个数少()2222222n n n n --=-+=(个),故答案为:2.19.如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ;(2)143B C D △的面积为 .【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.三、解答题20.如图,有甲、乙两条数轴.甲数轴上的三点A,B,C所对应的数依次为4-,2,32,乙数轴上的三点D,E,F所对应的数依次为0,x,12.(1)计算A ,B ,C 三点所对应的数的和,并求ABAC的值;(2)当点A 与点D 上下对齐时,点B ,C 恰好分别与点E ,F 上下对齐,求x 的值.21.甲、乙、丙三张卡片正面分别写有,2,a b a b a b ++-,除正面的代数式不同外,其余均相同.a b +2a b +a b-a b +22a b+2a2a b+a b-2a(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当1,2a b ==-时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离1.6m ==AB CD ,点P 到BQ 的距离2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tanα的值;∠的值.(2)求CP的长及sin APC∵1tan tan 4CH PAE AH α=∠==,设∴()22249x x AC +==,解得:31717x =,∴317CH =m,23.情境 图1是由正方形纸片去掉一个以中心O 为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作 嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF ,GH 裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长;(2)直接写出图3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.由拼接可得:HF FO KG '==由正方形的性质可得:45A ∠=∴AHG ,H G D '' ,AFE △为等腰直角三角形,∴G KH '' 为等腰直角三角形,设H K KG x ''==,此时2BP '=,222P Q ''=+=,符合要求,或以C 圆心,CO 为半径画弧,交BC 此时2CP CQ ==,222PQ =+=∴22BP =-,综上:BP 的长为2或22-.24.某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x (分)换算为报告成绩y (分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当0x p ≤<时,80x y p=;当150p x ≤≤时,()2080150x p y p -=+-.(其中p 是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p 及p 以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若100p =,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p 的值:(3)下表是该公司100名员工某次测试的原始成绩统计表:原始成绩(分)9510010511115120125130135140145150人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25.已知O 的半径为3,弦MN =ABC 中,90,3,ABC AB BC ∠=︒==先将ABC 和O 按图1位置摆放(点B 与点N 重合,点A 在O 上,点C 在O 内),随后移动ABC ,使点B 在弦MN 上移动,点A 始终在O 上随之移动,设BN x =.(1)当点B与点N重合时,求劣弧 AN的长;∥时,如图2,求点B到OA的距离,并求此时x的值;(2)当OA MN(3)设点O到BC的距离为d.①当点A在劣弧 MN上,且过点A的切线与AC垂直时,求d的值;②直接写出d的最小值.∵O 的半径为3,3AB =,∴3OA OB AB ===,∴AOB 为等边三角形,∴60AOB ∠=︒,∴ AN 的长为60π3π180´=;∵25MN =,O H M N ⊥,∴5MH NH ==,而OM =∴222OH OM MH =-==∴点B 到OA 的距离为2;⊥于J,过O作过O作OJ BC∴四边形KOJB为矩形,=,∴OJ KB∵3AB=,32BC=,∴2233=+=,AC AB BC⊥于Q 如图,过A作AQ OB⊥∵B为MN中点,则OB MN∵90ABC AQB ∠=︒=∠,∴90OBJ ABO ABO ∠+∠=︒=∠∴OBJ BAQ ∠=∠,∴tan tan OBJ BAQ ∠=∠,∴122OJ BQ BJ AQ ==,26.如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上.淇淇说:无论t 为何值,2C 总经过一个定点.请选择其中一人的说法进行说理.(3)当4t =时,①求直线PQ 的解析式;②作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A ,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n .∴交点()426,6J --,交点()426,6K +,由直线l PQ ∥,设直线l 为4y x b =+,∴()44266b -+=-,解得:8622b =-,∴直线l 为:48622y x =+-,∵()2,2P -,21,22Q t t ⎛⎫- ⎪⎝⎭,∴L 的横坐标为2t 2+,∵21,22M m m m ⎛⎫- ⎪⎝⎭,()21,2N n n t ⎡--+⎢⎣∴L 的横坐标为2m n +,。
2020年河北省中考数学考试试题及解析
![2020年河北省中考数学考试试题及解析](https://img.taocdn.com/s3/m/a005587d3d1ec5da50e2524de518964bcf84d26b.png)
一、选择题(每小题3分,共30分)1. 已知集合A={x|x>2}, B={x|x≤3},则A∩B=()A. {x|x>3}B. {x|2<x≤3}C. {x|x≤2}D. {x|x>2}答案:B. {x|2<x≤3}解析:A∩B表示A和B的交集,即A和B 中共同满足的元素,即2<x≤3,故选B. {x|2<x≤3}。
2. 已知函数f(x)=2sin2x,则f(π/6)的值为()A. 2B. -2C. 1D. -1答案:D. -1解析:f(x)=2sin2x,当x=π/6时,f(π/6)=2sin2π/6=2sinπ/3=2(-1/2)=-1,故选D. -1。
3. 已知椭圆x2/25+y2/9=1的离心率为5/4,则该椭圆的长轴长为()A. 5B. 4C. 9D. 25答案:A. 5解析:椭圆的离心率e=c/a,其中c为短轴长,a为长轴长,已知椭圆x2/25+y2/9=1的离心率为5/4,则c/a=5/4,即a=4c,由题意知c=9,故a=4c=4×9=36,即长轴长为36,故选A. 5。
4. 已知等比数列{an}的公比为q,且a1=2,则a2a3=()A. 2qB. 2q2C. 4qD. 4q2答案:B. 2q2解析:等比数列{an}的公比为q,且a1=2,则a2=2q,a3=2q2,故a2a3=2q×2q2=2q2,故选B. 2q2。
5. 已知抛物线y2=4x的焦点为F,点P(2,2)在抛物线上,则点P到焦点F的距离为()A. 2B. 4C. 8D. 16答案:A. 2解析:抛物线y2=4x的焦点为F,点P(2,2)在抛物线上,则PF的距离为|PF|=√(x2-x1)2+(y2-y1)2=√(2-0)2+(2-0)2=2,故选A. 2。
二、填空题(每小题3分,共15分)6. 已知等差数列{an}中,a1=6,a4=18,则a7=___答案:30解析:等差数列{an}中,a1=6,a4=18,由等差数列的性质可知,公差d=a4-a1=18-6=12,故a7=a1+(7-1)d=6+6×12=30,即a7=30。
2020年河北省中考数学试卷及答案解析
![2020年河北省中考数学试卷及答案解析](https://img.taocdn.com/s3/m/e109237449649b6649d74735.png)
2020年河北省中考数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条2.(3分)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷3.(3分)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.(3分)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A .9B .8C .7D .66.(3分)如图1,已知∠ABC ,用尺规作它的角平分线. 如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在∠ABC 内部交于点P ; 第三步:画射线BP .射线BP 即为所求. 下列正确的是( )A .a ,b 均无限制B .a >0,b >12DE 的长 C .a 有最小限制,b 无限制D .a ≥0,b <12DE 的长7.(3分)若a ≠b ,则下列分式化简正确的是( ) A .a+2b+2=abB .a−2b−2=abC .a 2b 2=abD .12a 12b =ab8.(3分)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR9.(3分)若(92−1)(112−1)k=8×10×12,则k =( )A .12B .10C .8D .610.(3分)如图,将△ABC 绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:小明为保证嘉洪的推理更严谨,想在方框中“∵CB =AD ,”和“∴四边形…”之间作补充,下列正确的是 ( )A .嘉淇推理严谨,不必补充B .应补充:且AB =CDC .应补充:且AB ∥CD D .应补充:且OA =OC11.(2分)若k 为正整数,则(k +k +⋯+k)k ︸k 个k=( )A .k 2kB .k 2k +1C .2k kD .k 2+k12.(2分)如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误的是( )A .从点P 向北偏西45°走3km 到达lB .公路l 的走向是南偏西45°C .公路l 的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7 14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)已知:√18−√2=a√2−√2=b√2,则ab=.18.(3分)正六边形的一个内角是正n边形一个外角的4倍,则n=.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=kx(x<0)的图象为曲线L.(1)若L过点T1,则k=;(2)若L过点T4,则它必定还过另一点T m,则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:(−9)+52;(2)若再添一个负整数m ,且﹣9,5与m 这三个数的平均数仍小于m ,求m 的值. 21.(8分)有一电脑程序:每按一次按键,屏幕的A 区就会自动加上a 2,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和﹣16,如图. 如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.22.(9分)如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC =OD .以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP . (1)①求证:△AOE ≌△POC ;②写出∠l ,∠2和∠C 三者间的数量关系,并说明理由.(2)若OC =2OA =2,当∠C 最大时,直接指出CP 与小半圆的位置关系,并求此时S扇形EOD(答案保留π).23.(9分)用承重指数w 衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度x (厘米)的平方成正比,当x =3时,W =3. (1)求W 与x 的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.25.(10分)系统找不到该试题26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tan C=34.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=94,请直接写出点K被扫描到的总时长.参考答案与试题解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【解答】解:在平面内,与已知直线垂直的直线有无数条,所以作已知直线的垂线,可作无数条.故选:D.2.(3分)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷【解答】解:∵x3x=x2(x≠0),∴覆盖的是:÷.故选:D.3.(3分)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【解答】解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.4.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同【解答】解:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.故选:D.5.(3分)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9B.8C.7D.6【解答】解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,故选:B.6.(3分)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A .a ,b 均无限制B .a >0,b >12DE 的长 C .a 有最小限制,b 无限制D .a ≥0,b <12DE 的长【解答】解:以B 为圆心画弧时,半径a 必须大于0,分别以D ,E 为圆心,以b 为半径画弧时,b 必须大于12DE ,否则没有交点,故选:B .7.(3分)若a ≠b ,则下列分式化简正确的是( ) A .a+2b+2=abB .a−2b−2=abC .a 2b 2=abD .12a 12b =ab【解答】解:∵a ≠b , ∴a+2b+2≠ab ,故选项A 错误;a−2b−2≠a b,故选项B 错误;a 2b 2≠a b,故选项C 错误; 12a 12b =ab ,故选项D 正确;故选:D .8.(3分)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR【解答】解:∵以点O 为位似中心,∴点C 对应点M ,设网格中每个小方格的边长为1,则OC =√22+12=√5,OM =√42+22=2√5,OD =√2,OB =√32+12=√10,OA =√32+22=√13,OR =√22+12=√5,OQ =2√2,OP =√62+22=2√10,OH =√62+32=3√5,ON =√62+42=2√13, ∵OM OC=√5√5=2, ∴点D 对应点Q ,点B 对应点P ,点A 对应点N ,∴以点O 为位似中心,四边形ABCD 的位似图形是四边形NPMQ , 故选:A . 9.(3分)若(92−1)(112−1)k=8×10×12,则k =( )A .12B .10C .8D .6【解答】解:方程两边都乘以k ,得 (92﹣1)(112﹣1)=8×10×12k ,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k , ∴80×120=8×10×12k , ∴k =10. 故选:B .10.(3分)如图,将△ABC 绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:小明为保证嘉洪的推理更严谨,想在方框中“∵CB =AD ,”和“∴四边形…”之间作补充,下列正确的是 ( )A .嘉淇推理严谨,不必补充B.应补充:且AB=CDC.应补充:且AB∥CDD.应补充:且OA=OC【解答】解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故选:B.=()11.(2分)若k为正整数,则(k+k+⋯+k)k︸k个kA.k2k B.k2k+1C.2k k D.k2+k=((k•k)k=(k2)k=k2k,【解答】解:(k+k+⋯+k)k︸k个k故选:A.12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km 也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l【解答】解:如图,由题意可得△P AB是腰长6km的等腰直角三角形,则AB=6√2km,则PC=3√2km,则从点P向北偏西45°走3√2km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后,再向西走3km到达l,选项D正确.故选:A.13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7【解答】解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A.15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对【解答】解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A .1,4,5B .2,3,5C .3,4,5D .2,2,4【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是√1×√42=√42, 当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是√2×√32=√62; 当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形; 当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是√2×√22=√42, ∵√62>√42, ∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5, 故选:B .二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)已知:√18−√2=a √2−√2=b √2,则ab = 6 . 【解答】解:原式=3√2−√2=a √2−√2=b √2, 故a =3,b =2, 则ab =6. 故答案为:6.18.(3分)正六边形的一个内角是正n 边形一个外角的4倍,则n = 12 . 【解答】解:正六边形的一个内角为:(6−2)×180°6=120°,∵正六边形的一个内角是正n 边形一个外角的4倍, ∴正n 边形一个外角为:120°÷4=30°, ∴n =360°÷30°=12. 故答案为:12.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=kx(x<0)的图象为曲线L.(1)若L过点T1,则k=﹣16;(2)若L过点T4,则它必定还过另一点T m,则m=5;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有7个.【解答】解:(1)∵每个台阶的高和宽分别是1和2,∴T1(﹣16,1),T2(﹣14,2),T3(﹣12,3),T4(﹣10,4),T5(﹣8,5),T6(﹣6,6),T7(﹣4,7),T8(﹣2,8),∵L过点T1,∴k=﹣16×1=﹣16,故答案为:﹣16;(2)∵L过点T4,∴k=﹣10×4=﹣40,∴反比例函数解析式为:y=−40 x,当x=﹣8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(﹣16,1),T8(﹣2,8)时,k=﹣16,若曲线L过点T2(﹣14,2),T7(﹣4,7)时,k=﹣14×2=﹣28,若曲线L过点T3(﹣12,3),T5(﹣8,5)时,k=﹣12×3=﹣36,若曲线L 过点T 4(﹣10,4),T 5(﹣8,5)时,k =﹣40, ∵曲线L 使得T 1~T 8这些点分布在它的两侧,每侧各4个点, ∴﹣36<k <﹣28,∴整数k =﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个, ∴答案为:7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(8分)已知两个有理数:﹣9和5. (1)计算:(−9)+52;(2)若再添一个负整数m ,且﹣9,5与m 这三个数的平均数仍小于m ,求m 的值. 【解答】解:(1)(−9)+52=−42=−2;(2)根据题意得,−9+5+m3<m ,∴﹣4+m <3m , ∴m ﹣3m <4, ∴﹣2m <4, ∴m >﹣2, ∵m 是负整数, ∴m =﹣1.21.(8分)有一电脑程序:每按一次按键,屏幕的A 区就会自动加上a 2,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和﹣16,如图. 如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.【解答】解:(1)A 区显示的结果为:25+2a 2,B 区显示的结果为:﹣16﹣6a ; (2)这个和不能为负数,理由:根据题意得,25+4a 2+(﹣16﹣12a )=25+4a 2﹣16﹣12a =4a 2﹣12a +9; ∵(2a ﹣3)2≥0, ∴这个和不能为负数.22.(9分)如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC =OD .以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP . (1)①求证:△AOE ≌△POC ;②写出∠l ,∠2和∠C 三者间的数量关系,并说明理由.(2)若OC =2OA =2,当∠C 最大时,直接指出CP 与小半圆的位置关系,并求此时S扇形EOD(答案保留π).【解答】解:(1)①在△AOE 和△POC 中, {OA =OP∠AOE =∠POC OE =OC, ∴△AOE ≌△POC (SAS ); ②∵△AOE ≌△POC , ∴∠E =∠C , ∵∠1+∠E =∠2, ∴∠1+∠C =∠2;(2)当∠C 最大时,直接指出CP 与小半圆相切, 如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴S扇形ODE =120π×22360=43π.23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]【解答】解:(1)设W=kx2(k≠0).∵当x=3时,W=3,∴3=9k,解得k=1 3,∴W与x的函数关系式为W=13x 2;(2)①设薄板的厚度为x厘米,则厚板的厚度为(6﹣x)厘米,∴Q=W厚﹣W薄=13(6﹣x)2−13x2=﹣4x+12,即Q与x的函数关系式为Q=﹣4x+12;②∵Q是W薄的3倍,∴﹣4x+12=3×13x 2,整理得,x2+4x﹣12=0,解得,x1=2,x2=﹣6(不合题意舍去),故x为2时,Q是W薄的3倍.24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【解答】解:(1)∵直线l :y =kx +b 中,当x =﹣1时,y =﹣2;当x =0时,y =1,∴{−k +b =−2b =1,解得{k =3b =1, ∴直线l 的解析式为y =3x +1;∴直线l ′的解析式为y =x +3;(2)如图,解{y =x +3y =3x +1得{x =1y =4, ∴两直线的交点为(1,4),∵直线l ′:y =x +3与y 轴的交点为(0,3),∴直线l '被直线l 和y 轴所截线段的长为:√12+(4−3)2=√2;(3)把y =a 代入y =3x +1得,a =3x +1,解得x =a−13; 把y =a 代入y =x +3得,a =x +3,解得x =a ﹣3;当a ﹣3+a−13=0时,a =52,当12(a ﹣3+0)=a−13时,a =7, 当12(a−13+0)=a ﹣3时,a =175, ∴直线y =a 与直线l ,l ′及y 轴有三个不同的交点,且其中两点关于第三点对称,则a 的值为52或7或175.25.(10分)系统找不到该试题26.(12分)如图1和图2,在△ABC 中,AB =AC ,BC =8,tan C =34.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且AM =CN =2.点P 从点M 出发沿折线MB ﹣BN 匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持∠APQ =∠B .(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将△ABC 的面积分成上下4:5两部分时,求MP 的长;(3)设点P 移动的路程为x ,当0≤x ≤3及3≤x ≤9时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角∠APQ 扫描△APQ 区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若AK =94,请直接写出点K 被扫描到的总时长.【解答】解:(1)如图1中,过点A 作AH ⊥BC 于H .∵AB =AC ,AH ⊥BC ,∴BH =CH =4,∠B =∠C ,∴tan ∠B =tan ∠C =AH BH =34,∴AH =3,AB =AC =√AH 2+BH 2=√32+42=5.∴当点P 在BC 上时,点P 到A 的最短距离为3.(2)如图1中,∵∠APQ =∠B ,∴PQ ∥BC ,∴△APQ ∽△ABC ,∵PQ 将△ABC 的面积分成上下4:5,∴S △APQS △ABC =(AP AB )2=49,∴AP AB =23, ∴AP =103, ∴PM =AP =AM =103−2=43.(3)当0≤x ≤3时,如图1﹣1中,过点P 作PJ ⊥CA 交CA 的延长线于J .∵PQ ∥BC ,∴AP AB =PQ BC ,∠AQP =∠C , ∴x+25=PQ 8, ∴PQ =85(x +2),∵sin ∠AQP =sin ∠C =35,∴PJ =PQ •sin ∠AQP =2425(x +2).当3<x ≤9时,如图2中,过点P 作PJ ⊥AC 于J .同法可得PJ =PC •sin ∠C =35(11﹣x ).(4)由题意点P 的运动速度=936=14单位长度/秒.当3<x ≤9时,设CQ =y .∵∠APC =∠B +∠BAP =∠APQ +∠CPQ ,∠APQ =∠B , ∴∠BAP =∠CPQ ,∵∠B =∠C ,∴△ABP ∽△PCQ ,∴AB CP =BP CQ , ∴511−x =x−3y ,∴y =−15(x ﹣7)2+165, ∵−15<0, ∴x =7时,y 有最大值,最大值=165,∵AK =94,∴CK =5−94=114<165 当y =114时,114=−15(x ﹣7)2+165, 解得x =7±32, ∴点K 被扫描到的总时长=(114+6﹣3)÷14=23秒.。
20XX年河北省中考数学试题(含答案解析)
![20XX年河北省中考数学试题(含答案解析)](https://img.taocdn.com/s3/m/ef4d15bacf84b9d529ea7a43.png)
20XX年河北省中考数学试题(含答案解析)20XX年河北省中考数学试卷(共26题,满分120分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条2.墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+ B.﹣C.× D.÷ 3.对于①x ﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9 B.8 C.7 D.6 6.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,bDE的长C.a有最小限制,b无限制D.a≥0,bDE的长7.若a≠b,则下列分式化简正确的是()A.B.C.D.8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 9.若8×10×12,则k=()A.12 B.10 C.8 D.6 10.如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB=CD C.应补充:且AB∥CD D.应补充:且OA=OC 11.(2分)若k为正整数,则()A.k2k B.k2k+1 C.2kkD.k2+k 12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km 到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达l B.公路l的走向是南偏西45° C.公路l的走向是北偏东45° D.从点P向北走3km后,再向西走3km到达l 13.(2分)已知光速为*****千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5 B.6 C.5或6 D.5或6或7 14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115° B.淇淇说的不对,∠A就得65° C.嘉嘉求的结果不对,∠A应得50° D.两人都不对,∠A应有3个不同值15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4 二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.已知:ab,则ab=.18.正六边形的一个内角是正n边形一个外角的4倍,则n =.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作Tm(m为1~8的整数).函数y(x<0)的图象为曲线L.(1)若L过点T1,则k=;(2)若L过点T4,则它必定还过另一点Tm,则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m的值.21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.22.(9分)如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA=2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S扇形EOD(答案保留π).23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x 的取值范围] 24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x ﹣1 0 y ﹣2 1 (1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l 和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.26.(12分)如图1和图2,在△ABC 中,AB=AC,BC=8,tanC.点K在AC边上,点M,N分别在AB,BC 上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P 到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK,请直接写出点K被扫描到的总时长.20XX年河北省中考数学试卷答案解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条解:在平面内,与已知直线垂直的直线有无数条,所以作已知直线的垂线,可作无数条.故选:D.2.墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+ B.﹣C.× D.÷ 解:∵x3x=x2(x≠0),∴覆盖的是:÷.故选:D.3.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同解:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.故选:D.5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9 B.8 C.7 D.6 解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,故选:B.6.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,bDE的长C.a有最小限制,b无限制D.a≥0,bDE的长解:以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为半径画弧时,b必须大于DE,否则没有交点,故选:B.7.若a≠b,则下列分式化简正确的是()A.B.C.D.解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC,OM2,OD,OB,OA,OR,OQ=2,OP2,OH3,ON2,∵2,∴点D对应点Q,点B 对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A.9.若8×10×12,则k=()A.12 B.10 C.8 D.6 解:方程两边都乘以k,得(92﹣1)(112﹣1)=8×10×12k,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k,∴80×120=8×10×12k,∴k=10.经检验k=10是原方程的解.故选:B.10.如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB=CD C.应补充:且AB∥CD D.应补充:且OA=OC 解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故选:B.11.(2分)若k为正整数,则()A.k2k B.k2k+1 C.2kk D.k2+k 解:((k-k)k=(k2)k=k2k,故选:A.12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达l B.公路l的走向是南偏西45° C.公路l的走向是北偏东45° D.从点P向北走3km后,再向西走3km到达l 解:如图,由题意可得△PAB是腰长6km的等腰直角三角形,则AB=6km,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后,再向西走3km到达l,选项D正确.故选:A.13.(2分)已知光速为*****千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5 B.6 C.5或6 D.5或6或7 解:当t=1时,光传播的距离为1×*****=*****=3×105(千米),则n=5;当t=10时,光传播的距离为10×*****=***-*****=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A 还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115° B.淇淇说的不对,∠A就得65° C.嘉嘉求的结果不对,∠A应得50° D.两人都不对,∠A应有3个不同值解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A.15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4 解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.已知:ab,则ab=6.解:原式=3ab,故a=3,b=2,则ab=6.故答案为:6.18.正六边形的一个内角是正n边形一个外角的4倍,则n=12.解:正六边形的一个内角为:,∵正六边形的一个内角是正n边形一个外角的4倍,∴正n边形一个外角为:120°÷4=30°,∴n=360°÷30°=12.故答案为:12.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作Tm (m为1~8的整数).函数y(x<0)的图象为曲线L.(1)若L过点T1,则k=﹣16;(2)若L过点T4,则它必定还过另一点Tm,则m=5;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有7个.解:(1)∵每个台阶的高和宽分别是1和2,∴T1(﹣16,1),T2(﹣14,2),T3(﹣12,3),T4(﹣10,4),T5(﹣8,5),T6(﹣6,6),T7(﹣4,7),T8(﹣2,8),∵L过点T1,∴k=﹣16×1=﹣16,故答案为:﹣16;(2)∵L过点T4,∴k=﹣10×4=﹣40,∴反比例函数解析式为:y,当x=﹣8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(﹣16,1),T8(﹣2,8)时,k=﹣16,若曲线L过点T2(﹣14,2),T7(﹣4,7)时,k=﹣14×2=﹣28,若曲线L过点T3(﹣12,3),T5(﹣8,5)时,k=﹣12×3=﹣36,若曲线L过点T4(﹣10,4),T5(﹣8,5)时,k=﹣40,∵曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,∴﹣36<k<﹣28,∴整数k=﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个,∴答案为:7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m的值.解:(1)2;(2)根据题意得,m,∴﹣4+m<3m,∴m﹣3m<4,∴﹣2m<4,∴m>﹣2,∵m是负整数,∴m=﹣1.21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.解:(1)A区显示的结果为:25+2a2,B 区显示的结果为:﹣16﹣6a;(2)这个和不能为负数,理由:根据题意得,25+4a2+(﹣16﹣12a)=25+4a2﹣16﹣12a=4a2﹣12a+9;∵(2a﹣3)2≥0,∴这个和不能为负数.22.(9分)如图,点O 为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA=2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S扇形EOD(答案保留π).解:(1)①在△AOE和△POC中,,∴△AOE≌△POC(SAS);②∵△AOE≌△POC,∴∠E=∠C,∵∠1+∠E=∠2,∴∠1+∠C=∠2;(2)当∠C最大时,CP与小半圆相切,如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴.23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W 薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x 的取值范围] 解:(1)设W=kx2(k≠0).∵当x=3时,W=3,∴3=9k,解得k,∴W与x的函数关系式为Wx2;(2)①设薄板的厚度为x厘米,则厚板的厚度为(6﹣x)厘米,∴Q=W厚﹣W薄(6﹣x)2x2=﹣4x+12,即Q与x的函数关系式为Q =﹣4x+12;②∵Q是W薄的3倍,∴﹣4x+12=3x2,整理得,x2+4x﹣12=0,解得,x1=2,x2=﹣6(不合题意舍去),故x为2时,Q是W薄的3倍.24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x ﹣1 0 y ﹣2 1 (1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l 和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.解:(1)∵直线l:y=kx+b中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线l的解析式为y=3x+1;∴直线l′的解析式为y=x+3;(2)如图,解得,∴两直线的交点为(1,4),∵直线l′:y=x+3与y轴的交点为(0,3),∴直线l'被直线l和y轴所截线段的长为:;(3)把y=a代入y=3x+1得,a=3x+1,解得x;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;当a﹣30时,a,当(a﹣3+0)时,a=7,当(0)=a﹣3时,a,∴直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为或7或.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.解:(1)∵经过第一次移动游戏,甲的位置停留在正半轴上,∴必须甲对乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,∴P甲对乙错.(2)由题意m=5﹣4n+2(10﹣n)=25﹣6n.n=4时,离原点最近.(3)不妨设甲连续k次正确后两人相距2个单位,则有|8+2k﹣4k|=2,解得k=3或5.如果k次中,有1次两人都对都错,则有|6+2(k﹣1)﹣4(k﹣1)|=2,解得k=3或5,如果k次中,有2次两人都对都错,则有|4+2(k ﹣2)﹣4(k﹣2)|=2,解得k=3或5,…,综上所述,满足条件的k 的值为3或5.26.(12分)如图1和图2,在△ABC中,AB=AC,BC =8,tanC.点K在AC边上,点M,N分别在AB,BC上,且AM=CN =2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P 到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK,请直接写出点K被扫描到的总时长.解:(1)如图1中,过点A作AH⊥BC 于H.∵AB=AC,AH⊥BC,∴BH=CH=4,∠B=∠C,∴tan∠B=tan∠C,∴AH=3,AB=AC5.∴当点P在BC上时,点P到A的最短距离为3.(2)如图1中,∵∠APQ=∠B,∴PQ∥BC,∴△APQ∽△ABC,∵PQ将△ABC的面积分成上下4:5,∴()2,∴,∴AP,∴PM=AP=AM2.(3)当0≤x≤3时,如图1﹣1中,过点P作PJ⊥CA交CA的延长线于J.∵PQ∥BC,∴,∠AQP=∠C,∴,∴PQ(x+2),∵sin∠AQP=sin∠C,∴PJ=PQ-sin∠AQP(x+2).当3≤x≤9时,如图2中,过点P作PJ⊥AC于J.同法可得PJ=PC-sin∠C(11﹣x).(4)由题意点P的运动速度单位长度/秒.当3<x≤9时,设CQ=y.∵∠APC=∠B+∠BAP=∠APQ+∠CPQ,∠APQ=∠B,∴∠BAP=∠CPQ,∵∠B=∠C,∴△ABP∽△PCQ,∴,∴,∴y(x﹣7)2,∵0,∴x=7时,y有最大值,最大值,∵AK,∴CK=5 当y时,(x﹣7)2,解得x=7±,∴点K被扫描到的总时长=(6﹣3)23秒.方法二:①点P在AB上的时候,有11/4个单位长度都能扫描到点K;②在BN阶段,当x在3~5.5(即7﹣1.5)的过程,是能扫到K点的,在5.5~8.5(即7+1.5)的过程是扫不到点K的,但在8.5~9(即点M到N全部的路程)能扫到点K.所以扫到的时间是[(9﹣8.5)+(5.5﹣3)]23(秒).。
人教版2020年河北省中考数学试卷
![人教版2020年河北省中考数学试卷](https://img.taocdn.com/s3/m/b76986886c85ec3a87c2c5db.png)
2020年河北省中考数学试卷一、选择题(本大题共16小题,共42分。
1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算结果为正数的是()A.(﹣3)2 B.﹣3÷2 C.0×(﹣2020)D.2﹣32.(3分)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1 B.﹣2 C.0.813 D.8.133.(3分)用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.4.(3分)=()A.B.C.D.5.(3分)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④6.(3分)如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.(3分)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变8.(3分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.9.(3分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能..是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°11.(2分)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A. B. C.D.12.(2分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误..的是()A.4+4﹣=6 B.4+40+40=6 C.4+=6 D.4﹣1÷+4=613.(2分)若= +,则中的数是()A.﹣1 B.﹣2 C.﹣3 D.任意实数14.(2分)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表用水量(吨)4569户数4521比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.(2分)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.16.(2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5二、填空题(本大题共3小题,共10分。
2020年河北省中考数学试卷含答案解析
![2020年河北省中考数学试卷含答案解析](https://img.taocdn.com/s3/m/ebc4127e5901020207409c66.png)
2020年河北省中考数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条2.(3分)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷3.(3分)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.(3分)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A .9B .8C .7D .66.(3分)如图1,已知∠ABC ,用尺规作它的角平分线. 如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在∠ABC 内部交于点P ; 第三步:画射线BP .射线BP 即为所求. 下列正确的是( )A .a ,b 均无限制B .a >0,b >12DE 的长 C .a 有最小限制,b 无限制D .a ≥0,b <12DE 的长7.(3分)若a ≠b ,则下列分式化简正确的是( ) A .a+2b+2=abB .a−2b−2=abC .a 2b =abD .12a 12b =ab8.(3分)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR9.(3分)若(92−1)(112−1)k=8×10×12,则k =( )A .12B .10C .8D .610.(3分)如图,将△ABC 绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB =AD ,”和“∴四边形…”之间作补充,下列正确的是 ( )A .嘉淇推理严谨,不必补充B .应补充:且AB =CDC .应补充:且AB ∥CD D .应补充:且OA =OC11.(2分)若k 为正整数,则(k +k +⋯+k)k ︸k 个k=( )A .k 2kB .k 2k +1C .2k kD .k 2+k12.(2分)如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误的是( )A .从点P 向北偏西45°走3km 到达lB .公路l 的走向是南偏西45°C .公路l 的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7 14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)已知:√18−√2=a√2−√2=b√2,则ab=.18.(3分)正六边形的一个内角是正n边形一个外角的4倍,则n=.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=kx(x<0)的图象为曲线L.(1)若L过点T1,则k=;(2)若L过点T4,则它必定还过另一点T m,则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:(−9)+52;(2)若再添一个负整数m ,且﹣9,5与m 这三个数的平均数仍小于m ,求m 的值. 21.(8分)有一电脑程序:每按一次按键,屏幕的A 区就会自动加上a 2,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和﹣16,如图. 如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.22.(9分)如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC =OD .以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP . (1)①求证:△AOE ≌△POC ;②写出∠l ,∠2和∠C 三者间的数量关系,并说明理由.(2)若OC =2OA =2,当∠C 最大时,直接指出CP 与小半圆的位置关系,并求此时S扇形EOD(答案保留π).23.(9分)用承重指数w 衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度x (厘米)的平方成正比,当x =3时,W =3. (1)求W 与x 的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tan C=34.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=94,请直接写出点K被扫描到的总时长.2020年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【解答】解:在平面内,与已知直线垂直的直线有无数条,所以作已知直线的垂线,可作无数条.故选:D.2.(3分)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷【解答】解:∵x3x=x2(x≠0),∴覆盖的是:÷.故选:D.3.(3分)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【解答】解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.4.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同【解答】解:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.故选:D.5.(3分)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9B.8C.7D.6【解答】解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,故选:B.6.(3分)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A .a ,b 均无限制B .a >0,b >12DE 的长 C .a 有最小限制,b 无限制D .a ≥0,b <12DE 的长【解答】解:以B 为圆心画弧时,半径a 必须大于0,分别以D ,E 为圆心,以b 为半径画弧时,b 必须大于12DE ,否则没有交点,故选:B .7.(3分)若a ≠b ,则下列分式化简正确的是( ) A .a+2b+2=abB .a−2b−2=abC .a 2b =abD .12a 12b =ab【解答】解:∵a ≠b , ∴a+2b+2≠ab ,故选项A 错误;a−2b−2≠a b,故选项B 错误;a 2b 2≠a b,故选项C 错误; 12a 12b =ab ,故选项D 正确;故选:D .8.(3分)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR【解答】解:∵以点O 为位似中心,∴点C 对应点M ,设网格中每个小方格的边长为1,则OC =√22+12=√5,OM =√42+22=2√5,OD =√2,OB =√32+12=√10,OA =√32+22=√13,OR =√22+12=√5,OQ =2√2,OP =√62+22=2√10,OH =√62+32=3√5,ON =√62+42=2√13, ∵OM OC=√5√5=2, ∴点D 对应点Q ,点B 对应点P ,点A 对应点N ,∴以点O 为位似中心,四边形ABCD 的位似图形是四边形NPMQ , 故选:A . 9.(3分)若(92−1)(112−1)k=8×10×12,则k =( )A .12B .10C .8D .6【解答】解:方程两边都乘以k ,得 (92﹣1)(112﹣1)=8×10×12k ,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k , ∴80×120=8×10×12k , ∴k =10.经检验k =10是原方程的解. 故选:B .10.(3分)如图,将△ABC 绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB =AD ,”和“∴四边形…”之间作补充,下列正确的是 ( )A.嘉淇推理严谨,不必补充B.应补充:且AB=CDC.应补充:且AB∥CDD.应补充:且OA=OC【解答】解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故选:B.=()11.(2分)若k为正整数,则(k+k+⋯+k)k︸k个kA.k2k B.k2k+1C.2k k D.k2+k=((k•k)k=(k2)k=k2k,【解答】解:(k+k+⋯+k)k︸k个k故选:A.12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km 也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l【解答】解:如图,由题意可得△P AB是腰长6km的等腰直角三角形,则AB=6√2km,则PC=3√2km,则从点P向北偏西45°走3√2km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后,再向西走3km到达l,选项D正确.故选:A.13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7【解答】解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A.15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对【解答】解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A .1,4,5B .2,3,5C .3,4,5D .2,2,4【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是√1×√42=√42, 当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是√2×√32=√62; 当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形; 当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是√2×√22=√42, ∵√62>√42, ∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5, 故选:B .二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)已知:√18−√2=a √2−√2=b √2,则ab = 6 . 【解答】解:原式=3√2−√2=a √2−√2=b √2, 故a =3,b =2, 则ab =6. 故答案为:6.18.(3分)正六边形的一个内角是正n 边形一个外角的4倍,则n = 12 . 【解答】解:正六边形的一个内角为:(6−2)×180°6=120°,∵正六边形的一个内角是正n 边形一个外角的4倍, ∴正n 边形一个外角为:120°÷4=30°, ∴n =360°÷30°=12. 故答案为:12.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=kx(x<0)的图象为曲线L.(1)若L过点T1,则k=﹣16;(2)若L过点T4,则它必定还过另一点T m,则m=5;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有7个.【解答】解:(1)∵每个台阶的高和宽分别是1和2,∴T1(﹣16,1),T2(﹣14,2),T3(﹣12,3),T4(﹣10,4),T5(﹣8,5),T6(﹣6,6),T7(﹣4,7),T8(﹣2,8),∵L过点T1,∴k=﹣16×1=﹣16,故答案为:﹣16;(2)∵L过点T4,∴k=﹣10×4=﹣40,∴反比例函数解析式为:y=−40 x,当x=﹣8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(﹣16,1),T8(﹣2,8)时,k=﹣16,若曲线L过点T2(﹣14,2),T7(﹣4,7)时,k=﹣14×2=﹣28,若曲线L过点T3(﹣12,3),T5(﹣8,5)时,k=﹣12×3=﹣36,若曲线L 过点T 4(﹣10,4),T 5(﹣8,5)时,k =﹣40, ∵曲线L 使得T 1~T 8这些点分布在它的两侧,每侧各4个点, ∴﹣36<k <﹣28,∴整数k =﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个, ∴答案为:7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(8分)已知两个有理数:﹣9和5. (1)计算:(−9)+52;(2)若再添一个负整数m ,且﹣9,5与m 这三个数的平均数仍小于m ,求m 的值. 【解答】解:(1)(−9)+52=−42=−2;(2)根据题意得,−9+5+m3<m ,∴﹣4+m <3m , ∴m ﹣3m <4, ∴﹣2m <4, ∴m >﹣2, ∵m 是负整数, ∴m =﹣1.21.(8分)有一电脑程序:每按一次按键,屏幕的A 区就会自动加上a 2,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和﹣16,如图. 如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.【解答】解:(1)A 区显示的结果为:25+2a 2,B 区显示的结果为:﹣16﹣6a ; (2)这个和不能为负数,理由:根据题意得,25+4a 2+(﹣16﹣12a )=25+4a 2﹣16﹣12a =4a 2﹣12a +9; ∵(2a ﹣3)2≥0, ∴这个和不能为负数.22.(9分)如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC =OD .以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP . (1)①求证:△AOE ≌△POC ;②写出∠l ,∠2和∠C 三者间的数量关系,并说明理由.(2)若OC =2OA =2,当∠C 最大时,直接指出CP 与小半圆的位置关系,并求此时S扇形EOD(答案保留π).【解答】解:(1)①在△AOE 和△POC 中, {OA =OP∠AOE =∠POC OE =OC, ∴△AOE ≌△POC (SAS ); ②∵△AOE ≌△POC , ∴∠E =∠C , ∵∠1+∠E =∠2, ∴∠1+∠C =∠2;(2)当∠C 最大时,CP 与小半圆相切, 如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴S扇形ODE =120π×22360=43π.23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]【解答】解:(1)设W=kx2(k≠0).∵当x=3时,W=3,∴3=9k,解得k=1 3,∴W与x的函数关系式为W=13x 2;(2)①设薄板的厚度为x厘米,则厚板的厚度为(6﹣x)厘米,∴Q=W厚﹣W薄=13(6﹣x)2−13x2=﹣4x+12,即Q与x的函数关系式为Q=﹣4x+12;②∵Q是W薄的3倍,∴﹣4x+12=3×13x 2,整理得,x2+4x﹣12=0,解得,x1=2,x2=﹣6(不合题意舍去),故x为2时,Q是W薄的3倍.24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【解答】解:(1)∵直线l :y =kx +b 中,当x =﹣1时,y =﹣2;当x =0时,y =1,∴{−k +b =−2b =1,解得{k =3b =1, ∴直线l 的解析式为y =3x +1;∴直线l ′的解析式为y =x +3;(2)如图,解{y =x +3y =3x +1得{x =1y =4, ∴两直线的交点为(1,4),∵直线l ′:y =x +3与y 轴的交点为(0,3),∴直线l '被直线l 和y 轴所截线段的长为:√12+(4−3)2=√2;(3)把y =a 代入y =3x +1得,a =3x +1,解得x =a−13; 把y =a 代入y =x +3得,a =x +3,解得x =a ﹣3;当a ﹣3+a−13=0时,a =52,当12(a ﹣3+0)=a−13时,a =7, 当12(a−13+0)=a ﹣3时,a =175, ∴直线y =a 与直线l ,l ′及y 轴有三个不同的交点,且其中两点关于第三点对称,则a 的值为52或7或175.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.【解答】解:(1)∵经过第一次移动游戏,甲的位置停留在正半轴上,∴必须甲对乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,∴P甲对乙错=1 4.(2)由题意m=5﹣4n+2(10﹣n)=25﹣6n.n=4时,离原点最近.(3)不妨设甲连续k次正确后两人相距2个单位,则有|8+2k﹣4k|=2,解得k=3或5.如果k次中,有1次两人都对都错,则有|6+2(k﹣1)﹣4(k﹣1)|=2,解得k=3或5,如果k次中,有2次两人都对都错,则有|4+2(k﹣2)﹣4(k﹣2)|=2,解得k=3或5,…,综上所述,满足条件的k的值为3或5.26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tan C=34.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P 移动的路程为x ,当0≤x ≤3及3≤x ≤9时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角∠APQ 扫描△APQ 区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若AK =94,请直接写出点K 被扫描到的总时长.【解答】解:(1)如图1中,过点A 作AH ⊥BC 于H .∵AB =AC ,AH ⊥BC ,∴BH =CH =4,∠B =∠C ,∴tan ∠B =tan ∠C =AH BH =34,∴AH =3,AB =AC =√AH 2+BH 2=√32+42=5.∴当点P 在BC 上时,点P 到A 的最短距离为3.(2)如图1中,∵∠APQ =∠B ,∴PQ ∥BC ,∴△APQ ∽△ABC ,∵PQ 将△ABC 的面积分成上下4:5,∴S △APQ S △ABC =(AP AB )2=49, ∴AP AB =23, ∴AP =103,∴PM =AP =AM =103−2=43. (3)当0≤x ≤3时,如图1﹣1中,过点P 作PJ ⊥CA 交CA 的延长线于J .∵PQ ∥BC ,∴AP AB =PQ BC ,∠AQP =∠C , ∴x+25=PQ 8, ∴PQ =85(x +2),∵sin ∠AQP =sin ∠C =35,∴PJ =PQ •sin ∠AQP =2425(x +2). 当3≤x ≤9时,如图2中,过点P 作PJ ⊥AC 于J .同法可得PJ =PC •sin ∠C =35(11﹣x ).(4)由题意点P 的运动速度=936=14单位长度/秒.当3<x ≤9时,设CQ =y .∵∠APC =∠B +∠BAP =∠APQ +∠CPQ ,∠APQ =∠B ,∴∠BAP =∠CPQ ,∵∠B =∠C ,∴△ABP ∽△PCQ ,∴AB CP =BP CQ , ∴511−x =x−3y ,∴y =−15(x ﹣7)2+165,∵−15<0,∴x =7时,y 有最大值,最大值=165,∵AK =94,∴CK =5−94=114<165 当y =114时,114=−15(x ﹣7)2+165, 解得x =7±32, ∴点K 被扫描到的总时长=(114+6﹣3)÷14=23秒. 方法二:①点P 在AB 上的时候,有11/4个单位长度都能扫描到点K ;②在BN 阶段,当x 在3~5.5(即7﹣1.5)的过程,是能扫到K 点的,在5.5~8.5(即7+1.5)的过程是扫不到点K 的,但在8.5~9(即点M 到N 全部的路程)能扫到点K .所以扫到的时间是[(9﹣8.5)+(5.5﹣3)+114]÷14=23(秒).。
2024年河北省中考数学试卷及答案解析
![2024年河北省中考数学试卷及答案解析](https://img.taocdn.com/s3/m/bc74188db04e852458fb770bf78a6529647d35ae.png)
2024年河北省中考数学试卷一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是()A.B.C.D.2.(3分)下列运算正确的是()A.a7﹣a3=a4B.3a2•2a2=6a2C.(﹣2a)3=﹣8a3D.a4÷a4=a3.(3分)如图,AD与BC交于点O,△ABO和△CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A.AD⊥BC B.AC⊥PQ C.△ABO≌△CDO D.AC∥BD4.(3分)下列数中,能使不等式5x﹣1<6成立的x的值为()A.1B.2C.3D.45.(3分)观察图中尺规作图的痕迹,可得线段BD一定是△ABC的()A.角平分线B.高线C.中位线D.中线6.(3分)如图是由11个大小相同的正方体搭成的几何体,它的左视图是()A.B.C.D.7.(2分)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是()A.若x=5,则y=100B.若y=125,则x=4C.若x减小,则y也减小D.若x减小一半,则y增大一倍8.(2分)若a,b是正整数,且满足=,则a与b的关系正确的是()A.a+3=8b B.3a=8b C.a+3=b8D.3a=8+b9.(2分)淇淇在计算正数a的平方时,误算成a与2的积,求得的答案比正确答案小1,则a=()A.1B.﹣1C.+1D.1或+110.(2分)下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,△ABC中,AB=AC,AE平分△ABC的外角∠CAN,点M是AC的中点,连接BM并延长交AE于点D,连接CD.求证:四边形ABCD是平行四边形.证明:∵AB=AC,∴∠ABC=∠3.∵∠CAN=∠ABC+∠3,∠CAN=∠1+∠2,∠1=∠2,∴①______.又∵∠4=∠5,MA=MC,∴△MAD≌△MCB(②______).∴MD=MB.∴四边形ABCD是平行四边形.若以上解答过程正确,①,②应分别为()A.∠1=∠3,AAS B.∠1=∠3,ASA C.∠2=∠3,AAS D.∠2=∠3,ASA11.(2分)直线l与正六边形ABCDEF的边AB,EF分别相交于点M,N,如图所示,则α+β=()A.115°B.120°C.135°D.144°12.(2分)在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A.点A B.点B C.点C D.点D13.(2分)已知A为整式,若计算﹣的结果为,则A=()A.x B.y C.x+y D.x﹣y14.(2分)扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120°时,扇面面积为S,该折扇张开的角度为n°时,扇面面积为S n,若m=,则m与n关系的图象大致是()A.B.C.D.15.(2分)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132×23,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A.“20”左边的数是16B.“20”右边的“■”表示5C.运算结果小于6000D.运算结果可以表示为4100a+102516.(2分)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”P(2,1)按上述规则连续平移3次后,到达点P3(2,2),其平移过程如下:.若“和点”Q按上述规则连续平移16次后,到达点Q16(﹣1,9),则点Q的坐标为()A.(6,1)或(7,1)B.(15,﹣7)或(8,0)C.(6,0)或(8,0)D.(5,1)或(7,1)二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.(2分)某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为.18.(4分)已知a,b,n均为正整数.(1)若n<<n+1,则n=;(2)若n﹣1<<n,n<<n+1,则满足条件的a的个数总比b的个数少个.19.(4分)如图,△ABC的面积为2,AD为BC边上的中线,点A,C1,C2,C3是线段CC4的五等分点,点A,D1,D2是线段DD3的四等分点,点A是线段BB1的中点.(1)△AC1D1的面积为;(2)△B1C4D3的面积为.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.(9分)如图,有甲、乙两条数轴.甲数轴上的三点A,B,C所对应的数依次为﹣4,2,32,乙数轴上的三点D,E,F所对应的数依次为0,x,12.(1)计算A,B,C三点所对应的数的和,并求的值;(2)当点A与点D上下对齐时,点B,C恰好分别与点E,F上下对齐,求x的值.21.(9分)甲、乙、丙三张卡片正面分别写有a+b,2a+b,a﹣b,除正面的代数式不同外,其余均相同.(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当a=1,b=﹣2时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.第一次a+b2a+b a﹣b和第二次a+b2a+2b2a2a+ba﹣b2a22.(9分)中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P恰好看到一颗星星,此时淇淇距窗户的水平距离BQ=4m,仰角为α;淇淇向前走了3m后到达点D,透过点P恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ的距离AB=CD=1.6m,点P 到BQ的距离PQ=2.6m,AC的延长线交PQ于点E.(注:图中所有点均在同一平面)(1)求β的大小及tanα的值;(2)求CP的长及sin∠APC的值.23.(10分)情境图1是由正方形纸片去掉一个以中心O为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF,GH裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长;(2)直接写出图3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.24.(10分)某公司为提高员工的专业能力,定期对员工进行技能测试.考虑多种因素影响,需将测试的原始成绩x(分)换算为报告成绩y(分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当0≤x<p时,y=;当p≤x≤150时,y=+80.(其中p是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p及p以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若p=100,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p的值;(3)下表是该公司100名员工某次测试的原始成绩统计表:原始成绩(分)95100105110115120125130135140145150人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25.(12分)已知⊙O的半径为3,弦MN=2.△ABC中,∠ABC=90°,AB=3,BC=3.在平面上,先将△ABC和⊙O按图1位置摆放(点B与点N重合,点A在⊙O上,点C在⊙O内),随后移动△ABC,使点B在弦MN上移动,点A始终在⊙O上随之移动.设BN=x.(1)当点B与点N重合时,求劣弧的长;(2)当OA∥MN时,如图2,求点B到OA的距离,并求此时x的值;(3)设点O到BC的距离为d.①当点A在劣弧上,且过点A的切线与AC垂直时,求d的值;②直接写出d的最小值.26.(13分)如图,抛物线C1:y=ax2﹣2x过点(4,0),顶点为Q.抛物线C2:y=﹣(x﹣t)2+t2﹣2(其中t为常数,且t>2),顶点为P.(1)直接写出a的值和点Q的坐标.(2)嘉嘉说:无论t为何值,将C1的顶点Q向左平移2个单位长度后一定落在C2上.淇淇说:无论t为何值,C2总经过一个定点.请选择其中一人的说法进行说理.(3)当t=4时,①求直线PQ的解析式;②作直线l∥PQ,当l与C2的交点到x轴的距离恰为6时,求l与x轴交点的横坐标.(4)设C1与C2的交点A,B的横坐标分别为x A,x B,且x A<x B,点M在C1上,横坐标为m(2≤m ≤x B).点N在C2上,横坐标为n(x A≤n≤t),若点M是到直线PQ的距离最大的点,最大距离为d,点N到直线PQ的距离恰好也为d,直接用含t和m的式子表示n.2024年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据﹣4<﹣2<﹣1<0<1可得答案.【解答】解:∵﹣4<﹣2<﹣1<0<1,∴选项A的折线统计图符合题意.故选:A.【点评】本题考查了折线统计图,掌握有理数大小比较方法是解答本题的关键.2.【分析】利用合并同类项的法则,单项式乘单项式的法则,积的乘方的法则,同底数幂的除法的法则对各项进行运算即可.【解答】解:A、a7与﹣a3不属于同类项,不能合并,故A不符合题意;B、3a2•2a2=6a4,故B不符合题意;C、(﹣2a)3=﹣8a3,故C符合题意;D、a4÷a4=1,故D不符合题意;故选:C.【点评】本题主要考查合并同类项,积的乘方,同底数幂的除法,单项式乘多项式,解答的关键是对相应的运算法则的掌握.3.【分析】根据△ABO和△CDO关于直线PQ对称得出△ABO≌△CDO,PQ⊥AC,PQ⊥BD,然后逐项判断即可.【解答】解:如图,连接AC、BD,∵△ABO和△CDO关于直线PQ对称,∴△ABO≌△CDO,PQ⊥AC,PQ⊥BD,∴AC∥BD,故B、C、D选项正确,AD不一定垂直BC,故A选项不一定正确,故选:A.【点评】本题考查轴对称的性质,关于某条直线对称的两个三角形全等,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.4.【分析】先求解不等式,再确定满足不等式的选项.【解答】解:解不等式5x﹣1<6,得x<.故选:A.【点评】本题考查了一元一次不等式的解法.会求解一元一次不等式是解决本题的关键.5.【分析】根据作图痕迹判断出线段BD是三角形ABC的高即可.【解答】解:由作图可知BD⊥AC,故线段BD是△ABC的高.故选:B.【点评】本题考查作图﹣基本作图,三角形的角平分线,直线和高,三角形的中位线等知识,解题的关键是读懂图象信息.6.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,一共有三列,从左到右小正方形的个数分别是3、1、1.故选:D.【点评】本题主要考查了简单组合体的三视图,掌握组合体的三视图是解题的关键.7.【分析】根据题意列出反比例函数,然后逐项计算判断即可.【解答】解:由题意得,;A、若x=5,则y==100,正确,故此选项不符合题意;B、若y=125,则,解得x=4,正确,故此选项不符合题意;C、若x减小,则y增大,原说法错误,故此选项符合题意;D、若x减小一半,即y'=,所以y增大一倍,正确,故此选项不符合题意;故选:C.【点评】本题考查了反比例函数的应用,根据题意列出反比例函数解析式是解题的关键.8.【分析】根据合并同类项法则和同底数幂的乘法法则得8×2a=28b,即2a+3=28b,即可得出答案.【解答】解:根据已知得,8×2a=28b,即2a+3=28b,∴a+3=8b.故选:A.【点评】本题考查了合并同类项法则和同底数幂的乘法,熟练掌握运算法则及公式是解本题的关键.9.【分析】根据题意得关于a的一元二次方程a2﹣2a=1,解方程即可得出答案.【解答】解:根据题意得,a2﹣2a=1,解得a=1±,∵a>0,∴a=+1.故选:C.【点评】本题考查了一元二次方程的应用,熟练掌握一元二次方程的解法是关键.10.【分析】由AB=AC,得∠ABC=∠3,因为∠CAN=∠ABC+∠3=∠1+∠2,且∠1=∠2,所以∠2=∠3,而MA=MC,∠4=∠5,即可根据“ASA”证明△MAD≌△MCB,得MD=MB,则四边形ABCD 是平行四边形,于是得到问题的答案.【解答】证明:∵AB=AC,∴∠ABC=∠3,∵∠CAN=∠ABC+∠3,∠CAN=∠1+∠2,∠1=∠2,∴∠2=∠3,∵点M是AC的中点,∴MA=MC,在△MAD和△MCB中,,∴△MAD≌△MCB(ASA),∴MD=MB,∴四边形ABCD是平行四边形.∴①,②分别为∠2=∠3,ASA,故选:D.【点评】此题重点考查等腰三角形的性质、全等三角形的判定与性质、平行四边形的判定等知识,适当选择全等三角形的判定定理证明△MAD≌△MCB是解题的关键.11.【分析】先求出正六边形的每个内角为120°,再根据六边形MBCDEN的内角和为720°即可求解∠ENM+∠NMB的度数,最后根据邻补角的意义即可求解.【解答】解:正六边形每个内角为:,而六边形MBCDEN的内角和也为(6﹣2)×180°=720°,∴∠B+∠C+∠D+∠E+∠ENM+∠NMB=720°,∴∠ENM+∠NMB=720°﹣4×120°=240°,∵β+∠ENM+α+∠NMB=180°×2=360°,∴α+β=360°﹣240°=120°,故选:B.【点评】本题考查了多边形的内角和,正多边形的每个内角,邻补角,熟练掌握知识点是解决本题的关键.12.【分析】设A(a,b),AB=m,AD=n,可得D(a,b+n),B(a+m,b),C(a+m,b+n),再结合新定义与分式的值的大小比较即可得到答案.【解答】解:设A(a,b),AB=m,AD=n,∵四边形ABCD是矩形,∴AD=BC=n,AB=CD=m,∴D(a,b+n),B(a+m,b),C(a+m,b+n),∵,而,∴该矩形四个顶点中“特征值”最小的是点B;故选:B.【点评】本题考查的是矩形的性质,坐标与图形的性质,解答本题的关键是理解题意,直观观察和数形结合分析图象.13.【分析】由﹣=可得Ax=(x﹣y)(x+y)+y2,故Ax=x2,从而A=x.【解答】解:∵﹣=,∴=+,∴=+,∴Ax=(x﹣y)(x+y)+y2,∴Ax=x2,∴A=x;故选:A.【点评】本题考查分式混合运算,解题的关键是掌握分式的基本性质和等式的性质.14.【分析】设该扇子所在圆的半径为R,根据扇形的面积公式表示出πR2﹣πr2=3S,进一步得出S n=﹣=,再代入m=即可得出结论,【解答】解:设该扇子所在圆的半径为R,S=﹣=﹣,∴πR2﹣πr2=3S,∵该折扇张开的角度为n°时,扇面面积为S n,∴S n=﹣=,∴m====,∴m是n的正比例函数,∵n≥0,∴它的图象是过原点的一条射线,故选:C.【点评】本题考查了正比例函数的应用,扇形的面积,掌握扇形的面积公式是解题的关键,15.【分析】设一个三位数与一个两位数分别为100x+10y+z和10m+n,则mz=20,nz=5,ny=2,nx=a,即m=4n,可确定n=1,y=2时,则m=4,z=5,x=a,由题意可判断A、B选项,根据题意可得运算结果可以表示为:1000(4a+1)+100a+25=4100a+1025,故可判断C、D选项.【解答】解:设一个三位数与一个两位数分别为100x+10y+z和10m+n,如图2:则由题意得:mz=20,nz=5,ny=2,nx=a,∴,即m=4n,∴当n=2,y=1时,z=2.5不是正整数,不符合题意,故舍去;当n=1,y=2时,则m=4,z=5,x=a,如图3:∴A、“20”左边的数是2×4=8,故本选项不符合题意;B、“20”右边的“□”表示4,故本选项不符合题意;∴a上面的数应为4a,如图4:∴运算结果可以表示为:1000(4a+1)+100a+25=4100a+1025,∴D选项符合题意,当a=2时,计算的结果大于6000,故C选项不符合题意,故选:D.【点评】本题考查了整式的加法运算,整式的乘法运算,理解题意,正确的逻辑推理时解决本题的关键.16.【分析】先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照Q16的反向运动理解去分类讨论:①Q16先向右1个单位,不符合题意;②Q16先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为(6,1),那么最后一次若向右平移则为(7,1),向左平移则为(5,1).【解答】解:根据已知:点P3(2,2)横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到P4(2,3),此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到P5(1,3),此时横、纵坐标之和除以3所得的余数为1,又向上平移1个单位………,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,再按照向上、向左,向上、向左不断重复的规律平移;若“和点”Q按上述规则连续平移16次后,到达点Q16(﹣1.9),则按照“和点”Q16反向运动16次即可,可以分为两种情况:①Q16先向右1个单位得到Q15(0,9),此时横、纵坐标之和除以3所得的余数为0,应该是Q15向右平移1个单位得到Q16,故矛盾,不成立;②Q16先向下1个单位得到Q15(﹣1,8),此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到Q16,故符合题意,∴点Q16先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为(﹣1+7,9﹣8),即(6,1),∴最后一次若向右平移则为(7,1),若向左平移则为(5,1),故选:D.【点评】本题考查了坐标系内点的平移运动,读懂题意,熟练掌握平移与坐标关系,利用反向运动理解是解决本题的关键.二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.【分析】找出出现次数最多的数是众数.【解答】解:出现次数最多的是89,因此众数为89.故答案为:89.【点评】本题考查众数,理解众数的意义是正确解答的前提.18.【分析】(1)利用夹逼法估算的取值范围,即可求出n的值;(2)先将不等式两边平方,分别得到a、b的取值范围,即可得出答案.【解答】解:(1)∵,∴,∵n<<n+1,n为正整数,∴n=3;故答案为:3;(2)∵n﹣1<<n,∴(n﹣1)2<a<n2,∴a的个数为n2﹣(n﹣1)2﹣1=n2﹣n2+2n﹣1﹣1=2n﹣2,∵n<<n+1,∴n2<b<(n+1)2,∴b的个数为(n+1)2﹣n2﹣1=n2+2n+1﹣n2﹣1=2n,∵2n﹣(2n﹣2)=2,∴满足条件的a的个数总比b的个数少2个,故答案为:2.【点评】本题考查了估算无理数的大小,熟练掌握夹逼法估算无理数的大小是解题的关键.19.【分析】(1)证明△AC1D1≌△ACD(SAS),即可得出结果;(2),分别求出它们的面积即可.【解答】解:(1)连接B1D1、B1D2、B1C2、B1C3、C3D3,∵△ABC的面积为2,AD为BC边上的中线,∴,∵点A,C1,C2,C3是线段CC4的五等分点,∴,∵点A,D1,D2是线段DD3的四等分点,∴,∵点A是线段BB1的中点,∴,在△AC1D1和△ACD中,,∴△AC1D1≌△ACD(SAS),∴,∠C 1D1A=∠CDA,∴△AC1D1的面积为1,故答案为:1;(2)在△AB1D1和△ABD中,,∴△AB1D1≌△ABD(SAS),∴,∠B 1D1A=∠BDA,∵∠BDA+∠CDA=180°,∴∠B1D1A+∠C1D1A=180°,∴C1、D1、B1三点共线,∴,∵AC1=C1C2=C2C3=C3C4,∴,∵AD 1=D1D2=D2D3,,∴,在△AC3D3和△ACD中,,∠C3AD3=∠CAD,∴△C3AD3∽△CAD,∴,∴,∵AC1=C1C2=C2C3=C3C4,∴,∴,∴△B1C4D3的面积为7,故答案为:7.【点评】本题考查了三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积,掌握三角形中线的性质是解题的关键.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.【分析】(1)计算﹣4+2+32即可,根据数轴上两点之间的距离公式先求出AB、AC的长,再计算比值即可;(2)先求出DE、DF的长,根据题意列出,然后计算即可.【解答】解:(1)∵点A,B,C所对应的数依次为﹣4,2,32,∴A,B,C三点所对应的数的和为﹣4+2+32=30,∵AB=2﹣(﹣4)=6,AC=32﹣(﹣4)=36,∴;(2)由数轴得,DE=x﹣0=x,DF=12﹣0=12,由题意得,,∴,∴x=2.【点评】本题考查了数轴,熟练掌握数轴上两点之间的距离公式是解题的关键.21.【分析】(1)当a=1,b=﹣2时,a+b=﹣1,2a+b=0,a﹣b=3.从三张卡片中随机抽取一张,共有3种等可能的结果,其中取出的卡片上代数式的值为负数的结果有1种,利用概率公式可得答案.(2)根据题意把表格补充完整,由表格可得出所有等可能的结果数以及和为单项式的结果数,再利用概率公式可得出答案.【解答】解:(1)当a=1,b=﹣2时,a+b=﹣1,2a+b=0,a﹣b=3.从三张卡片中随机抽取一张,共有3种等可能的结果,其中取出的卡片上代数式的值为负数的结果有1种,∴取出的卡片上代数式的值为负数的概率为.(2)补全表格如下:第一次a+b2a+b a﹣b和第二次a+b2a+2b3a+2b2a2a+b3a+2b4a+2b3aa﹣b2a3a2a﹣2b共有9种等可能的结果,其中和为单项式的结果有:2a,3a,2a,3a,共4种,∴和为单项式的概率为.【点评】本题考查列表法与树状图法、概率公式、整式的加减、多项式与单项式,熟练掌握列表法与树状图法、概率公式、整式的加减、多项式与单项式的概念是解答本题的关键.22.【分析】(1)根据题意先求解CE=PE=1m,再结合等腰三角形的性质与正切的定义可得答案;(2)利用勾股定理先求解,过C作CH⊥AP于H,结合,设CH=x m,则AH=4x m,再建立方程求解x,即可得到答案.【解答】解:(1)由题意可得:PQ⊥AE,PQ=2.6m,AB=CD=EQ=1.6m,AE=BQ=4(m),AC=BD=3(m),∴CE=4﹣3=1(m),PE=2.6﹣1.6=1(m),∠CEP=90°.∴CE=PE.∴β=∠PCE=45°;.(2)∵CE=PE=1m,∠CEP=90°,∴.如图,过C作CH⊥AP于H,∵,设CH=x m,则AH=4x m,∴x2+(4x)2=AC2=9.∴,.∴.∴.【点评】本题主要考查的是解直角三角形的应用,理解仰角与俯角的含义以及三角函数的定义是解本题的关键.23.【分析】(1)如图,过G'作G′K⊥FH′于K,结合题意可得:四边形FOG′K为矩形,可得FO=KG',由拼接可得:HF=FO=KG',可得△AHG,△H′G′D,△AFE为等腰直角三角形,△G′KH′为等腰直角三角形,设H′K=KG'=x,则H′G′=H′D=x,再进一步解答即可;(2)由△AFE为等腰直角三角形可得,EF=AF=1;求解,再分别求解GE,AH,GH,可得答案;如图,以B为圆心,BO为半径画弧交BC于P′,交AB于Q′,则直线P'Q'为分割线,或以C圆心,CO为半径画弧,交BC于P,交CD于Q,则直线PQ为分割线,再进一步求解BP的长即可.【解答】解:(1)如图,过G′作G′K⊥FH′于K,结合题意可得:四边形FOG′K为矩形,∴FO=KG',由拼接可得:HF=FO=KG',由正方形的性质可得:∠A=45°,∴△AHG,ΔH′G'D,△AFE为等腰直角三角形,∴△GKH'为等腰直角三角形,设H′K=KG'=x,∴H′G′=H′D=x,∴,HF=FO=x,∵正方形的边长为2,∴对角线的长,∴,∴,解得:,∴;(2)∵△AFE为等腰直角三角形,EF=AF=1;∴,∴,∵,,∴BE=GE=AH=GH;如图,以B为圆心,BO为半径画弧交BC于P',交AB于Q',则直线P'Q'为分割线,此时,,符合要求,或以C圆心,CO为半径画弧,交BC于P,交CD于Q,则直线PQ为分割线,此时,,∴,【点评】本题考查了正方形的性质,等腰直角三角形的判定与性质,勾股定理的应用,二次根式的混合运算,本题要求学生的操作能力要好,想象能力强,有一定的难度.24.【分析】(1)利用换算规则的公式解答即可;(2)设丙的原始成绩为x1分,则丁的原始成绩为(x1﹣40)分,利用分类讨论的方法依据换算规则的公式解答即可;(3)①利用中位数的定义解答即可;②当p>130时,利用换算规则的公式解答即可;当p≤130时,则,由表格得到原始成绩为110及110以上的人数为100﹣5=95,利用合格率的公式解答即可.【解答】解:(1)当p=100时,甲的报告成绩为:(分),(2)设丙的原始成绩为x1分,则丁的原始成绩为(x1﹣40)分,①0≤x<p时,y丙=92=…①,由①﹣②得:,∴,∴,故不成立,舍;②p≤x1﹣40≤150时,y丙=92=+80…③,……④,由③﹣④得:,∴p=.∴92=+80,∴,∴,故不成立,舍;③0≤x1﹣40<p,p≤x1≤150时,y丙=92=+80…⑤,……⑥,联立⑤⑥解得:p=125,x1=140,且符合题意,综上所述p=125;(3)①共计100名员工,且成绩已经排列好,∴中位数是第50,51名员工成绩的平均数,由表格得第50,51名员工成绩都是130分,∴中位数为130;②当p>130时,则,解得,故不成立,舍;当p≤130时,则,解得p=110,符合题意,∴.由表格得到原始成绩为110及110以上的人数为100﹣(1+2+2)=95,∴合格率为:.【点评】本题考查了函数关系式,自变量与函数值,中位数的定义,合格率,解分式方程,熟练知识点正确理解题意是解决本题的关键.25.【分析】(1)如图,连接OA,OB,先证明△AOB为等边三角形,再利用等边三角形的性质结合弧长公式可得答案;(2)过B作BI⊥OA于I,过O作OH⊥MN于H,连接MO,证明四边形BIOH是矩形,可得BH=OI,BI=OH,再结合勾股定理可得答案;(3)①如图,由过点A的切线与AC垂直,可得AC过圆心,过O作OJ⊥BC于J,过O作OK⊥AB 于K,而∠ABC=90°,可得四边形KO.JB为矩形,可得OJ=KB,再进一步利用勾股定理与锐角三角函数可得答案;②如图,当B为MN中点时,过O作OL⊥B′C′于L,过O作OJ⊥BC于J,OL>OJ,此时OI最短,如图,过A作AQ⊥OB于Q,而AB=AO=3,证明BQ=OQ=1,求解,再结合等角的三角函数可得答案.【解答】解:如图,连接OA,OB,∵⊙O的半径为3,AB=3,∴OA=OB=AB=3,∴△AOB为等边三角形,∴∠AOB=60°,∴的长为=π,∴劣弧的长为π;(2)过B作BI⊥OA于I,过O作OH⊥MN于H,连接MO,如图:∵OA∥MN,∴∠IBH=∠BHO=∠HOI=∠BIO=90°,∴四边形BIOH是矩形,∴BH=OI,BI=OH,∵,OH⊥MN,∴,而OM=3,∴,∴点B到OA的距离为2;∵AB=3,BI⊥OA,∴,∴,∴;(3)①过O作OJ⊥BC于J,过O作OK⊥AB于K,如图:∵∠ABC=90°,过点A的切线与AC垂直,∴AC过圆心,∴四边形KOJB为矩形,∴OJ=KB,∵AB=3,,∴,∴,∴,∴,即;②如图,当B为MN中点时,过O作OL⊥B′C′于L,过O作OJ⊥BC于J,∵∠OJL>90°,∴OL>OJ,故当B为MN中点时,d最短小,过A作AQ⊥OB于Q,∵B为MN中点,∴OB⊥MN,同(2)可得OB=2,∴BQ=OQ=1,∴,∵∠ABC=90°=∠AQB,∴∠OBJ+∠ABO=90°=∠ABO+∠BAQ,∴∠OBJ=∠BAQ,∴tan∠OBJ=tan∠BAQ,∴,设OJ=m,则,∵OJ2+BJ2=OB2,∴,解得:(m的负值已舍去),∴OJ的最小值为,即d的最小值为.【点评】本题属于圆的综合题,难度很大,考查了勾股定理的应用,矩形的判定与性质,垂径定理的应用:锐角三角函数的应用,切线的性质,熟练的利用数形结合的方法,作出合适的辅助线是解本题的关键.26.【分析】(1)直接利用待定系数法求解抛物线的解析式,再化为顶点式即可得到顶点坐标;(2)把Q(2,﹣2)向左平移2个单位长度得到对应点的坐标为(0,﹣2),再检验即可,再根据函数化为,可得函数过定点;(3)①先求解P的坐标,再利用待定系数法求解一次函数的解析式即可;②如图,当(等于6两直线重合不符合题意),可得,设l与x轴交点横坐标为x,再进一步求解即可;(4)如图,由题意可得C2是由C1通过旋转180°,再平移得到的,两个函数图象的形状相同,如图,连接AB交PQ于L,连接AQ,BQ,AP,BP,可得四边形APBQ是平行四边形,当点M是到直线PQ 的距离最大的点,最大距离为d,点N到直线PQ的距离恰好也为d,此时M与B重合,N与A重合,再进一步利用中点坐标公式解答即可.【解答】解:(1)∵抛物线过点(4,0),顶点为Q,∴16a﹣8=0,解得,∴抛物线为,∴Q(2,﹣2);(2)把Q(2,﹣2)向左平移2个单位长度得到对应点的坐标为(0,﹣2),当x=0时,,∴(0,﹣2)在C2上,∴嘉嘉说法正确;=,当x=0时,y=﹣2,∴,过定点(0,﹣2),∴淇淇说法正确;(3)①当t=4时,,∴顶点P(4,6),而Q(2,﹣2),设PQ为y=cx+f,∴,解得,∴PQ为y=4x﹣10;②∵P(4,6),∴P到x轴的距离为6,∴l与C2交点的纵坐标为﹣6,当时(等于6两直线重合不符合题意),(x﹣4)2=24,∴,∵直线PQ的解析式为y=4x﹣10,当y=﹣6时,﹣6=4x﹣10,解得x=1,y=4x﹣10=0时,x=,设l与x轴交点横坐标为x,则1﹣(4﹣2)=,解得,此时直线l与x轴交点的横坐标为;(4+2)﹣1=x﹣,解得,此时直线l与x轴交点的横坐标为.综上,直线l与x轴交点的横坐标为或;(4)∵,,∴C2是由C1通过旋转180°,再平移得到的,两个函数图象的形状相同,如图,连接AB交PQ于L,连接AQ,BQ,AP,BP,∴四边形APBQ是平行四边形,当点M是到直线PQ的距离最大的点,最大距离为d,点N到直线PQ的距离恰好也为d,此时M与B 重合,N与A重合,∵Q(2,﹣2),P(t,),∴L的横坐标为,,,∴L的横坐标为,∴,解得n=2+t﹣m.【点评】本题考查的是二次函数的综合应用,主要考查利用待定系数法求解二次函数的解析式,二次函数的性质,一次函数的综合应用,二次函数的平移与旋转,以及特殊四边形的性质,理解题意,利用数形结合的方法解题是关键。
2020年河北省中考数学试卷(WORD版无答案)
![2020年河北省中考数学试卷(WORD版无答案)](https://img.taocdn.com/s3/m/1e066eb1763231126fdb1184.png)
2020年河北省中考数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条2.墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷3.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A .9B .8C .7D .66.如图1,已知∠ABC ,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在∠ABC 内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .a >0,b >12DE 的长 C .a 有最小限制,b 无限制 D .a ≥0,b <12DE 的长 7.若a ≠b ,则下列分式化简正确的是( )A .a+2b+2=a bB .a−2b−2=a bC .a 2b =a b D .12a 12b =a b 8.在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR9.若(92−1)(112−1)k =8×10×12,则k =( )A .12B .10C .8D .6 10.如图,将△ABC 绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:小明为保证嘉洪的推理更严谨,想在方框中“∵CB =AD ,”和“∴四边形…”之间作补充,下列正确的是( )A .嘉淇推理严谨,不必补充B .应补充:且AB =CDC .应补充:且AB ∥CDD .应补充:且OA =OC11.若k 为正整数,则(k +k +⋯+k)k ︸k 个k =( )A .k 2kB .k 2k +1C .2k kD .k 2+k12.如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误的是( )A .从点P 向北偏西45°走3km 到达lB .公路l 的走向是南偏西45°C .公路l 的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l13.已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7 14.有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值15.如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是( )A .1,4,5B .2,3,5C .3,4,5D .2,2,4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.已知:√18−√2=a √2−√2=b √2,则ab = .18.正六边形的一个内角是正n 边形一个外角的4倍,则n = .19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m (m 为1~8的整数).函数y =k x (x <0)的图象为曲线L .(1)若L 过点T 1,则k = ;(2)若L 过点T 4,则它必定还过另一点T m ,则m = ;(3)若曲线L 使得T 1~T 8这些点分布在它的两侧,每侧各4个点,则k 的整数值有 个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.已知两个有理数:﹣9和5.(1)计算:(−9)+52;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m的值.21.有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.22.如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA=2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S(答案保留π).扇形EOD23.用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]24.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.25.如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.26.如图1和图2,在△ABC中,AB=AC,BC=8,tan C=34.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=94,请直接写出点K被扫描到的总时长.2020年河北省中考数学试卷参考答案一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.D;2.D;3.C;4.D;5.B;6.B;7.D;8.A;9.B;10.B;11.A;12.A;13.C;14.A;15.C;16.B;二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.6;18.12;19.﹣16;5;7;三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.;21.;22.;23.;24.;25.;26.;。