学年高中物理第一章电磁感应第节法拉第电磁感应定律练习教科版选修.docx
高中物理第一章电磁感应1.3法拉第电磁感应定律
答案 6 V
解析 根据法拉第电磁感应定律得感应电动势的大小
E=n
ΔΦ Δt
=1
500×4×10-3
V=6
V.
12/14/2021
解析 答案
达标检测
12/14/2021
1.(对法拉第电磁感应定律的理解)如图9所示,半径为R的n匝线圈套在边
长为a的正方形abcd之外,匀强磁场垂直穿过该正方形,当磁场以
E=n
ΔΦ Δt
,其中 n 是线圈的匝数.
12/14/2021
三、导体切割磁感线产生的感应电动势 1.导线垂直于磁场运动,B、L、v两两垂直时,如图1所示,E= BLv .
12/14/2021
图1
2.导线的运动方向与导线本身垂直,但与磁感线方向夹角为α时,如图 2所示,E=BLvsin α .
12/14/2021
12/14/2021
解析 答案
例4 如图8甲所示的螺线管,匝数n=1 500匝,横截面积S=20 cm2, 方向向右穿过螺线管的匀强磁场的磁感应强度按图乙所示规律变化. (1)2 s内穿过线圈的磁通量的变化量是多少?
答案 8×10-3 Wb
解析 磁通量的变化量是由磁感应强度
的变化引起的,
则Φ1=B1S,Φ2=B2S,ΔΦ=Φ2-Φ1,
解析 ac棒垂直切割磁感线,产生的感应电动势
的大小为E=BLv=0.40×0.50×4.0 V=0.80 V.
图7
12/14/2021
解析 答案
(2)回路中感应电流的大小.
答案 见解析 解析 回路中感应电流大小为I= ER=00..8200 A=4.0 A.
12/14/2021
解析 答案
(3)维持ac棒做匀速运动的水平外力的大小和方向. 答案 见解析 解析 ac棒受到的安培力大小为 F安=BIL=0.40×4.0×0.50 N=0.80 N, 由右手定则知,ac棒中感应电流由c流向a. 由左手定则知,安培力方向水平向左. 由于导体棒匀速运动,水平方向受力平衡,则F外=F安=0.80 N,方向 水平向右.
高中物理 第一章 电磁感应 第四节 法拉第电磁感应定律自我小.
法拉第电磁感应定律一、单项选择题1.穿过一个单匝线圈的磁通量,始终为每秒钟均匀地增加2 Wb,则().A.线圈中的感应电动势每秒钟增加2 VB.线圈中的感应电动势每秒钟减少2 VC.线圈中的感应电动势始终为2 VD.线圈中不产生感应电动势2.如图所示的几种情况中,金属导体中产生的感应电动势为BLv的是().A.甲和乙 B.乙和丙 C.甲和丙 D.只有甲3.如下图所示,在竖直向下的匀强磁场中,将一水平放置的金属棒ab以水平初速v0抛出.设在整个过程中棒始终与原抛出位置平行,且不计空气阻力,则在金属棒运动的过程中,产生的感应电动势大小的变化情况是().A.越来越大 B.越来越小 C.保持不变 D.无法判断4.如下图所示,abcd为一匀强磁场区域,现在给竖直方位的金属环以某种约束,以保持它不转动地匀速下落,在下落过程中,它的左半部通过磁场.圆环用均匀电阻丝做成,F、O、E为环的上、中、下三点,则下列说法中正确的是().A.当E和d重合时,感应电动势最大B.当O和d重合时,感应电动势最大C.当F和d重合时,感应电动势最大D.以上说法都不对二、双项选择题5.(2011安徽六校联考)图中a~d所示分别为穿过某一闭合回路的磁通量Φ随时间t 变化的图象,关于回路中产生的感应电动势下列论述正确的是().A.图a中回路产生的感应电动势恒定不变B.图b中回路产生的感应电动势恒定不变C.图c中回路在0~t1时间内产生的感应电动势大于在t1~t2时间内产生的感应电动势D.图d中回路产生的感应电动势一直变大6.(2011·普宁中学高二检测)一个面积S=4×10-2m2,匝数n=100的线圈,放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度B随时间t变化的规律如图所示,则下列判断正确的是().A.在开始2 s内穿过线圈的磁通量变化率等于-0.08 Wb/sB.在开始2 s内穿过线圈的磁通量的变化量等于0C.在开始2 s内线圈中产生的感应电动势等于8 VD.在第3 s末线圈中的感应电动势等于零三、非选择题7.一个200匝、面积为20 cm2的线圈.放在磁场中,磁场方向与线圈平面成30°角,若磁感应强度在0.05 s内由0.1 T增加到0.5 T.在此过程中穿过线圈的磁通量的变化是__________Wb,磁通量的平均变化率是__________Wb/s,线圈中感应电动势的大小是__________V.8.如图所示,有一弯成θ角的光滑金属导轨POQ,水平放置在磁感应强度为B的匀强磁场中,磁场方向与导轨平面垂直,有一金属棒MN与导轨的OQ边垂直放置,当金属棒从O 点开始以加速度a向右匀加速运动t时,棒与导轨所构成的回路中的感应电动势是多少?参考答案1.答案:C解析:由题意可知=2 Wb/s t Φ∆∆.根据法拉第电磁感应定律==2 V E n t Φ∆∆. 2.答案:C解析:公式E =BLv 的适用条件是:导体所在处的磁感应强度相同,且导体沿与自身垂直的方向运动.L 为切割磁感线的有效长度.甲、丙正确.3.答案:C解析:金属棒ab 以水平速度v 0抛出后,做平抛运动,速度在不断增大,但由于在垂直于磁场方向的速度不变,所产生的感应电动势大小不变,虽然在竖直方向上金属棒的分速度在不断增大,但由于该分运动平行于磁场,不切割磁感线,不产生感应电动势,故感应电动势不变.4.答案:B解析:金属环在匀速下落,其中竖直直径FOE 的左侧部分匀速通过匀强磁场,图中水平虚线间的部分表示线圈匀速通过磁场时面积的变化量ΔS ,环中产生的感应电动势E =B ΔS /Δt =BLv ,由此可知当O 和d 重合时金属环产生的感应电动势E 最大.5.答案:BC解析:图a 中Φ不变.不产生感应电动势,A 项错;图b 中tΦ∆∆恒定,则感应电动势恒定不变.B 项正确;图c 中0~t 1时间内图象的斜率大于t 1~t 2时间内的斜率,所以C 项正确;图d 中图线的斜率先变小后变大.则感应电动势应先变小后变大.D 项错误.6.答案:AC 解析:22·=2B S t t Φ∆∆--=∆∆×4×10-2Wb/s =-0.08Wb/s ,A 项正确;ΔΦ=ΔB ·S =(-2-2)×4×10-2Wb =-0.16Wb .B 项错误;E =n tΦ∆∆=100×0.08 V=8 V .C 项正确;第3 s 末,磁感应强度B 等于0,但B t∆∆不等于零,所以感应电动势不为零.D 项错误. 7.答案:4×10-4 8×10-3 1.6 解析:磁通量的变化量是由磁场的变化引起的,所以ΔΦ=ΔBS ·sin 30°=(0.5-0.1)×20×10-4×12Wb =4×10-4Wb 磁通量的变化率为44100.05t Φ-∆⨯=∆Wb/s =8×10-3Wb/s 感应电动势E n tΦ∆∆==200×8×10-3V =1.6 V 8.答案:231tan 2Ba t θ 解析:由于导轨的夹角为θ,开始运动t 时,金属棒切割磁感线的有效长度为:L =s tan θ=12at 2tan θ, 据运动学公式,这时金属棒切割磁感线的速度为v =at ,由题意知B 、L 、v 三者互相垂直,有E =BLv =B 12at 2tan θ·at =12Ba 2t 3tan θ,即金属棒运动t 时,棒与导轨所构成的回路中的感应电动势是E =12Ba 2t 3tan θ.。
高中物理 第一章 电磁感应 章末检测试卷(第一章)讲义精练(含解析)教科版选修3-2-教科版高二选修
章末检测试卷(第一章)(时间:90分钟总分为:100分)一、选择题(此题共12小题,每一小题4分,共计48分.1~8题为单项选择题,9~12题为多项选择题,全部选对的得4分,选对但不全的得2分,错选和不选的得0分)1.在物理学开展中,观测、实验、假说和逻辑推理等方法都起到了重要作用.如下表示符合史实的是( )A.奥斯特在实验中观察到电流的磁效应,该效应说明了电和磁之间存在联系B.法拉第根据通电直导线的磁场和条形磁铁的磁场的相似性,提出了分子电流假说C.安培在实验中观察到,通有恒定电流的静止导线附近的固定导线圈中,出现了感应电流D.楞次在分析了许多实验事实后提出,感应电流的磁场总是与引起感应电流的磁场方向相反答案 A解析奥斯特发现了电流的磁效应,揭示了电和磁之间存在联系,选项A正确;根据通电螺线管产生的磁场与条形磁铁的磁场的相似性,安培提出了磁性是分子内环形电流产生的,即分子电流假说,选项B错误;法拉第探究磁产生电的问题,发现导线中电流“通、断〞时导线附近的固定导线圈中出现感应电流而导线中通有恒定电流时导线圈中不产生感应电流,选项C错误;楞次定律指出感应电流的磁场总要阻碍引起感应电流的磁通量的变化,选项D错误.2.如图1所示,螺线管与灵敏电流计相连,磁铁从螺线管的正上方由静止释放,向下穿过螺线管.如下说法正确的答案是( )图1A.电流计中的电流先由a到b,后由b到aB.a点的电势始终低于b点的电势C.磁铁减少的重力势能等于回路中产生的热量D.磁铁刚离开螺线管时的加速度小于重力加速度答案 D解析在磁铁进入螺线管的过程中,螺线管磁通量增大,且方向向下,由楞次定律可知,感应电流由b经电流计流向a;在磁铁穿出螺线管下端的过程中,磁通量减小,且方向向下,由楞次定律可知,感应电流由a经电流计流向b,如此a点电势先低于b点电势,后高于b点电势,故A、B错误;磁铁减少的重力势能转化为内能和磁铁的动能,C错误;磁铁刚离开螺线管时,由楞次定律“来拒去留〞可知,磁铁受到的合外力小于重力,D正确.3.如图2所示是研究通电自感现象实验的电路图,A1、A2是两个规格一样的小灯泡,闭合开关,调节滑动变阻器R的滑动触头,使两个灯泡的亮度一样,调节滑动变阻器R1的滑动触头,使它们都正常发光,然后断开开关S.重新闭合开关S,如此 ( )图2A.闭合瞬间,A1立刻变亮,A2逐渐变亮B.闭合瞬间,A1、A2均立刻变亮C.稳定后,L和R两端的电势差一定一样D.稳定后,A1和A2两端的电势差不一样答案 C解析断开开关再重新闭合开关的瞬间,根据自感原理可判断,A2立刻变亮,而A1逐渐变亮,A、B均错误;稳定后,自感现象消失,根据题设条件可判断,滑动变阻器R接入电路的阻值与线圈L的电阻一样大,线圈L和R两端的电势差一定一样,A1和A2两端的电势差也一样,所以C正确,D错误.4.匀强磁场方向垂直纸面,规定向里的方向为正方向,磁感应强度B随时间t的变化规律如图3甲所示,在磁场中有一细金属圆环,圆环平面位于纸面内,如图乙所示.令E1、E2、E3分别表示Oa、bc、cd段的感应电动势的大小,I1、I2、I3分别表示对应的电流,如此如下判断正确的答案是( )图3A.E1<E2,I1沿逆时针方向,I2沿顺时针方向B.E1<E2,I1沿顺时针方向,I2沿逆时针方向C.E2<E3,I2沿逆时针方向,I3沿顺时针方向D.E2=E3,I2沿逆时针方向,I3沿顺时针方向答案 A5.(2018·市房山区模拟)电磁感应现象在生产、生活中有着广泛的应用.图4甲为工业上探测物件外表层内部是否存在缺陷的涡流探伤技术原理图.其原理是将线圈中通入电流,使被测物件内产生涡流,借助探测线圈内电流变化测定涡流的改变,从而获得被测物件内部是否断裂与位置的信息.图乙为一个带铁芯的线圈L、开关S和电源用导线连接起来的跳环实验装置,将一个套环置于线圈L上且使铁芯穿过其中,闭合开关S的瞬间,套环将立即跳起.关于对以上两个应用实例理解正确的答案是( )图4A.能被探测的物件和实验所用的套环必须是导电材料B.涡流探伤技术运用了互感原理,跳环实验演示了自感现象C.以上两个应用实例中的线圈所连接电源都必须是变化的交流电源D.以上两个应用实例中的线圈所连接电源也可以都是恒定电源答案 A6.(2017·某某、扬州、泰州、淮安四市模拟)法拉第发明了世界上第一台发电机.如图5所示,圆形金属盘安置在电磁铁的两个磁极之间,两电刷M、N分别与盘的边缘和中心点接触良好,且与灵敏电流计相连.金属盘绕中心轴沿图示方向转动,如此( )图5A.电刷M的电势高于电刷N的电势B.假设只将电刷M移近N,电流计的示数变大C.假设只提高金属盘转速,电流计的示数变大D.假设只将变阻器滑片向左滑动,电流计的示数变大答案 C解析 由电流的流向,根据安培定如此,可知蹄形磁铁的左端为N 极,右端为S 极,两磁极间的磁场方向向右,根据金属盘的转动方向,结合右手定如此可以判断,电刷N 的电势高于电刷M 的电势,A 错误;假设只将电刷M 移近N ,如此电路中的感应电动势减小,电流计的示数减小,B 错误;假设只提高金属盘的转速,如此金属盘中产生的感应电动势增大,电流计的示数增大,C 正确;假设只将变阻器滑片向左滑动,变阻器接入电路的电阻增大,如此电磁铁中的电流减小,两磁极间的磁感应强度减小,圆盘中产生的感应电动势减小,电流计的示数减小,D 错误.7.(2018·全国卷Ⅰ)如图6所示,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,如此B ′B等于( )图6A.54B.32C.74D .2 答案 B解析 设半圆弧PQS 的半径为r ,在过程Ⅰ中,根据法拉第电磁感应定律,有E 1=ΔΦ1Δt 1=B ⎝ ⎛⎭⎪⎫12πr 2-14πr 2Δt 1根据闭合电路欧姆定律,有I 1=E 1R且q 1=I 1Δt 1在过程Ⅱ中,有E 2=ΔΦ2Δt 2=(B ′-B )12πr 2Δt 2I 2=E 2R q 2=I 2Δt 2又q 1=q 2,即B ⎝ ⎛⎭⎪⎫12πr 2-14πr 2R =(B ′-B )12πr2R所以B ′B =32. 8.如图7所示,足够长的平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场(图中未画出),磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以与小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)( )图7A .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W答案 B解析 小灯泡稳定发光时,导体棒MN 匀速下滑,其受力如下列图,f =μmg cos 37°,由平衡条件可得F 安+f =mg sin 37°,故F 安=mg (sin 37°-μcos 37°)=0.4 N ,由F 安=BIL 得I =F 安BL =1 A ,所以E =I (R 灯+R MN )=2 V ,导体棒的运动速度v =E BL=5 m/s ,小灯泡消耗的电功率为P 灯=I 2R 灯=1 W .正确选项为B.9.(2017·苏北四市联考)如图8甲所示,一个刚性圆形线圈与电阻R 构成闭合回路,线圈平面与所在处的匀强磁场方向垂直,磁场的磁感应强度B 随时间t 的变化规律如图乙所示.如下关于线圈中产生的感应电动势e 、电阻R 消耗的功率P 随时间t 变化的图像,可能正确的有( )图8答案 BD解析 线圈的面积不变,由E =nS ΔB Δt得感应电动势为定值,且磁场增强和磁场减弱引起的感应电动势方向相反,A 错误,B 正确;对于电阻R ,流过的电流大小不变,功率P =I 2R 恒定,C 错误,D 正确.10.如图9甲所示,一个匝数n =100的圆形导体线圈,面积S 1=0.4 m 2,电阻r =1 Ω.在线圈中存在面积S 2=0.3 m 2的垂直线圈平面向外的匀强磁场区域,磁感应强度B 随时间t 变化的关系如图乙所示.有一个R =2 Ω的电阻,将其两端a 、b 分别与图甲中的圆形线圈相连接,b 端接地,如此如下说法正确的答案是( )图9A .圆形线圈中产生的感应电动势E =6 VB .在0~4 s 时间内通过电阻R 的电荷量q =6 CC .设b 端电势为零,如此a 端的电势φa =3 VD .在0~4 s 时间内电阻R 上产生的焦耳热Q =18 J答案 BD解析 由法拉第电磁感应定律可得E =n ΔB Δt S 2,由题图乙可得ΔB Δt =0.64T/s =0.15 T/s ,将其代入可得E =4.5 V ,A 错.q =I Δt =E R +r ·Δt =n ΔΦ(R +r )Δt Δt =n ΔΦR +r ,在0~4 s 穿过圆形导体线圈磁通量的变化量为ΔΦ=0.6×0.3 Wb-0=0.18 Wb ,代入可得q =6 C ,B 对.0~4 s 内磁感应强度增大,圆形线圈内磁通量增加,由楞次定律结合安培定如此可得b 点电势高,a 点电势低,故C 错.由于磁感应强度均匀变化产生的电动势与电流均恒定,可得I =E r +R=1.5 A ,由焦耳定律可得Q =I 2Rt =18 J ,D 对.11.如图10甲所示,电阻不计且间距L =1 m 的光滑平行金属导轨竖直放置,上端接一阻值R =2 Ω的电阻,虚线OO ′下方有垂直于导轨平面向里的匀强磁场,现将质量m =0.1 kg 、电阻不计的金属杆ab 从OO ′上方某处由静止释放.金属杆在下落的过程中与导轨保持良好接触且始终水平.杆ab 进入磁场时的速度v 0=1 m/s ,下落0.3 m 的过程中加速度a 与下落距离h 的关系图像如图乙所示,g 取10 m/s 2,如此( )图10A .匀强磁场的磁感应强度为2 TB .杆ab 下落0.3 m 时,金属杆的速度为1 m/sC .杆ab 下落0.3 m 的过程中,R 上产生的热量为0.2 JD .杆ab 下落0.3 m 的过程中,通过R 的电荷量为0.25 C答案 AD解析 当金属杆进入磁场后,根据右手定如此判断可知金属杆ab 中电流的方向由a 到b .由题图乙知,刚进入磁场时,金属杆的加速度大小a 1=10 m/s 2,方向竖直向上.由牛顿第二定律得:BI 1L -mg =ma 1,其中I 1=E R =BLv 0R,代入数据解得:B =2 T ,故A 正确;a =0时金属杆受到的重力与安培力平衡,有mg -BIL =0,其中I =BLv R ,联立得:v =0.5 m/s ,故B 错误;从开始到下落0.3 m 的过程中,由能量守恒有:mgh -Q =12mv 2,代入数据得:Q =0.287 5 J ,故C 错误;金属杆自由下落高度为h 0=v 22g =0.05 m ,金属杆下落0.3 m 的过程中通过R 的电荷量为:q =I Δt =E R Δt =ΔΦΔt R Δt =ΔΦR =BL (h -h 0)R,代入数据得q =0.25 C ,故D 正确. 12.如图11所示,有一个在水平面内固定的“V〞字形金属框架CAD ,θ=60°,磁感应强度为B 的匀强磁场方向竖直向下,导体棒MN 在框架上从A 点开始在外力F 作用下,沿垂直MN 方向以速度v 匀速向右平移,使导体棒和框架始终构成等边三角形回路.框架和导体棒的材料和横截面积均一样,其单位长度的电阻均为r ,框架和导体棒均足够长,导体棒运动中始终与磁场方向垂直,且与框架接触良好.如下关于回路中的电流I 、外力F 和回路消耗的电功率P 随时间t 变化关系的四个图像中正确的答案是( )图11答案 AC解析 导体棒运动时间为t 时,通过的位移为x =vt ,回路中的有效切割长度为:L =2x tan θ2,感应电动势为E =BLv ,回路的总电阻为R 总=r ·3·2x tan θ2,联立得感应电流与t 的关系式为I =Bv 3r,B 、v 、r 一定,如此I 为一定值,故A 正确,B 错误;外力F 大小等于安培力大小,如此F =BIL =2B 2v 2tan θ23r t ,F 与t 成正比,故C 正确;运动x 时的功率为:P =I 2R 总=2B 2v 3tan θ23r t ,如此P 与t 成正比,故D 错误.二、非选择题(此题共5小题,共计52分)13.(8分)(2018·三明市高二下学期期末)如图12甲所示为“研究电磁感应现象〞的实验装置.图12(1)按实验的要求将图甲中所缺的导线补画完整.(2)开关闭合后,如下说法正确的答案是________.A.只要将线圈A放在线圈B中就会引起电流计指针偏转B.线圈A插入或拔出线圈B的速度越大,电流计指针偏转的角度越大C.如果在闭合开关时发现灵敏电流计的指针向右偏了一下,那么合上开关后,A线圈插入B 线圈中,将滑动变阻器滑动触头迅速向左拉时,灵敏电流计指针向左偏一下(3)上述实验中,原线圈A可等效为一个条形磁铁,将线圈B和灵敏电流计连接如图乙所示,当电流从正接线柱流入灵敏电流计时,指针向正接线柱一侧偏转.如此当条形磁铁迅速向上拔出时,图中灵敏电流计指针向______(填“正〞或“负〞)接线柱方向偏转.答案(1)如下列图(3分)(2)BC(3分)(3)正(2分)解析(1)将电源、开关、滑动变阻器、线圈A串联成一个回路,注意滑动变阻器接一上一下两个接线柱,再将电流计与线圈B串联成另一个回路,电路图如下列图.(2)当将线圈A放在线圈B中,因磁通量不变,如此不会引起电流计指针偏转,故A错误;线圈A插入或拔出线圈B的速度越大,如此穿过线圈的磁通量的变化率越大,感应电动势越大,如此产生的感应电流越大,那么电流计指针偏转的角度越大,故B正确;在闭合开关时,电流增大,穿过线圈的磁通量增大,根据楞次定律发现灵敏电流计的指针向右偏了一下,那么合上开关后,A 线圈插入B 线圈中,将滑动变阻器滑动触头迅速向左拉时,接入电路中的电阻增大,电流减小,穿过线圈的磁通量减小,根据楞次定律可知灵敏电流计指针向左偏一下,故C 正确.(3)当电流从正接线柱流入灵敏电流计时,指针向正接线柱一侧偏转,根据楞次定律,依据题图可知,螺线管的感应电流由上向下,如此当条形磁铁迅速向上拔出时,穿过线圈的磁通量减小,根据楞次定律,螺线管的感应电流由上向下,灵敏电流计指针向正接线柱方向偏转.14.(10分)如图13甲所示,竖直平面内有边长l =0.2 m 的正方形线框,匝数n =100,线框总电阻R =8 Ω,一范围足够大的匀强磁场,其方向垂直于线框平面,磁场的磁感应强度B 按如图乙所示规律变化(磁场方向以垂直于线框平面向外为正).求:图13 (1)前2 s 内,线框产生的焦耳热;(2)t =0.5 s 时,线框的ab 边受到的安培力大小.答案 (1)16 J (2)20 N解析 (1)前2 s 内线框的感应电动势大小为:E =n ΔB ΔtS (2分) 解得E =8 V(1分)线框产生的焦耳热Q =E 2Rt (1分) 解得Q =16 J(1分)(2)由楞次定律可知前2 s 内线框中的感应电流方向为abcda ,t =0.5 s 时ab 边受到的安培力方向向上安培力的大小F =nBIl (2分)I =E R(1分) 由题图乙可知t =0.5 s 时磁感应强度的大小B =1 T(1分)解得F =20 N .(1分)15.(10分)小明同学设计了一个“电磁天平〞,如图14所示,等臂天平的左臂为挂盘,右臂挂有矩形线圈,两臂平衡.线圈的水平边长L =0.1 m ,竖直边长H =0.3 m ,匝数为N 1.线圈的下边处于匀强磁场内,磁感应强度B 0=1.0 T ,方向垂直线圈平面向里.线圈中通有可在0~2.0 A 范围内调节的电流I .挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量.(重力加速度取g =10 m/s 2)图14 图15(1)为使“电磁天平〞的量程达到0.5 kg ,线圈的匝数N 1至少为多少?(2)进一步探究电磁感应现象,另选N 2=100匝、形状一样的线圈,总电阻R =10 Ω.不接外电流,两臂平衡.如图15所示,保持B 0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B 随时间均匀变大,磁场区域宽度d =0.1 m .当挂盘中放质量为0.01 kg 的物体时,天平平衡,求此时磁感应强度的变化率ΔB Δt. 答案 (1)25匝 (2)0.1 T/s解析 (1)“电磁天平〞中的线圈受到安培力,I =2.0 A 时线圈的匝数最少F =N 1B 0IL (1分)由天平平衡可知:mg =N 1B 0IL (2分)代入数据解得:N 1=25匝.(1分)(2)由法拉第电磁感应定律得:E =N 2ΔΦΔt =N 2ΔB ΔtLd (2分) 由欧姆定律得:I ′=E R(1分)线圈受到的安培力F ′=N 2B 0I ′L (1分)由天平平衡可得:m ′g =F ′(1分)联立各式,代入数据可得ΔB Δt =0.1 T/s.(1分)16.(10分)(2017·江苏单科)如图16所示,两条相距为d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下.当该磁场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度变为v .导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:图16 (1)MN 刚扫过金属杆时,杆中感应电流的大小I ;(2)MN 刚扫过金属杆时,杆的加速度大小a ;(3)PQ 刚要离开金属杆时,感应电流的功率P .答案 (1)Bdv 0R (2)B 2d 2v 0mR (3)B 2d 2(v 0-v )2R解析 (1)感应电动势E =Bdv 0(1分)感应电流I =E R (1分)解得I =Bdv 0R(1分) (2)安培力F =BId (1分)对金属杆,由牛顿第二定律得F =ma (1分)解得a =B 2d 2v 0mR(1分) (3)金属杆切割磁感线的相对速度v ′=v 0-v (1分) 如此感应电动势E ′=Bdv ′(1分)电功率P =E ′2R(1分) 解得P =B 2d 2(v 0-v )2R(1分) 17.(14分)(2018·池州市高二下期末)如图17所示,平行长直光滑固定的金属导轨MN 、PQ 平面与水平面的夹角θ=30°,导轨间距为L =0.5 m ,上端接有R =3 Ω的电阻,在导轨中间加一垂直轨道平面向下的匀强磁场,磁场区域为OO ′O 1′O 1,磁感应强度大小为B =2 T ,磁场区域宽度为d =0.4 m ,放在导轨上的一金属杆ab 质量为m =0.08 kg 、电阻为r =2 Ω,从距磁场上边缘d 0处由静止释放,金属杆进入磁场上边缘的速度v =2 m/s.导轨的电阻可忽略不计,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触,重力加速度大小为g =10 m/s 2,求:图17(1)金属杆距磁场上边缘的距离d 0;(2)通过磁场区域的过程中通过金属杆的电荷量q ; (3)金属杆通过磁场区域的过程中电阻R 上产生的焦耳热Q R .答案 (1)0.4 m (2)0.08 C (3)0.096 J 解析 (1)由能量守恒定律得mgd 0sin 30°=12mv 2(1分) 金属杆距磁场上边缘的距离d 0=0.4 m(1分)(2)由法拉第电磁感应定律E =ΔΦΔt(1分) 由闭合电路欧姆定律I =ER +r (1分)q =I ·Δt (1分) 如此金属杆通过磁场区域的过程中通过其的电荷量q =ΔΦR +r =BLd R +r=0.08 C(1分) (3)由法拉第电磁感应定律,金属杆刚进入磁场时E =BLv =2 V(1分)由闭合电路欧姆定律I =ER +r =0.4 A(1分)金属杆受到的安培力F =BIL =0.4 N(1分)金属杆重力沿导轨向下的分力F ′=mg sin 30°=0.4 N(1分)所以金属杆进入磁场后做匀速运动(1分)由能量守恒定律得,回路中产生的焦耳热Q=mgd sin 30°(1分)金属杆通过磁场区域的过程中,在电阻R上产生的热量Q R=RR+rQ(1分)代入数据可得Q R=0.096 J.(1分)。
2018-2019学年人教版选修1-13.2法拉第电磁感应定律作业
第二节法拉第电磁感应定律作业一、选择题1.关于电路中感应电动势的大小,下列说法中正确的是()A.穿过电路的磁通量越大,感应电动势就越大B.电路中磁通量的改变量越大,感应电动势就越大C.电路中磁通量改变越快,感应电动势就越大D.若电路中某时刻磁通量为零,则该时刻感应电流一定为零2.如图3-2-1所示,将条形磁铁从相同的高度分别以速度错误!未找到引用源。
和2错误!未找到引用源。
插入线圈,电流表指针偏转角度较大的是()图3-2-1A.以速度错误!未找到引用源。
插入B.以速度2错误!未找到引用源。
插入C.一样大D.无法确定3.当线圈中的磁通量发生变化时,则()A.线圈中一定有感应电流B.线圈中一定有感应电动势C.感应电动势的大小与线圈的电阻无关D.磁通量变化越大,产生的感应电动势越大4.在电磁感应现象中,下列说法中正确的是()A.穿过线圈的磁通量为零时,感应电动势也一定为零B.穿过线圈的磁通量均匀变化时,感应电动势也均匀变化C.穿过线圈的磁通量越大,产生的感应电动势也越大D.穿过线圈的磁通量变化越快,产生的感应电动势越大5.穿过一个电阻为1 Ω的单匝闭合线圈的磁通量始终是每秒钟均匀地减少2 Wb,则()A.线圈中感应电动势一定是每秒减少2 VB.线圈中感应电动势一定是2 VC.线圈中感应电流一定是每秒减少2 AD.以上说法均不正确6.如图3-2-2所示,闭合开关S,将条形磁铁插入闭合线圈,第一次用0.2 s,第二次用0.4 s,并且两次的起始和终止位置相同,则()图3-2-2A.第一次磁通量变化较大B.第一次的最大偏角较大C.第一次经过的总电荷量较多D.若断开S ,不偏转,故无感应电动势7.穿过一个电阻为1 Ω的单匝线圈的磁通量发生变化:在Δ错误!未找到引用源。
时间内是每秒均匀地减小2 Wb,在Δ错误!未找到引用源。
时间内是每秒均匀地增大2 Wb.则()A.线圈中产生的感应电动势在Δ错误!未找到引用源。
教科版 高中物理 选修3-2 第一章电磁感应 寒假复习题(解析版)
绝密★启用前教科版高中物理选修3-2 第一章电磁感应寒假复习题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分,考试时间150分钟。
分卷I一、单选题(共10小题,每小题4.0分,共40分)1.如图所示,一沿水平方向的匀强磁场分布在宽度为2L的某矩形区域内(长度足够大),该区域的上、下边界MN、PS是水平的.有一边长为L的正方形导线框abcd从距离磁场上边界MN的某高处由静止释放下落并穿过该磁场区域,已知当线框的ab边到达MN时线框刚好做匀速直线运动(以此时开始计时),以MN处为坐标原点,取如图坐标轴x,并规定逆时针方向为感应电流的正方向,则关于线框中的感应电流与ab边的位置坐标x间的以下图线中,可能正确的是()A.B.C.D.【答案】D【解析】在第一个L内,线框匀速运动,电动势恒定,电流恒定;在第二个L内,线框只在重力作用下加速,速度增大;在第三个L内,安培力大于重力,线框减速运动,电动势减小,电流减小.这个过程加速度逐渐减小,速度是非线性变化的,电动势和电流都是非线性减小的,选项A、B均错误.安培力再减小,也不至于减小到小于第一段时的值,因为当安培力等于重力时,线框做匀速运动,选项C错误,D正确.2.如图所示,一个金属圆环水平放置在竖直向上的匀强磁场中,能使圆环中产生感应电流的做法是()A.使匀强磁场均匀减弱B.保持圆环水平并在磁场中上下移动C.保持圆环水平并在磁场中左右移动D.保持圆环水平并使圆环绕过圆心的竖直轴转动【答案】A【解析】使匀强磁场均匀减弱,穿过圆环的磁通量减小,产生感应电流,A正确;保持圆环水平并在磁场中上下移动时,穿过圆环的磁通量不变,不产生感应电流,B错误;保持圆环水平并在磁场中左右移动,穿过圆环的磁通量不变,不产生感应电流,C错误;保持圆环水平并使圆环绕过圆心的竖直轴转动,穿过圆环的磁通量不变,不产生感应电流,D错误.3.如图所示,两块水平放置的金属板间距离为d,用导线与一个n匝线圈连接,线圈置于方向竖直向上的磁场B中.两板间有一个质量为m、电荷量为+q的油滴恰好处于平衡状态,则线圈中的磁场B的变化情况和磁通量变化率分别是()A.正在增强;=B.正在减弱;=C.正在减弱;=D.正在增强;=【答案】B【解析】油滴平衡有mg=q,U=,电容器上极板必带负电,那么螺线管下端相当于电源正极,由楞次定律知,磁场B正在减弱,又E=n,U=E,可得=.故选B.4.如图所示,有一个等腰直角三角形的匀强磁场区域,其直角边长为L,磁场方向垂直纸面向外,磁感应强度大小为B.边长为L、总电阻为R的正方形导线框abcd,从图示位置开始沿x轴正方向以速度v匀速穿过磁场区域.取沿a→b→c→d→a的感应电流为正,则表示线框中电流i随bc边的位置坐标x变化的图象正确的是()A.B.C.D.【答案】C【解析】据题意,由楞次定律得:正方形线框进入三角形磁场时,穿过线框的磁通量逐渐增加,线框中产生顺时针方向电流,为正方向,D选项可以排除;正方形线框离开三角形磁场时,穿过线框的磁通量减少,线框中的电流方向逆时针,为负方向,A选项可以排除;由于线框切割磁感线的有效长度为l=vt·tan 45°=vt,则线框产生的感应电动势为E=B·vt·v=Bv2t,而感应电流为I=,所以感应电流大小随着时间的增加而增加,只有C选项正确.5.两根相互平行的金属导轨水平放置于如图所示的匀强磁场中,在导轨上与导轨接触良好的导体棒AB和CD可以自由滑动.当AB在外力F作用下向右运动时,下列说法中正确的是()A.导体棒CD内有电流通过,方向是D→CB.导体棒CD内有电流通过,方向是C→DC.磁场对导体棒CD的作用力向左D.磁场对导体棒AB的作用力向右【答案】B【解析】两个导体棒与两根金属导轨构成闭合回路,AB向右运动,闭合回路磁通量增加,由安培定则判断回路中感应电流的方向是B→A→C→D→B.再根据左手定则,判定导体棒CD受到的磁场力向右;AB受到的磁场力向左.6.下列对物理学家的主要贡献的说法中正确的有()A.奥斯特发现了电磁感应现象,打开了研究电磁学的大门B.法拉第发现了磁生电的现象,从而为电气化的发展奠定了基础C.安培发现了电流的磁效应,并总结了电流方向与磁场方向关系的右手螺旋定则D.牛顿提出了分子电流假说,总结了一切磁场都是由运动电荷产生的【答案】B【解析】奥斯特发现了电流的磁效应,打开了研究电磁学的大门,选项A错误;法拉第发现了磁生电的现象,从而为电气化的发展奠定了基础,选项B正确;奥斯特发现了电流的磁效应,安培总结了电流方向与磁场方向关系的右手螺旋定则,选项C错误;安培提出了分子电流假说,总结了一切磁场都是由运动电荷产生的,选项D错误;故选B.7.如图所示,闭合线圈abcd从高处自由下落一段时间后垂直于磁场方向进入一有界磁场,从ab边刚进入磁场到cd边刚进入磁场的这段时间内,下列说法正确的是()A.a端的电势高于b端B.ab边所受安培力方向为水平向左C.线圈可能一直做匀速运动D.线圈可能一直做匀加速直线运动【答案】C【解析】此过程中ab边始终切割磁感线,ab边为电源,由右手定则可知电流为逆时针方向,由a 流向b,电源内部电流从低电势流向高电势,故a端的电势低于b端,选项A错误;由左手定则可知ab边所受安培力方向竖直向上,选项B错误;如果刚进入磁场时安培力等于重力,则一直匀速进入,如果安培力不等于重力,则mg-=ma,做变加速运动,选项C正确,D错误.8.图中L是绕在铁芯上的线圈,它与电阻R、R0及开关和电池E构成闭合回路.开关S1和S2开始都处在断开状态.设在t=0时刻,接通开关S1,经过一段时间,在t=t1时刻,再接通开关S2,则能较准确表示电阻R两端的电势差Uab随时间t变化的图线是()A.B.C.D.【答案】A【解析】闭合S1,由于线圈会阻碍电流的突然变大,Uab不会突然变大,D错误;达到稳定后,再闭合S2,由于线圈的作用,原有电流慢慢变小,Uab也从原来的数值慢慢减小,故选A.9.如图所示,一个闭合的矩形金属框abcd与一根绝缘轻杆B相连,轻杆上端O点是一个固定转轴,转轴与线框平面垂直,线框静止时恰位于蹄形磁铁的正中央,线框平面与磁感线垂直.现将线框从静止释放,在左右摆动过程中,线框受到磁场力的方向是()A.向左摆动的过程中,受力方向向左;向右摆动的过程中,受力方向向右B.向左摆动的过程中,受力方向向右;向右摆动的过程中,受力方向向左C.向左摆动的过程中,受力方向先向左后向右;向右摆动的过程中,受力方向先向右后向左D.摆动过程中始终不受力【答案】B【解析】从阻碍相对运动的角度来看,由于磁通量的变化是由线框和磁场做相对运动引起的,因此感应电流的磁场总是阻碍线框相对磁场的运动.要阻碍相对运动,磁场对线框因产生感应电流而产生的作用力——安培力,一定和相对运动的方向相反,即线框向左摆动时受力方向向右,线框向右摆动时受力方向向左.B正确.10.如图所示,为两个同心圆环,当一有界匀强磁场恰好完全垂直穿过A环面时,A环面磁通量为Φ1,此时B环磁通量为Φ2,有关磁通量的大小说法正确是()A.Φ1<Φ2B.Φ1=Φ2C.Φ1>Φ2D.不确定【答案】B【解析】磁通量Φ=BS,S为通过环的有效面积,因A、B环面所包含的有效面积相等,所以Φ1=Φ2故选B.二、多选题(共4小题,每小题5.0分,共20分)11.(多选)如图所示是用涡流金属探测器探测地下金属物的示意图,下列说法中正确的是()A.探测器内的探测线圈会产生交变磁场B.只有有磁性的金属物才会被探测器探测到C.探测到地下的金属是因为探头中产生了涡流D.探测到地下的金属物是因为金属物中产生了涡流【答案】AD【解析】金属探测器利用电磁感应的原理,利用有交流电通过的线圈,产生迅速变化的磁场.这个磁场能在金属物体内部产生涡电流.涡电流又会产生磁场,倒过来影响原来的磁场,引发探测器发出鸣声.故选AD.12.如图所示,闭合金属导线框放置在竖直向上的匀强磁场中,匀强磁场的磁感应强度随时间变化,下列说法正确的是()A.当磁感应强度增加时,线框中的感应电流可能减小B.当磁感应强度增加时,线框中的感应电流一定增大C.当磁感应强度减小时,线框中的感应电流一定增大D.当磁感应强度减小时,线框中的感应电流可能不变【答案】AD【解析】由法拉第电磁感应定律可知,感应电流的大小取决于磁通量的变化率,与磁感应强度的增与减无关,选项A、D正确.13.(多选)如下图所示是等腰直角三棱柱,其中abcd面为正方形,边长为L,它们按图示方式放置于竖直向下的匀强磁场中,磁感应强度为B,下面说法中正确的是()A.通过abcd面的磁通量大小为L2·BB.通过dcfe面的磁通量大小为L2·BC.通过abfe面的磁通量大小为零D.通过bcf面的磁通量为零【答案】BCD【解析】通过abcd面的磁通量大小为L2B,A错误;dcfe面是abcd面在垂直磁场方向上的投影,所以磁通量大小为L2B,B正确;abfe面与bcf面和磁场平行,所以磁通量为零,C、D正确.故选B、C、D.14.(多选)高频焊接原理示意图如图所示,线圈通以高频交流电,金属工件的焊缝中就产生大量焦耳热,将焊缝融化焊接,要使焊接处产生的热量较大可采用()A.增大交变电流的电压B.增大交变电流的频率C.增大焊接缝的接触电阻D.减小焊接缝的接触电阻【答案】ABC【解析】当增大交变电流的电压,则线圈中交变电流增大,那么磁通量变化率增大,因此产生感应电动势增大,感应电流也增大,那么焊接时产生的热量也增大,故A正确;高频焊接利用高频交变电流产生高频交变磁场,在焊接的金属工件中就产生感应电流,根据法拉第电磁感应定律分析可知,电流变化的频率越高,磁通量变化频率越高,产生的感应电动势越大,感应电流越大,焊缝处的温度升高的越快,故B正确;增大电阻,在相同电流下,焊缝处热功率大,温度升的更高,故C正确,D错误.分卷II三、实验题(共1小题,每小题10.0分,共10分)15.在研究电磁感应现象的实验中所用的器材如图所示:①电流表,②直流电源,③带铁芯的线圈A,④线圈B,⑤电键,⑥滑动变阻器(用来控制电流以改变磁场强弱).试按实验的要求在实物图上连线(图中已连接好一根导线).若连接滑动变阻器的两根导线接在接线柱C和D上,而在电键刚闭合时电流表指针右偏,则电键闭合后滑动变阻器的滑动触头向接线柱C移动时,电流表指针将________.(填“左偏”“右偏”或“不偏”)【答案】实物图连线如图所示左偏【解析】电键闭合瞬间,电路中电流变大,穿过B中的磁通量增大,由题干可知指针向右偏转,因此可以得出电流增大,指针向右偏,电流变小,指针向左偏的结论.电键向C移动时,电路中电流变小,穿过B的磁通量减小,所以指针向左偏转.三、计算题(共3小题,每小题10.0分,共30分)16.磁悬浮列车是一种高速低耗的新型交通工具.它的驱动系统简化为如下模型,固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R,金属框置于xOy平面内,长边MN长为l平行于y轴,宽为d的NP边平行于x轴,如图甲所示.列车轨道沿Ox方向,轨道区域内存在垂直于金属框平面的磁场,磁感应强度B沿Oz方向按正弦规律分布,其空间波长为λ,最大值为B0,如图乙所示,金属框同一长边上各处的磁感应强度相同,整个磁场以速度v0沿Ox方向匀速平移.设在短暂时间内,MN、PQ边所在位置的磁感应强度随时间的变化可以忽略,并忽略一切阻力.列车在驱动系统作用下沿Ox方向加速行驶,某时刻速度为v(v<v0).(1)简要叙述列车运行中获得驱动力的原理;(2)为使列车获得最大驱动力,写出MN、PQ边应处于磁场中的什么位置及λ与d之间应满足的关系式;(3)计算在满足第(2)问的条件下列车速度为v时驱动力的大小.【答案】(1)见解析(2)位置见解析d=(2k+1)或λ=(k∈N)(3)【解析】(1)由于列车速度与磁场平移速度不同,导致穿过金属框的磁通量发生变化,由于电磁感应,金属框中会产生感应电流,该电流受到的安培力即为驱动力.(2)为使列车获得最大驱动力,MN、PQ应位于磁场中磁感应强度同为最大值且反向的地方,这会使得金属框所围面积的磁通量变化率最大,使金属框中电流最强,从而使得金属框长边中电流受到的安培力最大.因此,d应为的奇数倍,即d=(2k+1)或λ=(k∈N)①(3)由于满足第(2)问条件,则MN、PQ边所在处的磁感应强度大小均为B0且方向总相反,经短暂的时间Δt,磁场沿Ox方向平移的距离为v0Δt,同时,金属框沿Ox方向移动的距离为vΔt.因为v0>v,所以在Δt时间内MN边扫过磁场的面积S=(v0-v)lΔt,在此Δt时间内,MN边左侧的磁感线移进金属框而引起框内磁通量变化ΔΦMN=B0l(v0-v)Δt②同理,该Δt时间内,PQ边右侧的磁感线移出金属框引起框内磁通量变化ΔΦPQ=B0l(v0-v)Δt③故在Δt内金属框所围面积的磁通量变化ΔΦ=ΔΦMN+ΔΦPQ④根据法拉第电磁感应定律,金属框中的感应电动势大小E=⑤根据闭合电路欧姆定律有I=⑥根据安培力公式,MN边所受的安培力FMN=B0IlPQ边所受的安培力FPQ=B0Il,根据左手定则,MN、PQ边所受的安培力方向相同,此时列车驱动力的大小F=FMN+FPQ=2B0Il⑦联立解得F=17.如图所示,光滑导轨立在竖直平面内,匀强磁场的方向垂直于导轨平面,磁感应强度B=0.5 T.电源的电动势为1.5 V,内阻不计.当电键K拨向a时,导体棒(电阻为R)PQ恰能静止.当K 拨向b后,导体棒PQ在1 s内扫过的最大面积为多少?(导轨电阻不计)【答案】3 m2【解析】设导体棒PQ长为L,电阻为R,电键接a时,电路中电流I=,导体棒PQ静止时mg=B()L电键K接b,导体棒PQ从静止下落,切割磁感线产生感应电流,同时PQ受安培力作用,导体棒向下做加速运动,速度增大,而加速度减小,最后以v m做匀速运动.此时mg=F安=,有:=,v m=.PQ达到最大速度后,单位时间内扫过的面积最大,故PQ在1 s内扫过的最大面积:S m=v m·L·t==m2=3 m2.18.如图甲所示,一个电阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路.线圈的半径为r1.在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示.图线与横、纵轴的截距分别为t0和B0.导线的电阻不计.求0至t1时间内:(1)通过电阻R1的电流大小和方向;(2)通过电阻R1的电荷量q及电阻R1产生的热量.【答案】(1)方向从b到a(2).【解析】(1)由图象分析可知,0至t1时间内=由法拉第电磁感应定律有E=n=n S,而S=πr由闭合回路欧姆定律有I1=联立以上各式解得通过电阻R1的电流大小为I1=由楞次定律可判断通过电阻R1的电流方向为从b到a. (2)通过电阻R1的电荷量q=I1t1=通过电阻R1产生的热量Q=I R1t1=.。
学年高中物理第一章电磁感应第节电磁感应的发现感应电流产生的条件练习教科版选修.docx
第 1 节电磁感觉现象的发现第 2 节感觉电流产生的条件1.法拉第把惹起电流的原由归纳为五类,它们都与变化和运动相联系,即:变化中的电流、变化中的磁场、运动中的恒定电流、运动中的磁铁、运动中的导体.2.感觉电流的产生条件:穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感觉电流产生.3.在物理学的发展过程中,很多物理学家的科学发现推进了人类历史的进步,在对以下几位物理学家所做科学贡献的表达中,不正确的说法是() A.库仑发现了电流的磁效应B.爱因斯坦创办了相对论C.法拉第发现了电磁感觉现象D.牛顿提出了万有引力定律确立了天体力学的基础答案 A分析奥斯特发现电流的磁效应, A 错误, B、C、D 项正确.4.对于磁通量,以下说法中正确的选项是()A.磁通量不单有大小,并且有方向,所以是矢量B.磁通量越大,磁感觉强度越大C.经过某一面的磁通量为零,该处磁感觉强度不必定为零D.磁通量就是磁感觉强度答案C分析磁通量是标量,故 A 不对;由Φ=BS ⊥可知Φ由 B 和 S⊥两个要素决定,Φ较大,有可能是因为 S⊥较大造成的,所以磁通量越大,磁感觉强度越大是错误的,故 B 不对;由Φ=BS ⊥可知,当线圈平面与磁场方向平行时, S⊥=0,Φ=0,但磁感觉强度 B 不为零,故 C 对;磁通量和磁感觉强度是两个不一样的物理量,故 D 不对.5.以下图,用导线做成圆形或正方形回路,这些回路与向来导线构成几种地点组合 (相互绝缘 ),以下组合中,切断直导线中的电流时,闭合回路中会有感觉电流产生的是 ()答案CD分析利用安培定章判断直线电流产生的磁场,其磁感线是一些以直导线为轴的无数组齐心圆,即磁感线所在平面均垂直于导线,且直线电流产生的磁场分布状况是:凑近直导线处磁场强,远离直导线处磁场弱.所以, A 中穿过圆形线圈的磁场如图甲所示,其有效磁通量为ΦA=Φ出-Φ进=0,且一直为0,即便切断导线中的电流,ΦA 也一直为0,A中不行能产生感觉电流.B中线圈平面与导线的磁场平行,穿过 B 的磁通量也一直为 0,B 中也不可以产生感觉电流. C 中穿过线圈的磁通量如图乙所示,Φ进>Φ出,即ΦC≠0,当切断导线中电流后,经过一准时间,穿过线圈的磁通量ΦC 减小为0,所以C中有感觉电流产生; D 中线圈的磁通量ΦD 不为0,当电流切断后,ΦD 最后也减小为0,所以D中也有感觉电流产生.【观点规律练】知识点一磁通量的理解及其计算1.如图 1 所示,有一个 100 匝的线圈,其横截面是边长为L=0.20m 的正方形,放在磁感觉强度为 B=0.50T 的匀强磁场中,线圈平面与磁场垂直.若将这个线圈横截面的形状由正方形改变为圆形 (横截面的周长不变 ),在这一过程中穿过线圈的磁通量改变了多少?5.5 ×10 -3Wb 图 1答案分析线圈横截面为正方形时的面积S1= L2=(0.20) 2m2=4.0 ×10-2m2 .穿过线圈的磁通量-2-211=0.50 ×4.0×10Wb =2.0 ×10WbΦ=BS横截面形状为圆形时,其半径r=4L/2 π=2L/ π.242截面积大小 S2=π(2L/ π)=25πm穿过线圈的磁通量-2Φ2=BS 2=0.50×4/(25π) Wb≈2.55×Wb10.所以,磁通量的变化ΔΦ=Φ2-Φ1=(2.55-2.0)×10-2Wb=5.5×10-3Wb评论磁通量Φ= BS 的计算有几点要注意:(1)S 是指闭合回路中包括磁场的那部分有效面积;B是匀强磁场中的磁感觉强度.(2)磁通量与线圈的匝数没关,也就是磁通量大小不受线圈匝数的影响.同理,磁通量的变化量ΔΦ=Φ2 -Φ1 也不受线圈匝数的影响.所以,直接用公式求Φ、ΔΦ时,不用去考虑线圈匝数 n.2.如图 2 所示,线圈平面与水平方向成θ角,磁感线竖直向下,设磁感觉强度为 B,线圈面积为 S,则穿过线圈的磁通量Φ=________.图 2答案BScos θ分析线圈平面 abcd 与磁场不垂直,不可以直接用公式Φ=BS 计算,能够用不一样的分解方法进行.能够将平面 abcd 向垂直于磁感觉强度的方向投影,使用投影面积;也能够将磁感觉强度沿垂直于平面和平行于平面正交分解,使用磁感觉强度的垂直重量.解法一:把面积 S 投影到与磁场 B 垂直的方向,即水平方向a′b′cd,则 S⊥=Scos θ,故Φ= BS⊥= BScos θ.解法二:把磁场 B 分解为平行于线圈平面的重量 B∥和垂直于线圈平面的重量B⊥,明显 B∥不穿过线圈,且 B⊥=Bcos θ,故Φ=B⊥ S=BScos θ.评论在应用公式Φ=BS 计算磁通量时,要特别注意 B⊥ S 的条件,应依据实质状况选择不一样的方法,千万不要乱套公式.知识点二感觉电流产生的条件3.以下状况能产生感觉电流的是()图 3A.如图甲所示,导体AB 顺着磁感线运动B.如图乙所示,条形磁铁插入或拔出线圈时C.如图丙所示,小螺线管 A 插入大螺线管 B 中不动,开关 S 向来接通时D.如图丙所示,小螺线管 A 插入大螺线管 B 中不动,开关 S 向来接通,当改变滑动变阻器的阻值时答案BD分析 A 中导体棒顺着磁感线运动,穿过闭合电路的磁通量没有发生变化无感觉电流,故 A 错;B 中条形磁铁插入线圈时线圈中的磁通量增添,拔出时线圈中的磁通量减少,都有感觉电流,故 B 正确; C 中开关 S 向来接通,回路中为恒定电流,螺线管 A 产生的磁场稳固,螺线管 B 中的磁通量无变化,线圈中不产生感觉电流,故 C 错; D 中开关 S 接通滑动变阻器的阻值变化使闭合回路中的电流变化,螺线管 A 的磁场变化,螺线管 B 中磁通量变化,线圈中产生感觉电流,故 D 正确.评论电路闭合,磁通量变化,是产生感觉电流的两个必需条件,缺一不可.电路中有没有磁通量不是产生感觉电流的条件,假如穿过电路的磁通量只管很大但不变化,那么不论有多大,都不会产生感觉电流.4.如图 4 所示,线圈Ⅰ与电源、开关、滑动变阻器相连,线圈G 相连,线圈Ⅰ与线圈Ⅱ绕在同一个铁芯上,在以下状况下,电流计Ⅱ与电流计G 中有示数的是 ()图 4A.开封闭合瞬时B.开封闭合一段时间后C.开封闭合一段时间后,往返挪动变阻器滑动端D.开关断开瞬时答案ACD分析 A 中开封闭合前,线圈Ⅰ、Ⅱ中均无磁场,开封闭合瞬时,线圈Ⅰ中电流从无到有形成磁场,穿过线圈Ⅱ 的磁通量从无到有,线圈Ⅱ 中产生感觉电流,电流计 G 有示数.故 A 正确. B 中开封闭合一段时间后,线圈Ⅰ中电流稳固不变,电流的磁场不变,此时线圈Ⅱ 虽有磁通量但磁通量稳固不变,线圈Ⅱ 中无感觉电流产生,电流计 G 中无示数.故 B 错误. C 中开封闭合一段时间后,往返挪动滑动变阻器滑动端,电阻变化,线圈Ⅰ中的电流变化,电流形成的磁场也发生变化,穿过线圈Ⅱ的磁通量也发生变化,线圈Ⅱ中有感觉电流产生,电流计 G 中有示数.故 C 正确. D 中开关断开瞬时,线圈Ⅰ中电流从有到无,电流的磁场也从有到无,穿过线圈Ⅱ 的磁通量也从有到无发生变化,线圈Ⅱ 中有感觉电流产生,电流计 G 中有示数.故 D 正确.评论变化的电流惹起闭合线圈中磁通量的变化,是产生感觉电流的一种情况.【方法技巧练】一、磁通量变化量的求解方法5.面积为S 的矩形线框abcd ,处在磁感觉强度为B 的匀强磁场中,磁场方向与线框平面成θ角(如图5 所示),当线框以ab 为轴顺时针转90°时,穿过abcd 面的磁通量变化量ΔΦ= ________.图 5答案-BS(cos θ+sin θ)分析磁通量由磁感觉强度矢量在垂直于线框面上的重量决定.开始时B 与线框面成θ角,磁通量为Φ=BSsin θ;线框面按题意方向转动时,磁通量减少,当转动 90°时,磁通量变为“负”值,Φ2=- BScos θ.可见,磁通量的变化量为ΔΦ=Φ2-Φ1=-BScosθ-BSsinθ=- BS(cos θ+ sinθ)实质上,在线框转过 90°的过程中,穿过线框的磁通量是由正向 BSsinθ减小到零,再由零增大到负向 BScos θ.方法总结磁通量虽是标量,但有正、负,正、负号仅表示磁感线从不一样的方向穿过平面,不表示大小.6.如图 6 所示,通电直导线下面有一个矩形线框,线框平面与直导线共面.若使线框渐渐远离 (平动 )通电导线,则穿过线框的磁通量将()图 6A.渐渐增大B.渐渐减小C.保持不变 D.不可以确立答案B分析当矩形线框在线框与直导线决定的平面内渐渐远离通电导线平动时,因为走开导线越远,磁场越弱,而线框的面积不变,则穿过线框的磁通量将减小,所以 B 正确.方法总结惹起磁通量变化一般有四种状况S(如知识点(1)磁感觉强度 B 不变,有效面积 S 变化,则ΔΦ=Φt-Φ=B一中的 1 题)(2)磁感觉强度 B 变化,磁感线穿过的有效面积 S 不变,则ΔΦ=Φ0t-Φ=BS(如本题)(3)线圈平面与磁场方向的夹角θ发生变化时,即线圈在垂直于磁场方向的投影面积 S⊥=Ssinθ发生变化,进而惹起穿过线圈的磁通量发生变化,即B、S 不变,θ变化. (这样栏目中的 5题)S 同时发生变化的状况,则ΔΦ=Φ-(4) 磁感觉强度 B 和回路面积tΦ0≠ΔB·ΔS二、感觉电流有无的判断方法7.如图 7 所示的匀强磁场中有一个矩形闭合导线框,在以下四种状况下,线框中会产生感觉电流的是()图 7A.线框平面一直与磁感线平行,线框在磁场中左右运动B.线框平面一直与磁感线平行,线框在磁场中上下运动C.线框绕位于线框平面内且与磁感线垂直的轴线AB 转动D.线框绕位于线框平面内且与磁感线平行的轴线CD 转动答案CA、B、分析四种状况中初始地点线框均与磁感线平行,磁通量为零,按D三种状况线圈挪动后,线框仍与磁感线平行,磁通量保持为零不变,线框中不产生感觉电流. C 中线圈转动后,穿过线框的磁通量不停发生变化,所以产生感觉电流, C 项正确.方法总结 (1)判断有无感觉电流产生的重点是抓住两个条件:①电路能否为闭合电路;②穿过电路自己的磁通量能否发生变化,其主要内涵表此刻“变化” 二字上.电路中有没有磁通量不是产生感觉电流的条件,假如穿过电路的磁通量很大但不变化,那么不论有多大,也不会产生感觉电流.(2)剖析磁通量能否变化时,既要弄清楚磁场的磁感线散布,又要注意惹起磁通量变化的三种状况:①因为线框所在处的磁场变化惹起磁通量变化;②因为线框所在垂直于磁场方向的投影面积变化惹起磁通量变化;③有可能是磁场及其垂直于磁场的面积都发生变化.8.以下状况中都是线框在磁场中切割磁感线运动,此中线框中有感觉电流的是()答案BC分析 A 中固然导体“切割”了磁感线,但穿过闭合线框的磁通量并无发生变化,没有感觉电流. B 中导体框的一部分导体“切割”了磁感线,穿过线框的磁感线条数愈来愈少,线框中有感觉电流. C 中固然与 A 近似,但因为是非匀强磁场运动过程中,穿过线框的磁感线条数增添,线框中有感觉电流. D 中线框只管是部分切割,但磁感线条数不变,无感觉电流,应选B、C.方法总结在利用“切割”来议论和判断有无感觉电流时,应当注意:①导体能否将磁感线“切断”,假如没有“切断”就不可以说切割.以以下图所示,甲、乙两图中,导线是真“切割”,而图丙中,导体没有切割磁感线.②即便导体真“切割”了磁感线,也不可以保证就能产生感觉电流.比如上题中A、 D 选项状况,假如由切割不简单判断,仍是要回归到磁通量能否变化上去.1.以下现象中,属于电磁感觉现象的是()A.小磁针在通电导线邻近发生偏转B.通电线圈在磁场中转动C.因闭合线圈在磁场中运动而产生的电流D.磁铁吸引小磁针答案C分析电磁感觉是指“磁生电”的现象,而小磁针和通电线圈在磁场中转动,反应了磁场力的性质,所以A、 B、 D 不是电磁感觉现象, C 是电磁感觉现象.2.在电磁感觉现象中,以下说法正确的选项是()A.导体相对磁场运动,导体内必定产生感觉电流B.导体做切割磁感线运动,导体内必定会产生感觉电流C.闭合电路在磁场内做切割磁感线运动,导体内必定会产生感觉电流D.穿过闭合电路的磁通量发生变化,在电路中必定会产生感觉电流答案D分析本题的重点是理解产生感觉电流的条件.第一是“闭合电路”,A、B两项中电路能否闭合不确立,故A、B 两项错误;其次当电路闭合时,只有一部分导体切割磁感线才产生感觉电流, C 项错误;当闭合电路中磁通量发生变化时,电路中产生感觉电流, D 项正确.故正确答案为 D.3.一个闭合线圈中没有感觉电流产生,由此能够得出()A.此时此地必定没有磁场B.此时此地必定没有磁场的变化C.穿过线圈平面的磁感线条数必定没有变化D.穿过线圈平面的磁通量必定没有变化答案D分析磁感线条数不变不等于磁通量不变.4.如图 8 所示,通电螺线管水平固定, OO ′为其轴线, a、b、c 三点在该轴线上,在这三点处各放一个完整同样的小圆环,且各圆环平面垂直于 OO ′轴.则对于这三点的磁感觉强度 B a、B b、B c的大小关系及穿过三个小圆环的磁通量Φa、Φb、Φc 的大小关系,以下判断正确的选项是()图 8A.B a= B b=B c,Φa=Φb=ΦcB.B a>B b>B c,Φa <Φb <ΦcC.B a>B b>B c,Φa >Φb >ΦcD.B a>B b>B c,Φa=Φb=Φc答案CB a>B b>B c,由Φ= BS 可得分析依据通电螺线管产生的磁场特色可知Φ>Φ>Φ.故C正确.ab c4.如图 8 所示,通电螺线管水平固定, OO ′为其轴线, a、b、c 三点在该轴线上,在这三点处各放一个完整同样的小圆环,且各圆环平面垂直于 OO ′轴.则对于这三点的磁感觉强度 B a、B b、B c的大小关系及穿过三个小圆环的磁通量Φa、Φb、Φc 的大小关系,以下判断正确的选项是()图 9A.BSB.4BS/5C.3BS/5 D.3BS/4答案B4分析经过线框的磁通量Φ=BSsinα=5BS .6.如图 10 所示,ab 是水平面上一个圆的直径,在过 ab 的竖直平面内有一根通电导线 ef,已知 ef 平行于 ab ,当 ef 竖直向上平移时,电流产生的磁场穿过圆面积的磁通量将 ()图 10A.渐渐增大C.一直为零B.渐渐减小D.不为零,但保持不变答案C分析导线 ef 四周的磁场是以ef 为圆心的一系列齐心圆,水平面上的圆上的不一样点到 ef 的距离不一样,相当于在半径不一样的圆周上,因为ef∥ ab,且 ef 与ab 在同一竖直平面内,因此ef 产生的磁场方向正幸亏ab 双侧且对称地从一边穿入从另一边对称穿出,净剩磁感线条数为零,因此穿过圆的磁通量为零,当ef 向上平移时,穿过圆的磁通量仍为零.7.如图 11 所示,矩形闭合导线与匀强磁场垂直,必定产生感觉电流的是()图 11A.垂直于纸面平动B.以一条边为轴转动C.线圈形状渐渐变为圆形D.沿与磁场垂直的方向平动答案BC8.在以下图的各图中,闭合线框中能产生感觉电流的是()答案AB分析感觉电流产生的条件是:只需穿过闭合线圈的磁通量变化,闭合线圈中就有感觉电流产生. A 图中,当线圈转动过程中,线圈的磁通量发生变化,线圈中有感觉电流产生; B 图中离直导线越远磁场越弱,磁感线越稀,所以当线圈远离导线时,线圈中磁通量不停变小,所以 B 图中也有感觉电流产生; C 图中必定要把条形磁铁四周的磁感线空间散布图弄清楚,在图示地点,线圈中的磁通量为零,在向下挪动过程中,线圈的磁通量向来为零,磁通量不变,线圈中无感觉电流产生; D 图中,线圈中的磁通量向来不变,线圈中无感觉电流产生.故正确答案为 A、 B.9.如图 12 所示,开始时矩形线框与匀强磁场的方向垂直,且一半在磁场内,一半在磁场外,若要使线框中产生感觉电流,以下方法中不行行的是()...图 12A.将线框向左拉出磁场B.以 ab 边为轴转动 (小于 90°)C.以 ad 边为轴转动 (小于 60°)D.以 bc 边为轴转动 (小于 60°)答案D分析将线框向左拉出磁场的过程中,线框的 bc 部分做切割磁感线运动,或许说穿过线框的磁通量减少,所以线框中将产生感觉电流.当线框以 ab 边为轴转动时,线框的 cd 边的右半段在做切割磁感线运动,或许说穿过线框的磁通量在发生变化,所以线框中将产生感觉电流.当线框以 ad 边为轴转动 (小于 60°)时,穿过线框的磁通量在减小,所以在这个过程中线框中会产生感觉电流.假如转过的角度超出60°(60 °~300°),bc 边将进入无磁场区,那么线框中将不产生感觉电流.当线框以 bc 边为轴转动时,假如转动的角度小于60°,则穿过线框的磁通量一直保持不变 (其值为磁感觉强度与矩形线框面积的一半的乘积).10. A、B 两回路中各有一开关S1、S2,且回路 A 中接有电源,回路 B 中接有敏捷电流计 (如图 13 所示 ),以下操作及相应的结果可能实现的是()图 13A.先闭合 S2,后闭合 S1的瞬时,电流计指针偏转B.S1、 S2闭合后,在断开S2的瞬时,电流计指针偏转C.先闭合 S1,后闭合 S2的瞬时,电流计指针偏转D.S 1、S2闭合后,在断开S1的瞬时,电流计指针偏转答案AD11.线圈 A 中接犹如图 14 所示的电源,线圈 B 有一半的面积处在线圈 A 中,两线圈平行但不接触,则在开关 S 闭合的瞬时,线圈 B 中有无感觉电流?图 14答案看法析分析有,将 S 闭合的瞬时,与线圈 A 构成的闭合电路有电流经过,线圈 A 产生的磁场要穿过线圈 B.线圈 A 中有环形电流,其磁场不单穿过线圈自己所包围的面积,方向向外,也穿过线圈外的广大面积,方向向里.但线圈 A 所包围的面积内磁通密度大,外头面积上的磁通密度小.线圈 B 与 A 重合的一半面积上向外的磁通量大于另一半面积上向里的磁通量,所以线圈 B 所包围的总磁通量不为零,并且方向向外.也就是说,在开关S 闭合的瞬时,穿过线圈 B 的磁通量增添,所以有感觉电流.12.匀强磁场地区宽为 L,一正方形线框 abcd 的边长为 l,且 l>L,线框以速度 v 经过磁场地区,如图 15 所示,从线框进入到完整走开磁场的时间内,线框中没有感觉电流的时间是多少?学年高中物理第一章电磁感应第节电磁感应的发现感应电流产生的条件练习教科版选修.docx图 15l-L答案v分析ad 边和 bc 边都在磁场外时,线框中的磁通量不变,没有感觉电流.l- L线圈中没有感觉电流的时间为t=v .13.匀强磁场的磁感觉强度 B=0.8T ,矩形线圈 abcd 的面积 S=0.5m 2,共10 匝,开始 B 与 S 垂直且线圈有一半在磁场中,如图 16 所示.(1)当线圈绕 ab 边转过 60°时,线圈的磁通量以及此过程中磁通量的改变量为多少?(2)当线圈绕 dc 边转过 60°时,求线圈中的磁通量以及此过程中磁通量的改变量.图 16答案看法析1分析(1)当线圈绕 ab 转过 60°时,Φ=BS ⊥=BS cos60°= 0.8 ×0.5 × Wb =20.2Wb( 此时的 S⊥正好所有处在磁场中 ).在此过程中 S⊥没变,穿过线圈的磁感线条数没变,故磁通量变化量ΔΦ=0.(2) 当线圈绕 dc 边转过 60°时,Φ=BS ⊥,S过S⊥,所以Φ=0;不转时Φ1= B·=0.2Wb ,转动后Φ2=0, 2ΔΦ=Φ2-Φ1=-0.2Wb,故磁通量改变了0.2Wb.。
电磁感应定律习题含答案
法拉第电磁感应定律练习题1.闭合电路的一部分导线ab处于匀强磁场中,图1中各情况下导线都在纸面内运动,那么下列判断中正确的是[ ] A.都会产生感应电流B.都不会产生感应电流C.甲、乙不会产生感应电流,丙、丁会产生感应电流D.甲、丙会产生感应电流,乙、丁不会产生感应电流1.关于感应电动势大小的下列说法中,正确的是[ ]A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大B.线圈中磁通量越大,产生的感应电动势一定越大C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大D.线圈中磁通量变化越快,产生的感应电动势越大2.与x轴夹角为30°的匀强磁场磁感强度为B(图1),一根长l的金属棒在此磁场中运动时始终与z轴平行,以下哪些情况可在棒中得到方向相同、大小为Blv的电动势[ ]A.以2v速率向+x轴方向运动B.以速率v垂直磁场方向运动4.单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图3所示[ ]A.线圈中O时刻感应电动势最大B.线圈中D时刻感应电动势为零C.线圈中D时刻感应电动势最大D.线圈中O至D时间内平均感电动势为0.4V5.一个N匝圆线圈,放在磁感强度为B的匀强磁场中,线圈平面跟磁感强度方向成30°角,磁感强度随时间均匀变化,线圈导线规格不变,下列方法中可使线圈中感应电流增加一倍的是[ ] A.将线圈匝数增加一倍B.将线圈面积增加一倍C.将线圈半径增加一倍D.适当改变线圈的取向6.如图4所示,圆环a与圆环b半径之比为2∶1,两环用同样粗细的、同种材料的导线连成闭合回路,连接两圆环电阻不计,匀强磁场的磁感强度变化率恒定,则在a环单独置于磁场中与b环单独置于磁场中两种情况下,M、N两点的电势差之比为[ ]A.4∶1B.1∶4C.2∶1D.1∶28.如图5所示,相距为l,在足够长度的两条光滑平行导轨上,平行放置着质量与电阻均相同的两根滑杆ab与cd,导轨的电阻不计,磁感强度为B的匀强磁场的方向垂直于导轨平面竖直向下,开始时,ab与cd都处于静止状态,现ab杆上作用一个水平方向的恒力F,下列说法中正确的是[ ]A.cd向左运动B.cd向右运动C.ab与cd均先做变加速运动,后作匀速运动D.ab与cd均先做交加速运动,后作匀加速运动9.如图6所示,RQRS为一正方形导线框,它以恒定速度向右进入以MN为边界的匀强磁场,磁场方向垂直线框平面,MN线与线框的边成45°角,E、F分别为PS与PQ的中点,关于线框中的感应电流[ ]A.当E点经过边界MN时,感应电流最大B.当P点经过边界MN时,感应电流最大C.当F点经过边界MN时,感应电流最大D.当Q点经过边界MN时,感应电流最大10.如图7所示,平行金属导轨的间距为d,一端跨接一阻值为R的电阻,匀强磁场的磁感应强度为B,方向垂直于平行轨道所在平面。
高中物理教科版目录
高中物理- 教科版目录全套必修一第一章运动的描述1.1 质点参考系空间时间1.2 位置变化的描述位移1.3 直线运动中位移随时间变化的.1.4 运动快慢与方向的描述1.5 直线运动速度随时间变化的图.1.6 速度变化快慢的描述加速度1.7 匀速直线运动的规律1.8 匀速直线运动的规律的应用1.9 匀速直线运动的加速度第二章力2.1 力2.2 重力2.3 弹力2.4 摩擦力2.5 力的合成2.6 力的分解第三章牛顿运动定律3.1 从亚里士多德到伽利略3.2 牛顿第一定律3.3 牛顿第二定律3.4 牛顿第三定律3.5 牛顿运动定律的应用3.6 自由落体运动3.7 超重与失重3.8 汽车安全运行与牛顿运动定律第四章物体的平衡4.1 共点力作用下物体的平衡4.2 共点力平衡条件的应用4.3 平衡的稳定性选学必修二第一章抛体运动1.1 曲线运动1.2 运动的合成与分解1.3 平抛运动1.4 斜抛运动第二章圆周运动2.1 描述圆周运动2.2 圆周运动的向心力2.3 匀速圆周运动的实例分析2.4 圆周运动与人类文明选学第三章万有引力定律3.1 天体运动3.2 万有引力定律3.3 万有引力定律的应用3.4 人造卫星宇宙速度第四章机械能和能源4.1 功4.2 功率4.3 动能与势能4.4 动能定理4.5 机械能守恒定律4.6 能源的开发与利用第五章经典力学的成就与局限性5.1 经典力学的成就与局限性5.2 了解相对论5.3 初识量子论文科选修 - 选修1-1第一章电荷与电场1.1 静电现象及其应用1.2 点电荷之间的相互作用规律-库.1.3 电场第二章电流与磁场2.1 磁场现象与电流的磁效应2.2 磁场2.3 电磁感应定律2.4 磁场对运动电荷的作用力第三章电路3.1 直流电路3.2 交变电路第四章电磁场与电磁波4.1 电磁场4.2 电磁波4.3 电磁波普第五章电能及电信息的应用5.1 发电原理5.2 电能的运输5.3 电能的转化及应用5.4 信息概念及用电传输信息的方.5.5 电信息技术的几项重要作用5.6 传感器及应用第六章家用电器与家庭生活现代化6.1 家用电器的一般介绍6.2 电“热”类家用电器6.3 电动类与电光类家用电器6.4 信息类家用电器6.5 家用电器的选购及使用6.6 家电、家庭、社会和家电的未.第七章电磁技术与社会发展7.1 电磁学与电磁技术的关系及其.7.2 电磁技术对人类社会发展的贡.理科选修 - 选修3-1第一章电场1.1 电荷电荷守恒定律1.2 库仑定律1.3 电场电场强度和电场线1.4 电势差1.5 电势差与电场强度的关系1.6 电容器和电容1.7 静电的利用及危害第二章直流电路2.1 欧姆定律2.2 电阻定律2.3 焦耳定律2.4 电阻的串联、并联及其应用2.5 伏安法测电阻2.6 电源的电动势和内阻2.7 闭合电路欧姆定律2.8 欧姆表多用电表2.9 逻辑电路和控制电路第三章磁场3.1 磁现象磁场3.2 磁感应强度磁通量3.3 磁场对电流的作用-安培力3.4 磁场对运动电荷的作用-落伦兹.3.5 洛伦兹力的应用选修3-2第一章电磁感应1.1 电磁感应现象的发现1.2 感应电流产生的条件1.3 法拉第电磁感应定律1.4 楞次定律1.5 电磁感应中的能量转化与守恒1.6 自感日光灯1.7 涡流研究课题测量玩具电动机运转时的.第二章交变电流2.1 交变电流2.2 描述正弦交流电的物理量2.3 实验:练习使用示波器2.4 电容器在交流电路中的作用2.5 电感器在交流电路中的作用2.6 变压器2.7 电能的输送第三章传感器3.1 传感器3.2 温度传感器和光电式传感器3.3 生活中的传感器3.4 实验探究:简单的光控和温控.选修3-3第一章分子动理论与统计思想1.1 物体是由大量分子组成的1.2 分子的热运动1.3 分子间的相互作用力1.4 统计规律分子运动速率分布1.5 温度内能气体的压强1.6 实验探究:用油膜法测油酸分.第二章固体和液体2.1 晶体和非晶体2.2 半导体2.3 液体的表面张力2.4 液晶第三章气体3.1 气体实验定律3.2 气体实验定律的微观解释及图.3.3 理想气体3.4 饱和汽与未饱和汽3.5 空气的湿度第四章能量守恒与热力学定律4.1 能量守恒定律的发现4.2 热力学第一定律4.3 宏观热过程的方向性4.4 热力学第二定律4.5 熵概念初步第五章能源与可持续性发展5.1 能源与人类生存的关系5.2 能源利用与环境问题5.3 可持续发展战略选修3-4第一章机械振动1.1 简谐运动1.2 单摆1.3 简谐运动的图像和公式1.4 阻尼振动受迫振动1.5 实验探究:用单摆测定重力加.第二章机械波2.1 机械波德形成和传播2.2 横波德图像2.3 波德频率和波速2.4 惠更斯原理波德反射与折射2.5 波德干射、衍射第三章电磁振荡电磁波3.1 电磁振荡3.2 电磁场和电磁波3.3 电磁波普电磁波的应用3.4 无线电波发射、传播和接收第四章光的折射4.1 光的折射定律4.2 实验探究:测定玻璃的折射率4.3 光的全反射第五章光的波动性5.1 光的干涉5.2 实验探究:用双缝干涉观光的.5.3 光的衍射与偏振5.4 激光第六章相对论6.1 经典时空观6.2 狭义对相对论的两个基本假设6.3 相对论时空观6.4 相对论的速度变换定律质量和.6.5 广义相对论选修3-5第一章碰撞与能量守恒1.1 碰撞1.2 动量1.3 动量守恒定律1.4 动量守恒定律的应用第二章原子结构2.1 电子2.2 原子的核式结构模型2.3 光谱氢原子光谱2.4 波尔的原子模型能级第三章原子核3.1 原子核的组成与核力3.2 放射性衰变3.3 放射性的应用、危害与防护3.4 原子核的结合能3.5 核裂变3.6 核聚变3.7 粒子物理学简介第四章波粒二象性4.1 量子概念的诞生4.2 光电效应与光量子假说4.3 光的波粒二象性4.4 实物粒子的波粒二象性4.5 不确定关系统计人:om。
高中物理选修课件第章法拉第电磁感应定律
实验器材和步骤
• 实验器材:电磁铁、线圈、电流表、电压表、滑动变阻器 、开关、导线等。
实验器材和步骤
实验步骤 1. 按照实验电路图连接好实验器材。
2. 调节电磁铁的电流,使线圈中产生磁场。
实验器材和步骤
3. 迅速改变滑动变阻器的阻值 ,使线圈中的磁通量发生变化。
4. 观察电流表和电压表的读数 ,记录实验数据。
当穿过回路的磁通量发生变化时,回路中的感生电动势ε感的大小和穿过回路的 磁通量变化率等成正比。
磁通量与感应电动势关系
当线圈(导体回路)不动而磁场变化时,磁场变化时在路中激发的感应电动势与 磁通量的变化率成正比。
XX
PART 02
法拉第电磁感应定律公式 及推导
REPORTING
法拉第电磁感应定律公式
• 法拉第电磁感应定律公式:E = -N * (ΔΦ) / (Δt)。其中,E表示感应电动势,N表示线圈匝数,ΔΦ表示磁通量的变化量, Δt表示变化所用的时间。
公式中各物理量含义及单位
01
E
感应电动势,单位为伏特(V )
02
N
线圈匝数,无单位
03
04
ΔΦ
磁通量的变化量,单位为韦伯 (Wb)
Δt
变化所用的时间,单位为秒( s)
XX
PART 01
法拉第电磁感应定律基本 概念
REPORTING
电磁感应现象
电磁感应
当导体回路在变化的磁场中或导体回 路在恒定的磁场中作切割磁感线运动 时,导体回路中就会产生感应电动势 ,从而产生感应电流的现象。
感应电流方向
感应电流的方向可用楞次定律或右手 定则来判断。
法拉第电磁感应定律内容
法拉第电磁感应定律
学年高中学习物理 第一章节 电磁感应 第节 楞次定律总结练习 教科版选修
第4节楞次定律1.右手定那么:将右手手掌伸平,使大拇指与其余并拢四指垂直,并与手掌在同一个平面内,让磁感线垂直从手心进入,大拇指指向导体运动方向,这时四指所指的就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化.3.以下说法正确的选项是( )A.感应电流的磁场方向总是与引起感应电流的磁场方向相反B.感应电流的磁场方向与引起感应电流的磁场方向可能相同,也可能相反C.楞次定律只能判定闭合回路中感应电流的方向D.楞次定律可以判定不闭合的回路中感应电动势的方向答案BD解析此题的关键是理解楞次定律,感应电流的磁场总是阻碍引起感应电流的磁通量的变化.如果是因磁通量的减小而引起的感应电流,那么感应电流的磁场方向与引起感应电流的磁场方向相同,阻碍磁通量的减小;如果是因磁通量的增大而引起的感应电流,那么感应电流的磁场与引起感应电流的磁场方向相反,阻碍磁通量的增大,故A项错误,B项正确;楞次定律既可以判定闭合回路中感应电流的方向,也可以判定电流的方向,还可以判定不闭合回路中感应电动势的方向.C项错误,D项正确.4.如图1所示,一线圈用细杆悬于P点,开始时细杆处于水平位置,释放后让它在匀强磁场中运动,线圈平面始终与纸面垂直,当线圈第一次通过位置Ⅰ,Ⅱ,Ⅲ时(位置Ⅱ正好是细杆竖直位置),线圈内的感应电流方向(顺着磁场方向看去)是( )图1A.Ⅰ,Ⅱ,Ⅲ位置均是顺时针方向B.Ⅰ,Ⅱ,Ⅲ位置均是逆时针方向C.Ⅰ位置是顺时针方向,Ⅱ位置为零,Ⅲ位置是逆时针方向D.Ⅰ位置是逆时针方向,Ⅱ位置为零,Ⅲ位置是顺时针方向答案D解析此题关键是判定出Ⅰ,Ⅱ位置时磁通量的变化情况,线圈由初始位置向Ⅰ位置运动过程中,沿磁场方向的磁通量逐渐增大,根据楞次定律,感应电流的磁场方向与原磁场方向相反,从右向左穿过线圈,根据安培定那么,Ⅰ位置时感应电流的方向(沿磁感线方向看去)是逆时针方向;在Ⅱ位置时由左向右穿过线圈的磁通量最大,由Ⅱ位置向Ⅲ位置运动时,向右穿过线圈的磁通量减少,根据楞次定律,感应电流的磁场方向向右,阻碍它的减少,根据安培定那么可判定Ⅲ位置的电流方向(沿磁感线方向看去)是顺时针方向,且知Ⅱ位置时感应电流为零.应选D.5.如图2所示,当导体棒MN在外力作用下沿导轨向右运动时,流过R的电流方向是( )图2A.由A→BB.由B→AC.无感应电流D.无法确定答案A M,那么通过R的电流为A→M,那么通过R的电流为A→B.【概念规律练】知识点一右手定那么1.如图表示闭合电路中的一局部导体ab在磁场中做切割磁感线运动的情景,导体ab上的感应电流方向为a→b的是()答案A b,B中电流由b→b,B中电流由b→a,C 中电流沿a→c→b→a方向,D中电流由b→a.应选A.点评判别导体切割磁感线产生的感应电流方向时,采用右手定那么更有针对性,当然用楞次定律也可以判别.2.如图3所示,导线框abcd与通电直导线在同一平面内,直导线通有恒定电流并通过ad和bc的中点,当线框向右运动的瞬间,那么( )图3A.线框中有感应电流,且按顺时针方向B.线框中有感应电流,且按逆时针方向C.线框中有感应电流,但方向难以判断D.由于穿过线框的磁通量为零,所以线框中没有感应电流答案B解析此题可用两种方法求解,借此感受右手定那么和楞次定律分别在哪种情况下更便捷.方法一:首先由安培定那么判断通电直导线周围的磁场方向〔如以下图所示〕,因ab导线向右做切割磁感线运动,由右手定那么判断感应电流由a→b,同理可判断cd导线中的感应电流方向由c→d,ad、bc 两边不做切割磁感线运动,所以整个线框中的感应电流是逆时针方向的.方法二:首先由安培定那么判断通电直导线周围的磁场方向(如右图所示),由对称性可知合磁通量Φ=0;其次当导线框向右运动时,穿过线框的磁通量增大(方向垂直向里),由楞次定律可知感应电流的磁场方向垂直纸面向外,最后由安培定那么判断感应电流按逆时针方向,故B选项正确.点评右手定那么在判断由于局部导体切割磁感线的感应电流方向时针对性强,假设电路中非一局部导体做切割磁感线运动时,应用楞次定律更轻松一些.知识点二楞次定律的根本理解图43.如图4所示为一种早期发电机原理示意图,该发电机由固定的圆形线圈和一对用铁芯连接的圆柱形磁铁构成,两磁极相对于线圈平面对称,在磁极绕转轴匀速转动过程中,磁极中心在线圈平面上的投影沿圆弧运动(O是线圈中心),那么( )A.从X到O,电流由E经G流向F,先增大再减小B.从X到O,电流由F经G流向E,先减小再增大C.从O到Y,电流由F经G流向E,先减小再增大D.从O到Y,电流由E经G流向F,先增大再减小答案D解析S,方向向上.当磁极由X到O时,穿过线圈的磁通量增加.根据楞次定律,感应电流的磁场应向下,再根据安培定那么可知电流由F经G流向E,当磁极在圆形线圈正上方时,磁通量的变化率最小,故电流先增大后减小.当磁极从O到Y时,穿过线圈的磁通量减少,可判断电流方向由E经G流向F.再根据磁通量最大时,磁通量的变化率最小,那么感应电流最小,故电流先增大后减小.应选项D正确.→S,方向向上.当磁极由X到O时,穿过线圈的磁通量增加.根据楞次定律,感应电流的磁场应向下,再根据安培定那么可知电流由F经G流向E,当磁极在圆形线圈正上方时,磁通量的变化率最小,故电流先增大后减小.当磁极从O到Y时,穿过线圈的磁通量减少,可判断电流方向由E经G流向F.再根据磁通量最大时,磁通量的变化率最小,那么感应电流最小,故电流先增大后减小.应选项D正确.点评应用楞次定律判断感应电流的一般步骤:4.如图5所示,一均匀的扁平条形磁铁的轴线与圆形线圈在同一平面内,磁铁中心与圆心重合,为了在磁铁开始运动时线圈中能得到逆时针方向的感应电流,磁铁的运动方式应是( )图5A.N极向纸内,S极向纸外,使磁铁绕O点转动B.N极向纸外,S极向纸内,使磁铁绕O点转动C.磁铁在线圈平面内顺时针转动D.磁铁在线圈平面内逆时针转动答案A解析当N极向纸内,S极向纸外转动时,穿过线圈的磁场由无到有并向里,感应电流的磁场应向外,电流方向为逆时针,A选项正确;当N极向纸外,S 极向纸内转动时,穿过线圈的磁场向外并增加,感应电流方向为顺时针,B选项错误;当磁铁在线圈平面内绕O点转动时,穿过线圈的磁通量始终为零,因而不产生感应电流,C、D选项错误.点评此题是“逆方向〞应用楞次定律,只需把一般步骤“逆向〞即可【方法技巧练】一、增反减同法5.某磁场磁感线如图6所示,有一铜线圈自图示A处落至B处,在下落过程中,自上向下看,线圈中的感应电流方向是( )图6A.始终顺时针B.始终逆时针C.先顺时针再逆时针D.先逆时针再顺时针答案C解析自A落至图示位置时,穿过线圈的磁通量增加,磁场方向向上,那么感应电流的磁场方向与之相反,即向下,故可由安培定那么判断线圈中的感应电流为顺时针;自图示位置落至B点时,穿过线圈的磁通量减少,磁场方向向上,那么感应电流的磁场方向与之相同即向上,故可由安培定那么判断线圈中的感应电流为逆时针,选C.方法总结此题中的“增反减同〞为:当回路中的磁通量增加(减少)时感应电流的磁场方向与原磁场方向相反(相同).6.电阻R、电容C与一线圈连成闭合回路,条形磁铁静止于线圈的正上方,N极朝下,如图7所示,现使磁铁开始自由下落,在N极接近线圈上端的过程中,流过R的电流方向和电容器极板的带电情况是( )图7A.从a到b,上极板带正电B.从a到b,下极板带正电C.从b到a,上极板带正电D.从b到a,下极板带正电答案D解析在N极接近线圈上端的过程,穿过线圈的磁通量向下增加,那么感应电流的磁场方向向上.由安培定那么可判定电路中的电流为顺时针方向,故通过R的电流由b到a,电容器下极板带正电.方法总结应用增反减同法时,特别要注意原磁场的方向,才能根据增反减同判断出感应电流的磁场方向.二、来拒去留法7.如图8所示,当磁铁突然向铜环运动时,铜环的运动情况是( )图8A.向右摆动B.向左摆动C.静止D.无法判定答案A解析此题可由两种方法来解决方法1:画出磁铁磁感线分布,如图甲所示,当磁铁向环运动时,穿过环的磁通量增加,由楞次定律判断出铜环中的感应电流方向如图甲所示.铜环中有感应电流时铜环又要受到安培力的作用,分析铜环受安培力作用而运动时,可把铜环中的电流等效为多段直线电流元.取上、下两小段电流研究,由左手定那么确定两段电流受力,由此可联想到整个铜环所受合力向右,那么A选项正确.甲乙方法2(等效法):磁铁向右运动,使铜环产生的感应电流可等效为图乙所示的条形磁铁,那么两磁铁有排斥作用,故A正确.方法总结此题中假设磁铁远离铜环运动时,同样可分析出铜环的运动情况为向左摆动,故可归纳出:感应电流在磁场中受力时有“来拒去留〞的特点.8.如图9所示,蹄形磁铁的两极间,放置一个线圈abcd,磁铁和线圈都可以绕OO′轴转动,磁铁如图示方向转动时,线圈的运动情况是( )图9A.俯视,线圈顺时针转动,转速与磁铁相同B.俯视,线圈逆时针转动,转速与磁铁相同C.线圈与磁铁转动方向相同,但转速小于磁铁转速D.线圈静止不动答案C解析此题“原因〞是磁铁有相对线圈的运动,“效果〞便是线圈要阻碍两者的相对运动,线圈阻止不了磁铁的运动,由“来拒去留〞线圈只好跟着磁铁同向转动;如果二者转速相同,就没有相对运动,线圈就不会转动,故答案为C.方法总结感应电流在磁场中受力,用“来拒去留〞来直接判断既快又准,此法也可理解为感应电流在磁场中受力总是“阻碍相对运动〞.三、增缩减扩法9.如图10所示,光滑固定导轨M、N水平放置,两根导体棒P、Q平行放置于导轨上,形成一个闭合回路,一条形磁铁从高处下落接近回路时( )图10A.P、Q将相互靠拢B.P、Q将相互远离C.磁铁的加速度仍为gD.磁铁的加速度小于g答案AD解析根据楞次定律,感应电流的效果是总要阻碍产生感应电流的原因,此题中“原因〞是回路中磁通量的增加,P、Q可通过缩小面积的方式进行阻碍,故可得A正确.由“来拒去留〞得回路电流受到向下的力的作用,由牛顿第三定律知磁铁受向上的作用力,所以磁铁的加速度小于g,选A、D.方法总结增缩减扩法,就闭合电路的面积而言,致使电路的面积有收缩或扩张的趋势.10.如图11(a)所示,两个闭合圆形线圈A、B的圆心重合,放在同一水平面内,线圈A中通以如图(b)所示的交变电流,t=0时电流方向为顺时针(如图箭头所示),在t1~t2时间段内,对于线圈B,以下说法中正确的选项是( )图11A.线圈B内有顺时针方向的电流,线圈有扩张的趋势B.线圈B内有顺时针方向的电流,线圈有收缩的趋势C.线圈B内有逆时针方向的电流,线圈有扩张的趋势D.线圈B内有逆时针方向的电流,线圈有收缩的趋势答案A解析在t1~t2时间段内,A线圈的电流为逆时针方向,产生的磁场垂直纸面向外且是增加的,由此可判定B线圈中的电流为顺时针方向,线圈的扩张与收缩可用阻碍Φ变化的观点去判定.在t1~t2时间段内B线圈内的Φ增强,根据楞次定律,只有B线圈增大面积,才能阻碍Φ的增加,应选A.方法总结注意B线圈内的磁通量是穿进穿出两局部抵消后的磁通量.1.关于决定感应电流方向的因素以下说法中正确的选项是( )A.回路所包围的引起感应电流的磁场的方向B.回路外磁场的方向C.回路所包围的磁通量的大小D.回路所包围的磁通量的变化情况答案AD解析回路以外的磁场无论变化与否,对回路的感应电动势没有影响,更不能决定感应电流的方向.通过实验知道,回路所包围的原磁场的方向变化或磁通量发生增、减变化时,感应电流的方向变化,感应电流的方向与磁场的强弱和磁通量的大小没有关系,应选项A、D正确.2.如图12所示,螺线管CD的导线绕法不明,当磁铁AB插入螺线管时,闭合电路中有图示方向的感应电流产生,以下关于螺线管磁场极性的判断,正确的选项是( )图12A.C端一定是N极B.D端一定是N极C.C端的极性一定与磁铁B端的极性相同D.因螺线管的绕法不明,故无法判断极性答案C解析由“来拒去留〞得磁铁与螺线管之间产生相斥的作用,即螺线管的C端一定与磁铁的B端极性相同,与螺线管的绕法无关.但因为磁铁AB的N、S 极性不明,所以螺线管CD的两端极性也不能明确,所以A、B、D错,C对.3.如图13所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行.当电键S接通瞬间,两铜环的运动情况是( )图13A.同时向两侧推开B.同时向螺线管靠拢C.一个被推开,一个被吸引,但因电源正负极未知,无法具体判断D.同时被推开或同时向螺线管靠拢,因电源正负极未知,无法具体判断答案A解析当电路接通瞬间,穿过线圈的磁通量在增加,使得穿过两侧铜环的磁通量都在增加,由楞次定律可知,两环中感应电流的磁场与线圈中磁场方向相反,即受到线圈磁场的排斥作用,使两铜环分别向外侧移动,选项A正确.4.如图14所示,金属环所在区域存在着匀强磁场,磁场方向垂直纸面向里.当磁感应强度逐渐增大时,内、外金属环中感应电流的方向为( )图14A.外环顺时针、内环逆时针B.外环逆时针,内环顺时针C.内、外环均为逆时针D.内、外环均为顺时针答案B解析首先明确研究的回路由外环和内环共同组成,回路中包围的磁场方向垂直纸面向里且内、外环之间的磁通量增加.由楞次定律可知两环之间的感应电流的磁场方向与原磁场方向相反,垂直于纸面向外,再由安培定那么判断出感应电流的方向是:在外环沿逆时针方向,在内环沿顺时针方向,应选项B正确.5.如图15所示,A是用毛皮摩擦过的橡胶圆形环,由于它的转动,使得金属环B中产生了如下图方向的感应电流,那么A环的转动情况为( )图15A.顺时针匀速转动B.逆时针加速转动C.逆时针减速转动D.顺时针减速转动答案BD解析此题考查安培安那么和楞次定律的应用.B 环中感应电流为逆时针,根据安培定那么判断可知,感应电流的磁场为垂直纸面向外,根据楞次定律能产生这样的磁场,是由于A环旋转时A环上负电荷定向运动产生一个垂直纸面向外减弱的磁场或者产生一个垂直纸面向里增强的磁场的结果,负电荷的运动方向与电流方向相反,根据安培定那么可得出,A环逆时针加速转动时产生方向垂直纸面向里的增强的磁场,假设A环顺时针减速转动时产生垂直纸面向外的减弱的磁场.故正确答案为B、D.6.信用卡的磁条中有一个个连续的相反极性的磁化区,如图16,刷卡时,当磁条以某一速度拉过信用卡阅读器的检测头时,在检测头的线圈中产生感应电流,那么以下说法正确的选项是( )图16A.A、B、C三位置经过检测头时,线圈中有感应电流产生B.A、B、C三位置经过检测头时,线圈中无感应电流产生C.A、C两位置经过检测头时,线圈中感应电流方向相同D.A、C两位置经过检测头时,线圈中感应电流方向相反答案AD解析A、B、C三位置处于磁性过渡区,经过检测头时,引起线圈中磁通量变化,有感应电流产生,A 对,B错.A、C两位置磁性变化规律不同,经过检测头时引起线圈中磁通量变化情况相反,感应电流方向相反,C错,D对.7.如图17所示,MN,PQ为同一水平面的两平行导轨,导轨间有垂直于导轨平面的磁场,导体ab,cd 与导轨有良好的接触并能滑动,当ab沿轨道向右滑动时,那么( )图17A.cd向右滑B.cd不动C.cd向左滑D.无法确定答案A解析对ab应用右手定那么确定回路中电流方向,应用左手定那么确定cd受力后的运动方向.(与磁场方向无关,也可由来拒去留直接判断)8.如图18所示,匀强磁场与圆形导体环平面垂直,导体ef与环接触良好,当ef向右匀速运动时( )图18A.圆环中磁通量不变,环上无感应电流产生B.整个环中有顺时针方向的电流C.整个环中有逆时针方向的电流D.环的右侧有逆时针方向的电流,环的左侧有顺时针方向的电流答案D f,故右侧的电流方向为逆时针,左侧的电流方向为顺时针,选 D.→f,故右侧的电流方向为逆时针,左侧的电流方向为顺时针,选D.9.2000年底,我国宣布已研制成功一辆高温超导磁悬浮高速列车的模型车,该车的车速已到达500km·h-1,可载5人,如图19所示就是磁悬浮的原理图,图中A是圆柱形磁铁,B是用高温超导材料制成的超导线圈.将超导线圈B水平放在磁铁A上,它就能在磁力的作用下悬浮在磁铁A上方的空中.以下说法正确的选项是( )图19A.在B放入磁场的过程中,B中将产生感应电流.当稳定后,感应电流消失B.在B放入磁场的过程中,B中将产生感应电流.当稳定后,感应电流仍存在C.如A的N极朝上,B中感应电流的方向如图中所示D.如A的N极朝上,B中感应电流的方向与图中所示的相反答案BD解析线圈B放入磁场的过程中,穿过B的磁通量从无到有,逐渐增加,故应在B中产生感应电流.由于B是超导线圈,不会出现热损耗,故B中的电流应持续存在.如果明确了磁场的N极朝上,可由楞次定律得出电流方向与图示中B环的电流方向相反.10.圆形导体环用一根轻质细杆悬挂在O点,导体环可以在竖直平面里来回摆动,空气阻力和摩擦力均可不计.在图20所示的正方形区域里,有匀强磁场垂直于圆环的振动面指向纸内.以下说法中正确的有( )图20A.此摆振动的开始阶段机械能不守恒B.导体环进入磁场和离开磁场时,环中电流的方向肯定相反C.导体环通过最低点时,环中感应电流最大D.最后此摆在匀强磁场中振动时,机械能守恒答案ABD解析导体环在进、出磁场阶段有感应电流产生,机械能转化为电能,环全部进入磁场后,磁通量不变无感应电流.11.如图21所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO′为其对称轴.一导线折成边长为l的正方形闭合回路abcd,回路在纸面内以恒定速度v0向右运动,当运动到关于OO′对称的位置时( )图21A.穿过回路的磁通量为零B.回路中感应电动势大小为2Blv0C.回路中感应电流的方向为顺时针方向D.回路中ab边与cd边所受安培力方向相同答案ABD解析线框关于OO′对称时,左右两侧磁通量大小相等,磁场方向相反,合磁通量为0;根据右手定那么,cd的电动势方向由c到d,ab的电动势方向由a到b,且大小均为Blv0,闭合电路的电动势为2Blv0,电流方向为逆时针;根据左手定那么,ab和cd边所受安培力方向均向左,方向相同,故正确的选项为A、B、D.12.在“研究电磁感应现象〞的实验中,首先按图22甲接线,以查明电流表指针的偏转方向与电流方向之间的关系;当闭合开关S时,观察到电流表指针向左偏,不通电时电流表指针停在正中央.然后按图乙所示,将电流表与副线圈B连成一个闭合回路,将原线圈A、电池、滑动变阻器和开关S串联成另一个闭合电路.(1)S闭合后,将螺线管A(原线圈)插入螺线管B(副线圈)的过程中,电流表的指针将如何偏转?(2)线圈A放在B中不动时,指针如何偏转?(3)线圈A放在B中不动,将滑动变阻器的滑片P 向左滑动时,电流表指针将如何偏转?(4)线圈A放在B中不动,突然断开S,电流表指针将如何偏转?图22答案(1)向右偏转(2)不偏转(3)向右偏转(4)向左偏转13.如图23是环保型手电筒的外形.环保型手电筒不需要任何化学电池作为电源,不会造成由废电池引起的环境污染.使用时只要将它摇动一分钟,手电筒便可持续照明好几分钟.手电筒内部有一永久磁铁,外层有一线圈,那么这种手电筒的原理是什么?图23答案见解析解析环保型手电筒应用了电磁感应原理,内部有磁铁外部有线圈,摇动时,使磁铁相对线圈运动,产生感应电流,把机械能转换为电能,并有一电容器暂时储存电能从而维持手电筒照明几分钟.。
高中物理(人教版)选修1-1课后练习 3-2 法拉第电磁感应定律 word版含解析(2)
第三章电磁感应二、法拉第电磁感应定律课时训练13法拉第电磁感应定律1.下列关于感应电动势的说法中,正确的是( )A.穿过闭合电路的磁通量越大,感应电动势就越大B.穿过闭合电路的磁通量的变化越大,感应电动势就越大C.穿过闭合电路的磁通量的变化越快,感应电动势就越大D.穿过闭合电路的磁通量不变化,感应电动势为零答案2.如图所示,将条形磁铁从相同的高度分别以速度v和2v插入线圈,电流表指针偏转角度较大的是( )A.以速度v插入B.以速度2v插入C.一样大D.无法确定答案解析:条形磁铁初末位置相同,因此磁通量变化相同,但速度越大,时间越短,则磁通量变化率越大,即感应电动势越大,感应电流也就越大,电流表指针偏转角度越大,所以B项正确.3.穿过一个单匝线圈的磁通量始终保持每秒钟均匀减少2 ,则( )A.线圈中感应电动势每秒增大2 VB.线圈中感应电动势每秒减小2 VC.线圈中无感应电动势D.线圈中感应电动势大小保持2 V不变答案解析:根据法拉第的电磁感应定律,磁通量均匀地变化,产生恒定的电动势2 V.4.如图所示是水平面上一个圆的直径,在过的竖直平面内有一根通电导线.已知平行于,当竖直向上平移时,电流磁场穿过圆面积的磁通量将( )A.逐渐增大B.逐渐减小C.始终为零D.不为零,但保持不变答案解析:由安培定则知,通电直导线周围磁感线是以导线上各点为圆心的同心圆,所以直导线在圆的直径正上方时,穿过圆面的磁通量必为零.可借助于剖面图来理解,如图所示为题图从右向左看的图形,下方线段表示圆面截面,上方“☉”表示电流向外,画出部分磁感线如图所示,显然,磁感线从左侧穿入面,又从右侧穿出面,故磁通量始终为零.5.如图画出的是穿过一个闭合线圈的磁通量随时间的变化规律,以下哪些认识是正确的( )A.第0.6 s末线圈中的感应电动势为4 VB.第0.9 s末线圈中的瞬时电动势比0.2 s末的大C.第1 s末线圈的瞬时电动势为零D.第0.2 s末和0.4 s末的瞬时电动势的方向相同答案解析:题图给出了磁通量的变化图象,由法拉第电磁感应定律计算:第0.6 s末线圈中的感应电动势为4 正确.第0.9 s末线圈中的瞬时电动势为30 V,第0.2 s末的瞬时电动势为V,所以B正确.第1 s 末线圈的瞬时电动势为零正确.第0.2 s末和0.4 s末的瞬时电动势的方向相反错.6.汽车在制动时,有一种系统,它能阻止制动时车轮抱死变为纯滑动.纯滑动不但制动效果不好,而且易使车辆失去控制.为此需要一种测定车轮是否还在转动的装置.如果检测出车轮不再转动,就会自动放松制动机构,让轮子仍保持缓慢转动状态.这种检测装置称为电磁脉冲传感器,如图甲所示是一根永久磁铁,外面绕有线圈,它的左端靠近一个铁质齿轮,齿轮转动与转动的车轮是同步的.图乙是车轮转动时输出电流随时间变化的图象.(1)为什么有电流输出?(2)若车轮转速减慢了,图象会变成怎样?答案:(1)当齿轮上的齿靠近线圈时,由于磁化使永久磁体的磁场增强,因此在线圈中产生感应电流.齿轮离开时,又在线圈中产生反方向的感应电流.(2)车轮转速减慢,电流变化频率变小,周期变大,且电流峰值变小.7.有一种高速磁悬浮列车的设计方案是在每节车厢底部安装磁铁(磁场方向向下),并在两条铁轨之间平放一系列线圈,请探究:(1)当列车运行时,通过线圈的磁通量会不会发生变化?(2)列车的速度越快,通过线圈的磁通量变化越快吗?答案:(1)变化(2)越快解析:(1)当列车运行时,磁铁与线圈相对运动,所以通过线圈的磁通量会发生变化.(2)列车速度越快,通过线圈的磁通量变化越快.8.如图所示,一个50匝,电阻不计的线圈两端跟100 Ω的电阻相连接,置于竖直向下的匀强磁场中,线圈的横截面积是20 2.磁感应强度以=100 的变化率均匀减小.在这一过程中通过电阻R的电流为多大?答案:0.1 A解析:由法拉第电磁感应定律得线圈中产生的感应电动势为50×20×10-4×100 V=10 V由欧姆定律得0.1 A.。
学年高中物理 第一章 电磁感应 第节 法拉第电磁感应定律练习 教科版选修
第3节 法拉第电磁感觉定律1.由电磁感觉产生的电动势,叫感觉电动势.产生感觉电动势的那部分导体相当于电源,导体的电阻相当于电源的内阻.2.电路中感觉电动势的大小,跟穿过这个电路的磁通量的变化率成正比,表达式E =ΔΦΔt (单匝线圈),E =n ΔΦΔt (多匝线圈).当导体切割磁感线产生感觉电动势时E =BLv (B 、L 、v 两两垂直),E =BLv sin_α(v ⊥L 但v 与B 夹角为α).3.关于感觉电动势,以下说法中正确的选项是( )A .电源电动势就是感觉电动势B .产生感觉电动势的那部分导体相当于电源C .在电磁感觉现象中没有感觉电流就必然没有感觉电动势D .电路中有电流就必然有感觉电动势答案 B解析 电源电动势的本源很多,不用然是由于电磁感觉产生的,因此选项A 错误;在电磁感觉现象中,若是没有感觉电流,也能够有感觉电动势,C 错误;电路中的电流可能是由化学电池或其余电池作为电源供应的,因此有电流不用然有感觉电动势.4.穿过一个单匝线圈的磁通量向来保持每秒钟平均地减少2Wb ,则( )A .线圈中感觉电动势每秒钟增加2VB .线圈中感觉电动势每秒钟减少2VC .线圈中无感觉电动势D .线圈中感觉电动势保持不变答案 D图15.穿过某线圈的磁通量随时间的变化如图1所示,在线圈内产生感觉电动势最大值的时间是( )A .0~2sB .2s ~4sC .4s ~6sD .6s ~10s答案 C解析 Φ-t 图象中,图象斜率越大,ΔΦΔt 越大,感觉电动势就越大.【看法规律练】知识点一 公式E =n ΔΦΔt的理解 1.一个200匝、面积为20cm 2的线圈,放在磁场中,磁场的方向与线圈平面成30°角,若磁感觉强度在0.05s 内由0.1T 增加到0.5T ,在此过程中穿过线圈的磁通量的变化量是________Wb ;磁通量的平均变化率是________Wb/s ;线圈中感觉电动势的大小是________V.答案 4×10-4 8×10-3 1.6解析 磁通量的变化量是由磁场的变化引起的,应该用公式ΔΦ=ΔBS sin α来计算,因此ΔΦ=ΔBS sin α=(0.5-0.1)×20×10-4×0.5Wb=4×10-4Wb磁通量的变化率为ΔΦΔt =4×10-40.05Wb/s =8×10-3 Wb/s , 感觉电动势的大小可依照法拉第电磁感觉定律得E =n ΔΦΔt =200×8×10-3V =1.6V议论 要理解好公式E =n ΔΦΔt ,第一要区分好磁通量Φ,磁通量的变化量ΔΦ,磁通量的变化率ΔΦ,现列表以下:特别提示 ①对Φ、ΔΦ、ΔΦΔt 而言,穿过一匝线圈和穿过n 匝是同样的,而感觉电动势则不同样,感觉电动势与匝数成正比.②磁通量和磁通量的变化率的大小没有直接关系,Φ很大时,ΔΦΔt 可能很小,也可能很大;Φ=0时,ΔΦΔt 可能不为零.2.以下说法正确的选项是( )A .线圈中磁通量变化越大,线圈中产生的感觉电动必然定越大B .线圈中磁通量越大,线圈中产生的感觉电动必然定越大C .线圈处在磁场越强的地址,线圈中产生的感觉电动必然定越大D .线圈中磁通量变化得越快,线圈中产生的感觉电动势越大答案 D解析 线圈中产生的感觉电动势E =n ΔΦΔt ,即E 与ΔΦΔt 成正比,与Φ或ΔΦ的大小无直接关系.磁通量变化得越快,即ΔΦΔt 越大,产生的感觉电动势越大,故只有D 正确.议论 正确理解决定感觉电动势大小的因素是磁通量的变化率,这是解析本题的要点.知识点二 公式E =BLv sin α的理解3.如图2所示,在磁感觉强度为1T 的匀强磁场中,一根跟磁场垂直长20cm 的导线以2m/s 的速度运动,运动方向垂直导线与磁感线成30°角,则导线中的感觉电动势为________.图2答案 0.2V解析 E =Blv sin30°=(1×0.2×2×sin30°) V =0.2V议论 (1)当导体平动垂直切割磁感线时,即B 、L 、v 两两垂直时(以下列图)E =BLv .(2)当导体平动但不垂直切割磁感线时即v 与B 有一夹角α,如右图所示,此时可将导体的速度v 向垂直于磁感线和平行于磁感线两个方向分解,则分速度v 2=v cos α不使导体切割磁感线,使导体切割磁感线的是分速度v 1=v sin α,从而使导体产生的感觉电动势为:E =BLv 1=BLv sin α.特别提示 不要死记公式,要理解含意v sin α是导体切割磁感线的速度.4.在磁感觉强度为B 的匀强磁场中,长为l 的金属棒OA 在垂直于磁场方向的平面内绕O 点以角速度ω匀速转动,如图3所示,求:金属棒OA 上产生的感觉电动势.图3答案 12Bl 2ω解析 由v =rω,可知各点处速度与该点到O 点的距离r 成正比,速度都与棒垂直,我们能够求出棒OA 上各点的平均速度v =l 2ω,即与棒中点的速度同样.(只有成正比率的量,中点值才等于平均值)可得E =Blv =Bl ·l 2ω=12Bl 2ω.议论 当导体棒转动切割磁感线时,若棒上各处磁感觉强度B 同样,则可直接应用公式E =12Bl 2ω.【方法技巧练】电动势公式E =n ΔΦΔt 和E =BLv sin α的采用技巧5.如图4所示,两根相距为l 的平行直导轨abdc ,bd 间连有一固定电阻R ,导轨电阻可忽略不计.MN 为放在ab 和dc 上的一导体杆,与ab 垂直,其电阻也为R .整个装置处于匀强磁场中,磁感觉强度的大小为B ,磁场方向垂直于导轨所在平面(指向图中纸面内).现对MN 施力使它沿导轨方向以速度v 做匀速运动.令U 表示MN 两端电压的大小,则U =________.图4答案 Blv 2解析 此回路的感觉电动势有两种求法(1)因B 、l 、v 两两垂直可直接采用E =Blv得E =vBl(2)可由法拉第电磁感觉定律E =ΔΦΔt 求解因在Δt 时间内,杆扫过的面积ΔS =lv Δt因此回路磁通量的变化ΔΦ=B ΔS =Blv Δt由E =ΔΦΔt 得E =Blv题目中的导体棒相当于电源,其电动势E =Blv ,其内阻等于R ,则U =Blv 2.方法总结 求解导体做切割磁感线运动产生大小不变的感觉电动势的问题时,两个公式都可使用.6.如图5所示,A 、B 两个闭合线圈用同样的导线制成,匝数都为10匝,半径r A =2r B ,图示地域内有磁感觉强度平均减小的匀强磁场,则A 、B 线圈中产生的感觉电动势之比为E A ∶E B =________,线圈中的感觉电流之比为I A ∶I B =________.图5答案 1∶1 1∶2解析 A 、B 两环中磁通量的变化率同样,线圈匝数同样,由E =n ΔΦΔt 可得E A ∶E B =1∶1;又由于R =ρl S ,故R A ∶R B =2∶1,因此I A ∶I B =1∶2.方法总结 当导体和磁场间无相对运动时,磁通量的变化完好部是由磁场的变化引起的,感觉电动势的计算只能采用公式E =n ΔΦΔt .7.如图6所示,用一阻值为R 的平均细导线围成的金属环半径为a ,匀强磁场的磁感觉强度为B ,垂直穿过金属环所在平面.电阻为R 2的导体杆AB ,沿环表面以速度v 向右滑至环中央时,杆的端电压为( )图6A .Bav B.12BavC.23BavD.43Bav答案 C解析 当电阻为R 2的导体杆AB 沿环表面以速度v 向右滑至环中央时,这个回路的总电动势为:E =2Bav .并联的两个半圆环的等效电阻为R 4,杆的端电压为U AB =E ·R 外R 外+r=23Bav . 方法总结 当磁场和导体间有相对运动,且感觉电动势大小在变化,求瞬时感觉电动势时,应采用公式E =BLv sin α.8.如图7所示,匀强磁场的磁感觉强度为B ,方向竖直向下,在磁场中有一边长为l 的正方形导线框,ab 边质量为m ,其余边质量不计,cd 边有固定的水平轴,导线框能够绕其转动;现将导线框拉至水平川址由静止释放,不计摩擦和空气阻力,金属框经过时间t 运动到竖直地址,此时ab 边的速度为v ,求:图7(1)此过程中线框产生的平均感觉电动势的大小;(2)线框运动到竖直地址时线框感觉电动势的大小.答案 (1)Bl 2t (2)Blv解析 (1)Φ1=BS =Bl 2,转到竖直地址Φ2=0ΔΦ=Φ2-Φ1=-Bl 2依照法拉第电磁感觉定律,有E =ΔΦΔt =-Bl 2t平均感觉电动势的大小为E =Bl 2t(2)转到竖直地址时,bc 、ad 两边不切割磁感线,ab 边垂直切割磁感线,E =Blv ,此时求的是瞬时感觉电动势.方法总结 求解某一过程(或某一段时间)中的感觉电动势而平均速度又不能够求得时,应采用公式E =n ΔΦΔt .如问题(1),但求某一瞬时感觉电动势时应采用E =BLv sin α.1.闭合的金属环处于随时间平均变化的匀强磁场中,磁场方向垂直于圆环平面,则( )A .环中产生的感觉电动势平均变化B .环中产生的感觉电流平均变化C .环中产生的感觉电动势保持不变D .环上某一小段导体所受的安培力保持不变答案 C解析 磁场平均变化,也就是说ΔB Δt =k ,依照感觉电动势的定义式,E =ΔΦΔt=S ΔB Δt =kS ,其中k 是一个常量,因此圆环中产生的感觉电动势的数值是一个常量.2.单匝矩形线圈在匀强磁场中匀速运动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图8所示,则O ~D 过程中( )图8A .线圈中O 时辰感觉电动势最大B .线圈中D 时辰感觉电动势为零C .线圈中D 时辰感觉电动势最大D .线圈中O 至D 时间内平均感觉电动势为0.4V答案 ABD解析 由法拉第电磁感觉定律知线圈中O 至D 时间内的平均感觉电动势E=ΔΦΔt =2×10-30.01/2V =0.4V .由感觉电动势的物理意义知,感觉电动势的大小与磁通量的大小Φ和磁通量的改变量ΔΦ均无必然联系,仅由磁通量的变化率ΔΦΔt 决定,而任何时辰磁通量的变化率ΔΦΔt 就是Φ-t 图象上该时辰切线的斜率,不难看出O 点处切线斜率最大,D 点处切线斜率最小为零,故A 、B 、D 选项正确.3.如图9所示,闭合开关S ,将条形磁铁插入闭合线圈,第一次用0.2s ,第二次用0.4s,并且两次的初步和停止地址同样,则()图9A.第一次磁通量变化较快B.第一次G的最大偏角较大C.第二次G的最大偏角较大D.若断开S,G均不偏转,故均无感觉电动势答案AB解析将磁铁插到闭合线圈的同一地址.磁通量的变化量同样,而用的时间不一样,因此磁通量的变化率不一样,第一次时间短变化快,感觉电动势大,故A、B正确;若断开S,无感觉电流,但有感觉电动势,故D错误.4.一闭合线圈放在随时间平均变化的磁场中,线圈平面和磁场方向垂直.若想使线圈中的感觉电流增强一倍,下述方法可行的是()A.使线圈匝数增加一倍B.使线圈面积增加一倍C.使线圈匝数减少一半D.使磁感觉强度的变化率增大一倍答案D解析依照E=n ΔΦΔt=nΔBΔt S求电动势,考虑到当n、S发生变化时导体的电阻也发生了变化.若匝数增加一倍,电阻也增加一倍,感觉电流不变,故A 错;若匝数减少一半,感觉电流也不变,故C错;若面积增加一倍,长度变为原来的2倍,因此电阻为原来的2倍,电流为原来的2倍,故B错,D正确.5.在图10中,EF、GH为平行的金属导轨,其电阻不计,R为电阻,C为电容器,AB为可在EF和GH上滑动的导体横杆.有匀强磁场垂直于导轨平面.若用I1和I2分别表示图中该处导线中的电流,则当横杆AB()图10A.匀速滑动时,I1=0,I2=0B.匀速滑动时,I1≠0,I2≠0C.加速滑动时,I1=0,I2=0D.加速滑动时,I1≠0,I2≠0答案D解析导体棒水平运动时产生感觉电动势,对整个电路,可把AB棒看做电源,等效电路以以下列图中(1)(2)所示.当棒匀速滑动时,电动势E不变,故I1≠0,I2=0.当棒加速运动时,电动势E不断变大,电容器不断充电,故I1≠0,I2≠0.6.如图11所示,一导线弯成半径为a的半圆形闭合回路.虚线MN右侧有磁感觉强度为B的匀强磁场.方向垂直于回路所在的平面.回路以速度v向右匀速进入磁场,直径CD向来与MN垂直.从D点到达界线开始到C点进入磁场为止,以下结论正确的选项是()图11A.感觉电流大小不变B.CD段直导线向来不受安培力C.感觉电动势最大值E m=BavD.感觉电动势平均值E=14πBav答案CD解析在闭合电路进入磁场的过程中,导体的等效切割长度发生变化,电路的感觉电动势变化,故感觉电流大小变化,选项A错误.CD段与磁感觉强度垂直,且回路中有电流,故受安培力作用,选项B错误.当半圆闭合回路进入磁场一半时,这时有效切割长度最大为a,因此感觉电动势最大值E m=Bav,C正确.感觉电动势平均值E=ΔΦΔt=14πBav.D正确.7.如图12所示,金属三角形导轨COD上放有一根金属棒MN.拉动MN,使它以速度v向右匀速运动,若是导轨和金属棒都是粗细同样的平均导体,电阻率都同样,那么在MN运动的过程中,闭合回路的()图12A.感觉电动势保持不变B.感觉电流保持不变C.感觉电动势逐渐增大D.感觉电流逐渐增大答案BC8.如图13所示,在竖直向下的匀强磁场中,将一水平放置的金属棒ab以水平初速度v0抛出,设在整个过程中棒的运动方向不变且不计空气阻力,则在金属棒运动过程中产生的感觉电动势大小变化情况是()图13A.越来越大B.越来越小C.保持不变D.无法判断答案C解析金属棒水平抛出后,在垂直于磁场方向上的速度不变,由E=BLv0知,感觉电动势不变,故C正确.9.粗细平均的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其界线与正方形线框的边平行.现使线框以同样大小的速度沿四个不一样方向平移出磁场,以以下列图所示,则在搬动过程中线框的一边a、b 两点间电势差绝对值最大的是()答案B解析正方形线框的一条边在做切割磁感线运动,产生的电动势在做切割运动的这条边中,设线框中的电动势为E,则依照欧姆定律可知,在图A、C、D 的情况下,a、b两点间的电势差大小为E/4,在图B的情况下a、b两点间的电势差大小为3E/4,应选B.10.穿过单匝闭合线圈的磁通量随时间变化的Φ-t图象如图14所示,由图知0~5s线圈中感觉电动势大小为________V,5s~10s线圈中感觉电动势大小为________V,10s~15s线圈中感觉电动势大小为________V.图14答案10211.如图15所示,abcd是一边长为l的匀质正方形导线框,总电阻为R,今使线框以恒定速度v水平向右穿过方向垂直于纸面向里的匀强磁场所区.已知磁感觉强度为B,磁场宽度为3l,求线框在进入磁区、完好进入磁区和穿出磁区三个过程中a、b两点间电势差的大小.图15答案3Blv4BlvBlv4解析导线框在进入磁区过程中,ab相当于电源,等效电路如图甲所示.E=Blv,r=14R,R外=34R,I=ER外+r=BlvR,U ab为端电压;因此U ab=IR外=3Blv 4.导线框全部进入过程中,磁通量不变,感觉电流I=0,但U ab=E=Blv导线框在穿出磁区过程中,cd相当于电源,等效电路如图乙所示.E=Blv,r=14R,R外=34R,I=ER外+r=BlvR,U ab=IR ab=BlvR×14R=Blv4.12.如图16所示,水平放置的平行金属导轨,相距l=0.50m,左端接一电阻R=0.20Ω,磁感觉强度B=0.40T的匀强磁场方向垂直于导轨平面,导体棒ab垂直放在导轨上,并能无摩擦地沿导轨滑动,导轨和导体棒的电阻均可忽略不计,当ab以v=4.0m/s的速度水平向右匀速滑动时,求:图16(1)ab棒中感觉电动势的大小;(2)回路中感觉电流的大小;(3)ab棒碰到的安培力的大小.答案(1)0.80V(2)4.0A(3)0.8N解析(1)依照法拉第电磁感觉定律,ab棒中的感觉电动势为E=Blv=0.40×0.50×4.0V=0.80V(2)感觉电流大小为I=ER=0.800.20A=4.0A(3)由于ab棒受安培力F=IlB=4.0×0.50×0.40N=0.8N.。
2024-2025学年高中物理第一章电磁感应3法拉第电磁感应定律教案2教科版选修3-2
(1)磁通量的概念及其计算方法;
(2)感应电动势的方向判断;
(3)法拉第电磁感应定律在实际问题中的应用。
具体解释:
(1)磁通量的概念较为抽象,学生在理解上存在难度。教师应通过图示、实例等方式,帮助学生理解磁通量的含义,并掌握计算方法;
(2)感应电动势的方向判断是学生的一个常见难点,教师应总结判断方法,如右手定则等,并通过练习题巩固学生对该知识点的掌握;
(3)法拉第电磁感应定律在实际问题中的应用需要学生具备一定的综合分析能力。教师应挑选具有代表性的案例,引导学生分析问题,提高学生的综合应用能力。
在教学过程中,教师应针对重点和难点内容,采用不同的教学方法,如讲解、演示、讨论、练习等,以确保学生对核心知识的理解和掌握。同时,关注学生的个体差异,及时给予指导和帮助,帮助学生突破难点,提高教学质量。
5. 电磁感应在实际中的应用:电磁感应现象广泛应用于发电机、变压器、传感器等领域,是人类利用电磁现象的重要基础。
二、当堂检测
1. 计算题:一个长直导线在垂直于导线的磁场中以速度v运动,导线长度为L,求导线中感应电动势的大小。
答案:E=B·L·v
2. 分析题:一个长直导线在垂直于导线的磁场中向右运动,导线中感应电动势的方向是什么?
二、新课讲授(用时10分钟)
1. 理论介绍:首先,我们要了解电磁感应的基本概念。电磁感应是指闭合回路中的磁通量发生变化时,回路中产生感应电动势的现象。它在能源转换、信号传输等方面具有重要意义。
2. 案例分析:接下来,我们来看一个具体的案例。这个案例展示了电磁感应在实际中的应用,以及它如何帮助我们解决问题。
3. 通过实际案例分析,培养将物理知识应用于实际问题的能力,增强科学探究精神;
法拉第电磁感应定律练习(含答案)
法拉第电磁感应定律练习一、选择题1、对于法拉第电磁感应定律,下面理解正确的是【】A.穿过线圈的磁通量越大,感应电动势越大 B.穿过线圈的磁通量为零,感应电动势一定为零C.穿过线圈的磁通量变化越大,感应电动势越大D.穿过线圈的磁通量变化越快,感应电动势越大2、关于感应电动势大小的下列说法中,正确的是【】A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大D.线圈中磁通量变化越快,产生的感应电动势越大3、如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可以在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则【】A.ef将匀速向右运动 B.ef将往返运动C.ef将减速向右运动,但不是匀减速 D.ef将加速向右运动4、如图 (a)、(b)所示的电路中,电阻R和自感线圈L的电阻值都很小,且小于灯A的电阻,接通S,使电路达到稳定,灯泡A发光,则【】A.在电路(a)中,断开S后,A将逐渐变暗B.在电路(a)中,断开S后,A将先变得更亮,然后逐渐变暗C.在电路(b)中,断开S后,A将逐渐变暗D.在电路(b)中,断开S后,A将先变得更亮,然后渐渐变暗【详解】(a)电路中,灯A和线圈L串联,电流相同,断开S时,线圈上产生自感电动势,阻碍原电流的减小,通过R、A形成回路,渐渐变暗.(b)电路中电阻R和灯A串联,灯A的电阻大于线圈L的电阻,电流则小于线圈L中的电流,断开S时,电源不给灯供电,而线圈产生自感电动势阻碍电流的减小,通过R、A形成回路,灯A中电流比原来大,变得更亮,然后渐渐变暗.所以选项AD正确.5、如图8中,闭合矩形线框abcd位于磁感应强度为B的匀强磁中,ab边位于磁场边缘,线框平面与磁场垂直,ab边和bc边分别用L1和L2。
高中物理 4.4法拉第电磁感应定律课后习题
4 法拉第电磁感应定律课时演练·促提升A组1.闭合电路中产生的感应电动势的大小,跟穿过这一闭合电路的下列哪个物理量成正比( )A.磁通量B.磁感应强度C.磁通量的变化率D.磁通量的变化量解析:根据法拉第电磁感应定律表达式E=n知,闭合电路中感应电动势的大小与磁通量的变化率成正比,而与磁通量Φ、磁感应强度B、磁通量的变化量ΔΦ无关,所以选项A、B、D错误,选项C正确。
答案:C2.穿过一个单匝线圈的磁通量,始终以每秒均匀地增加2 Wb,则( )A.线圈中的感应电动势每秒增大2 VB.线圈中的感应电动势每秒减小2 VC.线圈中的感应电动势始终为2 VD.线圈中不产生感应电动势解析:根据题意,穿过线圈的磁通量始终每秒均匀增加2 Wb,即穿过线圈的磁通量的变化率=2 Wb/s,由法拉第电磁感应定律知E=n=2 V,所以选C。
答案:C3.如图所示,有一匝接在电容器C两端的圆形导线回路,垂直于回路平面以内存在着向里的匀强磁场B,已知圆的半径r=5 cm,电容C=20 μF,当磁场B以4×10-2 T/s的变化率均匀增加时,则( )A.电容器a板带正电,电荷量为2π×10-9 CB.电容器a板带负电,电荷量为2π×10-9 CC.电容器b板带正电,电荷量为4π×10-9 CD.电容器b板带负电,电荷量为4π×10-9 C解析:根据楞次定律可判断a板带正电,线圈中产生的感应电动势E=πr2=π×10-4 V,板上带电荷量Q=CE=2π×10-9 C,选项A正确。
答案:A4.(多选)如图所示为地磁场磁感线的示意图,在北半球地磁场的竖直分量向下。
飞机在我国上空匀速巡航,机翼保持水平,飞行高度保持不变。
由于地磁场的作用,金属机翼上有电势差。
设飞行员左方机翼末端处的电势为φ1,右方机翼末端处的电势为φ2,则( )A.若飞机从西往东飞,φ1比φ2高B.若飞机从东往西飞,φ2比φ1高C.若飞机从南往北飞,φ1比φ2高D.若飞机从北往南飞,φ2比φ1高解析:由右手定则可知机翼左端电势比右端电势高,即φ1>φ2,A、C项正确。
【教科版】2019年高中物理选修3-2学案 第一章 电磁感应1电磁感应的发现 感应电流产生的条件 含答案
学案1电磁感应的发现感应电流产生的条件[学习目标定位] 1.能理解什么是电磁感应现象.2.能记住产生感应电流的条件.3.会使用线圈以及常见磁铁完成简单的实验.4.能说出磁通量变化的含义.5.会利用电磁感应产生的条件解决实际问题.1.磁通量的计算公式Φ=BS的适用条件是匀强磁场且磁感线与平面垂直.若在匀强磁场B 中,磁感线与平面不垂直,公式Φ=BS中的S应为平面在垂直于磁场方向上的投影面积.2.磁通量是标量,但有正、负之分.一般来说,如果磁感线从线圈的正面穿入,线圈的磁通量就为“+”,磁感线从线圈的反面穿入,线圈的磁通量就为“-”.3.由Φ=BS可知,磁通量的变化有三种情况:(1)磁感应强度B不变,有效面积S变化;(2)磁感应强度B变化,有效面积S不变;(3)磁感应强度B和有效面积S同时变化.一、奥斯特实验的启迪1820年,奥斯特从实验中发现了电流的磁效应,不少物理学家根据对称性的思考,提出既然电能产生磁,是否也存在逆效应,即磁产生电呢?二、电磁感应现象的发现1831年,英国物理学家法拉第发现了电磁感应现象.他将“磁生电”现象分为五类:(1)变化中的电流;(2)变化中的磁场;(3)运动中的恒定电流;(4)运动中的磁铁;(5)运动中的导线.三、电磁感应规律的发现及其对社会发展的意义1.电磁感应的发现,使人们发明了发电机,把机械能转化成电能;使人们发明了变压器,解决了电能远距离传输中能量大量损耗的问题;使人们制造出了结构简单的感应电动机,反过来把电能转化成机械能.2.法拉第在研究电磁感应等电磁现象中,从磁性存在的空间分布逐渐凝聚出“场”的科学创新思想.在此基础上,麦克斯韦建立了电磁场理论,并预言了电磁波的存在.四、产生感应电流的条件穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生.一、磁通量及其变化[问题设计]如图1所示,框架的面积为S ,匀强磁场的磁感应强度为B .试求:图1(1)框架平面与磁感应强度B 垂直时,穿过框架平面的磁通量为多少?(2)若框架绕OO ′转过60°,则穿过框架平面的磁通量为多少?(3)若从图示位置转过90°,则穿过框架平面的磁通量的变化量为多少?(4)若从图示位置转过180°,则穿过框架平面的磁通量变化量为多少?答案 (1)BS (2)12BS (3)-BS (4)-2BS [要点提炼]1.磁通量的计算(1)公式:Φ=BS(2)适用条件:①匀强磁场,②磁场方向和平面垂直.(3)B 与S 不垂直时:Φ=BS ⊥,S ⊥为平面在垂直磁场方向上的投影面积,在应用时可将S 投影到与B 垂直的方向上,如图2所示Φ=BS sin_θ.图2(4)磁通量与线圈的匝数无关. 2.磁通量的变化量ΔΦ(1)当B 不变,有效面积S 变化时,ΔΦ=B ·ΔS .(2)当B 变化,S 不变时,ΔΦ=ΔB ·S .(3)B和S同时变化,则ΔΦ=Φ2-Φ1,但此时ΔΦ≠ΔB·ΔS.特别提醒计算穿过某面的磁通量变化量时,要注意前、后磁通量的正、负值,如原磁通量Φ1=BS,当平面转过180°后,磁通量Φ2=-BS,磁通量的变化量ΔΦ=-2BS.二、感应电流产生的条件[问题设计]实验1(导体在磁场中做切割磁感线的运动):如图3所示,导体AB垂直磁感线运动时,线路中有电流产生,而导体AB沿着磁感线运动时,线路中无电流产生(填“有”或“无”).图3实验2(通过闭合电路的磁场发生变化):如图4所示,将小螺线管A插入大螺线管B中不动,当开关S接通或断开时,电流表中有电流通过;若开关S一直闭合,当改变滑动变阻器的阻值时,电流表中有电流通过;而开关一直闭合,滑动变阻器的滑动触头不动时,电流表中无电流产生.若将螺线管A放在螺线管B的正上方,并使两者的轴线互相垂直,则不管进行什么操作,电流表中均无电流产生(填“有”或“无”).图41.实验2中并没有导体在磁场中做切割磁感线的运动,但在接通或断开电源的瞬间及改变滑动变阻器的阻值时,B线圈却出现感应电流,这说明什么?答案说明导体在磁场中做切割磁感线运动不是产生感应电流的本质原因,通过闭合电路的磁场变化也可以产生感应电流.2.当实验2中开关闭合后,A线圈电流稳定时,B线圈中也存在磁场,但不出现感应电流,这说明什么?答案说明感应电流的产生,不在于闭合回路中是否有磁场.3.实验2中同样的磁场变化,螺线管B套在螺线管A外边时,能产生感应电流,而两个线圈相互垂直放置时不能产生感应电流,这又说明什么?试总结产生感应电流的条件.答案说明感应电流的产生,不在于磁场是否变化.总结实验1中,磁场是稳定的,但在导体切割磁感线运动时,通过回路的磁通量发生变化,回路中产生了感应电流;实验2通过改变电流从而改变磁场强弱,进而改变了磁通量,从而产生了感应电流,所以可以将产生感应电流的条件描述为“只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电流”.[要点提炼]1.产生感应电流的条件:穿过闭合电路的磁通量发生变化.2.特例:闭合电路的一部分导体在磁场内做切割磁感线运动.在利用“切割”来讨论和判断有无感应电流时,应该注意:(1)导体是否将磁感线“割断”,如果没有“割断”就不能说切割.如图5所示,甲、乙两图中,导线是真“切割”,而图丙中,导体没有切割磁感线.图5(2)是否仅是闭合电路的一部分导体在磁场内做切割磁感线运动,如图丁.如果由切割不容易判断,则要回归到磁通量是否变化上去.[延伸思考]电路不闭合时,磁通量发生变化是否能产生电磁感应现象?答案当电路不闭合时,没有感应电流,但有感应电动势,只产生感应电动势的现象也可以称为电磁感应现象.一、磁通量Φ及其变化量ΔΦ的理解与计算例1如图6所示的线框,面积为S,处于磁感应强度为B的匀强磁场中,B的方向与线框平面成θ角,当线框转过90°到如图6所示的虚线位置时,试求:图6(1)初、末位置穿过线框的磁通量的大小Φ1和Φ2;(2)磁通量的变化量ΔΦ.解析(1)解法一:在初始位置,把面积向垂直于磁场方向进行投影,可得垂直于磁场方向的面积为S⊥=S sin θ,所以Φ1=BS sin θ.在末位置,把面积向垂直于磁场方向进行投影,可得垂直于磁场方向的面积为S⊥′=S cos θ.由于磁感线从反面穿入,所以Φ2=-BS cos θ. 解法二:如图所示,把磁感应强度B沿垂直于面积S和平行于面积S进行分解,得B上=B sin θ,B左=B cos θ所以Φ1=B上S=BS sin θ,Φ2=-B左S=-BS cos θ.(2)开始时B与线框平面成θ角,穿过线框的磁通量Φ1=BS sin θ;当线框平面按顺时针方向转动时,穿过线框的磁通量减少,当转动θ时,穿过线框的磁通量减少为零,继续转动至90°时,磁感线从另一面穿过,磁通量变为“负”值,Φ2=-BS cos θ.所以,此过程中磁通量的变化量为ΔΦ=Φ2-Φ1=-BS cos θ-BS sin θ=-BS(cos θ+sin θ).答案(1)BS sin θ-BS cos θ(2)-BS(cos θ+sin θ)二、产生感应电流的分析判断及实验探究例2如图7所示,在匀强磁场中有两条平行的金属导轨,磁场方向与导轨平面垂直.导轨上有两条可沿导轨自由移动的金属棒ab、cd,与导轨接触良好.这两条金属棒ab、cd的运动速度分别是v1、v2,且井字形回路中有感应电流通过,则可能()图7A.v1>v2B.v1<v2C.v1=v2D.无法确定解析只要金属棒ab、cd的运动速度不相等,穿过井字形回路的磁通量就发生变化,闭合回路中就会产生感应电流.故选项A、B正确.答案AB例3在研究电磁感应现象的实验中所用器材如图8所示.它们是①电流表、②直流电源、③带铁芯的线圈A、④线圈B、⑤开关、⑥滑动变阻器(用来控制电流以改变磁场强弱).试按实验的要求在实物图上连线(图中已连好一根导线).图8答案连接电路如图所示1.(对电磁感应现象的认识)下列现象中,属于电磁感应现象的是()A.小磁针在通电导线附近发生偏转B.通电线圈在磁场中转动C.因闭合线圈在磁场中运动而产生的电流D.磁铁吸引小磁针答案 C解析电磁感应是指“磁生电”的现象,而小磁针和通电线圈在磁场中转动以及磁铁吸引小磁针,反映了磁场力的性质,所以A、B、D不是电磁感应现象,C是电磁感应现象.2.(对磁通量Φ及其变化量ΔΦ的理解)如图9所示一矩形线框,从abcd位置移到a′b′c′d′位置的过程中,关于穿过线框的磁通量情况,下列叙述正确的是(线框平行于纸面移动) ()图9A.一直增加B.一直减少C.先增加后减少D.先增加,再减少直到零,然后再增加,然后再减少答案 D解析离导线越近,磁场越强,当线框从左向右靠近导线的过程中,穿过线框的磁通量增大,当线框跨在导线上向右运动时,磁通量减小,当导线在线框正中央时,磁通量为零,从该位置向右,磁通量又增大,当线框离开导线向右运动的过程中,磁通量又减小;故A、B、C 错误,D正确,故选D.3.(产生感应电流的分析判断)如图10所示,开始时矩形线框与匀强磁场的方向垂直,且一半在磁场内,一半在磁场外,若要使线框中产生感应电流,下列办法中可行的是()图10A.将线框向左拉出磁场B.以ab边为轴转动(小于90°)C.以ad边为轴转动(小于60°)D.以bc边为轴转动(小于60°)答案ABC解析将线框向左拉出磁场的过程中,线框的bc部分切割磁感线,或者说穿过线框的磁通量减少,所以线框中将产生感应电流.当线框以ab边为轴转动(小于90°)时,线框的cd边的右半段在做切割磁感线运动,或者说穿过线框的磁通量在发生变化,所以线框中将产生感应电流.当线框以ad边为轴转动(小于60°)时,穿过线框的磁通量在减小,所以在这个过程中线框内会产生感应电流.如果转过的角度超过60°(60°~300°),bc边将进入无磁场区,那么线框中将不产生感应电流.当线框以bc边为轴转动时,如果转动的角度小于60°,则穿过线框的磁通量始终保持不变(其值为磁感应强度与矩形线框面积的一半的乘积).4.(产生感应电流的分析判断)如图11所示,绕在铁芯上的线圈与电源、滑动变阻器和电键组成闭合回路,在铁芯的右端套有一个表面绝缘的铜环A,下列各种情况中铜环A中没有感应电流的是()图11A.线圈中通以恒定的电流B.通电时,使滑动变阻器的滑片P做匀速移动C.通电时,使滑动变阻器的滑片P做加速移动D.将电键突然断开的瞬间答案 A解析只要通电时滑动变阻器的滑片P移动,电路中的电流就会发生变化,变化的电流产生变化的磁场,铜环A中磁通量发生变化,有感应电流;同样,将电键断开瞬间,电路中电流从有到无,仍会在铜环A中产生感应电流.题组一对磁通量Φ及其变化量ΔΦ的理解与计算1.关于磁通量,下列叙述正确的是()A.在匀强磁场中,穿过一个面的磁通量等于磁感应强度与该面面积的乘积B.在匀强磁场中,a线圈的面积比b线圈的大,则穿过a线圈的磁通量一定比穿过b线圈的磁通量大C.把一个线圈放在M、N两处,若放在M处时穿过线圈的磁通量比放在N处时大,则M 处的磁感应强度一定比N处大D.同一线圈放在磁感应强度大处,穿过线圈的磁通量不一定大答案 D解析磁通量等于磁感应强度与垂直磁场方向上的投影面积的乘积,A错误;线圈面积大,但投影面积不一定大,B错误;磁通量大,磁感应强度不一定大,C错误、D正确.2.关于磁通量的概念,以下说法中正确的是()A.磁感应强度越大,穿过闭合回路的磁通量越大B.磁感应强度越大,线圈面积越大,则磁通量越大C.穿过线圈的磁通量为零,但磁感应强度不一定为零D.磁通量发生变化,一定是磁场发生变化引起的答案 C解析根据磁通量的定义,Φ=B·S·sin θ,因此A、B选项错误;穿过线圈的磁通量为零时,磁感应强度不一定为零;磁通量发生变化,可能是面积变化引起的,也可能是磁场变化引起的,D错.3.如图1所示,半径为R的圆形线圈共有n匝,其中心位置处半径为r的范围内有匀强磁场,磁场方向垂直线圈平面,若磁感应强度为B,则穿过线圈的磁通量为()图1A.πBR2B.πBr2C.nπBR2D.nπBr2答案 B解析由磁通量的定义式知Φ=BS=πBr2;故B正确.题组二产生感应电流的分析判断4.关于电磁感应现象,下列说法中正确的是()A.闭合线圈放在变化的磁场中,必然有感应电流产生B.闭合正方形线圈在匀强磁场中垂直磁感线运动,必然产生感应电流C.穿过闭合线圈的磁通量变化时,线圈中有感应电流D.只要穿过电路的磁通量发生变化,电路中就一定有感应电流产生答案 C解析产生感应电流的条件:(1)闭合电路;(2)磁通量Φ发生变化,两个条件缺一不可.5.下图中能产生感应电流的是()答案 B解析根据产生感应电流的条件:A中,电路没闭合,无感应电流;B中,面积增大,闭合电路的磁通量增大,有感应电流;C中,穿过线圈的磁感线相互抵消,Φ恒为零,无感应电流;D中,磁通量不发生变化,无感应电流.6.下列情况中都是线框在磁场中做切割磁感线运动,其中线框从开始进入到完全离开磁场的时间中有感应电流的是()答案BC解析A中虽然导体“切割”了磁感线,但穿过闭合线框的磁通量并没有发生变化,没有感应电流.B中线框的一部分导体“切割”了磁感线,穿过线框的磁感线条数越来越少,线框中有感应电流.C 中虽然与A 近似,但由于是非匀强磁场,运动过程中,穿过线框的磁感线条数增加,线框中有感应电流.D 中线框尽管是部分切割,但磁感线条数不变,无感应电流,故选B 、C.7.如图2所示,一有限范围的匀强磁场宽度为d ,若将一个边长为L 的正方形导线框以速度v 匀速地通过磁场区域,已知d >L ,则导线框从开始进入到完全离开磁场的过程中无感应电流的时间等于( )图2A.d vB.L vC.d -L vD.d -2L v答案 C解析 只有导线框完全在磁场里面运动时,导线框中才无感应电流.8.如图3所示的匀强磁场中有一个矩形闭合导线框,初始位置线框与磁感线平行,则在下列四种情况下,线框中会产生感应电流的是( )图3A .线框平面始终与磁感线平行,线框在磁场中左右运动B .线框平面始终与磁感线平行,线框在磁场中上下运动C .线框绕位于线框平面内且与磁感线垂直的轴线AB 转动D .线框绕位于线框平面内且与磁感线平行的轴线CD 转动答案 C解析 四种情况中初始位置线框均与磁感线平行,磁通量为零,按A 、B 、D 三种情况线框运动后,线框仍与磁感线平行,磁通量保持为零不变,线框中不产生感应电流.C 中线框转动后,穿过线框的磁通量不断发生变化,所以产生感应电流,C 项正确.9.为观察电磁感应现象,某学生将电流表、螺线管A 和B 、蓄电池、开关用导线连接成如图4所示的实验电路.当接通和断开开关时,电流表的指针都没有偏转,其原因是( )图4A.开关位置接错B.电流表的正、负极接反C.线圈B的3、4接头接反D.蓄电池的正、负极接反答案 A解析本题考查了感应电流产生的条件.因感应电流产生的条件是闭合电路中的磁通量发生变化,由电路图可知,把开关接在B与电流表之间,因与1、2接头相连的电路在接通和断开开关时,电流不改变,所以不可能有感应电流,电流表也不可能偏转,开关应接在A与电源之间.10.如图5所示,导线ab和cd互相平行,则下列四种情况中,导线cd中有电流的是()图5A.开关S闭合或断开的瞬间B.开关S是闭合的,滑动触头向左滑C.开关S是闭合的,滑动触头向右滑D.开关S始终闭合,滑动触头不动答案ABC解析开关S闭合或断开的瞬间;开关S闭合,滑动触头向左滑或向右滑的过程都会使通过导线ab段的电流发生变化,使穿过cd回路的磁通量发生变化,从而在cd导线中产生感应电流.因此本题的正确选项应为A、B、C.11.如图6所示,线圈Ⅰ与电源、开关、滑动变阻器相连,线圈Ⅱ与电流计相连,线圈Ⅰ与线圈Ⅱ绕在同一个铁芯上,在下列情况下,电流计中是否有示数?图6(1)开关闭合瞬间;(2)开关闭合稳定后;(3)开关闭合稳定后,来回移动滑动变阻器的滑片;(4)开关断开瞬间.答案 (1)有 (2)无 (3)有 (4)有解析 本题主要考查闭合电路中,电流变化导致磁场变化从而产生感应电流的情况.(1)开关闭合时线圈Ⅰ中电流从无到有,电流的磁场也从无到有,穿过线圈Ⅱ的磁通量也从无到有,线圈Ⅱ中产生感应电流,电流计有示数.(2)开关闭合稳定后,线圈Ⅰ中电流稳定不变,电流的磁场不变,此时线圈Ⅱ中虽有磁通量但磁通量稳定不变,线圈Ⅱ中无感应电流产生,电流计无示数. (3)开关闭合稳定后,来回移动滑动变阻器的滑片,电阻变化,线圈Ⅰ中的电流变化,电流形成的磁场也发生变化,穿过线圈Ⅱ的磁通量也发生变化,线圈Ⅱ中有感应电流产生,电流计有示数.(4)开关断开瞬间,线圈Ⅰ中电流从有到无,电流的磁场也从有到无,穿过线圈Ⅱ的磁通量也从有到无,线圈Ⅱ中有感应电流产生,电流计有示数. 12.如图7所示,固定于水平面上的金属架MDEN 处在竖直向下的匀强磁场中,金属棒MN 沿框架以速度v 向右做匀速运动.t =0时,磁感应强度为B 0,此时MN 到达的位置使MDEN 构成一个边长为l 的正方形.为使MN 棒中不产生感应电流,从t =0开始,磁感应强度B 应怎样随时间t 变化?请推导出这种情况下B 与t 的关系式.图7答案 B =B 0l l +v t解析 要使MN 棒中不产生感应电流,应使穿过线圈平面的磁通量不发生变化 在t =0时刻,穿过线圈平面的磁通量Φ1=B 0S =B 0l 2设t 时刻的磁感应强度为B ,此时磁通量为Φ2=Bl (l +v t )由Φ1=Φ2得B =B 0l l +v t.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3节 法拉第电磁感应定律1.由电磁感应产生的电动势,叫感应电动势.产生感应电动势的那部分导体相当于电源,导体的电阻相当于电源的内阻.2.电路中感应电动势的大小,跟穿过这个电路的磁通量的变化率成正比,表达式E =ΔΦΔt (单匝线圈),E =n ΔΦΔt (多匝线圈).当导体切割磁感线产生感应电动势时E =BLv (B 、L 、v 两两垂直),E =BLv sin_α(v ⊥L 但v 与B 夹角为α).3.关于感应电动势,下列说法中正确的是( )A .电源电动势就是感应电动势B .产生感应电动势的那部分导体相当于电源C .在电磁感应现象中没有感应电流就一定没有感应电动势D .电路中有电流就一定有感应电动势答案 B解析 电源电动势的来源很多,不一定是由于电磁感应产生的,所以选项A 错误;在电磁感应现象中,如果没有感应电流,也可以有感应电动势,C 错误;电路中的电流可能是由化学电池或其它电池作为电源提供的,所以有电流不一定有感应电动势.4.穿过一个单匝线圈的磁通量始终保持每秒钟均匀地减少2Wb ,则( )A .线圈中感应电动势每秒钟增加2VB .线圈中感应电动势每秒钟减少2VC .线圈中无感应电动势D .线圈中感应电动势保持不变答案 D图15.穿过某线圈的磁通量随时间的变化如图1所示,在线圈内产生感应电动势最大值的时间是( )A .0~2sB .2s ~4sC .4s ~6sD .6s ~10s答案 C解析 Φ-t 图象中,图象斜率越大,ΔΦΔt 越大,感应电动势就越大.【概念规律练】知识点一 公式E =n ΔΦΔt的理解 1.一个200匝、面积为20cm 2的线圈,放在磁场中,磁场的方向与线圈平面成30°角,若磁感应强度在0.05s 内由0.1T 增加到0.5T ,在此过程中穿过线圈的磁通量的变化量是________Wb ;磁通量的平均变化率是________Wb/s ;线圈中感应电动势的大小是________V.答案 4×10-4 8×10-3 1.6解析 磁通量的变化量是由磁场的变化引起的,应该用公式ΔΦ=ΔBS sin α来计算,所以ΔΦ=ΔBS sin α=(0.5-0.1)×20×10-4×0.5Wb=4×10-4Wb磁通量的变化率为ΔΦΔt =4×10-40.05Wb/s =8×10-3 Wb/s , 感应电动势的大小可根据法拉第电磁感应定律得E =n ΔΦΔt =200×8×10-3V =1.6V点评 要理解好公式E =n ΔΦΔt ,首先要区分好磁通量Φ,磁通量的变化量ΔΦ,磁通量的变化率ΔΦ,现列表如下:特别提醒 ①对Φ、ΔΦ、ΔΦΔt 而言,穿过一匝线圈和穿过n 匝是一样的,而感应电动势则不一样,感应电动势与匝数成正比.②磁通量和磁通量的变化率的大小没有直接关系,Φ很大时,ΔΦΔt 可能很小,也可能很大;Φ=0时,ΔΦΔt 可能不为零.2.下列说法正确的是( )A .线圈中磁通量变化越大,线圈中产生的感应电动势一定越大B .线圈中磁通量越大,线圈中产生的感应电动势一定越大C .线圈处在磁场越强的位置,线圈中产生的感应电动势一定越大D .线圈中磁通量变化得越快,线圈中产生的感应电动势越大答案 D解析 线圈中产生的感应电动势E =n ΔΦΔt ,即E 与ΔΦΔt 成正比,与Φ或ΔΦ的大小无直接关系.磁通量变化得越快,即ΔΦΔt 越大,产生的感应电动势越大,故只有D 正确.点评 正确理解决定感应电动势大小的因素是磁通量的变化率,这是分析本题的关键.知识点二 公式E =BLv sin α的理解3.如图2所示,在磁感应强度为1T 的匀强磁场中,一根跟磁场垂直长20cm 的导线以2m/s 的速度运动,运动方向垂直导线与磁感线成30°角,则导线中的感应电动势为________.图2答案 0.2V解析 E =Blv sin30°=(1×0.2×2×sin30°) V =0.2V点评 (1)当导体平动垂直切割磁感线时,即B 、L 、v 两两垂直时(如图所示)E =BLv .(2)当导体平动但不垂直切割磁感线时即v 与B 有一夹角α,如右图所示,此时可将导体的速度v 向垂直于磁感线和平行于磁感线两个方向分解,则分速度v 2=v cos α不使导体切割磁感线,使导体切割磁感线的是分速度v 1=v sin α,从而使导体产生的感应电动势为:E =BLv 1=BLv sin α.特别提醒 不要死记公式,要理解含意v sin α是导体切割磁感线的速度.4.在磁感应强度为B 的匀强磁场中,长为l 的金属棒OA 在垂直于磁场方向的平面内绕O 点以角速度ω匀速转动,如图3所示,求:金属棒OA 上产生的感应电动势.图3答案 12Bl 2ω解析 由v =rω,可知各点处速度与该点到O 点的距离r 成正比,速度都与棒垂直,我们可以求出棒OA 上各点的平均速度v =l 2ω,即与棒中点的速度相同.(只有成正比例的量,中点值才等于平均值)可得E =Blv =Bl ·l 2ω=12Bl 2ω.点评 当导体棒转动切割磁感线时,若棒上各处磁感应强度B 相同,则可直接应用公式E =12Bl 2ω.【方法技巧练】电动势公式E =n ΔΦΔt 和E =BLv sin α的选用技巧5.如图4所示,两根相距为l 的平行直导轨abdc ,bd 间连有一固定电阻R ,导轨电阻可忽略不计.MN 为放在ab 和dc 上的一导体杆,与ab 垂直,其电阻也为R .整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(指向图中纸面内).现对MN 施力使它沿导轨方向以速度v 做匀速运动.令U 表示MN 两端电压的大小,则U =________.图4答案 Blv 2解析 此回路的感应电动势有两种求法(1)因B 、l 、v 两两垂直可直接选用E =Blv得E =vBl(2)可由法拉第电磁感应定律E =ΔΦΔt 求解因在Δt 时间内,杆扫过的面积ΔS =lv Δt所以回路磁通量的变化ΔΦ=B ΔS =Blv Δt由E =ΔΦΔt 得E =Blv题目中的导体棒相当于电源,其电动势E =Blv ,其内阻等于R ,则U =Blv 2.方法总结 求解导体做切割磁感线运动产生大小不变的感应电动势的问题时,两个公式都可使用.6.如图5所示,A 、B 两个闭合线圈用同样的导线制成,匝数都为10匝,半径r A =2r B ,图示区域内有磁感应强度均匀减小的匀强磁场,则A 、B 线圈中产生的感应电动势之比为E A ∶E B =________,线圈中的感应电流之比为I A ∶I B =________.图5答案 1∶1 1∶2解析 A 、B 两环中磁通量的变化率相同,线圈匝数相同,由E =n ΔΦΔt 可得E A ∶E B =1∶1;又因为R =ρl S ,故R A ∶R B =2∶1,所以I A ∶I B =1∶2.方法总结 当导体和磁场间无相对运动时,磁通量的变化完全是由磁场的变化引起的,感应电动势的计算只能采用公式E =n ΔΦΔt .7.如图6所示,用一阻值为R 的均匀细导线围成的金属环半径为a ,匀强磁场的磁感应强度为B ,垂直穿过金属环所在平面.电阻为R 2的导体杆AB ,沿环表面以速度v 向右滑至环中央时,杆的端电压为( )图6A .Bav B.12BavC.23BavD.43Bav答案 C解析 当电阻为R 2的导体杆AB 沿环表面以速度v 向右滑至环中央时,这个回路的总电动势为:E =2Bav .并联的两个半圆环的等效电阻为R 4,杆的端电压为U AB =E ·R 外R 外+r=23Bav . 方法总结 当磁场和导体间有相对运动,且感应电动势大小在变化,求瞬时感应电动势时,应采用公式E =BLv sin α.8.如图7所示,匀强磁场的磁感应强度为B ,方向竖直向下,在磁场中有一边长为l 的正方形导线框,ab 边质量为m ,其余边质量不计,cd 边有固定的水平轴,导线框可以绕其转动;现将导线框拉至水平位置由静止释放,不计摩擦和空气阻力,金属框经过时间t 运动到竖直位置,此时ab 边的速度为v ,求:图7(1)此过程中线框产生的平均感应电动势的大小;(2)线框运动到竖直位置时线框感应电动势的大小.答案 (1)Bl 2t (2)Blv解析 (1)Φ1=BS =Bl 2,转到竖直位置Φ2=0ΔΦ=Φ2-Φ1=-Bl 2根据法拉第电磁感应定律,有E =ΔΦΔt =-Bl 2t平均感应电动势的大小为E =Bl 2t(2)转到竖直位置时,bc 、ad 两边不切割磁感线,ab 边垂直切割磁感线,E =Blv ,此时求的是瞬时感应电动势.方法总结 求解某一过程(或某一段时间)中的感应电动势而平均速度又不能求得时,应选用公式E =n ΔΦΔt .如问题(1),但求某一瞬时感应电动势时应采用E =BLv sin α.1.闭合的金属环处于随时间均匀变化的匀强磁场中,磁场方向垂直于圆环平面,则( )A .环中产生的感应电动势均匀变化B .环中产生的感应电流均匀变化C .环中产生的感应电动势保持不变D .环上某一小段导体所受的安培力保持不变答案 C解析 磁场均匀变化,也就是说ΔB Δt =k ,根据感应电动势的定义式,E =ΔΦΔt=S ΔB Δt =kS ,其中k 是一个常量,所以圆环中产生的感应电动势的数值是一个常量.2.单匝矩形线圈在匀强磁场中匀速运动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图8所示,则O ~D 过程中( )图8A .线圈中O 时刻感应电动势最大B .线圈中D 时刻感应电动势为零C .线圈中D 时刻感应电动势最大D .线圈中O 至D 时间内平均感应电动势为0.4V答案 ABD解析 由法拉第电磁感应定律知线圈中O 至D 时间内的平均感应电动势E=ΔΦΔt =2×10-30.01/2V =0.4V .由感应电动势的物理意义知,感应电动势的大小与磁通量的大小Φ和磁通量的改变量ΔΦ均无必然联系,仅由磁通量的变化率ΔΦΔt 决定,而任何时刻磁通量的变化率ΔΦΔt 就是Φ-t 图象上该时刻切线的斜率,不难看出O 点处切线斜率最大,D 点处切线斜率最小为零,故A 、B 、D 选项正确.3.如图9所示,闭合开关S ,将条形磁铁插入闭合线圈,第一次用0.2s ,第二次用0.4s ,并且两次的起始和终止位置相同,则( )图9A.第一次磁通量变化较快B.第一次G的最大偏角较大C.第二次G的最大偏角较大D.若断开S,G均不偏转,故均无感应电动势答案AB解析将磁铁插到闭合线圈的同一位置.磁通量的变化量相同,而用的时间不同,所以磁通量的变化率不同,第一次时间短变化快,感应电动势大,故A、B正确;若断开S,无感应电流,但有感应电动势,故D错误.4.一闭合线圈放在随时间均匀变化的磁场中,线圈平面和磁场方向垂直.若想使线圈中的感应电流增强一倍,下述方法可行的是()A.使线圈匝数增加一倍B.使线圈面积增加一倍C.使线圈匝数减少一半D.使磁感应强度的变化率增大一倍答案D解析根据E=n ΔΦΔt=nΔBΔt S求电动势,考虑到当n、S发生变化时导体的电阻也发生了变化.若匝数增加一倍,电阻也增加一倍,感应电流不变,故A 错;若匝数减少一半,感应电流也不变,故C错;若面积增加一倍,长度变为原来的2倍,因此电阻为原来的2倍,电流为原来的2倍,故B错,D正确.5.在图10中,EF、GH为平行的金属导轨,其电阻不计,R为电阻,C为电容器,AB为可在EF和GH上滑动的导体横杆.有匀强磁场垂直于导轨平面.若用I1和I2分别表示图中该处导线中的电流,则当横杆AB()图10A.匀速滑动时,I1=0,I2=0B.匀速滑动时,I1≠0,I2≠0C.加速滑动时,I1=0,I2=0D.加速滑动时,I1≠0,I2≠0答案D解析导体棒水平运动时产生感应电动势,对整个电路,可把AB棒看做电源,等效电路如下图中(1)(2)所示.当棒匀速滑动时,电动势E不变,故I1≠0,I2=0.当棒加速运动时,电动势E不断变大,电容器不断充电,故I1≠0,I2≠0.6.如图11所示,一导线弯成半径为a的半圆形闭合回路.虚线MN右侧有磁感应强度为B的匀强磁场.方向垂直于回路所在的平面.回路以速度v向右匀速进入磁场,直径CD始终与MN垂直.从D点到达边界开始到C点进入磁场为止,下列结论正确的是()图11 A.感应电流大小不变B.CD段直导线始终不受安培力C.感应电动势最大值E m=BavD.感应电动势平均值E=14πBav答案CD解析在闭合电路进入磁场的过程中,导体的等效切割长度发生变化,电路的感应电动势变化,故感应电流大小变化,选项A错误.CD段与磁感应强度垂直,且回路中有电流,故受安培力作用,选项B错误.当半圆闭合回路进入磁场一半时,这时有效切割长度最大为a,所以感应电动势最大值E m=Bav,C正确.感应电动势平均值E=ΔΦΔt=14πBav.D正确.7.如图12所示,金属三角形导轨COD上放有一根金属棒MN.拉动MN,使它以速度v向右匀速运动,如果导轨和金属棒都是粗细相同的均匀导体,电阻率都相同,那么在MN运动的过程中,闭合回路的()图12A.感应电动势保持不变B.感应电流保持不变C.感应电动势逐渐增大D.感应电流逐渐增大答案BC8.如图13所示,在竖直向下的匀强磁场中,将一水平放置的金属棒ab以水平初速度v0抛出,设在整个过程中棒的运动方向不变且不计空气阻力,则在金属棒运动过程中产生的感应电动势大小变化情况是()图13A.越来越大B.越来越小C.保持不变D.无法判断答案C解析金属棒水平抛出后,在垂直于磁场方向上的速度不变,由E=BLv0知,感应电动势不变,故C正确.9.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如下图所示,则在移动过程中线框的一边a、b两点间电势差绝对值最大的是()答案B解析正方形线框的一条边在做切割磁感线运动,产生的电动势在做切割运动的这条边中,设线框中的电动势为E,则根据欧姆定律可知,在图A、C、D 的情况下,a、b两点间的电势差大小为E/4,在图B的情况下a、b两点间的电势差大小为3E/4,故选B.10.穿过单匝闭合线圈的磁通量随时间变化的Φ-t图象如图14所示,由图知0~5s线圈中感应电动势大小为________V,5s~10s线圈中感应电动势大小为________V,10s~15s线圈中感应电动势大小为________V.图14答案10211.如图15所示,abcd是一边长为l的匀质正方形导线框,总电阻为R,今使线框以恒定速度v水平向右穿过方向垂直于纸面向里的匀强磁场区域.已知磁感应强度为B,磁场宽度为3l,求线框在进入磁区、完全进入磁区和穿出磁区三个过程中a、b两点间电势差的大小.图15答案3Blv4BlvBlv4解析导线框在进入磁区过程中,ab相当于电源,等效电路如图甲所示.E=Blv,r=14R,R外=34R,I=ER外+r=BlvR,U ab为端电压;所以U ab=IR外=3Blv 4.导线框全部进入过程中,磁通量不变,感应电流I=0,但U ab=E=Blv导线框在穿出磁区过程中,cd相当于电源,等效电路如图乙所示.E=Blv,r=14R,R外=34R,I=ER外+r=BlvR,U ab=IR ab=BlvR×14R=Blv4.12.如图16所示,水平放置的平行金属导轨,相距l=0.50m,左端接一电阻R=0.20Ω,磁感应强度B=0.40T的匀强磁场方向垂直于导轨平面,导体棒ab垂直放在导轨上,并能无摩擦地沿导轨滑动,导轨和导体棒的电阻均可忽略不计,当ab以v=4.0m/s的速度水平向右匀速滑动时,求:图16(1)ab棒中感应电动势的大小;(2)回路中感应电流的大小;(3)ab棒受到的安培力的大小.答案(1)0.80V(2)4.0A(3)0.8N解析(1)根据法拉第电磁感应定律,ab棒中的感应电动势为E=Blv=0.40×0.50×4.0V=0.80V(2)感应电流大小为I=ER=0.800.20A=4.0A(3)由于ab棒受安培力F=IlB=4.0×0.50×0.40N=0.8N.。