宁波大学高等代数2004,2008-2019年考研初试真题+部分答案
数学分析与高等代数考研真题详解--中科院卷

∫∫∫ 算积分 I = ex+y+zdxdydz . D
4.(15
⎛ 分)定义向量场 F (x, y) = ⎜⎜⎝
xe x2 + y2 ,
x2 + y2
ye
x2 + y2
⎞ ⎟, x2 + y2 > 0
x2 + y2 ⎟⎠
证明 F (x, y) 是有势
场, 并求出 F (x, y) 的一个势函数.
∑ 5.(25
博士家园考研丛书 (2010 版)
全国重点名校数学专业考研真题及解答
数学分析与高等代数 考研真题详解
中国科学院数学专卷 博士家园 编著
博士家园系列内部资料
《 博士家园数学专业考研丛书》
编委会
这是一本很多数学考研人期待已久的参考书,对于任何一个想通过考取重点院校的研究
生来进一步深造的同学来说,历年的各个院校的真题的重要性是显而易见的。为了帮助广大
多更新的信息与资源建立了专业网站——博士家园网站。本站力图成为综合性全国数学信息
交换的门户网站,旨在为科研人员和数学教师服务,提供与数学研究和数学教学有关的一切
有价值的信息和国内外优秀数学资源检索,经过几年的不懈努力,成为国内领先、国际一流
的数学科学信息交流中心之一。由于一般的院校可能提供一些往年试题,但是往往陈旧或者
2
博士家园系列内部资料
数学分析与高等代数考研真题详解
中国科学院考研数学专卷
目录
中国科学院考研数学专卷...............................................................................................................3 2000 年招收硕士研究生入学考试《数学分析》试题 ..................................................................3 2000 年招收硕士研究生入学考试《数学分析》试题解答 ..........................................................4 2000 年招收硕士研究生入学考试《线代解几》试题 ..................................................................6 2000 年招收硕士研究生入学考试《线代解几》解答 ..................................................................7 2001 年中科院数学与系统科学研究所《高等代数》试题及解答 ............................................10 2002 年招收硕士研究生入学考试《高等代数》试题 ................................................................16 2003 年招收硕士研究生入学考试《数学分析》试题 ................................................................17 2003 年招收硕士研究生入学考试《数学分析》试题解答 ........................................................18 2003 年招收硕士研究生入学考试《高等代数》试题 ................................................................24 2003 年招收硕士研究生入学考试《高等代数》试题解答 ........................................................25 2004 年招收硕士研究生入学考试《数学分析》试题 ................................................................28 2004 年招收硕士研究生入学考试《数学分析》试题解答 ........................................................29 2004 年招收硕士研究生入学考试《高等代数》试题 ................................................................32 2004 年招收硕士研究生入学考试《高等代数》试题解答 ........................................................33 2005 年招收硕士研究生入学考试《数学分析》试题及解答 ....................................................37 2005 年招收硕士研究生入学考试《高等代数》试题 ................................................................41 2005 年招收硕士研究生入学考试《高等代数》试题解答 ........................................................43 2006 年招收硕士研究生入学考试《数学分析》试题 ................................................................51 2006 年招收硕士研究生入学考试《数学分析》试题解答 ........................................................52 2006 年招收硕士研究生入学考试《高等代数》试题 ................................................................55 2006 年招收硕士研究生入学考试《高等代数》试题解答 ........................................................57 2007 年招收硕士研究生入学考试《数学分析》试题及解答 ....................................................64 2007 年招收硕士研究生入学考试《高等代数》试题及解答 ....................................................69 2008 年招收硕士研究生入学考试《数学分析》部分试题及解答 ............................................75 2009 年招收硕士研究生入学考试《高等代数》两试题及解答 ................................................78 2010 年招收硕士研究生入学考试《高等代数》试题及解答 ....................................................80 2010 年招收硕士研究生入学考试《数学分析》试题及解答 ....................................................86 中科院数学所复试时遇到的题目.................................................................................................96
985院校数学系2019年考研数学分析高等代数试题及部分解答

15 武汉大学
39
15.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
16 华中科大 2012 年数学分析试题解析
40
17 武汉大学 2018 年数学分析试题解析
44
18 中南大学 2010 年数学分析试题解析
13 大连理工大学
35
13.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
14 电子科技大学
37
14.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4 南开大学
10
4.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 2019 年高等代数真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
48
19 浙江大学 2016 年数学分析试题解析
54
20 吉林大学 2015 年数学分析试题解析
58
21 中国科大 2015 年数学分析试题解析
64
22 中国科大 2014 年数学分析试题解析
68
23 厦门大学 2014 年数学分析试题解析
70
24 浙江大学 2012 年高等代数试题解析
74
–4/101–
x!0
宁波大学871高等代数2004,2008--2018年考研初试专业课真题试卷

1 0 0
4. 设 A 为 n 级方阵,且 Ak 0 ,则 (E A)1 _____________________.
5.已知 5 级 λ-矩阵 A(λ)的各级行列式因子:
D1() D2() D3() 1, D4() ( 1), D5() 3( 1)2
幂零矩阵(即存在正整数 m 使 N m 0 ).
第3页 共3页
宁波大学 2015 年攻读硕士学位研究生
入 学 考 试 试 题(A 卷) (答案必须写在答题纸上)
考试科目: 适用专业:
高等代数 基础数学、 应用数学
科目代码: 871
一.填空题(每小题 4 分,共 20 分)
1. 设矩阵 A 2 31 4 2 3 , B 21 3 2 4 3 , 其中, ,1, 2 , 3 为四维
(1) 证明: C(A)是 Pnn 的一个子空间.
0 0 1
(2)
若
A
1
0
0
,
求 C(A)的维数5 分)设矩阵 A
2
5
4
,
2 4 5
1.求矩阵 A 的所有特征值和特征向量。
2.求正交矩阵 T 使得 T 1 AT 为对角形矩阵。
2. 若二次型 f 为正定二次型,求: a 的取值范围.
3. 当 a 1 时,化二次型 f 为标准形,并写出所作的线性变换.
八. 证明题(38 分)
1. (10 分)
设 A 为 n 维线性空间 V 的线性变换,如果 V 中每一非零向量都是它的特征向量, 证明:A 必是数乘变换.
2. (10 分)
第2页 共3页
宁波大学 2014 年攻读硕士学位研究生
宁波大学832教育管理学2009—2019年考研初试真题

第七,加强课堂管理,值日领导加强课上巡视,加大对旷课的处罚力度,旷一节课扣 150 元,请
假包括病假每节课扣 40 元。
但改革实施起来并不容易,就仅让学生穿校服才能进校门一事,有些“刺儿头”学生始终不
穿校服、戴校徽,被保卫处拦住不让进校园之后,反而正合他们的意,干脆到街头逍遥去了;而
他们的家长则跑来指责学校不让孩子进校门。另外在对班主任的补贴问题上,班主任们觉得既然
宁波大学 2019 年硕士研究生招生考试初试试题(A 卷)
(答案必须写在考点提供的答题纸上)
科目代码: 824 总分值: 150 科目名称:
一、名词解释(每题 5 分,共 30 分)
教育管理学
1.教育管理
2.教育行政管理体制 3.学校组织结构
4.学校章程
5.项目管理
6.教育经费弹性系数
二、简答题(每题 8 分,共 40 分)
由各处室和年级部联合管理,年级部相当于学校的分校。接着任命了各年级部的正副主任。每个
年级部四五个正副主任,正主任由处室的正主任或副主任兼任。第二,由于住宿生管理多头又不
到位,学校决定增设宿管处,负责宿舍和食堂管理。接着任命了四个正副主任。第三,加强校门
管理,防止不法分子混入校园。为此,学生统一穿校服和佩戴校徽,不按要求穿校服和戴校徽的
第1页共2页
宁波大学 2019 年硕士研究生招生考试初试试题(A 卷)
(答案必须写在考点提供的答题纸上)
科目代码: 824 总分值: 150 科目名称:
教育管理学
于学校的长期管理,治理学校应该制定科学的规章制度。于是,王校长开始他的制度治校计划。
周一下午是学校教职工的例会。会上,王校长宣布了几项改革:第一,变线性管理为线块结合,
全国名校高等代数考研真题汇编(含部分答案)

考生注意: 1.本 试 卷 满 分 为 150 分,共计10道题,每题满分15 分,考试时间总计180 分钟;
2.答案必须写在答题纸上,写在试题纸上或草稿纸 上均无效。
一、设 是 阶单位矩阵, ,证明 的行列式等于 .
,矩阵 满足
二、设 是 阶幕零矩阵满足
,
.证明所有的 都相似于一个对角矩阵,
的特征值之和等于矩阵 的秩.
3.南开大学高等代数考研真题 2012年南开大学804高等代数考研真题 2011年南开大学802高等代数考研真题
4.厦 门 大 学 825高等代数考研真题 2014年厦门大学825高等代数考研真题 2013年厦门大学825高等代数考研真题 2012年厦门大学825高等代数考研真题 2011年厦门大学825高等代数考研真题
有
证明:
(1)
.
(2) 是 的不变子空间,则 也是的 不变子空间.
10.四川大学高等代数考研真题及 详解
2013年四川大学931高等代数考研真 题及详解
2011年四川大学高等代数考研真题
11.浙江大学高等代数考研真题
2012年浙江大学601高等代数考研真题
浙江大学2012年攻读硕士学位研究生入学试题 考试科目:高等代数(601)
5.中 山 大 学 877高等代数考研真题
2015年中山大学877高等代数考研真题 2014年中山大学874高等代数考研真题 2013年中山大学869高等代数考研真题 2012年中山大学869高等代数考研真题 2011年中山大学875高等代数考研真题 6.中南大学高等代数考研真题 2011年中南大学883高等代数考研真题 7.湖南大学高等代数考研真题 2013年湖南大学813高等代数考研真题 8.华 东 师 范 大 学 817高等代数考研真题 2013年华东师范大学817高等代数考研真题 2012年华东师范大学817高等代数考研真题 2011年华东师范大学817高等代数考研真题 9.华中科技大学高等代数考研真题及详解 2013年华中科技大学高等代数考研真题 2012年华中科技大学高等代数考研真题及详解 2011年华中科技大学高等代数考研真题 10.四川大学高等代数考研真题及详解 2013年四川大学931高等代数考研真题及详解 2011年四川大学高等代数考研真题 11.浙江大学高等代数考研真题 2012年浙江大学601高等代数考研真题
《浙江大学高等代数2007-2019年考研真题及答案解析》

目录Ⅰ历年考研真题试卷 (2)浙江大学2007年招收攻读硕士学位研究生入学考试试题 (2)浙江大学2008年招收攻读硕士学位研究生入学考试试题 (5)浙江大学2009年招收攻读硕士学位研究生入学考试试题 (7)浙江大学2010年招收攻读硕士学位研究生入学考试试题 (9)浙江大学2011年招收攻读硕士学位研究生入学考试试题 (11)浙江大学2012年招收攻读硕士学位研究生入学考试试题 (13)浙江大学2014年招收攻读硕士学位研究生入学考试试题 (15)浙江大学2015年招收攻读硕士学位研究生入学考试试题 (16)浙江大学2016年招收攻读硕士学位研究生入学考试试题 (17)浙江大学2017年招收攻读硕士学位研究生入学考试试题 (18)浙江大学2018年招收攻读硕士学位研究生入学考试试题 (19)浙江大学2019年招收攻读硕士学位研究生入学考试试题 (21)Ⅱ历年考研真题试卷答案解析 (23)浙江大学2007年招收攻读硕士学位研究生入学考试试题答案解析 (23)浙江大学2008年招收攻读硕士学位研究生入学考试试题答案解析 (31)浙江大学2009年招收攻读硕士学位研究生入学考试试题答案解析 (39)浙江大学2010年招收攻读硕士学位研究生入学考试试题答案解析 (46)浙江大学2011年招收攻读硕士学位研究生入学考试试题答案解析 (52)浙江大学2012年招收攻读硕士学位研究生入学考试试题答案解析 (57)浙江大学2014年招收攻读硕士学位研究生入学考试试题答案解析 (64)浙江大学2016年招收攻读硕士学位研究生入学考试试题答案解析 (70)Ⅰ历年考研真题试卷浙江大学2007年招收攻读硕士学位研究生入学考试试题考试科目:高等代数编号:601注意:答案必须写在答题纸上,写在试卷或草稿纸上均无效。
一、(17分)设整系数的线性方程组为),..2,1(,1n i b x ai j nj ij==∑=,证明该方程组对任意整数n b b b ,..,,21都有整数解的充分必要条件是该方程组的系数行列式等于1±。
宁波大学871高等代数2020年考研专业课真题

A
a b
c
0 2
,这里
a,
b,
c
是任意数,
1 2
3i ,求 A1000.
5. (15分) 设方阵 A 满足 A2 +2A 3E O. (1) 求证 A 4E 可逆,并求逆;(2) 讨论 A nE 的可逆性.
6. (20分) 用正交变换化二次型
f (x1, x2 , x3 ) x12 x22 x32 4x1x2 4x1x3 4x2 x3 为标准形(要求写出正交变换的矩阵和相应的标准
1 2 2
A
0 0
2 0
4 1
,
A
是
A
的伴随矩阵, E
为单位矩阵,求矩阵 B.
1 2 2 1 0 0
3.
(15分) 已知矩阵
A
2
a
2
,
B
0
1
0
,
2 2 1 0 0 b
问 a,b 为何值时, A 与 B 相似,并求可逆矩阵 P 使得 P1AP B.
1 0 0
4.
(15分) 设
V,l C n | (A En )l 0 是 C 上线性空间 C n 的 A 的不变子空间,并求 C 上线性空间V,l 的
维数.
第1页共1页
(1) 证明V1 V2 关于以上运算构成数域 P 上的线性空间;
(2) 设dimV1 m , dimV2 n ,求dim (V1 V2 ) . 9. (20分) 设 A 为复数域 C 上的 n 阶方阵,其特征多项式为 f (x) (x a)n1(x b), 这里 a b .
假设 A 的任意三个特征向量都是线性相关的. 对于 C, 以及正整数 l, 证明:
形).
宁波大学671数学分析2004,2005,2007--2020年考研真题

1. 下列叙述正确的是(
)
(A)若数列
{an}无界,则必有
lim
n
an
.
(B)若f (x)在点x0连续,而g(x)在点x0不连续,则f (x)g(x)在点x0处不连续. (C)若f (x)在x0处可导,则一定存在x0的某个领域U(x0 ),使得f (x)在U(x0 )内的任意点处
都可导.
(D)若f (x)在点x0处连续,则在x0的某个领域内一定有界.
2. f (x)在[a,b]上可积,则f 2 (x)在[a,b]上也可积;f (x)的反常积分在[a, )上收敛,
则f 2 (x)的反常积分在[a, )上(
)
(A)收敛; (B)不收敛; (C)不一定收敛;
(D)以上三个答案都不正确
3.设 f (x) (x a)(x) ,其中(x) 在 x a 处连续但不可导,则 f ' (a) (
xn 的收敛域以及在收敛域内求这个级数的和。
n1 n(n 1)
五.(本题 15 分)请用 语言证明: lim 2 (sin x)n dx 0 。 n 0
六.(本题 15 分)
设 0 b a ,证明: a b ln a a b 。
a
bb
七.(本题 15 分)
设 f (x) 是定义在实数域上的可导正函数,并且 f '(x) 2020 f (x), f (0) 1,求 f (x) 。 八.(本题 15 分)
三、(本题 15 分) 计算二重积分
四、(本题 15 分)实轴上的连续函数 f 被称为凸的,若对任意
及
,满足
请证明:(1)对任意
及任意的
(2)对任意的[0,1]上的黎曼可积函数 , 成立
, , 成立
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 若二次型 f 为正定二次型,求: a 的取值范围.
3. 当 a 1 时,化二次型 f 为标准形,并写出所作的线性变换.
八. 证明题(38 分)
1. (10 分)
设 A 为 n 维线性空间 V 的线性变换,如果 V 中每一非零向量都是它的特征向量, 证明:A 必是数乘变换.
2. (10 分)
个二次多项式,求: t, u 的值.
1 2 n 1 n 1 1 1 1n 三. (10 分) 计算行列式 D = 1 1 1 n 1 1 1n 1 1
四. (15 分) 设向量组
1 (1,1,1,3, 2),2 (1,0, 2,3, 2),3 (1, 1,1, 2,1),4 (7,8, 2a 2, 11, 2a) ,
幂零矩阵(即存在正整数 m 使 N m 0 ).
第3页 共3页
宁波大学 2015 年攻读硕士学位研究生
入 学 考 试 试 题(A 卷) (答案必须写在答题纸上)
考试科目: 适用专业:
高等代数 基础数学、 应用数学
科目代码: 871
一.填空题(每小题 4 分,共 20 分)
1. 设矩阵 A 2 31 4 2 3 , B 21 3 2 4 3 , 其中, ,1, 2 , 3 为四维
第2页 共3页
宁波大学 2014 年攻读硕士学位研究生
入 学 考 试 试 题(A 卷) (答案必须写在答题纸上)
考试科目: 高等代数
科目代码:871
适用专业: 基础数学、应用数学
七.(15 分)设二次型 f x12 4x22 4x32 2ax1x2 2x1x3 4x2 x3 , 1. 若二次型 f 的秩为 2,求: a 的值.
宁波大学 2014 年攻读硕士学位研究生
入 学 考 试 试 题(A 卷) (答案必须写在答题纸上)
考试科目: 高等代数
科目代码:871
一.填空题(每小题 4 分,共 32 分)
适用专业: 基础数学、应用数学
1. 设 A ( A1, A2 , A3 ) 为 3 阶方阵,且| A | = -4,则 A3 3A1, A2 ,4A1 ________.
(1)a 为何值时,该向量组线性无关? (2)a 为何值时,该向量组线性相关?此时求出它的秩和一个极大线性无关组。
(3) a 为何值时,向量4 可以由1,2 ,3 线性表示,并求出表达式。 五.(15 分)
设 A 是数域 P 上的一个 n 级矩阵, 数域 P 上所有与 A 可交换的矩阵组成的集合记为 C(A),
2.
设线性方程组
x1 x2 x1 2x2
x3 3 ax3 9 无解,
则
a 的值为________________.
2x1 x2 3x3 6
0 0 1
3.
设矩阵 B
0
1
0
,已知矩阵
A
相似于
B,则秩(A
–
2E)+秩(A
–
E
)=______
则A(λ)的不变因子是_______________________________________.
6. 设V P3 , 线性变换 A(x1, x2 , x3 ) (2x1 x2 4x3 ,3x2 5x3 , x1 3x2 ),
则线性变换 A 在基 (1, 0, 0), (0,1, 0), (0, 0,1) 下的矩阵是____________________.
1 2 1
7.
在欧氏空间 R3 中,基1
2
,
2
1
,
3
0
的度量矩阵是______________.
1
0
3
1
8. 在 R[x] 中定义内积 ( f (x), g(x)) f (x)g(x)dx , 1 则 f (x) x与g(x) x 1的距离等于__________________________________.
1 0 0
4. 设 A 为 n 级方阵,且 Ak 0 ,则 (E A)1 _____________________.
5.已知 5 级 λ-矩阵 A(λ)的各级行列式因子:
D1() D2() D3() 1, D4() ( 1), D5() 3( 1)2
(1) 证明: C(A)是 Pnn 的一个子空间.
0 0 1
(2)
若
A
1
0
0
,
求 C(A)的维数和一组基.
4 2 1
2 2 2
六.(15 分)设矩阵 A
2
5
4
,
2 4 5
1.求矩阵 A 的所有特征值和特征向量。
2.求正交矩阵 T 使得 T 1 AT 为对角形矩阵。
设 A 为 n 维线性空间 V 的线性变换, 证明:若 A1(0) 0,则 A 必为可逆变换。
3. (10 分)
设 f (x), g(x) 都是 P[x] 中的多项式, 证明: g2 (x) | f 2 (x) 当且仅当 g(x) | f (x).
4. (8 分) 证明:任一 n 阶复矩阵 A 都可写成 A = D + N 的形式, 其中 D 能与对角矩阵相似, N 是
列向量, 且| A | 2,| B | 3,则 | A B | ___________________.
2. 多项式 x5 x4 6x3 14x2 11x 3 的有理根有_________.
1 2 1 x1 1
3.
设线性方程组
第1页 共3页
宁波大学 2014 年攻读硕士学位研究生
入 学 考 试 试 题(A 卷) (答案必须写在答题纸上)
考试科目: 高等代数
科目代码:871
适用专业: 基础数学、应用数学
二. (10 分) 设多项式 f (x) x3 (1 t)x2 4x 2u 与 g(x) x3 tx 2 2u 的最大公因式是一