八皇后问题
组合数学中的棋盘问题
组合数学中的棋盘问题棋盘问题是组合数学中一个经典而又有趣的问题,它涉及到在一个n × n 的棋盘上放置一定数量的棋子并满足特定的条件。
在本文中,我们将探讨棋盘问题的一些常见形式以及解决方法。
一、八皇后问题八皇后问题是指在一个 8 × 8 的棋盘上放置 8 个皇后,并且每个皇后都不能相互攻击,即任意两个皇后不得处于同一行、同一列或同一对角线上。
这个问题可以通过回溯法来解决。
我们可以逐行放置皇后,并在每一行中使用循环判断每个格子是否满足条件。
如果满足条件,则继续递归下一行;如果不满足条件,则回溯到上一行继续判断。
当所有皇后都放置完毕时,即找到了一种解法。
二、骑士周游问题骑士周游问题是指在一个 n × n 的棋盘上,骑士按照国际象棋中骑士的移动规则进行移动,需要从起始格子出发,经过棋盘的每个格子,最终回到起始格子,且每个格子只能经过一次。
这个问题可以通过深度优先搜索或者广度优先搜索来解决。
我们可以从起始格子开始,按照骑士的移动规则依次遍历所有相邻的格子,并标记已访问的格子。
当所有格子都被访问过,并且最后的格子可以与起始格子连通,则找到了一种解法。
三、数独问题数独问题是指在一个 9 × 9 的棋盘上填入数字,使得每一行、每一列和每一个 3 × 3 的小方格中的数字都是 1 到 9 的不重复数字。
这个问题可以通过回溯法来解决。
我们可以逐格填入数字,并在每个格子中使用循环判断每个数字是否满足条件。
如果满足条件,则继续递归下一个格子;如果不满足条件,则尝试下一个数字。
当所有格子都填满时,即找到了一种解法。
四、六角形拼图问题六角形拼图问题是指在一个六角形的棋盘上,使用特定形状的六角形块填满整个棋盘。
这个问题可以通过搜索算法来解决。
我们可以从一个起始位置开始,依次尝试放置不同形状的六角形块。
每次放置块后,判断是否满足放置要求。
如果满足要求,则继续递归下一个位置;如果不满足要求,则尝试下一个形状的块。
八皇后问题(经典算法-回溯法)
⼋皇后问题(经典算法-回溯法)问题描述:⼋皇后问题(eight queens problem)是⼗九世纪著名的数学家⾼斯于1850年提出的。
问题是:在8×8的棋盘上摆放⼋个皇后,使其不能互相攻击。
即任意两个皇后都不能处于同⼀⾏、同⼀列或同⼀斜线上。
可以把⼋皇后问题扩展到n皇后问题,即在n×n的棋盘上摆放n个皇后,使任意两个皇后都不能互相攻击。
思路:使⽤回溯法依次假设皇后的位置,当第⼀个皇后确定后,寻找下⼀⾏的皇后位置,当满⾜左上、右上和正上⽅向⽆皇后,即矩阵中对应位置都为0,则可以确定皇后位置,依次判断下⼀⾏的皇后位置。
当到达第8⾏时,说明⼋个皇后安置完毕。
代码如下:#include<iostream>using namespace std;#define N 8int a[N][N];int count=0;//判断是否可放bool search(int r,int c){int i,j;//左上+正上for(i=r,j=c; i>=0 && j>=0; i--,j--){if(a[i][j] || a[i][c]){return false;}}//右上for(i=r,j=c; i>=0 && j<N; i--,j++){if(a[i][j]){return false;}}return true;}//输出void print(){for(int i=0;i<N;i++){for(int j=0;j<N;j++){cout<<a[i][j]<<" ";}cout<<endl;}}//回溯法查找适合的放法void queen(int r){if(r == 8){count++;cout<<"第"<<count<<"种放法\n";print();cout<<endl;return;}int i;for(i=0; i<N; i++){if(search(r,i)){a[r][i] = 1;queen(r+1);a[r][i] = 0;}}}//⼊⼝int main(){queen(0);cout<<"⼀共有"<<count<<"放法\n"; return 0;}。
八皇后问题详细的解法
若无法放下皇后则回到上一行, 即回溯
当n行的皇后都已确定后,我们 就找到了一种方案
check2 (int a[ ],int n)
queen21(例) 1 b加约束的枚举算法{//i多nt次i; 被调用,只是一重循环
{int a[9]; for (a[1]=1;a[1]<=8;a[1]++) for (a[2]=1;a[2]<=8;a[2]++)
八皇后问题
1
1八皇后问题背景 2盲目的枚举算法 3加约束的枚举算法 4回溯法及基本思想 5 回溯法应用 6八皇后问题的递归回溯算法 7八皇后问题的非递归回溯算法
2
【背景】 八皇后问题是一个以国际象棋为背
景的问题: 如何能够在 8×8 的国际象棋棋盘上
放置八个皇后,使得任何一个皇后都 无法直接吃掉其他的皇后?为了达到 此目的,任两个皇后都不能处于同一 条横行、纵行或斜线上。
for(a[8]=1;a[8]<=8;a[8]++) 此算法可读性很好,
{if (check(a,8)==0)continue; 体现了“回溯”。但
else for(i=1;i<=8;i+nt(a[i]); }
题,而不能解决任意
}}}}}}}
的n皇后问题。
18
2 回溯法应用-算法说明
按什么顺序去搜? 目标是没有漏网之鱼,尽量速度快。
5
2 【问题设计】盲目的枚举算法
a 盲目的枚举算法
通过8重循环模拟搜索空间中的88个状态;
按枚举思想,以DFS的方式,从第1个皇后在第1列开 始搜索,枚举出所有的“解状态”:
从中找出满足约束条件的“答案状态”。
八皇后问题
二.问题分析
• 显然,每一行可以而且必须放一个皇后,所以n皇后问题
的解可以用一个n元向量X=(x1,x2,.....xn)表示,其中, 1≤ i≤ n且1≤ xi≤ n,即第n个皇后放在第i行第xi列上。 由于两个皇后不能放在同一列上,所以,解向量X必须满 足的约束条件为:xi≠ xj; • 若两个皇后的摆放位置分别是(i,xi)和(j,xj),在棋盘 上斜率为-1的斜线上,满足条件i-j=xi-xj;在棋盘上斜率为1 的斜线上,满足条件i+j=xi+xj;
else {
x[k]=0;//重置x[k],回溯 k=k-1;
}
} }
void main() { int n; printf("输入皇后个数n:\n"); scanf("%d",&n); queue(n); }
ห้องสมุดไป่ตู้
• for(i=1;i<=n;i++)
x[i]=0; k=1; while(k>=1) { x[k]=x[k]+1; //在下一列放置第k个皇后 while(x[k]<=n&&!place(k)) x[k]=x[k]+1;//搜索下一列 if(x[k]<=n&&k==n)//得到一个输出 { for(i=1;i<=n;i++) printf("%d ",x[i]); printf("\n"); //return;//若return则只求出其中一种解,若不return则可以继 续回溯,求出全部的可能的解 } else if(x[k]<=n&&k<n) k=k+1;//放置下一个皇后
八皇后问题
八皇后问题八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。
该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
高斯认为有76种方案。
1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。
对于八皇后问题的实现,如果结合动态的图形演示,则可以使算法的描述更形象、更生动,使教学能产生良好的效果。
下面是用Turbo C实现的八皇后问题的图形程序,能够演示全部的92组解。
八皇后问题动态图形的实现,主要应解决以下两个问题。
(1)回溯算法的实现(a)为解决这个问题,我们把棋盘的横坐标定为i,纵坐标定为j,i和j的取值范围是从1到8。
当某个皇后占了位置(i,j)时,在这个位置的垂直方向、水平方向和斜线方向都不能再放其它皇后了。
用语句实现,可定义如下三个整型数组:a[8],b[15],c[24]。
其中:a[j-1]=1 第j列上无皇后a[j-1]=0 第j列上有皇后b[i+j-2]=1 (i,j)的对角线(左上至右下)无皇后b[i+j-2]=0 (i,j)的对角线(左上至右下)有皇后c[i-j+7]=1 (i,j)的对角线(右上至左下)无皇后c[i-j+7]=0 (i,j)的对角线(右上至左下)有皇后(b)为第i个皇后选择位置的算法如下:for(j=1;j<=8;j++) /*第i个皇后在第j行*/if ((i,j)位置为空))/*即相应的三个数组的对应元素值为1*/{占用位置(i,j)/*置相应的三个数组对应的元素值为0*/if i<8为i+1个皇后选择合适的位置;else 输出一个解}(2)图形存取在Turbo C语言中,图形的存取可用如下标准函数实现:size=imagesize(x1,y1,x2,y2) ;返回存储区域所需字节数。
八皇后问题
八皇后问题编辑八皇后问题,是一个古老而著名的问题,是回溯算法的典型例题。
该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
高斯认为有76种方案。
1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。
计算机发明后,有多种方法可以解决此问题。
八皇后问题最早是由国际西洋棋棋手马克斯·贝瑟尔于1848年提出。
之后陆续有数学家对其进行研究,其中包括高斯和康托,并且将其推广为更一般的n皇后摆放问题。
八皇后问题的第一个解是在1850年由弗朗兹·诺克给出的。
诺克也是首先将问题推广到更一般的n皇后摆放问题的人之一。
1874年,S.冈德尔提出了一个通过行列式来求解的方法,这个方法后来又被J.W.L.格莱舍加以改进。
艾兹格·迪杰斯特拉在1972年用这个问题为例来说明他所谓结构性编程的能力。
八皇后问题在1990年代初期的著名电子游戏第七访客和NDS平台的著名电子游戏雷顿教授与不可思议的小镇中都有出现。
2名词解释算法介绍八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。
八皇后问题可以推广为更一般的n 皇后摆放问题:这时棋盘的大小变为n ×n ,而皇后个数也变成n 。
当且仅当 n = 1 或 n ≥ 4时问题有解。
C 语言1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 intn=8;intx[9];intnum = 0;//解的个数//判断第k 个皇后能否放在第x[k]列boolPlace(intk){inti = 1;while ( i < k){if ( x[i]==x[k] || (abs (x[i]-x[k]) ==abs (i-k)) )returnfalse ;i++;}returntrue ;}void nQueens(intn){x[0] = x[1] =0;intk=1;while (k > 0){x[k]+=1;//转到下一行while (x[k]<=n && Place(k)==false ){//如果无解,最后一个皇后就会安排到格子外面去 x[k]+=1;}if (x[k]<=n){//第k 个皇后仍被放置在格子内,有解if (k==n){num++;cout << num <<":\t";for (inti=1; i<=n; i++){28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 cout << x[i] <<"\t";}cout << endl;}else {k++;x[k]=0;//转到下一行}}else //第k 个皇后已经被放置到格子外了,没解,回溯k--;//回溯}}int_tmain(intargc, _TCHAR* argv[]){nQueens(n);getchar ();return 0;}Java 算法1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 publicclass Queen {// 同栏是否有皇后,1表示有privateint [] column;// 右上至左下是否有皇后privateint [] rup;// 左上至右下是否有皇后privateint [] lup;// 解答privateint [] queen;// 解答编号privateint num;public Queen() {column =newint [8+1];rup =newint [2*8+1];lup =newint [2*8+1];for (int i =1; i <=8; i++)column[i] =1;2223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 for(int i =1; i <=2*8; i++)rup[i] = lup[i] =1;queen =newint[8+1];}publicvoid backtrack(int i) {if(i >8) {showAnswer();}else{for(int j =1; j <=8; j++) {if(column[j] ==1&&rup[i+j] ==1&&lup[i-j+8] ==1) {queen[i] = j;// 设定为占用column[j] = rup[i+j] = lup[i-j+8] =0; backtrack(i+1);column[j] = rup[i+j] = lup[i-j+8] =1; }}}}protectedvoid showAnswer() {num++;System.out.println("\n解答 "+ num);for(int y =1; y <=8; y++) {for(int x =1; x <=8; x++) {if(queen[y] == x) {System.out.print(" Q");}else{System.out.print(" .");}}System.out.println();}}publicstaticvoid main(String[] args) {Queen queen =new Queen();queen.backtrack(1);66 67 }}Erlang 算法-module(queen).-export([printf/0,attack_range/2]).-define(MaxQueen, 4).%寻找字符串所有可能的排列%perms([]) ->%[[]];%perms(L) ->% [[H | T] || H <- L, T <-perms(L -- [H])].perms([]) ->[[]];perms(L)->[[H | T] || H <- L, T <- perms(L -- [H]),attack_range(H,T) == []].printf() ->L =lists:seq(1, ?MaxQueen),io:format("~p~n",[?MaxQueen]),perms(L).%检测出第一行的数字攻击到之后各行哪些数字%left 向下行的左侧检测%right 向下行的右侧检测attack_range(Queen,List) ->attack_range(Queen,left, List) ++ attack_range(Queen,right, List).attack_range(_, _, [])->[];attack_range(Queen, left, [H | _]) whenQueen - 1 =:= H ->[H];attack_range(Queen,right, [H | _]) when Queen + 1 =:= H->[H];attack_range(Queen, left, [_ | T])->attack_range(Queen - 1, left,T);attack_range(Queen, right, [_ | T])->attack_range(Queen + 1, right, T).C 语言算法C 代码头文件1 2 3 4 5 6 7 8 9 10 11 //eigqueprob.h#include#define N 8 /* N 表示皇后的个数 *//* 用来定义答案的结构体*/typedefstruct {intline;/* 答案的行号 */introw;/* 答案的列号 */}ANSWER_TYPE;/* 用来定义某个位置是否被占用 */12 13 14 15 16 17 18 19 20 typedefenum {notoccued = 0,/* 没被占用 */occued = 1/* 被占用 */}IFOCCUED; /* 该列是否已经有其他皇后占用 */IFOCCUED rowoccu[N];/* 左上-右下对角位置已经有其他皇后占用 */IFOCCUED LeftTop_RightDown[2*N-1];/* 右上-左下对角位置已经有其他皇后占用*/IFOCCUED RightTop_LefttDown[2*N-1];/* 最后的答案记录 */ANSWER_TYPE answer[N];主程序1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 #include "eigqueprob.h"/* 寻找下一行占用的位置 */void nextline(intLineIndex){static asnnum = 0;/* 统计答案的个数 */intRowIndex = 0;/* 列索引 */intPrintIndex = 0;/* 按列开始遍历 */for (RowIndex=0;RowIndex{/* 如果列和两个对角线上都没有被占用的话,则占用该位置 */if ((notoccued == rowoccu[RowIndex])\&&(notoccued == LeftTop_RightDown[LineIndex-RowIndex+N-1])\&&(notoccued == RightTop_LefttDown[LineIndex+RowIndex])){/* 标记已占用 */rowoccu[RowIndex] = occued;LeftTop_RightDown[LineIndex-RowIndex+N-1] = occued;RightTop_LefttDown[LineIndex+RowIndex] = occued;/* 标记被占用的行、列号 */answer[LineIndex].line = LineIndex;answer[LineIndex].row = RowIndex;/* 如果不是最后一行,继续找下一行可以占用的位置 */if ((N-1) > LineIndex ){nextline(LineIndex+1);}/* 如果已经到了最后一行,输出结果 */else{asnnum++;printf ("\nThe %dth answer is :",asnnum);for (PrintIndex=0;PrintIndex{343536373839404142434445464748495051525354 printf("(%d,%d) ",answer[PrintIndex].line+1,answer[PrintIndex].row+1}/* 每10个答案一组,与其他组隔两行 */if((asnnum % 10) == 0)printf("\n\n");}/* 清空占用标志,寻找下一组解 */rowoccu[RowIndex] = notoccued;LeftTop_RightDown[LineIndex-RowIndex+N-1] = notoccued;RightTop_LefttDown[LineIndex+RowIndex] = notoccued;}}}main(){inti = 0;/* 调用求解函数*/nextline(i);/* 保持屏幕结果*/getchar();}C语言实现图形实现对于八皇后问题的实现,如果结合动态的图形演示,则可以使算法的描述更形象、更生动,使教学能产生良好的效果。
八皇后以及N皇后问题分析
⼋皇后以及N皇后问题分析⼋皇后是⼀个经典问题,在8*8的棋盘上放置8个皇后,每⼀⾏不能互相攻击。
因此拓展出 N皇后问题。
下⾯慢慢了解解决这些问题的⽅法:回溯法:回溯算法也叫试探法,它是⼀种系统地搜索问题的解的⽅法。
回溯算法的基本思想是:从⼀条路往前⾛,能进则进,不能进则退回来,换⼀条路再试。
在现实中,有很多问题往往需要我们把其所有可能穷举出来,然后从中找出满⾜某种要求的可能或最优的情况,从⽽得到整个问题的解。
回溯算法就是解决这种问题的“通⽤算法”,有“万能算法”之称。
N皇后问题在N增⼤时就是这样⼀个解空间很⼤的问题,所以⽐较适合⽤这种⽅法求解。
这也是N皇后问题的传统解法,很经典。
算法描述:1. 算法开始,清空棋盘。
当前⾏设为第⼀⾏,当前列设为第⼀列。
2. 在当前⾏,当前列的判断放置皇后是否安全,若不安全,则跳到第四步。
3. 在当前位置上满⾜条件的情况: 在当前位置放⼀个皇后,若当前⾏是最后⼀⾏,记录⼀个解; 若当前⾏不是最后⼀⾏,当前⾏设为下⼀⾏,当前列设为当前⾏的第⼀个待测位置; 若当前⾏是最后⼀⾏,当前列不是最后⼀列,当前列设为下⼀列; 若当前⾏是最后⼀⾏,当前列是最后⼀列,回溯,即清空当前⾏以及以下各⾏的棋盘,然后当前⾏设为上⼀⾏,当前列设为当前⾏的下⼀个待测位置; 以上返回第⼆步。
4.在当前位置上不满⾜条件: 若当前列不是最后⼀列,当前列设为下⼀列,返回到第⼆步; 若当前列是最后⼀列,回溯,即,若当前⾏已经是第⼀⾏了,算法退出,否则,清空当前⾏以及以下各⾏的棋盘,然后,当前⾏设为上⼀⾏,当前列设为当前⾏的下⼀个待测位置,返回第⼆步。
如何判断是否安全:把棋盘存储为⼀个N维数组a[N],数组中第i个元素的值代表第i⾏的皇后位置,这样便可以把问题的空间规模压缩为⼀维O(N),在判断是否冲突时也很简单, ⾸先每⾏只有⼀个皇后,且在数组中只占据⼀个元素的位置,⾏冲突就不存在了, 其次是列冲突,判断⼀下是否有a[i]与当前要放置皇后的列j相等即可。
八皇后问题
该算法的大概描述:
1.置当前行 当前列均为1 2.While当前行号(<=8) 3.检查 当前行,从当前列起逐列试探,寻找安全列号 4.If(找到安全号) 5.放置皇后,将列号记入栈中,并将下一行置成当前行,第一列置为当前列 6.否则回溯到上一行,移去该行已经放置的皇后,以该皇后所在列的下一列作为当 前列, 8结束程序。
八皇后问题
八数学家高斯1850年提出:在 8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任 意两个皇后都不能处于同一行、同一列或同一斜线上,问有 多少种摆法?八皇后在棋盘上分布的各种可能的数目非常大。 但是可以将一些明显不满足问题要求的格局排除掉,由于任 意两个皇后不可能同行,即每一行只能放置一个皇后,因此 将第i个皇后放置在第i行上。这样 在放置第i个皇后时,只要 考虑它与前i-1个皇后处于不同列和不同对角线位置上即可。
一般算法
用 数组a、b、c分别用来标记冲突,a数组代表列冲突,从a[0]~a[7]代表第0列到第 7列,如果某列上已经有皇后,则为1,否则为0; 数组b代表主对角线冲突,为b[i-j+7],即从b[0]~b[14],如果某条主对角线上已经 有皇后,则为1,否则为0; 数组c代表从对角线冲突,为c[i+j],即从c[0]~c[14],如果某条从对角线上已经有皇 后,则为1,否则为0; 从第一行起 逐个放置皇后,每放置一个皇后依次对第1,2......8列进行试探,若当 前 试探的列位置是安全的,则将该行的列位置保存在栈中,然后继续在下一行寻 找安全位置,若当前试探的列位置不安全,则用下一列进行试探,当8列的位置试 探完毕都未能找到安全位置时,就退栈回溯到上一行,修改栈顶保存的皇后位置, 然后继续试探。
八皇后问题的解决方案
算法总结
3
解决八皇后问题常用算法
3.1
枚举法解决八皇后问题
3.2
非递归回溯法解决八皇后问题
3.3
递归回溯法解决八皇后问题
3.0
八皇后问题约束条件
a( i ) 1 2 3 4 5 6 7 8 a( 1) 2 0 -1 3 -2 4 -3 5 -4 6 -5 7 -6 8 -7 9
a( 2 ) a( 3 ) a( 4) a( 5 ) a( 6) a( 7 ) a( 8)
9 3 10 2 11 1 12 0 13 -1 14 -2
9 5 10 4 11 3 12 2 13 1 14 0 15 -1
9 7 10 6 11 5 12 4 13 3 14 2 15 1 16 0
3.0
八皇后问题约束条件
a( i ) =j 第i行j列放置皇后
判断不同列 a(i)≠a(j) 判断不同对角线 i-a(i)≠j-a(j) 判断不同反对角线 i+a(i)≠j+a(j)
取下一个………………
取下一个q (1)
用语言编程
For q1 = 1 To 8 For q2 = 1 To 8 For q3 = 1 To 8 For q4 = 1 To 8 For q5 = 1 To 8 For q6 = 1 To 8 For q7 = 1 To 8 For q8 = 1 To 8 q(q1) = q1 : q(q2) = q2 : q(q3) = q3 : q(q4) = q4 q(q5) = q5 : q(q6) = q6 : q(q7) = q7 : q(q8) = q8 If putdown(q)=1 Then printstr(q) Next q8 Next q7 Next q6 Next q5 Next q4 Next q3 Next q2 Next q1
皇后问题详细的解法
for(a[7]=1;a[7]<=8;a[7]++} )
for(a[8]=1;a[8]<=8;a[8]++){
if (check(a,8)=0) continue;
else
for(i=1;i<=8;i++)print(a[i]);
}
10
}
1 回溯法
有“通用的解题法”之称。 回溯法的基本做法是搜索,或是一种组织得井井有条
枚举得有个顺序,否则 轻则有漏的、重复的; 重则无法循环表示。
6
1.按什么顺序去查找所有的解 a.盲目的枚举算法
void main() {
int x[100]; for (x[1]=1;x[1]<=10;x[1]++) for (x[2]=1;x[2]<=10;x[2]++)
for (x[3]=1;x[3]<=10;x[3]++) for (x[4]=1;x[4]<=10;x[4]++) for (x[5]=1;x[5]<=10;x[5]++) for (x[6]=1;x[6]<=10;x[6]++) for (x[7]=1;x[7]<=10;x[7]++) for (x[8]=1;x[8]<=10;x[8]++) if (check(x)==0) { printf(x); }
}
该如何解决冲突的问题呢?
1.行;我们是按照行枚举的,保证了一行一个皇后; 2.列:判断是否存在x[i]=x[j] 3.对角线:主对角线的i-j与从对角线的i+j存在特殊关系,如 图:
八皇后问题—经典回溯算法
⼋皇后问题—经典回溯算法⼋皇后问题⼋皇后问题,是⼀个古⽼⽽著名的问题,是回溯算法的典型案例。
该问题是国际西洋棋棋⼿马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放⼋个皇后,使其不能互相攻击,即任意两个皇后都不能处于同⼀⾏、同⼀列或同⼀斜线上,问有多少种摆法。
⾼斯认为有76种⽅案。
1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有⼈⽤图论的⽅法解出92种结果。
回溯算法思想回溯算法的基本思想是:从⼀条路往前⾛,能进则进,不能进则退回来,换⼀条路再试。
⼋皇后问题就是回溯算法的典型,第⼀步按照顺序放⼀个皇后,然后第⼆步符合要求放第2个皇后,如果没有位置符合要求,那么就要改变第⼀个皇后的位置,重新放第2个皇后的位置,直到找到符合条件的位置就可以了。
回溯在迷宫搜索中使⽤很常见,就是这条路⾛不通,然后返回前⼀个路⼝,继续下⼀条路。
回溯算法说⽩了就是穷举法。
不过回溯算法使⽤剪枝函数,剪去⼀些不可能到达最终状态(即答案状态)的节点,从⽽减少状态空间树节点的⽣成。
回溯法是⼀个既带有系统性⼜带有跳跃性的的搜索算法。
它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。
算法搜索⾄解空间树的任⼀结点时,总是先判断该结点是否肯定不包含问题的解。
如果肯定不包含,则跳过对以该结点为根的⼦树的系统搜索,逐层向其祖先结点回溯。
否则,进⼊该⼦树,继续按深度优先的策略进⾏搜索。
回溯法在⽤来求问题的所有解时,要回溯到根,且根结点的所有⼦树都已被搜索遍才结束。
⽽回溯法在⽤来求问题的任⼀解时,只要搜索到问题的⼀个解就可以结束。
这种以深度优先的⽅式系统地搜索问题的解的算法称为回溯法,它适⽤于解⼀些组合数较⼤的问题。
⼋皇后实现⼆以下实现是极客时间王争的解法,⾮常巧妙,思路也⾮常清晰,如果理解了⼋皇后问题的本质后建议采⽤该⽅法,代码实现如下:#include <iostream>int queenPlace[8] = { 8 }; //全局变量,下标表⽰⾏,值表⽰queen存储在那⼀列int count = 0; //计数器void printQueen() { //打印⼀个⼆维数组for (int i = 0; i < 8; ++i) {for (int j = 0; j < 8; ++j) {if (queenPlace[i] == j) {printf("Q ");} else {printf("* ");}}printf("\n");}printf("----count:%d-----\n", ++count);}bool isOk(int row, int col) { //判断row⾏col列放置是否合适int leftUp = col - 1; //左上对⾓线int rightUp = col + 1; //右上对⾓线for (int i = row - 1; i >= 0; --i) {if (queenPlace[i] == col) return false; //同列上的格⼦有皇后if (leftUp >= 0) {if (queenPlace[i] == leftUp) return false; //左上对⾓线有皇后}if (rightUp < 8) {if (queenPlace[i] == rightUp) return false; //右上对⾓线有皇后}--leftUp; ++rightUp;}return true;}void eightQueen(int row) {if (row == 8) { //8个皇后都放置好,打印,⽆法递归返回printQueen();return;}for (int col = 0; col < 8; ++col) { //每⼀⾏都有8种⽅法if (isOk(row, col)) { //满⾜要求queenPlace[row] = col; //第row⾏的皇后放在col列eightQueen(row+1); //考察下⼀⾏}}}int main() {eightQueen(0);return0;class Solution {public:vector<vector<string>> res;vector<int> n_queen;vector<vector<string>> solveNQueens(int n) {n_queen.resize(n);backtrack(0);return res;}void backtrack(int row) {if (row == n_queen.size()) {storeResult();return;}for (int i = 0; i < n_queen.size(); ++i) {if (!isOk(row, i)) continue;n_queen[row] = i;backtrack(row + 1);}}bool isOk(int row, int col) {int left_up = col - 1;int right_up = col + 1;for (int i = row - 1; i >= 0; --i) {if (n_queen[i] == col // 当前列|| n_queen[i] == left_up-- // 左上对⾓,⽆需判断 left_up < 0, 该情况不会成⽴的 || n_queen[i] == right_up++) { // 右上对⾓,⽆需判断 right_up > n_queen.size() return false;}}return true;}void storeResult() {vector<string> result;for (auto i : n_queen) {string s(n_queen.size(), '.');s[i] = 'Q';result.push_back(s);}res.push_back(result);}};解法2:class Solution {public:vector<bool> col;vector<bool> dia1;vector<bool> dia2;vector<vector<string>> result;vector<string> generateQueen(vector<int>& q){vector<string> res;for (int i = 0; i < q.size(); ++i){string s(q.size(), '.');s[q[i]] = 'Q';res.push_back(s);}return res;}void traceBack(int n, int row, vector<int>& q){if (row == n) {result.push_back(generateQueen(q));return;}for (int i = 0; i < n; ++i){if (!col[i] && !dia1[row + i] && !dia2[row - i + n - 1]){q.push_back(i);col[i] = true;dia1[row + i] = true;dia2[row - i + n - 1] = true;traceBack(n, row + 1, q);col[i] = false;dia1[row + i] = false;dia2[row - i + n - 1] = false;q.pop_back();}}vector<vector<string>> solveNQueens(int n) { col = vector<bool>(n, false);dia1 = vector<bool>(2 * n - 1, false);dia2 = vector<bool>(2 * n - 1, false);vector<int> q;traceBack(n, 0, q);return result;}};。
八皇后问题(N皇后问题)
⼋皇后问题(N皇后问题)⼋皇后问题,是⼀个古⽼⽽著名的问题,是回溯算法的典型案例。
该问题是国际西洋棋棋⼿马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放⼋个皇后,使其不能互相攻击,即任意两个皇后都不能处于同⼀⾏、同⼀列或同⼀斜线上,问有多少种摆法。
⾸先来看看这张模拟⼋皇后的图。
这张图说明皇后具有横轴、竖轴以及两个斜轴⽅向的杀伤⼒,也就是像⽶字形⼀样;为了减少判断,我们按照⼀个⽅向往另⼀个⽅向排列,中间不能跳⾏,这样我们就可以只判断已经有皇后的位置,还没有皇后的就可以偷懒不⽤判断了。
我的⽅案是:1.从最下⾯开始排列,然后往上添加,从左往右排列,这样就只需要判断⽐⾃⼰Y坐标低的具有杀伤能⼒的位置有没有皇后就OK ⽅法是把⾃⼰假定要放置皇后的位置的X和Y轴都依据判断特性进⾏处理;例如,左斜线X和Y轴都减1;中间的只需要把Y 轴减1;右边的和左边的相反,X轴加1,Y轴减1;注意处理边界问题。
2.为了找到合适的位置我们需要在查找失败的时候具备回溯的能⼒,就需要退回到前⼀⾏(Y=Y-1,注意XY是否到边界),直⾄能回溯或者全部判断完毕,每次回溯的时候记得X轴要从头开始 3.通过⼀个数据结构记录正在查找的⽅案,通过另⼀个数据结构记录已经找到的⽅案,当然也可以⽤⼀个变量记录⽅案个数下⾯这张⿊⾊背景是其中⼀个⽅案的截图,第⼀⾏代表皇后的坐标xy;后⾯的是棋盘,这⾥输出竖轴是x,横轴是y,从上到下,从左到右,其中*是边界,空格是空区,#是皇后。
#include <iostream>#include <cstring>#include "DTString.h"#include "LinkList.h" // 这⾥使⽤链表存储皇后的位置using namespace std;using namespace DTLib;template <int SIZE> // N皇后问题,SIZE表⽰皇后个数或者棋盘⼤⼩class QueenSolution : public Object{protected:enum { N = SIZE + 2 }; // N表⽰棋盘⼤⼩,为了边界识别,棋盘四周都要加⼀格struct Pos : public Object // ⽅位结构体{Pos(int px = 0, int py = 0) : x(px), y(py) { }int x;int y;};int m_chessboard[N][N]; // 棋盘,0表⽰空位,1表⽰皇后,2表⽰边界Pos m_direction[3]; // 共3个⽅向;⽅向-1、-1表⽰左斜线;0、-1表⽰下⽅;1、-1表⽰右斜线;⾸先从最下⽅开始,所以只需考虑下⾯的⾏。
八皇后问题(递归+非递归)
八皇后问题(递归+非递归)Xredman posted @ 2009年6月04日 21:15 in 以前博文 , 442 阅读一.问题描述在8×8格的国际象棋棋盘上放置八个皇后,使得任意两个皇后不能互相攻击,即任何行、列或对角线(与水平轴夹角为45°或135°的斜线)上不得有两个或两个以上的皇后。
这样的一个格局称为问题的一个解。
请用递归与非递归两种方法写出求出八皇后问题的算法。
二.解题思路描述一个正确的解应当是每一列,每一行,每一条斜线上均只有一个皇后。
对于递归算法,本人才有模拟的方式进行,而且,我觉得开辟一个二维数组更显而易见。
首先,从空棋盘开始摆放,保证第m行m个皇后互不攻击,然后摆放第m+1个皇后。
当然对于第m+1个皇后可能有多种摆放方法,由此,我必须一一枚举,采用回溯策略是可行且合乎逻辑的。
而对于非递归算法,我只是借助于书本上一个递归改为非递归的框架,依次搭建而已。
在此过程中,我采用一维数组,一位对于八皇后问题,每一行不可能存在二个及二个以上的皇后,board[i]表示第i行棋盘摆放的位置为第board[i]列。
递归方法借助于系统提供的栈,而我非递归算法的实现,仅仅是自己构造一个栈而已。
递归解法#include <iostream>#include <cstdio>#include <sys/timeb.h>using namespace std;const int MAX_SIZE = 100;enum flag {blank ='X',queen = 1};char Chess[MAX_SIZE][MAX_SIZE];//棋盘图int n;//解决n皇后问题int total;//用于计摆放方式void Init(){//对棋牌进行初始化for(int i = 0; i < n; i++)for(int j = 0; j < n; j++)Chess[i][j] = blank;total = 0;//初始时有零中摆放方式}bool Judge(int r,int c){//判断(r,c)位置是否可放置int i,j;for(i = r + 1; i < n; i++)if(Chess[i][c] == queen)return false;//说明c列上已有一皇后for(i = c + 1; i < n; i++)if(Chess[r][i] == queen)return false;//说明r行上已有一皇后for(i = r + 1, j = c + 1; (i < n) && (j < n); i++, j++)if(Chess[i][j] == queen)return false;//45度斜线上已有一皇后for(i = r + 1, j = c - 1; (i <n) && (j >= 0); i++, j--)if(Chess[i][j] == queen)return false;//135度斜线上已有一皇后return true;//排除四种情况后,说明(r,c)点可放置皇后}void Backtrack(int k,int cnt){//回溯算法主程序if(k < 0 || cnt == n)//棋牌摆放完毕 or 以摆满n后{if(cnt == n){printf("No.%d:\n",++total);for(int i = 0; i < n; i++){for(int j = 0; j < n; j++)printf(" %c ",Chess[i][j]);putchar('\n');}putchar('\n');}}else{int r = k / n, c = k % n;if(Judge(r,c)){//可放置一皇后Chess[r][c] = queen;Backtrack(k-1,cnt+1);Chess[r][c] = blank;}Backtrack(k-1,cnt);}}int main(){//此为主函数timeb t1,t2;long kk;cout<<"输入皇后个数:";while(cin>>n){Init();ftime(&t1);Backtrack(n*n-1,0);ftime(&t2);cout<<"计算"<<n<<"后问题总共可有"<<total<<"种摆法!"<<endl;kk = (t2.time-t1.time)*1000 +litm;cout<<"本次回溯耗时:"<<kk<<"毫秒"<<endl;system("PAUSE");cout<<"输入皇后个数:";}return0;}非递归解法#include <iostream>#include <sys/timeb.h>#define N 100using namespace std;int board[N];int n,sum;void init(){for(int i = 1; i <= n; i++)board[i] = 0;}void display(){int i,j;cout<<"No."<<sum<<endl;for(i = 1; i <= n; i++){for(j = 1; j <= n; j++)if(board[i] == j)cout<<"Q ";elsecout<<"X ";cout<<endl;}cout<<endl;}bool canPut(int k){for(int i = 1; i < k; i++)if((abs(k - i) == abs(board[k] - board[i])) || board[i] == board[k])return false;//1.是否在同一斜线;2.是否位于同一列return true;}void Backtrack(){board[1] = 0;int k = 1;while(k > 0){board[k]++;while((board[k] <= n) && !(canPut(k)))board[k] += 1;if(board[k] <= n)if(k == n){sum++;display();}else{k++;board[k] = 0;}elsek--;}}int main(){timeb t1,t2;long kk;cout<<"输入皇后个数:";while(cin>>n){init();sum = 0;ftime(&t1);Backtrack();ftime(&t2);cout<<"总共排列方式为:"<<sum<<endl;kk = (t2.time-t1.time)*1000 + litm; cout<<"本次回溯耗时:"<<kk<<"毫秒"<<endl;system("PAUSE");cout<<"输入皇后个数:";}return0;}。
八皇后问题详细的解法PPT课件
枚举得有个顺序,否则 轻则有漏的、重复的; 重则无法循环表示。
6
1.按什么顺序去查找所有的解 a.盲目的枚举算法
void main() {
int x[100]; for (x[1]=1;x[1]<=10;x[1]++)
for (x[2]=1;x[2]<=10;x[2]++) for (x[3]=1;x[3]<=10;x[3]++) for (x[4]=1;x[4]<=10;x[4]++) for (x[5]=1;x[5]<=10;x[5]++) for (x[6]=1;x[6]<=10;x[6]++) for (x[7]=1;x[7]<=10;x[7]++) for (x[8]=1;x[8]<=10;x[8]++) if (check(x)==0) { printf(x); }
}
10
1 回溯法
有“通用的解题法”之称。 回溯法的基本做法是搜索,或是一种组织得井井有条
的,能避免不必要搜索的穷举式搜索法。这种方法适 用于解一些组合数相当大的问题。 回溯法在问题的解空间树中,按深度优先策略,从根 结点出发搜索解空间树。算法搜索至解空间树的任意 一点时,先判断该结点是否包含问题的解。如果肯定 不包含,则跳过对该结点为根的子树的搜索,逐层向 其祖先结点回溯;否则,进入该子树,继续按深度优 先策略搜索。
按什么顺序去搜? 目标是没有漏网之鱼,尽量速度快。
5
2 【问题设计】盲目的枚举算法
a 盲目的枚举算法 通过8重循环模拟搜索空间中的88个状态; 按枚举思想,以DFS的方式,从第1个皇后在第1列开始 搜索,枚举出所有的“解状态”:
八皇后问题
{
int i;
//!输出序号。
printf("No.%-5d" , ++iCount);
//!依次输出各个列上的皇后的位置,即所在的行数。
for(i = 0 ; i < QUEENS ; i++)
printf("%d " , Site[i]);
for(j=0;j<8;j++)
{
Result += N_Queens(i,j,Queens+1);
if(Result>0)
br0)
return 1;
else
{
Chessboard[LocX][LocY] = 'X';
for(i = 1 ; i <= QUEENS ; i++)
{
//!在该列的第i行上放置皇后。
Site[n] = i;
//!如果放置没有冲突,就开始下一列的试探。
if(IsValid(n))
for(i=0;i<8;i++)
for(j=0;j<8;j++)
{
if(Chessboard[i][j] == 'Q')
printf("(%d,%d)n",i,j);
}
getch();
}
/*********************************************************
if(Chessboard[i--][j++] != 'X')
八皇后问题详细的解法
1
1八皇后问题背景 2盲目的枚举算法 3加约束的枚举算法 4回溯法及基本思想 5 回溯法应用 6八皇后问题的递归回溯算法 7八皇后问题的非递归回溯算法
2
【背景】 八皇后问题是一个以国际象棋为背
景的问题: 如何能够在 8×8 的国际象棋棋盘上
放置八个皇后,使得任何一个皇后都 无法直接吃掉其他的皇后?为了达到 此目的,任两个皇后都不能处于同一 条横行、纵行或斜线上。
}
}
23
20
2 回溯法应用-算法框架-递归算法框架
int a[n]; Queens(int k) { if (k>n) 即表示最后一个皇后摆放完毕,输出结果;
else for(i=下界 ; i<=上界; i++) //枚举K个皇后所有可能的路径 {依次从列顶端开始搜索,一直到列底端,直到找到合适位置,如
果未找到,自动返回上层递归
的,能避免不必要搜索的穷举式搜索法。这种方法适 用于解一些组合数相当大的问题。 回溯法在问题的解空间树中,按深度优先策略,从根 结点出发搜索解空间树。算法搜索至解空间树的任意 一点时,先判断该结点是否包含问题的解。如果肯定 不包含,则跳过对该结点为根的子树的搜索,逐层向 其祖先结点回溯;否则,进入该子树,继续按深度优 先策略搜索。
for(a[8]=1;a[8]<=8;a[8]++) 此算法可读性很好,
{if (check(a,8)==0)continue; 体现了“回溯”。但
else for(i=1;i<=8;i++) 它只能解决八皇后问
print(a[i]); }
题,而不能解决任意
}}}}}}}
1213:八皇后问题
1213:⼋皇后问题⾸先可以试图去简化问题,将问题转化为为每⼀列确定⼀个有效的⾏号。
因为同⼀列只能有⼀个皇后,并且需要在⼋列中确定⼋个皇后,即每⼀列都必定有且只有⼀个皇后。
经过简化后,显然,通过⼀个⼀维数组即可以确定⼀组有效解。
关于check:不为同⼀⾏或同⼀列的判定⽐较简单(这⾥省略)(i1,j1)与(i2,j2)在同⼀条斜线上的判定:i1-i2==j1-j2 || i1-i2==j2-j1问题经过这样⼀次抽丝剥茧后,剩余的思路⼤致就是深度搜索、临界输出。
特别重复:a[j]表⽰第j列的皇后所在的⾏数1 #include<iostream>2 #include<cstdio>3using namespace std;45const int N=10;6int ans,a[N];7void print(){8 printf("No. %d\n",++ans);9for(int i=1;i<=8;i++){10for(int j=1;j<=8;j++)11if(a[j]==i)printf("1 ");12else printf("0 ");13 printf("\n");14 }15 }16bool check(int x,int d){17for(int i=1;i<d;i++){18if(a[i]==x||x-a[i]==d-i||x-a[i]==i-d)19return0;20 }21return1;22 }23void solve(int d){24if(d==9){25 print();26return;27 }28for(int i=1;i<=8;i++){29if(check(i,d)){30 a[d]=i;31 solve(d+1);32 }33 }34 }35int main(){36 solve(1);37return0;38 }。