STBS016中文资料
TBS中英文说明书
干扰床分选机(TBS)介绍1 INTRODUCTION 前言1.1 Applications Data 应用资料The TBS is a hindered settling separator, using upward current water to create a column of teeter in the vessel.TBS是一种利用上升水流在槽内产生紊流的干扰沉降分选机。
The heavier particles, which concentrate at the bottom of the cell, are discharged through the spigot valve(s). The smaller material and lighter particles overflow the weir and are collected in the overflow launder with the excess water.集中于槽体底部的重颗粒通过塞阀排出,轻而细的颗粒通过溢流堰随大量水流收集到溢流槽。
Typical applications include:一般应用包括:•Classification of minus 5 mm sands.-5mm砂子分级•Beneficiation of fine coal.细粒煤分选•Removal of pyrites from minus 5 mm coal.-5mm煤脱除硫铁矿•Removal of lignite/peat from sand.从砂中脱除褐煤/泥煤•Removal of heavy contaminants from sand.从砂中脱出质量重的杂物•Ore dressing including: tin, lead and zinc.锡,铅,锌的矿物分选Products include产品包括:•Foundry sand. 铸造用砂•Glass sand. 玻璃用沙•Specialist sands. 专用沙•Close graded grits. 精粉•China clays. 陶土•Washed fine coal. 洗精煤1.2 Principles of Operation 运行原理Slurry feed enters the unit by means of a tangential feedwell and a fluidized, or a teetered, bed is built up against an TBS fluidizing water (UCW) supply. Appropriate valving regulates the TBS fluidizing water flowrate such that the water flows up through the tank at an average upward interstitial velocity (V ucw). In simplistic terms, when steady state is reached, particles of feed, which are less dense than the average density of the teetered bed will have a hindered settling velocity (V hs) less than the average TBS fluidizing water velocity (V hs < V ucw). These particles will tend to float on top of the teetered bed and are ultimately displaced to the overflow stream. Conversely, feed particles of higher density than the teetered bed will have a hindered settling velocity greater than the average TBS fluidizing water velocity (V hs > V ucw). These particles will percolate through the bed and report to the sinks stream via the spigot.入料切向给入分选机,同时在一股上升扰动水流的作用下形成一个干扰床层。
TBS介绍改
9、TBS的运行条件
入料浓度40%~60%、粒度1(或1.5)~0.25mm 为佳; 为使物料在箱体中保持必要的连续的“紊流”状态, 供水水压范围70~100kpa,并保持供水压力稳定, 由恒定的专用供水水源及管路供水,在供水管路上 安装流量计和调压阀; 供TBS用的循环水如果浓度过高会影响分选效果, 如果循环水的浓度过高可考虑加一部分清水; 执行机构所需的气源为干燥后的压缩空气,压力为 0.5Mpa~0.6Mpa。
26.6 22.16 22.44 20.26 18.92 22.16
10.55 9.4 10.97 11.03 11.74 9.45
68.03 70.52 74.46 73.62 72.55 70.25
72.08 79.12 81.93 85.25 88.19 79.10
87.84 92.09 94.05 95.12 96.00 92.01
手动/自动转换阀
排料阀门行程标尺
5 TBS的控制
TBS的控制系统包括传感器、控制器和 执行机构,通过调整控制系统的设定密度值, 使紊流床层达到所要求的密度。 如前所述,紊流床层的密度是由浸入到 紊流槽内的传感器监测的。为使紊流床层的 密度保持稳定,控制器将来自床层密度计的 实际值与设定值进行比较,通过PID闭环控 制确定输出值即阀门开度,由控制器传出的 4~20mA电流信号到执行机构控制排料阀开 启或关闭,通过控制底流物料的排出量,达 到控制床层密度的目的。
一、TBS设备
1 TBS的应用
一般应用包括:
• • • • • • -5mm砂子分级 细粒煤分选 -5mm煤脱除硫铁矿 从砂中脱除褐煤/泥煤 从砂中脱出高比重的杂物 锡、铅、锌的矿物分选
2 TBS的工作原理
TBS 是一种利用上升水流在槽体内产生紊流的干 扰沉降分选设备。TBS槽内的紊流床层被视为自生介 质床层,它可把粒度小于5mm物料分为两个粒度级, 或利用物料比重的不同来分选物料。一定压力和流速 的上升水流进入压力水箱,通过紊流板均匀地分布到 TBS底部。固体物料进入TBS后在上升水流的作用下 开始分层,粗颗粒高密度的物料集中于槽体的底部, 细颗粒和低密度物料则流向槽体上部。
STBS011中文资料
Symbol
PPK PD TJ, TSTG
Value
Minimum 500 3.0 - 55 to + 150
Unit
W W °C
Note :
(1) Non-repetitive Current pulse, per Fig. 2 and derated above Ta = 25 °C per Fig. 1 (2) Mounted on copper Lead area at 5.0 mm2 ( 0.013 mm thick ).
2.0 ± 0.2
Dimensions in millimeter
DEVICES FOR UNIPOLAR APPLICATIONS
For Uni-directional altered the third letter of type from "B" to be "U". Electrical characteristics apply in both directions
MAXIMUM RATINGS
Rating at 25 °C ambient temperature unless otherwise specifissipation at Ta = 25 °C, Tp=1ms (Note1) Steady State Power Dissipation at TL = 75 °C (Note 2) Operating and Storage Temperature Range
Page 2 of 4
Rev. 03 : July 22, 2002
元器件交易网
ELECTRICAL CHARACTERISTICS
Rating at 25 °C ambient temperature unless otherwise specified Breakdown Voltage @ It ( Note 1 ) W orking Peak Reverse Voltage VR W M (V) 33.0 36.0 36.0 40.0 40.0 43.0 43.0 45.0 45.0 48.0 48.0 51.0 51.0 54.0 54.0 58.0 58.0 60.0 60.0 64.0 64.0 70.0 70.0 75.0 75.0 78.0 78.0 85.0 85.0 90.0 90.0 100 100 110 110 120 120 130 130 150 150 160 160 170 170 Maximum Reverse Leakage @ VR W M IR (µA) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Maximum Reverse Current IRSM (A) 9.4 7.8 8.6 7.0 7.8 6.5 7.2 6.2 6.9 5.8 6.5 5.5 6.1 5.2 5.7 4.9 5.3 4.7 5.2 4.4 4.9 4.0 4.4 3.7 4.1 3.6 4.0 3.3 3.6 3.1 3.4 2.8 3.1 2.6 2.8 2.3 2 2.2 2.4 1.9 2.1 1.7 1.9 1.6 1.8 Maximum Clamping Voltage @ IRSM VRSM (V) 53.3 64.3 58.1 71.4 64.5 76.7 69.4 80.3 72.7 85.5 77.4 91.1 82.4 96.3 87.1 103 93.6 107 96.8 114 103 125 113 134 121 139 126 151 137 160 146 179 162 196 177 214 193 231 209 268 243 287 259 304 275 Maximum Voltage Temperature Variation of V BR (mV / °C) 39.0 46.0 41.0 51.0 46.0 55.0 50.0 58.0 52.0 63.0 56.0 66.0 61.0 71.0 65.0 78.0 70.0 80.0 71.0 86.0 76.0 94.0 85.0 101 91.0 105 95.0 114 103 121 110 135 123 148 133 162 146 175 158 203 184 217 196 230 208
NSSM016C中文资料
NSSM016C中⽂资料No. STSE-CM6044ASPECIFICATIONS FOR NICHIA CHIP TYPE FULL COLOR LEDMODEL : NSSM016CTNICHIA CORPORATION1.SPECIFICATIONS(1) Absolute Maximum Ratings (Ta=25°C)Absolute Maximum Rating Item Symbol Blue Green RedUnit Forward Current I F 35 35 50 mA Pulse Forward Current I FP 110 110 200 mA Reverse Voltage V R 5 V Power Dissipation P D 123 123 125 mW Total Power Dissipation P tot 280 mW Operating Temperature T opr -30 ~ + 85 °C Storage Temperature T stg -40 ~ +100 °C Soldering Temperature T sld Reflow Soldering : 260°C for 10sec.Hand Soldering : 350°C for 3sec.I FP Conditions : Pulse Width 10msec. and Duty 1/10 Value for one LED device (Single color).Value for total power dissipation when two and more devices are lit simultaneously.(2) Initial Electrical/Optical Characteristics (Ta=25°C)Blue Green Red Item Symbol Condition Typ.Max.Typ.Max. Typ. Max.UnitForward Voltage V FI F =20[mA] (3.2) 3.5 (3.2) 3.5 (2.1) 2.5 V Reverse Current I R V R = 5[V] - 50 - 50 - 50µA Luminous Intensity Iv I F =20[mA] (400)- (1200)- (700) - mcd x - I F =20[mA] 0.133- 0.189- 0.700 - - Chromaticity Coordinatey-I F =20[mA]0.075- 0.718- 0.299 - -Please refer to CIE 1931 chromaticity diagram.(3) Ranking(Ta=25°C)Blue Green Red Item Symbol Condition Min.Max.Min.Max. Min. Max.UnitLuminous IntensityIvI F =20[mA] 280 560 800 1600 380 1080mcdLuminous Intensity Measurement allowance is ± 10%.Color Ranks (I F =20mA, Ta=25°C)BlueRank Wx 0.139 0.129 0.113 0.1340.1450.152y 0.035 0.050 0.080 0.1050.0720.056GreenRank G0c x 0.166 0.136 0.176 0.2200.2370.201<= <=RedRRankx 0.674 0.648 0.677 0.708y 0.296 0.323 0.323 0.292Color Coordinates Measurement allowance is ± 0.01.2.INITIAL OPTICAL/ELECTRICAL CHARACTERISTICSPlease refer to figure’s page.3.OUTLINE DIMENSIONS AND MATERIALSPlease refer to figure’s page.Material as follows ; Package : Heat-Resistant PolymerPackage Upper Surface Color : BlackEncapsulating Resin : Epoxy Resin (Diffused)Electrodes: Ag Plating Copper Alloy4.PACKAGING· The LEDs are packed in cardboard boxes after taping.Please refer to figure’s page.The label on the minimum packing unit shows ; Part Number, Lot Number, Quantity· In order to protect the LEDs from mechanical shock, we pack them in cardboard boxes for transportation. · The LEDs may be damaged if the boxes are dropped or receive a strong impact against them,so precautions must be taken to prevent any damage.· The boxes are not water resistant and therefore must be kept away from water and moisture.· When the LEDs are transported, we recommend that you use the same packing method as Nichia.5.LOT NUMBERThe first six digits number shows lot number.The lot number is composed of the following characters;{ ¯¯¯¯{ - Year ( 5 for 2005, 6 for 2006 )- Month ( 1 for Jan., 9 for Sep., A for Oct., B for Nov. )¯¯¯¯ - Nichia's Product Number6.RELIABILITY(1) TEST ITEMS AND RESULTS Test ItemStandardTest MethodTest Conditions Note Number of DamagedResistance toSoldering Heat (Reflow Soldering) JEITA ED-4701300 301 Tsld=260°C, 10sec.(Pre treatment 30°C,70%,168hrs.) 2 times0/50Thermal Shock JEITA ED-4701300 307 0°C ~ 100°C 15sec. 15sec.100 cycles 0/50 Temperature CycleJEITA ED-4701100 105 -40°C ~ 25°C ~ 100°C ~ 25°C 30min. 5min. 30min. 5min. 100 cycles 0/50 Moisture Resistance Cyclic JEITA ED-4701200 203 25°C ~ 65°C ~ -10°C 90%RH 24hrs./1cycle 10 cycles 0/50 High Temperature Storage JEITA ED-4701200 201 Ta=100°C500hrs.0/50Temperature Humidity StorageJEITA ED-4701100 103 Ta=60°C, RH=90%500hrs. 0/50 Low Temperature Storage JEITA ED-4701200 202Ta=-40°C500hrs.0/50Steady State Operating LifeTa=25°C, B I F =13mA G I F =32mA R I F =21mA500hrs. 0/50Steady State Operating Life of High Humidity Heat60°C, RH=90%, B I F =8.5mA G I F =18mA R I F =14.5mA500hrs. 0/50Steady State Operating Life of Low TemperatureTa=-30°C,B I F =13mA G I F =32mA R I F =21mA500hrs. 0/50Value for one LED device (Single color).(2) CRITERIA FOR JUDGING DAMAGE (Value for one LED device (Single color).)Criteria for Judgement Item SymbolTest Conditions Min. Max. Forward Voltage V F B,G,R I F =20mA - U.S.L.*) 1.1 Reverse Current I R B,G,R V R =5V - U.S.L.*) 2.0 Luminous IntensityI VB,G,R I F =20mA L.S.L.**) 0.7 -*) U.S.L. : Upper Standard Level **) L.S.L. : Lower Standard Level7.CAUTIONS(1) Moisture Proof Package· When moisture is absorbed into the SMT package it may vaporize and expand during soldering.There is a possibility that this can cause exfoliation of the contacts and damage to the opticalcharacteristics of the LEDs. For this reason, the moisture proof package is used to keep moisture to a minimum in the package.· The moisture proof package is made of an aluminum moisture proof bag. A package ofa moisture absorbent material (silica gel) is inserted into the aluminum moisture proof bag.The silica gel changes its color from blue to pink as it absorbs moisture.(2) Storage· Storage ConditionsBefore opening the package :The LEDs should be kept at 30°C or less and 90%RH or less. The LEDs should be used within a year. When storing the LEDs, moisture proof packaging with absorbent material (silica gel) is recommended.After opening the package :The LEDs should be kept at 30°C or less and 70%RH or less. The LEDs should be solderedwithin 168 hours (7days) after opening the package. If unused LEDs remain, they should bestored in moisture proof packages, such as sealed containers with packages of moisture absorbent material (silica gel). It is also recommended to return the LEDs to the original moisture proof bag and to reseal the moisture proof bag again.· If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions.Baking treatment : more than 24 hours at 65 ± 5°C· Nichia LED electrodes are silver plated copper alloy. The silver surface may be affected byenvironments which contain corrosive substances. Please avoid conditions which may cause the LED to corrode, tarnish or discolor. This corrosion or discoloration may cause difficulty during soldering operations. It is recommended that the User use the LEDs as soon as possible.· Please avoid rapid transitions in ambient temperature, especially in high humidity environments where condensation can occur.(3) Heat Generation· Thermal design of the end product is of paramount importance. Please consider the heat generation of the LED when making the system design. The coefficient of temperature increase per inputelectric power is affected by the thermal resistance of the circuit board and density of LED placement on the board, as well as other components. It is necessary to avoid intense heat generation and operate within the maximum ratings given in this specification.· During operation of the LEDs the total power dissipation of the diode elements (red, green, and blue) within the LEDs must not exceed the maximum power dissipation.· The operating current should be decided after considering the ambient maximum temperature of LEDs.120sec.Max.Pre-heating 260°C Max.10sec. Max. 60sec.Max. Above 220°C 1 ~ 5°C / sec. 1 ~ 5°C / sec. 180 ~ 200°C <1 : Lead Solder> <2 : Lead-free Solder> Pre-heating 240°C Max.10sec. Max. 60sec.Max. Above 200°C2.5 ~ 5°C / sec.2.5 ~ 5°C / sec. 120 ~ 150°C 120sec.Max. Nichia STSE-CM6044A-1(4) Soldering Conditions· The LEDs can be soldered in place using the reflow soldering method. Nichia cannot make a guarantee on the LEDs after they have been assembled using the dip soldering method. · Recommended soldering conditionsReflow SolderingHand SolderingLead Solder Lead-free Solder Pre-heat Pre-heat time Peak temperature Soldering time Condition 120 ~ 150°C 120 sec. Max. 240°C Max. 10 sec. Max. refer to Temperature - profile 1. 180 ~ 200°C 120 sec. Max. 260°C Max. 10 sec. Max. refer to Temperature - profile 2.(N 2 reflow is recommended.)Temperature Soldering time 350°C Max. 3 sec. Max. (one time only)Although the recommended soldering conditions are specified in the above table, reflow or handsoldering at the lowest possible temperature is desirable for the LEDs.A rapid-rate process is not recommended for cooling the LEDs down from the peak temperature. [Temperature-profile (Surface of circuit board)] Use the conditions shown to the under figure.[Recommended soldering pad design] Use the following conditions shown in the figure.· Occasionally there is a brightness decrease caused by the influence of heat or ambient atmosphere during air reflow. It is recommended that the User use the nitrogen reflow method.· Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing. · Reflow soldering should not be done more than two times. · When soldering, do not put stress on the LEDs during heating. · After soldering, do not warp the circuit board.(5) Cleaning· It is recommended that isopropyl alcohol be used as a solvent for cleaning the LEDs. When using other solvents, it should be confirmed beforehand whether the solvents will dissolve the package and the resin or not. Freon solvents should not be used to clean the LEDs because of worldwide regulations. · Do not clean the LEDs by the ultrasonic. When it is absolutely necessary, the influence of ultrasonic cleaning on the LEDs depends on factors such as ultrasonic power and the assembled condition. (Unit : mm)2.7538.751.731.71.45.6Nichia STSE-CM6044A-1(6) Static Electricity· Static electricity or surge voltage damages the Blue/Green LEDs.It is recommended that a wrist band or an anti-electrostatic glove be used when handling the LEDs.· All devices, equipment and machinery must be properly grounded. It is recommended that precautions be taken against surge voltage to the equipment that mounts the LEDs.· When inspecting the final products in which LEDs were assembled, it is recommended to checkwhether the assembled LEDs are damaged by static electricity or not. It is easy to findstatic-damaged LEDs by a light-on test or a VF test at a lower current (below 1mA is recommended). · Damaged LEDs will show some unusual characteristics such as the leak current remarkablyincreases, the forward voltage becomes lower, or the LEDs do not light at the low current.Criteria : (V F> 2.0V at I F=0.5mA)(7) Others· NSSM016C complies with RoHS Directive.· Care must be taken to ensure that the reverse voltage will not exceed the absolute maximum ratingwhen using the LEDs with matrix drive.· The LED light output is strong enough to injure human eyes. Precautions must be taken to prevent looking directly at the LEDs with unaided eyes for more than a few seconds.· Flashing lights have been known to cause discomfort in people; you can prevent this by takingprecautions during use. Also, people should be cautious when using equipment that has had LEDsincorporated into it.· The LEDs described in this brochure are intended to be used for ordinary electronic equipment (such as office equipment, communications equipment, measurement instruments and household appliances).Consult Nichia’s sales staff in advance for information on the applications in which exceptional quality and reliability are required, particularly when the failure or malfunction of the LEDs may directlyjeopardize life or health (such as for airplanes, aerospace, submersible repeaters, nuclear reactorcontrol systems, automobiles, traffic control equipment, life support systems and safety devices).· User shall not reverse engineer by disassembling or analysis of the LEDs without having prior written consent from Nichia. When defective LEDs are found, the User shall inform Nichia directly beforedisassembling or analysis.· The formal specifications must be exchanged and signed by both parties before large volume purchase begins. · The appearance and specifications of the product may be modified for improvement without notice.Nic hia STSE-CM 6044AColor Coordinates Measurement allowance is ± 0.01.元器件交易⽹/doc/c486e8d17f1922791688e8a3.htmlNichiaSTSE-CM6044ANichiaSTSE-CM6044A-2Nichia STSE-CM6044A-11-Nichia STSE-CM6044A元器件交易⽹/doc/c486e8d17f1922791688e8a3.html Nichia STSE-CM6044A。
苏州市洁净技术研究所 苏州市百神 BST 系列传递窗 说明书
注意:敬请用户在操作使用 BST 系列传递窗之前,必须详细阅读使用说明书!并妥善保存。
BST系列传递窗执行标准:Q/320500BSK001-2001使用说明书本企业已通过ISO9001:2000质量体系认证苏州市洁净技术研究所苏州市百神科技有限公司欢迎使用BST系列传递窗!由衷地感谢您加入本公司的用户队伍!一、概述BST型传递窗是洁净厂房配套使用的空气净化设备。
适用于洁净室或洁净室与非洁净室之间的中小型货物传递。
使用该型传递窗可有效地减少开门次数,把洁净区的污染程度减少到最低限度。
二、技术参数型号BST-500 BST-600 BST-C500 BST-C600内胆尺寸500×500×400 600×600×400 500×600×600 600×600×600 (mm)外形尺寸670×580×470 770×680×470 850×720×600 950×720×600 (mm)材料类型全不锈钢型/普通型(互锁)备注:照明、紫外线灯另配三、结构特性1.BST系列传递窗按外形尺寸分为BST500型和BST600型二大类;以其制作材料,也可分为二大类:全不锈钢型和普通型(即用冷轧薄钢板制作而成,表面作喷涂处理)。
2.BST600型传递窗内部设有紫外线灭菌灯和照明荧光灯;BST500型传递窗内不设灯,但可根据用户需要而配置。
3.传递窗的两扇门具有互锁功能(不能同时打开),以保证其隔断的有效性。
4.传递窗内胆接合角均采用无缝圆弧处理,不易积尘,清洁容易。
5.普通型传递窗的内胆面板采用不锈钢板制成,耐磨而不起尘。
四、安装1.传递窗必须水平安装在隔墙上。
2.设有电气照明系统的传递窗,在安装时其箱体必须可靠接地,以确保人身安全。
五、使用1.传递窗的两扇门置于关闭状态,有电气照明系统的传递窗,先插上电源插头,接通220V/50Hz电源。
TBS1000C 系列示波器 用户手册说明书
TBS1000C 系列示波器用户手册077-1580-01Copyright © Tektronix.保留所有权利。
许可软件产品由 Tektronix、其子公司或提供商所有,受国家版权法及国际条约规定的保护。
Tektronix 产品受美国和外国专利权(包括已取得的和正在申请的专利权)的保护。
本文中的信息将取代所有以前出版的资料中的信息。
保留更改技术规格和价格的权利。
TekVPI 和 e*Scope 是 Tektronix, Inc. 的注册商标。
TEKTRONIX 和 TEK 是 Tektronix, Inc. 的注册商标。
泰克联系信息Tektronix, Inc.14150 SW Karl Braun DriveP.O. Box 500Beaverton, OR 97077USA(美国)有关产品信息、销售、服务和技术支持:■在北美地区,请拨打 1-800-833-9200。
■其他地区用户请访问查找当地的联系信息。
目录TEKTRONIX SOFTWARE LICENSE AGREEMENT (vii)重要安全信息 (xiii)常规安全概要 (xiii)产品上的符号和术语 (xvi)合规性信息 (xvii)EMC 合规性 (xvii)安全标准 (xviii)环境注意事项 (xx)前言主要特点 (1)本手册中使用的约定 (1)安装打开示波器包装 (3)操作要求环境要求 (7)电源要求 (8)TPP0100、TPP0200 系列 10X 无源探头信息 (8)将探头连接到示波器 (8)补偿探头 (9)将探头连接到电路 (9)标配附件 (10)可选附件 (11)技术规格 (11)性能图 (11)熟悉示波器打开示波器电源 (13)更改用户界面语言 (15)更改日期和时间 (20)受支持的探头类型 (24)进行测量时减少静电损坏 (25)进行功能检查 (25)什么是 Autoset(自动设置)(自动设置查询) (29)探头和接地导线端部 (29)获得设置的屏幕帮助 - 各功能帮助 (30)信号路径补偿 (SPC) (33)示波器简介功能 (34)采样示波器概念采样和采集概念 (35)采集模式概念 (37)触发概念 (38)触发斜率和电平概念 (39)可用触发类型 (40)触发耦合 (41)触发模式 (41)自动“未触发滚动”触发模式 (41)正常触发模式 (42)释抑触发模式 (42)触发延迟采集模式 (42)设置通道输入参数设置输入信号耦合 (43)反转输入信号 (44)设置示波器带宽 (45)设置探头类型(电压或电流) (46)设置探头衰减系数 (47)快速将探头衰减系数设置为 1X 或 10X (48)为电压探头设置测量电流模式 (49)设置输入信号垂直偏置 (50)设置波形垂直位置 (51)垂直位置和垂直偏置之间的差异 (51)设置通道相差校正 (52)相差校正提示 (53)触发设置在波形边沿上触发 (55)根据特定脉冲宽度触发 (57)发生欠幅脉冲时触发 (59)设置触发模式 (61)使用辅助输入触发外部信号 (62)采集设置使用自动设置 (63)自动设置提示 (64)如何启用/禁用示波器中的自动设置 (65)如何更改自动设置密码 (66)开始和停止采集 (68)设置采集模式 (69)设置采集触发延迟时间 (70)设置记录长度 (72)使用滚动显示模式 (73)滚动模式提示 (74)将示波器设置为出厂默认值 - 默认设置 (75)波形显示设置显示和删除波形 (77)设置波形余辉 (78)波形余晖提示 (79)XY 显示模式 (80)XY 显示模式提示 (81)设置背光亮度 (82)分析波形进行自动测量 (83)自动测量提示 (84)进行测量屏幕截图 (85)屏幕截图测量提示 (86)自动测量描述 (87)频率测量描述 (87)时间测量描述 (88)幅度测量描述 (90)面积测量描述 (91)仅对波形的一部分进行测量(选通) (92)如何启用/禁用示波器中的测量 (94)使用光标进行手动测量 (96)光标类型 (100)如何启用/禁用示波器中的光标 (101)创建数学波形 (103)数学波形提示 (104)使用 FFT 查看信号频率信息 (105)FFT 提示 (109)关于 FFT 窗口 (110)FFT 和显示波形假波现象 (112)显示参考波形 (113)参考波形提示 (113)如何查看长记录长度波形(缩放) (114)如何平移波形 (115)如何更改测量密码 (116)保存数据将屏幕图像保存到文件 (119)关于已保存图像文件格式 (120)保存波形数据 (120)保存示波器设置信息 (121)使用 Save File(保存文件)按钮将文件保存至 USB (123)关于波形数据文件 (124)调出数据调出示波器设置信息 (125)调出波形数据 (126)使用 USB 文件辅助功能文件辅助窗格概述 (129)更改 U 盘上的默认文件保存位置 (131)默认保存文件夹位置规则 (132)在 U 盘上新建文件夹 (132)文件夹创建提示 (133)从 U 盘上删除文件或文件夹 (133)在 U 盘上重命名文件或文件夹 (135)文件、文件夹重命名提示 (136)关于自动生成文件名称 (136)图像设置和波形文件提示 (136)从示波器内存中清除数据 (TekSecure)设置或查看 USB 设备端口参数禁用 USB 设备端口 (139)选择与 USB 设备端口连接的设备 (140)查看 USBTMC 信息 (141)附录Installing new firmware on the oscilloscope (143)运行诊断测试 (144)有关仪器的教学和培训的课件 (146)课件文件内容信息 (146)从 U 盘中加载课件文件 (147)处理错误消息 (148)运行课件实验实例 (148)保存课件实验结果 (150)示波器控件 (151)导航控件 (151)水平控件 (154)触发控件 (155)垂直控件 (155)使用菜单系统 (156)前面板连接器 (160)后面板连接器 (160)图形用户界面元素 (161)标记通道 (167)保证技术规格 (169)清洁 (169)日常保养 (169)清洁 (169)默认示波器设置(默认设置) (170)不会由默认设置重置的示波器设置 (171)物理固定示波器 (172)环境注意事项 (172)产品报废处理 (172)设备回收 (172)TEKTRONIX SOFTWARE LICENSE AGREEMENTThis End User Agreement (“Agreement”) is an agreement between Tektronix,Inc., an Oregon corporation, and its corporate affiliates, subsidiaries, anddivisions as applicable (collectively, “Tektronix,”“we,”“us,” or“our”) and You (including any entity or organization you represent,collectively, “Customer” or “You”). Please read this Agreement carefully asthis Agreement governs the terms and conditions under which You are permittedto use Tektronix’s software and services.THE SOFTWARE, ENCODED OR INCORPORATED WITHIN EQUIPMENTOR ACCOMPANYING THIS AGREEMENT, IS FURNISHED SUBJECT TOTHE TERMS AND CONDITIONS OF THIS AGREEMENT. BY INDICATINGYOUR ACCEPTANCE OF THESE TERMS BY SELECTING AN "ACCEPT”OR SIMILAR BUTTON IN A SOFTWARE MENU, OR BY RETAINING THESOFTWARE FOR MORE THAN THIRTY DAYS OR USING THESOFTWARE IN ANY MANNER YOU (A) ACCEPT THIS AGREEMENTAND AGREE THAT YOU ARE LEGALLY BOUND BY ITS TERMS; AND(B) REPRESENT AND WARRANT THAT: (I) YOU ARE OF LEGAL AGETO ENTER INTO A BINDING AGREEMENT; AND (II) IF YOU ARE AREPRESENTATIVE FOR A CORPORATION OR OTHER LEGAL ENTITY,YOU HAVE THE RIGHT, POWER, AND AUTHORITY TO ENTER INTOTHIS AGREEMENT ON BEHALF OF SUCH ENTITY AND BIND SUCHENTITY TO ITS TERMS. IF YOU DO NOT AGREE TO THE TERMS OFTHIS AGREEMENT, TEKTRONIX WILL NOT AND DOES NOT LICENSETHE SOFTWARE TO YOU AND YOU MUST NOT DOWNLOAD,INSTALL, OR USE THE SOFTWARE. UNITED STATES GOVERNMENTCUSTOMERS OR END-USERS MAY REQUEST A GOVERNMENTADDENDUM TO THIS AGREEMENT.NOTWITHSTANDING ANYTHING TO THE CONTRARY IN THISAGREEMENT OR YOUR ACCEPTANCE OF THE TERMS ANDCONDITIONS OF THIS AGREEMENT, NO LICENSE IS GRANTED(WHETHER EXPRESSLY, BY IMPLICATION, OR OTHERWISE) UNDERTHIS AGREEMENT TO ANY SOFTWARE THAT YOU DID NOT ACQUIRELAWFULLY OR THAT IS NOT A LEGITIMATE, AUTHORIZED COPY OFTEKTRONIX’S SOFTWARE. THIS AGREEMENT EXPRESSLYEXCLUDES ANY RIGHTS CONCERNING SUCH ILLEGITIMATE COPIES.IF THESE TERMS ARE NOT ACCEPTABLE, THE UNUSED SOFTWAREAND ANY ACCOMPANYING DOCUMENTATION SHOULD BERETURNED PROMPTLY TO TEKTRONIX (WITHIN 30 DAYS OFPURCHASE) FOR A FULL REFUND OF THE LICENSE FEE PAID. (FORINFORMATION REGARDING THE RETURN OF SOFTWARE ENCODEDOR INCORPORATED WITHIN EQUIPMENT, CONTACT THE NEARESTTEKTRONIX SALES OFFICE.)DEFINITIONS“Equipment” means Tektronix equipment that the Software is encoded orincorporated within or installed onto.LICENSESubject to the terms and conditions of this Agreement, Tektronix grants You anon-exclusive, non-transferable license to the Software, as followsTEKTRONIX SOFTWARE LICENSE AGREEMENTYou may:e the Software with the Equipment, or if the Software is not encoded orincorporated in any Tektronix equipment, on no more than one machine at atime; and2.Copy the Software for archival or backup purposes, provided that no morethan one (1) such copy is permitted to exist at any one time, and providedthat each copy includes a reproduction of any patent or copyright notice orrestrictive rights legend that was included with the Software, as receivedfrom Tektronix;3.Fully transfer the Equipment to a third party but only if prominentlyaccompanied by this End User License Agreement, and such third-partyrecipients agree to be bound by the terms of this Agreement; and4.Integrate Tektronix products that contain the Software into a system and sellor distribute that system to third parties, provided that those third parties arebound by the terms of this Agreement, and provided that You (i) do notseparate the Software from any Equipment it is incorporated into, (ii) do notretain any copies of the Software, and (iii) do not modify the Software.You may not:e the Software other than for its intended purpose as provided above in thesection “You may,” or in conflict with the terms and restrictions of thisAgreement;2.Distribute or transfer the Software to any person or organization outside ofYour organization without Tektronix’s prior written consent, except inconnection with a permitted use authorized in “You may” paragraphs 3 or4 above;3.Decompile, decrypt, disassemble, or otherwise attempt to derive the sourcecode, techniques, processes, algorithms, know-how, or other information(collectively “Reverse Engineer”) from the Software or permit or induceany third party to do so, except to the limited extent allowed by directlyapplicable law or third party license (if any), and only to obtain informationnecessary to achieve interoperability of independently created software withthe Software;4.Modify, translate, adapt, or create derivative works of the Software, or mergethe Software with any other software;5.Copy the documentation accompanying the Software;6.Remove any copyright, trademark, or other proprietary notices from theSoftware or any media relating thereto; or7.Export or re-export, directly or indirectly, the Software or Equipment, anyassociated documentation, or systems created in accordance with “Youmay” section 4 above, to any country to which such export or re-export isrestricted by law or regulation of the United States or any foreigngovernment having jurisdiction without the prior authorization, if required, ofthe Office of Export Administration, Department of Commerce, Washington,D.C. and the corresponding agency of such foreign government;e the Software or Equipment in any manner or for any purpose thatinfringes, misappropriates, or otherwise violates any intellectual propertyrights or other proprietary rights of any person, or any applicable laws;e the Software or Equipment in a network or system with other products orservices that are incompatible, insecure or not compliant with applicablelaws;10.Bypass, circumvent, damage or otherwise interfere with any security or otherfeatures of the Software or Equipment designed to control the manner inwhich they are used, or harvest or mine Tektronix’s proprietary content or information from the Software or Equipment.THE SOFTWARE MAY NOT BE USED, COPIED, MODIFIED, MERGED, OR TRANSFERRED TO ANOTHER EXCEPT AS EXPRESSLY PERMITTED BY THESE TERMS AND CONDITIONS.FEEDBACKIf You provide feedback to Tektronix concerning the functionality and performance of the Software or Equipment, including without limitation identifying potential errors and improvements, any comments, questions, suggestions, or the like ("Feedback"), Tektronix is free to use such Feedback without any attribution, compensation, or restriction in any manner to improve or enhance its products, irrespective of any other obligation or limitation between the Parties governing such Feedback. You hereby grant Tektronix an irrevocable, worldwide, perpetual, royalty-free license to use Your Feedback for any purpose whatsoever and waive any moral rights You may have in the Feedback. Tektronix is not obligated to use Your Feedback.OWNERSHIPTitle to the Software and all copies thereof, but not the media on which the Software or copies may reside, shall remain with Tektronix or others from whom Tektronix has obtained a respective licensing right.GOVERNMENT NOTICEIf the Software or any related documentation is acquired by or for an agency of the U.S. Government, the Software and documentation shall be considered “commercial computer software” or “commercial computer software documentation” respectively, as those terms are used in 48 CFR §12.212,48 CFR §227.7202, or 48 CFR §252.227-7014, and are licensed with only those rights as are granted to all other licensees as set forth in this Agreement.TERMThe license granted herein is effective until terminated. The license may be terminated by You at any time upon written notice to Tektronix. The license may be terminated by Tektronix if You fail to comply with any term or condition and such failure is not remedied within fifteen (15) days after notice hereof from Tektronix. Upon termination by either party, You shall return to Tektronix or destroy, the Software and all associated documentation, together with all copies in any form.IF YOU TRANSFER, DISTRIBUTE, OR OTHERWISE MAKE AVAILABLE ANY COPY, MODIFICATION, OR MERGED PORTION OF THE SOFTWARE WITHOUT THE AS EXPRESS PERMISSION OF THESE TERMS AND CONDITIONS OR PRIOR WRITTEN CONSENT OF TEKTRONIX, YOUR LICENSE WILL BE IMMEDIATELY AND AUTOMATICALLY TERMINATED.LIMITED WARRANTYTektronix does not warrant that the functions contained in the Software will meet Your requirements or that the operation of the Software will be uninterrupted, secure, or error-free.EXCEPT AS SEPARATELY PROVIDED IN A WRITTEN WARRANTY FROM TEKTRONIX, THE SOFTWARE IS PROVIDED “AS IS”WITHOUT ANY WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, QUIET ENJOYMENT, AND NON-INFRINGEMENT.THE SOFTWARE IS NOT DESIGNED OR INTENDED FOR USE IN HAZARDOUS ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE INCLUDING WITHOUT LIMITATION, IN THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFT NAVIGATION OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL, WEAPONS SYSTEMS, DIRECT LIFE-SUPPORT MACHINES, OR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE SOFTWARE COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PHYSICAL OR PROPERTY DAMAGE (COLLECTIVELY "HAZARDOUS ACTIVITIES"). TEKTRONIX AND ITS AFFILIATES, LICENSORS, AND RESELLERS EXPRESSLY DISCLAIM ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR HAZARDOUS ACTIVITIES.LIMITATION OF LIABILITYIN NO EVENT SHALL TEKTRONIX, ITS AFFILIATES, LICENSORS, OR RESELLERS BE LIABLE FOR: (1) ECONOMICAL, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, PUNITIVE OR EXEMPLARY DAMAGES, WHETHER CLAIMED UNDER CONTRACT, TORT OR ANY OTHER LEGAL THEORY, (2) LOSS OF OR DAMAGE TO YOUR DATA OR PROGRAMMING, LOSS OF PROFITS, BUSINESS INTERRUPTION, OR OTHER PECUNIARY LOSS ARISING FROM THE USE OF (OR INABILITY TO USE) THE SOFTWARE, (3) PENALTIES OR PENALTY CLAUSES OF ANY DESCRIPTION, (4) ANY DAMAGE, CLAIMS, OR LOSSES RESULTING FROM THE USE OF THE SOFTWARE IN CONJUNCTION WITH OTHER PRODUCTS OR SERVICES (INCLUDING THIRD-PARTY PRODUCTS OR SERVICES); OR (5) INDEMNIFICATION OF YOU OR OTHERS FOR COSTS, DAMAGES, OR EXPENSES RELATED TO THE GOODS OR SERVICES PROVIDED UNDER THIS LIMITED WARRANTY, EVEN IF TEKTRONIX OR ITS AFFILIATES, LICENSORS, OR RESELLERS HAVE ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES/JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU, BUT THEY SHALL APPLY TO THE MAXIMUM EXTENT PERMITTED BY LAW. NOTWITHSTANDING ANYTHING HEREIN TO THE CONTRARY, IN NO EVENT SHALL TEKTRONIX’S TOTAL AGGREGATED LIABILITY TO YOU FOR ALL DAMAGES IN ANY ONE OR MORE CAUSES OF ACTION EXCEED THE AMOUNT RECEIVED BY TEKTRONIX FROM YOU FOR THE SOFTWARE OR EQUIPMENT.You are solely responsible for Your data. You must back up Your data before Tektronix or a third party performs any remedial, upgrade, or other work on Your systems, including any Equipment. If applicable law prohibits exclusion of liability for lost data, then Tektronix will only be liable for the cost of the typical effort to recover the lost data from Your last available back up.SECURITY DISCLAIMERThis Software and its associated Equipment are not designed or intended to be used with unsecure networks. You acknowledge that use of the Equipment may rely upon certain networks, systems, and data communication mediums that are not controlled by Tektronix and that may be vulnerable to data or security breaches, including, without limitation, internet networks used by Your internet providers and the databases and servers controlled by Your internet providers. Tektronix shall not be liable for any such breaches, including without limitation, damages and/or loss of data related to any security breach, and disclaims all warranties, including any implied or express warranties that any content will be secure or not otherwise lost or altered.For the avoidance of doubt, if You choose to connect this Software or Equipment to a network, it is Your sole responsibility to provide and continuously ensure a secure connection to that network. You agree to establish and maintain appropriate measures (e.g., firewalls, authentication measures, encryption, anti-virus applications, etc.) to protect the Software and Equipment and any associated data against security breaches including unauthorized access, destruction, use, modification, or disclosure. Notwithstanding the foregoing, You shall not use any Products in a network with other products or services that are incompatible, insecure or not compliant with applicable laws.THIRD-PARTY DISCLAIMERThe Software may contain software owned by third parties and obtained under a license from those parties (“Third Party Software”). Your use of such Third Party Software is subject to the terms and conditions of this Agreement and the applicable Third Party Software licenses. Except as expressly agreed otherwise, third parties do not warrant the Third Party Software, do not assume any liability with respect to its use, and do not undertake to furnish any support or information relating thereto.GENERALUnless the Customer is the United States Government, this Agreement contains the entire agreement between the parties with respect to the use, reproduction, and transfer of the Software, and shall be governed by the laws of the state of Oregon.You shall be responsible for any taxes that may now or hereafter be imposed, levied or assessed with respect to the possession or use of the Software or the rights and licenses granted under this Agreement, including any sales, use, property, value added, and excise taxes, and similar taxes, duties, or charges. Any waiver by either party of any provision of this Agreement shall not constitute or be deemed a subsequent waiver of that or any other portion.You may not assign this Agreement or any right or obligation under this Agreement, or delegate any performance, without Tektronix’s prior written consent. This section does not prohibit You from transferring the Equipment in accordance with Subsections 3 and 4 of the Section titled “You may” above.All questions regarding this Agreement should be directed to the nearest Tektronix Sales Office.重要安全信息本手册包含用户必须遵守的信息和警告,以确保安全操作并保证产品安全。
(整理)贝斯特样本待审
总目录 ▲ 防爆基本知识 ▲ LED 基本知识 ▲ 光学小常识 ▲ 光源小常识▲ 固定防爆照明灯 A ▲ 移动LED 便携式防爆手电灯 B ▲ 三防专业照明灯 C ▲ 能源合同管理节能灯 D ▲ 船用照明灯 E ▲ 光源电器配件 F ▲ 防爆接线箱 G ▲ 防爆控制箱 H ▲ 防爆配电箱 I ▲ 防爆启动箱 J ▲ 防爆电缆戈兰 K ▲ 防爆电器配件 LA 类 固定防爆照明灯A1 BST6000 防爆强光泛光灯BST 6001 防爆泛光灯(一体式) A2 BST6000-G 不锈钢防爆强光泛光灯 A3 BST6010 防爆泛光灯(带灯罩) A4 BST6021 防爆平台灯 A5 BST6100 防爆投光灯 BST6110 防爆投光灯 BST6120 防爆投光灯A6 BST6210(E) 全塑防爆(应急)荧光灯BST6220(E ) 不锈钢防爆节能(应急)荧光灯 A7 BST6050 井架专用防爆强光泛光灯 BST6051(E ) 井架专用防爆(应急)荧光灯 A8 BST6330 LED 边界灯 A9 BST6062 加油站专用灯B 类 移动式防爆照明灯B1 BST6601 LED 手提式防爆强光灯 B2 BST6602 智能变焦工作灯B3 BST6604 多功能手持防爆工作灯 B4 BST6620 锂电池袖珍防爆电筒 B5 BST6500 移动式防爆强光灯 基本知识 防爆灯具类防爆电器系统B6 BST6410 防爆强光头灯C类三防专业照明灯C1 BST6800 防眩泛光灯C2 BST6810 防眩泛光灯C3 BST6820 防眩泛光灯BST6840C4 大功率强光泛光灯BST6900BST6900C5防震高亮度投光灯BST6910C6 BST8760 节能路灯C7 BST8761 节能路灯D类能源合同管理节能灯D1 BST6860 LED节能泛光灯D2 BST6940 LED节能投光灯D3 BST8701 LED节能路灯D4 BST9807 洗墙灯D5 LED强光射灯D6 LED灯管E类船用照明灯E1 BST8900 荧光蓬顶灯E2 BST8901 荧光床头灯E3 BST8902 荧光走道灯E4 BST8903 荧光镜前灯F类光源电器F1 光源高显色石英金属卤化物灯、高压钠灯、荧光灯F2 镇流器:标准T8荧光灯电子镇流器、高强度气体放电灯阻抗式镇流器F3 电容器F4 触发器F5 1000W大功率灯用镇流器、触发起、电容器F6 防爆镇流器G 类防爆接线箱G1 BST-G-02型防爆接线盒G2 BST-DJX型防爆接线箱H类防爆控制箱H1 BST-DLK型防爆动力(照明)控制箱H2 BST-CZG型防爆操作柱I类防爆配电箱I1 BST-DB型井口专用电潜泵配电箱I2 BST-P-KZG型正压防爆控制柜I3 BST-DB隔爆型高压防爆接线箱J类BST-QD防爆起动配电箱(柜)J1 BST-QD-BP型防爆变频起动配电箱(柜)J2 BST-QD-R型防爆软起动配电箱(柜)J3 BST-QD-X型防爆星三角起动配电箱(柜)J4 BST-QDX型防爆磁力起动器配电箱(柜)K类防爆电缆戈兰K1 BST-DNEX型填料函K2 BST-A2F型填料函K3 丝堵L类防爆电器配件L1 BST-NG3 不绣钢防爆挠性连接管L2 BST-HJ 防爆活接头L3 BST-BCH 防爆穿线盒L4 BST-TN 防爆胶泥防爆基本知识基本知识防爆基本知识▲ 可燃性粉尘环境用电器设备分区▲爆炸性物质分类中国将爆炸性物质分为三类: I 类:矿井甲烷II 类:爆炸性气体混合物(含蒸汽、薄雾)III 类:爆炸性粉尘和纤维▲防爆电气设备的类、级、组设备组别温度 气体引燃温度 允许最高表面温度 T1 >450℃ ≤450℃ T2 >300℃ ≤300℃ T3 >200℃ ≤200℃ T4 >135℃ ≤135℃ T5 >100℃ ≤100℃ T6 >85℃ ≤85℃按设备的适用环境分为三类:I 类:矿井用II 类:工厂用III 类:爆炸性粉尘和纤维环境用 II 类设备分级分组:同气体分级、分组 分级:分为A 、B 、C 三级 分组:分为T 1~T6 I 类和III 类设备不分级,但III 类设备分为A 、B 型设备。
DrBats 0.1.6 商品说明书
Package‘DrBats’October12,2022Type PackageTitle Data Representation:Bayesian Approach That's SparseVersion0.1.6Maintainer Benedicte Fontez<***************************>Description Feed longitudinal data into a Bayesian Latent Factor Model to obtaina low-rank representation.Parameters are estimated using a HamiltonianMonte Carlo algorithm with STAN.See G.Weinrott,B.Fontez,N.Hilgert andS.Holmes,``Bayesian Latent Factor Model for Functional Data Analysis'',Actes des JdS2016.Depends R(>=3.1.0),rstanImports ade4,coda,MASS,Matrix,sdeLicense GPL-3Encoding UTF-8LazyData TRUESuggests fda,ggplot2,knitr,parallel,rmarkdown,testthatVignetteBuilder knitrNeedsCompilation noAuthor Gabrielle Weinrott[aut],Brigitte Charnomordic[ctr],Benedicte Fontez[cre,aut],Nadine Hilgert[ctr],Susan Holmes[ctr],Isabelle Sanchez[ctr]RoxygenNote7.1.2Repository CRANDate/Publication2022-02-1319:00:12UTCR topics documented:coda.obj (2)12coda.obj coinertia.drbats (3)drbats.simul (4)histoProj (5)modelFit (6)pca.Deville (7)pca.proj.Xt (8)postdens (9)stanfit (10)toydata (10)visbeta (11)visW (12)W.QR (13)weighted.Deville (14)Index15 coda.obj Convert a STAN objet to MCMC listDescriptionConvert a STAN objet to MCMC listUsagecoda.obj(stanfit)Argumentsstanfit a STAN objectValuecodafit an mcmc.listAuthor(s)Gabrielle WeinrottExamplesdata(stanfit)#output of modelFit or main.modelFitcoda.fit<-coda.obj(stanfit)head(coda.fit)coinertia.drbats3coinertia.drbats Perform Coinertia Analysis on the PCA of the Weighted PCA and Dev-ille’s PCADescriptionPerform Coinertia Analysis on the PCA of the Weighted PCA and Deville’s PCAUsagecoinertia.drbats(X.histo=NULL,Qp=NULL,X=NULL,t=NULL,t.range=c(0,1000),breaks)ArgumentsX.histo the data matrix projected onto the histogram basisQp a matrix of weights,if Qp=NULL the function specifies a diagonal weight matrixX a data matrix,if X.histo is NULL and needs to be builtt a matrix of observation times,if X.histo is NULL and needs to be builtt.range the range of observation times in vector form,if X.histo is NULL and needs to be built(default:t.range=c(0,1000))breaks integer number of histogram windowsValueco_weight the co-inertia objectAuthor(s)Gabrielle WeinrottExamplesres<-drbats.simul(N=5,P=100,t.range=c(5,100),breaks=8)res.coinertia<-coinertia.drbats(X=res$X,t=res$t.simul,t.range=c(5,100),breaks=8) res.coinertia4drbats.simul drbats.simul Main simulation functionDescriptionMain simulation functionUsagedrbats.simul(N=10,P=150,t.range=c(0,1000),b.range=c(0.2,0.4),c.range=c(0.6,0.8),b.sd=2,c.sd=2,a.range=c(-0.4,0.4),y.range=c(0,10),amp=10,per=12,data.type="sparse",breaks=15,sigma2=0.2,seed=NULL)ArgumentsN integer number of functions to simulate(default=10)P a number of observation times(default=150)t.range a range of times in which to place the P observations(default=c(1,1000))b.range a vector giving the range of values for the mean of thefirst mode(default b.range=c(0.2,0.4))c.range a vector giving the range of values for the mean of the second mode(defaultc.range=c(0.6,0.8))b.sd the standard deviation for thefirst mode(default b.sd=2)c.sd the standard deviation for the second mode(default c.sd=2)a.range a vector giving the range of values for the slope(default a.range=c(-0.4,0.4))y.range a vector giving the range of values for the intercept(default y.range=c(0,10)) amp the amplitude of the cosine function(default=10)per the periodicity of the cosine function(default=12)data.type string indicating type of functions(options:sparse,sparse.tend,sparse.tend.cos)histoProj5breaks number of breaks in the histogram basissigma2the precision of the error terms(default=0.2)seed integer specification of a seed(default=NULL)ValueY.simul a list containing a matrix Y,a matrix beta,and a matrix epsilont.simul a matrix of simulated observation timesX the underlying signal to build the data,see DataSimulationandProjection vignetteproj.pca the outputs of the function pca.proj.Xtwlu the outputs of the function W.QRAuthor(s)Gabrielle WeinrottExamplesres<-drbats.simul(N=5,P=100,t.range=c(5,100),breaks=8)X<-res$Xt<-res$t.simul#To plot the observations,ie the rowsmatplot(t(t),t(X),type= l ,xlab="Time",ylab="X")histoProj Project a set of curves onto a histogram basisDescriptionProject a set of curves onto a histogram basisUsagehistoProj(X,t,t.range,breaks)ArgumentsX a matrixt a matrix of observation timest.range a range of times in which to place the P projections(default=c(0,1000))breaks the number of intervals in the histogram basis6modelFitValueX.proj the matrix X after projectionX.count a matrix containing the number of observations used to build the projection onto the his-togram basiswindows a vector containing thefirst time of each window of the histogram intervalsX.max the matrix of minimum values in each windowX.min the matrix of maximum values in each windowAuthor(s)Gabrielle WeinrottExamplesres<-drbats.simul(N=5,P=100,t.range=c(5,100),breaks=8)res.proj<-histoProj(res$X,res$t.simul,t.range=c(5,100),breaks=8)res.projmodelFit Fit a Bayesian Latent Factor to a data set using STANDescriptionFit a Bayesian Latent Factor to a data set using STANUsagemodelFit(model="PLT",var.prior="IG",prog="stan",parallel=TRUE,Xhisto=NULL,nchains=4,nthin=10,niter=10000,R=NULL)Argumentsmodel a string indicating the type of model("PLT",or sparse",default="PLT")var.prior the family of priors to use for the variance parameters("IG"for inverse gamma, or"cauchy")pca.Deville7 prog a string indicating the MCMC program to use(default="stan")parallel true or false,whether or not to parelleize(done using the package"parallel") Xhisto matrix of simulated data(projected onto the histogram basis)nchains number of chains(default=2)nthin the number of thinned interations(default=1)niter number of iterations(default=1e4)R rotation matrix of the same dimension as the number of desired latent factors Valuestanfit,a STAN objectAuthor(s)Gabrielle WeinrottReferencesThe Stan Development Team Stan Modeling Language User’s Guide and Reference Manual./pca.Deville Perform a PCA using Deville’s methodDescriptionPerform a PCA using Deville’s methodUsagepca.Deville(X,t,t.range,breaks)ArgumentsX a data matrixt a matrix of observation times corresponding to Xt.range the range of observation times in vector form(ex.t.range=c(0,1000))breaks integer number of histogram windowsValueX.histo the matrix projected onto the histogram basisU.histo a matrix of eigenvectors in the histogram basisCp a matrix of principal componentslambda a vector of eigenvaluesmbda a vector of the percentage of total inertia explained by each principal component8pca.proj.Xt Author(s)Gabrielle WeinrottReferencesJC Deville,"Methodes statisiques et numeriques de l’analyse harmonique",Annales de l’INSEE, 1974.Examplesres<-drbats.simul(N=5,P=100,t.range=c(5,100),breaks=8)res.pca<-pca.Deville(res$X,res$t.simul,t.range=c(5,100),breaks=8)res.pcapca.proj.Xt PCA data projected onto a histogram basisDescriptionPCA data projected onto a histogram basisUsagepca.proj.Xt(X,t,t.range=c(0,1000),breaks=15)ArgumentsX the data matrixt the matrix of observation timest.range a vector specifying the observation time range(default:c(0,1000))breaks the number of breaks in the histogram basis(default:breaks=15)ValueXt.proj a matrix of projected observationsU a matrix of eigenvectorslambda a vector of eigenvalueslambda.perc the percentage of inertia captured by each axisAuthor(s)Gabrielle Weinrottpostdens9 Examplesres<-drbats.simul(N=5,P=100,t.range=c(5,100),breaks=8)pca.proj.Xt(res$X,res$t.simul,t.range=c(0,100),breaks=8)postdens Calculate the unnormalized posterior density of the modelDescriptionCalculate the unnormalized posterior density of the modelUsagepostdens(mcmc.output,Y,D,chain=1)Argumentsmcmc.output an mcmc list as produced by clean.mcmcY the data matrixD the number of latent factorschain the chain to plot(default=1)Valuepost a vector containing the posterior density at each iteration##’@examplesAuthor(s)Gabrielle WeinrottExamplesdata("toydata")data("stanfit")dens<-postdens(coda.obj(stanfit),Y=toydata$Y.simul$Y,D=2,chain=1)hist(dens)10toydata stanfit A stanfit objectfitted to the toydataDescriptionA stanfit objectfitted to the toydataUsagestanfitFormatA large stanfit objecttoydata A toy longitudinal data setDescriptionA toy longitudinal data setUsagetoydataFormatA list with5elements:Y.simul a list of simulated data with3elementst.simul a matrix with5rows and150columns giving the observation times of the original data X the original data matrix with5rows and150columnsproj.pca a list with4elements:results of the function histoProj(X,t,t.range=c(0,1000),breaks =8)wlu a list with4elements:results of the function W.QR(U,lambda)where U and lambda are the results of the PCA of Xvisbeta11 visbeta Format scores output for visualizationDescriptionFormat scores output for visualizationUsagevisbeta(mcmc.output,Y,D,chain=1,axes=c(1,2),quant=NULL)Argumentsmcmc.output an mcmc list as produced by clean.mcmcY the matrix of dataD the number of latent factorschain the chain to use(default=1)axes the axes to use(default=c(1,2))quant a vector of quantiles to retain(default=NULL)Valuemean.df are the MCMC estimates for the parmeterspoints.df contains all of the estimates of the chaincontour.df contains the exterior points of the convex hull of the cloud of estimatesAuthor(s)Gabrielle WeinrottExamplesdata("toydata")data("stanfit")codafit<-coda.obj(stanfit)##convert to mcmc.listbeta.res<-visbeta(codafit,Y=toydata$Y.simul$Y,D=toydata$wlu$D,chain=1,axes=c(1,2),quant=c(0.05,0.95))ggplot2::ggplot()+ggplot2::geom_path(data=beta.res$contour.df,ggplot2::aes(x=x,y=y,colour=ind))+ ggplot2::geom_point(data=beta.res$mean.df,ggplot2::aes(x=x,y=y,colour=ind))12visW visW Plot the estimates for the latent factorsDescriptionPlot the estimates for the latent factorsUsagevisW(mcmc.output,Y,D,chain=1,factors=c(1,2))Argumentsmcmc.output an mcmc list as produced by clean.mcmcY the matrix of dataD the number of latent factorschain the chain to plot(default=1)factors a vector indicating the factors to plot(default=c(1,2))Valueres.W a data frame containing the estimates for the factors,and their lower and upper bounds Inertia the percentage of total inertia captured by each of the factorsAuthor(s)Gabrielle WeinrottExamplesdata("toydata")data("stanfit")codafit<-coda.obj(stanfit)##convert to mcmc.listW.res<-visW(codafit,Y=toydata$Y.simul$Y,D=toydata$wlu$D,chain=1,factors=c(1,2))##plot the resultsdata<-data.frame(time=rep(1:9,2),W.res$res.W)ggplot2::ggplot()+ggplot2::geom_step(data=data,ggplot2::aes(x=time,y=Estimation,colour=Factor))+ ggplot2::geom_step(data=data,ggplot2::aes(x=time,y=Lower.est,colour=Factor), linetype="longdash")+ggplot2::geom_step(data=data,ggplot2::aes(x=time,y=Upper.est,colour=Factor), linetype="longdash")W.QR13 W.QR Build and decompose a low-rank matrix WDescriptionBuild and decompose a low-rank matrix from a matrix of eigenvectors and eigenvalues from prin-cipal component analysisUsageW.QR(U,lambda)ArgumentsU a matrix of eigenvectorslambda a vector of corresponding eigenvaluesValueW a low-rank matrixD the number of latent factorsQ the orthogonal matrix of the W=QR matrix decompositionR the upper triangular matrix of the W=QR matrix decompositionAuthor(s)Gabrielle WeinrottExamplesres<-drbats.simul(N=5,P=100,t.range=c(5,100),breaks=8)res.pca<-pca.Deville(res$X,res$t.simul,t.range=c(5,100),breaks=8)Wres.pca<-W.QR(res.pca$U,res.pca$lambda)Wres.pca14weighted.Devilleweighted.Deville Perform a weighted PCA using Deville’s method on a data matrix Xthat we project onto a histogram basis and weightedDescriptionPerform a weighted PCA using Deville’s method on a data matrix X that we project onto a histogram basis and weightedUsageweighted.Deville(X,t,t.range,breaks,Qp=NULL)ArgumentsX a data matrixt a matrix of observation times corresponding to Xt.range the range of observation times in vector form(ex.t.range=c(a,b))breaks integer number of histogram windowsQp a matrix of weights,if Qp=NULL the function specifies a diagonal weightmatrixValueX.histo the matrix projected onto the histogram basisU.histo a matrix of eigenvectors in the histogram basisCp a matrix of principal componentslambda a vector of eigenvaluesmbda a vector of the percentage of total inertia explained by each principal componentAuthor(s)Gabrielle WeinrottExamplesres<-drbats.simul(N=5,P=100,t.range=c(5,100),breaks=8)res.weighted<-weighted.Deville(res$X,res$t.simul,t.range=c(5,100),breaks=8,Qp=NULL) res.weightedIndex∗datasetsstanfit,10toydata,10coda.obj,2coinertia.drbats,3drbats.simul,4histoProj,5modelFit,6pca.Deville,7pca.proj.Xt,8postdens,9stanfit,10toydata,10visbeta,11visW,12W.QR,13weighted.Deville,1415。
SPVE中文资料
h1=3.8
h2=2.9
With
Standard
1
1
For PC board ʢReflowʣ
h=4.8
h1=4.5
h2=3.6
Without
2,800 2,200
SPVE110100
SPVE110600
SPVE110401
SPVE110801 1
SPVE110200
SPVE110900
h=5.2 h=5.5
Total Mounting
ʢmmʣ positionʢmmʣtraveʢl mmʣ method
Location lug
Minimum packing uniʢt pcs.ʣ
Products No.
Drawing No.
h=3.8
h1=3.5
h2=2.5
Without With
Without
h=4.1
For other detailed specifications, see P.303 For specifications for the taping package, see P.307
元器件交易网 Compact One-way Operation Type Detector Switch SPVE Series
Typical Specifications
Items
Ratingʢmax.ʣ ʢResistive loadʣ
Contact resistance ʢInitial performance/After lifetimeʣ
Operating force
Operating life
Without load With load
STMicroelectronics STPS6M100SF数据手册说明书
STPS6M100SFFeatures•Low profile design – package height of 1.1 mm typ.•Wettable flanks for automatic visual inspection •Low forward voltage drop •Avalanche capability •ECOPACK ®2 compliantApplications•Switching diode •Notebook adapter •LED lighting•DC/DC converterDescriptionThis high voltage Schottky barrier rectifier has been optimized for use in highfrequency miniature DC/DC converters, reverse battery protection, battery chargers and adaptors.Packaged in PSMC (TO-277A), the STPS6M100SF provides a high level ofperformance in a compact and flat package which can withstand very high operating junction temperature.100 V power Schottky rectifierSTPS6M100SFDatasheetSTPS6M100SFCharacteristics 1CharacteristicsTable 1. Absolute ratings (limiting values at 25 °C, unless otherwise specified, anode terminals short-circuited)1.(dP tot/dT j) < (1/R th(j-a)) condition to avoid thermal runaway for a diode on its own heatsink.Table 2. Thermal resistance parametersFor more information, please refer to the following application note:•AN5088: Rectifiers thermal management, handling and mounting recommendationsTable 3. Static electrical characteristics (anode terminals short-circuited)1.Pulse test: t p = 5 ms, δ < 2%2.Pulse test: t p = 380 µs, δ < 2%To evaluate the conduction losses, use the following equation:P = 0.49 x I F(AV) + 0.0267 x I F2(RMS)For more information, please refer to the following application notes related to the power losses:•AN604: Calculation of conduction losses in a power rectifier•AN4021: Calculation of reverse losses in a power diodeSTPS6M100SFCharacteristics (curves) 1.1Characteristics (curves)Figure 7. Thermal resistance junction to ambient versus copper surface under tab (typical values, epoxyprinted board FR4, e Cu= 35 µm) (PSMC (TO-277A))020406080100120012345678910STPS6M100SFCharacteristics (curves)2Package informationIn order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ®packages, depending on their level of environmental compliance. ECOPACK ® specifications, grade definitions and product status are available at: . ECOPACK ® is an ST trademark.2.1PSMC (TO-277A) package information•Epoxy meets UL94,V0•Cooling method : by conduction (C)Figure 8.PSMC (TO-277A) package outlineTable 4. PSMC (TO-277A) package mechanical dataSTPS6M100SFPackage informationFigure 9.PSMC (TO-277A) package footprint in mm (in inches)STPS6M100SFPSMC (TO-277A) package informationSTPS6M100SFOrdering information 3Ordering informationTable 5. Ordering informationSTPS6M100SFRevision historyTable 6. Document revision historySTPS6M100SFIMPORTANT NOTICE – PLEASE READ CAREFULLYSTMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.No license, express or implied, to any intellectual property right is granted by ST herein.Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.Information in this document supersedes and replaces information previously supplied in any prior versions of this document.© 2018 STMicroelectronics – All rights reservedSTPS6M100SF。
QSS-016-01-L-D-DP-A;中文规格书,Datasheet资料
.625 15.88 REF
.006 0.15 REF
= NOT ENGINEERING APPROVED
C
.055 1.40
"A"
QSS-25-01-D-XX
.135 3.43 REF
.1430 - .001 3.632 - 0.03 (SEE NOTE 5, 6 & 8)
+.003
+0.08 C
.070 1.77 REF
DETAIL 'A' SCALE 5 : 1
PROPRIETARY NOTE
.007 0.18 REF
UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE IN INCHES. TOLERANCES ARE:
DECIMALS
.XX: .01[.3] .XXX: .005[.13] .XXXX: .0020[.05]
.325 8.26
.148 3.76
-GP: GUIDE POST OPTION (32 POS MAX FOR TAPE & REEL OFFERING) "A" REF
C
FIG 4
.102 2.59 REF
"B" REF
.206 5.24
.140 3.56 THRU REF
PROPRIETARY NOTE
REVISION W
DO NOT SCALE FROM THIS PRINT
ASO ONLY (APPLICATION SPECIFIC ORDER)
QSS-XXX-XX-XXX-D-DP-XXX
No OF POSITIONS -016, -032, -048, *-064,*-080 (PER ROW) * SEE NOTES 10 & 11 LEAD STYLE -01: .1430[3.632] PLATING SPECIFICATION -F: FLASH SELECTIVE GOLD WITH MATTE TIN TAILS (USE C-126-21-F & T-1G2-01-F) (SEE NOTES 7 & 9) -L: LIGHT SELECTIVE GOLD WITH MATTE TIN TAILS (USE C-126-21-L & T-1G2-01-L) (SEE NOTE 9) -H: HEAVY GOLD (USE C-126-21-H & T-1G2-01-G) (SEE NOTE 9) -STL: LIGHT SELECTIVE GOLD WITH TIN LEAD TAILS (USE C-126-21-STL & T-1G2-01-STL) (SEE NOTE 9) -FTL: FLASH SELECTIVE GOLD WITH TIN LEAD TAILS (USE C-126-21-FTL & T-1G2-01-FTL) (SEE NOTE 9) C-126-21-XXX 'A' OPTION -A: ALIGNMENT PINS (SEE FIG. 2, SHEET 2) (USE QSS-25-01-D-XX-A) -LC: LOCKING CLIPS (SEE FIG. 1)(USE LC-08-TM-01) (SEE NOTE 12) -K: POLYIMIDE FILM PAD (SEE FIG. 3, SHEET 2) (USE K-850-650) -TR: TAPE & REEL (48 POS MAX) (32 POS MAX FOR -GP OPTION) -GP: GUIDE POSTS (SEE FIG. 4, SHEET 2) (USE QSS-25-01-D-XX-X-GP) -LS2: LOCKING SCREW (USE QSS-25-01-D-XX-LS2) (SEE FIG. 5, SHEET 3) ( FOR MATING WITH QTS-...-RA..LS2) DIFFERENTIAL PAIRS ROW SPECIFICATION -D: DOUBLE (USE QSS-25-01-D-XX) [SEE TABLE 2]
TBS介绍
3.3 传感器
传感器探测分选床层的密度,床层的任何密度变化都将通过传感器 反馈至控制系统,并最终通过控制系统操作执行机构。
3.4 锥形阀门组件――排料阀及阀座
排料阀置于TBS槽体底部的阀座内,当分选床层比重达到或超出设定
值时,执行机构便推动排料阀推杆下行使锥形阀离开阀座排出粗重的物料。 锥形阀及其阀座都由含90%氧化铝陶瓷制成以保证这些部件的耐磨性。
8、 TBS的特性
入料粒度在1.5~0.15mm范围内能达到很好的分选效果; 有效分选密度为1.4–1.9,可以产出低灰精煤和高灰矸石; 分选密度可在1.4-1.9范围内调节,分选过程全自动控制,无需 人员操作; 对入料煤质变化的适应性强,Ep值≤0.12;无需复杂的入料分
配系统,设计紧凑,占用空间小;
• 能够对细粒煤(1.5~0.15mm原煤)进行经济 有效的分选 • 取代其他粗煤泥分选设备,如螺旋分选机、小直径 煤泥重介旋流器等 • 对螺旋分选机精煤产品再选 • 从浮选尾矿中回收精煤
TBS 运行化验指标
西马选煤厂 TBS 2.4m 入料粒度 0.5-0.25mm 水量 50M3/H
入料灰分
Feed ash
粗煤泥入TBS分选,可以减少重介分选和浮选的入料量,分选介 质为循环水,无需重介质和化学药剂,可以降低选煤厂介耗和浮选
药剂消耗,精煤回收率可提高2%左右;
设备无动载荷,动力消耗<1kW,电源为220V、50Hz; 安装简单,设备维护费用低
降低了浮选粒度上限,避免了浮选尾矿跑精煤问题
精煤回收更大化,总精煤回收率可提高2%左右或更高
增加了一个系统,投资增加,但投资回报高 美国、澳洲几乎所有选煤厂(动力煤、炼焦煤)都增加 有该系统
MS-160标准包装内容说明说明书
cated under the diaphragm) outwards, place the filter flat inside the top part of the holder and then fully rotate the filter holder back into position.
INSTRUCTION MANUAL | MS-160
Standard Included Accessories: 10x and 16x Wide Field Eyepiece, Dust Cover, Blue Color Filter, Spare LED and Fuse
Eyepieces
Binocular Head
Care & Maintenance:
• Please take care when using our microscope. Try to avoid brinபைடு நூலகம்ing your microscope into contact with any dirt, debris, dust or moisture. Place the dust cover the microscope when not in use.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
元器件交易网
STBS06H - STBS5D0
VBR : 6.8 - 200 Volts Psurge capability at 1ms * Excellent clamping capability * Low zener impedance * Fast response time : typically less then 1.0 ps from 0 volt to VBR(min.) * Typical IR less then 1µA above 10V
Symbol
PPK PD TJ, TSTG
Value
Minimum 500 3.0 - 55 to + 150
Unit
W W °C
Note :
(1) Non-repetitive Current pulse, per Fig. 2 and derated above Ta = 25 °C per Fig. 1 (2) Mounted on copper Lead area at 5.0 mm2 ( 0.013 mm thick ).
Page 1 of 4
Rev. 03 : July 22, 2002
元器件交易网
ELECTRICAL CHARACTERISTICS
Rating at 25 °C ambient temperature unless otherwise specified Breakdown Voltage @ It ( Note 1 ) W orking Peak Reverse Voltage VRWM (V) 5.0 5.0 6.0 6.0 6.5 6.5 7.0 7.0 7.5 7.5 8.0 8.0 8.5 8.5 9.0 9.0 10.0 10.0 11.0 11.0 12.0 12.0 13.0 13.0 14.0 14.0 15.0 15.0 16.0 16.0 17.0 17.0 18.0 18.0 20.0 20.0 22.0 22.0 24.0 24.0 26.0 26.0 28.0 28.0 30.0 30.0 33.0 Maximum Reverse Leakage @ V RWM IR (µA) 1200 1200 1200 1200 800 800 300 300 50 50 25 25 10 10 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Maximum Reverse Current IRSM (A) 52.0 54.3 43.9 48.5 40.7 44.7 37.8 41.7 35.0 38.8 33.3 36.7 31.4 34.7 29.5 32.5 26.6 29.4 24.9 27.4 22.7 25.1 21.0 23.2 19.4 21.5 18.8 20.6 17.6 19.2 16.4 18.1 15.5 17.2 13.9 15.4 12.7 14.1 11.6 12.8 10.7 11.9 9.9 11.0 9.3 10.3 8.5 Maximum Clamping Voltage @ IRSM VRSM (V) 9.6 9.2 11.4 10.3 12.3 11.2 13.3 12.0 14.3 12.9 15.0 13.6 15.9 14.4 16.9 15.4 18.8 17.0 20.1 18.2 22.0 19.9 23.8 21.5 25.8 23.2 26.9 24.4 28.8 26.0 30.5 27.6 32.2 29.2 35.8 32.4 39.4 35.5 43.0 38.9 46.6 42.1 50.0 45.4 53.5 48.4 59.0 Maximum Voltage Temperature Variation of VBR (mV / °C) 5.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 7.0 7.0 7.0 7.0 8.0 8.0 9.0 9.0 10.0 10.0 11.0 11.0 12.0 12.0 13.0 13.0 14.0 14.0 16.0 16.0 19.0 17.0 20.0 19.0 21.0 20.0 25.0 23.0 28.0 25.0 31.0 28.0 31.0 30.0 35.0 31.0 39.0 36.0 42.0
Page 2 of 4
Rev. 03 : July 22, 2002
元器件交易网
ELECTRICAL CHARACTERISTICS
Rating at 25 °C ambient temperature unless otherwise specified Breakdown Voltage @ It ( Note 1 ) W orking Peak Reverse Voltage VR W M (V) 33.0 36.0 36.0 40.0 40.0 43.0 43.0 45.0 45.0 48.0 48.0 51.0 51.0 54.0 54.0 58.0 58.0 60.0 60.0 64.0 64.0 70.0 70.0 75.0 75.0 78.0 78.0 85.0 85.0 90.0 90.0 100 100 110 110 120 120 130 130 150 150 160 160 170 170 Maximum Reverse Leakage @ VR W M IR (µA) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Maximum Reverse Current IRSM (A) 9.4 7.8 8.6 7.0 7.8 6.5 7.2 6.2 6.9 5.8 6.5 5.5 6.1 5.2 5.7 4.9 5.3 4.7 5.2 4.4 4.9 4.0 4.4 3.7 4.1 3.6 4.0 3.3 3.6 3.1 3.4 2.8 3.1 2.6 2.8 2.3 2 2.2 2.4 1.9 2.1 1.7 1.9 1.6 1.8 Maximum Clamping Voltage @ IRSM VRSM (V) 53.3 64.3 58.1 71.4 64.5 76.7 69.4 80.3 72.7 85.5 77.4 91.1 82.4 96.3 87.1 103 93.6 107 96.8 114 103 125 113 134 121 139 126 151 137 160 146 179 162 196 177 214 193 231 209 268 243 287 259 304 275 Maximum Voltage Temperature Variation of V BR (mV / °C) 39.0 46.0 41.0 51.0 46.0 55.0 50.0 58.0 52.0 63.0 56.0 66.0 61.0 71.0 65.0 78.0 70.0 80.0 71.0 86.0 76.0 94.0 85.0 101 91.0 105 95.0 114 103 121 110 135 123 148 133 162 146 175 158 203 184 217 196 230 208
2.0 ± 0.2
Dimensions in millimeter
DEVICES FOR UNIPOLAR APPLICATIONS
For Uni-directional altered the third letter of type from "B" to be "U". Electrical characteristics apply in both directions
MAXIMUM RATINGS
Rating at 25 °C ambient temperature unless otherwise specified.
Rating
Peak Power Dissipation at Ta = 25 °C, Tp=1ms (Note1) Steady State Power Dissipation at TL = 75 °C (Note 2) Operating and Storage Temperature Range
TYPE
VBR (V) Min. STBS06H STBS56H STBS07A STBS57A STBS07G STBS57G STBS08C STBS58C STBS08I STBS58I STBS09B STBS59B STBS010 STBS510 STBS011 STBS511 STBS012 STBS512 STBS013 STBS513 STBS014 STBS514 STBS015 STBS515 STBS016 STBS516 STBS018 STBS518 STBS019 STBS519 STBS020 STBS520 STBS021 STBS521 STBS023 STBS523 STBS026 STBS526 STBS028 STBS528 STBS030 STBS530 STBS033 STBS533 STBS035 STBS535 STBS039 6.40 6.40 6.67 6.67 7.22 7.22 7.78 7.78 8.33 8.33 8.89 8.89 9.44 9.44 10.0 10.0 11.1 11.1 12.2 12.2 13.3 13.3 14.4 14.4 15.6 15.6 16.7 16.7 17.8 17.8 18.9 18.9 20.0 20.0 22.2 22.2 24.4 24.4 26.7 26.7 28.9 28.9 31.1 31.1 33.3 33.3 36.7 Max. 7.3 7.0 8.15 7.37 8.82 7.98 9.51 8.60 10.2 9.21 10.9 9.30 11.5 10.4 12.2 11.1 13.6 12.3 14.9 13.5 16.3 14.7 17.6 15.9 19.1 17.2 20.4 18.5 21.8 19.7 23.1 20.9 24.4 22.1 27.1 24.5 29.8 26.9 32.6 29.5 35.3 31.9 38.0 34.4 40.7 36.8 44.9 It (mA) 10 10 10 10 10 10 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0