ETM多波段合成解析

合集下载

【精选】LandsatTM、ETM数据介绍

【精选】LandsatTM、ETM数据介绍

TM各个波段的特征B1 为蓝色波段,该波段位于水体衰减系数最小的部位,对水体的穿透力最大,用于判别水深,研究浅海水下地形、水体浑浊度等,进行水系及浅海水域制图;B2 为绿色波段,该波段位于绿色植物的反射峰附近,对健康茂盛植物反射敏感,可以识别植物类别和评价植物生产力,对水体具有一定的穿透力,可反映水下地形、沙洲、沿岸沙坝等特征;B3 为红波段,该波段位于叶绿素的主要吸收带,可用于区分植物类型、覆盖度、判断植物生长状况等,此外该波段对裸露地表、植被、岩性、地层、构造、地貌、水文等特征均可提供丰富的植物信息;B4 为近红外波段,该波段位于植物的高反射区,反映了大量的植物信息,多用于植物的识别、分类,同时它也位于水体的强吸收区,用于勾绘水体边界,识别与水有关的地质构造、地貌等;B5 为短波红外波段,该波段位于两个水体吸收带之间,对植物和土壤水分含量敏感,从而提高了区分作物的能力,此外,在该波段上雪比云的反射率低,两者易于区分,B5 的信息量大,应用率较高;B6 为热红外波段,该波段对地物热量辐射敏感,根据辐射热差异可用于作物与森林区分、水体、岩石等地表特征识别;B7 为短波外波段,波长比 B5 大,是专为地质调查追加的波段,该波段对岩石、特定矿物反应敏感,用于区分主要岩石类型、岩石水热蚀变,探测与交代岩石有关的粘土矿物等;B8 为全色波段(Pan),该波段为 Landsat-7 新增波段,它覆盖的光谱范围较广,空间分辨率较其他波段高,因而多用于获取地面的几何特征。

=============================波段组合:TM321(RGB):均是可见光波段,合成结果接近自然色彩。

对浅水透视效果好,可用于监测水体的浊度、含沙量、水体沉淀物质形成的絮状物、水底地形。

一般而言:深水深兰色;浅水浅兰色;水体悬浮物是絮状影象;健康植被绿色;土壤棕色或褐色。

可用于水库、河口及海岸带研究,但对水陆分界的划分不合适。

Landsat7不同波段组合方案比较

Landsat7不同波段组合方案比较

• 各波段特征及用途
• 各波段不同假彩色合成方案 比较
• 最佳波段组合评价
各波段特征及用途
对7个波段的总结
• TM图像的光波信息具有3~4维结构, 其物理含义相当于亮度、绿度、热度 和湿度。在TM7个波段光谱图像中, 一般第5个波段包含的地物信息最丰富。
• 3个可见光波段(即第1、2、3波段) 之间相关性很高,表明这些波段的信 息中有相当大的重复性或者冗余性。
河滩易混。 • TM5:县城与农田不易分开。 • TM6:村庄与河流易混。
各波段不同假彩色合成方案比较 及最佳波段组合评价
• 下面先看一个真彩色合成的波段组合:
原始图像 321波段组合图像
各波段不同假彩色合成方案比较
突出表现了植被特征,和321 波段的组合不同。
451
453
451波段组合图 像
LANDSAT是美国陆地探测卫星 系统。从1972年开始发射第一 颗卫星LANDSAT 1,到目前最 新的LANDSAT 7。(其中第六 颗发射失败。)
LANDSAT 7简介
• LANDSAT 7 卫星于99年发射,装备有 Enhanced Thematic Map per Plus(ETM+)设备,ETM+被动感应地 表反射的太阳辐射和散发的热辐射, 有8个波段的感应器,覆盖了从红外到 可见光的不同波长范围。 ETM+比起 在LANDSAT 4、5上面装备的 Thematic Mapper(TM)设备在红外波 段的分辨率更高,因此有更高的准确 性。
• 第4、6波段较特殊,尤其是第4波段与 其他波段的相关性都很低,表明这个 波段信息有很大的独立性。其中第四 波段的道路辨认效果又不如第三波段。
• 第7波段主要是在探测森林火灾、岩矿 蚀变带及土壤粘土矿物类型等方面有 特殊的作用。

gee landsat波段合成

gee landsat波段合成

gee landsat波段合成GEE Landsat波段合成概述:GEE(Google Earth Engine)是一个基于云计算的平台,提供了丰富的遥感数据和强大的分析工具,能够实现对地球表面的全球范围内的数据分析和可视化。

Landsat是美国国家航空航天局(NASA)和美国地质调查局(USGS)联合运营的一系列卫星,其载荷为多光谱扫描仪(MSS)和增强型多光谱扫描仪(ETM+),用于获取地球表面的高分辨率影像数据。

本文将介绍如何在GEE平台上使用Landsat波段合成,以实现更全面的数据分析和可视化。

一、Landsat卫星数据简介Landsat卫星是全球最早的陆地观测卫星系统之一,自1972年以来已经发射了多颗卫星。

这些卫星通过不同的波段感应器获取地球表面的图像数据,包括可见光、近红外和热红外波段,以及其他一些特定的波段。

其中,Landsat 8卫星的载荷为OLI传感器,具有更高的空间分辨率和更丰富的光谱分辨率,为地球科学研究提供了更详细的数据。

二、GEE平台简介GEE是一个用于分析和可视化地球观测数据的云计算平台,提供了丰富的数据集和强大的分析工具。

用户可以通过GEE平台访问Landsat卫星数据,并利用其波段合成功能对数据进行处理和分析。

波段合成是一种将不同波段的数据组合成一个单一的图像的技术,以提高数据分析的准确性和可视化的效果。

三、Landsat波段合成在GEE中的操作步骤1. 登录GEE平台,进入“代码编辑器”界面。

2. 在代码编辑器中,选择Landsat 8的影像数据集,并设置感兴趣区域(ROI)。

3. 选择需要合成的波段,并设置合成方式(如线性组合、加权组合等)。

4. 运行代码,生成合成后的影像数据,并可进行可视化和分析。

四、Landsat波段合成的应用案例1. 植被监测:利用红光和近红外波段的合成图像,可以获取植被的NDVI指数,进而监测植被的生长状况和植被覆盖度。

2. 土地利用分类:通过合成不同波段的影像数据,可以进行土地利用分类,如农田、森林、水域等,为土地规划和资源管理提供支持。

Landsat卫星的TMETM各波段介绍

Landsat卫星的TMETM各波段介绍

Landsat卫星的TMETM各波段介绍Landsat卫星的TM/ETM各波段介绍北京揽宇⽅圆信息技术有限公司拥有WorldView、QuickBird、IKONOS、GeoEye、SPOT、PLEIADES、⾼分⼀号、⾼分⼆号、资源三号等世界上最⾼分辨率卫星影像的代理权,能够为户提供全天候、全覆盖、多分辨率、多尺度的影像产品。

整合最丰富的遥感影像数据资源,为⽤户提供最专业的遥感影像数据服务,北京揽宇⽅圆致⼒成为中国遥感影像数据服务第⼀品牌。

⼀、波段介绍1.TM1 0.45-0.52um,蓝波段对⽔体穿透强, 该波段位于⽔体衰减系数最⼩,散射最弱的部位(0.45—0.55um),对⽔体的穿透⼒最⼤,可获得更多⽔下信息,⽤于判断⽔深,浅海⽔下地形,⽔体浑浊度,沿岸⽔,地表⽔等;能够反射浅⽔⽔下特征,区分⼟壤和植被、编制森林类型图、区分⼈造地物类型,分析⼟地利⽤。

对叶绿素与叶⾊素反映敏感,有助于判别⽔深及⽔中叶绿素分布以及⽔中是否有⽔华等。

2.TM2 0.52-0.60um,绿波段对植物的绿反射敏感该波段位于健康绿⾊植物的绿⾊反射率(0.54—-0.55um)附近;对健康茂盛植物的反射敏感,主要观测植被在绿波段中的反射峰值,这⼀波段位于叶绿素的两个吸收带之间,利⽤这⼀波段增强鉴别植被的能⼒对绿的穿透⼒强,探测健康植被绿⾊反射率,按绿峰反射评价植物的⽣活状况,区分林型,树种,植被类型和评估作物长势对⽔体有⼀定的穿透⼒,可反映⽔下特征,⽔体浑浊度,⽔下地形,沙洲,沿岸沙地等。

. 可区分⼈造地物类型,3.TM3 0.62-0.69um ,红波段对⽔中悬浮泥沙反映敏感。

该波段位于含沙浓度不同的⽔体辐射峰值(0.58—-0.68um)附近,对⽔中悬浮泥沙反映敏感。

叶绿素的主要吸收波段,能增强植被覆盖与⽆植被覆盖之间的反差,亦能增强同类植被的反差,反映不同植物叶绿素吸收,植物健康状况,⽤于区分植物种类与植物覆盖率,测量植物绿⾊素吸收率,并以此进⾏植物分类;此外其信息量⼤,⼴泛⽤于对裸露地表,植被,岩性,地层,构造,地貌等为可见光最佳波段;可区分⼈造地物类型4 .TM4 0.76-0.96UM 近红外波段,对绿⾊植物类别差异最敏感,为植物通⽤波段,⽤于牧师调查,作物长势测量,处于⽔体强吸收区,⽔体轮廓清晰,⽤于勾勒⽔体,绘制⽔体边界、探测⽔中⽣物的含量和⼟壤湿度;区分⼟壤湿度及寻找地下⽔,识别与⽔有关的地质构造,地貌,⼟壤,岩⽯类型等均有利。

TM与ETM

TM与ETM

各个波段的特征TM1 0.45-0.52um蓝波段:对叶绿素和叶色素浓度敏感,对水体穿透强,用于区分土壤与植被、落叶林与针叶林、近海水域制图,有助于判别水深及水中叶绿素分布以及水中是否有水华等。

TM2 0.52-0.60um,绿波段:对健康茂盛植物的反射敏感,对绿的穿透力强,用于探测健康植物绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种和反映水下特征。

在所有的波段组合中,TM 波段-2 的分类精度是最高的,达到了 75.6%。

从单时相遥感影像的分类来讲,这种分类精度只相当于中等水平。

但若从多时相图像的角度来看,这一精度则相当于在采用分类后比较法时,每一景图像的平均分类精度需达到 86.9% 的水平②,而这种分类精度,特别是在山区,其实已经是比较好的了。

TM3 0.62-0.69UM ,红波段:叶绿素的主要吸收波段,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率,其信息量大多为可见光最佳波段,广泛用于地貌,岩性,土壤,植被,水中泥沙等方面。

TM4 0.76-0.96UM近红外波段:对无病害植物近红外反射敏感,对绿色植物类别差异最敏感,为植物通用波段,用于目视调查,作物长势测量,水域测量,生物量测定及水域判别。

TM51.55-1.75UM中红外波段:对植物含水量和云的不同反射敏感,处于水的吸收波段,一般1.4-1.9UM内反映含水量,用于土壤湿度植物含水量调查,水分善研究,作物长势分析,从而提高了区分不同作用长势的能力,可判断含水量和雪、云。

在TM7个波段光谱图像中,一般第5个波段包含的地物信息最丰富。

TM61.04-1.25UM远红外波段:可以根据辐射响应的差别,区分农林覆盖长势,差别表层湿度,水体岩石,以及监测与人类活动有关的热特征,作温度图,植物热强度测量。

TM7 2.08-3.35UM,中红外波段,为地质学家追加波段,处于水的强吸收带,水体呈黑色,可用于区分主要岩石类型,岩石的热蚀度,探测与交代岩石有关的粘土矿物。

TM波段介绍

TM波段介绍

TM图像波段介绍一、各波段特征:蓝波段,对水体穿透强,对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等.绿波段,对健康茂盛植物的反射敏感,对力的穿透力强,用于探测健康植物绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种和反映水下特征.,红波段,叶绿素的主要吸收波段,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率,其信息量大多为可见光最佳波段,广泛用于地貌,岩性,土壤,植被,水中泥沙等方面.4 .TM4 近红外波段,对绿色植物类别差异最敏感,为植物通用波段,用于牧师调查,作物长势测量,水域测量.中红外波段,处于水的吸收波段,一般内反映含水量,用于土壤湿度植物含水量调查,水分善研究,作物长势分析,从而提高了区分不同作用长势的能力.易于反映云与雪.热红外波段,可以根据辐射响应的差别,区分农林覆盖长势,差别表层湿度,水体岩石,以及监测与人类活动有关的热特征,进行热制图.中红外波段,为地质学家追加波段,处于水的强吸收带,水体呈黑色,可用于区分主要岩石类型,岩石的热蚀度,探测与交代岩石有关的粘土矿物.二.波段组合:1、TM321(RGB):均是可见光波段,合成结果接近自然色彩。

对浅水透视效果好,可用于监测水体的浊度、含沙量、水体沉淀物质形成的絮状物、水底地形。

一般而言:深水深兰色;浅水浅兰色;水体悬浮物是絮状影象;健康植被绿色;土壤棕色或褐色。

可用于水库、河口及海岸带研究,但对水陆分界的划分不合适。

这种RGB组合模拟出一副自然色的图象。

有时用于海岸线的研究和烟柱的探测。

2、TM453(RGB):2个红外波段、1个红色波段。

对内陆湖泊及河流分辨清楚。

植被类型及长势可由棕、绿、橙、黄等色调分别。

能区分土壤含水量(水分越多则越暗)。

用于土壤湿度和植被状况的分析。

也很好的用于内陆水体和陆地/水体边界的确定。

3、TM742(RGB):植被基本都是绿色,城市呈现品红色或紫色,草地淡绿色,森林深绿色(针叶林色调比阔叶林暗)。

Landsat8的不同波段组合说明

Landsat8的不同波段组合说明

Landsat 8 OLI_TIRS 卫星数字产品波段介绍2013 年2月11日,美国航空航天局(NASA) 成功发射Landsat-8卫星。

Landsat-8卫星上携带两个传感器,分别是OLI陆地成像仪(Operational Land Imager)和TIRS热红外传感器(Thermal Infrared Sensor)。

Landsat-8 在空间分辨率和光谱特性等方面与Landsat 1-7保持了基本一致,卫星一共有11个波段,波段1-7,9-11的空间分辨率为30米,波段8为15米分辨率的全色波段,卫星每16 天可以实现一次全球覆盖。

OLI陆地成像仪有9个波段,成像宽幅为185x185km。

与Landsat-7 上的ETM 传感器相比,OLI陆地成像仪做了以下调整:1. Band 5的波段范围调整为0.845–0.885 μm,排除了0.825μm处水汽吸收的影响;2. Band 8全色波段范围较窄,从而可以更好区分植被和非植被区域;3. 新增两个波段。

Band 1蓝色波段(0.433–0.453 μm) 主要应用于海岸带观测,Band 9短波红外波段(1.360–1.390 μm) 应用于云检测。

LandSat-8上携带的TIRS热红外传感器主要用于收集地球两个热区地带的热量流失,目标是了解所观测地带水分消耗。

Landsat TM (ETM+)7个波段可以组合很多RGB方案用于不同地物的解译,Landsat8的OLI陆地成像仪包括9个波段,可以组合更多的RGB方案。

OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;OLI 全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段(band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近,详情参考表3。

ENVI实验三-四

ENVI实验三-四

实验三波段组合计算及图像增强在本专题中,以ETM数据为对象,介绍在图像处理过程中的波段组合方式,波段之间的运算方式,数据的拉伸及增强处理过程。

(1)打开影像1选择file →open image file,打开can_tmr.img,点击打开,影像就出现在可用波段例表中。

2 在可用波段列表中,点击RGB Color,选择R(4)G(5)B(3)三个波段来进行波段显示。

3 点击Load RGB,一幅假彩色图像就显示在影像窗口中。

(2)波段组合1 在显示的影像中,只用了can_tmr.img文件的三个波段,而文件有6个波段,在这里,可以尝试从6个波段当中,选取3个波段来组合,并比较不同波段组合之间的图像显示效果。

2 在可用波段列表中,点击RGB Color,选择R(7)G(4)B(1)三个波段来进行波段显示。

3 在可用波段列表中,点击Display#1,在下拉菜单中,选择New display,点击Load RGB,一幅真彩色图像就显示在影像窗口中。

【截图一张,】4 动态链接比较前后两幅影像的效果,在主影像窗口中,选择tools →link →link displays,在link displays对话框中,点击ok,两幅影像就链接起来了。

5 在可用波段列表中,选择其余的波段组合方式,并加以比较。

(2)波段运算Band math功能为用户提供了一个灵活的图像处理工具,在Band math对话框中,可以实现不同波段之间的加减乘除等运算。

在这里还是为对象进行波段运算。

1在主菜单栏中,选择Basic Tools →Band math。

将出现band math对话框。

图6.2 Band math对话框3 在enter an expression的文本框中,输入需要进行波段计算的IDL (Interactive Data Language)表达式,使用变量代替波段名或文件名,变量名必须以字符“b”或“B”开头,后面跟着5个以内的数字字符。

TM各波段分析

TM各波段分析

TM图像波段介绍一、各波段特征:1。

TM1 0。

45-0.52um,蓝波段,对水体穿透强,对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等。

2.TM2 0.52—0.60um,绿波段,对健康茂盛植物的反射敏感,对力的穿透力强,用于探测健康植物绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种和反映水下特征。

3。

TM3 0。

62-0.69UM ,红波段,叶绿素的主要吸收波段,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率,其信息量大多为可见光最佳波段,广泛用于地貌,岩性,土壤,植被,水中泥沙等方面.4 。

TM4 0.76-0.96UM 近红外波段,对绿色植物类别差异最敏感,为植物通用波段,用于牧师调查,作物长势测量,水域测量.5。

TM5 1。

55-1。

75UM,中红外波段,处于水的吸收波段,一般1.4-1.9UM内反映含水量,用于土壤湿度植物含水量调查,水分善研究,作物长势分析,从而提高了区分不同作用长势的能力。

易于反映云与雪.6.TM6 1.04—1.25UM热红外波段,可以根据辐射响应的差别,区分农林覆盖长势,差别表层湿度,水体岩石,以及监测与人类活动有关的热特征,进行热制图。

7.TM7 2.08-3.35UM,中红外波段,为地质学家追加波段,处于水的强吸收带,水体呈黑色,可用于区分主要岩石类型,岩石的热蚀度,探测与交代岩石有关的粘土矿物。

二.波段组合:1、TM321(RGB):均是可见光波段,合成结果接近自然色彩.对浅水透视效果好,可用于监测水体的浊度、含沙量、水体沉淀物质形成的絮状物、水底地形.一般而言:深水深兰色;浅水浅兰色;水体悬浮物是絮状影象;健康植被绿色;土壤棕色或褐色。

可用于水库、河口及海岸带研究,但对水陆分界的划分不合适。

这种RGB组合模拟出一副自然色的图象。

有时用于海岸线的研究和烟柱的探测。

2、TM453(RGB):2个红外波段、1个红色波段.对内陆湖泊及河流分辨清楚。

(完整word版)遥感影像的波段组合及用途

(完整word版)遥感影像的波段组合及用途

遥感影像的波段组合及用途高光谱遥感数据最佳波段的选择根据自己对具体影像解译的要求进行波段的选择,以提高解译的速度和精度。

若要获得丰富的地质信息和地表环境信息,可以选择TM(7、4、1)波段的组合,TM(7、4、1)波段组合后的影像清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚;若要获得监测火灾前后变化分析的影像,可以选择TM(7、4、3)波段的组合,它们组合后的影像接近自然彩色,所以可通过TM(7、4、3)彩色合成图的分析来掌握林火蔓延与控制及灾后林木的恢复状况;若要获得砂石矿遥感调查情况,可以选择TM(5、4、1)波段组合;用TM影像编制洲地芦苇资源图时,宜用TM(3、4、5)波段组合的影像,分辨率最高,信息最丰富;用MSS图像编制土地利用地图,通常采用MSS(4、5、7)波段的合成影像;若要再区分林、灌、草,则需要选用MSS(5、6、7)波段的组合影像。

遥感影像时相的选择:遥感影像的成像季节直接影响专题内容的解译质量。

对其时相的选择,既要根据地物本身的属性特征,又要考虑同一地物不同地域间的差异。

例如解译农作物的种植面积最好选在8、9月份,因为这时作物成熟了,但还没有收割,方便各种作物的区别;解译海滨地区的芦苇地及其面积宜用5、6月份的影像;解译黄淮海地区盐碱土分布图宜用3、4月份的影像。

高分辨率影像的选择:分辨率的选择要符合自己的实际需要,分辨率高对解译速度和精度都有很大帮助。

随着科技的不断发展,已经有了15~30m分辨率的ETM/TM影像、2.5~5.0m分辨率的SPORT影像、2m分辨率的福卫二号、lm分辨率的ORBVIEW一3/IKONOS、0.6m分辨率的QUICK BIRD等。

法国SPOT-5卫星影像分辨率可达到2.5m,并可获得立体像对,进行立体观测。

SPOT一5卫星上的主要遥感设备是2台高分辨率几何成像仪(HRVIR),其工作谱段有4个,主要任务是监测自然资源分布,特别是监测农业、林业和矿产资源,观测植被生长状态与农田含水量等项,对农作物进行估产,了解城市建设与城市土地利用状况等。

遥感影像下载及ENVI基本操作

遥感影像下载及ENVI基本操作

陆地/水 移除大气影响的自然 表面 短波红外 植被分析
表2 Landsat TM/ETM+波段合成总结说明
RGB 321 432 743 754 541 类型 真彩色 标准假彩色 模拟真彩色图像 非标准假彩色图像 非标准假彩色图像 特点 图像色彩与原地区或景物的实际色彩一致,适合于非遥感应用专业人员使用。 地物图像丰富,鲜明、层次好,用于植被分类、水体识别,植被显示红色。 用于居民地、水体识别 画面偏蓝色,用于特殊的地质构造调查 植物类型较丰富,用于研究植物分类。
/
3. 马里兰大学 /data/ (Landsat数据下载地址: :8080/esdi/index.jsp)
4. 其他遥感数据下载地址。。。 。。。
二、ENVI基操作
主要用途
RGB
5、 6、 2 NIR、SWIR1、Blue 5 、6、 4 NIR、SWIR1、Red 7、 5 、3 SWIR2、NIR、Green 7 、5 、4 SWIR2、NIR、Red 6、 5 、4 SWIR1、NIR、Red
主要用途
自然真彩色
健康植被
城市 标准假彩色图 像,植被 农业 穿透大气层
新疆大学环境监测与智慧城市实验室
Laboratory of Environmental Monitoring and Smart City,Xinjiang University
遥感影像下载 及ENVI基本操作
主讲人:温阿敏 导师:郑江华(教授) 学号:107551300592
一、遥感影像下载
1. 美国的USGS: /(或/) 2. 地理空间云数据
看上去不够明亮;(5)水浇地与旱地的区分容易。居民地的外围边界虽不十分清晰,
但内部的街区结构特征清楚;(6)植物会有较好的显示,但是植物类型的细分会有困 难。 非标准接近于真色的假 彩色图像

LandsatTM、ETM+数据介绍

LandsatTM、ETM+数据介绍

LandsatTM、ETM+数据介绍TM各个波段的特征B1 为蓝⾊波段,该波段位于⽔体衰减系数最⼩的部位,对⽔体的穿透⼒最⼤,⽤于判别⽔深,研究浅海⽔下地形、⽔体浑浊度等,进⾏⽔系及浅海⽔域制图;B2 为绿⾊波段,该波段位于绿⾊植物的反射峰附近,对健康茂盛植物反射敏感,可以识别植物类别和评价植物⽣产⼒,对⽔体具有⼀定的穿透⼒,可反映⽔下地形、沙洲、沿岸沙坝等特征;B3 为红波段,该波段位于叶绿素的主要吸收带,可⽤于区分植物类型、覆盖度、判断植物⽣长状况等,此外该波段对裸露地表、植被、岩性、地层、构造、地貌、⽔⽂等特征均可提供丰富的植物信息;B4 为近红外波段,该波段位于植物的⾼反射区,反映了⼤量的植物信息,多⽤于植物的识别、分类,同时它也位于⽔体的强吸收区,⽤于勾绘⽔体边界,识别与⽔有关的地质构造、地貌等;B5 为短波红外波段,该波段位于两个⽔体吸收带之间,对植物和⼟壤⽔分含量敏感,从⽽提⾼了区分作物的能⼒,此外,在该波段上雪⽐云的反射率低,两者易于区分,B5 的信息量⼤,应⽤率较⾼;B6 为热红外波段,该波段对地物热量辐射敏感,根据辐射热差异可⽤于作物与森林区分、⽔体、岩⽯等地表特征识别;B7 为短波外波段,波长⽐ B5 ⼤,是专为地质调查追加的波段,该波段对岩⽯、特定矿物反应敏感,⽤于区分主要岩⽯类型、岩⽯⽔热蚀变,探测与交代岩⽯有关的粘⼟矿物等;B8 为全⾊波段(Pan),该波段为 Landsat-7 新增波段,它覆盖的光谱范围较⼴,空间分辨率较其他波段⾼,因⽽多⽤于获取地⾯的⼏何特征。

=============================波段组合:TM321(RGB):均是可见光波段,合成结果接近⾃然⾊彩。

对浅⽔透视效果好,可⽤于监测⽔体的浊度、含沙量、⽔体沉淀物质形成的絮状物、⽔底地形。

⼀般⽽⾔:深⽔深兰⾊;浅⽔浅兰⾊;⽔体悬浮物是絮状影象;健康植被绿⾊;⼟壤棕⾊或褐⾊。

可⽤于⽔库、河⼝及海岸带研究,但对⽔陆分界的划分不合适。

Landsat_、MSS、TM和ETM简介和应用

Landsat_、MSS、TM和ETM简介和应用

Landsat MSS/TM/ETM 简介和应用LANDSAT是美国NASA的陆地卫星计划(1975年前称“地球资源技术卫星-ERTS”),从1972年开始发射第一颗卫星LANDSAT-1,已发射8颗,Landsat6170 ETM+:TM:MSS:二、常用波段组合:(一)321:真彩色合成,即3、2、1波段分别赋予红、绿、蓝色,则获得自然彩色合成图像,图像的色彩与原地区或景物的实际色彩一致,适合于非遥感应用专业人员使用。

(二)432:标准假彩色合成,即4、3、2波段分别赋予红、绿、蓝色,获得图像植被成红色,由于突出表现了植被的特征,应用十分的广泛,而被称为标准假彩色。

举例:卫星遥感图像示蓝藻暴发情况我们先看一看蓝藻爆发时遥感监测机理。

蓝藻暴发时绿色的藻类生物体拌随着白色的泡沫状污染物聚集于水体表面,蓝藻覆盖区的光谱特征与周围湖面有明显差异。

由于所含高叶绿素A的作用,蓝藻区在LandsatTM2波段具有较高的反射率,在TM3波段反射率略降但仍比湖水高,在TM4波段反射率达到最大。

因此,在TM4(红)、3(绿)、2(蓝)假彩色合成图像上,蓝藻区呈绯红色,与周围深蓝色、蓝黑色湖水有明显区别。

此外,蓝藻暴发聚集受湖流、风向的影响,呈条带延伸,在TM图像上呈条带状结构和絮状纹理,与周围的湖水面也有明显不同。

(三)451:信息量最丰富的组合,TM图像的光波信息具有3~4维结构,其物理含义相当于亮度、绿度、热度和湿度。

在TM7个波段光谱图像中,一般第5个波段包含的地物信息最丰富。

3个可见光波段(即第1、2、3波段)之间,两个中红外波段(即第4、7波段)之间相关性很高,表明这些波段的信息中有相当大的重复性或者冗余性。

第4、6波段较特殊,尤其是第4波段与其他波段的相关性得很低,表明这个波段信息有很大的独立性。

计算各种组合的熵值的结果表明,由一个可见光波段、一个中红外波段及第4波段组合而成的彩色合成图像一般具有最丰富的地物信息,其中又常以4,5,3或4,5,1波段的组合为最佳。

色彩变换参考

色彩变换参考
TM 7,4,1
TM 5,4,3
TM 5,7,2
TM 4,3,2
多波段彩色变换
植被、农作物、土地利用和湿地分析
TM标准假彩 色合成图像 TM4(R)、 3(G)、2(B)
TM7(R)、 4(G)、2(B)
土壤和植被湿度内容分析;内陆水体定位。植被显示为绿色的阴影
多波段彩色变换
TM3(R)、 2(G)、1(B)
tm1tm2tm3tm4tm5tm6tm7landsattmsubsceneshowingregionaroundalpinforschungszentrumrudolfshttetm741tm572tm543tm432多波段彩色变换tm标准假彩色合成图像tm7r4g植农作物土地利用和湿地分析土壤和植被湿度内容分析
模拟出一副自然色的图象。有时用于海岸线的研究和烟柱的探测。
TM4(R)、 5(G)、3(B)
用于土壤湿度和植被状况的分析。也很好的用于内陆水体和陆地/水体边界的确定。
• TM321(RGB):均是可见光波段,合成结果接近自然色彩。 对浅水透视效果好,可用于监测水体的浊度、含沙量、水体沉 淀物质形成的絮状物、水底地形。一般而言:深水深兰色;浅 水浅兰色;水体悬浮物是絮状影象;健康植被绿色;土壤棕色 或褐色。可用于水库、河口及海岸带研究,但对水陆分界的划 分不合适。 TM453(RGB):2个红外波段、1个红色波段。 对内陆湖泊及河流分辨清楚。植被类型及长势可由棕、绿、橙、 黄等色调分别。能区分土壤含水量(水分越多则越暗)。 TM742(RGB):植被基本都是绿色,城市呈现品红色或紫 色,草地淡绿色,森林深绿色(针叶林色调比阔叶林暗)。能 区分土壤和植被的含水量。适用于水/陆边界划分、土/植被边 界划分,但不适于植被分类。 TM432(RGB):标准假彩色。 植被呈现各种红色调。深红色/亮红色为阔叶林,浅红色为草地 等生物量较小的植被。密集的城市地区为青灰色。最适合用于 植被分类。

波段组合

波段组合

M波段组合2011-03-22 23:00:30| 分类: RS|字号订阅TM波段选择321:真彩色合成,即3、2、1波段分别赋予红、绿、蓝色,则获得自然彩色合成图像,图像的色彩与原地区或景物的实际色彩一致,适合于非遥感应用专业人员使用。

432:标准假彩色合成,即4、3、2波段分别赋予红、绿、蓝色,获得图像植被成红色,由于突出表现了植被的特征,应用十分的广泛,而被称为标准假彩色。

举例:卫星遥感图像示蓝藻暴发情况我们先看一看蓝藻爆发时遥感监测机理。

蓝藻暴发时绿色的藻类生物体拌随着白色的泡沫状污染物聚集于水体表面,蓝藻覆盖区的光谱特征与周围湖面有明显差异。

由于所含高叶绿素A的作用,蓝藻区在LandsatTM2波段具有较高的反射率,在TM3波段反射率略降但仍比湖水高,在TM4波段反射率达到最大。

因此,在TM4(红)、3(绿)、2(蓝)假彩色合成图像上,蓝藻区呈绯红色,与周围深蓝色、蓝黑色湖水有明显区别。

此外,蓝藻暴发聚集受湖流、风向的影响,呈条带延伸,在TM图像上呈条带状结构和絮状纹理,与周围的湖水面也有明显不同。

741:波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。

743:我国利用美国的陆地卫星专题制图仪图像成功地监测了大兴安岭林火及灾后变化。

这是因为TM7波段(2.08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区,能反映植被的最佳波段,并有减少烟雾影响的功能;同时TM7、TM4、TM3(分别赋予红、绿、蓝色)的彩色合成图的色调接近自然彩色,故可通过TM743彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。

541:XX开发区砂石矿遥感调查是通过对陆地卫星TM最佳波段组fefee7合的选择(TM5、TM4、TM1)以及航空、航天多种遥感资料的解译分析进行的,在初步解译查明调查区第四系地貌。

关于TM、ETM数据

关于TM、ETM数据

TM、ETM+数据各个波‎段的说明各个波段的‎特征B1 为蓝色波段‎,该波段位于‎水体衰减系‎数最小的部‎位,对水体的穿‎透力最大,用于判别水‎深,研究浅海水‎下地形、水体浑浊度‎等,进行水系及‎浅海水域制‎图;B2 为绿色波段‎,该波段位于‎绿色植物的‎反射峰附近‎,对健康茂盛‎植物反射敏‎感,可以识别植‎物类别和评‎价植物生产‎力,对水体具有‎一定的穿透‎力,可反映水下‎地形、沙洲、沿岸沙坝等‎特征;B3 为红波段,该波段位于‎叶绿素的主‎要吸收带,可用于区分‎植物类型、覆盖度、判断植物生‎长状况等,此外该波段‎对裸露地表‎、植被、岩性、地层、构造、地貌、水文等特征‎均可提供丰‎富的植物信‎息;B4 为近红外波‎段,该波段位于‎植物的高反‎射区,反映了大量‎的植物信息‎,多用于植物‎的识别、分类,同时它也位‎于水体的强‎吸收区,用于勾绘水‎体边界,识别与水有‎关的地质构‎造、地貌等;B5 为短波红外‎波段,该波段位于‎两个水体吸‎收带之间,对植物和土‎壤水分含量‎敏感,从而提高了‎区分作物的‎能力,此外,在该波段上‎雪比云的反‎射率低,两者易于区‎分,B5 的信息量大‎,应用率较高‎;B6 为热红外波‎段,该波段对地‎物热量辐射‎敏感,根据辐射热‎差异可用于‎作物与森林‎区分、水体、岩石等地表‎特征识别;B7 为短波外波‎段,波长比B5 大,是专为地质‎调查追加的‎波段,该波段对岩‎石、特定矿物反‎应敏感,用于区分主‎要岩石类型‎、岩石水热蚀‎变,探测与交代‎岩石有关的‎粘土矿物等‎;B8 为全色波段‎(Pan),该波段为Lands‎a t-7 新增波段,它覆盖的光‎谱范围较广‎,空间分辨率‎较其他波段‎高,因而多用于‎获取地面的‎几何特征。

=============================波段组合说‎明:TM321‎(RGB):均是可见光‎波段,合成结果接‎近自然色彩‎。

对浅水透视‎效果好,可用于监测‎水体的浊度‎、含沙量、水体沉淀物‎质形成的絮‎状物、水底地形。

遥感影像的波段组合及用途

遥感影像的波段组合及用途

遥感影像的波段组合及用途高光谱遥感数据最佳波段的选择根据自己对具体影像解译的要求进行波段的选择,以提高解译的速度和精度。

若要获得丰富的地质信息和地表环境信息,可以选择TM(7、4、1)波段的组合,TM(7、4、1)波段组合后的影像清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚;若要获得监测火灾前后变化分析的影像,可以选择TM(7、4、3)波段的组合,它们组合后的影像接近自然彩色,所以可通过TM(7、4、3)彩色合成图的分析来掌握林火蔓延与控制及灾后林木的恢复状况;若要获得砂石矿遥感调查情况,可以选择TM(5、4、1)波段组合;用TM影像编制洲地芦苇资源图时,宜用TM(3、4、5)波段组合的影像,分辨率最高,信息最丰富;用MSS图像编制土地利用地图,通常采用MSS(4、5、7)波段的合成影像;若要再区分林、灌、草,则需要选用MSS(5、6、7)波段的组合影像。

遥感影像时相的选择:遥感影像的成像季节直接影响专题内容的解译质量。

对其时相的选择,既要根据地物本身的属性特征,又要考虑同一地物不同地域间的差异。

例如解译农作物的种植面积最好选在8、9月份,因为这时作物成熟了,但还没有收割,方便各种作物的区别;解译海滨地区的芦苇地及其面积宜用5、6月份的影像;解译黄淮海地区盐碱土分布图宜用3、4月份的影像。

高分辨率影像的选择:分辨率的选择要符合自己的实际需要,分辨率高对解译速度和精度都有很大帮助。

随着科技的不断发展,已经有了15~30m分辨率的ETM/TM影像、2.5~5.0m分辨率的SPORT影像、2m分辨率的福卫二号、lm分辨率的ORBVIEW一3/IKONOS、0.6m分辨率的QUICK BIRD等。

法国SPOT-5卫星影像分辨率可达到2.5m,并可获得立体像对,进行立体观测。

SPOT一5卫星上的主要遥感设备是2台高分辨率几何成像仪(HRVIR),其工作谱段有4个,主要任务是监测自然资源分布,特别是监测农业、林业和矿产资源,观测植被生长状态与农田含水量等项,对农作物进行估产,了解城市建设与城市土地利用状况等。

波段组合

波段组合

M波段组合2011-03-22 23:00:30| 分类: RS|字号订阅TM波段选择321:真彩色合成,即3、2、1波段分别赋予红、绿、蓝色,则获得自然彩色合成图像,图像的色彩与原地区或景物的实际色彩一致,适合于非遥感应用专业人员使用。

432:标准假彩色合成,即4、3、2波段分别赋予红、绿、蓝色,获得图像植被成红色,由于突出表现了植被的特征,应用十分的广泛,而被称为标准假彩色。

举例:卫星遥感图像示蓝藻暴发情况我们先看一看蓝藻爆发时遥感监测机理。

蓝藻暴发时绿色的藻类生物体拌随着白色的泡沫状污染物聚集于水体表面,蓝藻覆盖区的光谱特征与周围湖面有明显差异。

由于所含高叶绿素A的作用,蓝藻区在LandsatTM2波段具有较高的反射率,在TM3波段反射率略降但仍比湖水高,在TM4波段反射率达到最大。

因此,在TM4(红)、3(绿)、2(蓝)假彩色合成图像上,蓝藻区呈绯红色,与周围深蓝色、蓝黑色湖水有明显区别。

此外,蓝藻暴发聚集受湖流、风向的影响,呈条带延伸,在TM图像上呈条带状结构和絮状纹理,与周围的湖水面也有明显不同。

741:波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。

743:我国利用美国的陆地卫星专题制图仪图像成功地监测了大兴安岭林火及灾后变化。

这是因为TM7波段(2.08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区,能反映植被的最佳波段,并有减少烟雾影响的功能;同时TM7、TM4、TM3(分别赋予红、绿、蓝色)的彩色合成图的色调接近自然彩色,故可通过TM743彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。

541:XX开发区砂石矿遥感调查是通过对陆地卫星TM最佳波段组fefee7合的选择(TM5、TM4、 TM1)以及航空、航天多种遥感资料的解译分析进行的,在初步解译查明调查区第四系地貌。

landsat-8-卫星-波段介绍-及组合

landsat-8-卫星-波段介绍-及组合

Landsat8卫星包含OLI(Operational Land Imager 陆地成像仪)和TIRS(Thermal Infrared Sensor 热红外传感器)两种传感器。

OLI包括了ETM+的所有波段,为了避免大气吸收部分特征,OLI对波段进行了重新调整,比较大的调整:
1、OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;
2、OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;
3、新增两个波段:海蓝波段(band 1; 0.433–0.453 μm) 主要应用海岸带观测;短波红外波段,又称卷云波段(band 9; 1.360–1.390 μm) 包含水汽强吸收特征,可用于云检测;
4、近红外band5和短波红外band9与MODIS对应的波段更加接近。

表1 Landsat7 Landsat8卫星对比
表2:OLI波段合成
表3:Landsat TM波段合成总结说明
Landsat8波段组合图示:
432波段合成真彩色图像,接近地物真实色彩,图像平淡,色调灰暗
543波段合成标准假彩色图像,地物色彩鲜明,有利于植被(红色)分类,水体识别
564波段合成非标准假彩色图像,红外波段与红色波段合成,水体边界清晰,利于海岸识别;植被有较好显示,但不便于区分具体植被类别
765对大气层穿透能力较强,例如图像中红色方框内云的影响明显减少
652植被类型丰富,便于植被分类
654便于植被分析
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。

Landsat_、MSS、TM和ETM+简介和应用

Landsat_、MSS、TM和ETM+简介和应用

Landsat MSS/TM/ETM 简介和应用LANDSAT是美国NASA的陆地卫星计划(1975年前称“地球资源技术卫星-ERTS”),从1972年开始发射第一颗卫星LANDSAT-1,已发射8颗,Landsat6与1993.1发射失败。

卫星参数Landsat1Landsat2Landsat3Landsat4Landsat5Landsat7Landsat8发射时间1972.7.231975.1.121978.3.51982.7.161984.31999.4.152013.2.11覆盖周期18天18天18天16天16天16天16天扫幅宽度185km185km185km185km185km185km170 180km波段数44477811机载传感器MSS MSS MSS MSS、TM MSS、TM ETM+OLI、TIRS运行情况1978退役1976年失灵,1980年修复,1982年退役1983年退役1983年TM传感器失效,退役2011年11月停止服务2003.5月出现故障运行至今ETM+:主题成像仪Landsats7波段波长(微米)分辨率(米)主要作用ETM+Band1蓝绿波段0.45-0.5230用于水体穿透,分辨土壤植被Band2绿色波段0.52-0.6030分辨植被Band3红色波段0.63-0.6930处于叶绿素吸收区域,用于观测道路/裸露土壤/植被种类效果很好Band4近红外0.76-0.9030用于估算生物数量,TM:MSS:二、常用波段组合:(一)321:真彩色合成,即3、2、1波段分别赋予红、绿、蓝色,则获得自然彩色合成图像,图像的色彩与原地区或景物的实际色彩一致,适合于非遥感应用专业人员使用。

(二)432:标准假彩色合成,即4、3、2波段分别赋予红、绿、蓝色,获得图像植被成红色,由于突出表现了植被的特征,应用十分的广泛,而被称为标准假彩色。

举例:卫星遥感图像示蓝藻暴发情况我们先看一看蓝藻爆发时遥感监测机理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ETM+遥感不同波段的用途(转)
各个波段的特征
B1 为蓝色波段,该波段位于水体衰减系数最小的部位,对水体的穿透力最大,用于判别水
深,研究浅海水下地形、水体浑浊度等,进行水系及浅海水域制图;
B2 为绿色波段,该波段位于绿色植物的反射峰附近,对健康茂盛植物反射敏感,可以识别
植物类别和评价植物生产力,对水体具有一定的穿透力,可反映水下地形、沙洲、沿岸沙坝
等特征;
B3 为红波段,该波段位于叶绿素的主要吸收带,可用于区分植物类型、覆盖度、判断植物
生长状况等,此外该波段对裸露地表、植被、岩性、地层、构造、地貌、水文等特征均可提
供丰富的植物信息;
B4 为近红外波段,该波段位于植物的高反射区,反映了大量的植物信息,多用于植物的识
别、分类,同时它也位于水体的强吸收区,用于勾绘水体边界,识别与水有关的地质构造、
地貌等;
B5 为短波红外波段,该波段位于两个水体吸收带之间,对植物和土壤水分含量敏感,从而
提高了区分作物的能力,此外,在该波段上雪比云的反射率低,两者易于区分,B5 的信息
量大,应用率较高;
B6 为热红外波段,该波段对地物热量辐射敏感,根据辐射热差异可用于作物与森林区分、
水体、岩石等地表特征识别;
B7 为短波外波段,波长比 B5 大,是专为地质调查追加的波段,该波段对岩石、特定矿物
反应敏感,用于区分主要岩石类型、岩石水热蚀变,探测与交代岩石有关的粘土矿物等;
B8 为全色波段(Pan),该波段为 Landsat-7 新增波段,它覆盖的光谱范围较广,空间分
辨率较其他波段高,因而多用于获取地面的几何特征。

波段组合:
TM321(RGB):均是可见光波段,合成结果接近自然色彩。对浅水透视效果好,可用于监测
水体的浊度、含沙量、水体沉淀物质形成的絮状物、水底地形。一般而言:深水深兰色;浅
水浅兰色;水体悬浮物是絮状影象;健康植被绿色;土壤棕色或褐色。可用于水库、河口及
海岸带研究,但对水陆分界的划分不合适。
这种RGB组合模拟出一副自然色的图象。
有时用于海岸线的研究和烟柱的探测。

TM453(RGB):2个红外波段、1个红色波段。对内陆湖泊及河流分辨清楚。植被类型及长
势可由棕、绿、橙、黄等色调分别。能区分土壤含水量(水分越多则越暗)。
用于土壤湿
度和植被状况的分析。也很好的用于内陆水体和陆地/水体边界的确定。

TM742(RGB):植被基本都是绿色,城市呈现品红色或紫色,草地淡绿色,森林深绿色(针
叶林色调比阔叶林暗)。能区分土壤和植被的含水量。适用于水/陆边界划分、土/植被边界
划分,但不适于植被分类。
土壤和植被湿度内容分析;内陆水体定位。植被显示为
绿色的阴影。

TM432(RGB):标准假彩色。植被呈现各种红色调。深红色/亮红色为阔叶林,浅红色为草
地等生物量较小的植被。密集的城市地区为青灰色。最适合用于植被分类。 红外假色。在
植被、农作物、土地利用和湿地分析的遥感方面,这是最常用的波段组合。
TM543(RGB):城镇和农村土地利用的区分;陆地/水体边界的确定。
TM457(RGB):探测云,雪和冰(尤其在高维度地区)。
tm4-tm3/tm4+tm3 NDVI-标准差植被指数;TM波段4:3的不同比率被证明在增强不同
植被类型对比度方面很有用。
===================
类型提取

1.城市与乡镇的提取:TM1+TM7+TM3+TM5+TM6+TM2-TM4
2.乡镇与村落:TM1+TM2+TM3+TM6+TM7-TM4-TM5
3.河流的提取:TM5+TM6+TM7-TM1-TM2-TM4
4.道路的提取:TM6-(TM1+TM2+TM3+TM4+TM5+TM7)
========================
光谱差异
TM1 居民地与河流菜地不易分开.
TM2 居民地与河流菜地不易分
TM3 乡村与菜地不易分
TM4 农田与道路不易分,乡镇,道路,河滩易浑.
TM5 县城与农田不易分
TM6 村庄与河流易混.
========================
融合实例
741
波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次
感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解
译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地
层单元的边界、特殊岩性的展布以及火山机构也显示清楚。

743
TM7波段(2.08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区
,能反映植被的最佳波段;同时TM7、TM4、TM3(分别赋予红、 绿、蓝色)的彩色合成
图的色调接近自然彩色。

754
对不同时期湖泊水位的变化,也可采用不同波段,如用陆地卫星MSS7,MSS5,MSS4合成
的 标准假彩色图像中的蓝色、深蓝色等不同层次的颜色得以区别。从而可用作分析湖泊水
位变化的地理规律

754
陆地卫星图像的标准假彩色 指采用陆地卫星多光谱扫描仪所成的同一图幅的第四波段MS
S4图像、第五波段MSS5图像和第七波段MSS7图像,分别配以兰、绿、红色的彩色合成
图像上的彩色。并称此种合成的图像为陆地卫星标准假彩色图像。在此图像上植被分布显红
色,城镇为兰灰色,水体为兰色、浅兰色(浅水),冰雪为白色等。
543
例如把4、5两波段的赋色对调一下,即5、4、3分别赋予红、绿、蓝色,则获得近似自然

色合成图像,适合于非遥感应用专业人员使用。

543
波段选取及主成份分析 我们的研究采用1995年8月2日的TM数据。对于屏幕显示和屏
幕图
象分析,选用信息量最为丰富的5、4、3波段组合配以红、绿、兰三种颜色生成假彩色合成
图象,这个组合的合成图象不仅类似于自然色,较为符合人们的视觉习惯,而且由于信息
量丰富,能充分显示各种地物影像特征的差别。

453
采取4、5、3波段分别赋红、绿、蓝色合成的图像,色彩反差明显,层次丰富,而且各类地
物的色彩显示规律与常规合成片相似,符合过去常规片的目视判读习惯。

TM321(RGB):均是可见光波段,合成结果接近自然色彩。对浅水透视效果好,可用于监测
水体的浊度、含沙量、水体沉淀物质形成的絮状物、水底地形。一般而言:深水深兰色;浅
水浅兰色;水体悬浮物是絮状影象;健康植被绿色;土壤棕色或褐色。可用于水库、河口及
海岸带研究,但对水陆分界的划分不合适。
这种RGB组合模拟出一副自然色的图象。
有时用于海岸线的研究和烟柱的探测。

TM453(RGB):2个红外波段、1个红色波段。对内陆湖泊及河流分辨清楚。植被类型及长
势可由棕、绿、橙、黄等色调分别。能区分土壤含水量(水分越多则越暗)。
用于土壤湿
度和植被状况的分析。也很好的用于内陆水体和陆地/水体边界的确定。

TM742(RGB):植被基本都是绿色,城市呈现品红色或紫色,草地淡绿色,森林深绿色(针
叶林色调比阔叶林暗)。能区分土壤和植被的含水量。适用于水/陆边界划分、土/植被边界
划分,但不适于植被分类。
土壤和植被湿度内容分析;内陆水体定位。植被显示为
绿色的阴影。

TM432(RGB):标准假彩色。植被呈现各种红色调。深红色/亮红色为阔叶林,浅红色为草
地等生物量较小的植被。密集的城市地区为青灰色。最适合用于植被分类。 红外假色。在
植被、农作物、土地利用和湿地分析的遥感方面,这是最常用的波段组合。
TM543(RGB):城镇和农村土地利用的区分;陆地/水体边界的确定。
TM457(RGB):探测云,雪和冰(尤其在高维度地区)。
tm4-tm3/tm4+tm3 NDVI-标准差植被指数;TM波段4:3的不同比率被证明在增强不同
植被类型对比度方面很有用。

相关文档
最新文档