离散数学_高等教育出版社配套PPT课件_屈婉玲_耿素云_张立昂ch8
离散数学第8章课件PPT,高等教育出版社,屈婉玲,耿素云,张立昂主编
证明
(2) 假设存在x1, x2∈A使得 由合成定理有 f g(x1)=f g(x2)
g(f(x1))=g(f(x2)) 因为g:B→C是单射的, 故 f(x1)=f(x2). 又由于f:A→B是单射的, 所 以x1=x2. 从而证明f g:A→C是单射的. (3)由(1)和(2)得证. 注意:定理逆命题不为真, 即如果f g:A→C是单射(或满射、双 射)的, 不一定有 f:A→B 和 g:B→C都是单射(或满射、双射)的.
16
函数复合与函数性质
定理8.2 设f:A→B, g:B→C (1) 如果 f:A→B, g:B→C是满射的, 则 fg:A→C也是满射的 (2) 如果 f:A→B, g:B→C是单射的, 则 fg:A→C也是单射的 (3) 如果 f:A→B, g:B→C是双射的, 则 fg:A→C也是双射的 证 (1) 任取c∈C, 由g:B→C的满射性, b∈B使得 g(b)=c. 对于这个b, 由 f:A→B的满射性,a∈A使得 f(a)=b. 由合成定理有 fg(a) = g(f(a)) = g(b) = c 从而证明了fg:A→C是满射的
4
实例
例1 设A={1,2,3}, B={a,b}, 求BA. 解BA={ f0, f1, … , f7}, 其中 f0 = {<1,a>,<2,a>,<3,a>} f1 = {<1,a>,<2,a>,<3,b>} f2 = {<1,a>,<2,b>,<3,a>} f3 = {<1,a>,<2,b>,<3,b>} f4 = {<1,b>,<2,a>,<3,a>} f5 = {<1,b>,<2,a>,<3,b>} f6 = {<1,b>,<2,b>,<3,a>} f7 = {<1,b>,<2,b>,<3,b>}
离散数学第2章-高等教育出版社-屈婉玲-耿素云-张立昂--ppt课件
今后在注明中省去置换规则 注意:用等值演算不能直接证明两个公式不等值
8
等值演算的应用举例
证明两个公式不等值 例3 证明 p(qr) 与 (pq)r 不等值 证 方法一 真值表法, 见例1(2)
(pqr)(pqr)(pqr)
m0m1m3 m5m7
非重言式的可满足式
29
主范式的应用
3. 判断两个公式是否等值 例8 用主析取范式判以下每一组公式是否等值
⑴ p(qr) 与 (pq)r ⑵ p(qr) 与 (pq)r 解 p(qr) = m0m1m2m3 m4m5 m7 (pq)r = m0m1m2m3 m4m5 m7 (pq)r = m1m3 m4m5 m7 显见,⑴中的两公式等值,而⑵的不等值.
例如 (pq)r m1m3m5 m6m7 成真赋值为 001, 011, 101, 110, 111, 成假赋值为 000, 010, 100.
类似地,由主合取范式也立即求出成假赋值和成真赋值.
27
主范式的应用
2. 判断公式的类型 设A含n个命题变项. A为重言式 A的主析取范式含全部2n个极小项 A的主合取范式不含任何极大项, 记为1. A为矛盾式 A的主合析取范式含全部2n个极大项 A的主析取范式不含任何极小项, 记为0. A为非重言式的可满足式 A的主析取范式中至少含一个、但不是全 部极小项 A的主合取范式中至少含一个、但不是全 部极大项.
30
主范式的应用
4. 解实际问题 例9 某单位要从A,B,C三人中选派若干人出国考察, 需满足下
述条件: (1) 若A去, 则C必须去; (2) 若B去, 则C不能去; (3) A和B必须去一人且只能去一人. 问有几种可能的选派方案? 解 记 p:派A去, q:派B去, r:派C去 (1) pr, (2) qr, (3) (pq)(pq) 求下式的成真赋值 A=(pr)(qr)((pq)(pq))
《离散数学概述》PPT课件
同 子代数 种
的 积代数 同
类 商代数 型
的 新代数系统
22
半群与群
广群 二元运算的封闭性
结合律
半群
交换律
交换半群
单位元 交换律
独异点
每个元素可逆 交换律
群
交换独异点 实例
Abel群
生成元
Klein群 循环群
有限个元素
有限群
编辑ppt
实例
n元置换群
23
图论
图论是离散数学的重要组成部分,是近代应用数学的重要分支。
由于在计算机内,机器字长总是有限的, 它代表离散的数或其
它离散对象,因此随着计算机科学和技术的迅猛发展,离散数
学就显得重要。
编辑ppt
5
离散数学的内容
数理逻辑: “证明”在计算科学的某些领域至关重要,构 造一个证明和写一个程序的思维过程在本质上是一样的。
组合分析:解决问题的一个重要方面就是计数或枚举对象。
编辑ppt
20
代数系统
近世代数,……,是关于运算的学说,是关于运算规则 的学说,但它不把自己局限在研究数的运算性质上,而 是企图研究一般性元素的运算性质。
——M.Klein
数学之所以重要,其中心原因在于它所提供的数学系统 的丰富多彩;此外的原因是,数学给出了一个系统,以 便于使用这些模型对物理现实和技术领域提出问题,回 答问题,并且也就探索了模型的行为。
1736年是图论历史元年,因为在这一年瑞士数学家欧拉(Euler) 发表了图论的首篇论文——《哥尼斯堡七桥问题无解》,所以人
们普遍认为欧拉是图论的创始人。
1936年,匈牙利数学家寇尼格(Konig)出版了图论的第一部专 著《有限图与无限图理论》,这是图论发展史上的重要的里程碑 ,它标志着图论将进入突飞猛进发展的新阶段。
离散数学高等教育出版社配套PPT课件屈婉玲耿素云张立昂
子群判定定理2
定理10.6 (判定定理二) 设G为群,H是G的非空子集. H是G的子群当且仅当a,b∈H 有ab1∈H.
证 必要性显然. 只证充分性. 因为H非空,必存在a∈H. 根据给定条件得aa1∈H,即e∈H. 任取a∈H, 由e,a∈H 得 ea1∈H,即a1∈H. 任取a,b∈H,知b1∈H. 再利用给定条件得a(b1) 1∈H,即 ab∈H. 综合上述,可知H是G的子群.
13
10.2 子群与群的陪集分解
定义10.5 设G是群,H是G的非空子集, (1) 如果H关于G中的运算构成群,则称H是G的子群, 记作
H≤G. (2) 若H是G的子群,且HG,则称H是G的真子群,记作
H<G.
例如 nZ (n是自然数) 是整数加群<Z,+> 的子群. 当n≠1时, nZ是Z的真子群.
11
实例
例 5 设G是群,a,b∈G是有限阶元. 证明
(1) |b1ab| = |a|
(2) |ab| = |ba|
证 (1) 设 |a| = r,|b1ab| = t,则有
(b1ab)r (b1ab)(b1ab)...(b1ab)
r个
b1arb b1eb e
从而有t | r. 另一方面,由 a = (b1)1(b1ab)b1可知 r | t. 从而 有 |b1ab| = |a|.
实例: <Z,+>和<R,+>是无限群,<Zn,>是有限群,也是 n 阶群. Klein四元群是4阶群. <{0},+>是平凡群. 上述群都是交换群,n阶(n≥2)实可逆矩阵集合关于矩阵乘法 构成的群是非交换群.
5
群中元素的幂
离散数学第三版[屈婉玲,耿素云,张立昂编著]2014年版
离散数学第三版[屈婉玲,耿素云,张立昂编著]2014年版离散数学第三版作者:屈婉玲,耿素云,张立昂著出版时间:2014丛编项: 21世纪大学本科计算机专业系列教材内容简介《离散数学(第3版)/21世纪大学本科计算机专业系列教材》是参照ACM和IEEE最新推出的Computing CurricuLa,根据教育部高等学校计算机科学与技术教学指导委员会最新编制的“高等学校计算机科学与技术专业规范”中制定的关于离散数学的知识结构和体系撰写的.全书共14章,内容包含证明技巧、数理逻辑、集合与关系、函数、组合计数、图和树、初等数论、离散概率、代数系统等,《离散数学(第3版)/21世纪大学本科计算机专业系列教材》体系严谨,文字精练,内容翔实,例题丰富,注重与计算机科学技术的实际问题相结合,并选配了大量难度适当的习题,适合教学.另外,《离散数学(第3版)/21世纪大学本科计算机专业系列教材》有配套的习题解答与学习指导等教学辅导用书,以及用于课堂教学的PPT演示文稿和在线数字资源等,以满足教学需要。
本书适合作为高等学校计算机及相关专业本科生“离散数学”课程的教材,也可以作为对离散数学感兴趣的人员的入门参考书。
目录第1章数学语言与证明方法1.1 常用的数学符号1.1.1 集合符号1.1.2 运算符号1.1.3 逻辑符号1.2 集合及其运算1.2.1 集合及其表示法1.2.2 集合之间的包含与相等1.2.3 集合的幂集1.2.4 集合的运算1.2.5 基本集合恒等式及其应用1.3 证明方法概述1.3.1 直接证明法和归谬法1.3.2 分情况证明法和构造性证明法1.3.3 数学归纳法1.4 递归定义习题第2章命题逻辑2.1 命题逻辑基本概念2.1.1 命题与联结词2.1.2 命题公式及其分类2.2 命题逻辑等值演算2.2.1 等值式与等值演算2.2.2 联结词完备集2.3 范式2.3.1 析取范式与合取范式2.3.2 主析取范式与主合取范式2.4 推理2.4.1 推理的形式结构2.4.2 推理的证明.2.4.3 归结证明法2.4.4 对证明方法的补充说明习题第3章一阶逻辑3.1 一阶逻辑基本概念3.1.1 命题逻辑的局限性3.1.2 个体词、谓词与量词3.1.3 一阶逻辑命题符号化3.1.4 一阶逻辑公式与分类3.2 一阶逻辑等值演算3.2.1 一阶逻辑等值式与置换规则3.2.2 一阶逻辑前束范式习题第4章关系4.1 关系的定义及其表示4.1.1 有序对与笛卡儿积4.1.2 二元关系的定义4.1.3 二元关系的表示4.2 关系的运算4.2.1 关系的基本运算4.2.2 关系的幂运算4.3 关系的性质4.3.1 关系性质的定义和判别4.3.2 关系的闭包4.4 等价关系与偏序关系4.4.1 等价关系4.4.2 等价类和商集4.4.3 集合的划分4.4.4 偏序关系4.4.5 偏序集与哈斯图习题第5章函数5.1 函数的定义及其性质5.1.1 函数的定义……第6章图第7章树及其应用第8章组合计数基础第9章容斥原理第10章递推方程与生成函数第11章初等数论第12章离散概率第13章初等数论和离散概率的应用第14章代数系统参考文献。
《离散数学》,屈婉玲、耿素云-KefeiChen陈克非
集合的表示法
列举法 如 A={ a, b, c, d }, N={0,1,2,…} 描述法{ x | P(x) } 如N={ x | x是自然数 } 说明: (1)集合中的元素是确定的. (2)集合中的元素各不相同. 如, {1,2,3}={1,1,2,3} (3)集合中的元素没有次序. 如, {1,2,3}={3,1,2}={1,3,1,2,2} (4)有时两种方法都适用, 可根据需要选用. 常用集合 自然数集N, 整数集Z, 正整数集Z+, 有理数集Q, 非零有理数集Q*, 实数集R, 非零实数集R*, 复数集C, 区间[a,b],(a,b)等
4
离散数学课程介绍
• 研究对象:离散量(自然数、真假值、字母 表等)
• 研究内容:离散量的结构与关系(数理逻
辑、集合论、图论、代数系统、组合计数、初 等数论、离散概率、有限自动机、图灵机等)
• 预修课程:线性代数(高等代数) • 后继课程:数据结构、数据库等
5
教材与参考书
• 教材:《离散数学》,屈婉玲、耿素云、张立昂 编,清华大学出版社, 2013年第三版;
12
包含与相等
包含(子集) A B x (xA xB) 不包含 A ⊈ B x (xA xB) 相等 A=BABBA 不相等 ABA⊈BB⊈A 真包含(真子集) A B A B A B 例如, A={1,2,3}, B={ x | xR|x|1 }, C={ x | xRx2=1 }, D={-1,1}, C B, C B, C ⊈ A, A ⊈ B, B ⊈ A, C = D 性质 (1) A A (2) A B B C A C
• 参考书1:《离散数学》,屈婉玲、耿素云、张 立昂编,高等教育出版社, 2015年3月第二版;
离散数学(第2版)
成书过程
修订过程
出版工作
《离散数学(第2版)》由屈婉玲、耿素云、张立昂担任主编。具体编写分工如下:第1章~第5章、第14章~ 第18由耿素云完成,第6章~第13章由屈婉玲完成,第19章由张立昂完成 。
离散数学(第2版)
高等教育出版社出版的图书
01 成书过程
03 教材目录 05 教材特色
目录
02 内容简介 04 教学资源 06 作者简介
《离散数学(第2版)》是由屈婉玲、耿素云、张立昂主编,2015年由高等教育出版社出版的普通高等教育 “十一五”国家级规划教材。该教材可作为普通高等学校计算机科学与技术、软件工程、信息与计算科学等专业 本科生离散数学课程教材,也可以供其他专业学生和科技人员参考。
2015年3月24日,该教材由高等教育出版社出版 。
内容简介
《离散数学(第2版)》分为6大部分共19个章节的内容。此外,在每一章节下还设有习题。 第1部分数理逻辑:主要包括命题逻辑的基本概念、命题逻辑等值演算、命题逻辑的推理理论、一阶逻辑基本 概念、一阶逻辑等值演算与推理。 第2部分集合论:主要包括集合代数、二元关系、函数。 第3部分代数结构:主要包括代数系统、群与环、格与布尔代数。 第4部分组合数学:主要包括基本的组合计数公式、递推方程与生成函数 第5部分图论:主要包括图的基本概念,欧拉图与哈密顿图,树,平面图,支配集、覆盖集、独立集、匹配与 着色。 第6部分初等数论:主要包括初等数论 。
作者简介
屈婉玲:女,博士生导师,北京大学信息科学技术学院、软件与微电子学院教授,主要从事算法设计与分析、 软件形式化方法方面的研究。获得2004年度北京市优秀教师奖 。
最新离散数学_屈婉玲_耿素云_张立昂_主编_高等教育出版社_课后最全答案_文档
第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。
离散数学第五版第四章(耿素云屈婉玲张立昂编著) ppt课件
证明:设A=、B={1}、C={2}、D={3}
(AB)×(CD)={<1,2>、<1,3>}
(A×C)(B×D)={<2,1>、<2,3>}
所以:等式不成立 (3)(A-B)×(C-D)=(A×C)-(B×D)
证明:设A={1}、B={1}、C={2}、D={3}
(A-B)×(C-D)=
(xAyB) (xAyC)
<x,y>A×B <x,y>A×C
<x,y>(A×B)(A×C) PPT课件
9
4.1迪卡尔乘积与二元关系
5) 迪卡尔乘积运算对并和交运算满足分配律,即: (4)(BC)×A= (B×A)(C×A)
证明: 对于任意的<x,y>
<x,y>(BC)×A
PPT课件
24
4.1迪卡尔乘积与二元关系
例5:设A={a,b},R是P(A)上的包含关系, R={<x,y>|x,yP(A)xy}
解:P(A)={,{a},{b},{a,b}} R={<, >,<,{a}>,<,{b}>,<,{a,b}>, <{a},{a}>,<{a},{a,b}>,<{b},{b}>, <{b},{a,b}>,<{a,b},{a,b}>}
PPT课件
16
4.1迪卡尔乘积与二元关系
例4:设A,B,C,D为任意集合,判断真假。 (1)A×B=A×CB=C 证明:若A=,B={1},C={2} 则A×B=A×C=,而BC。 所以:命题真假不定
PPT课件
17
高教离散数学修订版耿素云屈婉玲Part数理逻辑部分
目录
• 数理逻辑基本概念 • 谓词逻辑基础 • 形式系统基本概念 • 命题演算系统PCN • 谓词演算系统QCN • 数理逻辑在离散数学中应用
01 数理逻辑基本概念
命题与逻辑联结词
命题
01
一个可以判断真假的陈述句称为命题。
逻辑联结词
02
用来连接命题,形成复合命题的词语,如“且”、“或”、“
其他领域数理逻辑应用
计算机科学中的数理逻辑
数理逻辑在计算机科学中具有广泛的应用,如命题逻辑和谓词逻辑在程序设计和软件测试中的应用,以及数 理逻辑在人工智能和数据库等领域的应用。
物理学中的数理逻辑
数理逻辑在物理学中也有一定的应用,如量子力学中的逻辑结构和推理规则,以及数理逻辑在相对论和统计 力学等领域的应用。
推理规则
在谓词逻辑中,常用的推理规则 有假言推理、拒取式、析取三段 论、双条件推理等。这些规则可 以用于推导新的命题或证明某个 命题的正确性。
量词消去规则
在推理过程中,有时需要消去量 词,以便更方便地处理命题。全 称量词消去规则是将∀xP(x)转化 为P(a),其中a是个体域中的任意 个体;存在量词消去规则是将 ∃xP(x)转化为P(c),其中c是个体 域中满足P的某个个体。
PCN中重言式和矛盾式判定方法
01
重言式(Tautology)是指在所 有赋值下都为真的命题公式,如 P∨¬P。
02
矛盾式(Contradiction)是指 在所有赋值下都为假的命题公式, 如P∧¬P。
03
判定重言式和矛盾式的方法包 括真值表法、等价变换法和主 析取范式法等。
PCN中推理规则和证明方法
社会科学中的数理逻辑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
解答
(2) 令 f:[0,1]→[1/4,1/2], f(x)=(x+1)/4 (3) 将Z中元素以下列顺序排列并与N中元素对应: Z: 011 2 23 3 … ↓↓ ↓ ↓ ↓ ↓ ↓ N: 0 1 2 3 4 5 6 … 这种对应所表示的函数是: 0 2x f:Z N, f ( x ) 2 x 1 x 0 (4) 令 f:[π/2,3π/2]→[1,1] f(x) = sinx
14
8.2 函数的复合与反函数
主要内容 复合函数基本定理 函数的复合运算与函数性质 反函数的存在条件 反函数的性质
15
复合函数基本定理
定理8.1 设F, G是函数, 则FG也是函数, 且满足 (1) dom(FG)={x|x∈domF∧F(x)∈domG} (2) x∈dom(FG)有FG(x)=G(F(x)) 证 先证明FG是函数. 因为F, G是关系, 所以FG也是关系. 若对某个x∈dom(FG) 有 xF Gy1和 xFGy2, 则 <x, y1>∈FG∧<x, y2>∈FG t1(<x,t1>∈F∧<t1,y1>∈G)∧t2(<x,t2>∈F∧<t2,y2>∈G) t1t2(t1=t2∧<t1,y1>∈G∧<t2,y2>∈G (F为函数) y1=y2 (G为函数) 所以 FG 为函数 16
5
函数的像和完全原像
定义8.5 设函数 f:A→B, A1A, B1B (1) A1在 f 下的像 f(A1) = { f(x) | x∈A1}, 函数的像 f(A) (2) B1在 f 下的完全原像 f 1(B1)={x|x∈A∧f(x)∈B1} 注意: 函数值与像的区别:函数值 f(x)∈B, 像f(A1)B 一般说来 f 1(f(A1))≠A1, 但是A1f 1(f(A1))
定理8.3 设 f:AB, 则 f = f IB = IAf (证明略)
20
实例
考虑集合A={a1,a2,a3}, B={b1,b2,b3,b4}, C={c1,c2,c3}. 令 f={<a1,b1>,<a2,b2>,<a3,b3>} g={<b1,c1>,<b2,c2>,<b3,c3>,<b4,c3>} f g={<a1,c1>,<a2,c2>,<a3,c3>} 那么 f:A→B和f g:A→C是单射的, 但g:B→C不是单射的. 考虑集合A={a1,a2,a3}, B={b1,b2,b3}, C={c1,c2}. 令 f={<a1,b1>,<a2,b2>,<a3,b2>} g={<b1,c1>,<b2,c2>,<b3,c2>} f g={<a1,c1>,<a2,c2>,<a3,c2>} 那么g:B→C 和 f g:A→C是满射的, 但 f:A→B不是满射的.
3
从A到B的函数
定义8.3 设A, B为集合, 如果 f 为函数, domf=A, ranfB, 则称 f 为从A到B的函数, 记作 f:A→B. 例 f:N→N, f(x)=2x 是从N到N的函数, g:N→N, g(x)=2 也是从N到N的函数.
定义8.4 所有从A到B的函数的集合记作BA, 符号化表示为 BA = { f | f:A→B } |A|=m, |B|=n, 且m, n>0, |BA|=nm A=, 则BA=B={} A≠且B=, 则BA=A=
17
推论
推论1 设F, G, H为函数, 则(FG)H和F(GH)都是函数, 且 (FG)H=F(GH) 证 由上述定理和运算满足结合律得证. 推论2 设 f:A→B, g:B→C, 则 fg:A→C, 且x∈A都有 fg(x)=g(f(x)) 证 由上述定理知 fg是函数, 且 dom(fg)={x|x∈domf∧f(x)∈domg} ={x|x∈A∧f(x)∈B}=A ran(fg) rang C 因此 fg:A→C, 且x∈A有 fg(x)=g(f(x))
18
函数复合与函数性质
定理8.2 设f:A→B, g:B→C (1) 如果 f:A→B, g:B→C是满射的, 则 fg:A→C也是满射的 (2) 如果 f:A→B, g:B→C是单射的, 则 fg:A→C也是单射的 (3) 如果 f:A→B, g:B→C是双射的, 则 fg:A→C也是双射的 证 (1) 任取c∈C, 由g:B→C的满射性, b∈B使得 g(b)=c. 对于这个b, 由 f:A→B的满射性,a∈A使得 f(a)=b. 由合成定理有 fg(a) = g(f(a)) = g(b) = c 从而证明了fg:A→C是满射的
第八章 函数
主要内容 函数的定义与性质 函数定义 函数性质 函数运算 函数的逆 函数的合成 双射函数与集合的基数
1
8.1 函数的定义与性质
主要内容 函数定义与相关概念 函数定义 函数相等 从A到B的函数f:AB BA 函数的像与完全原像 函数的性质 单射、满射、双射函数的定义与实例 构造双射函数 某些重要的函数
2
函数定义
定义8.1 设 F 为二元关系, 若x∈domF 都存在唯一的 y∈ranF 使 xFy 成立, 则称 F 为函数 对于函数F, 如果有 xFy, 则记作 y=F(x), 并称 y 为F 在 x 的值. 例 F1={<x1,y1>,<x2,y2>,<x3,y2>} F2={<x1,y1>,<x1,y2>} F1是函数, F2不是函数 定义8.2 设F, G 为函数, 则 F=G FG∧GF 如果两个函数F 和 G 相等, 一定满足下面两个条件: (1) domF=domG (2) x∈domF=domG 都有F(x)=G(x) 函数F(x)=(x21)/(x+1), G(x)=x1不相等, 因为 domFdomG.
13
实例
例4 (1) 偏序集<P({a,b}),R>, <{0,1},≤>, R为包含关系, ≤为 一般的小于等于关系, 令 f:P({a,b})→{0,1}, f()=f({a})=f({b})=0, f({a,b})=1, f 是单调递增的, 但不是严格单调递增的 (2) A的每一个子集 A’都对应于一个特征函数, 不同的子集对 应于不同的特征函数. 例如A={a,b,c}, 则有 ={<a,0>,<b,0>,<c,0>},{a,b}={<a,1>,<b,1>,<c,0>} (3) 不同的等价关系确定不同的自然映射, 恒等关系确定的自 然映射是双射, 其他自然映射一般来说只是满射. 例如 A={1,2,3}, R={<1,2>,<2,1>}∪IA g: A→A/R, g(1)=g(2)={1,2}, g(3)={3}
12
某些重要函数
(4) 设A为集合, 对于任意的A'A, A'的特征函数 A ' :A→{0,1}定义为 A'(a)=1, a∈A' A'(a)=0, a∈AA'
(5) 设R是A上的等价关系, 令 g:A→A/R g(a)=[a], a∈A 称 g 是从 A 到商集 A/R 的自然映射
7
例题解答
解 (1) f:R→R, f(x)=x2+2x1 在x=1取得极大值0. 既不是单射也不是满射的 (2) f:Z+→R, f(x)=lnx 是单调上升的, 是单射的. 但不满射, ranf={ln1, ln2, …}. (3) f:R→Z, f(x)= x 是满射的, 但不是单射的, 例如f(1.5)=f(1.2)=1 (4) f:R→R, f(x)=2x+1 是满射、单射、双射的, 因为它是单调函数并且ranf=R (5) f:R+→R+, f(x)=(x2+1)/x 有极小值 f(1)=2. 该函数既不是单射的也不是满射的
x / 2 若x为偶数 例 设 f:N→N, 且 f ( x ) x 1 若x为奇数
令A={0,1}, B={2}, 那么有 f(A) = f( {0,1}) = { f(0), f(1)}={0,2} f 1(B) = f 1({2})={1,4}
6
函数的性质
定义8.6 设 f:A→B, (1) 若 ranf=B, 则称 f:A→B是满射的 (2) 若 y∈ranf 都存在唯一的 x∈A 使得 f(x)=y, 则称 f:A→B 是单射的 (3) 若 f:A→B 既是满射又是单射的, 则称 f:A→B是双射的 例2 判断下面函数是否为单射, 满射, 双射的, 为什么? (1) f:R→R, f(x) = x2+2x1 (2) f:Z+→R, f(x) = lnx, Z+为正整数集 (3) f:R→Z, f(x) = x (4) f:R→R, f(x)=2x+1 (5) f:R+→R+, f(x)=(x2+1)/x, 其中R+为正实数集.
11
某些重要函数
定义8.7 (1)设 f:A→B, 如果存在c∈B使得对所有的 x∈A都有 f(x)=c, 则称 f:A→B是常函数. (2) 称 A上的恒等关系IA为A上的恒等函数, 对所有的x∈A都 有IA(x)=x. (3) 设<A, ≼>, <B, ≼>为偏序集,f:A→B,如果对任意的 x1, x2∈A, x1≺x2, 就有 f(x1)≼ f(x2), 则称 f 为单调递增的;如 果对任意的x1, x2∈A, x1≺x2, 就有f(x1) ≺f(x2), 则称 f 为严 格单调递增的. 类似的也可以定义单调递减和严格单调递 减的函数