材料亚稳态

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章材料的亚稳态

材料的稳定状态是指其体系自由能最低时的平衡状态,通常相图中所显示的即是稳定的平衡状态。但由于种种因素,材料会以高于平衡态时自由能的状态存在,处于一种非平衡的亚稳态。同一化学成分的材料,其亚稳态时的性能不同于平衡态时的性能,而且亚稳态可因形成条件的不同而呈多种形式,它们所表现的性能迥异,在很多情况下,亚稳态材料的某些性能会优于其处于平衡态时的性能,甚至出现特殊的性能。因此,对材料亚稳态的研究不仅有理论上的意义,更具有重要的实用价值。

材料在平衡条件下只以一种状态存在,而非平衡的亚稳态则可出现多种形式,大致有以下几种型:

1).细晶组织。当组织细小时,界面增多,自由能升高,故为亚稳状态。其中突出的例子是超细的纳米晶组织,其晶界体积可占材料总体积的50%以上;

2).高密度晶体缺陷的存在。晶体缺陷使原子偏离平衡位置,晶体结构排列的规则性下降,故体系自由能增高。另外,对于有序合金,当其有序度下降,甚至呈无序状态(化学无序)时,也使自由能升高;

3).形成过饱和固溶体。即溶质原子在固溶体中的浓度超过平衡浓度,甚至在平衡状态是互不溶解的组元发生了相互溶解;

4).发生非平衡转变,生成具有与原先不同结构的亚稳新相,例如钢及合金中的马氏体。贝氏体,以及合金中的准晶态相等;

5).由晶态转变为非晶态,由结构有序变为结构无序,自由能增高。

9.1纳米晶材料

霍尔—佩奇(Hall-Petch)公式指出了多晶体材料的强度与其晶粒尺寸之间的关系,晶粒越细小则强度越高。但通常的材料制备方法至多只能获得细小到微米级的晶粒,霍尔—佩奇公式的验证也只是到此范围。如果晶粒更为微小时,材料的性能将如何变化?制得这种超细晶材料,是一个留待解决的问题。自20世纪80年代以来,随着材料制备新技术的发展,人们开始研制出晶粒尺寸为纳米(nm)级的材料,并发现这类材料不仅强度更高(但不符合霍尔一佩奇公式),其结构和各种性能都具有特殊性,引起了极大的兴趣和关注。纳米晶材料(或称纳米结构材料)已成为国际上发展新材料领域中的一个重要内容,并在材料科学和凝聚态物理学科中引出了新

的研究方向——纳米材料学。

9.1.1纳米晶材料的结构

纳米晶材料(纳米结构材料)的概念最早是由H.Gleiter出的,这类固体是由(至少在一个方向上)尺寸为几个纳米的结构单元(主要是晶体)所构成。图9.2表示纳米晶材料的二维硬球模型,不同取向的纳米尺度小晶粒由晶界联结在一起,由于晶粒极微小,晶界所占的比例就相应的增大。纳米晶材料是一种非平衡态的结构,其中存在大量的晶体缺陷。

纳米材料也可由非晶物质组成,例如:半晶态高分子聚合物是由厚度为纳米级的晶态层和非晶态层相间地构成的(见图9.3),故是二维层状纳米结构材料。又如纳米玻璃的组成相均为非晶态,它是由纳米尺度的玻璃珠和界面层所组成,如图9.4所示,由不同化学成分物相所组成的纳米晶材料,通常称为纳米复合材料。

9.1.2 纳米晶材料的性能

纳米结构材料因其超细的晶体尺寸(与电子波长、平均自由程等为同一数量级)和高体积分数的晶界(高密度缺陷)而呈现特殊的物理、化学和力学性能。表9.1所列的一些纳米晶材料与通常多晶体或非晶态时的性能比较,明显地反映了其变化特点。

标9.1 纳米晶金属与通常多晶或非晶的性能

性能单位金属多晶单晶纳米晶热膨胀系数10-6K-1Cu 16 18 31 比热容(295K) J/(g×K) Pd 0.24 - 0.37 密度g/cm3 Fe 7.9 7.5 6 弹性模量GPa Pd 123 - 88 剪切模量GPa Pd 43 - 32 断裂强度MPa Fe-1.8%C 700 - 8000 屈服强度MPa Cu 83 - 185

饱和磁化强度(4K)

4p×

10-7Tm3/kg

Fe 222 215 130

磁化率

4p×

10-9Tm3/kg

Sb -1 -0.03 20

超导临界温

K Al 1.2 - 3.2

扩散激活能eV Ag于Cu

2.0 - 0.39

纳米晶材料的力学性能远高于其通常多晶状态,表9.1中所举的高碳铁(质量分数=1.8%)就是一个突出的例子,其断裂强度由通常的700MPa提高到8000MPa,增加达1140%。但一些实验结果表明霍尔¾佩奇公式的强度与晶粒尺寸关系并不延续到纳米晶材料,这是因为霍尔一佩奇公式是根据位错塞积的强化作用而导出的,当晶粒尺寸为纳米级时,晶粒中可存在的位错极少,甚至只有一个,故霍尔一佩奇公式就不适用了;此外,纳米晶材料的晶界区域在应力作用下会发生弛豫过程而使材料强度下降;再者,强度的提高不能超过晶体的理论强度,晶粒变细使强度提高应受此限制。

纳米晶微粒之间能产生量子输运的隧道效应、电荷转移和界面原子耦合等作用,故纳米材料的物理性能也异常于通常材料。纳米晶导电金属的电阻高于多晶材料,因为晶界对电子有散射作用,当晶粒尺寸小于电子平均自由程时,晶界散射作用加强,电阻及电阻温度系数增加。但纳米半导体材料却具有高的电导率,如纳米硅薄膜的室温电导率高于多晶硅3个数量级,高于非晶硅达5个数量级。纳米晶材料的磁性也不同于通常多晶材料,纳米铁磁材料具有低的饱和磁化强度、高的磁化率和低的矫顽力,

纳米材料的其他性能,如超导临界温度和临界电流的提高、特殊的光学性质、触媒催化作用等也是引人注目的。

9.1.3 纳米晶材料的形成

纳米晶材料可由多种途径形成,主要归纳于以下四方面。

(1)以非晶态(金属玻璃或溶胶)为起始相,使之在晶化过程中形成大量的晶核而生长成为纳米晶材料。

(2)对起始为通常粗晶的材料,通过强烈地塑性形变(如高能球磨、高速应变、爆炸成形等手段)或造成局域原子迁移(如高能粒子辐照、火花刻蚀等)使之产生高密度缺陷而致自由能升高,转变形成亚稳态纳米晶。

(3)通过蒸发、溅射等沉积途径,如物理气相沉积(PVD)、化学气相沉积(CVD)、电化学方法等生成纳米微粒然后固化,或在基底材料上形成纳米晶薄膜材料。

(4)沉淀反应方法,如溶胶一凝胶(sol-gel),热处理时效沉淀法等,析出纳米微粒。

9.2 准晶态

相关文档
最新文档