北师版八年级数学上册第四章综合检测题
北师大版八年级数学上册第四章达标测试卷附答案
北师大版八年级数学上册第四章达标测试卷一、选择题(每题3分,共30分)1.下列表示y是x的函数的是()2.下列函数中,是一次函数的是()A.y=-8x B.y=1 xC.y=(m+1)x+1 D.y=8x2+13.一次函数y=2x+4的图象与y轴的交点坐标是()A.(0,-4) B.(0,4) C.(2,0) D.(-2,0) 4.若直线y=kx+b经过第二、三、四象限,则()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 5.一次函数y=-3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则() A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y26.对于函数y=-3x+1,下列结论正确的是()A.它的图象必经过点(-1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y的值随x值的增大而增大7.如图,直线y=kx+b经过点A,B,则k的值为()A.3 B.32 C.23D.-32(第7题)(第8题)8.如图,它是小明从学校到家行进的路程s(单位:m)与时间t(单位:min)的函数图象.观察图象,从中得到如下信息,其中不正确...的是() A.学校离小明家1 000 mB.小明用了20 min到家C.小明前10 min走了路程的一半D.小明后10 min比前10 min走得快9.函数y=ax+b的图象如图所示,则函数y=bx+a的大致图象正确的是()10.一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的距离s(km)与行驶时间t(h)的函数关系如图所示,则下列结论中错误..的是()A.甲、乙两地的路程是400 kmB.慢车行驶速度为60 km/hC.相遇时快车行驶了150 kmD.快车出发后4 h到达乙地二、填空题(每题3分,共30分)11.已知y=(k-4)x|k|-3是正比例函数,则k=________.12.已知直线y=kx+b,若k+b=-5,kb=6,那么该直线不经过第________象限.13.若点(m,n)在函数y=2x+1的图象上,则2m-n=________.14.已知点(-3,2),(a,a+1)在函数y=kx-1的图象上,则k=________,a =________.15.直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解是__________.16.一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的表达式为______________.17.某公园的门票实行的收费标准是:每天进园前20人(含20人)每人20元,超过20人时,超过部分每人加收10元,则应收门票费用y(元)与游览人数x(x>20)之间的函数表达式为__________________________________.18.某天,某巡逻艇凌晨1:00出发巡逻,预计准点到达指定区域,匀速行驶一段时间后,因出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该巡逻艇行驶的路程y(单位:n mile)与所用时间t(单位:h)的函数图象,则该巡逻艇原计划准点到达的时刻是__________.(第18题)(第20题)19.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(-2,0),且两直线与y 轴围成的三角形面积为4,那么b1-b2=________.20.已知A地在B地正南方3 km处,甲、乙两人同时分别从A,B两地向正北方向匀速直行,他们与A地的距离s(单位:km)与所行时间t(单位:h)之间的函数关系的图象如图中的OC和FD所示.当他们行走3 h后,他们之间的距离为________km.三、解答题(21,22题每题8分,23,24题每题10分,其余每题12分,共60分)21.已知一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k,b的值;(2)若一次函数y=kx+b的图象与x轴的交点为A(a,0),求a的值.22.如图,正比例函数y=2x的图象与一次函数y=-3x+k的图象交于点P(1,m),求:(1)k的值;(2)两条直线与x轴围成的三角形的面积.23.已知一次函数y=kx+b的图象经过点A(0,2)和点B(-a,3),且点B在正比例函数y=-3x的图象上.(1)求a的值;(2)求一次函数的表达式,并画出它的图象;(3)若P(m,y1),Q(m-1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.24.某销售公司推销一种产品,设x(件)是推销产品的数量,y(元)是付给推销员的月报酬.公司付给推销员的月报酬的两种方案如图所示,推销员可以任选一种与公司签订合同,看图解答下列问题:(1)求每种方案y关于x的函数表达式;(2)当选择方案一所得报酬高于选择方案二所得报酬时,求x的取值范围.25.如图,直线y=kx+6与x轴、y轴分别交于点E,F,点E的坐标为(-8,0),点A的坐标为(-6,0),点P(x,y)是第二象限内的直线上的一个动点.(1)求k的值;(2)在点P的运动过程中,写出△OP A的面积S与x的函数表达式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置(求点P的坐标)时,△OP A的面积为27 8?26.周末,小明骑自行车从家里出发到野外郊游.他从家出发0.5 h后到达甲地,游玩一段时间后按原速前往乙地.小明离家1 h 20 min后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y(单位:km)与小明离家时间x(单位:h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间.(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10 min到达乙地,求从家到乙地的路程.答案一、1.D 2.A 3.B 4.D 5.B 6.C7.B8.C9.B10.C二、11.-412.一13.-114.-1;-115.x=216.y=-x+1017.y=30x-200(x>20)18.7:0019.420.1.5三、21.解:(1)将M,N的坐标代入一次函数表达式,得b=2,k+b=3,解得k=1.故k,b的值分别是1和2.(2)将k=1,b=2代入y=kx+b,得y=x+2.因为点A(a,0)在y=x+2的图象上,所以0=a+2.所以a=-2.22.解:(1)因为正比例函数y=2x的图象与一次函数y=-3x+k的图象交于点P(1,m),所以把点P(1,m)的坐标代入,得m=2,m=-3+k,解得k=5.(2)由(1)可得点P的坐标为(1,2),故所求三角形的高为2.由(1)可得一次函数的表达式为y=-3x+5.令y=0,则0=-3x+5,得x=5 3.所以一次函数的图象与x轴交点的横坐标为5 3.所以所求三角形的面积为12×53×2=53.23.解:(1)因为点B(-a,3)在正比例函数y=-3x的图象上,所以3=-3×(-a),则a=1.(2)由(1)得点B的坐标为(-1,3).将点A(0,2)和点B(-1,3)的坐标代入y=kx+b,得b=2,-k+b=3,解得k=-1.所以一次函数的表达式为y =-x +2.画图象略. (3)因为-1<0,所以y 随x 的增大而减小. 又因为m >m -1, 所以y 1<y 2.24.解:(1)设方案一的表达式为y =kx ,把(40,1 600)代入表达式,可得k =40,故表达式为y =40x ;设方案二的表达式为y =ax +b ,把(40,1 400)和(0,600)代入表达式,可得a =20,b =600,故表达式为y =20x +600.(2)根据两直线相交可得方程40x =20x +600,解得x =30.结合图象可得,当x >30时,选择方案一所得报酬高于选择方案二所得报酬. 25.解:(1)因为点E (-8,0)在直线y =kx +6上,所以-8k +6=0.所以k =34.(2)由(1)得y =34x +6,所以S =12×6×⎝ ⎛⎭⎪⎫34x +6. 所以S =94x +18(-8<x <0).(3)由S =94x +18=278得x =-132,则y =34×⎝ ⎛⎭⎪⎫-132+6=98, 所以P ⎝ ⎛⎭⎪⎫-132,98.故当P 运动到点⎝ ⎛⎭⎪⎫-132,98处时,△OP A 的面积为278.26.解:(1)观察图象,可知小明骑车的速度为100.5=20(km/h),在甲地游玩的时间是1-0.5=0.5(h).(2)妈妈驾车的速度为20×3=60(km/h).如图,设直线BC 对应的函数表达式为y =20x +b 1,把点B (1,10)的坐标代入,得20×1+b 1=10,则b 1=-10.所以直线BC 对应的函数表达式为y =20x -10.设直线DE 对应的函数表达式为y =60x +b 2,把点D ⎝ ⎛⎭⎪⎫43,0的坐标代入,得60×43+b 2=0,则b 2=-80. 所以直线DE 对应的函数表达式为y =60x -80.当小明被妈妈追上时,两人走过的路程相等,则20x -10=60x -80, 解得x =1.75,20×(1.75-1)+10=25(km).所以小明从家出发1.75 h 后被妈妈追上,此时离家25 km. (3)设从妈妈追上小明的地点到乙地的路程为z km. 根据题意,得z 20-z 60=1060,解得z =5. 所以从家到乙地的路程为5+25=30(km).。
(北师大版)济南市八年级数学上册第四单元《一次函数》检测(含答案解析)
一、选择题1.甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),图中的折线表示y 与x 之间的函数关系,下列结论: ①甲、乙两地相距1800千米;②点B 的实际意义是两车出发后4小时相遇; ③动车的速度是280千米/小时;④6m =,900n =. 则结论一定正确的个数是( )A .1个B .2个C .3个D .4个2.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =x ﹣k 的图象大致是( ) A .B .C .D .3.下列命题是假命题的是( ). A 10 B .若点A (-2,a ),B (3,b )在直线y=-2x+1,则a>bC .数轴上的点与有理数一一对应D .点A (2,5)关于y 轴的对称点的坐标是(-2,5)4.一次函数y =-3x -2的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限5.如图,在平面直角坐标系中,函数2y x =和y x =-的图象分别为直线1l ,2l ,过点()1,0作x 轴的垂线交1l 于点1A ,过点1A 作y 轴的垂线交2l 于点2A ,过点2A 作x 轴的垂线交1l 于点3A ,过点3A 作y 轴的垂线交2l 于点4A ,…,依次进行下去,则点2018A 的坐标为( ).A .()100910092,2 B .()100910092,2-C .()100910102,2--D .()100910102,2-6.已知点()()()1232,,1,,1,y y y -- 都在直线y=-3x+m 上,则 123,,y y y 的大小关系是( )A .123y y y >>B .132y y y >>C .231y y y >>D .321y y y >>7.一次函数y mx n =-+的图象经过第二、三、四象限,则化简22()m n n -+所得的结果是( ) A .mB .m -C .2m n -D .2m n -8.某快递公司每天上午7:008:00-为集中件和派件时段,甲仓库用来揽收快件,乙仓库用来派发件快件,该时段内甲、乙两仓库的快件数量y (件)与时间x (分)之间的函数图象如图所示,下列说法正确的个数为:①15分钟后,甲仓库内快件数量为180件;②乙仓库每分钟派送快件数量为4件:③8:00时,甲仓库内快件数为400件;④7:20时,两仓库快递件数相同( )A .1个B .2个C .3个D .4个9.下列各图象中,y 不是..x 的函数的是( )A.B.C.D.10.一个装有进水管和出水管的容器,开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数. 容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图,则6分钟时容器内的水量(单位:升)为()A.22 B.22.5 C.23 D.2511.如图所示,小刚家,菜地,稻田在同一条直线上.小刚从家去菜地浇水,又去稻田除草,然后回家.如图反映了这个过程中,小刚离家的距离y与时间x之间的对应关系.如果菜地和稻田的距离为akm,小刚在稻田除草比在菜地浇水多用了bmin,则a,b的值分别为()A .1,8B .0.5,12C .1,12D .0.5,812.在平面直角坐标系xOy 中,直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,则下列直线中,与x 轴的交点在线段AB 上的是( ) A .y=x+2B .22y x =+ C .y=4x-12D .33y x =-二、填空题13.为了迎接学校“歌咏比赛”的到来,九年级学生组织了一个梯形鲜花队参加开幕式,要求共站20排,第一排10人,以后每一排都比前一排多站一人,则某排人数y 与该排排数x 之间的函数关系式为_________________.(写出自变量的取值范围). 14.一次函数y=2x ﹣3的图象不经过第__象限.15.请你直接写出一个图象经过点(0,-2),且y 随x 的增大而减小的一次函数的解析式_____.16.已知函数1(1);24(1).x x y x x +≤⎧=⎨-+>⎩当函数值为-2时,自变量x 的值为__________. 17.1-6个月的婴儿生长发育得非常快,在1-6个月内,一个婴儿的体重y 与月龄x 之间的变化情况如下表: 月龄/月 1 2 3 4 5 6 体重/克470054006100680075008200在这个变化过程中,婴儿的体重y 与月龄x 之间的关系式是__________. 18.己知一次函数23y x =-+,当05x ≤≤时,函数y 的最大值是__________. 19.函数y =2x x-中,自变量x 的取值范围是_____. 20.若式子23x x +-有意义,则x 的取值范围为______. 三、解答题21.如图1,在Rt ABC ∆中,90306ACB ABC AC ∠=︒∠=︒=,,,D 是AB 的中点P 是射线CD 上一个动点,联结PB ,过点B 作PB 的垂线,交射线CD 于Q . (1)如图2,如果点P 与点D 重合,求证:2PQ PC =; (2)如图3,如果BP BQ =,求PQ 的长;(3)设CP x BP y ==,,求y 关于x 的函数关系式,并写出x 的取值范围.22.如图,在平面直角坐标系中,直线43y x b =-+与x 轴,y 轴分别交于(6,0)A ,B 两点,点D 在y 轴的负半轴上,若将DAB 沿直线AD 折叠,则点B 恰好落在x 轴正半轴上的点C 处.(1)求AB 的长; (2)求点C ,D 的坐标;(3)在y 轴上是否存在一点P ,使得14PABOCDS S =?若存在,求出点P 的坐标;若不存在,请说明理由.23.定义:关于x 的一次函数y =ax +b 与y =bx +a (ab ≠0)叫做一对交换函数,例如:一次函数y =3x +4与y =4x +3就是一对交换函数. (1)一次函数y =2x ﹣b 的交换函数是 ;(2)当b ≠﹣2时,(1)中两个函数图象交点的横坐标是 ; (3)若(1)中两个函数图象与y 轴围成的三角形的面积为4,求b 的值.24.小明同学看到一则材料:甲开汽车,乙骑自行车从P 地出发沿同一条公路匀速前往Q地、设乙行驶的时间为t (h ).甲乙两人之间的距离为y (km ),y 与t 的函数关系如图所示.小明思考后发现了图中的部分信息:乙先出发1h ;甲出发0.5小时与乙相遇. 请你帮助小明同学解决以下问题:(1)分别求出线段BC ,CD 所在直线的函数表达式(不需要写出自变量的取值范围); (2)直接写出乙行驶的路程S 乙(km )与时间t (h )的函数表达式是 (不需要写出自变量的取值范围);(3)丙骑摩托车从Q 地沿同一条公路匀速前往P 地,若丙与乙同时出发,丙经过1.4h 与甲相遇.①直接写出丙行驶的路程S 丙(km )与时间t (h )的函数表达式是 (不需要写出自变量的取值范围);②直接写出甲出发 h 后与丙相距10km .25.疫情过后,地摊经济迅速兴起.小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y (元)与销售量x (千克)之间的关系如图所示.(1)求降价后销售额y (元)与销售量x (千克)之间的函数表达式; (2)当销售量为多少千克时,小李销售此种水果的利润为150元?26.如图,直线312y x =-+分别交x 轴、y 轴于点A ,B ,以AB 为斜边向左侧作等腰Rt △ABD ,延长BD 交x 轴于点C ,连接DO ,过点D 作DE DO ⊥交y 轴于点E .∠=∠;(1)求证:12(2)求OE的长;∠的一边平行时,求出所有符合条件的点P的坐(3)点P在线段AB上,当PE与COD标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图象可知,甲、乙两地相距1800千米,故①说法正确;点B的实际意义是两车出发后4小时相遇,故②说法正确;普通列车的速度为:1800÷12=150(km/h),动车的速度为:1800÷4﹣150=300(km/h),故③说法错误;C点表示动车到达乙地,1800÷300=6(小时),∴m=6,n=150×6=900,故④说法正确;故选:C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2.B解析:B【分析】根据正比例函数的性质可得出k>0,进而可得出-k<0,由1>0,-k<0利用一次函数图象与系数的关系,可找出一次函数y=x-k的图象经过第一、三、四象限,此题得解.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而增大,∴k>0,∴﹣k<0.又∵1>0,∴一次函数y=x﹣k的图象经过第一、三、四象限.故选:B.【点睛】本题考查了正比例函数的性质以及一次函数图象与系数的关系,牢记“k>0,b<0⇔y=kx+b 的图象在一、三、四象限”是解题的关键.3.C解析:C【分析】根据最简二次根式、一次函数及不等式、数轴及实数、轴对称和坐标的性质,对各个选项逐个分析,即可得到答案.【详解】是最简二次根式,故A正确;∵若点A(-2,a),B(3,b)在直线y=-2x+1,∴()221231ab ⎧-⨯-+=⎨-⨯+=⎩∴55 ab=⎧⎨=-⎩∴a b>,即B正确;∵数轴上的点与实数一一对应∴C不正确;∵点A(2,5)关于y轴的对称点的坐标是(-2,5)∴D正确;故选:C.【点睛】本题考查了最简二次根式、一次函数、不等式、数轴、实数、轴对称、坐标的知识;解题的关键是熟练掌握最简二次根式、一次函数、数轴、实数、轴对称的性质,从而完成求解.4.A解析:A【分析】根据一次函数的性质,当k <0,b <0时,图象经过第二、三、四象限解答. 【详解】 解:∵k=-3<0,∴函数经过第二、四象限,∵b=﹣2<0,∴函数与y 轴负半轴相交, ∴图象不经过第一象限. 故选A 【点睛】本题考查一次函数的性质,利用数形结合思想解题是关键.5.B解析:B 【分析】根据一次函数图象上点的坐标特征可得出点A 1、A 2、A 3、A 4、A 5、A 6、A 7、A 8等的坐标,根据坐标的变化找出变化规律“A 4n+1(22n ,22n+1),A 4n+2(-22n+1,22n+1),A 4n+3(-22n+1,-22n+2),A 4n+4(22n+2,-22n+2)(n 为自然数)”,依此规律结合2018=504×4+2即可找出点A 2018的坐标. 【详解】解:当x=1时,y=2, ∴点A 1的坐标为(1,2); 当y=-x=2时,x=-2, ∴点A 2的坐标为(-2,2);同理可得:A 3(-2,-4),A 4(4,-4),A 5(4,8),A 6(-8,8),A 7(-8,-16),A 8(16,-16),A 9(16,32),…,∴A 4n+1(22n ,22n+1),A 4n+2(-22n+1,22n+1),A 4n+3(-22n+1,-22n+2),A 4n+4(22n+2,-22n+2)(n 为自然数). ∵2018=504×4+2,∴点A 2018的坐标为(-2504×2+1,2504×2+1),即(-21009,21009). 故选:B . 【点睛】本题考查了一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.6.A解析:A 【分析】根据在y=-3x+m 中,-3<0,则y 随x 的增大而减小,然后根据一次函数的增减性解答即可. 【详解】∵直线3y x m =-+ 中30-< , ∴ y 随 x 的增大而减小,又∵点 ()()()1232,,1,,1,y y y -- 都在直线上, 且211-<-<. ∴y 1>y 2>y 3 故答案为A . 【点睛】本题考查了一次函数的增减性,灵活运用一次函数的性质是正确解答本题的关键.7.D解析:D 【分析】根据题意可得﹣m <0,n <0,再进行化简即可. 【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限, ∴﹣m <0,n <0, 即m >0,n <0,∴=|m ﹣n |+|n | =m ﹣n ﹣n =m ﹣2n , 故选D . 【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.8.C解析:C 【分析】根据题意,结合一次函数图象去分析图象所表示的实际意义,上升的图象表示甲仓库,下降的图象表示乙仓库,然后选出正确选项. 【详解】解:①不正确,根据上升的一次函数图象,当15x =的时候,130y =;②正确,根据下降的一次函数图象,从15分钟到60分钟,乙仓库派发的快递是180件,所以速度=()18060154÷-=(件/分钟);③正确,用待定系数法求出上升的一次函数图象的解析式为640y x =+,当60x =时,66040400y =⨯+=;④正确,用待定系数法求出下降的一次函数图象解析式为4240y x =-+,再联立两个直线解析式求交点横坐标,列式6404240x x +=-+,解得20x ,也就是20分钟之后甲乙仓库快递数一样. 故选:C .【点睛】本题考查一次函数图象的实际应用,解题的关键是能够结合题意理解函数图象所表达的实际含义.9.B解析:B【分析】对于自变量x 的每一个确定的值y 都有唯一的确定值与其对应,则y 是x 的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A 、C 、D 图象表示y 是x 的函数,B 图象中对于x 的一个值y 有两个值对应,故B 中y 不是x 的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键. 10.B解析:B【分析】由题意结合图象,设后8分钟的函数解析式为y=kx+b ,将x=4时,y=20;x=12时,y=30代入求得k 、b 值,可得函数解析式,再将x=6代入求得对应的y 值即可.【详解】设当4≤x≤12时函数的解析式为y=kx+b(k≠0),由图象,将x=4时,y=20;x=12时,y=30代入,得:2043012k b k b =+⎧⎨=+⎩,解得:5415k b ⎧=⎪⎨⎪=⎩, ∴5154y x =+, 当x=6时,56157.51522.54y =⨯+=+=, 故选:B .【点睛】 本题考查了一次函数的应用,解答的关键是从图象上获取相关联的量,会用待定系数法求函数的解析式,特别要注意分段函数自变量的取值范围的划分.11.D解析:D【分析】首先弄清横、纵坐标所表示的意义,然后根据各个特殊点来分段分析整个函数图象.【详解】解:此函数大致可分以下几个阶段:(1)0﹣12分种,小刚从家走到菜地;(2)12﹣27分钟,小刚在菜地浇水;(3)27﹣33分钟,小刚从菜地走到稻田地;(4)33﹣56分钟,小刚在稻田地除草;(5)56﹣74分钟,小刚从稻田地回到家;综合上面的分析得:由(3)的过程知,a =1.5-1=0.5(千米);由(2)(4)的过程知b =(56-33)-(27-12)=8(分钟).故选:D .【点睛】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论. 12.D解析:D【分析】先确定A ,B 的坐标,从而确定交点横坐标的取值范围,后逐一计算选项直线与x 轴的交点,判断横坐标是否在求得的范围内,在范围内,满足条件,否则,不满足.【详解】∵直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,∴A (-1,0),B (2,0),∴-1≤x≤2,∵y=x+2交x 轴于点A (-2,0),且x= -2不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵2y =+交x 轴于点A (0),且x= 不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵y=4x-12交x 轴于点A (3,0),且x= 3不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵3y =-交x 轴于点A 0),且是-1≤x≤2的解,∴与x 轴的交点在线段AB 上,故选D .【点睛】本题考查了一次函数与x 轴的交点问题,利用交点的横坐标建立不等式解集,验证新直线与x 轴交点的横坐标是否是解集的解是解题的关键.二、填空题13.y=x+9(且x 是整数)【分析】根据第一排10人以后每一排都比前一排多站一人得到y=10+(x-1)=x+9由共站20排且排数x 为正整数得到且x 是整数【详解】∵第一排10人以后每一排都比前一排多站一解析:y=x+9(120x ≤≤,且x 是整数)【分析】根据第一排10人,以后每一排都比前一排多站一人,得到y=10+(x-1)=x+9,由共站20排,且排数x 为正整数,得到120x ≤≤,且x 是整数.【详解】∵第一排10人,以后每一排都比前一排多站一人,∴y=10+(x-1)=x+9,∵共站20排,且排数x 为正整数,∴120x ≤≤,且x 是整数,故答案为:y=x+9(120x ≤≤,且x 是整数).【点睛】此题考查列函数关系式,自变量的取值范围,正确理解题意是解题的关键.14.二【分析】先根据一次函数的性质判断出此函数图象所经过的象限再进行解答即可【详解】解:∵一次函数y=2x-3中k=2>0∴此函数图象经过一三象限∵b=-3<0∴此函数图象与y 轴负半轴相交∴此一次函数的解析:二【分析】先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.【详解】解:∵一次函数y=2x-3中,k=2>0,∴此函数图象经过一、三象限,∵b=-3<0,∴此函数图象与y 轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限.故答案为:二.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b (k≠0)中,当k >0时,函数图象经过一、三象限,当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴. 15.y=-x-2(答案不唯一)【分析】由图象经过点(0-2)则b=-2又y 随x 的增大而减小只要k <0即可【详解】解:设函数y=kx+b (k≠0kb 为常数)∵图象经过点(0-2)∴b=-2又∵y 随x 的增大解析:y=-x-2(答案不唯一).【分析】由图象经过点(0,-2),则b=-2,又y 随x 的增大而减小,只要k <0即可.【详解】解:设函数y=kx+b (k≠0,k ,b 为常数),∵图象经过点(0,-2),∴b=-2,又∵y 随x 的增大而减小,∴k <0,可取k=-1.这样满足条件的函数可以为:y=-x-2.故答案为:y=-x-2.【点睛】本题考查了一次函数y=kx+b (k≠0,k ,b 为常数)的性质.它的图象为一条直线,当k >0,图象经过第一,三象限,y 随x 的增大而增大;当k <0,图象经过第二,四象限,y 随x 的增大而减小;当b >0,图象与y 轴的交点在x 轴的上方;当b=0,图象过坐标原点;当b <0,图象与y 轴的交点在x 轴的下方.16.或【分析】把代入计算求解即可【详解】解:代入可得:故答案为:或【点睛】本题主要考查了函数的概念和不等式的性质利用函数与函数值的等量关系代入函数值计算是解题的关键解析:3或3-【分析】把=-y 2代入1(1);y 24(1).x x x x +≤⎧=⎨-+>⎩计算求解即可. 【详解】解:=-y 2代入1(1);y 24(1).x x x x +≤⎧=⎨-+>⎩可得: 21(1)224(1)x x x x -=+≤⎧⎨-=-+>⎩⇒3(1)3(1)x x x x =-≤⎧⎨=>⎩故答案为:3或3-【点睛】本题主要考查了函数的概念和不等式的性质,利用函数与函数值的等量关系代入函数值计算是解题的关键.17.y=700x+4000【分析】观察不难发现后一个月比前一个月的体重增加700克然后写出关系式即可【详解】解:根据题意得y 与x 之间的关系式为:y=700x+4000故答案为:y=700x+4000【点解析:y=700x+4000.【分析】观察不难发现,后一个月比前一个月的体重增加700克,然后写出关系式即可.【详解】解:根据题意,得y 与x 之间的关系式为:y=700x+4000.故答案为:y=700x+4000.【点睛】本题考查函数关系式.能够仔细观察表格数据,发现后一个月比前一个月的体重增加700g 是解题关键.18.3【分析】根据知道一次函数是单调递减函数即y 随x 的增大而减小代入计算即可得到答案【详解】解:∵∴一次函数是单调递减函数即y 随x 的增大而减小∴当时在时y 取得最大值即:当时y 的最大值为:故答案为:3【点 解析:3【分析】根据20-<知道一次函数23y x =-+是单调递减函数,即y 随x 的增大而减小,代入计算即可得到答案.【详解】解:∵20-<,∴一次函数23y x =-+是单调递减函数,即y 随x 的增大而减小,∴当05x ≤≤时,在0x =时y 取得最大值,即:当05x ≤≤时,y 的最大值为:max 0(2)33y =⨯-+=,故答案为:3.【点睛】本题主要考查了一次函数的性质,一次函数y kx b =+,当k 0<时y 随x 的增大而减小,0k >时,y 随x 的增大而增大;掌握一次函数的性质是解题的关键.19.x≥2【分析】根据被开方数大于等于0分母不等于0列式进行计算即可得解【详解】解:根据题意得x ﹣2≥0且x≠0解得x≥2且x≠0所以自变量x 的取值范围是x≥2故答案为x≥2【点睛】本题考查的知识点为:解析:x ≥2.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x ﹣2≥0且x ≠0,解得x ≥2且x ≠0,所以,自变量x 的取值范围是x ≥2.故答案为x ≥2.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 20.x >-2且x≠3【分析】根据二次根式有意义的条件可得x+2≥0根据分式有意义的条件可得x -3≠0再解即可【详解】由题意得:x+2≥0且x -3≠0解得:x >-2且x≠3故答案为:x >-2且x≠3【点睛解析:x >-2,且x≠3.【分析】根据二次根式有意义的条件可得x+2≥0,根据分式有意义的条件可得x -3≠0,再解即可.【详解】由题意得:x +2≥0,且x -3≠0,解得:x >-2,且x≠3故答案为:x >-2,且x≠3.【点睛】本题考查了二次根式的性质和分式的意义,掌握二次根式及分式有意义的条件是解题的关键.三、解答题21.(1)证明见详解;(2)PQ=63;(3)()21810809y x x x =-+<≤,()2181089y x x x =-+>,【分析】(1)在Rt ABC ∆中,90306ACB ABC AC ∠=︒∠=︒=,,,D 是AB 的中点可得DC=AD=BD ,可求∠DCB=∠DBC=30°,由外角性质∠QDB=∠DCB+∠DBC=60°,由QB ⊥DB , 可求∠DQB=90°-∠QDB=30°,可得DQ=2DB=2DC ,由D 与P 重合,可证PQ=2PC ; (2)过B 作BH ⊥PQ 于H ,由AC=6,∠ACB=90°,∠ABC=30°,可求AB=2AC=12,在Rt △ACB 中由勾股定理BC=2263AB AC -=,由∠HCB=30°,∠CHB=90°,可求CB=2BH=63可得BH=33,由∠PBQ=90°,BP=BQ ,可求PQ=2BH=63;(3)由(2)得BH=33,在Rt △CBH 中,由勾股定理求出CH=9=,当CP≤9时PH=9-PC=9-x ,当CP 9>时PH=PC-9=x-9,分两种情况,在RtRt △PBH 中由勾股定理得:PB 2=PH 2+BH 2即可求出。
北师大版数学八年级上册第四章《一次函数》检测题(解析版)
第四章《一次函数》检测题一.选择题1.下列曲线中不能表示y是x的函数的是()A.B.C.D.2.已知A、B两地相距3千米,小黄从A地到B地,平均速度为4千米/小时,若用x表示行走的时间(小时),y 表示余下的路程(千米),则y关于x的函数解析式是()A.y=4x(x≥0)B.y=4x﹣3(x≥)C.y=3﹣4x(x≥0)D.y=3﹣4x(0≤x≤)3.函数y=﹣中,自变量x的取值范围是()A.x≤B.x≥C.x<且x≠﹣1D.x≤且x≠﹣14.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>05.若ab<0且a>b,则函数y=ax+b的图象可能是()A.B.C.D.6.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是﹣2,若输入x的值是﹣8,则输出y 的值是()A.5B.10C.19D.217.若式子+(m﹣1)0有意义,则一次函数y=(m﹣1)x+1﹣m的图象可能()A.B.C.D.8.已知一次函数=kx+b(k,b为常数,k≠0)的图象经过一、三、四象限,则下列结论正确的是()A.kb>0B.kb<0C.k+b>0D.k+b<09.若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.410.一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y211.如图,一次函数y=2x+1的图象与坐标轴分别交于A,B两点,O为坐标原点,则△AOB的面积为()A.B.C.2D.412.一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25h后两人相遇;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min或65min时两人相距2km.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题13.函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC为等腰三角形,则满足条件的点C共有个.14.在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=,则点P(3,﹣3)到直线y=﹣x+的距离为.15.已知一次函数y=(k﹣3)x+1的图象经过第一、二、四象限,则k的取值范围是.16.在平面直角坐标系中,A,B,C三点的坐标分别为(4,0),(4,4),(0,4),点P在x轴上,点D在直线AB上,若DA=1,CP⊥DP于点P,则点P的坐标为.17.如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.18.甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位:min)的函数图象,则a﹣b=.三、解答题19.在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k 与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.20.甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.(1)m=,n=;(2)求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;(3)当甲车到达B地时,求乙车距B地的路程.21.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.22.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA 和射线AC上运动,试解决下列问题:(1)求直线AC的表达式;(2)求△OAC的面积;(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.23.已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.(3)当一次函数的图象不经过第二象限时,求实数m的取值范围.(4)当y随x的增大而增大时,求m的取值范围.24.如图,直线y=kx+3与x轴、y轴分别相交于E,F.点E的坐标为(﹣6,0),点P是直线EF上的一点.(1)求k的值;(2)若△POE的面积为6,求点P的坐标.答案与解析一.选择题(共24小题)1.分析:函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项C中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故C中曲线不能表示y是x的函数,故选:C.2.分析:根据路程=速度×时间,容易知道y与x的函数关系式.解:根据题意得:全程需要的时间为:3÷4=(小时),∴y=3﹣4x(0≤x≤).故选:D.3.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:2﹣3x≥0且x+1≠0,解得:x≤且x≠﹣1.故选:D.4.分析:由k<0,b>0可知图象经过第一、二、四象限;由k<0,可得y随x的增大而减小;图象与y轴的交点为(0,b);当x>﹣时,y<0;解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.5.分析:利用ab<0,且a>b得到a>0,b<0,然后根据一次函数图象与系数的关系进行判断.解:∵ab<0,且a>b,∴a>0,b<0,∴函数y=ax+b的图象经过第一、三、四象限.故选:A.6.分析:把x=7代入程序中计算,根据y值相等即可求出b的值,再将x=﹣8代入y=﹣2x+3中即可得出结论解:当x=7时,可得,可得:b=3,当x=﹣8时,可得:y=﹣2×(﹣8)+3=19,故选:C.7.分析:根据非负性得出m﹣1≥0,m﹣1≠0,进而利用一次函数的性质解答即可.解:由题意可得m﹣1≥0,m﹣1≠0,解得:m>1,∴m﹣1>0,1﹣m<0,所以一次函数y=(m﹣1)x+1﹣m的图象经过一,三,四象限,故选:A.8.分析:根据一次函数经过一、三、四象限,可知k>0,b<0,即可求得答案;解:=kx+b的图象经过一、三、四象限,∴k>0,b<0,∴kb<0;故选:B.9.分析:利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a,10)代入解析式即可;解:设经过(1,4),(2,7)两点的直线解析式为y=kx+b,∴∴,∴y=3x+1,将点(a,10)代入解析式,则a=3;故选:C.10.分析:根据两函数图象平行k相同,以及向下平移减即可判断.解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.11.分析:由一次函数解析式分别求出点A和点B的坐标,即可作答.解:一次函数y=2x+1中,当x=0时,y=1;当y=0时,x=﹣0.5;∴A(﹣0.5,0),B(0,1)∴OA=0.5,OB=1∴△AOB的面积=0.5×1÷2=故选:A.12.分析:根据图象与纵轴的交点可得出A、B两地的距离,而s=0时,即为甲、乙相遇的时候,同理根据图象的拐点情况解答即可.解:由图象可知A村、B村相离10km,故①正确,当1.25h时,甲、乙相距为0km,故在此时相遇,故②正确,当0≤t≤1.25时,易得一次函数的解析式为s=﹣8t+10,故甲的速度比乙的速度快8km/h.故③正确当1.25≤t≤2时,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s=kt+b代入得,解得∴s=8t+10当s=2时.得2=8t﹣10,解得t=1.5h由1.5﹣1.25=0.25h=15min同理当2≤t≤2.5时,设函数解析式为s=kt+b将点(2,6)(2.5,0)代入得,解得∴s=﹣12t+30当s=2时,得2=﹣12t+30,解得t=由﹣1.25=h=65min故相遇后,乙又骑行了15min或65min时两人相距2km,④正确.故选:D.二、填空题:13.分析:三角形ABC的找法如下:①以点A为圆心,AB为半径作圆,与x轴交点即为C;②以点B为圆心,AB 为半径作圆,与x轴交点即为C;③作AB的中垂线与x轴的交点即为C;解:以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为4;14.分析:根据题目中的距离公式即可求解.解:∵y=﹣x+∴2x+3y﹣5=0∴点P(3,﹣3)到直线y=﹣x+的距离为:=,故答案为:.15.分析:根据y=kx+b,k<0,b>0时,函数图象经过第一、二、四象限,则有k﹣3<0即可求解;解:y=(k﹣3)x+1的图象经过第一、二、四象限,∴k﹣3<0,∴k<3;故答案为k<3;16.分析:先由已知得出D1(4,1),D2(4,﹣1),然后分类讨论D点的位置从而依次求出每种情况下点P的坐标.解:∵A,B两点的坐标分别为(4,0),(4,4)∴AB∥y轴∵点D在直线AB上,DA=1∴D1(4,1),D2(4,﹣1)如图:(Ⅰ)当点D在D1处时,要使CP⊥DP,即使△COP1~△P1AD1∴即解得:OP1=2∴P1(2,0)(Ⅱ)当点D在D2处时,∵C(0,4),D 2(4,﹣1)∴CD2的中点E(2,)∵CP⊥DP∴点P为以E为圆心,CE长为半径的圆与x轴的交点设P(x,0),则PE=CE即解得:x=2±2∴P2(2﹣2,0),P3(2+2,0)综上所述:点P的坐标为(2,0)或(2﹣2,0)或(2+2,0).17.分析:根据已知条件得到A(,0),B(0,﹣1),求得OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,得到AB=AF,根据全等三角形的性质得到AE=OB=1,EF=OA=,求得F(,﹣),设直线BC的函数表达式为:y=kx+b,解方程组于是得到结论.解:∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣1,令y=0,则x=,∴A(,0),B(0,﹣1),∴OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO=∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△F AE(AAS),∴AE=OB=1,EF=OA=,∴F(,﹣),设直线BC的函数表达式为:y=kx+b,∴,∴,∴直线BC的函数表达式为:y=x﹣1,故答案为:y=x﹣1.18.分析:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,即可求解.解:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,∵已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,a﹣b==,故答案为.三.解答题(共6小题)19.分析:(1)令x=0,y=1,直线l与y轴的交点坐标(0,1);(2)①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点;②当x=k+1时,y=﹣k+1,则有k2+2k=0,k=﹣2,当0>k≥﹣1时,W内没有整数点;解:(1)令x=0,y=1,∴直线l与y轴的交点坐标(0,1);(2)由题意,A(k,k2+1),B(,﹣k),C(k,﹣k),①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点:(0,0),(0,﹣1),(1,0),(1,﹣1),(1,1),(1,2);②直线AB的解析式y=kx+1,当x=k+1,y=﹣k+1,则有k2+2k=0,∴k=﹣2;当﹣1≤k<0时,W内没有整数点,∴当k=﹣2或﹣1≤k<0时,W内没有整数点;20.分析:(1)观察图象即可解决问题;(2)运用待定系数法解得即可;(3)把x=3代入(2)的结论即可.解:(1)根据题意可得m=2×2=4,n=280﹣2(280÷3.5)=120;故答案为:4;120;(2)设y关于x的函数解析式为y=kx(0≤x≤2),因为图象经过(2,120),所以2k=120,解得k=60,所以y关于x的函数解析式为y=60x,设y关于x的函数解析式为y=k1x+b(2≤x≤4),因为图象经过(2,120),(4,0)两点,所以,解得,所以y关于x的函数解析式为y=﹣60x+240(2≤x≤4);(3)当x=3.5时,y=﹣60×3.5+240=30.所以当甲车到达B地时,乙车距B地的路程为30km.21.分析:(1)观察图象即可解决问题;(2)分别求出得A、B、C的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.解:(1)车的速度是50千米/小时;轿车的速度是:480÷(7﹣1)=80千米/小时;t=240÷80=3.故答案为:50;80;3;(2)由题意可知:A(3,240),B(4,240),C(7,0),设直线OA的解析式为y=k1x(k1≠0),∴y=80x(0≤x≤3),当3≤x≤4时,y=240,设直线BC的解析式为y=k2x+b(k≠0),把B(4,240),C(7,0)代入得:,解得,∴y=﹣80x+560,∴y=;(3)设货车出发x小时后两车相距90千米,根据题意得:50x+80(x﹣1)=400﹣90或50x+80(x﹣2)=400+90,解得x=3或5.答:货车出发3小时或5小时后两车相距90千米.22.分析:(1)利用待定系数法即可求得函数的解析式;(2)求利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;(2)S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7).综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).23.分析:(1)把(0,0)代入函数解析式求得m的值即可;(2)、(3)由一次函数图象与系数的关系解答;(4)由一次函数图象的增减性解答.解:(1)把原点(0,0)代入,得m﹣5=0解得m=5;(2)由题意,得.解得3<m<5;(3)由题意,得.解得m<3;(4)由题意,得3﹣m>0.解得m<3.24.分析:(1)将点E的坐标代入即可求出k的值,(2)确定直线的关系式,若△POE的面积为6,以OE=6为底,因此高为2,即点P的纵坐标为2或﹣2,然后代入直线的关系式求出点P的坐标.解:(1)把E的坐标为(﹣6,0)代入直线y=kx+3得,﹣6k+3=0,解得:k=,答:k的值为.(2)设P(x,y),∵S△POE=OE•|y|=×6×|y|=6,∴|y|=2,即y=2,或y=﹣2,当y=2时,即2=x+3,解得:x=﹣2,∴P(﹣2,2)当y=﹣2时,即﹣2=x+3,解得:x=﹣10,∴P(﹣10,﹣2)答:点P的坐标为(﹣2,2)或(﹣10,﹣2)。
北师大版初中八年级数学上册第四章同步练习题(含答案解析)
第四章测试卷一、选择题(每题3分,共30分)1.下列图象中,表示y 是x 的函数的个数有( )A .1个B .2个C .3个D .4个2.(常德)若一次函数y=(k ﹣2)x+1的函数值y 随x 的增大而增大,则( )A .k <2B .k >2C .k >0D .k <03.(湘西州)一次函数y=x+2的图象与y 轴的交点坐标为( )A .(0,2)B .(0,﹣2)C .(2,0)D .(﹣2,0)4.(娄底)将直线y=2x ﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .y=2x ﹣4B .y=2x+4C .y=2x+2D .y=2x ﹣25.小聪在画一次函数的图象时,当他列表后,发现题中一次函数y =◆x +◆中的k 和b 看不清了,则( )A.k =2,b =3 B .k =-23,b =2 C .k =3,b =2 D .k =1,b =-1 6.点P 1(x 1,y 1),P 2(x 2,y 2)是一次函数y =-4x +3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1>y 2>0C .y 1<y 2D .y 1=y 27.为了建设社会主义新农村,某市积极推进“村村通客车工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间道路的改造.下面能反映该工程尚未改造的道路里程y (km )与时间x (天)的函数关系的大致图象是( )8.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y (元)与通话时间x (min )之间的函数关系如图所示.小红根据图象得出下列结论:①l 1描述的是无月租费的收费方式;②l 2描述的是有月租费的收费方式;③当每月的通话时间为500min 时,选择有月租费的收费方式省钱.其中,正确结论的个数是( )A .0B .1C .2D .3第8题图 第9题图 第10题图9.如图,把直线y =-2x 向上平移后得到直线AB ,直线AB 经过点(m ,n ),且2m +n =6,则直线AB 的解析式是( )A .y =-2x -3B .y =-2x -6C .y =-2x +3D .y =-2x +610.(天门)甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m=160;③点H 的坐标是(7,80);④n=7.5.其中说法正确的是( )A .①②③B .①②④C .①③④D .①②③④二、填空题(每题3分,共24分)11.已知y =(2m -1)x 3m -2是一次函数,则m =________.12.直线y =2x +1经过点(0,a ),则a =________.13.已知一次函数y =(1-m )x +m -2,当m ________时,y 随x 的增大而增大.14.已知直线y =kx +b ,若k +b =-5,kb =6,那么该直线不经过第________象限.15.直线y =2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x +b =0的解是__________.16.一次函数的图象与直线y =-x +1平行,且过点(8,2),那么此一次函数的表达式为___________.17.如图,已知点A 和点B 是直线y =34x 上的两点,A 点坐标是⎝ ⎛⎭⎪⎫2,32.若AB =5,则点B 的坐标是__________.18.直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)相交于点(-2,0),且两直线与y 轴围成的三角形面积为4,那么b 1-b 2=____4____.三、解答题(19题6分,20,21题每题9分,22~24题每题10分,25题12分,共66分)19.已知一次函数y =ax +b .(1)当点P (a ,b )在第二象限时,直线y =ax +b 经过哪几个象限?(2)如果ab <0,且y 随x 的增大而增大,则函数的图象不经过哪些象限?20.一个正比例函数和一个一次函数,它们的图象都经过点P (-2,2),且一次函数的图象与y 轴相交于点Q (0,4).(1)求出这两个函数的表达式;(2)在同一坐标系中,分别画出这两个函数的图象;(3)直接写出一次函数图象在正比例函数图象下方时x 的取值范围.21.如图,直线y =2x +3与x 轴相交于点A ,与y 轴相交于点B .(1)求点A ,B 的坐标;(2)求当x =-2时,y 的值,当y =10时,x 的值;(3)过点B 作直线BP 与x 轴相交于点P ,且使OP =2OA ,求△ABP 的面积.22.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20 t ,按每吨1.9元收费.如果超过20 t ,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为x t ,应收水费为y 元.(1)分别写出每月用水量未超过20 t 和超过20 t 时,y 与x 之间的函数表达式;(2)若该城市某户5月份水费平均每吨为2.2元,求该户5月份用水多少吨?23.某销售公司推销一种产品,设x (件)是推销产品的数量,y (元)是付给推销员的月报酬.公司付给推销员的月报酬的两种方案如图所示,推销员可以任选一种与公司签订合同,看图解答下列问题:(1)求每种付酬方案y 关于x 的函数表达式;(2)当选择方案一所得报酬高于选择方案二所得报酬时,求x 的取值范围.24.一次函数y =kx +b (k ≠0)的图象由直线y =3x 向下平移得到,且过点A (1,2).(1)求一次函数的解析式;(2)求直线y =kx +b 与x 轴的交点B 的坐标;(3)设坐标原点为O ,一条直线过点B ,且与两条坐标轴围成的三角形的面积是12,这条直线与y 轴交于点C ,求直线AC 对应的一次函数的解析式.25.甲、乙两车分别从A ,B 两地同时出发相向而行,并以各自的速度匀速行驶,甲车途经C 地时休息一小时,然后按原速度继续前进到达B 地;乙车从B 地直接到达A 地,如图是甲、乙两车和B 地的距离y (km )与甲车出发时间x (h )的函数图象.(1)直接写出a ,m ,n 的值;(2)求出甲车与B 地的距离y (km )与甲车出发时间x (h )的函数关系式(写出自变量x 的取值范围);(3)当两车相距120km 时,乙车行驶了多长时间?参考答案第四章测试卷一、选择题(每题3分,共30分)1.下列图象中,表示y 是x 的函数的个数有( B )A .1个B .2个C .3个D .4个2.(常德)若一次函数y=(k ﹣2)x+1的函数值y 随x 的增大而增大,则( B )A .k <2B .k >2C .k >0D .k <03.(湘西州)一次函数y=x+2的图象与y 轴的交点坐标为( A )A .(0,2)B .(0,﹣2)C .(2,0)D .(﹣2,0)4.(娄底)将直线y=2x ﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( A )A .y=2x ﹣4B .y=2x+4C .y=2x+2D .y=2x ﹣25.小聪在画一次函数的图象时,当他列表后,发现题中一次函数y =◆x +◆中的k 和b 看不清了,则( B )A.k =2,b =3 B .k =-23,b =2 C .k =3,b =2 D .k =1,b =-1 6.点P 1(x 1,y 1),P 2(x 2,y 2)是一次函数y =-4x +3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( A )A .y 1>y 2B .y 1>y 2>0C .y 1<y 2D .y 1=y 27.为了建设社会主义新农村,某市积极推进“村村通客车工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间道路的改造.下面能反映该工程尚未改造的道路里程y (km )与时间x (天)的函数关系的大致图象是( D )8.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y (元)与通话时间x (min )之间的函数关系如图所示.小红根据图象得出下列结论:①l 1描述的是无月租费的收费方式;②l 2描述的是有月租费的收费方式;③当每月的通话时间为500min 时,选择有月租费的收费方式省钱.其中,正确结论的个数是( D )A .0B .1C .2D .3第8题图 第9题图 第10题图9.如图,把直线y =-2x 向上平移后得到直线AB ,直线AB 经过点(m ,n ),且2m +n =6,则直线AB 的解析式是( D )A .y =-2x -3B .y =-2x -6C .y =-2x +3D .y =-2x +6【解析】原直线的k =-2,向上平移后得到了新直线,那么新直线的k =-2.∵直线AB 经过点(m ,n ),且2m +n =6,∴直线AB 经过点(m ,6-2m ).可设新直线的解析式为y =-2x +b 1,把点(m ,6-2m )代到y =-2x +b 1中,可得b 1=6.∴直线AB 的解析式是y =-2x +6.10.(天门)甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m=160;③点H 的坐标是(7,80);④n=7.5.其中说法正确的是( A )A .①②③B .①②④C .①③④D .①②③④【解析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160,②正确;当乙在B 休息1h 时,甲前进80km ,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选A .二、填空题(每题3分,共24分)11.已知y =(2m -1)x 3m -2是一次函数,则m =___1_____.12.直线y =2x +1经过点(0,a ),则a =____1____.13.已知一次函数y =(1-m )x +m -2,当m ___<1_____时,y 随x 的增大而增大.14.已知直线y =kx +b ,若k +b =-5,kb =6,那么该直线不经过第____一____象限.15.直线y =2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x +b =0的解是_____x =2_____.16.一次函数的图象与直线y =-x +1平行,且过点(8,2),那么此一次函数的表达式为_____y =-x +10______.17.如图,已知点A 和点B 是直线y =34x 上的两点,A 点坐标是⎝ ⎛⎭⎪⎫2,32.若AB =5,则点B 的坐标是____⎝ ⎛⎭⎪⎫6,92或⎝ ⎛⎭⎪⎫-2,-32______.【解析】由题意可得|A ,B 两点的纵坐标之差||A ,B 两点的横坐标之差|=34,再由AB 2=|A ,B 两点的纵坐标之差|2+|A ,B 两点的横坐标之差|2,求得|A ,B 两点的横坐标之差|=4,|A ,B 两点的纵坐标之差|=3.再分两种情况讨论求解即可.18.直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)相交于点(-2,0),且两直线与y 轴围成的三角形面积为4,那么b 1-b 2=____4____.【解析】如图,在△ABC 中,BC 为底,AO 为高,且高为2,面积为4,故△ABC 的底边BC =4×2÷2=4.因为点B 的坐标为(0,b 1),点C 的坐标为(0,b 2),所以b 1-b 2即是BC 的长,为4.三、解答题(19题6分,20,21题每题9分,22~24题每题10分,25题12分,共66分)19.已知一次函数y =ax +b .(1)当点P (a ,b )在第二象限时,直线y =ax +b 经过哪几个象限?(2)如果ab <0,且y 随x 的增大而增大,则函数的图象不经过哪些象限?解:(1)因为点P (a ,b )在第二象限,所以a <0,b >0.所以直线y =ax +b 经过第一、二、四象限.(2)因为y 随x 的增大而增大,所以a >0.又因为ab<0,所以b<0.所以一次函数y=ax +b 的图象不经过第二象限.20.一个正比例函数和一个一次函数,它们的图象都经过点P (-2,2),且一次函数的图象与y 轴相交于点Q (0,4).(1)求出这两个函数的表达式;(2)在同一坐标系中,分别画出这两个函数的图象;(3)直接写出一次函数图象在正比例函数图象下方时x 的取值范围.解:(1)设正比例函数的表达式为y =k 1x ,则2=k 1×(-2),解得k 1=-1.所以正比例函数的表达式为y=-x.设一次函数的表达式为y=k2x +b ,则2=k2×(-2)+b ,4=b ,解得b=4,k2=1,所以一次函数的表达式为y=x +4.(2)图略.(3)x<-2.21.如图,直线y =2x +3与x 轴相交于点A ,与y 轴相交于点B .(1)求点A ,B 的坐标;(2)求当x =-2时,y 的值,当y =10时,x 的值;(3)过点B 作直线BP 与x 轴相交于点P ,且使OP =2OA ,求△ABP 的面积.解:(1)当y =0时,2x +3=0,得x=-32,则A ⎝ ⎛⎭⎪⎫-32,0. 当x=0时,y=3,则B (0,3).(2)当x=-2时,y=-1;当y=10时,x=72.(3)OP=2OA ,A ⎝ ⎛⎭⎪⎫-32,0,则点P 的位置有两种情况,点P 在x 轴的正半轴上或点P 在x 轴的负半轴上.当点P 在x 轴负半轴上时,P (-3,0),则△ABP 的面积为12×⎝ ⎛⎭⎪⎫3-32×3=94; 当点P 在x 轴的正半轴上时,P (3,0),则△ABP 的面积为12×3×⎝ ⎛⎭⎪⎫3+32=274. 22.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20 t ,按每吨1.9元收费.如果超过20 t ,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为x t ,应收水费为y 元.(1)分别写出每月用水量未超过20 t 和超过20 t 时,y 与x 之间的函数表达式;(2)若该城市某户5月份水费平均每吨为2.2元,求该户5月份用水多少吨?解:(1)当x ≤20时,y =1.9x ;当x >20时,y =1.9×20+(x -20)×2.8=2.8x -18.(2)因为5月份水费平均为每吨2.2元,月用水量如果未超过20 t ,按每吨1.9元收费,所以该户5月份用水量超过了20 t.由2.8x -18=2.2x ,解得x=30.答:该户5月份用水30 t.23.某销售公司推销一种产品,设x (件)是推销产品的数量,y (元)是付给推销员的月报酬.公司付给推销员的月报酬的两种方案如图所示,推销员可以任选一种与公司签订合同,看图解答下列问题:(1)求每种付酬方案y 关于x 的函数表达式;(2)当选择方案一所得报酬高于选择方案二所得报酬时,求x 的取值范围.解:(1)设方案一的解析式为y =kx ,把(40,1600)代入解析式,可得k =40,故解析式为y =40x ;设方案二的解析式为y =ax +b ,把(40,1400)和(0,600)代入解析式,可得a =20,b =600,故解析式为y =20x +600;(2)根据两直线相交可得方程40x =20x +600,解得x =30.(8分)根据两函数图象可知,当x >30时,选择方案一所得报酬高于选择方案二所得报酬.24.一次函数y =kx +b (k ≠0)的图象由直线y =3x 向下平移得到,且过点A (1,2).(1)求一次函数的解析式;(2)求直线y =kx +b 与x 轴的交点B 的坐标;(3)设坐标原点为O ,一条直线过点B ,且与两条坐标轴围成的三角形的面积是12,这条直线与y 轴交于点C ,求直线AC 对应的一次函数的解析式.解:(1)根据题意,得k =3,k +b =2,解得b =-1.∴y =3x -1;(2)在y =3x -1中,当y =0时,x =13,∴点B 的坐标为⎝ ⎛⎭⎪⎫13,0; (3)设直线AC 的解析式为y =mx +n (其中m ≠0),则点C 的坐标为(0,n ),根据题意得S △BOC =12×13|n |=12,∴|n |=3,∴n =±3.当n =3时,m +n =2,解得m =-1,∴y = -x +3;当n =-3时,m +n =2,解得m =5,∴y =5x -3.∴直线AC 的解析式为y =-x +3或y =5x -3.25.甲、乙两车分别从A ,B 两地同时出发相向而行,并以各自的速度匀速行驶,甲车途经C 地时休息一小时,然后按原速度继续前进到达B 地;乙车从B 地直接到达A 地,如图是甲、乙两车和B 地的距离y (km )与甲车出发时间x (h )的函数图象.(1)直接写出a ,m ,n 的值;(2)求出甲车与B 地的距离y (km )与甲车出发时间x (h )的函数关系式(写出自变量x 的取值范围);(3)当两车相距120km 时,乙车行驶了多长时间?解:(1):∵甲车途经C 地时休息一小时,∴2.5-m =1,∴m =1.5.乙车的速度为a m =1202,即a 1.5=60, 解得a =90.甲车的速度为300n -1=300-1201.5,解得n =3.5; (2)设甲车的y 与x 的函数关系式为y =kx +b .①休息前,0≤x ≤1.5,函数图象经过点(0,300)和(1.5,120),所以b =300,1.5k +b =120,所以k =-120,所以y =-120x +300;②休息时,1.5<x <2.5,y =120;③休息后,2.5≤x ≤3.5,函数图象经过点(3.5,0),又由题意可知k =-120,故b =420,所以y =-120x +420.综上,y 与x 的函数关系式为y =⎩⎪⎨⎪⎧-120x +300(0≤x ≤1.5),120(1.5<x <2.5),-120x +420(2.5≤x ≤3.5);(3)设当两车相距120km 时,乙车行驶了x h.甲车的速度为(300-120)÷1.5=120(km/h ),乙车的速度为120÷2=60(km/h ).①若相遇前,则120x +60x =300-120,解得x =1;②若相遇后,则120(x -1)+60x =300+120,解得x =3.答:当两车相距120km 时,乙车行驶了1h 或3h.。
北师大版八年级数学上册第4章《一次函数》单元测试题(含答案)
北师大版八年级数学上册第4章《一次函数》单元测试题(含答案)一、单选题1.下列表达式中,y 是x 的函数的是( )A .2y x =B .||1y x =+C .||y x =D .221y x =-2.下列函数中,属于正比例函数的是( )A .22y x =+B .21y x =-+C .1y x =D .5x y = 3.在函数23y x =-中,当自变量5x =时,函数值等于( )A .1B .4C .7D .134.如图,在平面直角坐标系中,线段AC 所在直线的解析式为4y x =-+,E 是AB 的中点,P 是AC 上一动点,则PB PE +的最小值是( )A .42B .22C .25D .55.如图,直线y =x +5和直线y =ax +b 相交于点P ,根据图象可知,关于x 的方程x +5=ax +b 的解是( )A .x =20B .x =25C .x =20或25D .x =﹣20 6.点(3,5)-在正比例函数y kx =(0k ≠)的图象上,则k 的值为( )A .-15B .15C .35D .53- 7.已知某汽车耗油量为0.1L/km ,油箱中现有汽油50L .如果不再加油,记此后汽车行驶的路程为x km ,油箱中的油量为y L .则此问题中的常量和变量是( )A .常量50;变量x .B .常量0.1;变量y .C .常量0.1,50;变量x ,y .D .常量x ,y ;变量0.1,50.8.一次函数y =(a +1)x +a +2的图象过一、二、四象限,则a 的取值是( )A .a <﹣2B .a <﹣1C .﹣2≤a ≤﹣1D .﹣2<a <﹣19.已知,甲、乙两地相距720米,甲从A 地去B 地,乙从B 地去A 地,图中分别表示甲、乙两人离B 地的距离y (单位:米),下列说法正确的是( )A .乙先走5分钟B .甲的速度比乙的速度快C .12分钟时,甲乙相距160米D .甲比乙先到2分钟 10.函数13y x =+中自变量x 的取值范围是( ) A .3x >- B .3x ≥- C .3x <- D .3x ≠-11.汽车由A 地驶往相距120km 的B 地,它的平均速度是60km/h ,则汽车距B 地路程s (km )与行驶时间t (h )的关系式为( ).A .12060s t =-B .12060s t =+C .60s t =D .120s t =12.如图所示,一次函数()0y kx b k =+≠的图象经过点()3,2P ,则方程2kx b +=的解是( )A .1x =B .2x =C .3x =D .无法确定二、填空题(共0分)13.一次函数(21)y m x m =-+的函数值y 随x 值的增大而增大,则m 的取值范围是____ ____.14.从﹣1,2,3这三个数中随机抽取两个数分别记为x ,y ,把点M 的坐标记为(x ,y ),若点N 为(﹣4,0),则在平面直角坐标系内直线MN 经过第一象限的概率为___ .15.一个正方形的边长为3cm ,它的边长减少cm x 后,得到的新的正方形周长(cm)y 与(cm)x 之间的函数关系式为124y x =-,自变量x 的取值范围是________ __.16.弹簧的长度()cm y 与所挂物体的质量()kg x 的关系如图所示,则当弹簧所挂物体质量是10kg 时的长度是____ __cm .17.方程328x +=的解是x =______,则函数32y x =+在自变量x 等于_______时的函数值是818.如图(a )所示,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,ABP 的面积为y ,如果y 关于x 的关系如图(b )所示,则m 的值是________.19.小亮早晨从家骑车到学校,先上坡后下坡,所行路程()y m 与时间(min)x 的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡、下坡的速度分别相同,则小明从学校骑车回家用的时间是__________min .20.某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______x x千克糯米;设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额(10)的函数解析式为______.三、解答题21.某天小刚骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续前行,按时赶到学校,如图是小刚从家到学校这段所走的路程s(米)与时间t(分)之间的关系.(1)小刚从家到学校的路程是________米,从家出发到学校,小刚共用了________分;(2)小刚修车用了多长时间;(3)小刚修车前的平均速度是多少?22.已知如图,在平面直角坐标系中,点A(3,7)在正比例函数图像上.(1)求正比例函数的解析式.(2)点B(1,0)和点C都在x轴上,当△ABC的面积是17.5时,求点C的坐标.23.如图一次函数y kx b =+的图象经过点(1,5)A -,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1.(1)求AB 的函数表达式.(2)若点D 在y 轴负半轴,且满足13COD BOC S S =△△,求点D 的坐标. (3)若3kx b x +<,请直接写出x 的取值范围.24.如图1,在长方形ABCD 中,点P 从点B 出发,沿B →C →D →A 运动到点A 停止.设点P 的运动路程为x ,△P AB 的面积为y ,y 与x 的关系图象如图2所示.(1)AB 的长度为______,BC 的长度为______.(2)求图象中a 和b 的值.(3)在图象中,当m =15时,求n 的值.25.因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?26.甲、乙两地之间有一条笔直的公路,小明从甲地出发步行前往乙地,同时小亮从乙地出发骑自行车前往甲地,小亮到达甲地没有停留,按原路原速返回,追上小明后两人一起步行到乙地.如图,线段OA 表示小明与甲地的距离y 1(米)与行走的时间x (分钟)之间的函数关系:折线BCDA 表示小亮与甲地的距离y 2(米)与行走的时间x (分钟)之间的函数关系.请根据图象解答下列问题:(1)小明步行的速度是 米/分钟,小亮骑自行车的速度是 米/分钟;(2)线段OA 与BC 相交于点E ,求点E 坐标;(3)请直接写出小亮从乙地出发到追上小明的过程中,与小明相距100米时x 的值.27.如图1,在Rt △ABC 中,AC =BC ,点D 在AC 边上,以CD 为边在AC 的右侧作正方形CDEF .点P 以每秒1cm 的速度沿F →E →D →A →B 的路径运动,连接BP 、CP ,△BCP 的面积y (2cm )与运动时间x (秒)之间的图象关系如图2所示.(1)求EF 的长度和a 的值;(2)当x =6时,连接AF ,判断BP 与AF 的数量关系,说明理由.28.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月用水量不超过320m 时,按2.5元/ 3m 计费;月用水量超过320m 时,其中320m 仍按2.5元/3m 收费,超过部分按3.2元/ 3m 计费,设每户家庭月用水量为3xm 时,应交水费y 元.(1)分别写出020x ≤≤和20x >时,y 与x 的函数表达式.(2)小明家第二季度缴纳水费的情况 如下:月份四月份 五月份 六月份 交费金额 40元 45元 56.4元小明家第二季度共用水多少立方米?29.一慢车和一快车沿相同路线从A 地到B 地,两车所行的路程s (千米)与慢车行驶的时间x (时)关系如图所示.根据图像解决下列问题:(1)快车比慢车晚 小时出发,快车比慢车早到 小时.快车追上慢车时,快车行驶了 千米.(2)求A 、B 两地相距多少千米?30.某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月的利润y (元)的变化关系如下表所示:(利润=收入费用-支出费用,每位乘客的公交票价是固定不变的):x (人) 500 10001500 2000 2500 3000 … y (元)3000- 2000- 1000- 01000 2000 … (1)在这个变化过程中,直接写出自变量和因变量;(2)观察表中数据可知,每月乘客量达到_____人以上时,该公交车才会盈利;(3)请你估计每月乘车人数为3500人时,每月的利润为______元;(4)根据表格直接写出y 与x 的表达式,并求出5月份乘客量需达多少人时,可获得5000元的利润参考答案1.C2.D3.C4.C5.A6.D7.C8.D9.D10.A11.A12.C13.12m > 14.2315.03x ≤<16.1517. 2 218.519.37.220. 3 42y x =+##24y x =+21.(1)由图象可得,小刚从家到学校的路程共2000米,从家出发到学校,小明共用了20分钟;故答案为:2000,20;(2)小刚修车用了:15-10=5(分钟),答:小刚修车用了5分钟;(3)由图象可得,小刚修车前的速度为:1000÷10=100米/分钟.答:小刚修车前的平均速度是100米/分钟.22.解:(1)设正比例函数的解析式为y kx =,将点(3,7)A 代入得:37k =,解得73k =, 则正比例函数的解析式为73y x =; (2)如图,过点A 作AD x ⊥轴于点D ,(3,7)A ,7AD ∴=,设点C 的坐标为(,0)a ,则1BC a =-,ABC 的面积是175., 117.52BC AD ∴⋅=,即17117.52a ⨯-=, 解得6a =或4a =-,故点C 的坐标为(6,0)或(4,0)-.23.解:(1)∵一次函数y kx b =+与正比例函数3y x =的图象交于点C ,点C 的横坐标为1,∴把x =1代入正比例函数得:3y =,∴点()1,3C ,∴把点()1,5A -、()1,3C 代入一次函数得:53k b k b -+=⎧⎨+=⎩,解得:14k b =-⎧⎨=⎩, ∴AB 的函数解析式为4y x =-+;(2)由(1)得:()1,3C ,AB 的函数解析式为4y x =-+, ∴令y =0时,则有4x =,∴点()4,0B ,∴OB =4,令C x 表示点C 的横坐标,C y 表示点C 的纵坐标,则由图象可得:1143622BOC C S OB y =⋅=⨯⨯=, ∵13COD BOC S S =△△, ∴2COD S =, ∴122COD C S OD x =⋅=△, ∴4OD =,∵点D 在y 轴负半轴,∴()0,4D -;(3)由图象可得:当3kx b x +<时,则x 的取值范围为1x >.24.解:由图2知,当x =5时,点P 与C 重合, ∴BC =5,当x =13时,点P 与D 重合,∴BC +CD =13,∴CD =8=AB ,故答案为:8,5;(2)当P 与C 点重合时,b =185202⨯⨯=,当点P 与A 重合时,a =5+8+5=18; (3)∵15m =58>+,∴此时点P 在AD 边上,且AP =3. ∴183122n =⨯⨯=. 25.由图中可知,货车a 小时走了90km ,∴a =9060 1.5÷=;(2)设轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =kt +b ,将(1.5,0)和(3,150)代入得,1.503150k b k b +=⎧⎨+=⎩, 解得,100150k b =⎧⎨=-⎩, ∴轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =100t -150;(3)将s =330代入s =100t -150,解得t =4.8,两车相遇后,货车还需继续行驶:()330150603-÷=(h),到达乙地一共:3+3=6(h ),6-4.8=1.2(h),∴轿车比货车早1.2h 时间到达乙地.26.(1)由图可知,小明步行的速度为1500÷30=50(米/分钟),小亮骑车的速度为1500÷10=150(米/分钟),故答案为:50,150;(2)点E的横坐标为:1500÷(50+150)=7.5,纵坐标为:50×7.5=375,即点E的坐标为(7.5,375);(3)小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.理由:两人相遇前,(50+150)x+100=1500,得x=7,两人相遇后,(50+150)x﹣100=1500,得x=8,小亮从甲地到追上小明时,50x﹣100=150(x﹣10),得x=14,即小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.27.解:当点P在边EF上运动时,y=S△BCP12=BC•PF12=BC×1×x12=BC•x,∵BC为定值,∴y随x的增大而增大,∴当x=3时,y=a,此时EF=1×3=3(cm),当点P在边ED上运动时,点P到BC的距离等于3,y=S△BCP12=BC×332=BC,∴y的值不变,∵四边形FEDC是正方形,∴DE=EF=3cm,∴x331+==6(秒),∴b=6,当点P在DA上运动时,y=S△PBC12=BC•PC,∴y随PC的增大而增大,当点P与点A重合时,即x=8时,y最大,此时AD=8×1﹣3﹣3=2,∴AC=BC=3+2=5(cm),∴a12=BC×EF12=⨯5×3152=;(2)由(1)知,当点x =6时,点P 在点D 处,如图所示:此时,BD =AF ,理由:∵BC =AC ,CD =CF ,∠ACB =∠ACF =90°,∴△BDC ≌△AFC (SAS ),∴BD =AF .28.(1)当020x ≤≤时,1 2.5y x =;当20x >时,()2 2.520 3.220 3.214y x x =⨯+-=-;()2当20x 时,150y =4050,4550,56.450<<>∴四、五月份的月用水量比320m 少,六月份的月用水量比320m 多令140y =,得16x =令145y ,得18x =令256.4y =,得22x =16182256++=(立方米)∴第二季度共用水56立方米29.解:由图像可得,慢车比快车晚2小时出发,快车比慢车早到18﹣14=4(小时),快车追上慢车时,快行驶了276千米,故答案为:2,4,276;(2)解:由图像可得,慢车的速度为:276÷6=46(千米/时),46×18=828(千米),答:A 、B 两地相距828千米.30.解:(1)在这个变化过程中,每月的乘车人数x 是自变量,每月的利润y 是因变量; 故答案为每月的乘车人数x ,每月的利润y ;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元, 当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元;故答案为3000;(4)设y 与x 的表达式为y=kx+b ,则依题意得:500300020000x b x b +=-⎧⎨+=⎩解得:24000k b =⎧⎨=-⎩ ∴y 与x 的表达式为24000y x =-;当5000y =时,500024000x =-.解得4500x =.答:5月乘车人数为4500人时,可获得利润5000元。
北师大版八年级数学上册 第四章 《一次函数》 综合提升练习题(含答案)
北师大版八年级数学上册第四章《一次函数》综合提升练习题1.一辆快递车从长春出发,走高速公路,途经伊通,前往靖宇镇送快递,到达后卸货和休息共用1h,然后开车按原速原路返回长春.这辆快递车在长春到伊通、伊通到靖宇的路段上分别保持匀速前进,这辆快递车距离长春的路程y(km)与它行驶的时间x(h)之间的函数图象如图所示.(1)快递车从伊通到长春的速度是km/h,往返长春和靖宇两地一共用时h.(2)当这辆快递车在靖宇到伊通的路段上行驶时,求y与x之间的函数关系式,并写出自变量x的取值范围.(3)如果这辆快递车两次经过同一个服务区的时间间隔为4h,直接写出这个服务区距离伊通的路程.2.如图,已知直线l1:y=2x+4与坐标轴y轴交于点A,与x轴交于点B,以OA为边在y 轴右侧作正方形OACD.将直线l1向下平移5个单位得到直线l2.(1)求直线l2的解析式,以及A、B两点的坐标;(2)已知点M在第一象限,且是直线l2上的点,点P是边CD上的一动点,设M(m,2m﹣1),若△APM是等腰直角三角形,求点M的坐标;(3)点Q是边OD上一动点,连接AQ,过B作AQ的垂线,垂足为N,求线段DN的最小值.3.如图,两个一次函数y=kx+b与y=mx+n的图象分别为直线l1和l2,l1与l2交于点A(1,p),l1与x轴交于点B(﹣2,0),l2与x轴交于点C(4,0)(1)填空:不等式组0<mx+n<kx+b的解集为;(2)若点D和点E分别是y轴和直线l2上的动点,当p=时,是否存在以点A、B、D、E为顶点的四边形是平行四边形?若存在,请求出点E的坐标;若不存在,请说明理由.4.小明和小强在同一直线跑道AB上进行往返跑,小明从起点A出发,小强在小明前方C 处与小明同时出发,当小明到达终点B处时,休息了100秒才又以原速返回A地,而小强到达终点B处后马上以原来速度的3.2倍往回跑,最后两人同时到达A地,两人距B 地的路程记为y(米),小强跑步的时间记为x(秒),y和x的关系如图所示.(1)A,C两地相距米;(2)小强原来的速度为米/秒;(3)小明和小强第一次相遇时他们距A地米;(4)小明到B地后再经过秒与小强相距100米?5.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动,试解决下列问题:(1)求直线AC的表达式;(2)求△OAC的面积;(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.6.周未,小丽骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小丽离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小丽离家时间x(h)的函数图象.(1)小丽骑车的速度为km/h,H点坐标为;(2)求小丽游玩一段时间后前往乙地的过程中y与x的函数关系;(3)小丽从家出发多少小时后被妈妈追上?此时距家的路程多远.7.如图,A(0,2),M(4,3),N(5,6),动点P从点A出发,沿y轴以每秒1个单位速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时、点M关于l的对称点落在坐标轴上.8.如图1,在平画直角坐标系中,直线交x轴于点E,交y轴于点A,将直线y=﹣2x﹣7沿x轴向右平移2个单位长度交x轴于D,交y轴于B,交直线AE于C.(1)直接写出直线BD的解析式为,S=;△ABC(2)在直线AE上存在点F,使BA是△BCF的中线,求点F的坐标;(3)如图2,在x轴正半轴上存在点P,使∠PBO=2∠P AO,求点P的坐标.9.如图1,已知直线l1:y=kx+4交x轴于A(4,0),交y轴于B.(1)直接写出k的值为;(2)如图2,C为x轴负半轴上一点,过C点的直线l2:经过AB的中点P,点Q(t,0)为x轴上一动点,过Q作QM⊥x轴分别交直线l1、l2于M、N,且MN=2MQ,求t的值;(3)如图3,已知点M(﹣1,0),点N(5m,3m+2)为直线AB右侧一点,且满足∠OBM=∠ABN,求点N坐标.10.如图所示,平面直角坐标系中,直线y=kx+b与x轴交于点A,与y轴交于点B,且AB=2,AO:BO=2:;(1)求直线AB解析式;(2)点C为射线AB上一点,点D为AC中点,连接DO,设点C的横坐标为t,△BDO 的面积为S,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当点C在第一象限时,连接CO,过D作DE⊥CO于E,在DE 的延长线上取点F,连接OF、AF,且OF=OD,当∠DF A=30°时,求S的值.11.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车在零点同时出发,相遇后快车继续行驶,中午12点到达丙地,两车之间的距离为y(km),图中的折线表示两车之间的距离y(km)与时间x(时)之间的关系.根据图象进行以下探究:(直接填空)(1)甲、乙两地之间的距离为m;(2)两车之间的最大距离是km,是在时?(3)从一开始两车相距900km到两车再次相距900km,共用了小时?(4)请写出0时至4时,y与x的关系式.12.某校为学生装一台直饮水器,课间学生到直饮水器打水.他们先同时打开全部的水笼头放水,后来又关闭了部分水笼头.假设前后两人接水间隔时间忽略不计,且不发生泼洒,直饮水器的余水量y(升)与接水时间x(分)的函数图象如图,请结合图象回答下列问题:(1)求当x>5时,y与x之间的函数关系式;(2)假定每人水杯接水0.7升,要使40名学生接水完毕,课间10分钟是否够用?请计算回答.13.甲、乙两家采摘园的圣女果品质相同,售价也相同,节日期间,两家均推出优惠方案,甲:游客进园需购买60元门票,采摘的打六折;乙:游客进园不需购买门票,采摘超过一定数量后,超过部分打折,设某游客打算采摘60x千克,在甲、乙采摘园所需总费用为y1、y2元,y1、y2与x之间的函数关系的图象如图所示.(1)分别求出y1、y2与x之间的函数关系式;(2)求出图中点A、B的坐标;(3)若该游客打算采摘10kg圣女果,根据函数图象,直接写出该游客选择哪个采摘园更合算.14.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她骑车速度最快是在什么时候?车速多少?(3)玲玲自离家到返回的平均速度是多少?15.小亮家距离学校8千米,一天早晨小亮骑车上学,途中恰好遇到交警叔叔在十字路口带领小朋友过马路,小亮停下车协助交警叔叔,几分钟后为了不迟到,他加快了骑车到校的速度到校后,小亮根据这段经历画出了过程图象如图该图象描绘了小亮骑行的路程y (千米)与他所用的时间x(分钟)之间的关系请根据图象,解答下列问题(1)小亮骑车行驶了多少千米时,协助交警叔叔?协助交警叔叔用了几分钟?(2)小亮从家出发到学校共用了多少时间?(3)如果没有协助交警叔叔,仍保持出发时的速度行驶,那么他比实际情况早到或晚到学校多少分钟?参考答案1.解:(1)快递车从伊通到长春的速度是:66÷0.6=110km/h;往返长春和靖宇两地一共用时间为:2.6×2+1=6.2小时;故答案为:110;6.2;(2)当这辆快递车在靖宇到伊通的路段上行驶时,设y与x之间的函数关系式为y=kx+b,由点A(3.6,246),B(5.6,66)得,解得,∴y=﹣90x+570(3.6≤x≤5.6);(3)(246﹣66)÷(2.6﹣0.6)×(4﹣1135(km).2.解:(1)由题意可得y=2x﹣1,∴A(0,4),B(﹣2,0);(2)①当M在正方形内部时,过点M作EF∥OD,AM=MP,∠AEM=∠PFM=90°,∠EAM=∠PMF,易证Rt△AEM≌Rt△MFP(AAS),∴AE=MF,∵M(m,2m﹣1),∴AE=4﹣(2m﹣1)=5﹣2m,MF=4﹣m,∴5﹣2m=4﹣m,∴m=1,∴M(1,1);②当M在正方形外部时,作GH∥AC,AM=MP,∠MGA=∠MHP=90°,∠GMA=∠HPM,易证Rt△AGM≌Rt△MPH(AAS),∴AG=MH,∵M(m,2m﹣1),∴AG=2m﹣1﹣4=2m﹣5,MH=4﹣m,∴2m﹣5=4﹣m,∴m=3,∴M(3,5);(3)取AB的中点为K,则K(﹣1,2),在Rt△ABN中,KN=AB∵D(4,0),∴KD在△KND中,∵KN+ND>KD,∴ND>KD﹣KN,若N在直线KD上,则ND=KD﹣KN,综上,ND≥KD﹣KN=﹣,∴ND的最小值为﹣.3.解:(1)由图象可知满足0<mx+n<kx+b的部分为A点与C点之间的部分,∴1<x<4;(2)∵p=,∴A(1,),将点A与B代入y=kx+b,得,∴,∴y=x+1,将点A与点C代入y=mx+n,得,∴,∴y=﹣x+2,①如图1:当四边形ABDE为平行四边形时,∵E在直线l2上,此时,BD∥AC,∴BD所在直线解析式为y=﹣x﹣1,∴D(0,﹣1),∵DE∥AB,∴DE所在直线解析式为y=x﹣,∵﹣x+2=x﹣,可得x=,∴E(,);②如图2:当四边形EBDA是平行四边形时,则有BD∥AC,∴BD所在直线解析式为y=﹣x﹣1,∴D(0,﹣1),∴AD的直线解析为y=x+1,∵AD∥BE,∴BE所在直线解析为y=x+5,∵﹣x+2=x+5,解得x=﹣1,∴E(﹣1,);③如图3:当四边形EBAD为平行四边形时,设D(0,a),E(m,﹣m+2),此时AE的中点M的横坐标为,BD中点M的横坐标为﹣1,∴﹣1=,∴m=﹣3,∴E(﹣3,);综上所述:满足条件的E点为(,),(﹣1,),(﹣3,).4.解:(1)由图可得,A,C两地相距800﹣500=300(米),故答案为:300;(2)小强原来的速度为a米/秒,,解得,a=1.5,故答案为:1.5;(3)设小明的速度为b米/秒,(300﹣100)b=800,解得,b=4米/秒,小明和小强第一次相遇时的所用的时间为m秒,4m=(800﹣500)+1.5m,解得m=120,小明和小强第一次相遇时他们距A地为:4×120=480(米),故答案为:480;(4)设小明到B地后再经过b秒,与小强相距100米,500﹣100=1.5b,解得,b=,故答案为:.5.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;=×6×4=12;(2)S△OAC(3)设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7).综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).6.解:(1)由函数图可以得出,小丽家距离甲地的路程为10km,花费时间为0.5h,故小丽骑车的速度为:10÷0.5=20(km/h),由题意可得出,点H的纵坐标为20,横坐标为:,故点H的坐标为(,20);故答案为:20;(,20);(2)设直线AB的解析式为:y1=k1x+b1,将点A(0,30),B(0.5,20)代入得:y1=﹣20x+30,∵AB∥CD,∴设直线CD的解析式为:y2=﹣20x+b2,将点C(1,20)代入得:b2=40,故y2=﹣20x+40;(3)设直线EF的解析式为:y3=k3x+b3,将点E(,30),H(,20)代入得:k3=﹣60,b3=110,∴y3=﹣60x+110,解方程组,解得,∴点D坐标为(1.75,5),30﹣5=25(km),所以小丽出发1.75小时后被妈妈追上,此时距家25km;7.解:(1)当t=3时,点P的坐标为(0,5),则直线l的表达式为:y=﹣x+5;(2)当直线l过点M时,将点M的坐标代入直线l的表达式:y=﹣x+b得:3=﹣4+b,解得:b=7,t=5;当直线l过点N时,同理可得:t=9,故t的取值范围为:5<t<9;(3)直线l随P沿y轴向上移动时,点M关于直线l的对称轴不可能落在y轴上,只能落在x轴上,如图,当点M关于l的对称点E′落在坐标轴上时,直线M′M交l于点H,设直线l交x轴于点G,则M′M⊥l,∠HM′G=45°=∠M′GH=∠HGM,即MG⊥x轴,故M′G=MG=3,则点G(3,0),则t=2.8.解:(1)直线y=﹣2x﹣7沿x轴向右平移2个单位长度后,所得直线方程为y=﹣2(x ﹣2)﹣7=﹣2x﹣3.则直线BD的解析式为y=﹣2x﹣3.解方程组,得,∴C(﹣4,5).在中,令x=0,得y=8,∴A(0,8).在y=﹣2x﹣3中,令x=0,得y=﹣3,∴B(0,﹣3).∴AB=11,∴S=×11×4=22.△ABC故答案是:y=﹣2x﹣3,22.(2)如图1,作CG⊥y轴于G,FH⊥y轴于H,∴CG=4,∠CGA=∠FHA=90°,∵BA为△BCF的中线,∴CA=F A,∵∠CAG=∠F AH,∴△CAG≌△F AH(AAS),∴FH=CG=4,在中,当x=4时,y=11,∴F(4,11).(3)由(1)知A(0,8),B(0,﹣3),∴OA=8,OB=3.如图2,在y轴正半轴上取一点Q,使OQ=OB=3,∵∠POB=90°,∴PQ=PB,∴∠PBO=∠PQO=∠P AO+∠APQ,∵∠PBO=2∠P AO,∴∠P AO=∠APQ,∴PQ=AQ=5,∴OP=4,∴P(4,0).9.解:(1)把A(4,0)代入y=kx+4,得0=4k+4.解得k=﹣1.故答案是:﹣1;(2)∵在直线y=﹣x+4中,令x=0,得y=4,∴B(0,4),∵A(4,0),∴线段AB的中点P的坐标为(2,2),代入,得n=1,∴直线l2为,∵QM⊥x轴分别交直线l1、l2于M、N,Q(t,0),∴M(t,﹣t+4),,∴,MQ=|﹣t+4|=|t﹣4|,∵MN=2MQ,∴,分情况讨论:①当t≥4时,,解得:t=10.②当2≤t<4时,,解得:.③当t<2时,,解得:t=10>2,舍去.综上所述:或t=10.(3)在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(﹣1,0),∴OP=OM=1,∴BP=BM,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为,将N(5m,3m+2)代入,得3m+2=﹣×5m+4解得,∴.10.解:(1)∵AO:BO=2:,∴设AO=2a,BO=a,∵AO2+BO2=AB2,∴4a2+3a2=28∴a=2,∴AO=4,BO=2,∴点A(﹣4,0),点B(0,2)设直线AB解析式为:y=kx+b,解得∴直线AB解析式为:y=x+2,(2)当﹣4<t<4时,S=×2×(﹣)=2﹣t,当t>4时,S=×2×()=t﹣2(3)作AH⊥DE于H,OG⊥AB于G,如图,∵OD=OF,OE⊥DF,∴DE=FE,∵D点为AC的中点,AH⊥HE,CE⊥HE,∴AD=CD,AH∥CE,在△AHD和△CED中,∴△AHD≌△CED(AAS),∴DH=DE,∴HF=3DH,在Rt△AFH中,∵∠HF A=30°,∴FH=AH,∴3HD=AH,∴AH=DH,在△ADH中,tan∠DAH==,∴∠DAH=30°,∴∠DCE=30°,∵OG•AB=OA•OB,∴OG==,在Rt△COG中,OC=2OG=,设C(t,t+2),∴t2+(t+2)2=()2,整理得49t2+168t﹣432=0,解得t1=﹣(舍去),t2=,把t=代入S=﹣t+2得S=×+2=.11.解:(1)图象过(0,900),表示时间为0时,即未出发,两车相距900km,即900000m,就是甲乙两地的距离.故答案为:900000,(2)点D(12,1200),表示12时,两车的距离达到1200千米,故答案为:1200,12,(3)点A(0,900),C(8,900),因此从一开始两车相距900km到两车再次相距900km,共用8﹣0=8小时,故答案为:8,(4)设关系式为y=kx+b,把(0,900),(4,0)代入得,,解得,k=﹣225,b=900,∴y=﹣225x+900,答:y与x的关系式为y=﹣225x+900 (0≤x≤4).12.解:(1)设x>5时,y与x之间的函数关系式为y=kx+b,由题意得,解得,所以x>5时,y与x之间的函数关系式为y=﹣1.5x+16.5;(2)够用.理由如下:接水总量为0.7×40=28(升),饮水机内余水量为30﹣28=2(升),当y=2时,有2=﹣1.5x+16.5,解得:x=.所以要使40名学生接水完毕,课间10分钟够用.13.解:(1)由图得单价为300÷10=30(元),据题意,得y1=30×0.6x+60=18x+60当0≤x<10时,y2=30x,当x≥10时由题意可设y2=kx+b,将(10,300)和(20,450)分别代入y2=kx+b中,得,解得,故y2与x之间的函数关系式为y2=;(2)联立y2=18x+60,y2=30x,得,解得:,故A(5,150).联立y1=18x+60,y2=15x+150x,得解得,故B(30,600).(3)由(2)结合图象得,当5<x<30时,甲采摘园所需总费用较少.14.解:观察图象可知:(1)玲玲到达离家最远的地方是在12时,此时离家30千米;(2)玲玲郊游过程中,各时间段的速度分别为:9~10时,速度为10÷(10﹣9)=10千米/时;10~10.5时,速度约为(17.5﹣10)÷(10.5﹣10)=15千米/小时;10.5~11时,速度为0;11~12时,速度为(30﹣17.5)÷(12﹣11)=12.5千米/小时;12~13时,速度为0;13~15时,在返回的途中,速度为:30÷(15﹣13)=15千米/小时;可见骑行最快有两段时间:10~10.5时;13~15时.两段时间的速度都是15千米/小时.速度为:30÷(15﹣13)=15千米/小时;(3)玲玲自离家到返回的平均速度是:(30+30)÷(15﹣9)=10千米/小时.15.解:(1)由图可知,小亮骑车行驶了3千米时,协助交警叔叔,协助交警叔叔用,5分钟;(2)由图可知,小亮从家出发到学校共用了27分钟;(3),27﹣24=3.∴小亮比实际情况早到学校3分钟.。
北师大版八年级上册第四单元综合测试试题数学试题
四边形综合测试一.选择题(每题4分,共60分,每道题每四个选项中只有一个是符合题目要求的)1、如图,在矩形ABCD中,AE,AF三等分∠BAD,若BE=2,CF=1,则最接近矩形面积是()A、13B、14C、15D、162、对描述错误的一项是()A、面积为2的正方形的边长B、它是一个无限不循环小数C、它是2的一个平方根D、它的小数部分大于2-3、如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形.依照图中标注的数据,计算图中空白部分的面积,其面积是()A、bc-ab+ac+c2B、ab-bc-ac+c2C、a2+ab+bc-acD、b2-bc+a2-ab4、有若干张如图所示的正方形和长方形卡片,表中所列四种方案能拼成邻边长分别是a+b和2a+b的矩形是()5. 如果ad=bc,那么下列比例式中错误的是()9. 如果,则下列各式中能成立的是()10. 下列说法中,一定正确的是()(A)有一个锐角相等的两个等腰三角形相似(B)底角为45˚的两个等腰梯形相似(C)任意两个菱形相似(D)有一个钝角相等的两个等腰三角形相似11. 延长线段AB到C,使得BC=AB,则AC:AB=( )(A)2:1 (B)3:1 (C)3:2 (D)4:312. 如图已知:△ABC中,DE∥BC,BE、CD交于O,S△DOE:S△BOC=4:25,则AD:DB=()(A)2:5 (B)2:3 (C)4:9 (D)3:513. 三角形三边之比为3:4:5,与它相似的另一个三角形的最短边为6cm ,则这个三角形的周长为( )(A)12cm (B)18cm (C)24cm (D)30cm14. 如图,根据下列条件中( )可得AB ∥EF(A) OA:AE=OB:BF (B) AC:AE=BD:DF (C)OA:OE=OB:DF (D)AE:BF=OA:DB15. 如图已知在Rt △ABC 中,∠ACB=90˚,CD ⊥AB 于D ,DE ⊥BC 于E ,则图中相似(但不全等)的三角形共有( )(A)6对 (B)8对 (C)9对 (D)10对二.填空题 (本大题共 20分)16..已知:平行四边形ABCD 的周长为30cm,AB :BC=2:3,则AB= ;17.若一个多边形的内角和是外角和的5倍,则这个多边形是 边形;18.在梯形ABCD 中,两底AB=14cm ,DC=6Ccm ,两底角∠A=30°,∠B=60°,则腰BC= ; 19.菱形两条对角线分别长4cm ,8cm ,则菱形边长为 ;20.如图,把边长为AD=12cm ,AB=8cm 的矩形沿着AE 为折痕对折使点D 落在BC 上点F 处,则DE= cm;三.解答题(共计70分) 21.已知:如图,在梯形ABCD 中,AD ∥BC ,BC=DC ,CF 平分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E .求证:(1)△BFC ≌△DFC ;(2)AD=DE .22.如图,正方形ABCD 中,E 是BD 上一点,AE 的延长线交CD 于F ,交BC 的延长线于N ,过点C 作CM ⊥CE ,交FN 于点M ,(1)求证:△ADE ≌△CDE ;(2)求证:∠N=∠2;FM=MC=MN ;(3)试问当∠1等于多少度时,△ECN 为等腰三角形?请说明理由.F C E D B A 5题图 F E D C B A23.(1)如图1,△ABC中,AB>AC,AD平分∠BAC交BC于点D,在AB上截取AE=AC,过点E作EF∥BC交AD于点F.求证:①△ADE≌△ADC;②四边形CDEF是菱形;(2)如图2,△ABC中,AB>AC,AD平分△ABC的外角∠EAC交BC的延长线于点D,在AB 的反向延长线上截取AE=AC,过点E作EF∥BC交AD的反向延长线于点F.四边形CDEF还是菱形吗?如果是,请给出证明;如果不是,请说明理由;(3)在(2)的条件下,四边形CDEF能是正方形吗?如果能,直接写出此时△ABC中∠BAC与∠B的关系;如果不能,请直接回答问题,不必说明理由.24.已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.25.如图,已知正方形ABCD的边长为10厘米,点E在边AB上,且AE=4厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,则当t为何值时,能够使△BPE与△CQP全等;此时点Q的运动速度为多少.26.1)如图,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE.(下面请你完成余下的证明过程)(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN为何值时,结论AM=MN仍然成立.27.平行四边形ABCD中,AB=2cm,BC=12cm,∠B=45°,点P在边BC上,由点B向点C运动,速度为每秒2cm,点Q在边AD上,由点D向点A运动,速度为每秒1cm,连接PQ,设运动时间为t秒.(1)当t为何值时,四边形ABPQ为平行四边形;(2)设四边形ABPQ的面积为ycm2,请用含有t的代数式表示y的值;(3)当P运动至何处时,四边形ABPQ的面积是▱ABCD面积的四分之三?28.(1)如图1,△ABC中,∠BAC=90°,AB=AC,D、E在BC上,∠DAE=45°,为了探究BD、DE、CE之间的等量关系,现将△AEC绕A顺时针旋转90°后成△AFB,连接DF,经探究,你所得到的BD、DE、CE之间的等量关系式是:_____________________________(2)如图2,在△ABC中,∠BAC=120°,AB=AC,D、E在BC上,∠DAE=60°、∠ADE=45°,试仿照(1)的方法,利用图形的旋转变换,探究BD、DE、CE之间的等量关系,并证明你的结论.。
(常考题)北师大版初中数学八年级数学上册第四单元《一次函数》检测卷(含答案解析)
一、选择题1.A,B两地相距12千米,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF分别表示甲乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系,且OP与EF交于点M,下列说法:①y乙=-2x+12;②线段OP 对应的y甲与x的函数关系式为y甲=18x;③两人相遇地点与A地的距离是9km;④经过3 8小时或58小时时,甲乙两个相距3km.其中正确的个数是()A.1个B.2个C.3个D.4个2.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,54t 或154其中正确的结论有()A.1个B.2个C.3个D.4个3.如图1,一辆汽车从点M处进入路况良好的立交桥,图2反映了它在进入桥区行驶过程中速度(千米/时)与行驶路程(米)之间的关系.根据图2,这辆车的行车路线最有可能是()A.B.C.D.4.如图①,正方形ABCD中,点P以恒定的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动3秒时,△APQ的面积为()A.6cm2B.4cm2C.262cm D.42cm25.今天早晨上7点整,小华以50米/分的速度步行去上学,妈妈同时骑自行车向相反的方向去上班,10分钟时按到小华的电话,立即原速返回并前往学校,恰与小华同时到达学校他们离家的距离y(米)与时间x(分)间的函数关系如图所示,有如下的结论:①妈妈骑骑自行车的速度为250米/分;②小华家到学校的距离是1250米;③小华今早晨上学从家到学校的时间为25分钟:④在7点16分40秒时妈妈与小华在学校相遇.其中正确的结论有()A .1个B .2个C .3个D .4个6.张师傅驾车从甲地到乙地、两地距500千米,汽车出发前油箱有25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶.已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图,以下四种说法:①加油前油箱中剩余油量y (升)与行驶时间t (小时)的外函数关系是825y t =-+;②途中加油21升;③汽车加油后还可行驶4小时;④汽车到达乙地时油箱中还余油6升.其中正确的个数是( )A .1个B .2个C .3个D .4个7.小明家、食堂、图书馆依次在同一条直线上,小明从家去食堂吃早餐,接着云图书馆读报,然后回家.如图反映了这个过程,小明离家的距离与时间之间的对应关系,下列说法错误的是( )A .小明从家到食堂用了8minB .小明家离食堂0.6km ,食堂离图书馆0.2kmC .小明吃早餐用了30min ,读报用了17minD .小明从图书馆回家的平均速度为0.08km/min8.一个装有进水管和出水管的容器,开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数. 容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图,则6分钟时容器内的水量(单位:升)为( )A .22B .22.5C .23D .259.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④10.在平面直角坐标系xOy 中,直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,则下列直线中,与x 轴的交点在线段AB 上的是( ) A .y=x+2B .22y x =+ C .y=4x-12D .33y x =-11.已知一次函数y kx b =+(k ,b 是常数,0k ≠)若||||k b <,则它的图象可能是( )A .B .C .D .12.已知函数y =kx+b 的图象如图所示,则y =2kx+b 的图象可能是( )A .B .C .D .二、填空题13.如图,点A (6,0),B (0,2),点P 在直线y =-x -1上,且∠ABP =45°,则点P 的坐标为_____________14.如图,直线2y x a =-,3y x b =-(a ,b 是整数)分别交x 轴于点A ,B .若线段AB 上只有三个点的横坐标是整数(分别为4,5,6),则有序数对(,)a b 一共有__________对.15.已知直线y =13x +2与函数y =()()1111x x x x ⎧+≥-⎪⎨--<-⎪⎩的 图象交于A ,B 两点(点A 在点B 的左边).(1)点A 的坐标是_____;(2)已知O 是坐标原点,现把两个函数图象水平向右平移m 个单位,点A ,B 平移后的对应点分别为A ′,B ′,连结OA ′,OB ′.当m =_____时,|OA '﹣OB '|取最大值.16.小亮拿15元钱去文具店买签字笔,每支1.5元,小亮买签字笔后所剩钱数y (元)与买签字笔的支数x (支)之间的关系式为____________.17.将直线2y x =向下平移1个单位长度后得到的图像的函数解析式是______. 18.将直线2y x =向下平移1个单位,得到直线___________.19.一次函数()1y k x =-的图象经过第一、三象限,则k 的取值范围为_______. 20.已知,函数y =3x +b 的图象经过点A (﹣1,y 1),点B (﹣2,y 2),则y 1_____y 2(填“>”“<”或“=”)三、解答题21.在平面直角坐标系xOy 中,一次函数y =﹣x +6的图象分别交y 轴和x 轴于点A ,B ,交一次函数y =2x 的图象于点C . (1)求点C 的坐标; (2)求△OBC 的面积.22.如图1,O 的直径4cm AB =,C 为线段AB 上一动点,过点C 作AB 的垂线交O 于点D ,E ,连接AD ,AE .设AC 的长为cm x ,ADE 的面积为2cm y .小华根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究.下面是小华的探究过程,请帮助小华完成下面的问题.(1)通过对图1的研究、分析与计算,得到了y与x的几组对应值,如下表:x00.51 1.52 2.53 3.54 /cm2y00.7 1.7 2.9a 4.8 5.2 4.60 /cma(2)如图2,建立平面直角坐标系xOy,描出表中各对应点,画出该函数的大致图像;(3)结合画出的函数图像,直接写出当ADE的面积为24cm时AC的长约为多少(结果保留一位小数).23.已知一次函数y=kx+b.当x=-3时,y=-8;当x=0时,y=-4.(1)求该一次函数的表达式;(2)求该函数的图像与坐标轴围成的图形的面积.24.如图1,某物流公司恰好位于连接A,B两地的一条公路旁的C处.某一天,该公司同时派出甲、乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲、乙两车之间的距离S(km)与他们出发后的时间x(h)之间函数关系的部分图象.(1)由图象可知,甲车速度为 km/h;乙车速度为 km/h;(2)已知最终甲、乙两车同时到达B地.①从乙车掉头到乙车到达B地的过程中,求S与x的函数表达式以及关于x的取值范围,并在图2中补上函数图像;②从两车同时从C地出发到两车同时到达B地的,整个过程中,两车之间的距离何时为80km?25.如图,直线l与x轴交于点A,与y轴交于点B(0,2).已知点C(﹣1,3)在直线l上,连接OC.(1)求直线l的解析式;(2)点P为x轴上一动点,若△ACP的面积与△AOB的面积相等,求点P的坐标.26.已知某大酒店有三人间和双人间两种客房,凡团体入住,三人间每人每天100元、双人间每人每天150元.现有一个50人的旅游团到该酒店住宿.(1)如果每个客房正好住满,并且一天一共花去住宿费6300元.求入住的三人间、双人间客房各多少间?(2)设三人间共住了x人,这个团一天一共花去住宿费y元,请写出y与x的函数关系式;(3)一天6300元的住宿费是否为最低?如果不是,请设计一种方案:要求房间正好被住满的,并使住宿费用最低,请写出设计方案,并求出最低的费用.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】①根据函数图像中的数据可以求得y 乙与x 的函数关系式;②根据函数图像中的数据可以求得线段OP 对应的y 甲与x 的函数关系式,进而可求得两人相遇时距离A地的距离;③根据①和②中的函数关系式,可求得两人相距3km 时所用的时间. 【详解】(1)设y 乙与x 的函数关系式为:y 乙=ax +b , 把(0,12)和(2,0)代入得:1220b a b =⎧⎨+=⎩解得:612a b =-⎧⎨=⎩,可得y 乙=-6x +12,故①错误;(2)设线段OP 对应的y 甲与x 的函数关系式为:y kx =甲, 把x =0.5代入y =-6x +12中得:y =9, ∴M (0.5,9), ∴9=0.5k , 解得:k =18, ∴18y x =甲,∴当x =0.5时,y =9,即两人相遇时距离A地的距离为9,故②③正确; (3)令|18x -(-6x +12)|=3,解得x =38或58,故④正确;故选:C . 【点睛】本题考查一次函数的应用,解题本题的关键是明确题意,利用一次函数的性质解答.2.C解析:C 【分析】由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为50,可求得t ,可得出答案. 【详解】图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故①②都正确; 设甲车离开A 城的距离y 与t 的关系式为y kt =甲, 把()5,300代入可求得60k =,60y t ∴=甲,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把()1,0和()4,300代入可得04300m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩,100100y t ∴=-乙,令y y =甲乙可得:60100100t t =-,解得 2.5t =, 即甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③正确; 令50y y -=甲乙,可得|60100100|50t t -+=,即|10040|50t -=, 当1004050t -=时,可解得54t =, 当1004050t -=-时,可解得154t =, 又当56t =时,50y =甲,此时乙还没出发, 当256t =时,乙到达B 城,250y =甲; 综上可知当t 的值为54t =或154t =或56t =或256t =时,两车相距50千米,故④不正确;综上可知正确的有①②③共三个, 故选:C . 【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.3.D解析:D 【分析】由图2可得,行车速度在途中迅速减小并稳定了100多米然后又迅速提升,说明应该是进行一次性的拐弯,再对4个选项进行排除选择. 【详解】解:.A 行车路线为直线,则速度一直不变,排除; B .进入辅路后向右转弯,速度减小应该不大,排除;C .向前行驶然后拐了两次弯再掉头行驶,中间速度应该有两次变大变小的波动呢,排除;D .向前行驶拐了个较大的弯再进入直路行驶,满足图2的速度变化情况. 故选D . 【点睛】本题考查了函数图象的应用,正确理解函数图象的自变量和函数关系并对照实际问题进行分析是解题关键.4.A解析:A【分析】先由图象得出BD的长及点P从点A运动到点B的时间,再由正方形的性质得出其边长,然后由速度恒定及图象可得当点P运动3秒时所处的位置,根据AP'Q'的面积等于正方形ABCD的面积减去△ADQ'、△CP'Q'和△ABP'的面积,列式计算即可.【详解】解:由图象可知:①当PQ运动到BD时,PQ的值最大,即y最大,故BD=42;②点P从点A到点B运动了2秒;∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠DAB=90°.∴AB2+AD2=BD2,即2AB2=(42)2,解得AB=4.∴AB=AD=BC=CD=4cm.∵点P的速度恒定,∴当点P运动3秒时,点P在BC的中点处,如图所示:∵P'Q'∥BD,∴∠CQ'P'=∠CDB=∠CBD=∠CP'Q'.∴CQ'=CP'=12BC=12CD.∴AP'Q'的面积等于正方形ABCD的面积减去△ADQ'、△CP'Q'和△ABP'的面积,即:4×4-12×4×2-12×2×2-12×4×2=6(cm2).故选:A.【点睛】本题考查了动点问题的函数图象,读懂图象中的信息并对照几何图形来分析是解题的关键.5.C解析:C【分析】①由函数图象可以求出妈妈骑车的速度是250米/分;②设妈妈到家后追上小华的时间为x分钟,就可以求出小华家到学校的距离;③由②结论就可以求出小华到校的时间;④由③的结论就可以求出相遇的时间.【详解】解:①由题意,得妈妈骑车的速度为:2500÷10=250米/分;②设妈妈到家后追上小华的时间为x分钟,由题意,得250x=50(20+x),解得:x=5.∴小华家到学校的距离是:250×5=1250米.③小华今天早晨上学从家到学校的时间为1250÷50=25分钟,④由③可知在7点25分时妈妈与小华在学校相遇.∴正确的有:①②③共3个.故选:C.【点睛】本题考查了追击问题的数量关系的运用,路程÷速度=时间的关系的运用,解答时认真分析函数图象的意义是关键.6.C解析:C【分析】根据题意首先利用待定系数法求出函数解析式,进而利用图象求出耗油量以及行驶时间进行分析判断即可.【详解】解:①由题意得,图象过(0,25)(2,9),设加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=kt+b,∴2529bk b⎧⎨⎩+==,解得825kb⎧⎨⎩-==,∴加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=-8t+25,故①正确;②途中加油30-9=21(升),故②正确;③∵汽车耗油量为:(25-9)÷2=8升/小时,∴30÷8=3.75,∴汽车加油后还可行驶3.75小时,故③错误;④∵从甲地到乙地,两地相距500千米,加油前、后汽车都以100千米/小时的速度匀速行驶,∴需要:500÷100=5(小时)到达,∴汽车到达乙地时油箱中还余油30-8×(5-2)=6(升),故④正确;综上①②④正确.故选:C.【点睛】本题主要考查一函数应用以及待定系数法求一次函数解析式等知识,根据已知图象获取正确信息是解题的关键.7.C解析:C【分析】根据题意,分析图象,结合简单计算,可以得到答案.【详解】解:根据图象可知:A. 小明从家到食堂用了8min ,故A 选项说法正确;B. 小明家离食堂0.6km ,食堂离图书馆0.8-0.6=0.2(km ),故B 选项说法正确;C. 小明吃早餐用了25-8=17(min ),读报用了58-28=30(min ),故C 选项错误;D. 小明从图书馆回家的平均速度为0.8÷(68-58=)0.08(km/min ),故D 选项正确. 故选C.【点睛】本题考核知识点:函数的图形. 重点:分析函数图象,得到相关信息,并进行简单运算. 8.B解析:B【分析】由题意结合图象,设后8分钟的函数解析式为y=kx+b ,将x=4时,y=20;x=12时,y=30代入求得k 、b 值,可得函数解析式,再将x=6代入求得对应的y 值即可.【详解】设当4≤x≤12时函数的解析式为y=kx+b(k≠0),由图象,将x=4时,y=20;x=12时,y=30代入,得:2043012k b k b =+⎧⎨=+⎩,解得:5415k b ⎧=⎪⎨⎪=⎩, ∴5154y x =+, 当x=6时,56157.51522.54y =⨯+=+=, 故选:B .【点睛】 本题考查了一次函数的应用,解答的关键是从图象上获取相关联的量,会用待定系数法求函数的解析式,特别要注意分段函数自变量的取值范围的划分.9.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160>150,②不正确;当乙在B 地停留1h 时,甲前进80km ,甲乙相距=160-80=80km ,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D ,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键, 10.D解析:D【分析】先确定A ,B 的坐标,从而确定交点横坐标的取值范围,后逐一计算选项直线与x 轴的交点,判断横坐标是否在求得的范围内,在范围内,满足条件,否则,不满足.【详解】∵直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,∴A (-1,0),B (2,0),∴-1≤x≤2,∵y=x+2交x 轴于点A (-2,0),且x= -2不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵2y =+交x 轴于点A (0),且x= 不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵y=4x-12交x 轴于点A (3,0),且x= 3不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵3y =-交x 轴于点A 0),且是-1≤x≤2的解,∴与x 轴的交点在线段AB 上,故选D .【点睛】本题考查了一次函数与x 轴的交点问题,利用交点的横坐标建立不等式解集,验证新直线与x 轴交点的横坐标是否是解集的解是解题的关键.11.D解析:D【分析】逐一分析各个选项的k 、b 的符号,结合已知条件即可做出判断【详解】解:A 、由图可知k >0,b >0,且当x=-1时,-k+b <0, k >b ,则|k|=k ,|b|=b ,可得|k|>|b|与题意||||k b <不符;B 、由图可知k >0,b <0,且当x=1时,k+b >0, k >-b ,则|k|=k ,|b|=-b ,可得|k|>|b|与题意||||k b <不符;C 、由图可知当x=-1时,-k+b=0, k=b ,则 |k|=|b|与题意||||k b <不符;D 、由图可知k <0,b >0,且当x=1时,k+b >0, -k <b ,则|k|=-k ,|b|=b ,可得|k|<|b|与题意||||k b <相符;故选:D【点睛】此题考查了一次函数图象与k 和b 符号的关系,关键是掌握当b >0时,(0,b )在y 轴的正半轴上,直线与y 轴交于正半轴;当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴.12.A解析:A【分析】由图知,函数y =kx +b 图象过点(0,1),即k >0,b =1,再根据一次函数的特点解答即可.【详解】解:∵由函数y =kx +b 的图象可知,k >0,b =1,∴y =2kx +b =2kx +1,2k >0,∴2k >k ,可见一次函数y =2kx +b 图象与x 轴的夹角,大于y =kx +b 图象与x 轴的夹角.∴函数y =2kx +1的图象过第一、二、三象限且与x 轴的夹角比y =kx +b 与x 轴的夹角大.故选:A .【点睛】本题考查了一次函数的图象,掌握一次函数图象上点的坐标特点及一次函数的图象与k 与b 的关系是解题的关键.二、填空题13.(3-4)【分析】将线段BA 绕点B 顺时针旋转90°得到BD 求出点D 坐标证得AD 的中点K 求出其坐标求出直线BK 的解析式直线BK 与直线的交点即为点P 利用方程组即可求得P 坐标【详解】设直线AB 解析式为y =解析:(3,-4)【分析】将线段BA 绕点B 顺时针旋转90°得到BD ,求出点D 坐标,证得AD 的中点K ,求出其坐标,求出直线BK 的解析式,直线BK 与直线1y x =--的交点即为点P ,利用方程组即可求得P 坐标.【详解】设直线AB 解析式为y =kx +b ,将点A (6,0),B (0,2)代入上式得:0=62k b b +⎧⎨=⎩解得:1=32k b ⎧-⎪⎨⎪=⎩,∴直线AB 解析式:123y x =-+ 将线段BA 绕点B 顺时针旋转90°得到BD ,设直线BD 解析式为3y x n =+∵点B (0,2)在直线BD 上,∴直线BD 解析式为32y x =+,∵BD =AB==设点D (x ,32x +BD ==整理得:24x =解得:12x =-或22x =(舍去)∴2324y =-⨯+=-则点D (﹣2,﹣4)设AD 与BP 交于点K ,∵AB =BD ,∠ABP =45°,∠ABD =90°∴BK 是△ABD 的中线,又A (6,0)∴K 是AD 的中点,坐标为(2,﹣2)直线BK 与直线1y x =--的交点即为点P ,设直线BK 的解析式为y kx b =+,将点B 和点K 代入得:222b k b =⎧⎨-=+⎩解得:22b k =⎧⎨=-⎩∴直线BK 的解析式为22y x =-+,由221y x y x =-+⎧⎨=--⎩解得:34x y =⎧⎨=-⎩∴P 点坐标为(3,-4)故答案为:(3,-4).【点睛】本题考查一次函数图象上点的坐标的特征,等腰三角形的性质,待定系数法求解析式,解题的关键是学会作辅助线解决问题.14.12【分析】分A 在B 左边时和A 在B 右边时两种情况分别列出不等式组解之再合并即可【详解】解:令y=2x-a=0则2x=ax=∴A (0)令y=3x-6=0则3x=bx=∴B (0)∵AB 线段上只有3个点横解析:12【分析】分A 在B 左边时和A 在B 右边时,两种情况分别列出不等式组,解之,再合并即可.【详解】解:令y=2x-a=0,则2x=a ,x=2a , ∴A (2a ,0), 令y=3x-6=0,则3x=b ,x=3b , ∴B (3b ,0), ∵AB 线段上只有3个点横坐标都是整数,为4,5,6,∴A 在B 左边时, 则34273a b b ⎧<≤⎪⎪⎨⎪≤<⎪⎩,解得:681821a b <≤⎧⎨≤<⎩, ∵a ,b 为整数,∴a=7或8,b=18或19或20,∴(a ,b )有2×3=6种可能;A 在B 右边时, 则72343a b b ⎧≤<⎪⎪⎨⎪<≤⎪⎩,解得:1214912a b ≤<⎧⎨<≤⎩, ∵a ,b 为整数,∴a=12或13,b=10或11或12,∴(a ,b )有2×3=6种可能,综上:共有12种可能,故答案为:12.【点睛】本题考查了一次函数的性质,解题的关键是分类讨论,根据坐标为整数得到不等式组. 15.();6【分析】(1)分别求解如下两个方程组再根据已知条件即可得答案;(2)当OA′B′三点共线时|OA ﹣OB|取最大值即直线平移后过原点即可平移的距离为m 平移后的直线为把原点坐标代入计算即可【详解解析:(95-44,); 6.【分析】 (1)分别求解如下两个方程组1231y x y x ⎧=+⎪⎨⎪=--⎩,1231y x y x ⎧=+⎪⎨⎪=+⎩,再根据已知条件即可得答案;(2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值.即直线123=+y x 平移后过原点即可,平移的距离为m ,平移后的直线为()123y x m =-+把原点坐标代入计算即可. 【详解】 (1)联立1231y x y x ⎧=+⎪⎨⎪=--⎩,解得9=-454x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(95-44,), 联立1231y x y x ⎧=+⎪⎨⎪=+⎩,解得3=252x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(3522,), 又点A 在点B 的左边,所以A (95-44,),故答案为:(95-44,);(2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值.即直线123=+y x 平移后过原点即可,平移的距离为m , 平移后的直线为()123y x m =-+, 则()10023m =-+, 解得6m =,当m =6时,|OA '﹣OB '|取最大值.故答案为:6.【点睛】本题考查一次函数与分段函数综合问题,会识别分段函数与一次函数的交点在哪一分支上,会利用平移解决最大距离问题是解题关.16.【分析】所剩钱数y (元)就是原来的钱数与买x 支签字笔钱数的差据此即可求解【详解】解:买签字笔的支数x (支)花的钱数是15x 元则剩余的钱数是(15-15x )元则签字笔后所剩钱数(元)与买签字笔的支数(解析:15 1.5y x =-【分析】所剩钱数y (元)就是原来的钱数与买x 支签字笔钱数的差,据此即可求解.【详解】解:买签字笔的支数x (支)花的钱数是1.5x 元,则剩余的钱数是(15-1.5x )元,则签字笔后所剩钱数y (元)与买签字笔的支数x (支)之间的关系式为15 1.5y x =-. 故答案为:15 1.5y x =-.【点睛】此题考查函数关系式,根据题意,找到所求量的等量关系是解决问题的关键.17.y=2x-1【解析】试题分析:根据一次函数图象与几何变换得到直线y=2x 向下平移1各单位得到函数解析式y=2x-1考点:一次函数的图象与几何变换 解析:y=2x-1.【解析】试题分析:根据一次函数图象与几何变换得到直线y=2x 向下平移1各单位得到函数解析式y=2x-1.考点:一次函数的图象与几何变换18.【分析】平移时k 的值不变只有b 的值发生变化而b 值变化的规律是上加下减【详解】解:由上加下减的原则可知直线y=2x 向下平移1个单位得到直线是:y=2x-1故答案为y=2x-1【点睛】本题考查了一次函数解析:21y x =-【分析】平移时k 的值不变,只有b 的值发生变化,而b 值变化的规律是“上加下减”.【详解】解:由“上加下减”的原则可知,直线y=2x 向下平移1个单位,得到直线是:y=2x-1. 故答案为y=2x-1.【点睛】本题考查了一次函数的图象与几何变换,掌握“上加下减”的原则是解题的关键. 19.【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答【详解】解:由正比例函数y=(k-1)x 的图象经过第一三象限可得:k-1>0则k >1故答案是:k >1【点睛】本题考查了一次函数图象与系数的解析:1k >【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答.【详解】解:由正比例函数y=(k-1)x 的图象经过第一、三象限,可得:k-1>0,则k >1.故答案是:k >1.【点睛】本题考查了一次函数图象与系数的关系,掌握正比例函数y=kx 的图象经过第一、三象限,则k >0;正比例函数y=kx 的图象经过第二、四象限,则k <0.20.>【分析】根据k =3>0一次函数的函数值y 随x 的增大而增大解答【详解】解:∵k =3>0∴函数值y 随x 的增大而增大∵﹣1>﹣2∴y1>y2故答案为:>【点睛】此题考查一次函数的性质:当k>0时函数值y解析:>【分析】根据k =3>0,一次函数的函数值y 随x 的增大而增大解答.【详解】解:∵k =3>0,∴函数值y 随x 的增大而增大,∵﹣1>﹣2,∴y 1>y 2.故答案为:>.【点睛】此题考查一次函数的性质:当k>0时,函数值y 随x 的增大而增大;当k<0时,函数值y 随x 的增大而减小.三、解答题21.(1)()2,4;(2)12【分析】(1)根据题意,将两个一次函数联立方程组,求出x 、y 的值,即可得到点C 的坐标; (2)根据一次函数可以得到点B 的坐标,再根据点C 的坐标,即可求得OBC ∆的面积.【详解】解:(1)由题意可得,26y x y x =⎧⎨=-+⎩, 解得24x y =⎧⎨=⎩, 一次函数6y x =-+的图象交一次函数2y x =的图象于点C ,∴点C 的坐标为(2,4);(2)一次函数6y x =-+的图象分别交y 轴和x 轴于点A ,B ,∴当0y =时,6x =,∴点B 的坐标为(6,0),6OB ∴=,点(2,4)C ,OBC ∴∆的面积是:64122⨯=, 即OBC ∆的面积是12.【点睛】本题考查的是一次函数的图像和性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)4;(2)见解析;(3)2.0cm 或3.7cm【分析】(1)当x =2时,点C 与点O 重合,此时DE 是直径,由此即可解决问题;(2)利用描点法即可解决问题;(3)利用图象法,确定y =4时x 的值即可;【详解】解:(1)当x =2时,点C 与点O 重合,此时DE 是直径,y=12×4×2=4.即a 的值是4,故答案是:4;(2)函数图象如图所示.(3)观察图象可知:当△ADE 的面积为4cm 2时,AC 的长度约为2.0cm 或3.7cm .【点睛】本题考查圆的性质,三角形的面积,函数图象等知识,解题的关键是理解题意,利用庙殿发画出函数图像,难度一般.23.(1)443y x =-;(2)6 【分析】(1)用待定系数法求解析式即可;(2)求出函数图象与坐标轴的交点,根据交点坐标求面积即可.【详解】解:(1)由当x =-3时,y =-8;当x =0时,y =-4可得, -8=-34k b b +⎧⎨-=⎩解得,4=34k b ⎧⎪⎨⎪=-⎩,∴该一次函数的表达式为443y x =-; (2)如图,设函数图象与x 轴、y 轴分别交于点A 、B ,当y =0时,x =3;即A 点坐标为(3,0)当x =0时,y =-4;即B 点坐标为(0,-4)∴S △AOB =12×3×4=6.【点睛】本题考查了待定系数法求一次函数解析式和求一次函数图象与坐标轴交点坐标及三角形面积公式,解题关键是熟练运用待定系数法求解析式和准确扎实的计算.24.(1)40,80;(2)①-40x 160S =+, (1.5x 4)≤≤,图见解析;②12t 1t 2.==,【分析】(1)根据乙车在A 地用1h 配货可知0.5到1.5小时的距离变化为甲车的变化,利用速度=路程÷时间计算即可;再根据前0.5小时甲乙两车相背而行列式求解乙车的速度;(2)①设从乙车掉头到乙车到达B 地的过程中,两车所用的时间为t 小时,然后根据追及问题求出相遇的时间,然后列出S 关于x 的函数解析式,再补全函数图象即可; ②分两种情况,当乙车没有调头,,两车之间的距离为80km 时,当乙车调头到乙车到达B 地的过程中,两车之间的距离为80km 时,分别求出t 的值,即可.【详解】解:(1)∵乙在A 地用1h 配货,∴0.5小时~1.5小时为甲独自行驶,∴甲的速度=(100-60)÷(1.5-0.5)=40(km/h ),乙的速度为:60÷0.5-40=80(km/h ),故答案是:40,80;(2)①设从乙车调头到乙车到达B 地的过程中,两车所用的时间为t 小时,由题意得,80t-40t =100,解得:t =2.5,1.5+2.5=4,此过程中,S =40(x-1.5)+100-80(x-1.5)=-40x +160(1.5≤x≤4),即:-40x 160S =+, 1.5x 4≤≤(), 补全图像如下:②当乙车没有调头,,两车之间的距离为80km 时,t=0.5+(80-60)÷40=1;当乙车调头到乙车到达B 地的过程中,两车之间的距离为80km 时,-40t +160=80,解得:t=2.综上所述:t 1=或t 2=.【点睛】本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,相遇问题,追及问题的等量关系,读懂题目信息并找出等量关系列出方程是解题的关键.25.(1)y =﹣x+2;(2)P (103,0)或(23,0). 【分析】(1)利用待定系数法求函数解析式;(2)先求出直线BC 与x 轴的交点坐标,然后设P (t ,0),根据三角形面积公式列方程求解.【详解】解:(1)设直线l 的解析式y =kx+b ,把点C (﹣1,3),B (0,2)代入解析式得, 23b k b =⎧⎨-+=⎩,解得12k b =-⎧⎨=⎩, ∴直线l 的解析式:y =﹣x+2;(2)把 y =0代入y =﹣x+2得﹣x+2=0,解得:x =2,则点A 的坐标为(2,0),∵S △AOB =12×2×2=2, ∴S △ACP =S △AOB =2,设P (t ,0),则AP =|t ﹣2|, ∵12•|t ﹣2|×3=2,解得t =103或t =23,。
北师大版八年级上册数学第四章 一次函数含答案(综合知识)
北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、函数y=中,自变量x的取值范围是()A.x≠2B.x≥2C.x≤2D.全体实数2、成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a千米,休息了一段时间,又原路返回b千米(b<a),再前进c千米,则他离起点的距离s与时间t的关系的示意图是()A. B.C. D.3、下列各式中,自变量x的取值范围是x≥2的是( )A.y=x-2B.y=C.y=·D.y=x 2-44、下列函数的图象不经过第一象限,且y随x的增大而减小的是( )A. B. C. D.5、同一坐标系中有四条直线::,:,:,:,其中与轴交于点的直线是()A.直线B.直线C.直线D.直线6、某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s (米)与行进时间t(分)的关系的示意图,你认为正确的是()A. B. C.D.7、如图,反映了某公司的销售收入(单位:元)与销售量(单位:吨)的关系,反映了该公司的销售成本(单位:元)与销售量(单位:吨)的关系,当该公司盈利(收入大于成本)时,销售量应为()A.大于4吨B.等于5吨C.小于5吨D.大于5吨8、已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是图中的()A. B. C.D.9、若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3B.0<k≤3C.0≤k<3D.0<k<310、下列各图中,是函数图象的是().A. B. C. D.11、对于0≤x≤100,用[x]表示不超过x的最大整数,则[x]+[ x]的不同取值的个数为( )A.267B.266C.234D.23312、一次函数y=-2x+5的图象性质错误的是().A.y随x的增大而减小B.直线经过第一、二、四象限C.直线从左到右是下降的D.直线与x轴交点坐标是(0,5)13、如图,已知点A 的坐标为(-1,0 ),点B在直线y=x上运动,当线段AB 最短时,点B的坐标为()A.(0,0)B.(, - )C.(-,-)D.(-,-)14、若正比例函数的图象经过(﹣3,2),则这个图象一定经过点()A.(2,﹣3)B.C.(﹣1,1)D.(2,﹣2)15、某商店销售一种商品,售出部分商品后进行了降价促销,销售金额y (元)与销售量(x)的函数关系如图所示,则降价后每件商品的销售价格为()A.5元B.10元C.12.5元D.15元二、填空题(共10题,共计30分)16、若函数y=(2m+6)x+(1﹣m)是正比例函数,则m的值是________.17、如图所示的是春季某地一天气温随时间变化的图象,根据图象判断,在这天中,最高温度与最低温度的差是________ ℃.18、一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1, y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x=h时,两车相遇;③当x=时,两车相距60km;④图2中C点坐标为(3,180);⑤当x=h或h时,两车相距200km.其中正确的有________(请写出所有正确判断的序号)19、如图,A(4,3),B(2,1),在x轴上取两点P、Q,使PA+PB值最小,|QA-QB|值最大,则PQ=________.20、表示变量之间关系的常用方法有________ ,________ ,________ .21、某函数满足当自变量x=-1时,函数的值y=2,且函数y的值始终随自变量x的增大而减小,写出一个满足条件的函数表达式________.22、若一次函数y=(m﹣3)x+1中,y值随x值的增大而减小,则m的取值需满足________.23、已知正比例函数的图像经过点M( )、、,如果,那么________ .(填“>”、“=”、“<”)24、写出一个正比例函数,使其图象经过第二、四象限:________.25、已知二次函数y=ax2(a≠0的常数),则y与x2成________ 比例.三、解答题(共5题,共计25分)26、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.27、中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准时间/分 1 2 3 4 5 …电话费/元 0.36 0.72 1.08 1.44 1.8 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的表达式是什么?(3)如果打电话超出25分钟,需付多少电话费?(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?28、如图,已知一次函数的图象与轴,轴分别交于A,B两点,点在该函数的图象上,连接OC.求点A,B的坐标和的面积.29、小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M 点坐标为(2,0).(1)A点所表示的实际意义是;=;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?30、如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S 关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).(1)求m的值。
北师大版八年级上册数学第四章一次函数单元测试(附答案)
八年级上册数学第四章单元测试一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,只有一个选项是符合题目要求的.1.根据函数的定义,下列图象中表示函数的是()2.在函数y=1x-2-x+2中,自变量x的取值范围是()A.x>-2 B.x≥-2C.x>-2且x≠2 D.x≥-2且x≠23.已知某一次函数的图象与直线y=-2x+1平行,且过点(2,8),那么此一次函数的表达式为()A.y=-2x-2 B.y=-2x+12C.y=-2x-6 D.y=-2x-124.对于一次函数y=-2x+4,下列结论正确的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(-2,0)C.函数的图象向上平移4个单位长度后得到y=-2x的图象D.若两点A(1,y1),B(3,y2)在该函数图象上,则y1<y25.两直线y1=kx+b和y2=bx+k(k≠0且b≠0)在同一平面直角坐标系内的图象位置可能是()6.一次函数y=(m-1)x+m的图象必过一定点,此定点的坐标为() A.(-1,1) B.(1,1)C.(0,1) D.(1,-1)7.爷爷在离家2 900 m的公园锻炼后回家,离开公园走了20 min后,爷爷停下来与朋友聊天10 min ,接着又走了15 min 回到家中.下列图象中表示爷爷离家的距离y (m)与爷爷离开公园的时间x (min)之间的函数关系的是( )8.等腰三角形的周长是40 cm ,其腰长y (cm)与底边长x (cm)的函数表达式正确的是( )A .y =-2x +40(10<x <20)B .y =-0.5x +20(10<x <20) C. y =-0.5x +20(0<x <20) D .y =-2x +40(0<x <20)9.某快递公司每天上午9:00-10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间x (分)之间的函数图象如图所示,那么当甲、乙两仓库快件数量相同时,此时的时刻为( )A .9:15B .9:20C .9:25D .9:3010.8个边长为1的正方形如图摆放在平面直角坐标系中,若经过原点的一条直线l 将这8个正方形分成面积相等的两部分,则该直线l 的函数表达式为( ) A .y =35x B .y =34x C .y =910x D .y =x(第9题) (第10题) (第12题)11.已知过点(2,-3)的直线y =ax +b (a ≠0)不经过第一象限,设s =a +2b ,则s的取值范围是( )A .-5≤s ≤-32B .-6<s ≤-32 C .-6≤s ≤-32 D .-7<s ≤-3212.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80 km/h 的速度行驶1 h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1 h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km)与乙车行驶时间x (h)之间的函数关系如图所示.下列说法:①乙车的速度是120 km/h ;②m =160;③点H 的坐标是(7,80);④n =7.4. 其中说法正确的有( )A .1个B .2 个C .3个D .4个 二、填空题:本大题共6小题,每小题4分,共24分. 13.如果函数y =(m -1)x m2-3是正比例函数,且y 的值随x 值的增大而增大,那么m 的值是________.14.一次函数y =kx +b 的图象如图所示,当y <5时,x 的取值范围是____________.(第14题) (第18题)15.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +b 上,则m 与n 的大小关系是________.16.2021年5月15日7时18分,“天问一号”火星探测器成功在火星着陆,开启了中国人自主探测火星之旅.已知华氏温度f (℉)与摄氏温度c (℃)之间的关系满足下表:c /℃ … -10 0 10 20 30 … f /℉…1432506886…____________℉.17.某直线与x 轴交于点A (-4,0),与y 轴交于点B ,若点B 到x 轴的距离为2,则该直线对应的函数表达式为__________________.18.如图①所示,在长方形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y .如果y 关于x 的函数图象如图②所示,那么△ABC的面积是________.三、解答题(一):本大题共2小题,每小题8分,共16分.19.已知y与x-1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)求当x=-5时y的值.20.拖拉机开始工作时,油箱中有油40 L,如果工作1 h耗油4 L,求:(1)油箱中的余油量Q(L)与工作时间t(h)的函数关系式及自变量的取值范围;(2)当工作5 h时油箱的余油量.四、解答题(二):本大题共2小题,每小题10分,共20分.21.如图,在平面直角坐标系中,直线l经过原点O和点A(6,4),经过点A的另一条直线交x 轴于点B (12,0). (1)求直线l 对应的函数表达式;(2)若直线l 上有一点P ,使得S △ABP =13S △AOB ,求出点P 的坐标.22.甲、乙两车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2 h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B 地的距离分别为y甲(km),y 乙(km),甲车行驶的时间为x (h),y 甲,y 乙与x 之间的函数图象如图所示,结合图象解答下列问题. (1)乙车休息了________h ;(2)已知乙车与甲车相遇后y 乙仍是x 的正比例函数,求乙车与甲车相遇后y 乙与x 的函数表达式,并写出自变量x 的取值范围; (3)当甲、乙两车相距40 km 时,求x 值.五、解答题(三):本大题共2小题,每小题12分,共24分.23.某大型商场为了提高销售人员的积极性,对原有的薪酬计算方式进行了修改,设销售人员一个月的销售量为x (件),销售人员的薪酬为y (元),原有的薪酬y1(元)计算方式采用的是底薪+提成,且y1=k1x+b1,已知每销售一件商品另外获得15元的提成.修改后的薪酬y2(元)计算方式为y2=k2x+b2.根据图象回答下列问题:(1)分别求y1、y2与x之间的函数表达式,并说明b1和b2的实际意义;(2)求两个函数图象的交点F的坐标,并说明交点F的实际意义;(3)请根据函数图象判断哪种薪酬计算方式更适合销售人员.24.如图,直线y=-2x+8分别与x轴,y轴交于A,B两点,点C在线段AB 上,过点C作CD⊥x轴于点D,CD=2OD,点E在线段OB上,且AE=BE.(1)点C的坐标为________,点E的坐标为________;(2)若直线m经过点E,且将△AOB分成面积比为1:2的两部分,求直线m的函数表达式;(3)若点P在x轴上运动,当PC+PE取最小值时,求点P的坐标及PC+PE的最小值.答案一、1.C2.D3.B4.A5.A6.A点拨:将一次函数y=(m-1)x+m变形为m(x+1)-x-y=0,令x+1=0,则-x-y=0,解得x=-1,y=1,故一次函数y=(m-1)x+m的图象必过定点(-1,1).7.B8.C点拨:根据三角形周长的定义可得x+2y=40,所以y=-0.5x+20.又由三角形三边关系,得x<2y,x>y-y,所以x<2(-0.5x+20),x>0,即x<20,x>0,所以0<x<20.9.B10.C11.B点拨:因为直线y=ax+b(a≠0)不经过第一象限,所以a<0,b≤0.因为直线y=ax+b(a≠0)过点(2,-3),所以2a+b=-3,所以a=-b-32,b=-2a-3,所以s=a+2b=-b-32+2b=32b-32≤-32,s=a+2b=a+2(-2a-3)=-3a-6>-6,所以s的取值范围是-6<s≤-32.故选B.12.D二、13.214.x>015.m<n16.-67点拨:由表中数据可得,f=32+18×c10=32+1.8c,当c=-55时,f=32+1.8×(-55)=-67.所以换算成华氏温度约为-67℉.17.y =12x +2或y =-12x -2 18.10三、19.解:(1)设y =k (x -1),把x =3,y =4代入,得(3-1)k =4, 解得k =2,所以y =2(x -1),即y =2x -2. (2)当x =-5时,y =2×(-5)-2=-12.20.解:(1)由题意可知Q =40-4t (0≤t ≤10).(2)把t =5代入Q =40-4t , 得Q =40-4×5=20.所以当工作5 h 时油箱的余油量为20 L . 四、21.解:(1)设直线l 对应的函数表达式为y =kx ,把(6,4)代入,得4=6k , 解得k =23.所以直线l 对应的函数表达式为y =23x .(2)因为A (6,4),B (12,0), 所以S △AOB =12×12×4=24.当S △ABP =13S △AOB =8时,分两种情况, 设点P 的坐标为⎝ ⎛⎭⎪⎫x ,23x .①如图①,当点P 在线段OA 上时,连接BP , 则S △BOP =S △AOB -S △ABP =24-8=16, 即12×12×23x =16. 解得x =4, 则P ⎝ ⎛⎭⎪⎫4,83;②如图②,当点P 在线段OA 的延长线上时,连接BP ,则S △BOP =S △AOB +S △ABP =24+8=32, 即12×12×23x =32. 解得x =8, 则P ⎝ ⎛⎭⎪⎫8,163.故点P 的坐标为⎝ ⎛⎭⎪⎫4,83或⎝ ⎛⎭⎪⎫8,163.22.解:(1)0.5(2)设乙车与甲车相遇后y 乙与x 的函数表达式为y 乙=k 2x ,把(5,400)代入,得5k 2=400. 解得k 2=80.所以y 乙=80x (2.5≤x ≤5).(3)设乙车与甲车相遇前y 乙与x 的函数表达式为y 乙=k 3x ,把(2,200)代入,得2k 3=200. 解得k 3=100.所以乙车与甲车相遇前y 乙与x 的函数表达式为y 乙=100x (0≤x ≤2). 设y 甲与x 的函数表达式为y 甲=k 1x +b 1. 把(0,400),(5,0)代入, 得b 1=400,5k 1+b 1=0, 解得k 1=-80,所以y 甲=-80x +400(0≤x ≤5). 当0≤x ≤2时,y 甲-y 乙=40, 即-80x +400-100x =40. 解得x =2.当2.5≤x ≤5时,y 乙-y 甲=40,即80x-(-80x+400)=40.解得x=11 4.所以当甲、乙两车相距40 km时,x=2或x=11 4.五、23.解:(1)因为y1=k1x+b1的图象过点(0,3 000),所以b1=3 000,又因为每销售一件商品另外获得15元的提成,所以k1=15,所以y1=15x+3 000.因为y2=k2x+b2的图象过点(100,3 000),(0,0),所以b2=0,100k2=3 000,解得k2=30,所以y2=30x.所以b1的实际意义是底薪为3 000元,b2的实际意义是底薪为0元.(2)令y1=y2,即15x+3 000=30x,解得x=200,所以y1=y2=6 000.所以F(200,6 000),所以交点F的实际意义是当销售人员一个月的销售量为200件时,销售人员通过两种薪酬计算方式所得的薪酬相等,为6 000元.(3)结合函数图象可知,当0<x<200时,原有的薪酬计算方式更适合销售人员;当x=200时,两种薪酬计算方式对销售人员一样;当x>200时,修改后的薪酬计算方式更适合销售人员.24.解:(1)(2,4);(0,3)(2)设直线m的函数表达式为y=kx+3,根据k值的不同,可分为两种情况讨论:①当k>0时,如图①,设直线m交AB于点F,过点F作FH⊥y轴于点H.当S△BEF=11+2S△AOB时,易知B (0,8),E (0,3),所以BE =5, 所以5FH 2=13×4×82,解得FH =3215.将x =3215代入y =-2x +8,得y =5615.将点F ⎝ ⎛⎭⎪⎫3215,5615的坐标代入y =kx +3, 得k =1132,所以直线m 的函数表达式为y =1132x +3;②当k <0时,如图②,设直线m 交OA 于点N .当S △OEN =11+2S △AOB时,易知OE =3, 所以3ON 2=13×4×82,解得ON =329.将点N ⎝ ⎛⎭⎪⎫329,0的坐标代入y =kx +3, 得k =-2732,所以直线m 的函数表达式为y =-2732x +3.综上,直线m 的函数表达式为y =1132x +3或y =-2732x +3.(3)作点E 关于x 轴的对称点E ′,连接 CE ′交x 轴于点P ,此时PC +PE取最小值.易知点E ′的坐标为(0,-3), 设直线CE ′的函数表达式为y =nx -3,将点C (2,4)的坐标代入,得n =72,所以y =72x -3.将y =0代入y =72x -3,得x =67,所以点P 的坐标为⎝ ⎛⎭⎪⎫67,0, 作E ′G ⊥CD 交CD 延长线于点G ,易知E ′G =OD =2,CG =7,所以PC +PE 的最小值=CE ′=22+72=53.。
八年级数学上册第四章一次函数单元综合测试含解析北师大版
《第4章一次函数》一、选择题1.下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个2.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=﹣2x+24(0<x<12) B.y=﹣x+12(0<x<24)C.y=2x﹣24(0<x<12)D.y=x﹣12(0<x<24)3.一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大,则m=()A.﹣1 B.3 C.1 D.﹣1或34.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6) B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6)D.(2,3),(﹣4,6)5.对于函数y=﹣x+3,下列说法错误的是()A.图象经过点(2,2)B.y随着x的增大而减小C.图象与y轴的交点是(6,0)D.图象与坐标轴围成的三角形面积是96.关于x的一次函数y=kx+k2+1的图象可能正确的是() A.B. C.D.7.P1(x1,y1),P2(x2,y2)是一次函数y=﹣2x+5图象上的两点,且x1<x2,则y1与y2的大小关系是()A.y1<y2 B.y1=y2C.y1>y2 D.y1>y2>08.已知一次函数y=x+m和y=﹣x+n的图象都经过点A(﹣2,0),且与y轴分别交于B,C两点,那么△ABC的面积是()A.2 B.3 C.4 D.69.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.810.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,点B2013的坐标为()A.(42012×,42012) B.(24026×,24026)C.(24026×,24024)D.(44024×,44024)二、填空题11.将直线y=2x向上平移1个单位长度后得到的直线是.12.函数y=中,自变量x的取值范围是.13.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是.14.直线y=3x﹣m﹣4经过点A(m,0),则关于x的方程3x﹣m﹣4=0的解是.15.已知某一次函数的图象经过点A(0,2),B(1,3),C(a,1)三点,则a的值是.16.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是天.17.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是.18.如果直线l与直线y=﹣2x+1平行,与直线y=﹣x+2的交点纵坐标为1,那么直线l的函数解析式为.三、解答题(共66分)19.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k、b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a 的值.20.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0。
北师大版八年级数学上册第4-5章达标测试卷附答案 (4)
北师大版八年级数学上册第四章达标检测卷一、选择题(每题3分,共30分)1.下列两个变量之间不存在函数关系的是( )A.圆的面积S和半径r B.某地一天的气温T与时间tC.某班学生的身高y与学生的学号x D.正数b的平方根a与b2.在函数y=x+4x中,自变量x的取值范围是( )A.x>0 B.x≥-4 C.x≥-4且x≠0 D.x>-4且x≠0 3.一个正比例函数的图象经过点(-2,-4),则它的表达式为( )A.y=-2x B.y=2x C.y=-12x D.y=12x4.一次函数y=mx+n的图象如图所示,则关于x的方程mx+n=0的解为( ) A.x=3 B.x=-3 C.x=4 D.x=-45.李强同学去登山,先匀速登上山顶,原地休息一段时间后,又匀速下山,上山的速度小于下山的速度.在登山过程中,他行走的路程s随时间t的变化规律的大致图象是( )6.关于函数y=-x2-1,下列说法错误的是( )A.当x=2时,y=-2B.y随x的增大而减小C.若(x1,y1),(x2,y2)为该函数图象上两点,x1>x2,则y1>y2D.图象经过第二、三、四象限7.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)间有x/kg 0 1 2 3 4 5y/cm 10 10.5 11 11.5 12 12.5A.x 与y 都是变量,且x 是自变量B .弹簧不挂物体时的长度为10 cmC .物体质量每增加1 kg ,弹簧长度增加0.5 cmD .所挂物体质量为7 kg ,弹簧长度为14.5 cm8.已知一次函数y =kx +b ,y 随着x 的增大而减小,且kb >0,则这个函数的大致图象是( )9.若直线y =-3x +m 与两坐标轴所围成的三角形的面积是6,则m 的值为( )A .6B .-6C .±6D .±310.快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程y (km)与它们的行驶时间x (h )之间的函数关系.小欣同学结合图象得出如下结论:①快车途中停留了0.5 h ;②快车速度比慢车速度多20 km/h ;③图中a =340;④快车先到达目的地.其中正确的是( )A .①③B .②③C .②④D .①④二、填空题(每题3分,共24分)11.若函数y =(m +1)x |m |是关于x 的正比例函数,则m =________.12.已知点P (a ,-3)在一次函数y =2x +9的图象上,则a =________.13.如图,直线y =kx +b (k ,b 是常数,k ≠0)与直线y =2交于点A (4,2),则满足kx +b <2的x 的取值范围为____________.14.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +b 上,则m 与n 的大小关系是__________. 15.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的关系式是____________.16.拖拉机油箱中有54升油,拖拉机工作时,每小时平均耗油6升,则油箱里剩下的油量Q(升)与拖拉机的工作时间t(时)之间的函数关系式是____________________(写出自变量的取值范围).17.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(-2,0),且两直线与y 轴围成的三角形的面积为4,那么b1-b2=________.18.有甲、乙两个长方体蓄水池,将甲蓄水池中的水以6 m3/h的速度注入乙蓄水池,甲、乙两个蓄水池中水的高度y(m)与注水时间x(h)之间的函数图象如图所示.若要使甲、乙两个蓄水池的蓄水量(指蓄水的体积)相同,则注水的时间应为________h.三、解答题(19题10分,20~23题每题8分,其余每题12分,共66分) 19.已知一次函数y=(m-3)x+m-8中,y随x的增大而增大.(1)求m的取值范围;(2)如果这个一次函数又是正比例函数,求m的值;(3)如果这个一次函数的图象经过第一、三、四象限,试写一个m的值,不用写理由.20.已知一次函数y=kx+b,当x=2时,y=-3;当x=0时,y=-5.(1)求该一次函数的表达式;(2)将该函数的图象向上平移7个单位长度,求平移后的函数图象与x轴交点的坐标.21.如图,一次函数y=kx+5的图象与y轴交于点B,与正比例函数y=32x的图象交于点P(2,a).(1)求k的值;(2)求△POB的面积.22.水龙头关闭不紧会持续不断地滴水,小明用可以显示水量的容器做实验,并根据实验数据绘制出容器内盛水量y(L)与滴水时间t(h)之间的函数关系图象(如图).请结合图象解答下面的问题:(1)容器内原有水多少升?(2)求y与t之间的函数表达式,并计算在这种滴水状态下一天的滴水量是多少升.23.在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当-2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.24.某通信公司推出①②两种通信收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的收费金额y(元)与通信时间x(分钟)之间的函数关系如图所示.(1)有月租费的收费方式是________(填“①”或“②”),月租费是________元;(2)分别求出①②两种收费方式中,收费金额y(元)与通信时间x(分钟)之间的函数表达式;(3)请你根据用户通信时间的多少,给出经济实惠的选择建议.25.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5 h后到达甲地,游玩一段时间后按原速前往乙地.小明离家1 h 20 min后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车的速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间.(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10 min到达乙地,求从家到乙地的路程.答案一、1.D 2.C 3.B 4.D 5.B 6.C7.D 8.B 9.C10.B 【提示】根据题意可知两车的速度和为360÷2=180(km/h),一辆车的速度为88÷(3.6-2.5)=80(km/h),则另一辆车的速度为180-80=100(km/h).所以相遇后慢车停留了0.5 h,快车停留了1.6 h,故结论①错误.慢车的速度为80 km/h,快车的速度为100 km/h,所以快车速度比慢车速度多20 km/h,故结论②正确.88+180×(5-3.6)=340(km),所以图中a=340,故结论③正确.(360-2×80)÷80=2.5(h),2.5+2.5=5(h),所以慢车先到达目的地,故结论④错误.二、11.1 12.-6 13.x<414.m<n15.y=-x+316.Q=54-6t(0≤t≤9) 17.4 18.1三、19.解:(1)因为一次函数y=(m-3)x+m-8中,y随x的增大而增大,所以m-3>0.所以m>3.(2)因为这个一次函数是正比例函数,所以m-8=0.所以m=8.(3)答案不唯一,如m=4.20.解:(1)由题意得2k+b=-3,b=-5,解得k=1.所以该一次函数的表达式为y=x-5.(2)将直线y=x-5向上平移7个单位长度后得到的直线为y=x+2.因为当y=0时,x=-2,所以平移后的函数图象与x轴交点的坐标为(-2,0).21.解:(1)把点P(2,a)的坐标代入y=32x,得a=3,所以点P的坐标为(2,3),把点P(2,3)的坐标代入y=kx+5,得2k+5=3,解得k=-1.(2)由(1)知一次函数表达式为y=-x+5.把x=0代入y=-x+5,得y=5,所以点B的坐标为(0,5),所以S△POB=12×5×2=5.22.解:(1)根据图象可知,当t=0时,y=0.3,即容器内原有水0.3 L.(2)设y与t之间的函数表达式为y=kt+b.将点(0,0.3),(1.5,0.9)的坐标分别代入,得b=0.3,1.5k+b=0.9,解得k=0.4.所以y与t之间的函数表达式为y=0.4t+0.3.当t=24时,y=0.4×24+0.3=9.9,所以在这种滴水状态下一天的滴水量是9.9-0.3=9.6(L).23.解:(1)将点(1,0),(0,2)的坐标分别代入y=kx+b,得k+b=0,b=2,解得k=-2.所以这个函数的表达式为y=-2x+2.把x=-2代入y=-2x+2,得y=6;把x=3代入y=-2x+2,得y=-4.所以y的取值范围是-4≤y<6.(2)因为点P(m,n)在该函数的图象上,所以n=-2m+2.因为m-n=4,所以m-(-2m+2)=4,解得m=2.所以n=-2.所以点P的坐标为(2,-2).24.解:(1)①;30(2)记有月租费的收费金额为y1(元),无月租费的收费金额为y2(元),则设y1=k1x+30,y2=k2x.将点(500,80)的坐标代入y1=k1x+30,得500k1+30=80,所以k1=0.1,则y1=0.1x+30.将点(500,100)的坐标代入y2=k2x,得500k2=100,所以k2=0.2,则y2=0.2x.所以①②两种收费方式中,收费金额y(元)与通信时间x(分钟)之间的函数表达式分别为y1=0.1x+30,y2=0.2x.(3)当收费相同,即y1=y2时,0.1x+30=0.2x,解得x=300.结合图象,可知当通信时间少于300分钟时,选择收费方式②更实惠;当通信时间超过300分钟时,选择收费方式①更实惠;当通信时间等于300分钟时,选择收费方式①②一样实惠.25.解:(1)观察图象,可知小明骑车的速度为100.5=20(km/h),在甲地游玩的时间是1-0.5=0.5(h).(2)妈妈驾车的速度为20×3=60(km/h).如图,设直线BC对应的函数表达式为y=20x+b1. 把点B(1,10)的坐标代入,得b1=-10.所以直线BC 对应的函数表达式为y =20x -10.设直线DE 对应的函数表达式为y =60x +b 2,把点D ⎝ ⎛⎭⎪⎫43,0的坐标代入,得b 2=-80.所以直线DE 对应的函数表达式为y =60x -80.当小明被妈妈追上时,两人走过的路程相等,则20x -10=60x -80,解得x =1.75,20×(1.75-1)+10=25(km).所以小明从家出发1.75 h 后被妈妈追上,此时离家25 km.(3)设从妈妈追上小明的地点到乙地的路程为z km.根据题意,得z 20-z 60=1060,解得z =5.所以从家到乙地的路程为5+25=30(km).北师大版八年级数学上册第五章达标检测卷一、选择题(每题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.⎩⎨⎧x +13=1y =x 2B.⎩⎨⎧3x -y =52y -z =6C.⎩⎨⎧x 5+y 2=1xy =1D.⎩⎨⎧x 2=3y -2x =42.二元一次方程组⎩⎨⎧x +y =2,x -y =-2的解是( )A.⎩⎨⎧x =0y =-2B.⎩⎨⎧x =0y =2C.⎩⎨⎧x =2y =0D.⎩⎨⎧x =-2y =03.已知二元一次方程组⎩⎨⎧2x +y =7,x +2y =8,则x +y 等于( )A .2B .3C .-1D .54.用加减法解方程组⎩⎨⎧2x -3y =5①,3x -2y =7②时,下列方法错误的是( )A .①×3-②×2,消去xB .①×2-②×3,消去yC .①×(-3)+②×2,消去xD .①×2-②×(-3),消去y5.把方程x +y =2的两个解⎩⎨⎧x =1,y =1和⎩⎨⎧x =0,y =2组成有序数对(1,1),(0,2),过这两点画直线l ,下列各点不在直线l 上的是( )A .(4,-2)B .(2,1)C .(-2,4)D .(-4,6)6.若方程x +2y =-4,2x -y =7,y -kx +9=0有公共解,则k 的值是( )A .-3B .3C .6D .-67.用图象法解方程组⎩⎨⎧x -2y =4,2x +y =4时,下列选项中的图象正确的是( )8.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A .10 g ,40 gB .15 g ,35 gC .20 g ,30 gD .30 g ,20 g9.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B品牌足球75元.学校准备将1 500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( )A .3种B .4种C .5种D .6种10.某快递公司每天上午9:00~10:00为集中揽件和派件时段,甲仓库用来揽收快递,乙仓库用来派发快递,该时段内甲、乙两仓库的快递数量y (件)与时间x (分)之间的函数图象如图所示,那么当两仓库快递数量相同时,此刻的时间为( )A .9:15B .9:20C .9:25D .9:30二、填空题(每题3分,共24分)11.已知(n -1)x |n |-2y m -2 022=0是关于x ,y 的二元一次方程,则n m =________.12.若⎩⎨⎧x =1,y =2是关于x ,y 的二元一次方程ax +y =3的解,则a =________. 13.在△ABC 中,∠A -∠B =20°,∠A +∠B =140°,则∠A =________,∠C=________.14.若a +2b =8,3a +4b =18,则a +b =________.15.定义运算“*”,规定x *y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=________.16.一群学生去郊外春游,男生戴白色帽子,女生戴红色帽子.休息时他们坐在一起,女生梅梅说:“我看到白色帽子是红色帽子的2倍.”男生亮亮说:“我看到白色帽子与红色帽子一样多.”这群学生共有________人.17.如图①,在边长为a 的大正方形中剪去一个边长为b 的小正方形,再将剩下的部分沿虚线剪拼成一个长方形,如图②所示,拼成的这个长方形的长为30,宽为20,则图②中Ⅱ部分的面积是________.18.在一次越野赛中,当小明跑了1 600 m 时,小刚跑了1 400 m ,小明、小刚在此后所跑的路程y (m )与时间t (s )之间的函数关系如图所示,则这次越野赛的全程为__________.三、解答题(19,25题每题12分,20~23题每题8分,24题10分,共66分)19.解下列方程组:(1)⎩⎨⎧x +y =3,5x -3(x -y )=1; (2)⎩⎨⎧x 2-y +13=1,3x +2y =10;(3)⎩⎨⎧3(x +y )-4(x -y )=6,x +y 2-x -y 6=1;(4)⎩⎨⎧x -y +z =0,4x +2y +z =0,25x +5y +z =60.20.已知关于x ,y 的二元一次方程组⎩⎨⎧x +2y =3,3x +5y =m +2的解满足x +y =0,求实数m 的值.21.已知关于x ,y 的二元一次方程组⎩⎨⎧ax +2by =4,x +y =1与⎩⎨⎧x -y =3,bx +(a -1)y =3的解相同,求a ,b 的值.22.小明的作业本中有一页被黑色水笔污染了,如图,已知他所列的方程组是正确的,写出题中被污染的条件,并求解这道应用题.23.如图,过点A (0,2),B (3,0)的直线AB 与直线CD :y =56x -1交于点D ,C 为直线CD 与y 轴的交点.求:(1)直线AB 对应的函数表达式;(2)S △ADC .24.甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地,甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.(1)m=________,n=________;(2)求乙车距B地的路程y关于x的函数表达式,并写出x的取值范围;(3)当甲车到达B地时,求乙车距B地的路程.25.某超市的地面需要铺设地砖,经询问得知:若请甲、乙两个工程队同时施工,8天可以完成,需付两工程队费用共8 000元.若先请甲工程队单独做6天,再请乙工程队单独做,则乙工程队12天可以完成,需付两工程队费用共7 920元,问:(1)甲、乙两工程队单独工作一天,超市应各付多少元?(2)单独请哪个工程队,超市所付费用较少?答案一、1.D 2.B 3.D 4.D 5.B 6.B 7.C 8.C 9.B 10.B二、11.-1 12.1 13.80°;40° 14.515.10 16.7 17.100 18.2 200 m三、19.解:(1)原方程组可化为⎩⎨⎧x +y =3,①2x +3y =1.②由①可得x =-y +3.③将③代入②,可得y =-5.将y =-5代入③,得x =8.故原方程组的解为⎩⎨⎧x =8,y =-5.(2)原方程组可化为⎩⎨⎧3x -2y =8,①3x +2y =10.② ①+②,得6x =18,所以x =3.②-①,得4y =2,所以y =12. 所以原方程组的解为⎩⎨⎧x =3,y =12.(3)原方程组可化为⎩⎨⎧7y -x =6,①x +2y =3.②①+②,得9y =9,所以y =1.把y =1代入②,得x =1.所以原方程组的解为⎩⎨⎧x =1,y =1.(4)⎩⎨⎧x -y +z =0,①4x +2y +z =0,②25x +5y +z =60.③②-①,得3x +3y =0,即x =-y .③-①,得24x +6y =60,即4x +y =10.④把x =-y 代入④,得-4y +y =10,所以y =-103.所以x =103.把x =103,y =-103代入①,得z =-203. 所以原方程组的解为⎩⎪⎨⎪⎧x =103,y =-103,z =-203. 20.解:解关于x ,y 的方程组⎩⎨⎧x +2y =3,3x +5y =m +2,得⎩⎨⎧x =2m -11,y =-m +7.因为x +y =0,所以(2m -11)+(-m +7)=0,解得m =4.21.解:由题意可得⎩⎨⎧x +y =1,①x -y =3.②①+②,得2x =4,解得x =2.把x =2代入①,得y =-1.当x =2,y =-1时,可得方程组⎩⎨⎧a -b =2,-a +2b =2,解得⎩⎨⎧a =6,b =4. 22.解:被污染的条件为同样的空调每台优惠400元.设五一前同样的电视机每台x 元,空调每台y 元.根据题意,得⎩⎨⎧x +y =5 500,0.8x +2(y -400)=7 200,解得⎩⎨⎧x =2 500,y =3 000.答:五一前同样的电视机每台2 500元,空调每台3 000元.23.解:(1)设直线AB 对应的函数表达式为y =kx +b ,把A (0,2),B (3,0)的坐标分别代入,得⎩⎨⎧b =2,3k +b =0,解得⎩⎨⎧k =-23,b =2.所以直线AB 对应的函数表达式为y =-23x +2. (2)当x =0时,y =56x -1=-1,则点C 的坐标为(0,-1). 解方程组⎩⎪⎨⎪⎧y =-23x +2,y =56x -1,得⎩⎨⎧x =2,y =23, 则点D 的坐标为⎝⎛⎭⎪⎫2,23. 所以S △ADC =12×(2+1)×2=3. 24.解:(1)4;120(2)当0≤x ≤2时,设乙车距B 地的路程y 关于x 的函数表达式为y =k 1x . 因为图象经过点(2,120),所以2k 1=120,解得k 1=60,所以当0≤x ≤2时,乙车距B 地的路程y 关于x 的函数表达式为y =60x . 当2<x ≤4时,设乙车距B 地的路程y 关于x 的函数表达式为y =k 2x +b ,因为图象经过(2,120),(4,0)两点,所以⎩⎨⎧2k 2+b =120,4k 2+b =0, 解得⎩⎨⎧k 2=-60,b =240.所以当2<x ≤4时,乙车距B 地的路程y 关于x 的函数表达式为y =-60x +240. 综上所述,乙车距B 地的路程y 关于x 的函数表达式为y =⎩⎨⎧60x (0≤x ≤2),-60x +240(2<x ≤4).(3)当x =3.5时,y =-60×3.5+240=30.所以当甲车到达B 地时,乙车距B 地的路程为30 km.25.解:(1)设甲工程队单独工作一天,超市应付x 元,乙工程队单独工作一天,超市应付y 元.由题意可得⎩⎨⎧8(x +y )=8 000,6x +12y =7 920,解得⎩⎨⎧x =680,y =320.所以甲工程队单独工作一天,超市应付680元,乙工程队单独工作一天,超市应付320元.(2)设工作总量为单位1,甲工程队的工作效率为m ,乙工程队的工作效率为n .由题意可得⎩⎨⎧8(m +n )=1,6m +12n =1, 解得⎩⎪⎨⎪⎧m =112,n =124. 所以甲工程队单独完成需12天,乙工程队单独完成需24天,所以单独请甲工程队需付680×12=8 160(元),单独请乙工程队需付320×24=7 680(元),所以单独请乙工程队,超市所付费用较少.。
北师大版初中八年级数学上册第四章检测卷含答案
学校 班级 姓名第四章检测卷(时间:60分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列图形中,不能表示y 是x 函数的是( ).2.如果一元一次方程3x-b=0的根是x=2,那么一次函数y=3x-b 的图象一定过点( ).A.(0,2)B.(2,0)C.(-2,0)D.(0,-2) 3.(2021苏州)已知点A (√2,m ),B (32,n)在一次函数y=2x+1的图象上,则m 与n 的大小关系是( ).A.m>nB.m=nC.m<nD.无法确定 4.一次函数y=kx+b 的图象经过点(1,3)和(0,1),则这个一次函数是( ). A.y=-2x+1 B.y=2x+1C.y=-x+2D.y=x+2 5.在下列直角坐标系中,一次函数y=12kx-2k 的图象只可能是( ).6.(2021陕西)在平面直角坐标系中,将直线y=-2x 向上平移3个单位长度,平移后的直线经过点(-1,m ),则m 的值为( ).A.-1B.1C.-5D.5 7.已知点A (-2,3)在某一正比例函数的图象上,若将其图象向左平移3个单位长度,则平移后的图象不经过( ).A.第一象限B.第二象限C.第三象限D.第四象限 8. (2021资阳)一对变量满足如图的函数关系,设计以下问题情境:①小明从家骑车以600米/分的速度匀速骑了2.5分钟,在原地停留了2分钟,然后以1 000米/分的速度匀速骑回家.设所用时间为x分钟,离家的距离为y千米;②有一个容积为1.5升的开口空瓶,小张以0.6升/秒的速度匀速向这个空瓶注水,注满后停止,等2秒后,再以1升/秒的速度匀速倒空瓶中的水.设所用时间为x秒,瓶内水的体积为y升;③在矩形ABCD中,AB=2,BC=1.5,点P从点A出发,沿AC→CD→DA路线运动至点A停止.设点P的运动路程为x,△ABP的面积为y.其中,符合图中函数关系的情境个数为().A.3B.2C.1D.0二、填空题(每小题4分,共24分)9.将直线y=6x+1向下平移5个单位长度后,所得直线对应的函数表达式为.10.若点P1(3,y1),P2(2,y2)在一次函数y=2x-1的图象上,则y1y2(填“>”“<”或“=”).11.一辆轿车离开某城市的距离y(单位:km)与行驶时间t(单位:h)之间的关系式为y=kt+30,图象如图所示,则在1 h到3 h之间,轿车行驶的路程是km.12.对于正比例函数y=m x m2-3,y的值随x值的增大而减小,则m的值为.13.已知一次函数y=kx+2(k≠0)与两坐标轴围成的三角形面积为2,则一次函数的表达式为.14.小明从学校到家里行进的路程s(单位:m)与时间t(单位:min)的函数图象如图所示.观察图象,从中得到如下信息:①学校离小明家1 000 m;②小明用了20 min到家;③小明前10 min走了路程的一半;④小明后10 min比前10 min走得快.其中正确的有.(填序号)三、解答题(共44分)15.(8分)已知正比例函数的图象过点(3,-2)和(n,6).(1)求正比例函数的表达式;。
(北师大版)初中数学八年级上册 第四章综合测试试卷02及答案
第四章综合测试一、选择题(每题3分,共30分)1.下列图象中,表示y 是x 的函数的个数有()A .1个B .2个C .3个D .4个2.若一次函数()21y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <3.一次函数2y x =+的图象与y 轴的交点坐标为( )A .()0,2B .()0,2-C .()2,0D .()2,0-4.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-5.小聪在画一次函数的图象时,当他列表后,发现题中一次函数y x =◆+◆中的k 和b 看不清了,则()x 03y2A .2k =,3b =B .23k =-,2b =C .3k =,2b =D .1k =,1b =-6.点()111,P x y ,()222,P x y 是一次函数43y x =-+图象上的两个点,且12x x <,则1y 与2y 的大小关系是( )A .12y y >B .120y y >>C .12y y <D .12y y =7.为了建设社会主义新农村,某市积极推进“村村通客车工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间道路的改造.下面能反映该工程尚未改造的道路里程y (km )与时间x (天)的函数关系的大致图象是()8.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y (元)与通话时间x (min )之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②12描述的是有月租费的收费方式;③当每月的通话时间为500min 时,选择有月租费的收费方式省钱.其中,正确结论的个数是()第8题图A .0B .1C .2D .39.如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点(),m n ,且26m n +=,则直线AB 的解析式是()第9题图A .23y x =--B .26y x =--C .23y x =-+D .26y x =-+10.(天门)甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②160m =;③点H 的坐标是()7,80;④7.5n =.其中说法正确的是( )第10题图A .①②③B .①②④C .①③④D .①②③④二、填空题(每题3分,共24分)11.已知()3221m y m x -=-是一次函数,则m =________.12.直线21y x =+经过点()0,a ,则a =________.13.已知一次函数()12y m x m =-+-,当m ________时,y 随x 的增大而增大.14.已知直线y kx b =+,若5k b +=-,6kb =,那么该直线不经过第________象限.15.直线2y x b =+与x 轴的交点坐标是()2,0,则关于x 的方程20x b +=的解是________.16.一次函数的图象与直线1y x =-+平行,且过点()8,2,那么此一次函数的表达式为________.17.如图,已知点A 和点B 是直线34y x =上的两点,A 点坐标是32,2æöç÷èø.若5AB =,则点B 的坐标是________.18.直线()1110y k x b k =+>与()2220y k x b k =+<相交于点()2,0-,且两直线与y 轴围成的三角形面积为4,那么12b b -=________.三、解答题(19题6分,20,21题每题9分,22~24题每题10分,25题12分,共66分)19.已知一次函数y ax b =+.(1)当点(),P a b 在第二象限时,直线y ax b =+经过哪几个象限?(2)如果0ab <,且y 随x 的增大而增大,则函数的图象不经过哪些象限?20.一个正比例函数和一个一次函数,它们的图象都经过点()2,2P -,且一次函数的图象与y 轴相交于点()0,4Q .(1)求出这两个函数的表达式;(2)在同一坐标系中,分别画出这两个函数的图象;(3)直接写出一次函数图象在正比例函数图象下方时x 的取值范围.21.如图,直线23y x =+与x 轴相交于点A ,与y 轴相交于点B .(1)求点A ,B 的坐标;(2)求当2x =-时,y 的值,当10y =时,x 的值;(3)过点B 作直线BP 与x 轴相交于点P ,且使2OP OA =,求ABP △的面积.22.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20t ,按每吨1.9元收费.如果超过20t ,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为t x ,应收水费为y 元.(1)分别写出每月用水量未超过20t 和超过20t 时,y 与x 之间的函数表达式;(2)若该城市某户5月份水费平均每吨为2.2元,求该户5月份用水多少吨?23.某销售公司推销一种产品,设x (件)是推销产品的数量,y (元)是付给推销员的月报酬.公司付给推销员的月报酬的两种方案如图所示,推销员可以任选一种与公司签订合同,看图解答下列问题:(1)求每种付酬方案y 关于x 的函数表达式;(2)当选择方案一所得报酬高于选择方案二所得报酬时,求x 的取值范围.24.一次函数()0y kx b k =+¹的图象由直线3y x =向下平移得到,且过点()1,2A .(1)求一次函数的解析式;(2)求直线y kx b =+与x 轴的交点B 的坐标;(3)设坐标原点为O ,一条直线过点B ,且与两条坐标轴围成的三角形的面积是12,这条直线与y 轴交于点C ,求直线AC 对应的一次函数的解析式.25.甲、乙两车分别从A ,B 两地同时出发相向而行,并以各自的速度匀速行驶,甲车途经C 地时休息一小时,然后按原速度继续前进到达B 地;乙车从B 地直接到达A 地,如图是甲、乙两车和B 地的距离y (km )与甲车出发时间x (h )的函数图象.(1)直接写出a ,m ,n 的值;(2)求出甲车与B 地的距离y (km )与甲车出发时间x (h )的函数关系式(写出自变量x 的取值范围);(3)当两车相距120km 时,乙车行驶了多长时间?第四章综合测试答案一、1.【答案】B 2.【答案】B 3.【答案】A 4.【答案】A 5.【答案】B 6.【答案】A 7.【答案】D 8.【答案】D 9.【答案】D【解析】原直线的2k =-,向上平移后得到了新直线,那么新直线的2k =-.∵直线AB 经过点(),m n ,且26m n +=,∴直线AB 经过点(),62m m -.可设新直线的解析式为12y x b =-+,把点(),62m m -代到12y x b =-+中,可得16b =.∴直线AB 的解析式是26y x =-+.10.【答案】A【解析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2-6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离440160km ´=,则160m =,②正确;当乙在B 休息1h 时,甲前进80km ,则H 点坐标为()7,80,③正确;乙返回时,甲乙相距80km ,到两车相遇用时()80120800.4¸+=小时,则610.47.4n =++=,④错误.故选A.二、11.【答案】112.【答案】113.【答案】1<14.【答案】一15.【答案】2x =16.【答案】10y x =-+17.【答案】96,2æöç÷èø或32,2æö--ç÷èø【解析】由题意可得,3,4A B A B =两点的纵坐标之差两点的横坐标之差,再由222,,AB A B A B =+两点的纵坐标之差两点的横坐标之差,求得4,A B =两点的横坐标之差,,3A B =两点的纵坐标之差.再分两种情况讨论求解即可.18.【答案】4【解析】如图,在ABC △中,BC 为底,AO 为高,且高为2,面积为4,故ABC △的底边4224BC =´¸=.因为点B 的坐标为()10,b ,点C 的坐标为()20,b ,所以12b b -即是BC 的长,为4.三、19.【答案】解:(1)因为点(),P a b 在第二象限,所以0,0a b <>.所以直线y ax b =+经过第一、二、四象限.(2)因为y 随x 的增大而增大,所以0a >.又因为0ab <,所以0b <.所以一次函数y ax b =+的图象不经过第二象限.20.【答案】解:(1)设正比例函数的表达式为1y k x =,则()122k =´-,解得11k =-.所以正比例函数的表达式为y x =-.设一次函数的表达式为2y k x b =+,则()222k b =´-+,4b =,解得4b =,21k =,所以一次函数的表达式为4y x =+.(2)图略.(3)2x -<.21.【答案】解:(1)当0y =时,230x +=,得32x =-,则3,02A æö-ç÷èø.当0x =时,3y =,则()0,3B .(2)当2x =-时,1y =-;当10y =时,72x =.(3)2OP OA =,3,02A æö-ç÷èø,则点P 的位置有两种情况,点P 在x 轴的正半轴上或点P 在x 轴的负半轴上.当点P 在x 轴负半轴上时,()3,0P -,则ABP △的面积为13933224æö´-´=ç÷èø;当点P 在x 轴的正半轴上时,()3,0P ,则ABP △的面积为132733224æö´´+=ç÷èø.22.【答案】解:(1)当20x ≤时, 1.9y x =;当20x >时,()1.92020 2.8 2.818y x x =´+-´=-.(2)因为5月份水费平均为每吨2.2元,月用水量如果未超过20t ,按每吨1.9元收费,所以该户5月份用水量超过了20t .由2.818 2.2x x -=,解得30x =.答:该户5月份用水30t .23.【答案】解:(1)设方案一的解析式为y kx =,把()40,1600代入解析式,可得40k =,故解析式为40y x =;设方案二的解析式为y ax b =+,把()40,1400和()0,600代入解析式,可得20a =,600b =,故解析式为20600y x =+;(2)根据两直线相交可得方程4020600x x =+,解得30x =.根据两函数图象可知,当30x >时,选择方案一所得报酬高于选择方案二所得报酬.24.【答案】解:(1)根据题意,得3k =,2k b +=,解得1b =-31y x \=-;(2)在31y x =-中,当0y =时,13x =,∴点B 的坐标为1,03æöç÷èø;(3)设直线AC 的解析式为y mx n =+(其中0m ¹),则点C 的坐标为()0,n ,根据题意得111||232BOC S n ´==△,3n \=,3n \=±.当3n =时,2m n +=,解得1m =-,3y x \=-+;当3n =-时,2m n +=,解得5m =,53y x \=-.∴直线AC 的解析式为3y x =-+或53y x =-.25.【答案】解:(1)∵甲车途经C 地时休息一小时,2.51m \-=, 1.5m \=.乙车的速度为1202a m =,即601.5a=,解得90a =.甲车的速度为3003001201 1.5n -=-,解得 3.5n =;(2)设甲车的y 与x 的函数关系式为y kx b =+.①休息前,0 1.5x ≤≤,函数图象经过点()0,300和()1.5,120,所以300b =,1.5120k b +=,所以120k =-,所以120300y x =-+;②休息时,1.5 2.5x <<,120y =;③休息后,2.5 3.5x ≤≤,函数图象经过点()3.5,0,又由题意可知120k =-,故420b =,所以120420y x =-+.综上,y 与x 的函数关系式为 120300(0 1.5),120(1.5 2.5),120420(2.5 3.5);x x y x x x -+ìï=<<íï-+î…………(3)设当两车相距120km 时,乙车行驶了h x .甲车的速度为()()300120 1.5120km/h -¸=,乙车的速度为()120260km/h ¸=.①若相遇前,则12060300120x x +=-,解得1x =;②若相遇后,则()120160300120x x -+=+,解得3x =.答:当两车相距120km 时,乙车行驶了1h 或3h .。
北师大版数学八年级上册第三、四章综合练习题
第三、四章综合练习题一、选择题1、已知点P(0, m)在y轴的负半轴上,则点M(-m, ~m+l)在( )A.第一象限B.第二象限C.第三象限D.第四象限2、一个正比例函数的图象经过(2, -1),则它的表达式为( )1 1A.y=—2XB. y=2xC. y=-~ XD. y=~ X3、点M在X轴上侧,距离X轴5个单位长度,距离y轴3个单位长度,则点M 的坐标为( )A.(5,3)B. (-5, 3)或(5,3)C.(3.5)D. (-3, 5)或(3、5)4、在平面直角坐标系中,点P(2,-3)关于X轴的对称点的坐标是()A. (-2,3)B. (2,3)C. (-2,-3)D. (-3,2)5、笛卡尔是法国著名的数学家,他首先提出并创建了坐标的思想,引入坐标和变量的概念,平面直角坐标系很好地体现了下列哪一种数学思想?( )A.数形结合B.类比C.分类讨论D.建模6、对于一次函数y= —2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过笫三象限C.函数的图象向下平移4个单位长度得丁=一2x的图象D.函数的图象与X轴的交点坐标是(0, 4)7、在平面直角坐标系中的坐标轴上,到原点的距离为2的点有( )A. 1个B. 2个C. 3个D. 4个已知点A (x, y)是第二象限的点,且∣x∣=2, ∣y∣ = 3,则点B (_x,—y) 的坐标是( )A.(2,3)B.(2,-3)C.(-2,-3)D.(-2,3)9、在平面直角坐标系中,点(・3, 7√+l) 一定在( )A.第四象限B.第三象限C.第二象限D.第一象限10、已知点M(l, a)和点N(2, b)是一次函数y= -2x+1图象上的两点,则a与b的大小关系是( )A. d>bB. ci — bC. a<bD.以上都不对二、填空题11、___________________________________________________________ 如果直线AB平行于X轴,则点A, B的坐标之间的关系是 ___________________12、___________________________________________________________ 若点P1(m,-1)关于原点的对称点是卩2(2,兀),则m + n的值是_____________13、一次函数y= (m+2)x+l,若y随X的增大而增大,则m的取值范围是_14、将直线y=2x+l向下平移3个单位长度后所得直线的表达式是_.15、____________________________________________________ 直线y=—X与直线y=x+2与X轴围成的三角形面积是 ______________________ .16、_______________________________________________________________ 若√^z3+(b÷2)2=0,则点M(a, b)关于y轴的对称点的坐标为__________________三、解答题17、已知点A(χ-5, 2χ-4)在第一、三象限的角平分线上,求点A的坐标.18^已知一次函数y=ax+b.(1)当点P(a, b)在第二象限时,直线y =ax+b经过哪儿个象限?(2)如果ab<O,且y随X的增大而增大,则函数的图象不经过哪些象限?19、某通讯公司手机话费收费有/套餐(月租费15元,通话费每分钟0.1元) 和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为刃(元),E套餐为y2(元),月通话时间为X分钟.⑴分别表示出刃与X,y2与X的函数关系式;(2)月通话时间多长时,/, E两种套餐收费一样?(3)什么情况下/套餐更省钱?20、对于a、b定义两种新运算“*”和“□”:a*b=a+kb, a□b=ka+b (其中A■为常数,且dθ).若平面直角坐标系Xoy中的点P(a,b),有点P的坐标为(d*b, Qb)与之相对应,则称点P为点P的啧衍生点”例如:P (1, 4)的“2 衍生点”为P (Z+2×4, 2×1÷4),即P (9, 6).(1)________________________________________点P (・1, 6)的“2衍生点”P的坐标为 __________________________________ •(2)若点P的“3衍生点”P的坐标为(5, 7),求点P的坐标.第三、四章综合练习题参考答案一、选择题1、已知点P(0, m)在y轴的负半轴上,则点M(—m, ~m÷l)在(A )A.第一象限B.第二象限C.第三象限D.第四象限2、一个正比例函数的图象经过(2, -1),则它的表达式为(C)A. γ=—2XB. y=2xC. γ=—5 XD. y=* X3、点M在X轴上侧,距离X轴5个单位长度,距离y轴3个单位长度,则点M 的坐标为(D )A.(5,3)B. (一5, 3)或(5,3)C.(3.5)D. (-3, 5)或(3、5)4、在平面直角坐标系中,点P(2,-3)关于X轴的对称点的坐标是(B)A. (—2,3)B. (2,3)C. (-2,-3)D. (—3,2)5、笛卡尔是法国著名的数学家,他首先提出并创建了坐标的思想,引入坐标和变量的概念,平面直角坐标系很好地体现了下列哪一种数学思想?(A )A.数形结合B.类比C.分类讨论D.建模6、对于一次函数y= —2x+4,下列结论错误的是(D)A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=—2x的图象D.函数的图象与X轴的交点坐标是(0, 4)7、在平面直角坐标系中的坐标轴上,到原点的距离为2的点有(D)A. 1个B. 2个C. 3个D. 4个8、已知点A (x, y)是第二象限的点,且∣x∣=2, ∣y∣ = 3,则点B (—x, —y) 的坐标是(D )A.(2,3)B.(2,-3)C.(-2,-3)D.(-2,3)9、在平而直角坐标系中,点(-3, ”,+1) —定在(C )A.第四象限B.第三象限C.第二彖限D.第一象限10、已知点M(l, a)和点N(2, b)是一次函数y= -2x+1图象上的两点,贝IJa与b的大小关系是(A)A. Cc>bB. Cl = bC. a<bD.以上都不对二、填空题11、如果直线AB平行于X轴,则点A, B的坐标之间的关系是_纵坐标相等—12、若点P1(m,-1)关于原点的对称点是P2(2,n),则m + n的值是113、一次函数y= (m+2)x+l,若y随X的增大而增大,则m的取值范围是」 >一2 .14、将直线y=2x+1向下平移3个单位长度后所得直线的表达式是y=2χ-2 .15、直线y=—X与直线y=x+2与X轴围成的三角形面积是1 .16、若√a-3+(b+2)2=0,则点M(a, b)关于y轴的对称点的坐标为(一3, —三、解答题17、已知点A(χ-5, 2χ-4)在第一、三象限的角平分线上,求点A的坐标.解:由题意得x—5 = 2χ-4,解得x=-lt将X—-1代入点A的坐标可知,点A.的坐标为(一6, —6)18、已知一次函数y=ax+b.(1)当点P(a, b)在第二象限时,直线y =ax+b经过哪儿个象限?(2)如果abvθ,且y随X的增大而增大,则函数的图象不经过哪些象限?解:⑴匚点P(a, b)在第二象限,□a<0, b>0, □直线y =ax+b经过第一、二、四象限(2)□y随X的增大而增大,30, 乂□ab<O,匚b<0, □一次函数y =ax+b的图象不经过第二象限19、某通讯公司手机话费收费有/套餐(月租费15元,通话费每分钟0.1元) 和B套餐(月租费0元,通话费每分钟0.15元)两种.设/套餐每月话费为yι(元),E套餐为力(元),月通话时间为X分钟.(1)分别表示出yι与X,y2与X的函数关系式;(2)月通话时间多长时,/, B两种套餐收费一样?(3)什么情况下/套餐更省钱?解:(l)yι = 0.1x+15, yι=0.15x(2)III y1=y2得0.Ix+15=0.15x,解得x=300,即月通话时间为300分钟时, A, B两种套餐收费一样(3)当通话时间多于300分钟时,/套餐更省钱20、对于心b定义两种新运算“*”和“□”:a*b=a*b, a~lb=ka+b(其中A■为常数,且炉0).若平面直角坐标系XOy中的点P(a,b),有点P的坐标为(α*b, a∑b)与之相对应,则称点P为点P的啧衍生点”例如:P (b 4)的“2 衍生点”为P (7+2×4, 2×1÷4), BP P f (9, 6)∙(1)点P (・1, 6)的“2衍生点”P的坐标为______ .(2)若点P的“3衍生点的坐标为(5, 7),求点P的坐标.解:略。
北师大版八年级上册数学第四章 一次函数 单元测试卷(Word版,含答案)
第 1 页 共 9 页 北师大版八年级上册数学第四章 一次函数 单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.下面四个函数中,符合当自变量x 为1时,函数值为1的函数是( ) A .22y x =- B .2y x = C .2y x D .1y x =+2.下列图象中表示y 是x 的函数的有几个( )A .1个B .2个C .3个D .4个 3.点(3,5)-在正比例函数y kx =(0k ≠)的图象上,则k 的值为( ) A .-15 B .15 C .35 D .53-4.甲、乙两种物质的溶解度(g)y 与温度()t ℃之间的对应关系如图所示,则下列说法中,错误的是()A .甲、乙两种物质的溶解度均随着温度的升高而增大B .当温度升高至2t ℃时,甲的溶解度比乙的溶解度大C .当温度为0℃时,甲、乙的溶解度都小于20g第 2 页 共 9 页 D .当温度为30℃时,甲、乙的溶解度相等5.若关于x 的方程﹣2x +b =0的解为x =2,则直线y =﹣2x +b 一定经过点( )A .(2,0)B .(0,3)C .(4,0)D .(2,5) 6.甲乙两车从 A 城出发匀速驶向 B 城,在整个行驶过程中,两车离开 A 城的距离()km y 与甲车行驶的时间()h t 之间的函数关系如图,则下列结论错误的是( )①A 、B 两城相距 300 千米①甲车比乙车早出发 1 小时,却晚到 1 小时①相遇时乙车行驶了 2.5 小时①当甲乙两车相距 50 千米时,t 的或54或56或156或 254A .①①B .①①C .①①D .①① 7.下列等式:①y =2x +1;①1y x =;①y x =,①y 2=5x -8;①y =y 是x 的函数有() A .1个 B .2个 C .3个 D .4个8.下列函数关系式中,自变量x 的取值范围错误的是( )A .y =2x 2中,x 为全体实数B .yx ≠﹣1C .yx =0 D .yx >﹣79.下列表达式中,y 是x 的函数的是( )。
北师大版八年级数学上册 第一单元 ~第四单元 综合测试卷
八年级(上)数学试卷一、选择题(共12小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.在平面直角坐标系中,点A(2,﹣3)在第()象限.A.一B.二C.三D.四2.一个直角三角形的两条直角边分别是5和12,则斜边是()A.13B.12C.15D.103.下列各数是无理数的是()A.0B.C.πD.2.4.下列函数中,正比例函数是()A.y=﹣8x B.y=C.y=x2D.y=8x﹣45.9的平方根为()A.3B.﹣3C.±3D.6.函数y=2x﹣2的图象大致是()A.B.C.D.7.下列计算正确的是()A.=±4B.=﹣5C.=﹣3D.|﹣|=3 8.已知点M(3,﹣4),在x轴上有一点与M的距离为5,则该点的坐标为()A.(6,0)B.(0,1)C.(0,﹣8)D.(6,0)或(0,0)9.如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.B.C.﹣2D.210.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C 恰好在网格图中的格点上,那么△ABC中BC的高是()A.B.C.D.11.如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)12.如图,在平面直角坐标系中,线段AB的端点坐标为A(﹣2,4),B(4,2),直线y =kx﹣2与线段AB有交点,则k的值不可能是()A.﹣5B.﹣2C.3D.5二、填空题(本大题共6个小题,每小题4分,共24分)13.如图,字母B所代表的正方形的面积是cm2.14.比较大小:4(填“>”、“<”或“=”号).15.如图,Rt△ABC的两直角边AC=8cm,BC=6cm,D为AC上一点,将△ABC折叠,使点A与点B重合,折痕为DE,则CD的长为cm.16.有一个数值转换器,原理如下:当输入x为64时,输出的y的值是.17.若直线y=2x+1下移后经过点(5,1),则平移后的直线解析式为.18.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.三、解答题(本大题共9个小题,共78分)19.(8分)计算:(1);(2).20.(8分)计算:(1)+2+;(2)+﹣(﹣1)2.21.(6分)如图,四边形ABCD,已知∠A=90°,AB=3,BC=12,CD=13,DA=4.求四边形的面积.22.(8分)在边长为1的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形的顶点上).(1)画出△ABC关于y轴对称的△A1B1C1;(2)写出点A1、B1、C1的坐标;(3)在y轴上找D点,使BD+CD最小,请你标出点D的位置并直接写出点D的坐标.23.(6分)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.(1)分别求出购买玉米种子数量不超过5千克和超过5千克时,y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?24.(8分)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n).(1)求n的值;(2)求一次函数y=kx+b的解析式;(3)求四边形AOCD的面积.25.(10分)琪琪是一个爱动脑筋的孩子,她学完勾股定理后,又进行了深入的探究:(1)如图,请观察图形找出a2+b2与c2的关系:图1中,a2+b2c2;图2中,a2+b2c2,这样,我们就猜想出了钝角三角形和锐角三角形中三边之间的关系.(2)请你直接应用发现的结论:当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(3)请你根据琪琪的猜想完成下面的问题:当a=2,b=4时,最长边c在什么范围内取值时,△ABC是锐角三角形、钝角三角形?26.(12分)如图,Rt△ABC中,AC⊥CB,AC=15,AB=25,点D为斜边上动点.(1)如图1,求BC的长;(2)如图2,过点D作DE⊥AB交BC于点E,连接AE,当AE平分∠CAB时,求CE;(3)如图3,在点D的运动过程中,连接CD,若△ACD为等腰三角形,求AD.27.(12分)如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一、选择题(共12小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.D;2.A;3.C;4.A;5.C;6.C;7.D;8.D;9.A;10.A;11.A;12.B;二、填空题(本大题共6个小题,每小题4分,共24分)13.30;14.<;15.;16.2;17.y=2x﹣9;18.210;三、解答题(本大题共9个小题,共78分)19【解答】解:(1)原式===1;(2)原式=(2﹣)×=×=5.20【解答】解:(1)原式=2+6+2=10;(2)原式=﹣3+4﹣(3﹣2+1)=﹣3+4﹣4+2=﹣7+6.21【解答】解:连接BD,∵AB=3,BC=12,CD=13,DA=4,∠A=90°,∵BD==5,∴BD2+BC2=CD2,∴△BCD均为直角三角形,∴S四边形ABCD的面积=S△ABD+S△BCD=AB•AD+BC•BD=×3×4+×12×5=36.22【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图知,A1(1,3)、B1(3,1)、C1(1,﹣3);(3)如图所示,点D即为所求,D(0,﹣2).23【解答】解:(1)由题意可得,当0≤x≤5时,y=20x,当x>5时,y=50×20+(x﹣5)×20×0.8=16x+20,即当0≤x≤5时,y=20x,当x>5时,y=16x+20;(2)当x=30时,y=16×30+20=500,即某农户一次购买玉米种子30千克,需付款500元.24【解答】解:(1)把(1,n)代入y=x+1得,n=1+1=2;(2)∵一次函数y=kx+b的图象经过点B(0,﹣1)与D(1,2),∴,解得,∴一次函数的表达式为y=3x﹣1;(3)∵D(1,2),∵直线BD的解析式为y=3x﹣1,∴A(0,1),C(,0)∴S四边形AOCD=S△AOD+S△COD=×1×1+××2=.25【解答】解:(1)图1中,∵a2=22+22=8,b2=32=9,∴a2+b2=8+9=17,∵c2=52+22=29,∴a2+b2<c2,图2中,∵a2=12+22=5,b2=22+22=8,∴a2+b2=13,∵c2=32=9,∴a2+b2>c2,所以三角形的三边a、b、c中,a和b为短边,当a2+b2<c2时,三角形是钝角三角形;当a2+b2>c2时,三角形是锐角三角形.故答案为:<,>;(2)∵62+82=100,92=81,∵100>81,∴当△ABC三边长分别为6,8,9时,△ABC为锐角三角形;∵62+82=100,112=121,∵100<121,∴当△ABC三边长分别为6,8,11时,△ABC为钝角三角形;故答案为:锐角,钝角;(3)∵c为最长边,2+4=6,∴4≤c<6,a2+b2=22+42=20,①a2+b2>c2,即c2<20,0<c<2,∴当4≤c<2时,这个三角形是锐角三角形;②a2+b2<c2,即c2>20,c>2,∴当2<c<6时,这个三角形是钝角三角形.26【解答】解:(1)∵AC⊥CB,AC=15,AB=25,∴BC===20;(2)∵AE平分∠CAB,∴∠EAC=∠EAD,∵AC⊥CB,DE⊥AB,∴∠EDA=∠ECA=90°,在△ACE和△ADE中,,∴△ACE≌△ADE(AAS),∴CE=DE,AC=AD=15,设CE=x,则BE=20﹣x,BD=25﹣15=10,在Rt△BED中,∴x2+102=(20﹣x)2,∴x=7.5,∴CE=7.5;(2)①当AD=AC时,△ACD为等腰三角形,∵AC=15,∴AD=AC=15.②当CD=AD时,△ACD为等腰三角形,∵CD=AD,∴∠DCA=∠CAD,∵∠CAB+∠B=90°,∠DCA+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,∴CD=BD=DA=;③当CD=AC时,△ACD为等腰三角形,如图1中,作CH⊥BA于点H,则×AB×CH=×AC×BC,∵AC=15,BC=20,AB=25,∴CH=12,在Rt△ACH中,AH==9,∵CD=AC,CH⊥BA,∴DH=HA=9,∴AD=18,综上所述:AD的值为15或或18.27【解答】解:(1)A(2,0);C(0,4)(2分)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4﹣x,根据题意得:(4﹣x)2+22=x2解得:此时,AD=,(2分)设直线CD为y=kx+4,把代入得(1分)解得:∴直线CD解析式为(1分)(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=,PD=BD==,AP=BC=2由AD×PQ=DP×AP得:∴∴,把代入得此时(也可通过Rt△APQ勾股定理求AQ长得到点P的纵坐标)③当点P在第二象限时,如图同理可求得:∴此时综合得,满足条件的点P有三个,分别为:P1(0,0);;.。
北师大版八年级上册数学第四章测试题(附答案)
(2)解:当0≤x≤1时设y与x之间的函数关系式为y=k1x,由题意,得
40=k1,∴y=40x当1<x≤1.5时y=40;
当1.5<x≤7设y与x之间的函数关系式为y=k2x+b,由题意,得
,解得: ,∴y=40x﹣20.y= .
A. y=5- x(0<x<5) B. y=10-2x(0<x<5)
C. y=5- x( <x<5) D. y=10-2x( <x<5)
4.已知点(-4,y1),(2,y2)都在直线y=-x+b上,则y1,y2大小关系是( )
A. y1>y2 B. y1=y2 C. y1<y2 D.不能比较
5.如果一个正比例函数的图像经过不同象限的两点A(2,m),B(n,3),那么一定有()
解得:x=7.5,
7.5+5=12.5(分),
由函数图象可知,当t=12.5时,s=0,
∴点B的坐标为(12.5,0),
当12.5≤t≤35时,设BC的解析式为:s=kt+b,(k≠0),
把C(35,450),B(12.5,0)代入可得:
解得: ,
∴s=20t﹣250,
当35<t≤50时,设CD的解析式为s=k1x+b1,(k1≠0),
x
…
﹣3
﹣2
﹣1
﹣
﹣
1
2
3
4
…
y
…
﹣
﹣
﹣2
﹣
﹣
m
2
n
…
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师版八年级数学上册第四章一次函数综合检测题
(时间90分钟,共120分)
班级__________ 姓名__________ 学号__________ 成绩__________
一、选择题:(每小题3分,共30分)
1.下列函数(1)y=πx (2)y=2x-1 (3)y=
1
x(4)y=2
2-x (5)y=x2-1中,一次函数的个数是()
A.4个B.3个C.2个D.1个
2.若y=(m-2)x+(m2-4)是正比例函数,则m的取值是()
A.2 B.-2 C.±2 D.任意实数
3.若直线y=kx+b中,k<0,b>0,则直线不经过()
A、第一象限
B、第二象限
C、第三象限
D、第四象限
4.如图所示图象中,函数m
mx
y+
=的图象可能是下列图象中()
(A)(B)(C)(D)
5.下列函数中,是正比例函数,且y随x增大而减小的是()
A.1
4+
-
=x
y B. 6
)3
(2+
-
=x
y C. 6
)
2(3+
-
=x
y D.
2
x
y-
= 6.已知3
-
y与x成正比例,且x=2时,y=7,则y与x的函数关系式为()A.3
2+
=x
y B.3
2-
=x
y C.3
2
3+
=
-x
y D.3
3-
=x
y 7.下列各点,在一次函数y=2x+6的图象上的是()
A.(-5,4) B.(-4,1) C.(4,20) D.(-3,0)
8.点A)
,3(
1
y和点B)
,2
(
2
y
-都在直线3
2+
-
=x
y上,则
1
y和
2
y的大小关系是()
A.
1
y>
2
y B.
1
y<
2
y C.
1
y=
2
y D.不能确定
9.已知某一次函数的图像与直线1
+
-
=x
y平行,且过点(8,2),那么此一次函数为()A.2
-
-
=x
y B.10
+
-
=x
y C.6
-
-
=x
y D.10
-
-
=x
y
10.等腰三角形的周长是40cm ,腰长y (cm)是底边长x (cm)的函数解析式正确的是( ) A .y =-0.5x +20 ( 0<x <20) B .y =-0.5x +20 (10<x <20) C .y =-2x +40 (10<x <20)
D .y =-2x +40 (0<x <20)
二、填空题:(每小题4分,共28分)
11.已知一次函数图象过(1,2)且y 随x 的增大则减小,请写出一个符合条件的函数解析式 .
12.一次函数y = -2x +4的图象与x 轴交点坐标是 ,与y 轴交点坐标是 . 13.直线63+=x y 与两坐标轴围成的三角形的面积是
14.若函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,则b =__________. 15.已知一次函数k
x k y )1(-=+3,则k = .
16.在平面直角坐标中,点A (x ,4),B (0,8)和C (-4,0)在同一直线上,则x = . 17. 已知直线33-=x y 向左平移4个单位后,则该直线解析式是 . 三、解答下列各题:(共62分)
18.(10分)某自来水公司为了鼓励市民节约用水,采取分 段收费标准,若某用户居民每月应交水费y (元) 是用户量x (方)的函数,其图象如图所示,根据 图象回答下列问题:
(1)分别求出x ≤5和x>5时,y 与x 的函数关系式; (2)自来水公司的收费标准是什么?
(3)若某户居民交水费9元,该月用水多少方?
19.已知一次函数2(2)312y k x k =--+. (1)k 为何值时,图象经过原点;(2分)
(2)k 为何值时,图象与直线y = -2x +9的交点在y 轴上;(3分) (3)k 为何值时,图象平行于2y x =-的图象;(3分) (4)k 为何值时,y 随x 增大而减小. (2分)
y(元)
20. 如图,一次函数13
3
+-
=x y 的图象与x 轴、y 轴交于点A 、B ,以线段AB 为边作等边△ABC.
(1)求C 点的坐标;(6分) (2)求△ABC 的面积. (4分)
21.是某汽车行驶的路程S (km )与时间t (min)的函数关系图.观察图中所提供的信息,解答下列问题: (1)汽车在前9分钟内的平均速度是多少?(3分) (2)汽车在中途停了多长时间?(2分)
(3)当16≤t ≤30时,求S 与t 的函数关系式.(5分)
22、(12分)某单位今年“十一”期间要组团去北京旅游,与旅行社联系时,甲旅行
社提出每人次收300元车费和住宿费,不优惠。
乙旅行社提出每人次收350元车费和住宿费,但有3人可享受免费待遇。
(1)分别写出甲、乙两旅行社的收费与旅行人数之间函数关系式;
(2)在同一坐标系内作出它们的图象;
(3)如果组织20人的旅行团时,选哪家旅行社比较合算?当旅行团为多少人时,选甲或乙旅行社所需费用一样多?
(4)由于经费紧张,单位领导计划该单位该次旅行费用不超过5000元,选哪一家旅行社去的人多一些?最多去多少人?
23.
设某用户一个月内手机通话时间为x分钟,请根据上表解答下列问题:(1)按A类收费标准,该用户应缴纳y A= 元;按B类收费标准,该用户应缴纳y B= 元;(用含x的代数式表示)(2)如果该用户每月通话时间为300分钟,应选择哪种收费方式?(3)如果该用户每月手机费用不超过90元,应选择哪种收费方式?。