2013届高考理科数学第一轮复习测试题12
2013全国高考1卷理科数学试题及答案解析
(22)【解析】(1) ,
(2)
(23)【解析】(1)点 的极坐标为
点 的直角坐标为
(2)设 ;则
(lfxlby)
(24)【解析】(1)当 时,
或 或
或
(2)原命题 在 上恒成立
在 上恒成立
在 上恒成立
(A) (B) (C) (D)
(12)设点 在曲线 上,点 在曲线 上,则 的最小值为
(A) (B) (C) (D)
第Ⅱ卷
本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须作答。第22题~第24题为选考题,考试依据要求作答。
二、填空题:本大题共4小题,每小题5分。
(13)已知向量 夹角为45°,且 ,则 ____________.
得:应购进17枝
(19)【解析】(1)在 中,
得:
同理:
得: 面
(2) 面
取 的中点 ,过点 作 于点 ,连接
,面 面 面
得:点 与点 重合
且 是二面角 的平面角
设 ,则 ,
既二面角 的大小为
(20)【解析】(1)由对称性知: 是等腰直角 ,斜边
点 到准线 的距离
圆 的方程为
(2)由对称性设 ,则
点 关于点 对称得:
得:
(9)【解析】选
不合题意排除
合题意排除
另: ,
得:
(10)【解析】选
得: 或 均有 排除
(11)【解析】选
的外接圆的半径 ,点 到面 的距离
为球 的直径 点 到面 的距离为
此棱锥的体积为
另: 排除
(12)【解析】选
函数 与函数 互为反函数,图象关于 对称
2013年普通高考山东理科数学试题及详细答案
绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试用时120分钟,考试结束后,将本试卷和答题卡一并交回。
注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A ,B 互斥,那么P(A+B)=P(A)+P(B);如果事件A ,B 独立,那么P(AB)=P(A)·P(B);第Ⅰ卷(共60分)一、选择题:本大题共12题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1). 复数z 满足(3)(2)5z i --=(i 为虚数单位),则z 的共轭复数z 为(A) 2i + (B) 2i - (C) 5i + (D) 5i - (2). 已知集合{}0,1,2A =,则集合{},B x y x A y A =-∈∈中元素的个数是 (A) 1 (B) 3 (C) 5 (D) 9 (3). 已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -=(A) 2- (B) 0 (C) 1 (D) 2 (4). 已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为 (A) 512π (B) 3π (C) 4π (D) 6π(5). 将函数()sin (2)f x x φ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则φ的一个可能取值为(A) 34π (B) 4π (C) 0 (D) 4π-(6). 在平面直角坐标系xOy 中,M 为不等式组220210380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩所表示的区域上一动点,则直线OM 斜率的最小值为 (A) 2 (B) 1 (C) 13- (D) 12-(7). 给定两个命题,p q 。
2013年高三理科数学综合测试题一
2013届高三第二学期理科数学训练题(一)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项. 1.已知集合2{|9},{|33}M x x N x z x ===∈-≤<,则M N = ( )A .∅B .{3}-C .{3,3}-D .{3,2,0,1,2}--2.已知命题p :21,04x R x x ∀∈-+≥,则命题p 的否定p ⌝是 ( ) A .21,04x R x x ∃∈-+< B .21,04x R x x ∀∈-+≤C .21,04x R x x ∀∈-+<D .21,04x R x x ∃∈-+≥3. 在复平面内,复数21i+对应的点与原点的距离是 ( )A.1B.2D.4.如图,是一个几何体的正视图(主视图)、侧视图(左视图)、俯视图,正视图(主视图)、侧视图(左视图)都是矩形,则该几何体的体积是 ( )A .24B .12C .8D .45.为了得到函数)322sin(π+=x y 的图像,只需把函数)62sin(π+=x y 的图像( ) A.向左平移2π个单位长度 B.向右平移2π个单位长度C.向左平移4π个单位长度D.向右平移4π个单位长度6.在△ABC 中,角A ,B ,C 所对的边长分别为,,a b c ,若∠C=120°,c ,则( ) A.a b > B.a b < C. a b = D.,a b 的大小关系不能确定7.若椭圆12222=+by a x (0)a b >>的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线bx y 22=的焦点分成5∶3的两段,则此椭圆的离心率为 ( )A .1617B C .45 D8.对于任意两个正整数,m n ,定义某种运算“※”如下:当,m n 都为正偶数或正奇数时,m ※n =m n +;当,m n 中一个为正偶数,另一个为正奇数时,m ※n =mn .则在此定义下,集合{(,)M a b a =※12,,}b a b **=∈∈N N 中的元素个数是 ( )A .10个B .15个C .16个D .18个二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题:第9、10、11、12、13题是必做题,每道试题考生都必须做答.9.已知||1,||2,,60a b a b ==<>=,则|2|a b += .10.某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师 人.11.若关于x 的不等式()21m x x x ->-的解集为{}12x x <<,则实数m 的值为 .12.若0x >,0y >,123x y +=,则11x y+的最小值是 . 13. 在如下程序框图中,已知:0()x f x xe =,则输出的是_____ ___.(二)选做题:第14、15题是选做题,考生只能从中选做一题. 14.(坐标系与参数方程选做题)在极坐标系中,直线24sin =⎪⎭⎫⎝⎛+πθρ被圆4=ρ截得的弦长为 . 15.(几何证明选讲选做题)如图,已知:ABC △内接于O ,点D 在OC 的延长线上,AD 是O 的切线,若30B ∠=︒,1AC =,则AD 的长为 .三.解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知向量(cos ,sin )a αα= ,(cos ,sin )b ββ= , 且||a b -= .(I )求cos()αβ-的值;(II )若202π<α<<β<π-,且5sin 13β=-,求sin α的值.17.(本小题满分12分)为深入贯彻素质教育,增强学生体质,某中学从高一、高二、高三三个年级中分别选了甲、乙、丙三支足球队举办一场足球赛。
2013年高考数学理知识与能力测试题
OF
即有
DF
EF
,又根据相交弦定理 DF· EF= BF· AF
PF
可推出 BF OB 2 ,从而 PF PB 1
PF AP 6
PF
3
∴ PF= 3
ab
ab
( 2) ∵ PF QF,
∴c a2
c
1 ∴ a b,e 2
a2
cc
c
c
(3) 略。
三、 15.解: (1) 依题知,
得 f (x) m? n
3 sin x cos x cos2 x
2 )
3
当t
13 ln 时, 0
et
2 , P2 P1 0 , P2
P1 ;
2
3
当 t 1 ln 3 时, e t 2 , P2 P1 0 , P2 P1 ;
2
3
当t
13 ln 时, e
t
2 , P2 P1 0 , P2
P1 ;
2
3
13
故当 t
ln 时,飞机 A 安全;
2
当t
13 ln 时,飞机 A 与飞机 B 一样安全;
2
2
设 m (x1, y1 , z1 ) 是平面 C ' EF 的一个法向量,则
2
A. 1
B. 1
3
3
C.
1
1
D.
2
6
2
6
11
-2
2
4
6
8
10
12
O 2 -1
x
3 -2
3
-3
-4
6.某工厂生产产品, 用传送带将产品放入下一工序, 质检人员每隔 t 分钟在传进带上某一固定位置取一件检验, 这种抽样方法是
2013届高三一轮复习理科数学全能测试(一)集合集合与常用逻辑用语、函数概念与基本初等函数
2013届高三一轮复习理科数学全能测试(一) 集合与常用逻辑用语、函数概念与基本初等函数本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、科类填写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.参考公式:如果事件A,B 互斥,那么P (A+B )=P (A )+P (B );球的表面积公式:24R S π=(其中R 表示球的半径);球的体积公式:343V R π=(其中R 表示球的半径); 锥体的体积公式:Sh V 31=(其中S 表示锥体的底面积,h 表示锥体的高);柱体的体积公式Sh V =(其中S 表示柱体的底面积,h 表示柱体的高);台体的体积公式:)(312211S S S S h V ++=(其中21,S S 分别表示台体的上,下底面积,h 表示台体的高).第Ⅰ卷(选择题,共50分)1、【2012 浙江理】设集合A={x|1<x<4},B={x|x 2-2x-3≤0},则A∩(C RB)= ( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)2、【2011 浙江理 】若,a b 为实数,则“01m ab <<”是11a b b a <或>的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3、下列函数中既是奇函数,又在区间()1,1-上是增函数的为( )A .y x= B .sin y x = C .x x y e e -=+ D .3y x =-4、若函数()log (2)(0,1)a f x ax a a =->≠在区间()1,3内单调递增,则a 的取值范围是A .2[,1)3 B .2(0,]3 C .3(1,)2 D .3[,)2+∞ 5、奇函数()f x 在(0,)+∞上的解析式是()(1)f x x x =-,则在(,0)-∞上()f x 的函数解析式是( )A .()(1)f x x x =--B .()(1)f x x x =+C .()(1)f x x x =-+D .()(1)f x x x =-6、函数()f x 的定义域为R ,且满足:()f x 是偶函数,(1)f x -是奇函数,若(0.5)f =9,则(8.5)f 等于( )A .-9B .9C .-3D .07、定义两种运算:22b a b a -=⊕,2)(b a b a -=⊗,则()()222xf x x ⊕=-⊗是( )函数. ( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数8、已知函数()()()()f x x a xb a b =-->其中的图象如下面右图所示,则函数()x g x a b =+的图象是 ( )9、若02log )1(log 2<<+a a a a ,则a 的取值范围是 ( )A .(0,1)B .(0,21)C .(21,1)D .(0,1)∪(1,+∞)10、设)(x f 是定义在R 上的偶函数,对R x ∈,都有)2()2(+=-x f x f ,且当]0,2[-∈x 时,1)21()(-=x x f ,若在区间]6,2(-内关于x 的方程0log )()2(=-+x a x f (a >1)恰有3个不同的实根,则a 的取值范围是( )A.(1,2)B.),2(+∞C.)4,1(3D.)2,4(3非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上. 2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每小题4分,共28分.11、命题“∃(12)x ∈,时,满足不等式240x mx ++≥”是假命题,则m 的取值范围 __________ 12、函数)12(log )(5+=x x f 的单调增区间是__________13、函数m x x f +=lg )(关于直线x=1对称,则m= 14、已知函数()()231f x mx m x =+-+的值域是[0,)+∞,则实数m 的取值范围是________________。
2013届高三一轮复习理科数学全能测试(三)三角函数
2013届高三一轮复习理科数学全能测试(三)三角函数本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、科类填写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.参考公式:如果事件A,B 互斥,那么P (A+B )=P (A )+P (B );球的表面积公式:24R S π=(其中R 表示球的半径);球的体积公式:343V R π=(其中R 表示球的半径); 锥体的体积公式:Sh V 31=(其中S 表示锥体的底面积,h 表示锥体的高);柱体的体积公式Sh V =(其中S 表示柱体的底面积,h 表示柱体的高);台体的体积公式:)(312211S S S S h V ++=(其中21,S S 分别表示台体的上,下底面积,h 表示台体的高).第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求) 1、为了得到函数sin 2y x =的图象,可将函数sin(2)6y x π=+的图象( )A .向右平移6π个单位 B .向左平移6π个单位 C .向右平移12π个单位D .向左平移12π个单位2、若tan 3α=,则2sin 2cos αα的值为( ) A.2 B.3 C.4 D.63、在ABC ∆中,若,24,34,60==︒=AC BC A 则角B 的大小为 ( )A .30°B .45°C .135°D .45°或135°4、(2012重庆理)设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为( )A .3-B .1-C .1D .35、已知函数()sin (0)f x x ωωπ⎛⎫=+> ⎪3⎝⎭的最小正周期为π,则该函数的图象( ) A .关于点0π⎛⎫⎪3⎝⎭,对称B .关于直线x π=4对称 C .关于点0π⎛⎫⎪4⎝⎭,对称D .关于直线x π=3对称6、已知角α的终边上有一点21(,)(0)4P t t t +>,则tan α的最小值为 ( )A .12B .1C D .27、如果函数3cos(2)y x ϕ=+的图象关于点4(,0)3π中心对称,那么||ϕ的最小值为 ( )A .6πB .4πC .3πD .2π 8、(2012浙江理)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是9、ABC ∆中,A 、B 、C 对应边分别为a 、b 、c .若x a =,2=b ,︒=45B ,且此三角形有两解,则x 的取值范围为 ( ) A.)22,2( B.22 C.),2(+∞ D. ]22,2(10、已知O 是锐角A B C ∆内一点,满足||||||OC OB OA ==,且 30=∠A ,若m BCC B 2sin cos sin cos =+,则实数=m ( )A .23- B.2C . 12-D .非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上. 2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每小题4分,共28分.11、如图所示,在平面直角坐标系xOy ,角α的终边与单位圆交于点A ,已知点A 的纵坐标为45,则cos α= 。
2013年高考数学理科一轮复习经典例题——直线与平面的垂直判定和性质
典型例题一例1下列图形中,满足唯一性的是( ).A .过直线外一点作与该直线垂直的直线B .过直线外一点与该直线平行的平面C .过平面外一点与平面平行的直线D .过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A .过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B .过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C .过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条.D .过一点作已知平面的垂线是有且仅有一条.假设空间点A 、平面α,过点A 有两条直线AB 、AC 都垂直于α,由于AB 、AC 为相交直线,不妨设AB 、AC 所确定的平面为β,α与β的交线为l ,则必有l AB ⊥,l AC ⊥,又由于AB 、AC 、l 都在平面β内,这样在β内经过A 点就有两条直线和直线l 垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D .说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2 已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是( ).A .(1)、(2)B .(2)、(3)C .(3)、(4)D .(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性. 故选D .说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体1111D C B A ABCD -中,F E 、分别为棱1AA 和1BB 上的点,G 为棱BC 上的点,且1BB EF ⊥,EG FC ⊥1,求FG D 1∠.典型例题三例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明⊥OE 平面1ACD ,只要在平面1ACD 内找两条相交直线与OE 垂直.证明:连结D B 1、D A 1、BD ,在△BD B 1中,∵O E 、分别是B B 1和DB 的中点,∴D B EO 1//.∵⊥11A B 面D D AA 11,∴1DA 为1DB 在面D D AA 11内的射影.又∵D A AD 11⊥,∴11DB AD ⊥.同理可证,C D D B 11⊥.又∵111D CD AD = ,1AD 、⊂C D 1面1ACD ,∴⊥D B 1平面1ACD .∵EO D B //1,∴⊥EO 平面1ACD .另证:连结CE AE 、,O D 1,设正方体1DB 的棱长为a ,易证CE AE =.又∵OC AO =,∴AC OE ⊥.在正方体1DB 中易求出:a a a DO DD O D 2622222211=⎪⎪⎭⎫ ⎝⎛+=+=,a a a OB BE OE 232222222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=, ()a a a E B B D E D 232222212111=⎪⎭⎫ ⎝⎛+=+=. ∵21221E D OE O D =+, ∴OE O D ⊥1.∵O AC O D = 1,O D 1、⊂AC 平面1ACD ,∴⊥OE 平面1ACD .说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例4 如图,在△ABC 中,90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证MN SC ⊥,可证⊥SC 面AMN ,为此须证AN SC ⊥,进而可转化为证明⊥AN 平面SBC ,而已知SB AN ⊥,所以只要证BC AN ⊥即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵⊥SA 面ABC ,⊂BC 平面ABC ,∴BC SA ⊥.∵ 90=∠B ,即BC AB ⊥,A SA BA = ,∴⊥BC 平面SAB .∵⊂AN 平面SAB .∴AN BC ⊥.又∵SB AN ⊥,B BC SB = ,∴⊥AN 平面SBC .∵⊂SC 平面SBC ,∴SC AN ⊥,又∵SC AM ⊥,A AN AM = ,∴⊥SC 平面AMN .∵⊂MN 平面AMN .∴MN SC ⊥.另证:由上面可证⊥AN 平面SBC .∴MN 为AM 在平面SBC 内的射影.∵SC AM ⊥,∴SC MN ⊥.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊥SA ⊙O 所在平面,AB 为⊙O 的直径,C 为⊙O 上任意一点(C 与B A 、不重合).过点A 作SB 的垂面交SB 、SC 于点N M 、,求证:SC AN ⊥.典型例题五例5 如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ⋅=.分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.证明:过H 点作HD 垂直BC 于D 点,连AD .∵α⊥AH ,∴AD 在平面α内射影为HD .∵HD BC ⊥,α⊂BC ,∴AD BC ⊥.在Rt △ABH 中有:BA BH =θcos ①在Rt △BHD 中有:BH BD=αcos ②在Rt △ABD 中有:BA BD=βcos ③ 由①、②、③可得:αθβcos cos cos ⋅=.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为θ,则斜线与平面内其它直线所成角β的范围为⎥⎦⎤⎢⎣⎡2πθ,.典型例题六例 6 如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离.分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点B 与平面GEF平行的直线,因为与平面平行的直线上所有点到平面的距离相等.证明:连结AC BD 、,EF 和BD 分别交AC 于O H 、,连GH ,作GH OK ⊥于K .∵ABCD 为正方形,F E 、分别为AD AB 、的中点,∴BD EF //,H 为AO 中点.∵EF BD //,⊄BD 平面GFE ,∴//BD 平面GFE .∴BD 与平面GFE 的距离就是O 点到平面EFG 的距离.∵AC BD ⊥,∴AC EF ⊥.∵⊥GC 面ABCD ,∴EF GC ⊥.∵C AC GC = ,∴⊥EF 平面GCH .∵⊂OK 平面GCH ,∴OK EF ⊥.又∵GH OK ⊥,H EF GH = ,∴⊥OK 平面GEF .即OK 长就是点B 到平面GEF 的距离.∵正方形边长为4,2=CG , ∴24=AC ,2=HO ,23=HC .在Rt △HCG 中,2222=+=CG HC HG .在Rt △GCH 中,11112=⋅=HG GC HO OK .说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长CB 交FE 的延长线于M ,连结GM ,作ME BP ⊥于P ,作CG BN //交MG 于N ,连结PN ,再作PN BH ⊥于H ,可得⊥BH 平面GFE ,BH 长即为B 点到平面EFG 的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7 如图所示,直角ABC ∆所在平面外一点S ,且SC SB SA ==.(1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ;(2)若直角边BC BA =,求证:BD ⊥面SAC .分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直.证明:(1)在等腰SAC ∆中,D 为AC 中点,∴AC SD ⊥.取AB 中点E ,连DE 、SE .∵BC ED //,AB BC ⊥,∴AB DE ⊥.又AB SE ⊥,∴AB ⊥面SED ,∴SD AB ⊥.∴SD ⊥面ABC (AB 、AC 是面ABC 内两相交直线).(2)∵BC BA =,∴AC BD ⊥.又∵SD ⊥面ABC ,∴BD SD ⊥.∵D AC SD = ,∴BD ⊥面SAC .说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等. 典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面. 已知:b a //,α⊥a .求证:α⊥b .分析:由线面垂直的判定定理知,只需在α内找到两条相交直线与b 垂直即可.证明:如图所示,在平面α内作两条相交直线m 、n .∵α⊥a ,∴m a ⊥,n a ⊥.又∵a b //,从而有m b ⊥,n b ⊥.由作图知m 、n 为α内两条相交直线.∴α⊥b .说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9 如图所示,已知平面α 平面β=EF ,A 为α、β外一点,α⊥AB 于B ,β⊥AC 于C ,α⊥CD 于D .证明:EF BD ⊥.分析:先证A 、B 、C 、D 四点共面,再证明EF ⊥平面ABCD ,从而得到EF BD ⊥. 证明:∵α⊥AB ,α⊥CD ,∴CD AB //.∴A 、B 、C 、D 四点共面.∵α⊥AB ,β⊥AC ,EF =βα ,∴EF AB ⊥,EF AC ⊥.又A AC AB = ,∴EF ⊥平面ABCD .∴BD EF ⊥.说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“A 、B 、C 、D 四点共面”非常重要,仅由EF ⊥平面ABC ,就断定BD EF ⊥,则证明是无效的. 典型例题十例10 平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.(1)求证:SB NH ⊥;(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线?分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.(1)证明:连AM 、BM .如上图所示,∵AB 为已知圆的直径,∴BM AM ⊥.∵SA ⊥平面α,α⊂BM ,∴MB SA ⊥.∵A SA AM = ,∴BM ⊥平面SAM .∵AN ⊂平面SAM ,∴AN BM ⊥.∵SM AN ⊥于N ,M SM BM = ,∴AN ⊥平面SMB .∵SB AH ⊥于H ,且NH 是AH 在平面SMB 的射影,∴SB NH ⊥.解(2):由(1)知,SA ⊥平面AMB ,BM ⊥平面SAM ,AN ⊥平面SMB .∵AH SB ⊥且HN SB ⊥,∴SB ⊥平面ANH ,∴图中共有4个线面垂直关系.(3)∵SA ⊥平面AMB ,∴SAB ∆、SAM ∆均为直角三角形.∵BM ⊥平面SAM ,∴BAM ∆、BMS ∆均为直角三角形.∵AN ⊥平面SMB ,∴ANS ∆、ANM ∆、ANH ∆均为直角三角形.∵SB ⊥平面ANH ,∴SHA ∆、BHA ∆、SHN ∆、BHN ∆均为直角三角形.综上,图中共有11个直角三角形.(4)由SA ⊥平面AMB 知,AM SA ⊥,AB SA ⊥,BM SA ⊥.由BM ⊥平面SAM 知,AM BM ⊥,SM BM ⊥,AN BM ⊥.由AN ⊥平面SMB 知,SM AN ⊥,SB AN ⊥,NH AN ⊥.由SB ⊥平面ANH 知,AH SB ⊥,HN SB ⊥.综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线⊥面”可得到“线⊥面内线”,当“线⊥面内线”且相交时,可得到直角三角形;当“线⊥面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11 如图所示,︒=∠90BAC .在平面α内,PA 是α的斜线,︒=∠=∠60PAC PAB .求PA 与平面α所成的角.分析:求PA 与平面α所成角,关键是确定PA 在平面α上射影AO 的位置.由PAC PAB ∠=∠,可考虑通过构造直角三角形,通过全等三角形来确定AO 位置,构造直角三角形则需用三垂线定理.解:如图所示,过P 作α⊥PO 于O .连结AO ,则AO 为AP 在面α上的射影,PAO ∠为PA 与平面α所成的角.作AC OM ⊥,由三重线定理可得AC PM ⊥.作AB ON ⊥,同理可得AB PN ⊥.由PAC PAB ∠=∠,︒=∠=∠90PNA PMA ,PA PA =,可得PMA ∆≌PNA ∆,∴PN PM =.∵OM 、ON 分别为PM 、PN 在α内射影,∴ON OM =.所以点O 在BAC ∠的平分线上.设a PA =,又︒=∠60PAM ,∴a AM 21=,︒=∠45OAM , ∴a AM AO 222==.在POA ∆中,22cos ==∠PA AO PAO , ∴︒=∠45PAO ,即PA 与α所成角为︒45.说明:(1)本题在得出PA 在面α上的射影为BAC ∠的平分线后,可由公式βαθcos cos cos ⋅=来计算PA 与平面α所成的角,此时︒==∠60θPAC ,α=∠PAO ,︒==∠45βCAO .(2)由PA 与平面α上射影为BAC ∠平分线还可推出下面结论:四面体ABC P -中,若PAC PAB ∠=∠,PBC PBA ∠=∠,则点A 在面ABC 上的射影为ABC ∆的内心. 典型例题十二例12 如图所示,在平面β内有ABC ∆,在平面β外有点S ,斜线AC SA ⊥,BC SB ⊥,且斜线SA 、SB 分别与平面β所成的角相等,设点S 与平面β的距离为cm 4,BC AC ⊥,且cm AB 6=.求点S 与直线AB 的距离.分析:由点S 向平面β引垂线,考查垂足D 的位置,连DB 、DA ,推得AC DA ⊥,BC DB ⊥,又︒=∠90ACB ,故A 、B 、C 、D 为矩形的四个顶点.解:作SD ⊥平面β,垂足为D ,连DA 、DB .∵AC SA ⊥,BC DB ⊥,∴由三垂线定理的逆定理,有:AC DA ⊥,BC DB ⊥,又BC AC ⊥,∴ACBD 为矩形.又∵SB SA =,∴DB DA =,∴ACBD 为正方形,∴AB 、CD 互相垂直平分.设O 为AB 、CD 的交点,连结SO ,根据三垂线定理,有AB SO ⊥,则SO 为S 到AB 的距离.在SOD Rt ∆中,cm SD 4=,cm AB DO 321==,∴cm SO 5=. 因此,点S 到AB 的距离为cm 5.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算.典型例题十三例13 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证SB AE ⊥,可证⊥AE 平面SBC ,为此须证BC AE ⊥、SC AE ⊥,进而转化证明⊥BC 平面SAB 、⊥SC 平面AEFG . 证明:∵SA ⊥平面ABCD ,⊂BC 平面ABCD ,∴BC SA ⊥.又∵ABCD 为正方形,∴AB BC ⊥.∴⊥BC 平面ASB .∵⊂AE 平面ASB ,∴AE BC ⊥.又∵⊥SC 平面AEFG ,∴AE SC ⊥.∴⊥AE 平面SBC .又∵⊂SB 平面SBC ,∴SB AE ⊥,同理可证SD AG ⊥.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性. 典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:BAC ∠在平面α内,点α∉P ,AB PE ⊥,AC PF ⊥,α⊥PO ,垂足分别是E 、F 、O ,PF PE =.求证:CAO BAO ∠=∠.证明:∵α⊥PO ,∴OE 为PE 在α内的射影.∵PE AB ⊥,α平面⊂AB ,∴OE AB ⊥.同理可证:OF AC ⊥.又∵α⊥PO ,PF PE =,OF OE =,∴CAO BAO ∠=∠.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知︒=∠90ACB ,S 为平面ACB 外一点,︒=∠=∠60SCB SCA ,求SC 与平面ACB 所成角.典型例题十五例15 判断题:正确的在括号内打“√”号,不正确的打“×”号.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( )(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( )(3)垂直于三角形两边的直线必垂直于第三边.( )(4)过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.( )(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.( ) 解:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行 ②异面,因此应打“×”号(2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A 垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”号.(5)三条共点直线两两垂直,设为a ,b ,c 且a ,b ,c 共点于O ,∵b a ⊥,c a ⊥,0=c b ,且b ,c 确定一平面,设为α,则α⊥a ,同理可知b 垂直于由a ,c 确定的平面,c 垂直于由了确定的平面,∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六例16 如图,已知空间四边形ABCD 的边AC BC =,BD AD =,引CD BE ⊥,E 为垂足,作BE AH ⊥于H ,求证:BCD AH 平面⊥.分析:若证BCD AH 平面⊥,只须利用直线和平面垂直的判定定理,证AH 垂直平面BCD 中两条相交直线即可.证明:取AB 中点F ,连CF 、DF ,∵BC AC =,∴AB CF ⊥.又∵BD AD =,∴AB DF ⊥,∴CDF AB 平面⊥,又CDF CD 平面⊂,∴AB CD ⊥又BE CD ⊥,∴ABE CD 平面⊥,AH CD ⊥,又BE AH ⊥,∴BCD AH 平面⊥.典型例题十七例17 如果平面α与α外一条直线a 都垂直b ,那么α//a .已知:直线α⊄a ,b a 直线⊥,α⊥b .求证:α//a .分析:若证线面平行,只须设法在平面α内找到一条直线'a ,使得'//a a ,由线面平行判定定理得证.证明:(1)如图,若a 与b 相交,则由a 、b 确定平面β,设'a =αβ .αααβαα////,,'''''a a a a a a b a a b ab a b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎭⎪⎬⎫⊂⊥⊥⇒⎭⎬⎫⊂⊥又∵. (2)如图,若a 与b 不相交,则在a 上任取一点A ,过A 作b b //',a 、'b 确定平面β,设'a =αβ .αααβααα////,,////'''''''''''a a a a a a a b a b a b b b a b a b b b b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥又又∵又∵.典型例题十八例18 如图,已知在ABC ∆中,︒=∠60BAC ,线段ABC AD 平面⊥,DBC AH 平面⊥,H 为垂足.求证:H 不可能是DBC ∆的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设H 是DBC ∆的垂心,则DC BH ⊥.∵DBC AH 平面⊥,∴AH DC ⊥,∴ABH DC 平面⊥,∴DC AB ⊥.又∵ABC DA 平面⊥,∴DA AB ⊥,∴DAC AB 平面⊥,∴AC AB ⊥,这与已知︒=∠60BAC 矛盾,∴假设不成立,故H 不可能是DBC ∆的垂心.说明:本题只要满足︒≠∠90BAC ,此题的结论总成立.不妨给予证明.典型例题十九例19 在空间,下列哪些命题是正确的( ).①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α⊂b ,α⊂c ,且A c b = ,则b a ⊥,c a ⊥,即平面α内两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A = ,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.∴应选B .典型例题二十例20 设a ,b 为异面直线,AB 为它们的公垂线(1)若a ,b 都平行于平面α,则α⊥AB ;(2)若a ,b 分别垂直于平面α、β,且c =βα ,则c AB //.分析:依据直线和平面垂直的判定定理证明α⊥AB ;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明c AB //.图1 图2 证明:(1)如图1,在α内任取一点P ,设直线a 与点P 确定的平面与平面α的交线为'a , 设直线b 与点P 确定的平面与平面α的交线为'b ∵α//a ,α//b ,∴'//a a ,'//b b又∵a AB ⊥,b AB ⊥,∴'a AB ⊥,'b AB ⊥,∴.(2)如图2,过B 作α⊥'BB ,则a BB //',则'BB AB ⊥又∵b AB ⊥,∴AB 垂直于由b 和'BB 确定的平面. ∵β⊥b ,∴c b ⊥,α⊥'BB ,∴c BB ⊥'. ∴c 也垂直于由'BB 和b 确定的平面. 故AB c //.说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线'BB ,构造出平面,即由相交直线b 与'BB 确定的平面.然后借助于题目中的其他垂直关系证得. 典型例题二十一例21 如图,在正方体1111D C B A ABCD -中,EF 为异面直线D A 1与AC 的公垂线,求证:1//BD EF .分析:证明1//BD EF ,构造与EF 、1BD 都垂直的平面是关键.由于EF 是AC 和D A 1的公垂线,这一条件对构造线面垂直十分有用.证明:连结11C A ,由于11//C A AC ,AC EF ⊥,∴11C A EF ⊥.又D A EF 1⊥,1111A C A D A = ,∴D C A EF 11平面⊥. ①∵11111D C B A BB 平面⊥,111111D C B A C A 平面⊂,∴111.∵四边形1111D C B A 为正方形,∴1111D B C A ⊥,1111B BB D B = ,∴D D BB C A 1111平面⊥,而D D BB BD 111平面⊂,∴111BD C A ⊥.同理11BD DC ⊥,1111C C A DC = ,∴D C A BD 111平面⊥. ②由①、②可知:1//BD EF .典型例题二十二例22 如图,已知P 为ABC ∆外一点,PA 、PB 、PC 两两垂直,a PC PB PA ===,求P 点到平面ABC 的距离.分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长.解:过P 作ABC PO 平面⊥于O 点,连AO 、BO 、CO ,∴AO PO ⊥,BO PO ⊥,CO PO ⊥∵a PC PB PA ===,∴PAO ∆≌PBO ∆≌PCO ∆,∴OC OB OA ==,∴O 为ABC ∆的外心.∵PA 、PB 、PC 两两垂直, ∴a CA BC AB 2===,ABC ∆为正三角形,∴a AB AO 3633==,∴a AO PA PO 3322=-=.因此点P 到平面ABC 的距离a 33.说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.典型例题二十三例23 如图,已知在长方体1111D C B A ABCD -中,棱51=AA ,12=AB ,求直线11C B 和平面11BCD A 的距离.分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距的有关方法求解.解:如图,∵BC C B //11,且1111BCD A C B 平面⊄,11BCD A BC 平面⊂,∴1111//BCD A C B 平面.从而点1B 到平面11BCD A 的距离即为所求.过点1B 作B A E B 11⊥于E ,∵11ABB A BC 平面⊥,且B B AA E B 111平面⊂,∴E B BC 1⊥.又B B A BC =1 ,∴111BCD A E B 平面⊥.即线段E B 1的长即为所求,在B B A Rt 11∆中,13601251252211111=+⨯=⋅=B A BB B A E B ,∴直线11C B 到平面11BCD A 的距离为1360.说明:本题考查长方体的性质,线面距离的概念等基础知识以及计算能力和转化的数学思想,解答本题的关键是把线面距离转化为点面距离,进而转化为点线距离,再通过解三角形求解,这种转化的思想非常重要,数学解题的过程就是将复杂转化为简单,将未知转化为已知,从而求解.典型例题二十四例24 AD 、BC 分别为两条异面直线上的两条线段,已知这两条异面直线所成的角为︒30,cm AD 8=,BC AB ⊥,BC DC ⊥.求线段BC 的长.分析:首先依据题意,画出图形,利用平移,将异面直线AD 、BC 所成的角、垂直关系转化到某一个或某几个平面内,应用平面几何有关知识计算出BC 之长.解:如图,在平面α内,过A 作BC AE //,过C 作AB CE //,两线交于E .∵BC AE //,∴DAE ∠就是AD 、BC 所成的角,︒=∠30DAE .∵BC AB ⊥,∴四边形ABCE 是矩形.连DE ,∵CD BC ⊥,CE BC ⊥,且C CE CD = ,∴CDE BC 平面⊥.∵BC AE //,∴CDE AE 平面⊥.∵CDE DE 平面⊂,∴DE AE ⊥.在AED Rt ∆中,得34=AE ,∴)(34cm AE BC ==.说明:解决空间问题,常常将空间关系转化一个或几个平面上来,只有将空间问题归化到平面上来,才能应用平面几何知识解题,而平移变换是转化的重要手段.。
2013届高考理科数学第一轮复习测试题03
A级基础达标演练(时间:40分钟满分:60分)一、选择题(每小题5分,共25分)1.(2012·宝鸡联考)为了了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是().A.总体B.个体是每一个零件C.总体的一个样本D.样本容量解析200个零件的长度是总体的一个样本.答案 C2.用随机数表法从100名学生(其中男生25人)中抽取20人进行评教,某男学生被抽到的概率是().A.1100 B.125 C.15 D.14解析从容量N=100的总体中抽取一个容量为n=20的样本,每个个体被抽到的概率都是nN=1 5.答案 C3.(2012·濮阳调研)甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生.为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90的样本,应该在这三校分别抽取的学生人数是().A.30,30,30 B.30,45,15C.20,30,10 D.30,50,10解析抽取比例是903 600+5 400+1 800=1120,故三校分别抽取的学生人数为 3600×1120=30,5 400×1120=45,1 800×1120=15.答案 B4.某工厂生产A,B,C三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n的样本,样本中A型产品有15件,那么样本容量n为().A.50 B.60 C.70 D.80解析n×33+4+7=15,解得n=70.答案 C5.(2011·青岛二模)(1)某学校为了了解2010年高考数学科的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ.简单随机抽样法;Ⅱ.系统抽样法;Ⅲ.分层抽样法.问题与方法配对正确的是().A.(1)Ⅲ,(2)ⅠB.(1)Ⅰ,(2)ⅡC.(1)Ⅱ,(2)ⅢD.(1)Ⅲ,(2)Ⅱ解析通过分析可知,对于(1),应采用分层抽样法,对于(2),应采用简单随机抽样法.答案 A二、填空题(每小题4分,共12分)6.(2012·太原模拟)体育彩票000001~100000编号中,凡彩票号码最后三位数为345的中一等奖,采用的抽样方法是________.解析系统抽样的步骤可概括为:总体编号,确定间隔,总体分段,在第一段内确定起始个体编号,每段内规则取样等几步.该抽样符合系统抽样的特点.答案系统抽样7.(2011·上海)课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________.解析由已知得抽样比为624=14,∴丙组中应抽取的城市数为8×14=2.答案 28.商场共有某品牌的奶粉240件,全部为三个批次的产品,其中A,B,C三个批次的产品数量成等差数列,现用分层抽样的方法抽取一个容量为60的样本,则应从B批次产品中抽取的数量为________件.解析A,B,C三个批次的产品数量成等差数列,其中B批次的产品数量是240 3=80(件),由抽取比例是60240=14,故B 批次的产品应该抽取80×14=20(件). 答案 20三、解答题(共23分)9.(11分)(2012·重庆模拟)某企业共有3 200名职工,其中中、青、老年职工的比例为5∶3∶2,从所有职工中抽取一个容量为400的样本,应采用哪种抽样方法更合理?中、青、老年职工应分别抽取多少人? 解 由于中、青、老年职工有明显的差异, 采用分层抽样更合理.按照比例抽取中、青、老年职工的人数分别为: 510×400=200,310×400=120,210×400=80,因此应抽取的中、青、老年职工分别为200人、120人、80人.10.(12分)一个城市有210家百货商店,其中大型商店有20家,中型商店有40家,小型商店有150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本,按分层抽样方法抽取样本时,各类百货商店要分别抽取多少家?写出抽样过程.解 ∵21∶210=1∶10, ∴2010=2,4010=4,15010=15.∴应从大型商店中抽取2家,从中型商店中抽取4家,从小型商店中抽取15家. 抽样过程:(1)计算抽样比21210=110;(2)计算各类百货商店抽取的个数: 2010=2,4010=4,15010=15;(3)用简单随机抽样方法依次从大、中、小型商店中抽取2家、4家、15家; (4)将抽取的个体合在一起,就构成所要抽取的一个样本.B 级 综合创新备选 (时间:30分钟 满分:40分)一、选择题(每小题5分,共10分)1.某校共有学生2 000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为().A.24 B.18 C.解析设二年级女生的人数为x,则由x2 000=0.19,得x=380,即二年级的女生有380人,那么三年级的学生的人数应该是2 000-373-377-380-370=500,即总体中各个年级的人数比例为3∶3∶2,故在分层抽样中应在三年级抽取的学生人数为64×28=16.答案 C2.(2012·成都月考)为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是().A.5,10,15,20,25 B.2,4,8,16,32C.1,2,3,4,5 D.7,17,27,37,47解析利用系统抽样,把编号分为5段,每段10个,每段抽取一个,号码间隔为10,故选D.答案 D二、填空题(每小题4分,共8分)3.(2011·舟山模拟)为了了解某校高中学生的近视眼发病率,在该校学生中进行分层抽样调查,已知该校高一、高二、高三分别有学生800名、600名、500名,若高三学生共抽取25名,则高一年级每一位学生被抽到的概率是________.解析无论高几,每一位学生被抽到的概率都相同,故高一年级每一位学生被抽到的概率为25500=1 20.答案1 204.某单位200名职工的年龄分布情况如右图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.解析∵间距为5,第5组抽22号,∴第8组抽出的号码为22+5(8-5)=37,40岁以下职工人数为100人,应抽取40200×100=20(人).答案3720三、解答题(共22分)5.(10分)(2012·开封模拟)某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n.解总体容量为6+12+18=36.当样本容量是n时,由题意知,系统抽样的间隔为36n,分层抽样的比例是n36,抽取的工程师人数为n36×6=n6,技术员人数为n36×12=n3,技工人数为n36×18=n2,所以n应是6的倍数,36的约数,即n=6,12,18.当样本容量为(n+1)时,总体容量是35人,系统抽样的间隔为35n+1,因为35n+1必须是整数,所以n只能取6.即样本容量n=6.6.(12分)(2010·广东)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.解(1)因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)应抽取大于40岁的观众人数为2745×5=35×5=3(名).(3)用分层抽样方法抽取的5名观众中,20至40岁有2名(记为Y1,Y2),大于40岁有3名(记为A1,A2,A3).5名观众中任取2名,共有10种不同取法:Y1Y2,Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,A1A2,A1A3,A2A3.设A表示随机事件“5名观众中任取2名,恰有1名观众年龄为20至40岁”,则A中的基本事件有6种:Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,故所求概率为P(A)=610=35.。
高考理科数学一轮复习专题训练:数列(含详细答案解析)
B . 3 2.在正项等比数列{a }中,已知 a 4 = 2 , a = ,则 a 5 的值为( 8= 2 , a = ,可得 8 q 4 = 8 = ,又因为 q > 0 ,所以 q = 1 2 2127B .35063C .28051D . 3502第 7 单元 数列(基础篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的前 n 项和为 S n ,若 a 1=12,S 5=90,则等差数列{a n }公差 d =()A .2【答案】C2 C .3D .4【解析】∵a =12,S =90,∴ 5 ⨯12 + 1 5 5 ⨯ 4 2d = 90 ,解得 d=3,故选 C .n 8 1 )1 1 A . B . - C . -1 D .14 4【答案】D【解析】由题意,正项等比数列{a }中,且 a n 48 1 a 1 a 16 41,则 a = a ⋅ q = 2 ⨯ = 1 ,故选 D .5 43.在等差数列{a n}中, a 5+ a = 40 ,则 a + a + a = ( ) 13 8 9 10A .72B .60C .48D .36【答案】B【解析】根据等差数列的性质可知: a 5 + a 13 = 40 ⇒ 2a 9 = 40 ⇒ a 9 = 20 ,a + a + a = 2a + a = 3a = 60 ,故本题选 B .8 9109994.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7 天,共走了 700 里,则这匹马第 7 天所走的路程等于()A .700里里 里【答案】A127里【解析】设马每天所走的路程是 a 1, a 2 ,.....a 7 ,是公比为1的等比数列,a 1 - ( )7 ⎪a = a q 6= 7005.已知等差数列{a n } 的前 n 项和 S n 有最大值,且 a=10(a +a )2= 5(a + a ) = 5(a + a ) > 0 , S =2 = 11a < 0 , (a + 2d - 1)2 = (a + d - 1)(a + 4d - 1) ⎩ d = 2这些项的和为 700, S = 7 ⎛ 1 ⎫ 1 ⎝ 2 ⎭1 - 12 = 700 ⇒ a =1 64 ⨯ 700 127 ,7 1 127 ,故答案为 A .a 5< -1 ,则满足 S 6n> 0 的最大正整数 n 的值为()A .6B .7C .10D .12【答案】C【解析】设等差数列{a n } 的公差为 d ,因为等差数列{a n } 的前 n 项和 S n 有最大值,所以 d < 0 ,a又 a 5 < -1 ,所以 a 5 > 0 , a 6 < 0 ,且 a 5 + a 6 > 0 ,6 所以 S1 101 10 5 6 11 所以满足 S n > 0 的最大正整数 n 的值为 10.11(a + a )1 1166.已知等差数列{a n}的公差不为零, Sn为其前 n 项和, S 3 = 9 ,且 a 2 - 1 , a 3 - 1, a 5 - 1构成等比数列,则 S 5 = ( )A .15B . -15C .30D .25【答案】D【解析】设等差数列{a n}的公差为 d (d ≠ 0),⎧⎪3a + 3d = 9⎧a = 1 由题意 ⎨ 1 ,解得 ⎨ 1 ⎪⎩ 1 1 1.∴ S = 5 ⨯1 +5 5 ⨯ 4 ⨯ 22 = 25 .故选 D .7.在等差数列{a n } 中, a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,则数列{a n } 的前 11 项和等于(A .66B .132C . -66D . -132【答案】D)S = 11⨯ (a + a ) 2 2 2 = 15 ,解得 n = 5 ,( )nC . a = 3n -1D . a =3n【解析】因为 a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,所以 a 3 + a 9 = -24 ,又 a 3 + a 9 = -24 = 2a 6 ,所以 a 6 = -12 ,11⨯ 2a1 11 = 6 = -132 ,故选 D . 118.我国南宋数学家杨辉 1261 年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为 2n -1 ,若去除所有为 1 的项,依次构成数列 2,3,3,4,6,4,5,10,10,5,…,则此数列的前 15 项和为()A .110B .114C .124D .125【答案】B【解析】由题意, n 次二项式系数对应的杨辉三角形的第 n +1行, 令 x = 1 ,可得二项展开式的二项式系数的和 2n ,其中第 1 行为 2 0 ,第 2 行为 21 ,第 3 行为 22 ,L L 以此类推,即每一行的数字之和构成首项为 1,公比为 2 的对边数列,则杨辉三角形中前 n 行的数字之和为 S = n 1- 2n1- 2 = 2n - 1,若除去所有为 1 的项,则剩下的每一行的数字的个数为1,2,3, 4,L ,可以看成构成一个首项为 1,公差为 2 的等差数列,则T =n n (n + 1)2 ,令 n (n + 1)所以前 15 项的和表示前 7 行的数列之和,减去所有的 1,即 27 - 1 - 13 = 114 ,即前 15 项的数字之和为 114,故选 B .9.已知数列{a }的前 n 项和为 S nn,满足 2S n =3a n -1 ,则通项公式 a n 等于()A . a = 2n- 1n【答案】CB . a= 2nn n: , + , + + , + + + , ,那么数列 {b }= ⎧⎨ 1 ⎩ a an n +1 ⎭n + 1 ⎭C . 4 ⨯ ⎝ 2 n + 1 ⎭D .⎝ 1 + 2 + ⋅⋅⋅ + n n2 a an (n + 1) ⎝ n n + 1 ⎭ = = = 4 ⨯ - ⎪ , ∴ S = 4 ⨯ 1 - + - + - + ⋅⋅⋅ + - = 4 ⨯ 1 - ⎪ 2 2 3 3 4 n n + 1 ⎭ ⎝ ⎝⎪ , 1 1 ⎫【解析】当 n = 1 时, 2S 1 = 3a 1 -1 ,∴ a 1 = 1 ,当 n ≥ 2 且 n ∈ N * 时, 2S n -1 = 3a n -1 - 1 ,则 2S n - 2Sn -1 = 2a n = 3a n - 1 - 3a n -1 + 1 = 3a n - 3a n -1 ,即 a n = 3an -1,∴ 数列 {a }是以1 为首项, 3 为公比的等比数列∴ a nn= 3n -1 ,本题正确选项 C . 10.已知数列 满足,且 ,则( )A .B .C .D .【答案】B【解析】利用排除法,因为,当当当当时,时,时,时, ,排除 A ;,B 符合题意;,排除 C ;,排除 D ,故选 B .11.已知数列为()1 12 1 23 1 2 34 2 3 3 4 4 45 5 5 5⋯ n ⎫ ⎬ 前 项和A .1 - 1 ⎛ n + 1B . 4 ⨯ 1 - 1 ⎫ ⎛ 1 ⎪ - 1 ⎫⎪1 1-2 n + 1【答案】B【解析】由题意可知: a =nn (n + 1)= = , n + 1 n + 1 2∴ b = 1n n n +11 4 ⎛ 1 1 ⎫ n n + 1 ⋅2 2⎛ 1 1 1 1 1 ⎛ n本题正确选项 B .1 ⎫n + 1 ⎭12.已知数列{a }满足递推关系: a , a = ,则 a 2017= (12016B . 12018D . 1=a 2 -= 1 . ⎩ a∴ 1=1}满足 a 2 q ,可设三数为 , a , aq ,可得 ⎪⎨ a⎪ q 求出 ⎨ ,公比 q 的值为 1.=3an n +1 = a 1 n a + 12 n)A .12017C .12019【答案】C【解析】∵ ana + 1 n1, a = ,∴ 1 1 1 a a n +1 n⎧ 1 ⎫∴数列 ⎨ ⎬ 是等差数列,首项为 2,公差为 1.n ⎭a2017= 2 + 2016 = 2018 ,则 a2018 .故选 C .第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知等比数列{a n 1 = 12 ,且 a 2a 4 = 4(a3 - 1) ,则 a 5 = _______.【答案】8【解析】∵ a 2a 4 = 4(a 3 - 1) ,∴ a 3 = 4(a 3 -1) ,则 a 3 = 2 ,∴ a = 5 a 2 3 = a122 1 2= 8 ,故答案为 8.14.若三数成等比数列,其积为 8,首末两数之和为 4,则公比 q 的值为_______.【答案】1【解析】三数成等比数列,设公比为⎧a = 2⎩ q = 1⎧ a3 = 8 a q + aq =4 ⎩,15.在数列 {an}中,a 1= 1 , an 3 + a n(n ∈ N *)猜想数列的通项公式为________.=3a4 3 + a 53 + a 6 3a 3a 32 数列的通项公式为 a = 3n + 2 n + 2+ = (m + n) + ⎪ = 10 + + ⎪ ≥ 10 + 2 ⋅ ⎪⎪ = 2 , n m ⎭ 8 ⎝ n m ⎭【答案】3n + 2【解析】由 an 3 + a n, a = 1 ,可得 a = 1 2 3a 1 3 + a 13 3 3= , a = = , a == ,……,∴ 猜想 3 4 2 33,本题正确结果 .n16.已知正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,若存在两项 a m , a n ,使得 8 a m a n = a 1 ,则9 1+ 的最小值 mn为__________.【答案】2【解析】Q 正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,∴ 2a 1q 4 +a 1q 3 =a 1q 2 ,整理得 2q 2 +q - 1 = 0 ,又 q > 0 ,解得 q = 12,Q 存在两项 a , a 使得 8 a ⋅ a = a ,∴ 64a 2 q m +n -2 = a 2 ,整理得 m + n = 8 ,m nmn111∴则 9 1 1 ⎛ 9 1 ⎫ 1 ⎛ m 9n ⎫ 1 ⎛ m 9n ⎫ m n 8 ⎝ m n ⎭ 8 ⎝9 1 m 9n+ 的最小值为 2,当且仅当 = 取等号,但此时 m , n ∉ N * .m n n m又 m + n = 8 ,所以只有当 m = 6 , n = 2 时,取得最小值是 2.故答案为 2.三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.(10 分)已知等差数列{a n(1)求 {a}的通项公式;n}的公差不为 0, a 1= 3 ,且 a , a , a 成等比数列.2 4 7(2)求 a 2 + a 4 + a 6 + L + a 2n .【答案】(1) a n = n + 2 ;(2) n 2 + 3n .【解析】(1)Q a 2 , a 4 , a 7成等比数列,∴a42= a a ,2 7即 (a 1 + 3d )2 = (a 1 + d )(a 1 + 6d ) ,化简得 (a 1 - 3d )d = 0 ,∵公差 d ≠ 0 ,∴ a 1 = 3d ,6=n (a +a ) (2)若b= 4 { ⎪ 12 由题意得 ⎨,则 ⎨ , ⎩ 7 ⎪(a + 6d )2 = (a + d )(a + 21d )⎩ 1化简得 ⎨⎧a + 2d = 7(2)证明: b = 42n (2n + 4) n (n + 2) 2 ⎝ n n + 2 ⎭ - + - + - + L +⎪1 + - - = - ⎪ < . ⎪Q a = 3 ,∴ d = 1,∴ a = a + (n - 1)d = n + 2 .1 n1(2)由(1)知 a 2n = 2n + 2 ,故{a 2n } 是首项为 4、公差为 2 的等差数列,所以 a + a + a + L + a2 4 6 n (4 + 2n + 2)2 2n = = n 2 + 3n . 2 218.(12 分)已知公差不为零的等差数列{a n } 满足 S 5 = 35 ,且 a 2 , a 7 , a 22 成等比数列.(1)求数列{a n } 的通项公式;n nn(a - 1)(a + 3) ,且数列 b n }的前 n 项和为 T n ,求证: T < 3n 4.【答案】(1) a n = 2n + 1;(2)见详解.【解析】(1)设等差数列{a n } 的公差为 d ( d ≠ 0 ),⎧ 5 ⨯ 4⎧S = 355a + d = 35 5a 2 = a a2 221 11 ⎩2a 1 = 3d ⎧a = 3 ,解得 ⎨ 1⎩d = 2,所以 a = 3 + 2 (n -1) = 2n +1. nn nn(a -1)(a + 3) =4 11⎛1 1 ⎫ = = - ⎪ ,所以 T = n 1 ⎛ 1 1 1 1 1 1 1 1 1 1 ⎫- + - 2 ⎝ 1 3 2 4 3 5 n - 1 n + 1 n n + 2 ⎭= 1 ⎛ 1 1 1 ⎫ 3 1 ⎛ 1 1 ⎫ 3 + 2 ⎝ 2 n + 1 n + 2 ⎭ 4 2 ⎝ n + 1 n + 2 ⎭ 419.(12 分)已知数列{a n}的前 n 项和为 Sn且 S = 2a - 1 (n ∈ N * ) .n n(1)求数列{a n}的通项公式;(2)求数列{na n}的前 n 项和 T n.【答案】(1) a = 2n- 1 ;(2) T = n ⋅ 2n - 2n + 1 .nn【解析】(1)因为 S = 2a - 1 ,当 n ≥ 2 时, S = 2a - 1 ,7= 2a + 1 , n ∈ N * .+1),数列 ⎨ 15 ≤ T n < ; 即 a ∴ 数列 {a }的通项公式为 a = 2n - 1 n ∈ N * .(2n + 1)(2n + 3) 2⎝ 2n + 1 2n + 3⎪⎭ , - ⎪ + - ⎪ +⋅⋅⋅+⎪⎥ 2 ⎢⎣⎝ 3 5 ⎭ ⎝ 5 7 ⎭ ⎝ 2n + 2n + 3 ⎭⎦ 6 4n + 6整理可得 a n = 2a n -1 ,Q a = S = 2a - 1 ,解得 a = 1 ,1 111所以数列 {a n}为首项为1 ,公比为 2 的等比数列,∴a = 2n -1 .n(2)由题意可得:T = 1⨯ 20 + 2 ⨯ 21 + ⋅⋅⋅ + n ⋅ 2n ,n所以 2T = 1⨯ 21 + 2 ⨯ 22 + ⋅⋅⋅ + (n - 1)2n -1 + n ⋅ 2n ,n两式相减可得 -T = 1 + 21 + 22 + ⋅⋅⋅+ 2n -1 - n ⋅ 2n = n∴ T = n ⋅ 2n - 2n + 1 .n1 - 2n 1 - 2- n ⋅ 2n = 2n - 1 - n ⋅ 2n ,20.(12 分)已知数列{a n}满足 a 1= 1 , an +1n(1)求证数列{a n +1}是等比数列,并求数列{a n } 的通项公式;(2)设 b = log (a n 2 2n +1 ⎧ 1 ⎫ 1 1b b ⎬ 的前 n 项和 T n ,求证:6 ⎩ n n +1 ⎭.【答案】(1)证明见解析, a = 2n - 1(n ∈ N * )(2)见解析. n【解析】(1)由 an +1 = 2a n + 1 ,得 a n +1 + 1 = 2 (a + 1),n+ 1n +1 a + 1n= 2 ,且 a + 1 = 2 ,1∴ 数列 {a +1}是以 2 为首项, 2 为公比的等比数列,n∴ a + 1 = 2 ⨯ 2n -1 = 2n ,n( )nn(2)由(1)得: b = logn2(a2n +1+ 1) = log (22n +1- 1 + 1)= 2n + 1 ,2∴1b bn n +11 1 ⎛ 1 1 ⎫ = = -∴T = n1 ⎡⎛ 1 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫⎤ 1 1 - = - (n ∈ N * ),8又 0 < 1即 1n (2)设数列满足 b = a sin a π2的前 项和 .⎪⎩n,2 3 L 2 3 L 2 (a + 4) = S + S 2a = d + 4 d = 2 ⎪ ⎩= asin n π + ⎪ = a cos (n π ) , 2 ⎭ ⎝n +1,2n -1,⎪⎩n, 2 3 L 2 3 L a ⋅ a1 1 1 1 1 1 1≤ ,∴- ≤- < 0 ,∴ ≤ - < ,4n + 6 10 10 4n + 6 15 6 4n + 6 61≤ T < .15 621.(12 分)已知等差数列的前 项和为 ,且 是 与 的等差中项.(1)求的通项公式;n ,求n n【答案】(1)⎧⎪- (n + 2), ;(2) T = ⎨n n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .⎧a = 7⎧a + 2d = 7 ⎧a = 3 【解析】(1)由条件,得 ⎨ 3 ,即 ⎨ 1 , ⎨ 1⎪715⎩1⎩,所以{a n }的通项公式是(2)由(1)知, b = a sinnn.(2n + 1)π 2n n⎛ π ⎫(1)当 n = 2k -1 (k =1,2,3,…)即 n 为奇数时, b = -a , b nnn +1= aT = -a + a - a + L + a n 1 2 3 n -1 - a = -a + (-2) n - 1= -n - 2 ;n 1(2)当 n = 2k (k =1,2,3,…):即 n 为偶数时, b = a , bnnn -1= -aT = -a + a - a +⋯- a n 1 2 3 n -1+ a = 2 ⋅ n n 2= n ,⎧⎪- (n + 2), 综上所述, T = ⎨n22.(12 分)设正项数列n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .的前 n 项和为 ,已知 .(1)求证:数列 是等差数列,并求其通项公式;(2)设数列的前 n 项和为 ,且 b = 4n nn +1,若对任意 都成立,求实数 的取值范围.9(2)由(1)可得 b = 1 n (n + 1) n n + 1∴ T = 1 - ⎪ + - ⎪ + L + - ⎛ 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫1 n = 1 -= , ⎪ 2 ⎭ ⎝ 2 3 ⎭⎝ n n + 1 ⎭n + 1 n + 1⎝,即 nλ < n + (-1)n ⋅ 2 对任意⎢⎣ ⎥⎦n 恒成立,令 f (n ) = (n + 2)(n + 1)Q f (n + 1)- f (n ) = n (n + 1)- 2②当 为奇数时, λ < (n - 2)(n + 1)又 (n - 2)(n + 1)= n - - 1 ,易知:f (n ) = n - 在【答案】(1)见证明,【解析】(1)证明:∵;(2),且.,当当即时,时,有,解得 .,即.,于是,即.∵ ,∴为常数,∴数列是 为首项, 为公差的等差数列,∴.1 1= - ,nnn + 1都成立⎡ n (n + 1)+ (-1)n ⋅ 2 (n + 1)⎤⇔ λ <⎢⎥ nmin(n ∈ N *),①当 为偶数时, λ < (n + 2)(n + 1) = n + 2+ 3 ,n nn (n + 1) > 0 ,在 上为增函数,;n 恒成立,2 2 n n n为增函数,,102⨯ 4 ⨯ 3 = 0 ⎧a = -3 ⎪S 4 = 4a 1 + ⎪⎩a = a + 4d = 516 4⎩q3 (a + a + a ) = 120 ∴由①②可知:,综上所述 的取值范围为.第 7 单元 数列(提高篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.记 S 为等差数列{a } 的前 n 项和.已知 S = 0 , a = 5 ,则()n n45A . a n = 2n - 5B . a n = 3n - 10C . S = 2n 2 - 8nD . S = 1n nn 2 - 2n【答案】A2.已知等比数列{a }中, a n 3 ⋅ a = 20 , a = 4 ,则 a 的值是( )13 6 10A .16B .14C .6D .5【答案】D【解析】由等比数列性质可知 a ⋅ a = a 2 = 20 ,3138由 a 6 = 4 ,得 q 4= a 2 8 = a 2620 5= ,∴ a = a q 4 = 5 ,本题正确选项 D .10 63.等比数列{a } 中, a + a + a = 30 , a + a + a = 120 ,则 a + a + a = ( )n123456789A .240B .±240C .480D .±480【答案】C【解析】设等比数列{a } 中的公比为 q ,由 a + a + a = 30 , a + a + a = 120 ,n 1 2 3 4 5 6⎧ 得 ⎨a + a + a = 301 2 31 2 3,解得 q 3 = 4 ,∴ a + a + a = q 3 (a + a + a ) = 480.7 8 9 4 5 6112 , N = 4.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9 填入3 ⨯ 3 的方格内,使三行,三列和两条对角线上的三个数字之和都等于 15.一般地,将连续的正整数1,2,3,L , n 2 填入 n ⨯ n 个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记 n 阶幻方的对角线上的数字之和为 N n ,如图三阶幻方的 N 3 = 15 ,那么 N 9 的值为()A .369B .321C .45D .41【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,根据等差数列的性质可知对角线的两个数相加正好等于1 + n 2,根据等差数列的求和公式 S = n (1+ n 2 ) 9 9 ⨯ (1+ 92 ) 2 = 369 ,故选 A .5.已知 1, a 1 , a 2 ,9 四个实数成等差数列,1, b 1 , b 2 , b 3 ,9 五个数成等比数列,则b 2 (a 2 - a 1 ) = ( A .8 B .-8 C .±8 D .98【答案】A)【解析】由 1, a 1 , a 2 ,9 成等差数列,得公差 d = a 2 - a 1 = 9 - 1 84 - 1 = 3 ,由 1, b , b , b ,9 成等比数列,得 b 2 = 1⨯ 9 ,∴ b = ±3 ,12322当 b = -3 时,1, b , -3 成等比数列,此时 b 2 = 1⨯ (-3) 无解,2 11所以 b = 3 ,∴ b (a - a 2 2 2 1 ) = 3 ⨯ 8= 8 .故选 A .36.已知数列{a n }是公比不为 1 的等比数列, S n为其前 n 项和,满足 a = 2 ,且16a , 9a , 2a2 1 4 7成等差数列,则 S = ()3A . 5B .6C .7D .9【答案】C【解析】数列{a n } 是公比 q 不为 l 的等比数列,满足 a 2 = 2 ,即 a 1q = 2 ,122 ⨯ 2 + 3)⨯ 2 ; 2 ⨯ 2 + 4 )⨯3 ;22- 5 =,且 A n =7n + 45a7= (10B .172C . 143A . 93【解析】因为 7 = 7 = a + a a 2a A = 13 = 7 ⨯13 + 45 = 17 1 13 2 且16a , 9a , 2a 成等差数列,得18a = 16a + 2a ,即 9a q 3 = 8a + a q 6 ,1 47417111解得 q = 2,a = 1 ,则 S = 1 3 1 - 23 1 - 2= 7 .故选 C .7.将石子摆成如图的梯形形状,称数列 5,9,14,20,L ,为“梯形数”.根据图形的构成,此数列的第 2016 项与 5 的差,即 a 2016- 5 = ()A . 2018⨯ 2014B . 2018⨯ 201C .1011⨯ 2015D .1010⨯ 2012【答案】C【解析】由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:n =1 时, a = 2 + 3 = 11(n =2 时, a = 2 + 3 + 4 = 2…,由此我们可以推断:1 (a = 2 + 3 + L + (n + 2 ) = 1n⎡⎣2 + (n + 2)⎤⎦ ⨯ (n + 1),∴ a 1⨯ ⎡⎣2 + (2016 + 2)⎤⎦ ⨯ (2016 + 1)- 5 = 1011⨯ 2015 .故选 C .20168.已知两个等差数列{a }和 {b }的前 n 项和分别为 A 和 BnnnnB n + 3 b n 7)17D .15【答案】B771131313(a + a )1 131 13= 2 b 2b b + b 13(b + b ) B 13 + 3 2,故答案选 B .9.已知数列{ }的前 n 项和为 , , ( ),则 ( )A.32B.64C.128D.25613,∴ S B .C . 1a - 1 a - 1,n⎧B . 2019 ) =+ = + = + =2 ,1 1 + 1 + a 2a 2【答案】B【解析】由,得,又,∴- 1 n +1 S - 1n= 2 ,即数列{则∴10.数列1}是以 1 为首项,以 2 为公比的等比数列,,则 ..故选 B .满足: ,若数列 是等比数列,则 的值是()A .1 【答案】B2 D .【解析】数列为等比数列 ⇒ a- 1λa - 2上式恒成立,可知 ⎨λ =q⎩-2 = -q⇒ λ = 2 ,本题正确选项 B .11.已知函数 f (x ) =2( 1 + x 2x ∈ R ),若等比数列满足 a a1 2019= 1 ,则A .2019【答案】A ( )2 C .2D . 1 2【解析】∴ f (a )+ f (a12019,1 + a2 1 + a 2 1 + a 2 1 + a 21 2019 1 1 1为等比数列,则,14b b3B . 16 C . 115D . 2b b= = - ⎭ 数列 的前 项和 T = - + - ⎪ ⎪ , 2 ⎝ 3 5 5 72n + 1 2n + 3 ⎭ 2 ⎝ 3 2n + 3 ⎭可得 λ ≤ 12,即12.已知是公比不为 1 的等比数列,数列.满足: , , 成等比数列,c =1n2n 2n +2,若数列的前 项和对任意的恒成立,则 的最大值为( )A .115【答案】C【解析】由 , ,成等比数列得 a 2 =a a ,2 2nb n又是公比不为 1 的等比数列,设公比为 q ,则 a 2 q2b n-2 = a 2 q 2n ,整理得 b = n + 1,c =111n n2n 2n +21 1 ⎛ 1 1 ⎫ (2n + 1)(2n + 3)2 ⎝ 2n + 1 2n +3 ⎪ ,1 ⎛ 1 1 1 11 1 ⎫ 1 ⎛ 1 1 ⎫+ ⋅⋅⋅ +- = - n数列 是单调递增数列,则当 n =1 时取到最小值为1151 ,即 的最大值为,故选 C .1515,第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 ,则 S 9 = _________.【答案】36【解析】{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 , a 2 + a 8 = a 4 + a 6 = 2a 5 ,得出 a 5 = 4 ,又由 S = 9 ⋅ (a 1 + a 9 )9 = 9a = 36 .514.在数列 {a }中, a n 1= 1,an +1- a = 2n + 1 ,则数列的通项 a = ________.n n15x【答案】 n 2【解析】当 n ≥ 2 时,a = (a - a ) + (ann n -1n -1- a n -2) + (an -2- a n -3) + L + (a - a ) + (a - a ) + a ,3 2 2 1 1⇒ a = (2n - 1) + (2n - 3) + (2 n - 5) + L + 5 + 3 + 1 = n当 n = 1 , a 也适用,所以 a = n 2 .1nn (2n - 1 + 1) 2= n 2 ,15.设数列{a n } 的前 n 项和为 S n ,且 ∀n ∈ N *, a n +1a = ________.n【答案】 n - 6(n ∈ N * ) (答案不唯一)> a , S ≥ S .请写出一个满足条件的数列{a } 的通项公式n n 6 n【解析】 ∀n ∈ N * , a n +1> a ,则数列{a } 是递增的, ∀n ∈ N * , S ≥ S ,即 S 最小,n n n 6 6只要前 6 项均为负数,或前 5 项为负数,第 6 项为 0,即可,所以,满足条件的数列{a n } 的一个通项公式 a n = n - 6(n ∈ N * ) (答案不唯一).16.已知函数 f ( x ) = x 2 cosπx2,数列 {a }中, a = f (n )+ f (n + 1)(n ∈ N * ) ,则数列{a }的n n n前 40 项之和 S 40 = __________.【答案】1680【解析】函数 f (x ) = x 2 cos π 2且数列 {a }中, a = f (n )+ f (n +1),n n可得 a = f (1)+ f (2) = 0 - 4 = -4 ; a = f (2)+ f (3) = -4 + 0 = -4 ;12a = f (3)+ f (4) = 0 +16 = 16 ; a = f (4)+ f (5) = 16 ;3 4a = f (5)+ f (6) = 0 - 36 = -36 ; a = f (6)+ f (7) = -36 ;…,5 6可得数列 {a n 即有数列 {a n}为 -4 , -4 , 16 ,16 , -36 , -36 , 64 , 64 , -100 , -100 ,…, }的前 40 项之和:S = (-4 - 4 +16 +16)+ (-36 - 36 + 64 + 64)+ (-100 -100 +144 +144)+ 40⋅⋅⋅+ (-1444 -1444 +1600 +1600) = 24 + 56 + 88 +⋅⋅⋅+ 31216= ⨯10 ⨯ (24 + 312 ) = 1680 , ( a b a 1 - 22n 2 + n (n ∈ N * ).2 2 222212本题正确结果1680 .三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.10 分)已知数列{a n}是等比数列,数列 {b }是等差数列,且满足: n 1= b = 1 , + b = 4a , - 3b = -5 .1 2 3 2 3 2(1)求数列{a n }和 {b }的通项公式;n(2)设 c n = a n + b n ,求数列 {c n}的前 n 项和 S n .【答案】(1) a = 2n -1 , n ∈ N * , b = 2n - 1,n ∈ N * ;(2) S = 2n + n 2 - 1 .nn n【解析】(1)设 {an}的公比为 q , {b }的公差为 d ,由题意 q > 0 ,n⎧(1+ d ) + (1+ 2d ) = 4q ⎧-4q + 3d = -2由已知,有 ⎨ ,即 ⎨⎩q 2 - 3(1+ d ) = -5 ⎩ q 2 - 3d = -2⇒ q 2 - 4q + 4 = 0 ⇒ d = q = 2 ,所以 {a n }的通项公式为 an= 2n -1 , n ∈ N * , {b }的通项公式为 b = 2n - 1,n ∈ N * .n n(2) c = a + b = 2n -1 + 2n - 1 ,分组求和,分别根据等比数列求和公式与等差数列求和公式得到nnn1 - 2nn (1+ 2n - 1)S =+= 2n + n 2 - 1 .n18.(12 分)己知数列{a }的前 n 项和为 S n(1)求 {a}的通项公式;nn且 S = n 1 12 2(2)设 b n =1a an n +1,求数列 {b n}的前 100 项和.【答案】(1) a n = n ;(2) T100 =100 101.【解析】(1)当 n ≥ 2 时, S =n两式相减得 a n = S n - S n -1 = n , n 2 + n , S = (n - 1)2 + (n - 1)= n 2 + n- n ,17当 n =1时, a = S = + = 1,满足 a = n ,\ a = n . 2 2骣 1 骣 1 骣1 1 1 1 1001 - + - +L + - +2 = - , n +1 =2 n∈ N * ). ⎧⎬(2)若数列{b }满足: ba + 1 3n4 4 == 3 +n⎩ a n +1⎭a + 1 = 3n ,所以 a =1 - 1 . 3n ( )⇒ S = 2n - 144(2)令 b = 2n + 1,求数列 {b }的前 n 项和 T 及 T 的最小值.a + 2 nn1 11 1 n n(2)由(1)可知 b n =1 1 1= - ,n (n + 1) n n + 1所以数列 {b n}的前 100 项和 T100= b +b +?1 2b100= 琪 琪 琪 琪 - = 1 - = .桫 2桫 3 ? 99 100100 101 101 10119.(12 分)已知数列{a }满足: a n 1 3a -2a n - 3 ( 3a + 4 n(1)证明数列 ⎨ 1 ⎫ 为等差数列,并求数列{a n }的通项公式;⎩ a n + 1⎭nn =3n (n ∈ N * ),求 {b }的前 n 项和 S . nn n【答案】(1)证明见解析, a = n1 2n - 1 9- 1;(2) S = ⨯ 3n +2 + .n【解析】(1)因为 an +1+ 1 = -2a - 3 a + 1 1 3a + 4 1 n + 1 = n ,所以 , 3a + 4 3a + 4 a + 1 a a + 1 n n n +1 n +1 n⎧ 1 ⎫所以 ⎨ ⎬ 是首项为 3,公差为 3 的等差数列,所以n1 n(2)由(1)可知: a =n 1 3n- 1,所以由 b = n 3n a + 1 nn ∈ N * ⇒ b = n ⋅ 3n +1 , nS = 1 ⨯ 32 + 2 ⨯ 33 + L + (n - 1) ⨯ 3n + n ⨯ 3n +1 ①;n3S = 1 ⨯ 33 + 2 ⨯ 34 + L + (n - 1) ⨯ 3n +1 + n ⨯ 3n +2 ②,n①-②得 -2S = 32 + 33 + L + 3n +1 - n ⨯ 3n +2 = n 32 (3n - 1)3 - 1 - n ⨯ 3n +2n9⨯ 3n +2+ .20.(12 分)已知数列{a n}的前 n 项和为 Sn,且 S n = 2a n - 2n -1 .(1)求数列{a n}的通项公式;n nn185 ⨯ 2n -1 (2)Q b = 2n + 1 1 1 1 ⎛ 3 5 7 2n + 1 ⎫ ,则 T n = ⎪ , a + 2 52n -1 5 ⎝ 20 21 22 2n -1 ⎭ T = ⎪ 两式作差得 1 - T = ⨯ ⎢3 + ⎛ 1 ⎫ 1 ⎡ ⎛ 2 2 2 ⎫ 2n + 1⎤ 2n + 5 + +⋅⋅⋅+ - = 1 -2n ⎥⎦ ⎝ 2 ⎭ n 5 ⎣21 22 2n -1 ⎭ 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⎧( ⎧ n - 1)2n + , n 是奇数 3 - 3n ⎪b n = 2 2 , n 是奇数2 , b = ⎨ ;(2) T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数 n -2 ⎪b = 2 2 , n 是偶数n n【答案】(1)a = 5 ⨯ 2n -1- 2 (n ∈ N *);(2) T = 2 - 2n +5 3,最小值 . 5【解析】(1)当 n =1 时, a 1 = S 1 = 2a 1 - 2 - 1 ,解得 a 1 = 3 ,当 n ≥ 2 时, a n = S n - S n -1 = 2a n - 2a n -1 - 2 ,解得 a n = 2 a n -1 + 2 .则 a + 2 = 2 (an n -1+ 2),故 {a n + 2}是首项为 a 1 + 2 = 5 ,公比为 2 的等比数列,∴ a = 5 ⨯ 2n -1 - 2 (n ∈ N * ). n = ⨯ (2n + 1)⨯ + + + ⋅⋅⋅ +nn1 1 ⎛2 n 5 ⎝3 5 7 2n - 1 2n + 1 ⎫+ + + ⋅⋅⋅ + +21 22 23 2n -1 2n ⎭⎪ ⎪⎝,所以 T = 2 - n 2n + 5 5 ⨯ 2n -1,2n + 5 2n + 7 2n + 5 -2n - 3令 c = ,有 c - c =- = < 0 ,对 n ∈ N * 恒成立, n n +1 n则数列{c n }是递减数列,故{T n } 为递增数列,则 (T n )min 3= T = . 121.(12 分)已知正项数列且.的前 项和为 ,且 , ,数列 满足 ,(1)求数列(2)令【答案】(1), 的通项公式;,求数列 的前 项和 .n +1 ⎪⎪ n n⎩ n ⎪⎩ 2【解析】(1)当时, ,即 ,,19⎧⎪S + S = a 2 由 ⎨ ,可得= a 2 (n ≥ 2) ,⎪⎩ n由 ⎨ 两式相除,得 n +1 = 2 (n ≥ 2 ),⎧b b = 2n b⎪⎩b n -1b n = 2n -1 (n ≥ 2)综上:b = ⎨ n ⎪b = 2 n -22 , n 是偶数 ⎩ ⎧ 3n ⎪⎪ 2 , 的前 项和为 B ,∴ B = ⎨ , -3n + 1 ⎪ , n 是奇数 ⎧(n - 1)2n + , n 是奇数 ⎪⎪ 2综上: T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数n +1 n n +1 S + S n -1 n即,又是公差为 ,首项为 的等差数列,,由题意得:,n n +1 b n -1是奇数时,是公比是 ,首项 的等比数列,∴ b = 2nn +1 2 ,同理 是偶数时是公比是 ,首项的等比数列,∴ b = 2nn -2 2 ,n ⎧ n +1⎪b = 2 2 , n 是奇数n.(2)令,即 ,⎧⎪ A = 1⋅ 20 + 2 ⋅ 21 + 3 ⋅ 22 + ⋅⋅⋅ + n ⋅ 2n -1的前 项和为 ,则 ⎨ n⎪⎩2 A n = 1⋅ 21 + 2 ⋅ 22 + 3 ⋅ 23 + ⋅⋅⋅ + n ⋅ 2n,两式相减得 - A = 20 + 21 + 22 + 2n -1 - n ⋅ 2n = n,1 - 2n 1 - 2- n ⋅ 2n ,令n n⎪⎩ 2n 是偶数3 - 3nn⎪⎩ 220ln 22 ln 32 ln n 2 (n - 1)(2n + 1) (当 x ≥ a 时, f '( x ) = 1 - = ,此时要考虑 a 与 1 的大小.(2)由(1)可知当 a = 1 , x > 1 时, x -1 - ln x > 0 ,即 ln x > 1 - x ,所以 ln x = n - 1 - = n - 1 - - ⎪ < n - 1 - + + L + ⎝ 2 n 2 ⎭ ⎝ 2 ⨯ 3 3 ⨯ 4 n(n + 1) ⎭ 1 ⎫ n - 1 = (n - 1) - n + 1 ⎭ 2(n + 1) ⎛ 122.(12 分)已知函数 f ( x ) =| x - a | - ln x(a > 0) .(1)讨论 f ( x ) 的单调性;(2)比较 + +⋯+ 与 的大小 n ∈ N * 且 n > 2) ,并证明你的结论.22 32 n 2 2(n + 1)【答案】(1)见解析;(2)见解析.⎧ x - ln x - a, 【解析】(1)函数 f ( x ) 可化为 f ( x ) = ⎨⎩a - x - ln x,x ≥ a0 < x < a ,当 0 < x < a 时, f '( x ) = -1 - 1 x< 0 ,从而 f ( x ) 在 (0, a) 上总是递减的,1 x - 1x x①若 a ≥ 1 ,则 f '( x ) ≥ 0 ,故 f ( x ) 在 [a, +∞ ) 上递增;②若 0 < a < 1 ,则当 a ≤ x < 1 时, f '( x ) < 0 ;当 x > 1 时, f '( x ) > 0 ,故 f ( x ) 在 [a,1) 上递减,在 (1, +∞) 上递增,而 f ( x ) 在 x = a 处连续,所以当 a ≥ 1 时, f ( x ) 在 (0, a) 上递减,在[a, +∞ ) 上递增;当 0 < a < 1 时, f ( x ) 在 (0,1) 上递减,在[1, +∞ ) 上递增.1< 1 - .x x所以 ln 22 ln 32 ln n 2 1 1 1+ + L + < 1 - + 1 - + L 1 -22 32 n 2 22 32 n 2⎛ 1 1 + ⎝ 22 32 + L + 1 ⎫ 1 1 ⎫ ⎛ 1 ⎪ ⎪2n 2 - 2 - n + 1 (n - 1)(2n + 1) = = .2(n + 1) 2(n + 1)21。
山东聊城一中(2013届高三一轮复习综合检测数学(理)试题
山东省聊城市第一中学2013届高三一轮总复习理科数学综合检测班级:_______ 姓名:_______ 座号:_______ 时间:_______ 成绩:_______一、选择题(本大题共9小题)1.函数2()(0)f x ax bx c a =++≠的图象关于直线2bx a =-对称。
据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程[]2()()0m f x nf x p ++=的解集都不可能是( )A. {}1,2 B {}1,4 C {}1,2,3,4 D {}1,4,16,642.曲线f(x)=xln x 在点P(1,0)处的切线与坐标轴围成的三角形的外接圆方程是( ) A .(x+21)2+(y+21)2=21 B .(x+21)2+(y-21)2=21 C .(x-21)2+(y+21)2=21 D .(x-21)2+(y-21)2=21 3.函数x x y sin cos 2-=的值域是 ( )A 、[]1,1-B 、⎥⎦⎤⎢⎣⎡45,1C 、[]2,0D 、⎥⎦⎤⎢⎣⎡-45,14.设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n 等于( )A.6B.7C.8D.95.设随机变量ξ的概率分布为P (ξ=k )=pk·(1-p)1-k(k=0,1),则Eξ、Dξ的值分别是( ) A.0和1B.p 和p2C.p 和1-pD.p 和(1-p)p6.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 ( )A .383cm B .343cm C .323cm D .313cm 7.若)(x f 和)(x g 都是奇函数,且2)()()(=+=x g x f x F ,在(0,+∞)上有最大值8,则在(-∞,0)上)(x F 有( )A.最小值-8B.最大值-8C.最小值-6D.最小值-48.若lg2=a,lg3=b,则log 418= ( )A.23a b a+ B.32a b a + C. 22a b a + D. 22a ba+ 9.在等比数列{ a n }中,若a 4 =8,q=一2,则a 7的值为( ) A .一64 B .64 C .一48 D .48二、填空题(本大题共5小题)10.已知a axx e e e e x f ----=)(,若函数)(x f 在R 上是减函数,则实数a 的取值范围是____________ 11.经过两条直线0243=-+y x 与022=++y x 的交点,且垂直于直线0423=+-y x 的直线方程为___________________________12. 261(1)()x x x x++-的展开式中的常数项为_________.13.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,cot cot a b a A b B +=+且BF 2FD =uu r uu r,则C 的离心率为 。
人教A版高考理科数学一轮总复习课后习题 第12章 概率 课时规范练60 随机事件的概率
课时规范练60 随机事件的概率基础巩固组1.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率为710的事件是( )A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡2.(安徽芜湖期末)抛掷一枚质地均匀的骰子,记事件A 为“向上的点数为1或4”,事件B 为“向上的点数为奇数”,则下列说法正确的是( ) A.A 与B 互斥 B.A 与B 对立 C.P(A+B)=23D.P(A+B)=133.抽查10件产品,设事件A 为“至少有2件次品”,则事件A 的对立事件为( ) A.至多有2件次品 B.至多有1件次品 C.至多有2件正品D.至少有2件正品4.如果事件A 与B 是互斥事件,且事件A ∪B 发生的概率是0.64,事件B 发生的概率是事件A 发生的概率的3倍,则事件A 发生的概率为( )A.0.64B.0.36C.0.16D.0.845.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率为1235.则从中任意取出2粒恰好是同一颜色的概率为( )A.17B.1235C.1735D.16.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是.7.已知随机事件A,B发生的概率满足条件P(A∪B)=34,某人猜测事件A∩B 发生,则此人猜测正确的概率为.8.根据以往统计资料,某地车主购买甲种保险的概率是0.5,购买乙种保险但不购买甲种保险的概率是0.3,设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中一种的概率;(2)求该地1位车主甲、乙两种保险都不购买的概率.9.从A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到火车站的人进行调查,调查结果如下.(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.综合提升组A.事件A发生的概率P(A)等于事件A发生的频率f n(A)B.一枚质地均匀的骰子掷一次得到3点的概率是1,说明这个骰子掷6次一6定会出现一次3点C.掷两枚质地均匀的硬币,事件A为“一枚正面朝上,一枚反面朝上”,事件B为“两枚都是正面朝上”,则P(A)=2P(B)D.对于两个事件A,B,若P(A∪B)=P(A)+P(B),则事件A与事件B互斥11.在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中,则这班参加聚会的同学随机挑选一人表演节目.若选到女同学的概率为23的人数为.12.假设甲、乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命(单位:小时),现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如图:甲品牌乙品牌(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.创新应用组13.把一枚骰子投掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,向量m=(a,b),n=(1,2),则向量m与向量n不共线的概率是( )A.16B.1112C.112D.11814.下面是某市2月1日至14日的空气质量指数趋势图及空气质量指数与污染程度对应表.某人随机选择2月1日至2月13日中的某一天到该市出差,第二天返回(往返共两天).(1)由图判断从哪天开始连续三天的空气质量指数方差最大?(只写出结论,不要求证明)(2)求此人到达该市当日空气质量优良的概率;(3)求此人出差期间(两天)空气质量至少有一天为中度或重度污染的概率.答案:课时规范练1.A2.C 解析:事件A与B不互斥,当向上点数为1时,两者同时发生,故事件A与B也不对立.事件A+B表示向上点数为1,3,4,5之一,所以P(A+B)=46=23.故选C.3.B4.C 解析:设P(A)=x,则P(B)=3x,因为事件A与B是互斥事件,所以P(A ∪B)=P(A)+P(B)=x+3x=0.64,解得x=0.16.故选C.5.C 解析:设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A 与B 互斥.所以P(C)=P(A)+P(B)=17+1235=1735,即任意取出2粒恰好是同一颜色的概率为1735.故选C.6.54,43解析:由题意可知{0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1,则{0<2-a <1,0<4a -5<1,3a -3≤1,解得{1<a <2,54<a <32,a ≤43,故54<a ≤43. 7.14解析:因为事件A ∩B 与事件A ∪B 是对立事件,所以P(A ∩B )=1-P(A ∪B)=1-34=14.8.解: 记A 表示事件“该车主购买甲种保险”,B 表示事件“该车主购买乙种保险但不购买甲种保险”,C 表示事件“该车主至少购买甲、乙两种保险中的一种”,D 表示事件“该车主甲、乙两种保险都不购买”. (1)由题意得P(A)=0.5,P(B)=0.3,又C=A ∪B, 所以P(C)=P(A ∪B)=P(A)+P(B)=0.5+0.3=0.8.(2)因为D 与C 是对立事件,所以P(D)=1-P(C)=1-0.8=0.2. 9.解: (1)共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),用频率估计概率,可得所求概率为0.44.(2)选择L 1的有60人,选择L 2的有40人,故由调查结果得频率分布如下表: 所用时10~20~30~40~50~(3)记事件A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;记事件B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.用频率估计概率及由(2)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),故甲应选择L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B2)>P(B1),故乙应选择L2.10.C 解析:频率与试验次数有关,总在概率附近摆动,故选项A错误;概率是指这件事发生的可能性,故选项B错误;P(A)=24=12,P(B)=12×12=14,所以P(A)=2P(B),故选项C正确;在几何概型中选项D中的结论不成立.故选C.11.18 解析:设该班到会的女同学有x人,则该班到会的共有(2x-6)人,所以x2x-6=23,解得x=12,故该班参加聚会的同学有18人.12.解: (1)甲品牌产品寿命小于200小时的频率为5+20100=14,用频率估计概率,可得甲品牌产品寿命小于200小时的概率为14.(2)根据频数分布图可得寿命不低于200小时的两种品牌产品共有75+70=145(个),其中甲品牌产品有75个,所以在样本中,寿命不低于200小时的产品是甲品牌的频率是75145=1529.据此估计已使用了200小时的该产品是甲品牌的概率为1529.13.B 解析:若m与n共线,则2a-b=0,而(a,b)的可能情况有6×6=36(种).符合2a=b的有(1,2),(2,4),(3,6),共3种.故共线的概率是336=112,从而不共线的概率是1-112=1112.14.解: (1)从2月5日开始连续三天的空气质量指数方差最大.(2)设A i表示事件“此人于2月i日到达该市”(i=1,2,…,13).根据题意,P(A i)=113,且A i∩A j=⌀(i≠j,j=1,2,…,13).设B为事件“此人到达当日空气优良”,则B=A1∪A2∪A3∪A7∪A12∪A13.所以P(B)=P(A1∪A2∪A3∪A7∪A12∪A13)=613.(3)设“此人出差期间空气质量至少有一天为中度或重度污染”为事件A,即“此人出差期间空气质量指数至少有一天大于150,且小于300”,由题意可知P(A)=P(A4∪A5∪A6∪A7∪A8∪A9∪A10∪A11)=P(A4)+P(A5)+P(A6)+P(A7)+P(A8)+P(A9)+P(A10)+P(A11)=813.。
2013年高考理科数学试题(大纲卷,新课标Ⅰ、Ⅱ卷)参考答案
1952013年普通高等学校招生全国统一考试理科数学(大纲卷)参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 BABBA CDBDA DC第Ⅱ卷(非选择题 90分)二、填空题(共20分)13..480 15.1[,4]216.16π 三、解答题17.(本小题满分10分)解:(Ⅰ)等差数列{}n a 的公差为d . 由232=S a 得21232+=a a a a +,即2223a a =,20a =,或23a =.由124,,S S S 成等比数列得2214S S S =. ∵1122242,2,42S a a d S a d S a d ==-=-=+, ∴()()()2222242a d a d a d -=-+,即222d a d =,0d =或223d a =. 当20a =时,0d =,从而0n S =,不符合题意;当23a =量,0d =或2d =.∴{}n a 的通项式为3n a =或21n a n =-. 18.(本小题满分12分) 解:(Ⅰ)∵()()a b c a b c ac ++-+=,∴222a cb ac +-=-. 由余弦定理得,2221cos 22a c b B ac +-==-,∴0120B =.(Ⅱ)由(Ⅰ)知060A C +=,∴cos()cos cos sin sin A C A C A C -=+ cos cos sin sin 2sin sin A C A C A C =-+cos()2sin sin A C A C=++122=+= ∴030A C -=或030A C -=-, ∴015C =或045C =.19.解:(Ⅰ)证明:取BC 的中点E ,连结DE ,则ABED 为正方形.过P 作OP ⊥平面ABCD ,垂足为O .连接,,,OA OB OD OE .由PAB ∆和PAD ∆都是等边三角形知PA PB PD ==,∴OA OB OD ==,即点O 为正方形ABED 对角线的交点,∴OE BD ⊥,从而PB OE ⊥. ∵O 是BD 的中点,E 是BC 的中点,∴OE //CD .∴PB CD ⊥. (Ⅱ)由(Ⅰ)知,PB CD ⊥,OP CD ⊥,PB OP P = , ∴CD ⊥平面PBD .∵PD ⊂平面PBD ,∴CD PD ⊥. 由知取PD 的中点F ,PC 中点G ,连接GF ,则GF //CD ,GF PD ⊥.连接AF ,由PAD ∆都是等边三角形知AF PD ⊥.∴AFG α∠=是二面角A PD C --的平面图角.连接,AG EG ,则EG //PB . 又PB AE ⊥,∴EG AE ⊥. 设2AB =,则112AE EG PB ===,3AG =.∴在AFG ∆中,12FG CD AF ===3AG =.∴222cos 23FG AF AG FG AF α+-==- ,二面角A PD C --的大小为196π-. 注:(Ⅱ)第小题可以用坐标方法求解. 20.(本小题满分12分) 解:(Ⅰ)记1A 表示事件“第2局结果为甲胜”,2A 表示事件“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则12=A A A ⋅.12121()=P()()()4P A A A P A P A ⋅==. (Ⅱ)由条件知X 的可能取值为0,1,2. 3A 表示事件“第3局乙和丙比赛时,结果为乙胜”,记1B 表示事件“第1局结果为乙胜”,2B 表示事件“第2局乙和甲比赛时,结果为乙胜”,3B 表示事件“第3局乙参加比赛时,结果为乙负”. 则123(0)()P x P B B A ==⋅⋅1231()()()8P B P B P A =⋅⋅=,13(2)()P X P B B ==⋅131()()4P B P B ==,∴5(1)1(0)(2)8P X P X P X ==-=-==. ∴1519()0128848E X =⨯+⨯+⨯=. 21.(本小题满分12分) 解: (Ⅰ)由题设知3ca=,即 2229a b a+=,∴228b a =, ∴C 的方程为22288x y a -=.将2y =代入上式,求得,x =由题设知,=,解得,21a =.∴1,a b ==(Ⅱ)由(Ⅰ)知,1(3,0)F -,2(3,0)F ,C 的方程为2288x y -=. ①由题意可设l 的方程为(3)y k x =-,||k <,代入①并化简得2222(8)6980k x k x k --++=. ② 设11(,)A x y ,22(,)B x y ,则12,x x 是方程的两个根,且11x ≤-,21x ≥,212268k x x k +=-, 2122988k x x k +∙=-.∴1||AF =1(31)x ==-+,1||BF =231x ==+由11||||AF BF =得,12(31)31x x -+=+,即1223x x +=-. ∴226283k k =--,解得245k =,从而 12199x x ∙=-.由于2||AF =113x ==-,2||BF =231x ==-,∴2212||||||23()4AB AF BF x x =-=-+=,221212||||3()9-116AF BF x x x x ∙=+-=.∴222|||||AB|AF BF ∙=, ∴22AF AB BF ,,成等比数列. 22.(本小题满分12分)197解:(Ⅰ)由已知条件得22(12)(0)0,(),(0)0(1)x x f f x f x λλ--''===+.若12λ<,则当02(12)x λ<<-时,()0f x '>,∴()0f x >.若12λ≥,则当0x >时,()0f x '<,∴当0x >时,()0f x <.综上可得:λ的最小值为12.(Ⅱ)令1x k =12λ=由(Ⅰ)得当0x >时,()0f x <,即 ()()2ln 122x x x x+>++.取1x k =,则()21ln 1ln 2(1)k k k k k +>+-+. ∴214n n a a n -+11111224n n n n ⎛⎫=++⋅⋅⋅++ ⎪++⎝⎭111122(1)2(1)2(2)n n n n ⎛⎫⎛⎫=+++ ⎪ ⎪+++⎝⎭⎝⎭112(21)2(2)n n ⎛⎫+++⎪-⎝⎭21232(1)2(1)(2)n n n n n n ++=++++ 412(21)(2)n n n -++-()()ln(1)ln ln(2)ln(1)n n n n >+-++-+ ()ln(2)ln(21)n n ++--ln(2)ln n n =- ln 2=.∴21ln 24n n a a n-+>.2013年普通高等学校招生全国统一考试 理科数学理科数学(新课标I 卷)参考答案第Ⅰ卷(选择题 60分)一、选择题(共60分)1-12 BDCCA ACABD DB第Ⅱ卷(非选择题 90分)二填空题(共20分) 13.2 14.1(2)n --15. 16.16 三、解答题 17.(本小题满分12分)解:(Ⅰ)由已知得,∠PBC =o60, ∴∠PBA =30o .在△PBA 中,由余弦定理得2PA=o 1132cos3042+-=74, ∴PA(Ⅱ)设∠PBA =α,由已知得, sin PB α=.在△PBA中,由正弦定理得 o o sin sin150sin(30)αα=-,化简得 4sin αα=,即tanα, ∴tan PBA ∠说明:本题主要考查利用正弦定理、余弦定理解三角形及两角和与差公式,是容易题. 18.(本小题满分12分) 解:(Ⅰ)取AB 中点O ,连接OC ,1A B ,1OA .∵AB =1AA ,1BAA ∠=060,198∴1BAA ∆是正三角形,∴1OA ⊥AB . ∵AC BC =, ∴OC ⊥AB ,∵1OC OA O ⋂=,∴AB ⊥面1CEA , ∴AB ⊥1AC .(Ⅱ)由(Ⅰ)知OC ⊥AB ,1OA ⊥AB . 又∵面ABC ABC ⊥面11ABB A ,面ABC ∩面11ABB A =AB , ∴OC ⊥面11ABB A ,∴OC ⊥1OA . ∴OA ,OC ,1OA 两两相互垂直. 以O 为坐标原点,OA 的方向为x 轴正方向,OA 为单位长度,建立如图所示空间直角坐标系O xyz -.由题设知1(1,0,0),A A,C ,(1,0,0)B -,则11(1(1BC BB AA ===-,1(0,AC = . 设n =(,,)x y z 是平面11CBBC 的法向量,则100BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n,即0,0.x x ⎧=⎪⎨-+=⎪⎩,可取,1)=-n ,∴111cos ,|AC AC AC ⋅<>==n n |n ||, ∴直线C A 1 与平面C C BB 11所成角的正弦说明:本题主要考查空间线面、线线垂直的判定与性质及线面角的计算,考查空间想象能力、逻辑推论证能力,是容易题. 19.(本小题满分12分)解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A ,第一次取出的4件产品中全为优质品为事件B ,第二次取出的4件产品都是优质品为事件C ,第二次取出的1件产品是优质品为事件D ,这批产品通过检验为事件E ,根据题意有()()E AB CD = ,且AB 与CD 互斥,∴()()()P E P AB P CD =+()()()()P A P B A P C P D C =+244341111132222264C ⎛⎫⎛⎫⎛⎫=⨯⨯+⨯= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭. (Ⅱ)X 的可能取值为400,500,800,并且 343411111(400)122216P X C ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭,1(500)16P X ==,334111(800)224P X C ⎛⎫==⨯= ⎪⎝⎭,∴X 的分布列为1111()400500800506.2516164E X =⨯+⨯+⨯=. 20.(本小题满分12分)解:由已知得圆M 的圆心为(1,0)M -,半径1r =1,圆N 的圆心为(1,0)N ,半径2r =3. 设动圆P 的圆心为(,)P x y ,半径为R. (Ⅰ)∵圆P 与圆M 外切且与圆N 内切, ∴|PM|+|PN|=12()()R r r R ++-=12r r +=4,由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,的椭圆(左顶点除外),其方程为221(2)43x y x +=≠-. (Ⅱ)对于曲线C 上任意一点(,)P x y ,由于|PM|-|PN|=22R -≤2,∴2R ≤.当且仅当圆P 的圆心为(2,0)时,2R =, ∴当圆P 的半径最长时,其方程为22(2)4x y -+=.当l 的倾斜角为090时,则l 与y 轴重合,可得|AB|=199GF D EB A O 当l 的倾斜角不为090时,由1r R ≠知l 不平行x 轴,设l 与x 轴的交点为Q ,则||||QP QM =1Rr ,可求得(4,0)Q -,∴设l :(4)y k x =+.由l 于圆M1=,解得k =.当k时,将y x =+221(2)43x y x +=≠-并整理得 27880x x +-=,解得1,2x=47-±,∴12|x x -=187.当k =-时,由图形的对称性可知|AB |=187.综上,|AB |=187或|AB|=21.(本小题满分12分) 解:(Ⅰ)由已知得(0)2,(0)2,(0)4,(0)4f g f g ''====,而()2f x x b '=+,()()xg x e cx d c '=++, ∴a =4,b =2,c =2,d =2.(Ⅱ)由(Ⅰ)知,2()42f x x x =++,()2(1)x g x e x =+.设函数()F x =()()kg x f x -=22(1)42xke x x x +---(2x ≥-),则()F x '=2(2)24x ke x x +--=2(2)(1)xx ke +-.由题设可得(0)0F ≥,即1k ≥. 令()F x '=0得,1x =ln k -,22x =-.(1)若21k e ≤<,则120x -<≤, ∴当1(2,)x x ∈-时,()F x '<0, 当1(,)x x ∈+∞时,()F x '>0,即()F x 在1(2,)x -单调递减,在1(,)x +∞单调递增,∴()F x 在x =1x 取最小值1()F x ,而1()F x =21112242x x x +---=11(2)0x x -+≥, ∴当2x ≥-时,()0F x ≥,即 ()()f x kg x ≤恒成立.(2)若2k e =,则()F x '=222(2)()x e x e e -+-. ∴当2x ≥-时,()0F x '≥,∴()F x 在(-2,+∞)单调递增,而(2)F -=0,∴当2x ≥-时,()0F x ≥,即 ()()f x kg x ≤恒成立.(3)若2k e >,则(2)F -=222ke --+=222()e k e ---<0, ∴当2x ≥-时,()f x ≤()kg x 不可能恒成立.综上所述,k 的取值范围为[1,2e ].说明:本题主要考查利用导数的几何意义求曲线的切线、函数单调性与导数的关系、函数最值,考查运算求解能力及应用意识,是中档题. 22.(本小题满分10分) 解:(Ⅰ)连接DE ,交BC 与点G . 由弦切角定理得,ABF BCE ∠=∠, ∵ABE CBE ∠=∠,∴CBE BCE ∠=∠,BE CE =,200又∵BD BE ⊥,∴DE 是直径,90DCE ∠=︒, 由勾股定理可得DB DC =(Ⅱ)由(Ⅰ)知,CDEBDE ∠=∠,DB DC =,∴DG 是BC 的中垂线,∴BG =.设DE 中点为O ,连接OB ,则 60BOG ∠=︒,30ABE BCE CBE ∠=∠=∠=︒, ∴CF BF ⊥,∴Rt △BCF 说明:本题主要考查几何选讲的有关知识,是容易题. 23,(本小题满分10分)解(Ⅰ)将45cos 55sin x ty t =+⎧⎨=+⎩消去参数t ,化为普通方程22(4)(5)25x y -+-=,即1C :22810160x y x y +--+=. 将cos sin x y ρθρθ=⎧⎨=⎩ 代入22810160x y x y +--+=得,28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=.(Ⅱ)2C 的普通方程为2220x y y +-=,由2222810160,20x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩ 解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 的交点的极坐标分别为4π),(2,)2π. 说明:本题主要考查参数方程与普通方程互化、极坐标方程与直角坐标方程互化及两曲线交点求法、极坐标与直角坐标互化,是容易题.24.(本小题满分10分) 解:(Ⅰ)当2a =-时,不等式()f x <()g x 化为|21||22|30x x x -+---<. 设函数y =|21||22|3x x x -+---,则y =15, ,212, 236, 1,x x x x x x ⎧-<⎪⎪⎪--≤⎨⎪->⎪⎪⎩其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,0y <,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,()f x =1a +,不等式()()f x g x ≤化为13a x +≤+,∴2x a ≥-对x ∈[2a -,12)都成立,故2a-≥2a -,即a ≤43,∴a 的取值范围为41,3⎛⎤- ⎥⎝⎦.说明:本题主要考查含绝对值不等式解法、不等式恒成立求参数范围,是容易题.2012013年普通高等学校招生全国统一考试理科数学(新课标Ⅱ卷)参考答案 第Ⅰ卷(选择题 60分)一、选择题:(共60分) 1-12 AACDD BADBC CB第Ⅱ卷(非选择题 90分)二、填空题:本大题共4小题,每小题5分.13.2 14.8 15.510-16.-49 三.解答题:解答应写出文字说明,证明过程或演算步骤。
2013届高考理科数学第一轮复习测试题04
A级基础达标演练(时间:40分钟满分:60分)一、选择题(每小题5分,共25分)1.(2011·重庆)从一堆苹果中任取10只,称得它们的质量如下(单位:克):125,120,122,105,130,114,116,95,120,134,则样本数据落在[114.5,124.5)内的频率为().A.0.2 B.0.3 C.0.4 D.0.5解析数据落在[114.5,124.5)内的有:120,122,116,120共4个,故所求频率为410=0.4.答案 C2.(2012·银川模拟)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为().A. 65 B.65 C. 2 D.2解析由题可知样本的平均值为1,所以a+0+1+2+35=1,解得a=-1,所以样本的方差为15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.答案 D3.(2011·厦门质检)某工厂对一批产品进行了抽样检测,如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是().A .90B .75C .60D .45解析 产品净重小于100克的频率为(0.050+0.100)×2=0.300,设样本容量为n ,则36n =0.300,所以n =120,净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90. 答案 A4.(2011·安庆模拟)如图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是( ).A .161 cmB .162 cmC .163 cmD .164 cm解析 由给定的茎叶图可知,这10位同学身高的中位数为161+1632=162(cm). 答案 B5.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表:s 1,s 2,s 3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( ).A .s 3>s 1>s 2B .s 2>s 1>s 3C .s 1>s 2>s 3D .s 2>s 3>s 1 解析 ∵x 甲=(7+8+9+10)×520=8.5,s 21=5×[(7-8.5)2+(8-8.5)2+(9-8.5)2+(10-8.5)2]20=1.25,x 乙=(7+10)×6+(8+9)×420=8.5,s 22=6×[(7-8.5)2+(10-8.5)2]+4×[(8-8.5)2+(9-8.5)2]20=1.45,x 丙=(7+10)×4+(8+9)×620=8.5,s 23=4×[(7-8.5)2+(10-8.5)2]+6×[(8-8.5)2+(9-8.5)2]20=1.05.由s 22>s 21>s 23,得s 2>s 1>s 3.答案 B二、填空题(每小题4分,共12分)6.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是________,________.解析 由茎叶图可知,甲图中共有9个数,分别为28,31,39,45,42,55,58,57,66,其中位数为45;乙图中共有9个数分别为29,34,35,48,42,46,53,55,67其中位数为46.答案 45 467.(2011·哈尔滨模拟)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:解析甲班数据的平均值为7,方差s2甲=(6-7)2+02+02+(8-7)2+025=25;乙班数据的平均值为7,方差s2乙=(6-7)2+02+(6-7)2+02+(9-7)25=65,所以s2=s2甲=2 5.答案2 58.(2011·浙江)某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.解析根据样本的频率分布直方图,成绩小于60分的学生的频率为(0.002+0.006+0.012)×10=0.20,所以可推测3 000名学生中成绩小于60分的人数为600名.答案600三、解答题(共23分)9.(11分)(2011·新课标全国)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表(2)已知用B 配方生产的一件产品的利润y(单位:元)与其质量指标值t 的关系式为y =⎩⎨⎧-2,t <94,2,94≤t <102,4,t ≥102.估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润.解 (1)由试验结果知,用A 配方生产的产品中优质品的频率为22+8100=0.3,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32+10100=0.42,所以用B 配方生产的产品的优质品率的估计值为0.42.(2)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值t ≥94,由试验结果知,质量指标值t ≥94的频率为0.96.所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96. 用B 配方生产的产品平均一件的利润为 1100×[4×(-2)+54×2+42×4]=2.68(元).10.(12分)某市统计局就某地居民的月收入调查了10 000人,并根据所得数据画出样本的频率分布直方图如图所示.(每个分组包括左端点,不包括右端点,如第一组表示[1 000,1 500))(1)求居民收入在[3 000,3 500)的频率;(2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中按分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽取多少人?解(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15.(2)∵0.000 2×(1 500-1 000)=0.1,0.000 4×(2 000-1 500)=0.2,0.000 5×(2 500-2 000)=0.25,0.1+0.2+0.25=0.55>0.5,所以,样本数据的中位数为2 000+0.5-(0.1+0.2)0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频数为0.25×10 000=2 500(人),从10 000人中用分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取10010 000×2500=25(人).B 级 综合创新备选(时间:30分钟 满分:40分)一、选择题(每小题5分,共10分)1.(2012·湖州质检)对某种电子元件的使用寿命进行跟踪调查,所得样本的频率分布直方图如图所示,由图可知,这一批电子元件中使用寿命在100~300 h 的电子元件的数量与使用寿命在300~600 h 的电子元件的数量的比是( ).A.12B.13C.14D.16解析 寿命在100~300 h 的电子元件的频率为 ⎝ ⎛⎭⎪⎫12 000+32 000×100=420=15;寿命在300~600 h 的电子元件的频率为 ⎝ ⎛⎭⎪⎫1400+1250+32 000×100=45.∴它们的电子元件数量之比为15∶45=14. 答案 C2.(2012·太原质检)一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( ).A .57.2,3.6B .57.2,56.4C .62.8,63.6D .62.8,3.6 解析 平均数增加,方差不变. 答案 D二、填空题(每小题4分,共8分)3.(2011·青岛模拟)某校开展“爱我青岛,爱我家乡”摄影比赛,9位评委为参赛作品A 给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x 应该是________.解析 当x ≥4时,89+89+92+93+92+91+947=6407≠91,∴x <4,则89+89+92+93+92+91+x +907=91,∴x =1.答案 14.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则x 2+y 2的值为________.解析 由15(x +y +10+11+9)=10,15[(x -10)2+(y -10)2+0+1+1]=2,联立解得,x 2+y 2=208. 答案 208三、解答题(共22分)5.(10分)某制造商3月生产了一批乒乓球,随机抽取100个进行检查,测得每个球的直径(单位:mm ),将数据进行分组,得到如下频率分布表:(1)补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;(2)若以上述频率作为概率,已知标准乒乓球的直径为40.00 mm,试求这批乒乓球的直径误差不超过0.03 mm的概率;(3)统计方法中,同一组数据常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).解(1)频率分布表如下:(2)误差不超过0.03 mm,即直径落在[39.97,40.03]内,其概率为0.2+0.5+0.2=0.9.(3)整体数据的平均值为39.96×0.10+39.98×0.20+40.00×0.50+40.02×0.20=40.00(mm).6.(12分)(2010·安徽)某市2010年4月1日~4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75 ,71,49,45.样本频率分布表:(1)完成频率分布表;(2)作出频率分布直方图;(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.解(1)频率分布表:(2)频率分布直方图:11(3)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的115.有26天处于良的水平,占当月天数的1315.处于优或良的天数共有28天,占当有月数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115.污染指数在80以上接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730,超过50%.说明该市空气质量有待进一步改善.。
2013年高考(新课标I卷)理科数学试卷及答案
2013年普通高等学校招生全国统一考试理科数学(新课标I 卷)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.(1)已知集合{}022>-=x x x A ,{}55B <<-=x x ,则 (A )=B A ∅ (B )R =B A (C )A B ⊆ (D )B A ⊆(2)若复数z 满足()i 34i 43+=-z(A )4- (B )54- (C )4 (D )54 (3)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是(A )简单的随机抽样 (B )按性别分层抽样 (C )按学段分层抽样 (D )系统抽样(4)已知双曲线C :)0,0(12222>>=-b a b y a x 的离心率为25,则C 的渐近线方程为(A )x y 41±= (B )x y 31±= (C ) x y 21±= (D )x y ±=(5)执行右面的程序框图,如果输入的[]31t ,-∈,则输出的s 属于(A )[]43,- (B )[]25,- (C )[]34,- (D )[]52,-(6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6 cm ,如不计容器的厚度,则球的体积为(A )3cm 3500π (B )3cm 3866π (C )3cm 31372π (D )3cm 32048π(7)设等差数列{}n a 的前n 项和为n S ,若21-=-m S ,0=m S ,31=+m S ,则=m(A )3 (B )4 (C )5 (D )6(8)某几何体的三视图如图所示,则该几何体的体积为(A )8π16+ (B )8π8+ (C )π6116+ (D )16π8+A P BC (9)设m 为正整数,()m y x 2+展开式的二项式系数的最大值为a ,()12++m y x 展开式的二项式系数的最大值为b ,若b a 713=,则m =(A )5 (B )6 (C )7 (D )8(10)已知椭圆E :)0(12222>>=+b a by a x 的右焦点为)03(,F ,过点F 的直线交椭圆E 于A 、B 两点。
2013届高考理科数学第一轮复习测试题02
/A 级 基础达标演练 (时间:40分钟 满分:60分)一、选择题(每小题5分,共25分)1.方程(x -y )2+(xy -1)2=0表示的是( ). A .一条直线和一条双曲线 B .两条双曲线 C .两个点D .以上答案都不对解析 (x -y )2+(xy -1)2=0⇔⎩⎨⎧x -y =0,xy -1=0,∴⎩⎨⎧ x =1,y =1或⎩⎨⎧x =-1,y =-1. 答案 C2.(2012·厦门模拟)已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( ). A .双曲线 B .椭圆C .圆D .抛物线解析 由已知:|MF |=|MB |.由抛物线定义知,点M 的轨迹是以F 为焦点,l 为准线的抛物线,故选D. 答案 D3.设P 为圆x 2+y 2=1上的动点,过P 作x 轴的垂线,垂足为Q ,若PM →=λMQ →(其中λ为正常数),则点M 的轨迹为( ). A .圆 B .椭圆 C .双曲线 D .抛物线 解析 设M (x ,y ),P (x 0,y 0),则Q (x 0,0), 由PM →=λMQ →得⎩⎨⎧x -x 0=λ(x 0-x ),y -y 0=-λy(λ>0),∴⎩⎨⎧x 0=x ,y 0=(λ+1)y . 由于x 20+y 20=1,∴x 2+(λ+1)2y 2=1,∴M 的轨迹为椭圆. 答案 B4.(2012·长春模拟)设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( ).A.4x 221-4y 225=1 B.4x 221+4y 225=1 C.4x 225-4y 221=1D.4x 225+4y 221=1解析 M 为AQ 垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆, ∴a =52,c =1,则b 2=a 2-c 2=214, ∴椭圆的标准方程为4x 225+4y 221=1. 答案 D5.(2011·湘潭模拟)如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( ).A .椭圆B .双曲线C .抛物线D .圆 解析 由条件知|PM |=|PF |.∴|PO |+|PF |=|PO |+|PM |=|OM |=R >|OF |. ∴P 点的轨迹是以O 、F 为焦点的椭圆. 答案 A二、填空题(每小题4分,共12分)6.平面上有三个点A (-2,y ),B ⎝ ⎛⎭⎪⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程是________.解析 AB →=⎝ ⎛⎭⎪⎫0,y 2-(-2,y )=⎝ ⎛⎭⎪⎫2,-y 2,BC →=(x ,y )-⎝ ⎛⎭⎪⎫0,y 2=⎝ ⎛⎭⎪⎫x ,y 2,∵AB →⊥BC →,∴AB →·BC →=0, ∴⎝ ⎛⎭⎪⎫2,-y 2·⎝ ⎛⎭⎪⎫x ,y 2=0,即y 2=8x . ∴动点C 的轨迹方程为y 2=8x . 答案 y 2=8x7.(2012·佛山月考)在△ABC 中,A 为动点,B 、C 为定点,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a 2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是________. 解析 由正弦定理:|AB |2R -|AC |2R =12×|BC |2R , ∴|AB |-|AC |=12|BC |,且为双曲线右支. 答案 16x 2a 2-16y 23a 2=1(x >0且y ≠0)8.直线x a +y2-a=1与x 、y 轴交点的中点的轨迹方程是______.解析 (参数法)设直线x a +y2-a =1与x 、y 轴交点为A (a,0)、B (0,2-a ),A 、B 中点为M (x ,y ),则x =a 2,y =1-a2,消去a ,得x +y =1,∵a ≠0,a ≠2,∴x ≠0,x ≠1.答案 x +y =1(x ≠0,x ≠1) 三、解答题(共23分)9.(★)(11分)设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦,求所作弦的中点的轨迹方程. 解 法一 直接法.如图,设OQ 为过O 点的一条弦,P (x ,y )为其中点, 则CP ⊥OQ .因OC 中点为M ⎝ ⎛⎭⎪⎫12,0,连接PM .故|MP |=12|OC |=12,得方程⎝ ⎛⎭⎪⎫x -122+y 2=14,由圆的范围知0<x ≤1.法二 定义法. ∵∠OPC =90°,∴动点P 在以点M ⎝ ⎛⎭⎪⎫12,0为圆心,OC 为直径的圆上,由圆的方程得⎝ ⎛⎭⎪⎫x -122+y 2=14(0<x ≤1). 法三 代入法. 设Q (x 1,y 1),则 ⎩⎪⎨⎪⎧x =x 12,y =y 12⇒⎩⎨⎧x 1=2x ,y 1=2y .又∵(x 1-1)2+y 21=1, ∴(2x -1)2+(2y )2=1(0<x ≤1). 法四 参数法.设动弦OQ 的方程为y =k x ,代入圆的方程得(x -1)2+k 2x 2=1. 即(1+k 2)x 2-2x =0, ∴x =x 1+x 22=11+k 2,y =k x =k 1+k2,消去k 即可得到(2x -1)2+(2y )2=1(0<x ≤1). 【点评】 本题中的四种解法是求轨迹方程的常用方法,在求轨迹方程时,要注意挖掘题目中的条件,恰当地选取方法.10.(12分)(2012·苏州模拟)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆的圆心为点C . (1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于两点P 、Q ,交直线l 1于点R ,求RP →·RQ →的最小值. 解 (1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线, ∴动点C 的轨迹方程为x 2=4y .(2)由题意知,直线l 2方程可设为y =k x +1(k ≠0), 与抛物线方程联立消去y ,得x 2-4k x -4=0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.又易得点R 的坐标为⎝ ⎛⎭⎪⎫-2k ,-1,∴RP →·RQ →=⎝ ⎛⎭⎪⎫x 1+2k ,y 1+1·⎝ ⎛⎭⎪⎫x 2+2k ,y 2+1 =⎝ ⎛⎭⎪⎫x 1+2k ⎝ ⎛⎭⎪⎫x 2+2k +(k x 1+2)(k x 2+2) =(1+k 2)x 1x 2+⎝ ⎛⎭⎪⎫2k +2k (x 1+x 2)+4k 2+4=-4(1+k 2)+4k ⎝ ⎛⎭⎪⎫2k +2k +4k 2+4=4⎝ ⎛⎭⎪⎫k 2+1k 2+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号, ∴RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16.B 级 综合创新备选 (时间:30分钟 满分:40分)一、选择题(每小题5分,共10分)1.△ABC 的顶点A (-5,0)、B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( ) A.x 29-y 216=1B.x 216-y 29=1 C.x 29-y 216=1(x >3)D.x 216-y 29=1(x >4)解析 如图|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A 、B 为焦点, 实轴长为6的双曲线的右支,方程为x 29-y 216=1(x >3). 答案 C2.|y |-1=1-(x -1)2表示的曲线是( ). A .抛物线 B .一个圆 C .两个圆D .两个半圆解析原方程等价于⎩⎨⎧|y |-1≥01-(x -1)2≥0(|y |-1)2=1-(x -1)2⇔⎩⎨⎧ |y |-1≥0(x -1)2+(|y |-1)2=1⇔⎩⎨⎧y ≥1(x -1)2+(y -1)2=1或⎩⎨⎧y ≤-1(x -1)2+(y +1)2=1 答案 D二、填空题(每小题4分,共8分)3.(2012·开封模拟)已知P 是椭圆x 2a 2+y 2b 2=1上的任意一点,F 1、F 2是它的两个焦点,O 为坐标原点,OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是______________. 解析 由OQ →=PF 1→+PF 2→, 又PF 1→+PF 2→=PM →=2PO →=-2OP →, 设Q (x ,y ),则OP →=-12OQ →=-12(x ,y ) =⎝ ⎛⎭⎪⎫-x2,-y 2, 即P 点坐标为⎝ ⎛⎭⎪⎫-x2,-y 2,又P 在椭圆上,则有⎝ ⎛⎭⎪⎫-x 22a 2+⎝ ⎛⎭⎪⎫-y 22b 2=1,即x 24a 2+y 24b 2=1. 答案 x 24a 2+y 24b 2=14.已知两条直线l 1:2x -3y +2=0和l 2:3x -2y +3=0,有一动圆(圆心和半径都动)与l 1、l 2都相交,且l 1、l 2被圆截得的弦长分别是定值26和24,则圆心的轨迹方程是____________.解析 设动圆的圆心为M (x ,y ),半径为r ,点M 到直线l 1,l 2的距离分别为d 1和d 2.由弦心距、半径、半弦长间的关系得,⎩⎪⎨⎪⎧2r 2-d 21=26,2r 2-d 22=24,即⎩⎨⎧r 2-d 21=169,r 2-d 22=144, 消去r 得动点M 满足的几何关系为d 22-d 21=25, 即(3x -2y +3)213-(2x -3y +2)213=25.化简得(x +1)2-y 2=65.此即为所求的动圆圆心M 的轨迹方程. 答案 (x +1)2-y 2=65 三、解答题(共22分)5.(10分)已知双曲线x 22-y 2=1的左、右顶点分别为A 1、A 2,点P (x 1,y 1),Q (x 1,-y 1)是双曲线上不同的两个动点.(1)求直线A 1P 与A 2Q 交点的轨迹E 的方程;(2)若过点H (0,h )(h >1)的两条直线l 1和l 2与轨迹E 都只有一个交点,且l 1⊥l 2,求h 的值.解 (1)由题设知|x 1|>2,A 1(-2,0),A 2(2,0), 则有直线A 1P 的方程为y =y 1x 1+2(x +2),①直线A 2Q 的方程为y =-y 1x 1-2(x -2).② 联立①②解得交点坐标为x =2x 1,y =2y 1x 1,即x 1=2x ,y 1=2yx ,③ 则x ≠0,|x |< 2.而点P (x 1,y 1)在双曲线x 22-y 2=1上, ∴x 212-y 21=1.将③代入上式,整理得所求轨迹E 的方程为 x 22+y 2=1,x ≠0且x ≠±2.(2)设过点H (0,h )的直线为y =k x +h (h >1), 联立x 22+y 2=1得(1+2k 2)x 2+4k hx +2h 2-2=0.令Δ=16k 2h 2-4(1+2k 2)(2h 2-2)=0得h 2-1-2k 2=0, 解得k 1=h 2-12,k 2= -h 2-12.由于l 1⊥l 2,则k 1k 2=-h 2-12=-1,故h = 3.过点A 1,A 2分别引直线l 1,l 2通过y 轴上的点H (0,h ),且使l 1⊥l 2,因此A 1H ⊥A 2H , 由h 2×⎝⎛⎭⎪⎫-h 2=-1,得h = 2.此时,l 1,l 2的方程分别为y =x +2与y =-x +2,它们与轨迹E 分别仅有一个交点⎝ ⎛⎭⎪⎫-23,223与⎝ ⎛⎭⎪⎫23,223. 所以,符合条件的h 的值为3或 2.6.(12分)设椭圆方程为x 2+y 24=1,过点M (0,1)的直线l 交椭圆于A ,B 两点,O为坐标原点,点P 满足OP →=12(OA →+OB →),点N 的坐标为⎝ ⎛⎭⎪⎫12,12,当直线l 绕点M旋转时,求:(1)动点P 的轨迹方程; (2)|NP →|的最大值,最小值.解 (1)直线l 过定点M (0,1),设其斜率为k ,则l 的方程为y =k x +1. 设A (x 1,y 1),B (x 2,y 2),由题意知,A 、B 的坐标满足方程组⎩⎪⎨⎪⎧y =k x +1,x 2+y 24=1.消去y 得(4+k 2)x 2+2k x -3=0. 则Δ=4k 2+12(4+k 2)>0. ∴x 1+x 2=-2k4+k 2,x 1x 2=-34+k 2.设P (x ,y )是AB 的中点,则OP →=12(OA →+OB →),得 ⎩⎪⎨⎪⎧x =12(x 1+x 2)=k 4+k 2,y =12(y 1+y 2)=12(k x 1+1+k x 2+1)=4+2k 24+k 2;消去k 得4x 2+y 2-y =0.当斜率k 不存在时,AB 的中点是坐标原点,也满足这个方程, 故P 点的轨迹方程为4x 2+y 2-y =0. (2)由(1)知4x 2+⎝ ⎛⎭⎪⎫y -122=14∴-14≤x ≤14而|NP |2=⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=⎝ ⎛⎭⎪⎫x -122+1-16x 24 =-3⎝ ⎛⎭⎪⎫x +162+712,∴当x =-16时,|NP →|取得最大值216, 当x =14时,|NP →|取得最小值14.。
2013全国高考1卷理科数学试题及答案解析
WORD 格式整理2012 年普通高等学校招生全国统一考试理科数学 第 I 卷一、选择题: 本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合 A {1,2,3,4,5} , B {( x, y) | xA, y A, x y A} ,则 B 中所含元素的个数为(A ) 3(B ) 6(C ) 8(D ) 10(2)将 2 名教师, 4 名学生分成 2 个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有1名教师和 2 名学生组成,不同的安排方案共有 (A ) 12 种 (B ) 10 种(C ) 9 种(D )8 种(3)下面是关于复数z 2 1 i的四个命题p : |z | 2p 2 :122zip 3 : z 的共轭复数为 1 i p 4 : z 的虚部为1其中真命题为(A )p ,p 3(B ) p 1 ,p 2(C )p 2 , p 4 (D ) p 3 , p 42(4)设FF 是椭圆 1, 222x yE : 1(a b 0)22ab的左、右焦点, P 为直线3ax上的一点,2F PF 是底角为 30 的等腰三角形,则21E的离心率为(A)1 2(B)23(C)3 4(D)45(5)已知 {a } 为等比数列, a 4a 72, a 5a 68 ,则 a 1 a 10n(A)7(B)5(C)5(D)7(6)如果执行右边的程序图,输入正整数N (N 2)和实数 a 1,a 2 ,..., a N 输入 A, B , 则(A) A B 为 a 1,a 2,..., a N 的和(B ) A B 2为a a a 的算式平均数1, 2 ,..., N(C ) A和B 分别是a 1,a 2,..., a N 中最大的数和最小的数专业技术参考资料WORD 格式整理(D)A和B分别是a1,a2,..., a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6 (B)9 (C)12 (D)18(8)等轴双曲线 C 的中心在原点,焦点在x轴上,C 与抛物线 2 16y x的准线交于A, B 两点,| AB | 4 3 ,则C 的实轴长为(A) 2 (B)2 2 (C)4 (D)8(9)已知0,函数( ) sin( )f x x 在,4 2单调递减,则的取值范围(A)1 5[ , ]2 4(B)1 3[ , ]2 4(C)1(0, ]2(D) (0, 2](10)已知函数 f (x)1ln( x 1) x,则y f ( x) 的图像大致为(11)已知三棱锥S ABC 的所有顶点都在球O 的球面上,ABC 是边长为1的正三角形,SC 为 O 的直径,且SC 2 ,则此棱锥的体积为(A)26(B)36(C)23(D)22(12)设点P 在曲线1xy e 上,点Q 在曲线y ln(2 x) 上,则| PQ |的最小值为2(A) 1 ln 2 (B) 2(1 ln 2) (C) 1 ln 2 (D) 2(1 ln 2)专业技术参考资料WORD 格式整理第Ⅱ卷本卷包括必考题和选考题两部分。
2013年普通高等学校招生全国统一考试理科数学试卷及答案
2013年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分为两部分, 第一部分为选择题,第二部分为非选择题.。
2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.。
3.所有解答必须填写在答题卡上指定区域内。
考试结束后,将本试卷和答题卡一并交回。
第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R ,函数()f x M , 则C M R 为(A) [-1,1](B) (-1,1)(C) ,1][1,)(∞-⋃+∞-(D) ,1)(1,)(∞-⋃+∞-【答案】D【解析】()f x 的定义域为M=[-1,1],故C R M=(,1)(1,)-∞-⋃+∞,选D 2. 根据下列算法语句, 当输入x 为60时, 输出y 的值为 (A) 25 (B) 30 (C) 31 (D) 61 【答案】C【解析】故选择C3. 设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的 (A) 充分不必要条件(B) 必要不充分条件(C) 充分必要条件(D) 既不充分也不必要条件【答案】A 【解析】4. 某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 (A) 11 (B) 12 (C) 13 (D) 14 【答案】B【解析】由题设可知区间[481,720]长度为240,落在区间内的人数为12人。
5. 如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常).若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是(A)14π-(B)12π-(C) 22π-(D)4π【答案】A【解析】由题设可知矩形ABCD 面积为2,曲边形DEBF 的面积为22π-故所求概率为22124ππ-=-,选A.6. 设z 1, z 2是复数, 则下列命题中的假命题是 (A) 若12||0z z -=, 则12z z = (B) 若12z z =, 则12z z =(C) 若12||z z =, 则2112··z z z z =(D) 若12||||z z =, 则2122z z =【答案】D【解析】设12,,z a bi z c di =+=+若12||0z z -=,则12||()()z z a c b d i -=-+-,,a c b d ==,所以12z z =,故A 项正确;若12z z =,则,a c b d ==-,所以12z z =,故B 项正确;若12||||z z =,则2222a b c d +=+,所以1122..z z z z =,故C 项正确;7. 设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 锐角三角形 (B) 直角三角形(C) 钝角三角形(D) 不确定【答案】B【解析】因为cos cos sin b C c B a A +=,所以由正弦定理得2sin cos sin cos sin B C C B A +=,所以2sin()sin B C A +=,所以2sin sin A A =,所以sin 1A =,所以△ABC 是直角三角形。
2013年高考全国数学卷一理科试题及答案
2013年普通高等学校招生全国统一考试(全国卷一)数 学(理工类)参考公式:如果事件互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=…第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x +的展开式中2x 的系数是( )A 、42 B 、35 C 、28 D 、212、复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i -3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于04、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A B C D 5、函数1(0,1)x y a a a a=->≠的图象可能是( )6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( ) A 、a b =- B 、//a b C 、2a b = D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 级 基础达标演练(时间:40分钟 满分:60分)一、选择题(每小题5分,共25分)1.如图是今年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( ).解析 该五角星对角上的两盏花灯依次按逆时针方向亮一盏,故下一个呈现出来的图形是A. 答案 A2.“三角函数是周期函数,y =tan x ,x ∈⎝⎛⎭⎫-π2,π2是三角函数,所以y =tan x ,x ∈⎝⎛⎭⎫-π2,π2是周期函数.”在以上演绎推理中,下列说法正确的是( ). A .推理完全正确 B .大前提不正确 C .小前提不正确D .推理形式不正确解析 y =tan x ,x ∈⎝⎛⎭⎫-π2,π2只是三角函数的一部分,并不能代表一般的三角函数,所以小前提错误,导致整个推理结论错误. 答案 C3.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( ). A .f (x ) B .-f (x ) C .g (x ) D .-g (x )解析 由所给函数及其导数知,偶函数的导函数为奇函数,因此当f (x )是偶函数时,其导函数应为奇函数,故g (-x )=-g (x ). 答案 D4.(2011·皖南八校联考(三))为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a 0a 1a 2,a i ∈{0,1}(i =0,1,2),信息为h 0a 0a 1a 2h 1,其中h 0=a 0⊕a 1,h 1=h 0⊕a 2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.例如原信息为111,则传输信息为01111,信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( ).A .11010B .01100C .10111D .00011解析 对于选项C ,传输信息是10111,对应的原信息是011,由题目中运算规则知h 0=0⊕1=1,而h 1=h 0⊕a 2=1⊕1=0,故传输信息应是10110. 答案 C 5.观察下图:1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 ……则第________行的各数之和等于2 0112( ). A .2 010 B .2 009 C .1 006 D .1 005解析 由题图知,第一行各数和为1;第二行各数和为9=32;第三行各数和为25=52;第四行各数和为49=72;…;故第n 行各数和为(2n -1)2,令2n -1=2 011,解得n =1 006. 答案 C二、填空题(每小题4分,共12分)6.(2011·温州模拟)已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论________.解析 由等比数列的性质可知,b 1b 30=b 2b 29=…=b 11b 20, ∴10b 11b 12…b 20=30b 1b 2…b 30. 答案10b 11b 12…b 20=30b 1b 2…b 307.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析 ∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,所以它们的体积比为1∶8. 答案 1∶88.已知结论:“在正三角形ABC 中,若D 是边BC 的中点,G 是三角形ABC 的重心,则AGGD=2”.若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等”,则AOOM=________.解析 由题知,O 为正四面体的外接球、内切球球心,设正四面体的高为h ,由等体积法可求内切球半径为14h ,外接球半径为34h ,所以AOOM =3.答案 3三、解答题(共23分)9.(11分)平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S =12×底×高;(3)三角形的中位线平行于第三边且等于第三边的12;……请类比上述性质,写出空间中四面体的相关结论. 解 由三角形的性质,可类比得空间四面体的相关性质为: (1)四面体的任意三个面的面积之和大于第四个面的面积; (2)四面体的体积V =13×底面积×高;(3)四面体的中位面平行于第四个面且面积等于第四个面的面积的14.10.(12分)如图所示,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,且DE ∥BA .求证:ED =AF (要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).解 (1)同位角相等,两条直线平行,(大前提) ∠BFD 与∠A 是同位角,且∠BFD =∠A ,(小前提) 所以DF ∥EA .(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提) DE ∥F A 且DF ∥EA ,(小前提)所以四边形AFDE 为平行四边形.(结论) (3)平行四边形的对边相等,(大前提) ED 和AF 为平行四边形的对边,(小前提) 所以ED =AF .(结论)上面的证明可简略地写成:⎭⎪⎬⎪⎫∠BFD =∠A ⇒DF ∥EA DE ∥F A ⇒ 四边形AFDE 是平行四边形⇒ED =AF .B 级 综合创新备选 (时间:30分钟 满分:40分)一、选择题(每小题5分,共10分)1.(2011·江西)观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的末四位数字为( ).A .3 125B .5 625C .0 625D .8 125解析 ∵55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,510=9 765 625,… ∴5n (n ∈Z ,且n ≥5)的末四位数字呈周期性变化,且最小正周期为4,记5n (n ∈Z ,且n ≥5)的末四位数字为f (n ),则f (2 011)=f (501×4+7)=f (7) ∴52 011与57的末四位数字相同,均为8 125.故选D. 答案 D2.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( ). A .289 B .1 024 C .1 225 D .1 378解析 观察三角形数:1,3,6,10,…,记该数列为{a n },则a 1=1, a 2=a 1+2, a 3=a 2+3, …a n =a n -1+n .∴a 1+a 2+…+a n =(a 1+a 2+…+a n -1)+(1+2+3+…+n )⇒a n =1+2+3+…+n =n n +12,观察正方形数:1,4,9,16,…,记该数列为{b n },则b n =n 2.把四个选项的数字,分别代入上述两个通项公式,可知使得n 都为正整数的只有1 225. 答案 C二、填空题(每小题4分,共8分)3.(2012·南昌调研)已知m >0,不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,可推广为x +mx n ≥n +1,则m 的值为________.解析 x +4x 2=x 2+x 2+4x 2,x +27x 3=x 3+x 3+x 3+27x 3,易得其展开后各项之积为定值1,所以可猜想出x +m x n =x n +x n +…+x n +mx n ,也满足各项乘积为定值1,于是m =n n .答案 n n4.(★)在Rt △ABC 中,若∠C =90°,AC =b ,BC =a ,则△ABC 外接圆半径r =a 2+b 22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a ,b ,c ,则其外接球的半径R =________.解析 (构造法)通过类比可得R =a 2+b 2+c 22.证明:作一个在同一个顶点处棱长分别为a ,b ,c 的长方体,则这个长方体的体对角线的长度是a 2+b 2+c 2,故这个长方体的外接球的半径是 a 2+b 2+c 22,这也是所求的三棱锥的外接球的半径. 答案a 2+b 2+c 22【点评】 本题构造长方体.解题时题设条件若是三条线两两互相垂直,就要考虑到构造正方体或长方体三、解答题(共22分)5.(10分)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5,(1)求a 18的值;(2)求该数列的前n 项和S n .解 (1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5,易知a 2n -1=2,a 2n =3(n =1,2,…),故a 18=3. (2)当n 为偶数时,S n =a 1+a 2+…+a n =(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n ) =2+2+…+2n 2个2+3+3+…+3n 2个3=52n ;当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12.综上所述:S n=⎩⎨⎧52n n 为偶数,52n -12 n 为奇数.6.(12分)某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f 1+1f 2-1+1f 3-1+…+1f n -1的值.解 (1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, ……由上式规律,所以得出f (n +1)-f (n )=4n . 因为f (n +1)-f (n )=4n ⇒f (n +1)=f (n )+4n ⇒ f (n )=f (n -1)+4(n -1) =f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3) =…=f (1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1.(3)当n ≥2时,1f n -1=12n n -1 =12⎝⎛⎭⎫1n -1-1n .∴1f 1+1f 2-1+1f 3-1+…+1f n -1=1+12× ⎝⎛⎭⎫1-12+12-13+13-14+…+1n -1-1n=1+12⎝⎛⎭⎫1-1n =32-12n.。