高考理科数学第一轮复习测试题

合集下载

高考理科数学第一轮复习测试题17 A级 基础达标演练

高考理科数学第一轮复习测试题17 A级 基础达标演练

A 级 基础达标演练(时间:40分钟 满分:60分)一、选择题(每小题5分,共25分) 1.下列函数中,与函数y =1x有相同定义域的是( ). A .f (x )=ln x B .f (x )=1xC .f (x )=|x |D .f (x )=e x解析 由y =1x可得定义域是{x |x >0}.f (x )=ln x 的定义域是{x |x >0};f (x )=1x 的定义域是{x |x ≠0};f (x )=|x |的定义域是x ∈R ;f (x )=e x 定义域是x ∈R .故选A. 答案 A[来源:Z+xx+]2.(★)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( ).解析 (筛选法)根据函数的定义,观察得出选项B. 答案 B【点评】 本题解题利用的是筛选法,即根据题设条件筛选出正确选项,这种方法在选择题中经常应用.3.(2010·陕西) 已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( ).A.12B.45 C .2 D .9[来源:学*科*网] 解析 f (f (0))=f (2)=4+2a 由已知4a =4+2a ,解得a =2. 答案 C4.已知函数f (x )的图象是两条线段(如图,不含端点),则f ⎣⎡⎦⎤f ⎝⎛⎭⎫13=( ).A .-13B.13 C .-23D.23解析 由图象知,f (x )=⎩⎪⎨⎪⎧x +1 (-1<x <0),x -1 (0<x <1).∴f ⎝⎛⎫13=13-1=-23, ∴f ⎣⎡⎦⎤f ⎝⎛⎭⎫13=f ⎝⎛⎭⎫-23=-23+1=13. 答案 B5.(2011·天津)对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x-x 2),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ). A .(-∞,-2]∪⎝⎛⎭⎫-1,32 B .(-∞,-2]∪⎝⎛⎭⎫-1,-34[来源:] C.⎝⎛⎭⎫-1,14∪⎝⎛⎭⎫14,+∞ D.⎝⎛⎭⎫-1,-34∪⎣⎡⎭⎫14,+∞ 解析 当(x 2-2)-(x -x 2)≤1,即-1≤x ≤32时,f (x )=x 2-2;当x 2-2-(x -x 2)>1,即x <-1或x >32时,f (x )=x -x 2,∴f (x )=⎩⎨⎧x 2-2 ⎝⎛⎭⎫-1≤x ≤32,x -x 2⎝⎛⎭⎫x <-1或x >32,f (x )的图象如图所示,c ≤-2或-1<c <-34.答案 B[来源:学.科.网Z.X.X.K]二、填空题(每小题4分,共12分)6.设函数f (x )=|2x -1|+x +3,则f (-2)=________;若f (x )≤5,则x 的取值范围是________. 解析 f (-2)=|2×(-2)-1|+(-2)+3=6,|2x -1|+x +3≤5⇔|2x -1|≤2-x ⇔x -2≤2x -1≤2-x ⇔⎩⎪⎨⎪⎧2x -1≥x -2,2x -1≤2-x ,∴-1≤x ≤1.答案 6 -1≤x ≤17.已知函数f (x )、g (x )分别由下表给出:则f [g (1)]的值为________;满足f [g (x )]>g [f (x )]的x 的值是________. 解析 g (1)=3 f [g (1)]=1 g [f (1)]=3g (2)=2 f [g (2)]=3 g [f (2)]=1 g (3)=1 f [g (3)]=1 g [f (3)]=3 因此满足f (g (x ))>g (f (x ))的x =2. 答案 1 28.若函数f (x )= 的定义域为R ,则a 的取值范围为________. 解析 ∵y = 的定义域为R , ∴对一切x ∈R 都有2x 2+2ax -a ≥1恒成立,即x 2+2ax -a ≥0恒成立.∴Δ≤0成立,即4a 2+4a ≤0, ∴-1≤a ≤0. 答案 [-1,0] 三、解答题(共23分)9.(11分)求下列函数的定义域: (1)f (x )=lg (4-x )x -3;(2)y =25-x 2-lg cos x ; (3)y =lg(x -1)+lgx +1x -1+19-x. 解 (1)⎩⎪⎨⎪⎧4-x >0x -3≠0,⇒x <4且x ≠3,故该函数的定义域为(-∞,3)∪(3,4).(2)⎩⎪⎨⎪⎧25-x 2≥0,cos x >0,即⎩⎪⎨⎪⎧-5≤x ≤5,2k π-π2<x <2k π+π2,k ∈Z ,故所求定义域为⎣⎡⎭⎫-5,-3π2∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5. (3)⎩⎪⎨⎪⎧x -1>0,x +1x -1>0,9-x >0,即⎩⎪⎨⎪⎧x >1,x >1,x <9或x <-1,解得1<x <9.故该函数的定义域为(1,9).10.(12分)记f (x )=lg(2x -3)的定义域为集合M ,函数g (x )= 1-2x -1的定义域为集合N ,求:(1)集合M 、N ;(2)集合M ∩N ,M ∪N .解 (1)M ={x |2x -3>0}=⎩⎨⎧⎭⎬⎫x ⎪⎪x >32,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪1-2x -1≥0=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -3x -1≥0={x |x ≥3,或x <1};(2)M ∩N ={x |x ≥3},M ∪N =⎩⎨⎧⎭⎬⎫x ⎪⎪x <1或x >32. B 级 综合创新备选 (时间:30分钟 满分:40分)一、选择题(每小题5分,共10分)1.(2011·济南模拟)如下图,是张大爷晨练时所走的离家距离(y )与行走时间(x )之间的函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是().解析 据图象可知在第一段时间张大爷离家距离随时间的增加而增加,在第二段时间内,张大爷离家的距离不变,第三段时间内,张大爷离家的距离随时间的增加而减少,最后回到始点位置,对比各选项,只有D 选项符合条件. 答案 D2.(★)(2011·北京)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( ).A .75,25B .75,16C .60,25D .60,16解析 (回顾检验法)∵c A=15,故A >4,则有c2=30,解得c =60,A =16,将c =60,A =16代入解析式检验知正确.故选D. 答案 D【点评】 解决分段函数的关键在于“对号入座”,解出结果后代入对应解析式检验是否正确.二、填空题(每小题4分,共8分)3.已知函数f (x )=1x +1,则函数f [f (x )]的定义域是________.解析 据题意可得f [f (x )]=11x +1+1,若使函数有意义只需⎩⎪⎨⎪⎧x +1≠0,1x +1+1≠0,解得x ≠-1且x ≠-2,故函数的定义域为{x |x ≠-1且x ≠-2}. 答案 {x |x ≠-1,且x ≠-2}4.(2011·四川)函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数.例如,函数f (x )=2x +1(x ∈R )是单函数.下列命题: ①函数f (x )=x 2(x ∈R )是单函数;②若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ③若f :A →B 为单函数,则对于任意b ∈B ,它至多有一个原象; ④函数f (x )在某区间上具有单调性,则f (x )一定是单函数. 其中的真命题是________.(写出所有真命题的编号)解析 对①,f (x )=x 2,则f (-1)=f (1),此时-1≠1,则f (x )=x 2不是单函数,①错;对②,当x 1,x 2∈A ,f (x 1)=f (x 2)时有x 1=x 2,与x 1≠x 2时,f (x 1)≠f (x 2)互为逆否命题,②正确;对③,若b ∈B ,b 有两个原象时.不妨设为a 1,a 2可知a 1≠a 2,但f (a 1)=f (a 2),与题中条件矛盾,故③正确;对④,f (x )=x 2在(0,+∞)上是单调递增函数,但f (x )=x 2在R 上就不是单函数,④错误;综上可知②③正确. 答案 ②③三、解答题(共22分)5.(10分)已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1, x >0,2-x , x <0,(1)求f [g (2)]与g [f (2)]. (2)求f [g (x )]与g [f (x )]的表达式. 解 (1)g (2)=1,f [g (2)]=f (1)=0. f (2)=3,g [f (2)]=g (3)=2. (2)当x >0时,f [g (x )]=f (x -1)=(x -1)2-1=x 2-2x ; 当x <0时,f [g (x )]=f (2-x )=(2-x )2-1=x 2-4x +3.即f [g (x )]=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.g [f (x )]=⎩⎪⎨⎪⎧x 2-2,x <-1,或x >1,3-x 2,-1<x <1. 6.(12分)(2012·唐山一中月考)已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值为1,且f (x )+g (x )为奇函数,求函数f (x )的表达式. 解 设f (x )=ax 2+bx +c (a ≠0), 则f (x )+g (x )=(a -1)x 2+bx +c -3,又f (x )+g (x )为奇函数,∴a =1,c =3.[来源:学科网] ∴f (x )=x 2+bx +3,对称轴x =-b2.当-b2≥2,即b ≤-4时,f (x )在[-1,2]上为减函数,∴f (x )的最小值为f (2)=4+2b +3=1. ∴b =-3.∴此时无解.当-1<-b2<2,即-4<b <2时,f (x )min =f ⎝⎛⎭⎫-b 2=3-b24=1,∴b =±2 2. ∴b =-22,此时f (x )=x 2-22x +3,当-b2≤-1,即b ≥2时,f (x )在[-1,2]上为增函数,∴f (x )的最小值为f (-1)=4-b =1. ∴b =3.∴f (x )=x 2+3x +3.综上所述,f (x )=x 2-22x +3,或f (x )=x 2+3x +3.。

江西省临川第一中学暨临川一中实验学校2023届高三一轮复习验收考试理科数学试卷

江西省临川第一中学暨临川一中实验学校2023届高三一轮复习验收考试理科数学试卷

临川一中暨临川一中实验学校2023届高三一轮复习验收理科数学命题人:谭华审题人:肖婷琴本试卷共4页,23小题,满分150分,考试时间120分钟【注意事项】1.答题前,请您务必将自己的姓名、准考证号用书写黑色字迹的0.5毫米签字笔填写在答题卡和答题纸上.2.作答非选择题必须用书写黑色字迹的0.5毫米签字笔写在答题纸上的指定位置,在其它位置作答一律无效.作答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案,请保持卡面清洁和答题纸清洁,不折叠、不破损.3.考试结束后,请将试卷和答题纸一并交回.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21xA y y ==-,()12log 2B x y x ⎧⎫⎪⎪==-⎨⎬⎪⎪⎩⎭,则A B =A.(]1,2-B.()1,2- C.(],2-∞ D.(),2-∞2.已知i5ia +=-,则正实数=a A.1B.2C.3D.23.下表为某外来生物物种入侵某河流生态后的前3个月繁殖数量y (单位:百只)的数据,通过相关理论进行分析,知可用回归模型()1eR aty a +=∈对y 与t 的关系进行拟合,则根据该回归模型,预测第6个月该物种的繁殖数量为A.3e 百只B. 3.5e 百只C.4e 百只D. 4.5e 百只4.平面向量a ,b 满足3=a b ,且4-=a b ,则a 与-a b 夹角的正弦值的最大值为A.14B.13C.12D.235.青铜器是指以青铜为基本原料加工而成的器皿、用器等.青铜器以其独特的器形,精美的纹饰,典雅的铭文向人们揭示了我国古代杰出的铸造工艺和文化水平.图中所示为觚,长身,侈口,口底均成喇叭状,外形近似双曲线的一部分绕虚轴所在直线旋转而成的曲面.已知,该曲面高15寸,上口直径为10寸,下口直径为7.5寸.最小横截面直径为6寸,则该双曲线的离心率为第t 个月123繁殖数量y1.4e 2.2e 2.4eA.53B.135C.52D.746.已知函数()2ln f x a x x =+的图象在1x =处的切线方程为30x y b -+=,则a b +=A.-2B.-1C.0D.17.在ABC △中,39A B C ==,cos cos cos cos cos cos A B B C C A ++=A.14B.14-C.13D.13-8.已知C ,D 是圆O :229x y +=上两个不同动点,直线()()120m x y m ++-+=恒过定点P ,若以CD 为直径的圆恒过点P ,则CD 的最小值为A.42- B.42+ C.822- D.822+9.对于2()(221)T n n n =++单位时间(表示代码中一条语句执行一次的耗时)的算法A 来说,由于分析的是代码执行总时间()T n 和代码执行次数n 之间的关系,可不考虑单位时间.此外,若用()f n 来抽象表示一个算法的执行总次数,则前面提到的算法可抽象为2(1)22n f n n =++,因此我们可以记作()(())T n O f n =,其中O 表示代码的执行总时间()T n 和其执行总次数()f n 成正比.这种表示称为大O 记法,其表示算法的时间复杂度.在大O 记法中,非最高次项及各项之前的系数及对数的底数可以忽略,即上面所提的算法A 的时间复杂度可以表示为2()O n .对于如下流程所代表的算法,其时间复杂度可以表示为A.(log )O nB.(log )O n nC.2()O nD.(1)O 10.已知正项数列{}n a 满足11a =,且11111n n n n n a a a a a ++⎛⎫-=⎪⎪⎭,100S 为{}n a 前100项和,下列说法正确的是A.1007665S <<B.1006554S << C.1005443S << D.1004332S <<11.如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,12AA =,1AB BC ==,90ABC ∠=︒,三棱柱外接球的球心为O ,点E 是侧棱1BB 上的一动点.下列说法不正确的是A.直线AC 与直线1C E 是异面直线B.1A E 与1AC 不垂直C.三棱锥1E AA O -的体积为定值D.1AE EC +的最小值为2212.已知215,sin ,lg 933a b c ===,则,,a b c 的大小关系为A.a b c >>B.a c b >>C.c b a>> D.c a b>>二、填空题:本题共4小题,每小题5分,共20分.13.若2023220230122023(13)a a x a x a x +=++++…,则01234520222023a a a a a a a a +--+++--=…__________.14.在棱长为1的正方体1111ABCD A B C D -的8个顶点中,随机选取4个构成一个四面体,记该四面体的体积为V ,则V 的数学期望EV =__________.15.已知()sin f x x ω=的周期2T =,将()f x 的图象向右平移23个单位长度得到()g x 的图象.记()f x 与()g x 在y 轴左侧的交点依次为12,n A A A …,在y 轴右侧的交点依次为12,n B B B …,O为坐标原点,则1122n n OA OB OA OB OA OB ⋅+⋅+++=…__________.16.已知曲线C 是抛物线[]28(1),1,3y x x =-∈的一部分,将曲线C 绕坐标原点O 逆时针旋转α,得到曲线C'.若曲线C'是函数()f x 的图象,且()f x 始终在其定义域内单调递减,则tan α的取值范围是__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17—21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知ABC △的内角,,A B C 所对边的长分别为,,a b c ,且22222b c a +=.(1)若1tan 3C =,求A 的大小;(2)当A C -取得最大值时,试判断ABC △的形状,并说明理由.18.如图,四棱锥P ABCD -的底面ABCD 为平行四边形,平面PAB ⊥平面PBC ,22PB PC ==,AB AP =,,M N 分别为,BP AD 的中点,且PC MN ⊥.(1)证明:PC AD ⊥;(2)若ABP △为正三角形,求直线MN 与平面PAC 所成角的余弦值.19.疫情防控期间,某学校为保障师生们的安全,建立了值日教师定点巡逻机制.已知X 老师被安排在高二年级教学楼第3层,该层共有高二9班、高二10班,高二11班3个班.假设X 老师每天早上7点开始巡逻,首先来到高二10班,此后每停留5分钟后其巡逻地点按如下方式变化:①若X 老师在高二9班,则有50%的可能前往高二11班,50%的可能前往高二10班;②若X 老师在高二10班,则有80%的可能前往高二9班,20%的可能前往高二11班;③若X 老师在高二11班,则有50%的可能前往高二9班,50%的可能前往高二10班.设X 老师在9班的可能性为i P (i 为转换地点的次数).(1)求早上7:15时X 老师在9班的可能性2P ;(2)随着时间的推移,X 老师在哪个班结束巡逻的概率最大?请说明理由.20.已知,A B 是椭圆2222:1(0)x y E a b a b+=>>的左、右顶点,12,F F 是E 的左、右焦点,5(2,3M 是椭圆上一点,且12MF F △的内心的纵坐标为23.(1)求椭圆E 的标准方程;(2)若P 是椭圆E 上异于,A B 的一动点,过,A B 分别作12,l PA l PB ⊥⊥,12,l l 相交于点Q .则当点P 在椭圆E 上移动时,求1211QF QF +的取值范围.21.已知()()21ln ,2f x x x a x a a =---∈R .(1)判断函数()f x 的单调性;(2)已知()()112g x f x a a x a ⎛⎫=+-+-⎪⎝⎭,若12,x x 是函数()g x 的两个极值点,且12x x <,求证:()()12102f x f x <-<.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.在直角坐标系xOy 中,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为πsin 06ρθ⎛⎫-= ⎪⎝⎭.(1)写出l 的直角坐标方程;(2)已知点()0,2P m ,若l 与C 交于A ,B 两点,且32PA PB =,求m 的值.【选修4-5:不等式选讲】23.已知()(,,)f x x a x b c a b c =-+++∈R 的最小值为3.(1+(2)证明:2222221()1112b c a ab bc ac a b c ++≥+++++。

最新高三一轮复习第一次检测考试数学(理科)试题

最新高三一轮复习第一次检测考试数学(理科)试题

一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x∈N|x2+2x﹣3≤0},则集合A的真子集个数为()A. 3B. 4C. 31D. 32【答案】A【解析】【分析】求出集合,由此能求出集合A的真子集的个数.【详解】由题集合,∴集合A的真子集个数为.故选:A.【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.命题:“,”的否定为A. ,B. ,C. ,D. ,【答案】C【解析】特称命题的否定是全称命题,特称命题“”的否定为全称命题:,故选C.3.若,则()A. B. C. D.【答案】B【解析】分析:先对两边取对数,求出的值,再根据对数的换底公式和运算性质计算,即可求出答案.详解:,,故选B.点睛:本题考查指对互化,对数的换底公式和运算性质,属于基础题.4.设,则等于()A. B. C. 1 D.【答案】D【解析】【分析】原积分化为根据定积分的计算法则计算即可【详解】由题故选:D.【点睛】本题考查了定积分的计算,关键是求出原函数,属于基础题,5.已知曲线f(x)=lnx+在点(1,f(1))处的切线的倾斜角为,则a的值为()A. 1B. ﹣4C. ﹣D. ﹣1【答案】D【解析】分析:求导,利用函数f(x)在x=1处的倾斜角为得f′(1)=﹣1,由此可求a的值.详解: 函数(x>0)的导数,∵函数f(x)在x=1处的倾斜角为∴f′(1)=﹣1,∴1+=﹣1,∴a=﹣1.故选:D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.6.已知偶函数f(x)在[0,+∞)单调递增,若f(2)=﹣2,则满足f(x﹣1)≥﹣2的x的取值范围是()A. (﹣∞,﹣1)∪(3,+∞)B. (﹣∞,﹣1]∪[3,+∞)C. [﹣1,﹣3]D. (﹣∞,﹣2]∪[2,+∞)【答案】B【解析】【分析】根据题意,结合函数的奇偶性与单调性分析可得若,即有,可得,解可得的取值范围,即可得答案.【详解】根据题意,偶函数在单调递增,且,可得,若,即有,可得,解可得:即的取值范围是;故选:B.【点睛】本题考查函数的单调性与奇偶性的综合应用,关键是利用函数的奇偶性与单调性转化原不等式.7.已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),若f(﹣1)>﹣2,f(﹣7)=,则实数a的取值范围为()A. B. (﹣2,1) C. D.【答案】C【解析】【分析】由是定义在上的奇函数,且满足,求出函数的周期,由此能求出实数的取值范围.【详解】∵是定义在上的奇函数,且满足,,函数的周期为4,则又,即,即解得故选C.【点睛】本题考查函数的周期性和奇偶性的应用,是基础题.解题时要认真审题,仔细解答.8.若函数f(x)=a x﹣a﹣x(a>0且a≠1)在R上为减函数,则函数y=log a(|x|﹣1)的图象可以是()A. B. C. D.【答案】C【解析】【分析】由函数在上为减函数,由此求得的范围,结合的解析式.再根据对数函数的图象特征,得出结论.【详解】由函数在上为减函数,故.函数是偶函数,定义域为函数的图象,时是把函数的图象向右平移1个单位得到的,故选:C.【点睛】本题主要考查函数的奇偶性和单调性的应用,对数函数的图象特征,函数图象的平移规律,属于中档题.9.已知函数f(x)是定义域为R的周期为3的奇函数,且当x∈(0,1.5)时f(x)=ln(x2﹣x+1),则方程f(x)= 0在区间[0,6]上的解的个数是()A. 5B. 7C. 9D. 11【解析】【分析】要求方程在区间上的解的个数,根据函数是定义域为的周期为3的奇函数,且当时,可得一个周期内函数零点的个数,根据周期性进行分析不难得到结论.【详解】∵时,令,则,解得,又∵是定义域为的的奇函数,∴在区间上,,又∵函数是周期为3的周期函数则方程在区间的解有0,1,1.5,2,3,4,4.5,5,6共9个故选:D.【点睛】本题考查函数零点个数的判断,考查函数的奇偶性,周期性的应用,属中档题. 10.点P在边长为1的正方形ABCD的边上运动,M是CD的中点,则当P沿A﹣B﹣C﹣M运动时,点P经过的路程x与△APM的面积y的函数y=f(x)的图象的形状大致是图中的()A. B. C. D.【答案】A【解析】随着点P的位置的不同,讨论三种情形即在AB上,在BC上,以及在CM上分别建立面积的函数,分段画出图象即可.【详解】:①当点P在AB上时,如图:②当点P在BC上时,如图:③当点P在CM上时,如图,综上①②③,得到的三个函数都是一次函数,由一次函数的图象与性质可以确定y与x的图形.只有A的图象是三个一次函数,且在第二段上y随x的增大而减小,故选:A.【点睛】本题主要考查了分段函数的图象,分段函数问题,应切实理解分段函数的含义,把握分段解决的策略.11.对于任意x∈R,函数f(x)满足f(2-x)=-f(x),且当x≥1时,函数f(x)=lnx,若a =f(2-0.3),b=f(log3π),c=f(-),则a,b,c大小关系是( )A. b>a>cB. b>c>aC. c>a>bD. c>b>a【答案】A【解析】【分析】由判断函数关于点对称,根据时是单调增函数,判断在定义域上单调递增;再由自变量的大小判断函数值的大小.【详解】对于任意函数满足,∴函数关于点对称,当时,是单调增函数,∴在定义域上是单调增函数;由∴∴b>a>c.故选:A.【点睛】本题主要考查了与函数有关的命题真假判断问题,涉及函数的单调性与对称性问题,是中档题.12.设函数f'(x)是函数f(x)(x∈R)的导函数,已知f'(x)<f(x),且f'(x)=f'(4﹣x),f(4)=0,f(2)=1,则使得f(x)﹣2e x<0成立的x的取值范围是()A. (﹣2,+∞) B. (0,+∞) C. (1,+∞) D. (4,+∞)【答案】B【解析】【分析】构造函数,利用的导数判断函数的单调性,求出不等式的解集即可.【详解】设则即函数在上单调递减,因为,即导函数关于直线对称,所以函数是中心对称图形,且对称中心,由于,即函数过点,其关于点(的对称点(也在函数上,所以有,所以而不等式即即所以故使得不等式成立的的取值范围是故选:B.【点睛】本题考查了利用导数判断函数的单调性,并由函数的单调性和对称性解不等式的应用问题,属中档题.二、填空题(共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.已知命题p:“存在x∈R,使”,若“非p”是假命题,则实数m的取值范围是_____.【答案】【解析】试题分析:非p即:“对任意x∈R, 4x+2x+1+m0”,如果“非p”是假命题,即m-4x-2x+1,而令t=,y===,,所以m<0,故答案为。

最新人教版高中理科数学一轮复习全套单元测试题含答案及解析

最新人教版高中理科数学一轮复习全套单元测试题含答案及解析
15.若在区间[0,1]上存在实数x使2x(3x+a)<1成立,则a的取值范围是.
16.设p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m-2)x-3m+10=0无实根,则使p∨q为真,p∧q为假的实数m的取值范围是.
第二章
(
一、选择题(本大题共12小题,每小题5分,共60分)
1.设集合M={x|2x-1<1,x∈R},N={x|lo x<1,x∈R},则M∩N等于()
A.[2,+∞)B.(2,+∞)
C.[1,+∞)D.(-∞,-1)
7.已知集合A= ,B={y|y= },则A∩(∁RB)=()
A.[-3,5]B.(-3,1)
C.(-3,1]D.(-3,+∞)
8.不等式x2-2x+m>0在R上恒成立的必要不充分条件是()
A.m>2B.0<m<1
C.m>0D.m>1
A.p:∃x0∈A,2x0∈B
B.p:∃x0∉A,2x0∈B
C.p:∃x0∈A,2x0∉B
D.p:∀x∉A,2x∉B
5.“p∨q是真命题”是“p为假命题”的()
A.必要不充分条件
B.充分不必要条件
C.充分必要条件
D.既不充分也不必要条件
6.已知p:x≥k,q: <1,若p是q的充分不必要条件,则实数k的取值范围是()
A.若α≠ ,则sinα≠
B.若α= ,则sinα≠
C.若sinα≠ ,则α≠
D.若sinα≠ ,则α=
3.已知集合A={-2,-1,0,1,2,3},B={x|x2-2x-3<0},则A∩B=()

高考理科数学第一轮复习测试题10

高考理科数学第一轮复习测试题10

(时间:40分钟 满分:60分)一、填空题(每小题5分,共40分)1.(2011·深圳模拟)直线⎩⎨⎧x =-2-2t ,y =3+2t(t 为参数)上与点A (-2,3)的距离等于2的点的坐标是________.解析 由题意知(-2t )2+(2t )2=(2)2,所以t 2=12,t =±22,代入⎩⎨⎧x =-2-2t ,y =3+2t(t 为参数),得所求点的坐标为(-3,4)或(-1,2). 答案 (-3,4)或(-1,2)2.(2011·东莞模拟)若直线l :y =k x 与曲线C :⎩⎪⎨⎪⎧x =2+cos θ,y =sin θ(参数θ∈R )有唯一的公共点,则实数k =________.解析 曲线C 化为普通方程为(x -2)2+y 2=1,圆心坐标为(2,0),半径r =1.由已知l 与圆相切,则r =|2k |1+k 2=1⇒k =±33.答案 ±333.(2011·广东高考全真模拟卷一)直线3x +4y -7=0截曲线⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数)的弦长为________.解析 曲线可化为x 2+(y -1)2=1,圆心到直线的距离d =|0+4-7|9+16=35,则弦长l =2r 2-d 2=85. 答案 854.(2011·揭阳模拟)已知直线l 1:⎩⎪⎨⎪⎧ x =1-2t ,y =2+k t (t 为参数),l 2:⎩⎪⎨⎪⎧x =s ,y =1-2s (s 为参数),若l 1∥l 2,则k =________;若l 1⊥l 2,则k =________.解析 将l 1、l 2的方程化为直角坐标方程得l 1:k x +2y -4-k =0,l 2:2x +y -1=0,由l 1∥l 2,得k 2=21≠4+k1⇒k =4,由l 1⊥l 2,得2k +2=0⇒k =-1.答案 4 -15.(2011·湛江调研)参数方程⎩⎪⎨⎪⎧x =3+3cos θ,y =-3+3sin θ(θ为参数)表示的图形上的点到直线y =x 的最短距离为________.解析 参数方程⎩⎪⎨⎪⎧x =3+3cos θ,y =-3+3sin θ化为普通方程为(x -3)2+(y +3)2=9,圆心坐标为(3,-3),半径r =3,则圆心到直线y =x 的距离d =|3-(-3)|2=32,则圆上点到直线y =x 的最短距离为d -r =32-3=3(2-1). 答案 3(2-1)6.(2011·陕西)(坐标系与参数方程选做题)直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:⎩⎪⎨⎪⎧x =3+cos θ,y =sin θ(θ为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________.解析 消掉参数θ,得到关于x 、y 的一般方程C 1:(x -3)2+y 2=1,表示以(3,0)为圆心,以1为半径的圆;C 2表示的是以原点为圆心的单位圆,|AB |的最小值为3-1-1=1. 答案 17.已知在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与曲线C :⎩⎨⎧x =2cos θ,y =sin θ(θ是参数)有两个不同的交点P 和Q ,则k 的取值范围为________. 解析 曲线C 的参数方程:⎩⎨⎧x =2cos θ,y =sin θ(θ是参数)化为普通方程:x 22+y 2=1,故曲线C是一个椭圆.由题意,利用点斜式可得直线l 的方程为y =k x +2,将其代入椭圆的方程得x 22+(k x +2)2=1,整理得⎝⎛⎭⎫12+k 2x 2+22k x +1=0,因为直线l 与椭圆有两个不同的交点P 和Q ,所以Δ=8k 2-4×⎝⎛⎭⎫12+k 2=4k 2-2>0,解得k <-22或k >22.即k 的取值范围为 ⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞.答案 ⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞8.如果曲线C :⎩⎪⎨⎪⎧x =a +2cos θ,y =a +2sin θ(θ为参数)上有且仅有两个点到原点的距离为2,则实数a的取值范围是________.解析 将曲线的参数方程转化为普通方程,即(x -a )2+(y -a )2=4,由题意可知,以原点为圆心,以2为半径的圆与圆C 总相交,根据两圆相交的充要条件,得0<2a 2<4, ∴0<a 2<8,解得0<a <22或-22<a <0. 答案 (-22,0)∪(0,22)二、解答题(共20分)9.(10分)(2010·辽宁)已知P 为半圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程.解 (1)由已知,M 点的极角为π3,且M 点的极径等于π3,故点M 的极坐标为⎝⎛⎭⎫π3,π3. (2)M 点的直角坐标为⎝⎛⎭⎫π6,3π6,A (1,0).故直线AM 的参数方程为⎩⎨⎧x =1+⎝⎛⎭⎫π6-1t ,y =3π6t (t 为参数).10.(10分)(2010·新课标全国)已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.解 (1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1.联立方程组⎩⎨⎧y =3(x -1),x 2+y 2=1,解得C 1与C 2的交点坐标为(1,0),⎝⎛⎭⎫12,-32.(2)C 1的普通方程为x sin α-y cos α-sin α=0. A 点坐标为(sin 2 α,-cos αsin α), 故当α变化时,P 点轨迹的参数方程为⎩⎨⎧x =12sin 2α,y =-12sin αcos α(α为参数),P 点轨迹的普通方程为⎝⎛⎭⎫x -142+y 2=116.故P 点轨迹是圆心为⎝⎛⎭⎫14,0,半径为14的圆.。

高考理科数学第一轮复习测试题6

高考理科数学第一轮复习测试题6

(时间:40分钟 满分:60分)一、填空题(每小题5分,共40分)1.如图所示,AB 是⊙O 的直径,MN 与⊙O 切于点C ,AC =12BC ,则sin ∠MCA =________.解析 由弦切角定理得, ∠MCA =∠ABC ,sin ∠ABC =AC AB =AC AC 2+BC 2=AC 5AC =55.答案552.如图所示,已知AB 是⊙O 的直径,CD 与AB 相交于点E ,∠ACD =60°,∠ADC =45°,则∠AEC =________.解析 如图,连接BC ,由圆周角定理推论2知,∠ACB =90°. ∵∠ACD =60°,∴∠DCB =30°, 的度数=60°.∴∠ADC =45°,∴ 的度数=90°. ∴∠AEC =12( )的度数=75°.答案 75°3.如图,AB 为⊙O 的直径,C 为⊙O 上一点.AD 和过C 点的切线互相垂直,垂足为D ,∠DAB =80°,则∠ACO =________.解析 ∵CD 是⊙O 的切线,∴OC ⊥CD ,又∵AD ⊥CD ,∴OC ∥AD . 由此得,∠ACO =∠CAD ,∵OC =OA ,∴∠CAO =∠ACO ,∴∠CAD =∠CAO ,故AC 平分∠DAB .∴∠CAO =40°, 又∵∠ACO =∠CAO ,∴∠ACO =40°. 答案 40°4.如右图所示,已知⊙O 的直径与弦AC 的夹角为30°,过C 点的切线PC 与AB 的延长线交于P ,PC =5, 则⊙O 的半径为________.解析 如图,连接OC ,则有∠COP =60°, OC ⊥PC ,可求OC =53 3.答案533 5.(2011·深圳模拟)如图,P 是等边三角形ABC 外接圆 上任一点,AP 交BC 于点D ,AP =4,AD =2,则AC =________.解析 如图,连接PC 、PB ,在等边三角形A BC 中,有∠ABC =∠ACB =60°, 又∠ABC =∠APC ,所以∠ACB =∠APC . 而∠P AC 是公共角,所以△APC 和△ACD 相似, 所以AC AP =AD AC,即AC 2=AP ·AD =4×2=8, 即AC =2 2. 答案 2 26.(2011·东莞调研)如图,P A 、PB 是圆O 的切线 ,切点分别为A 、B ,点C 在圆O 上,如果∠P =50°,那么∠ACB =________.解析 连接OA 、OB ,因为P A 、PB 是圆O 的切线,所以∠OBP =∠OAP =90°,又因为∠P =50°,所以∠AOB =130°,所以∠ACB =65°. 答案 65°7.(2011·汕头调研)如图,已知P A 是圆O (O 为圆心)的切线,切点为A ,PO 交圆O 于B ,C 两点,AC =3,∠P AB =30°,则圆O 的面积为________.解析 连接OA ,由∠P AB =30°,得∠OCA =∠OAC =30°, 由余弦定理得,AC 2=OA 2+OC 2-2OA ·OC cos 120°=3OA 2, OA =13AC =1,因此圆O 的面积等于π×12=π. 另解 由∠P AB =30°,∴∠ACB =30°,在Rt △ABC 中, AC =3,∴CB =2,∴OC =1,因此圆O 的面积等于π×12=π. 答案 π8.(2011·韶关调研)如图所示,CA 和CB 都是⊙O 的切线,切点分别是A 、B ,如果⊙O 的半径为23,且AB =6,则∠ACB =________.解析 如图,连接OC 交于AB 于点D .∵CA 、CB 分别是 ⊙O 的切线,∴CA =CB ,OC 平分∠ACB ,故OC ⊥AB . 由AB =6,可知BD =3,在Rt △OBD 中,OB =23,故sin ∠BOD =BD OB =323=32,所以∠BOD =60°,又因为B 是切点,故OB ⊥BC ,所以∠OCB =30°.故∠ACB =60°. 答案 60°二、解答题(共20分)9.(10分)如右图所示,AB 为圆O 的直径,BC ,CD 为圆O 的切线,B 、D 为切点. (1)求证:AD ∥OC ;(2)若圆O 的半径为1,求AD ·OC 的值. (1)证明 如图所示,连接OD ,BD , ∵BC ,CD 为⊙O 的切线,∴BD ⊥OC , ∴又AB 为圆O 的直径,∴AD ⊥DB , ∴AD ∥OC .(2)解 因为AO =OD ,则∠1=∠A =∠3,Rt △BAD ∽Rt △COD ,∴AD OD =ABOC ,即AD ·OC=AB ·OD =2.10.(10分)如图,△ABC 的角平分线AD 的延长线交它的外接圆于点E .(1)证明:△ABE ∽△ADC ;(2)若△ABC 的面积S =12AD ·AE ,求∠BAC 的大小.(1)证明 由已知条件,可得∠BAE =∠CAD . 因为∠AEB 与∠ACB 是同弧上的圆周角, 所以∠AEB =∠ACD . 故△ABE ∽△ADC .(2)解 因为△ABE ∽△ADC , 所以AB AD =AE AC ,即AB ·AC =AD ·AE .又S =12AB ·AC sin ∠BAC ,且S =12AD ·AE .故AB ·AC sin ∠BAC =AD ·AE .则sin ∠BAC =1,又∠BAC 为三角形内角, 所以∠BAC =90°.。

高考理科数学第一轮复习测试题5

高考理科数学第一轮复习测试题5

(时间:40分钟 满分:60分)一、填空题(每小题5分,共40分)1.如图所示,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,AD =4,sin ∠ACD =45,则CD =________,BC =________.解析 在Rt △ADC 中,AD =4,sin ∠ACD =AD AC =45,得AC =5,又由射影定理AC 2=AD ·AB ,得AB =AC 2AD =254.∴BD =AB -AD =254-4=94,由射影定理CD 2=AD ·BD =4×94=9,∴CD =3.又由射影定理BC 2=BD ·AB =94×254,∴BC =154.答案 31542.(2011·揭阳模拟)如图,BD ⊥AE ,∠C =90°,AB =4,BC =2,AD =3,则EC =________.解析 依题意得,△ADB ∽△ACE ,∴AD AC =AB AE ,则AD ·AE =AC ·AB ,即得AD (AD +DE )=AC ·AB ,∴DE =6×4-93=5,∴DB =AB 2-AD 2=7,由DB EC =AD AC ,可得EC =DB ·AC AD =27. 答案 273.(2011·茂名模拟)如图,已知AB ∥EF ∥CD ,若AB =4,CD =12,则EF =________.解析 ∵AB ∥CD ∥EF , ∴AB EF =BC CF ,BC BF =CD EF,∴4EF =BC BC -BF ,BC BF =12EF, ∴4(BC -BF )=12BF ,∴BC =4BF , ∴BC BF =14=12EF ,∴EF =3. 答案 34.(2011·湛江模拟)如图,在△ABC 中,D 是AC 的中点,E 是BD 的中点,AE 交于BC 于F ,则BFFC=________.解析 如图,过点D 作DG ∥AF ,交BC 于点G ,易得FG =GC ,又在三角形BDG 中,BE =DE ,即EF 为三角形BDG 的中位线,故BF =FG ,因此BF FC =12.答案 125.如图所示,∠C =90°,∠A =30°,E 是AB 中点,DE ⊥AB 于E ,则△ADE 与△ABC 的相似比是________.解析 ∵E 为AB 中点,∴AE AB =12,即AE =12AB ,在Rt △ABC 中,∠A =30°,AC =32AB ,又∵Rt △AED ∽Rt △ACB ,∴相似比为AE AC =13.故△ADE 与△ABC 的相似比为1∶3. 答案 1∶36.如图,AE ∥BF ∥CG ∥DH ,AB =12BC =CD ,AE =12,DH =16,AH 交BF 于M ,则BM=________,CG =________.解析 ∵AE ∥BF ∥CG ∥DH ,AB =12BC =CD ,AE =12,DH =16,∴AB AD =14,BM DH =ABAD .∴BM 16=14,∴BM =4. 取BC 的中点P ,作PQ ∥DH 交EH 于Q ,如图,则PQ 是梯形ADHE 的中位线, ∴PQ =12(AE +DH )=12(12+16)=14.同理:CG =12(PQ +DH )=12(14+16)=15.答案 4 157.已知在△ABC 中,D 是BC 边上的中点,且AD =AC ,DE ⊥BC ,DE 与AB 相交于点E ,EC 与AD 相交于点F ,S △FCD =5,BC =10,则DE =________. 解析 过点A 作AM ⊥BC 于M ,由于∠B =∠ECD,且∠ADC =∠ACD ,得△ABC 与△FCD 相似, 那么S △ABC S △FCD =⎝⎛⎭⎫BC CD 2=4又S △FCD =5,那么S △ABC =20,由于S △ABC =12BC ·AM ,由BC =10,得AM =4,又因为DE ∥AM ,得DE AM =BD BM ,∵DM =12DC =52,因此DE 4=55+52,得DE =83.答案 838.如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,E 、F 分别是AB 、BC 的中点,EF 与BD 相交于点M .若DB =9,则BM =________.解析 ∵E 是AB 的中点, ∴AB =2EB .∵AB =2CD ,∴CD =EB .又AB ∥CD ,∴四边形CBED 是平行四边形.∴CB ∥DE ,∴⎩⎪⎨⎪⎧∠DEM =∠BFM ,∠EDM =∠FBM , ∴△EDM ∽△FBM .∴DM BM =DEBF.∵F 是BC 的中点,∴DE =2BF . ∴DM =2BM .∴BM =13DB =3.答案 3二、解答题(共20分)9.(10分)如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC ,过点D 作AC 的平行线DE ,交BA 的延长线于点E ,求证:(1)△ABC ≌△DCB ; (2)DE ·DC =A E ·BD .证明 (1)∵四边形ABCD 是等腰梯形,∴AC =BD . ∵AB =DC ,BC =CB , ∴△ABC ≌△D CB . (2)∵△ABC ≌△DCB .∴∠ACB =∠DBC ,∠ABC =∠DCB . ∵AD ∥BC ,∴∠DAC =∠ACB , ∠EAD =∠ABC .∴∠DAC =∠DBC ,∠EAD =∠DCB . ∵ED ∥AC ,∴∠EDA =∠DAC . ∴∠EDA =∠DBC , ∴△ADE ∽△CBD . ∴DE ∶BD =AE ∶CD . ∴DE ·DC =AE ·BD .10.(10分)已知:如图,△ABC 中,AB =AC ,∠BAC =90°,AE =13AC ,BD =13AB ,点F 在BC 上,且CF =13BC .求证:(1)EF ⊥BC ; (2)∠ADE =∠EBC .证明 设AB =AC =3a ,则AE =BD =a ,CF =2a . (1)CE CB =2a 32a =23,CF CA =2a 3a =23.又∠C 为公共角,故△BAC ∽△EFC ,由∠BAC =90°. ∴∠EFC =90°,∴EF ⊥BC . (2)由(1)得EF =2a ,故AE EF =a 2a =22,AD BF =2a 22a =22, ∴AE EF =AD FB.∵∠DAE =∠BFE =90°, ∴△ADE ∽△FBE ,∴∠ADE =∠EBC .。

高三数学第一轮复习试卷

高三数学第一轮复习试卷

一、选择题(每题5分,共50分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得最小值,则下列选项中正确的是()A. a > 0, b = 0, c < 0B. a < 0, b = 0, c > 0C. a > 0, b ≠ 0, c > 0D. a < 0, b ≠ 0, c < 02. 下列各数中,无理数是()A. √3B. -√2C. 3/4D. 1.4143. 若复数z满足|z - 2i| = 3,则复数z在复平面内对应的点的轨迹是()A. 圆B. 线段C. 直线D. 双曲线4. 已知函数f(x) = log2(x - 1),则f(x)的定义域是()A. (1, +∞)B. (0, 1)C. (1, 2]D. (2, +∞)5. 若等差数列{an}的前n项和为Sn,且S3 = 9,S5 = 21,则该数列的公差d是()A. 2B. 3C. 4D. 56. 下列命题中,正确的是()A. 若两个函数的图像关于y轴对称,则这两个函数互为反函数B. 若两个函数的图像关于x轴对称,则这两个函数互为反函数C. 若两个函数的图像关于原点对称,则这两个函数互为反函数D. 若两个函数的图像关于直线y = x对称,则这两个函数互为反函数7. 已知函数f(x) = x^3 - 3x,若存在实数a和b,使得f(a) + f(b) = 0,则a + b的值为()A. 0B. 1C. -1D. 28. 下列方程中,无解的是()A. x^2 + 2x + 1 = 0B. x^2 + 2x - 1 = 0C. x^2 - 2x + 1 = 0D. x^2 - 2x - 1 = 09. 若不等式x^2 - 4x + 3 < 0的解集是()A. (1, 3)B. (-∞, 1) ∪ (3, +∞)C. (-∞, 1) ∩ (3, +∞)D. (1, +∞) ∪ (-∞, 3)10. 已知函数f(x) = (x - 1)/(x + 1),则f(-1)的值为()A. 0B. 1C. -1D. 不存在二、填空题(每题5分,共50分)11. 已知等差数列{an}的前n项和为Sn,若a1 = 2,d = 3,则S10 = ________.12. 若复数z = a + bi(a, b ∈ R),则|z|^2 = ________.13. 函数f(x) = log2(3 - 2x)的定义域为 ________.14. 若等比数列{an}的公比q = -2,且a1 = 3,则第5项a5 = ________.15. 已知函数f(x) = x^2 - 2x + 3,则f(-1) = ________.16. 若不等式x^2 - 4x + 3 ≤ 0的解集为A,则不等式x^2 - 4x + 3 > 0的解集为 ________.17. 已知函数f(x) = 2x - 1,则f(-3) + f(2) = ________.18. 若复数z满足|z - 2i| = 3,则复数z在复平面内对应的点的坐标是________.19. 已知函数f(x) = (x - 1)/(x + 1),则f(1)的值为 ________.20. 若等差数列{an}的前n项和为Sn,且S3 = 9,S5 = 21,则该数列的第4项a4 = ________.三、解答题(每题20分,共60分)21. (本题满分20分)已知函数f(x) = ax^2 + bx + c(a ≠ 0),若f(1) = 2,f(2) = 5,求a,b,c的值。

高考理科数学第一轮复习测试题7

高考理科数学第一轮复习测试题7

(时间:40分钟 满分:60分)一、填空题(每小题5分,共40分)1.(2011·广东广雅中学5月模拟)如图所示,PB ,PD 是半径为5的圆的两条割线,PB ,PD 分别与圆交于点A 、C ,已知P A =4,AB =2,PC =3,则该圆圆心到弦CD 的距离为________.解析 由题意得,P A ·PB =PC ·PD ,即4×(4+2)=3×(3+CD ),解得CD =5,∴该圆圆心到弦CD 的距离为52-⎝⎛⎭⎫522=532.答案5322.如图所示,A ,B 是两圆的交点,AC 是小圆的直径,D ,E 分别是CA ,CB 的延长线与大圆的交点,已知AC =4,BE =10,且BC =AD ,则AB =________.解析 设BC =AD =x ,由割线定理,得CA ·CD =CB ·CE ,即4(4+x )=x (x +10),解得x =2,因为AC 是小圆的直径,所以AB =AC 2-BC 2=2 3. 答案 2 33.如图,在△ABC 中,AB =AC ,∠C =72°,⊙O 过A 、B 两点且与BC 相切于点B ,与AC 交于点D ,连接BD ,若B C =5-1,则AC =________.解析 由题易知,∠C =∠ABC =72°, ∠A =∠DBC =36°,所以△BCD ∽△ACB ,又易知BD =AD =BC ,所以BC 2=CD ·AC =(AC -BC )·AC ,解得AC =2. 答案 24.如图,已知Rt △ABC 的两条直角边AC ,BC 的长分别为3 cm,4 cm ,以AC 为直径的圆与AB 交于D ,则BDDA=________.解析 ∵∠C =90°,A C 为圆的直径, ∴BC 为圆的切线,AB 为圆的割线,∴BC 2=BD ·AB ,即16=BD ·5,解得BD =165,∴DA =BA -BD =5-165=95,∴BD DA =169.答案1695.如图所示,圆O 的直径AB =6,C 为圆周上一点,BC =3,过C 作圆的切线l ,则点A 到直线l 的距离AD 为________.解析 过A 作AD ⊥l 于D ,由AB 是圆O 直径,∴∠ACB =90°, 由l 是圆的切线,∴∠ABC =∠ACD ,∴△ADC ∽△ACB ,∴AD AC =AC AB ,∴AD =AC 2AB =AB 2-BC 2AB =92. 答案 926.如图,四边形ABCD 是圆O 的内接四边形,延长AB 和DC 相交于点P ,若PB P A =12,PCPD =13,则BCAD的值为________.解析 ∵∠P =∠P ,∠PCB =∠P AD ,∴△PCB ∽△P AD ,∴PB PD =PC P A =BC DA ,∵PB P A =12,PC PD =13,∴BC AD =66. 答案667.如图所示,已知AB 是圆O 的直径,AD =DE ,AB =10,BD =8,则sin ∠BCE =________.解析 连接BE ,则在△ABD 和△BCE 中,∠ADB =∠BEC =90°, 且∠ABD =∠CBE ,所以∠DAB =∠ECB , 故sin ∠BCE =sin ∠DAB =BD AB =45.答案 458.如图,⊙O 与⊙P 相交于A 、B 两点,圆心P 在⊙O 上,⊙O 的弦BC 切⊙P 于点B ,CP 及其延长线交⊙P 于D 、E 两点,过点E 作EF ⊥CE ,交CB 的延长线于点F .若CD =2,CB =22,则由四点B 、P 、E 、F 所确定圆的直径为________.解析 连接PB .∵BC 切⊙P 于点B ,∴PB ⊥BC .又∵EF ⊥CE ,且∠PCB =∠FCE ,∴Rt △CBP ∽Rt △CEF ,∴∠EPB +∠EFB =180°,∴四点B ,P ,E ,F 共圆,又∵EF ⊥CE ,PB ⊥BC ,∴四点B 、P 、E 、F 所确定圆的直径就是PF .∵BC 切⊙P 于点B ,且CD =2,CB =22,∴由切割线定理得CB 2=CD ·CE ,∴CE =4,DE =2,∴BP =1.又∵Rt △CBP ∽Rt △CEF ,∴EF BP =CECB,得EF = 2.连接PF ,则在Rt △FEP 中,PF =PE 2+EF 2=3,即由四点B ,P ,E ,F 确定圆的直径为 3. 答案3二、解答题(共20分)9.(10分)如图,△A BC 是直角三角形,∠ABC =90°.以AB 为直径的圆O 交AC 于点E ,点D 是BC 边的中点.连结OD 交圆O 于点M .(1)求证:O 、B 、D 、E 四点共圆; (2)求证:2DE 2=DM ·AC +DM ·AB . 证明 (1)如图,连结OE 、BE , 则BE ⊥EC又∵D 是BC 的中点, ∴DE =BD .又∵OE =OB ,OD =OD ,∴△ODE ≌△ODB , ∴∠OBD =∠OED =90°. ∴D ,E ,O ,B 四点共圆. (2)延长DO 交圆O 于点H . 由(1)知DE 为圆O 的切线,∴DE 2=DM ·DH =DM ·(DO +OH )=DM ·DO +DM ·OH ,[来源:学.科.网Z.X.X.K]∴DE 2=DM ·⎝⎛⎭⎫12AC +DM ·⎝⎛⎭⎫12AB , ∴2DE 2=DM ·AC +DM ·AB .10.(10分)(2011·银川模拟)如图,点A 是以线段BC 为直径的⊙O 上一点,AD ⊥BC 于点D ,过点B 作⊙O 的切线,与CA 的延长线相交于点E ,点G 是AD 的中点,连接CG 并延长与BE 相交于点F ,连接并延长AF 与CB 的延长线相交于点P .[来源:学&科&网][来源:学#科#网Z#X#X#K](1)求证:BF =EF ; (2)求证:P A 是⊙O 的切线.证明 (1)∵BE 是⊙O 的切线,∴EB ⊥BC . 又∵AD ⊥BC ,∴AD ∥BE .可以得知△BFC ∽△DGC ,△FEC ∽△GAC , ∴BF DG =CF CG ,EF AG =CF CG ,∴BF DG =EF AG , 又∵G 是AD 的中点, ∴DG =AG ,∴BF =EF .(2)如图,连接AO ,AB .[来源:学科网ZXXK]∵BC 是⊙O 的直径,∴∠BAC =90°.在Rt △BA E 中,由(1)得知F 是斜边BE 的中点,[来源:] ∴AF =FB =EF . ∴∠FBA =∠F AB .又∵OA =OB ,∴∠ABO =∠BAO . ∵BE 是⊙O 的切线,∴∠EBO =90°.∴∠EBO =∠FBA +∠ABO =∠F AB +∠BAO =∠F AO =90°,∴P A 是⊙O 的切线.。

宿松二中高三数学理科第一轮复习立体几何测试卷

宿松二中高三数学理科第一轮复习立体几何测试卷

宿松二中高三数学理科第一轮复习立体几何测试卷姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的1.在一个几何体的三视图中,正视图与俯视图如左图所示,则相应的侧视图可以为( )2.ABC ∆的斜二侧直观图如图所示,则ABC ∆的面积为( )A .1B .2C .2D .2 3.用若干个体积为1的小正方体搭成一个几何体,其正视图、侧视图都是如图所示的图形,用这个几何体的最小体积值作为正方体ABCD-A 1B 1C 1D 1的体积, 则这个正方体的外接球的体积为 ( )A .π239 B . π34 C .π237 D. π235 4.已知正四棱柱ABCD ﹣A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A .B .C .D .5.已知平面α外不共线的三点C B A ,,到αα的距离都相等,则正确的结论是() A.平面ABC 必平行于α B.平面ABC 必与α相交C.平面ABC 必不垂直于αD.存在△ABC 的一条中位线平行于α或在α内6.已知正四棱柱1111D C B A ABCD -中,22,21==CC AB , E 为1CC 的中点,则点C 到平面BED 的距离为()A.1B.2C.3D.2Ox y12()C AB7.右图是某四棱锥的三视图,则该几何体的表面积...等于( )A .34+B .6+C .6+D .17+8.在下列关于直线,l m 与平面,αβ的命题中,正确的是 ( ) A .若l β⊂且αβ⊥,则l α⊥ B .若l β⊥且α∥β,则l α⊥ C .若l β⊥且αβ⊥,则l ∥α D .若m αβ=,且l ∥m ,则l ∥α 9.一个棱锥的三视图如图所示,则它的体积为 ( )A .12 B .32C .1D .1310.已知正方体1111D C B A ABCD -,点E ,F ,G 分别是线段B B 1,AB 和1AC 上的动点,观察直线CE 与F D 1,CE 与1D G .给出下列结论: ①对于任意给定的点E ,存在点F ,使得1D F ⊥CE ; ②对于任意给定的点F ,存在点E ,使得⊥CE F D 1; ③对于任意给定的点E ,存在点G ,使得1D G ⊥CE ; ④对于任意给定的点G ,存在点E ,使得⊥CE 1D G . 其中正确结论的序号是( )A .①③B .①④C .②③D .②④二、填空题 (本大题共5小题,每小题5分,共25分,把答案填在答题纸上) 11.若一个圆锥的侧面展开图是面积为4π的半圆面,则该圆锥的体积为.12.四棱锥ABCD P -的所有侧棱长都为3,底面ABCD 是边长2的正方形,则CD 与PA所成角的余弦值 .13.如图,三角形ABC 是直角三角形,∠ACB=090,PA ⊥平面ABC ,此图形中有____________个直角三角形.14.已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且623AB BC ==, O ABCD -的体积为 .15.正三角形ABC 的边长为2,将它沿高AD 翻折,使点B 与点C 间的距离为1,此时二面角B-AD-C 大小为_ __三、解答题(小题, 共75分. 解答应写出文字说明、 证明过程或演算步骤)16.(12分)如图,四棱锥P -ABCD 的底面是矩形,侧面PAD 是正三角形,且侧面PAD⊥底面ABCD ,E 为侧棱PD 的中点。

高三一轮复习前六章综合测试题(带详细答案)

高三一轮复习前六章综合测试题(带详细答案)

高三理科数学测试题一、选择题(每小题 5 分,共 12 小题 60 分)1、若复数 满足 ,其中 为虚数单位,则 ( )A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度9、 已知 在区间是定义在上的奇函数, 且, 当时,, 则函数上的零点个数是( ) B. 的高,先在河岸上选一点 ,测得 方向走 米到位置 C. ,使在 ,则塔 塔底 的高度为( ) D. 的正东方向上,测得点 的仰角为 ,再由点 沿A.B.C.D.A. 10、如图,为测得河对岸塔 北偏东2、已知两个集合, C. 上的两条光滑曲线,则这两条曲线及 C. 满足 B. ,若 B. ,若 B. ,则 B. 的最小值是( C. ,且 C. ) C. ,则 C. , 数列,则等于( ) D. 所围成的平面图形的面积为( ) A. 米 中, ) B. 上的函数 的导函数 满足 C. D. B. , 米 , C. 米 ,点 在边 上,若 D. 米 ,则 D.A. 3、若 A. 4、 已知各项不为 0 的等差数列 A. 5、已知函数 A. 6、已知函数 A. 7、若 A. 8、已知函数 与B. 是 B.11、在矩形 , 则 ( ) 的值为( A. ) 12、已知定义在是等比数列, 且 D. ,则实数 的取值范围是( D. 的取值范围是( D. )且,其中 为自然对数的底数,则不等式 A.的解集是( ) B. C. D.D. 的图象经过恰当的平移后得到奇函数二、填空题(每小题 5 分,共 4 小题 20 分)13、已知条件 14、已知等差数列 满足: ,条件 ,则非 是非 的__________条件. ,且它的前 项和 有最大值,则当 取到最小正值时, __________的部分图象如图所示,若函数的图象,则这个平移可以是( ) 15、已知满足约束条件 ,若目标函数 中 ,且最大值为 ,则实数 __________.16、有下列 4 个说法 ①集合 ②方程 ③函数 ④ , 的解的个数为 3 个; 与函数 时,函数 的图象关于直线 的值域为 ; 对称; ,若 ,则 ;其中正确的题号为__________.(写出所有正确说法的题号)三、解答题(第 17 题 10 分,第 18 题 12 分,第 19 题 12 分,第 20 题 12 分,第 21 题 12 分,第 22 题 12 分,共 6 小 题 70 分)17、已知 (1)求函数 的最小正周期和对称中心; ,设函数 .(2)当时,求函数的值域;18、已知数列 (1)求数列 (2)设 19、 在 (1)若 (2)若的各项均为正数,前 项和为 的通项; , 中, 设边 ,求 ,求 所对的角为 的值; 面积的最大值.,且,.,求 , 且. 都不是直角, .20、某工厂去年某产品的年产量为万只,每只产品的销售价为元,固定成本为 元.今年,工厂第一次投入万元(科技成本),并计划以后每年比上一年多投入 成本为 万元. (1)求 的值,并求出 的表达式; 中, (万元(科技成本),预计产量年递增 且万只,第 次投入后,每只产品的固定, 为常数,) , 若产品销售价保持不变, 第 次投入后的年利润为(2)问从今年算起第几年利润最高?最高利润为多少万元? 21、设各项均为正数的等比数列 (1)求数列 (2)若 (3)是否存在正整数 ,使得 大值,若不存在,说明理由. 22、已知函数 (1)当 (2)若 时,求函数 对任意 为常数 . 的单调区间; 恒成立,求实数 的取值范围; 的通项公式; ,求证: ; 对任意正整数 均成立?若存在,求出 的最 ,(3)若,,求证.高三理科数学测试题 答案解析第 1 题答案 C 第 1 题解析 由 得 ,即 ,第 6 题解析 画出 的图像如图:.第 2 题答案 B 第 2 题解析 由题意得 . , 或 ,故∵ ∴ 第 7 题答案 D 第 7 题解析 由,且 , ∴ , ∴,∴且 .当, 时等号成立, ∴ .,得,则,所以 ,当 ,即第 3 题答案 C 第 3 题解析 由定积分的几何意义可得 与 是 上的两条光滑曲线,则这两条曲线及 ,故答案为 C. 第 8 题答案 C 第 8 题解析 第 4 题答案 C 第 4 题解析 因为 所以 第 5 题答案 C 第 5 题解析 由函数 的解析式可得 ,即 为奇函数,且在 . 第 9 题答案 第 6 题答案 B B 第 9 题解析 上为单调递增函数,由 可知 ,故选 C. ,因为 是奇函数,所以 , ,则 , ,所以 ,故选 C。

1号卷A10联盟2022届全国高考第一轮总复习试卷数学(理科)试题(十三)

1号卷A10联盟2022届全国高考第一轮总复习试卷数学(理科)试题(十三)

1号卷�A10联盟2022届全国高考第一轮总复习试卷数学
(理科)试题(十三)
学校:___________姓名:___________班级:___________考号:___________
A.B.C.
D.
6.如图,正方体ABCD A B C D
-¢¢¢¢的棱长为4,动点E,F在棱AB上,且2
EF=,动点Q在棱D C¢¢上,则三棱锥A EFQ
¢-的体积()
A.与点E,F位置有关B.与点Q位置有关
C.与点E,F,Q位置有关D.与点E,F,Q位置均无关,是定值7.用一个平面去截正方体,截面的形状不可能是
A.正三角形B.正方形C.正五边形D.正六边形8.某几何体的三视图如图所示,则该几何体的体积是()
三、解答题
17.如图,多面体ABCDEF中,,,
BA BC BE两两垂直,且
AB EF CD BE AB BE BC CD EF
=====,求多面体ABCDEF的体积.//,//,2,1
18.下图中小正方形的边长为1,粗线画出的是某几何体的三视图.
(1)求该几何体的体积;
(2)求该几何体的表面积.
19.某小区计划新建一个景观水池,其内部空间可以看作是一个圆柱体,底面圆的周
22.已知正四面体A BCD
-的内切球的表面积为36π.
(1)求该内切球的半径;
(2)过该四面体的一条棱以及球心的平面截正四面体A BCD
-,求所得截面的面积.。

2022年高考数学理科第一轮复习资料:11-1

2022年高考数学理科第一轮复习资料:11-1

第11章 第1讲时间:60分钟 满分:100分 一、选择题(8×5=40分)1.(2009·广东广州1月)下列说法:①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率m n就是事件的概率; ③百分率是频率,但不是概率;④频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是概率的近似值,概率是频率的稳定值.其中正确的是 ( )A .①②③④B .①④⑤C .①②③④⑤D .②③答案:B解析:由概率的相关定义知①④⑤正确.2.在一个口袋中装有5个黑球和3个白球,这些球除颜色外完全相同.从中摸出3个球,则摸出白球的个数多于黑球个数的概率为 ( )A.38B.37C.27D.928答案:C解析:白球个数多于黑球个数,则白球取3个或2个,故概率为C 33+C 23C 15C 38=27,故选C. 3.福娃是2008年北京第二十九届奥运会的吉祥物,每组福娃都由“贝贝”“晶晶”“欢欢”“迎迎”和“妮妮”这五个福娃组成,甲、乙两人随机地从一组福娃中选取一个留作纪念,按甲先选乙再选的顺序不放回的选择,则在他俩选择的福娃中“贝贝”和“晶晶”一只也没有被选中的概率是 ( )A.110B.35C.310D.25答案:C解析:依题意知,甲、乙两人谁先选,选哪一只都是等可能的,甲先选乙后选的总方法有5×4种,而都没有选到“贝贝”和“晶晶”的方法有3×2=6种,所以所求概率为65×4=310. 4.(2009·河南实验中学3月)有6个座位连成一排,三人就座,恰有两人空位相邻的概率是 ( )A.15B.25C.35D.45答案:C解析:有6个座位连成一排,三人就座,共有A 36种坐法,有三个空位,在三个人的4个空隙中选两个安排1个空位和两个相邻空位,则恰有两个空位相邻的坐法有A 33A 24,故所求概率是35,故选C. 5.六个运动员站在六条跑道上准备参加比赛,其中甲不站在一、二跑道,乙站在五或六跑道的概率为 ( )A.15B.110C.115D.31240答案:A解析:这是一个等可能概率问题,乙有C 12种选择,甲有C 13种选择,其余4人有A 44种选择,而6人没有任何限制的选择有A 66种,所以概率为C 12C 13A 44A 66=15.故选A. 6.(2009·福建,8)已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为 ( )A .035B .0.25C .0.20D .0.15答案:B解析:∵20组随机数中恰有2个大于等于1且小于等于4的共有191、271、932、812、393五组,∴其概率为520=0.25.故选B. 7.(2009·安徽,10)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )A.175B.275C.375D.475答案:D解析:从6个点中任取两点连成直线,共有C 26=15条,甲、乙均从中任选一条共有C 115C 115=225种.这15条直线中相互平行的有6对,甲、乙两人选一对,各选一条有C 16×C 12=12种,∴P =12225=475,故选D. 8.(2010·四川乐山模拟)已知一组抛物线y =12ax 2+bx +1,其中a 为2,4,6,8中任取的一个数,b 为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x =1交点处的切线相互平行的概率是 ( )A.112B.760C.625D.516答案:B解析:y ′=ax +b ,把x =1代入,得y ′|x =1=a +b .a +b =5的有1种;a +b =7的有C 23=3种; a +b =9的有C 24=6种; a +b =11的有C 23=3种;a +b =13的有C 23=1种;共有C 216=120种.∴P =1+3+6+3+1120=760. 二、填空题(4×5=20分)9.随意安排甲、乙、丙3人在三天节日里值班,每人值班一天,则甲排在乙之前的概率为______.答案:12解析:随意安排甲、乙、丙3人值班共有A 33种排法,其中甲排在乙之前有A 332种排法, ∴概率P =A 332A 33=12. 10.8个篮球队中有2个强队,先任意将这8个队分成两个组(每组4个队)进行比赛 ,则这两个强队被分在一个组内的概率是________.答案:37解析:解法一:2个强队分在同一组,包括互斥的两种情况:2个强队都分在A 组和都分在B 组.2个强队都分在A 组,可看成“从8个队中抽取4个队,里面包括2个强队”这一事件,其概率为C 26C 48;2个强队都分在B 组,可看成“从8个队中抽取4个队,里面没有强队”这一事件,其概率为C 46C 48.因此,2个强队分在同一个组的概率为P =C 26C 48+C 46C 48=37. 解法二:“2个强队分在同一个组”这一事件的对立事件“2个组中各有一个强队”,而两个组中各有一个强队,可看成“从8个队中抽取4个队,里面恰有一个强队”这一事件,其概率为C 12C 36C 48.因此,2个强队分在同一个组的概率P =1-C 12C 36C 48=1-47=37. 11.(2009·安徽,13)从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.答案:34解析:能构成三角形的可能情况:2,3,4或2,4,5或3,4,5.∴P =3C 34=34. 12.(2009·上海春考,10)一只猴子随机敲击只有26个小写英文字母的练习键盘.若每敲1次在屏幕上出现一个字母,它连续敲击10次,屏幕上的10个字母依次排成一行,则出现单词“monkey ”的概率为________.(结果用数值表示)答案:5266 解析:设事件A :屏幕上出现单词“monkey ”,根据古典概率公式:P (A )=m n =5·2642610=5266. 三、解答题(4×10=40分)13.(2009·宁夏、银川一模)旅游公司为3个旅游团提供4条旅游路线,每个旅游团任选其中1条.(1)求3个旅游团选择3条不同路线的概率;(2)求恰有2条线路没有被选择的概率;(3)甲线路没有被选择的概率.解析:(1)3个旅游团选择3条不同路线的概率为P 1=A 3443=38. (2)恰有2条路线没有被选择的概率为P 2=C 24·C 23·A 2243=916. (3)甲路线没有被选择的概率为P 3=3343=2764. 14.9个国家乒乓球队中有3个亚洲国家队,抽签分成甲、乙、丙三组(每组3队)进行预赛,试求:(1)三个组各有一个亚洲队的概率;(2)至少有两个亚洲队分在同一组的概率.解析:9个分成甲、乙、丙三组有C 39C 36C 33种等可能的结果.(1)三个亚洲国家队分给甲、乙、丙三组,每组一个队有A 33种分法,其余6个队平分给甲、乙、丙三组有C 26C 24C 22种分法.故三个组各有一个亚洲国家队的结果有A 33·C 26·C 24·C 22种,所求概率P (A )=A 33·C 26·C 24·C 22C 39·C 36·C 33=928. 答:三个组各有一个亚洲国家队的概率是928. (2)∵事件“至少有两个亚洲国家队分在同一组”是事件“三个组各有一个亚洲国家队”的对立事件,∴所求概率为1-928=1928. 答:至少有两个亚洲国家队分在同一组的概率是1928. 15.袋中装有大小相同的2个白球和3个黑球,(1)从袋中任意取出两个球,求两球颜色不同的概率;(2)从袋中任意取出一个球,记住颜色后放回袋中,再任意取出一个球,求两次取出的球颜色不同的概率.解析:(1)记“从袋中任意取出两个球,两球颜色不同”为事件A ,取出两个球共有方法C 25=10种,其中“两球一白一黑”有C 12·C 13=6种.∴P (A )=C 12C 13C 25=35. (2)记“取出一球,放回后再取出一个球,两次取出的球颜色不同”为事件B ,取出一球为白球的概率为25,取出一球为黑球的概率为35,∴P (B )=C 12×25×35=1225. 16.(2009·四川,18)为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中34是省外游客,其余是省内游客.在省外游客中有13持金卡,在省内游客中有23持银卡. (1)在该团中随机采访2名游客,求恰有1人持银卡的概率;(2)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.命题意图:本小题主要考查相互独立事件、互斥事件等概率计算,考查运用概率知识解决实际问题的能力.解析:(1)由题意得,省外游客有27人,其中9人持金卡,;省内游客有9人,其中6人持银卡.设事件A 为“采访该团2人,恰有1人持银卡”,P (A )=C 16C 130C 236=27. 所以采访该团2人,恰有1人持银卡的概率是27. (2)设事件B 为“采访该团2人中,持金卡人数与持银卡人数相等”,事件A 1为“采访该团2人中,0人持金卡,0人持银卡”,事件A 2为“采访该团2人中,1人持金卡,1人持银卡”.P (B )=P (A 1)+P (A 2)=C 221C 236+C 19C 16C 236=13+335=44105. 所以采访该团2人中,持金卡人数与持银卡人数相等的概率是44105.。

高考理科数学一轮复习合情推理与演绎推理专题练习题

高考理科数学一轮复习合情推理与演绎推理专题练习题

课时作业39 合情推理与演绎推理一、选择题1.(1)已知a 是三角形一边的长,h 是该边上的高,则三角形的面积是12ah ,如果把扇形的弧长l ,半径r 分别看成三角形的底边长和高,可得到扇形的面积为12lr ;(2)由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+2n -1=n 2,则(1)(2)两个推理过程分别属于( A )A .类比推理、归纳推理B .类比推理、演绎推理C .归纳推理、类比推理D .归纳推理、演绎推理解析:(1)由三角形的性质得到扇形的性质有相似之处,此种推理为类比推理;(2)由特殊到一般,此种推理为归纳推理,故选A.2.已知数列{a n }的前n 项和为S n ,则a 1=1,S n =n 2a n ,试归纳猜想出S n 的表达式为( A ) A .S n =2nn +1B .S n =2n -1n +1C .S n =2n +1n +1D .S n =2n n +2解析:S n =n 2a n =n 2(S n -S n -1),∴S n =n 2n 2-1S n -1,S 1=a 1=1,则S 2=43,S 3=32=64,S 4=85.∴猜想得S n =2nn +1.故选A. 3.下面图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n 个图形中小正方形的个数是( C )A .n (n +1)B .n n -12C .n n +12D .n (n -1)解析:由题图知第1个图形的小正方形个数为1,第2个图形的小正方形个数为1+2,第3个图形的小正方形个数为1+2+3,第4个图形的小正方形个数为1+2+3+4,…,则第n 个图形的小正方形个数为1+2+3+…+n =n n +12.4.观察下列各式:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,…,则52 018的末四位数字为( B )A .3 125B .5 625C .0 625D .8 125解析:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,…,可得59与55的后四位数字相同,由此可归纳出5m +4k与5m (k ∈N *,m =5,6,7,8)的后四位数字相同,又2 018=4×503+6,所以52 018与56的后四位数字相同,为5 625,故选B.5.(2019·山西孝义调研)我们知道:在平面内,点(x 0,y 0)到直线Ax +By +C =0的距离公式d =|Ax 0+By 0+C |A 2+B 2,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x +2y+2z +3=0的距离为( B )A .3B .5 C.5217D .3 5解析:类比平面内点到直线的距离公式,可得空间中点(x 0,y 0,z 0)到直线Ax +By +Cz +D =0的距离公式为d =|Ax 0+By 0+Cz 0+D |A 2+B 2+C 2,则所求距离d =|2+2×4+2×1+3|12+22+22=5,故选B.6.给出以下数对序列:(1,1)(1,2)(2,1)(1,3)(2,2)(3,1)(1,4)(2,3)(3,2)(4,1)……记第i行的第j个数对为a ij,如a43=(3,2),则a nm=( A )A.(m,n-m+1) B.(m-1,n-m)C.(m-1,n-m+1) D.(m,n-m)解析:由前4行的特点,归纳可得:若a nm=(a,b),则a=m,b=n-m+1,∴a nm=(m,n-m+1).7.(2019·惠州市调研考试)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是( B ) A .33 B .34 C .36D .35解析:由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B.二、填空题8.已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,…,观察上述结果,可归纳出的一般结论为f (2n )≥n +22(n ∈N *).解析:本题考查归纳推理.由归纳推理可得f (2n)≥n +22(n ∈N *).9.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作……根据以上操作,若要得到100个小三角形,则需要操作的次数是33.解析:由题意可知,第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个……由此可得第n 次操作后,三角形共有4+3(n -1)=3n +1个.当3n +1=100时,解得n =33.10.在正项等差数列{a n }中有a 41+a 42+…+a 6020=a 1+a 2+…+a 100100成立,则在正项等比数列{b n }中,类似的结论为20b 41b 42b 43…b 60=100b 1b 2b 3…b 100.解析:结合等差数列和等比数列的性质,类比题中的结论可得,在正项等比数列{b n }中,类似的结论为20b 41b 42b 43…b 60=100b 1b 2b 3…b 100.11.(2019·安徽界首模拟)埃及数学中有一个独特现象:除23用一个单独的符号表示以外,其他分数都要写成若干个单分数和的形式.例如25=13+115可以这样理解:假定有两个面包,要平均分给5个人,如果每人12,不够,每人13,余13,再将这13分成5份,每人得115,这样每人分得13+115.形如2n (n =5,7,9,11,…)的分数的分解:25=13+115,27=14+128,29=15+145……按此规律,211=16+166;2n =1n +12+1nn +12(n =5,7,9,11,…). 解析:27=14+128表示两个面包分给7个人,每人13,不够,每人14,余14,再将这14分成7份,每人得128,其中4=7+12,28=7×7+12;29=15+145表示两个面包分给9个人,每人14,不够,每人15,余15,再将这15分成9份,每人得145,其中5=9+12,45=9×9+12,按此规律,211表示两个面包分给11个人,每人15,不够,每人16,余16,再将这16分成11份,每人得166,所以211=16+166,其中6=11+12,66=11×11+12.由以上规律可知,2n =1n +12+1nn +12.12.(2019·潍坊市统一考试)“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅、……、癸酉,甲戌、乙亥、丙子、……、癸未,甲申、乙酉、丙戌、…、癸巳,……、癸亥,60个为一周,周而复始,循环记录.2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的( C )A .己亥年B .戊戌年C .庚子年D .辛丑年解析:由题意知2014年是甲午年,则2015到2020年分别为乙未年、丙申年、丁酉年、戊戌年、己亥年、庚子年.13.(2019·福建宁德一模)我国古代数学名著《孙子算经》中有如下问题:“今有三女,长女五日一归,中女四日一归,少女三日一归.问:三女何日相会?”意思是:“一家出嫁的三个女儿中,大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家.三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?”假如回娘家当天均回夫家,若当地风俗正月初二都要回娘家,则从正月初三算起的一百天内,有女儿回娘家的天数有( C )A .58B .59C .60D .61解析:小女儿、二女儿和大女儿回娘家的天数分别是33,25,20,小女儿和二女儿、小女儿和大女儿、二女儿和大女儿回娘家的天数分别是8,6,5,三个女儿同时回娘家的天数是1,所以有女儿在娘家的天数是:33+25+20-(8+6+5)+1=60.故选C.14.(2019·安徽质量检测)某参观团根据下列约束条件从A,B,C,D,E五个镇选择参观地点:①若去A镇,也必须去B镇;②D,E两镇至少去一镇;③B,C两镇只去一镇;④C,D两镇都去或者都不去;⑤若去E镇,则A,D两镇也必须去.则该参观团至多去了( C )A.B,D两镇B.A,B两镇C.C,D两镇D.A,C两镇解析:若去A镇,根据①可知一定去B镇,根据③可知不去C镇,根据④可知不去D 镇,根据②可知去E镇,与⑤矛盾,故不能去A镇;若不去A镇,根据⑤可知也不去E镇,再根据②知去D镇,再根据④知去C镇,再根据③可知不去B镇,再检验每个条件都成立,所以该参观团至多去了C,D两镇.故选C.尖子生小题库——供重点班学生使用,普通班学生慎用15.(2019·益阳、湘潭调研考试)《数书九章》中给出了“已知三角形三边长求三角形面积的求法”,填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代人具有很高的数学水平,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积”.若把这段文字写成公式,即S=14[c2a2-c2+a2-b222],现有周长为22+5的△ABC满足sin A sin B sin C=(2-1)5(2+1),用上面给出的公式求得△ABC的面积为( B )A.32B.34C.52D.54解析:由正弦定理得sin A sin B sin C=a b c=(2-1)5(2+1),可设三角形的三边分别为a=(2-1)x,b=5x,c=(2+1)x,由题意得(2-1)x+5x+(2+1)x=(22+5)x=22+5,则x=1,故由三角形的面积公式可得△ABC的面积S=1 4[2+122-12-3+22+3-22-522]=34,故选B.16.(2019·重庆市质量调研)某学生的素质拓展课课表由数学、物理和体育三门学科组成,且各科课时数满足以下三个条件:①数学课时数多于物理课时数;②物理课时数多于体育课时数;③体育课时数的两倍多于数学课时数.则该学生的素质拓展课课表中课时数的最小值为12.解析:解法1:设该学生的素质拓展课课表中的数学、物理、体育的课时数分别为x,y,z ,则由题意,得⎩⎪⎨⎪⎧x -y ≥1,y -z ≥1,2z -x ≥1,x ,y ,z ∈N *,则该学生的素质拓展课课表中的课时数为x +y +z .设x +y +z =p (x -y )+q (y -z )+r (2z -x )=(p -r )x +(-p +q )y +(-q +2r )z ,比较等式两边的系数,得⎩⎪⎨⎪⎧p -r =1,-p +q =1,-q +2r =1,解得p =4,q =5,r =3,则x +y +z =4(x -y )+5(y-z )+3(2z -x )≥4+5+3=12,所以该学生的素质拓展课课表中的课时数的最小值为12.解法2:设该学生的素质拓展课课表中的数学、物理、体育的课时数分别为x ,y ,z ,则2z >x >y >z .由题意,知z 的最小值为3,由此易知y 的最小值为4,x 的最小值为5,故该学生的素质拓展课课表中的课时数x +y +z 的最小值为12.。

2023年高考数学一轮复习 新课标版 理科 作业 题组层级快练1-10

2023年高考数学一轮复习 新课标版 理科 作业 题组层级快练1-10

题组层级快练(一)1.下列各组集合中表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)} B .M ={2,3},N ={3,2}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={2,3},N ={(2,3)} 答案 B2.集合M ={x ∈N |x (x +2)≤0}的子集个数为( ) A .1 B .2 C .3 D .4答案 B解析 ∵M ={x ∈N |x (x +2)≤0}={x ∈N |-2≤x ≤0}={0},∴M 的子集个数为21=2.故选B.3.(2021·全国高考Ⅱ卷)设集合U ={1,2,3,4,5,6},A ={1,3,6},B ={2,3,4},则A ∩(∁U B )=( ) A .{3} B .{1,6} C .{5,6} D .{1,3}答案 B解析 由题设可得∁U B ={1,5,6},故A ∩(∁U B )={1,6},故选B.4.(2022·江苏海安市摸底)若A =⎩⎨⎧⎭⎬⎫x |x 2∈Z ,B =⎩⎨⎧⎭⎬⎫y |y +12∈Z ,则A ∪B 等于( ) A .B B .A C .∅ D .Z答案 D解析 A ={x |x =2n ,n ∈Z }为偶数集,B ={y |y =2n -1,n ∈Z }为奇数集,∴A ∪B =Z . 5.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =( ) A .0或 3 B .0或3 C .1或 3 D .1或3答案 B解析 ∵A ={1,3,m },B ={1,m },A ∪B =A , ∴m =3或m =m . ∴m =3或m =0或m =1.当m=1时,与集合中元素的互异性矛盾,故选B.6.(2022·石家庄二中模拟)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=() A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]答案 A解析集合M={0,1},集合N={x|0<x≤1},所以M∪N={x|0≤x≤1}=[0,1].7.(2022·湖北八校联考)已知集合A={x||x|≤2,x∈R},B={x|x≤4,x∈Z},则A∩B=() A.(0,2) B.[0,2]C.{0,2} D.{0,1,2}答案 D解析由已知得A={x|-2≤x≤2},B={0,1,…,16},所以A∩B={0,1,2}.8.(2022·广东中山一中模拟)已知i为虚数单位,集合P={-1,1},Q={i,i2},若P∩Q ={z i},则复数z等于()A.1 B.-1C.i D.-i答案 C解析因为Q={i,i2}={i,-1},P={-1,1},所以P∩Q={-1},所以z i=-1,所以z=i,故选C.9.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为() A.0 B.1C.2 D.4答案 D10.设集合M={y|y=2sin x,x∈[-5,5]},N={x|y=log2(x-1)},则M∩N=() A.{x|1<x≤5} B.{x|-1<x≤0}C.{x|-2≤x≤0} D.{x|1<x≤2}答案 D解析∵M={y|y=2sin x,x∈[-5,5]}={y|-2≤y≤2},N={x|y=log2(x-1)}={x|x>1},∴M∩N={y|-2≤y≤2}∩{x|x>1}={x|1<x≤2}.11.(2022·清华附中诊断性测试)已知集合A={x|log2(x-2)>0},B={y|y=x2-4x+5,x∈A},则A∪B=()A.[3,+∞) B.[2,+∞)C.(2,+∞) D.(3,+∞)答案 C解析 ∵log 2(x -2)>0,∴x -2>1,即x >3,∴A =(3,+∞),此时y =x 2-4x +5=(x -2)2+1>2, ∴B =(2,+∞),∴A ∪B =(2,+∞).故选C.12.(2022·山东聊城模拟)已知集合M ,N ,P 为全集U 的子集,且满足M ⊆P ⊆N ,则下列结论中不正确的是( ) A .∁U N ⊆∁U P B .∁U P ⊆∁U M C .(∁U P )∩M =∅ D .(∁U M )∩N =∅答案 D解析 根据已知条件画出Venn 图结合各选项知,只有D 不正确.13.(2022·西安市经开一中模拟)集合A ={x |x <-1或x ≥3},B ={x |ax +1≤0},若B ⊆A ,则实数a 的取值范围是( ) A.⎣⎡⎭⎫-13,1 B.⎣⎡⎦⎤-13,1 C .(-∞,-1)∪[0,+∞) D.⎣⎡⎭⎫-13,0∪(0,1) 答案 A 解析 ∵B ⊆A ,∴①当B =∅时,即ax +1≤0无解,此时a =0,满足题意. ②当B ≠∅时,即ax +1≤0有解,当a >0时,可得x ≤-1a ,要使B ⊆A ,则需要⎩⎪⎨⎪⎧a >0,-1a <-1,解得0<a <1.当a <0时,可得x ≥-1a,要使B ⊆A ,则需要⎩⎪⎨⎪⎧a <0,-1a ≥3,解得-13≤a <0,综上,实数a 的取值范围是⎣⎡⎭⎫-13,1.故选A. 14.集合A ={0,|x |},B ={1,0,-1},若A ⊆B ,则A ∩B =________,A ∪B =________,∁B A =________.答案 {0,1} {1,0,-1} {-1}解析 因为A ⊆B ,所以|x |∈B ,又|x |≥0,结合集合中元素的互异性,知|x |=1,因此A ={0,1},则A ∩B ={0,1},A ∪B ={1,0,-1},∁B A ={-1}.15.设全集U =A ∪B ={x ∈N *|lg x <1},若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =________.答案{2,4,6,8}解析U={1,2,3,4,5,6,7,8,9},A∩(∁U B)={1,3,5,7,9},∴B={2,4,6,8}.16.(2022·安徽省示范高中测试)已知集合A={x|x-a≤0},B={1,2,3},若A∩B≠∅,求实数a的取值范围.答案[1,+∞)解析集合A={x|x≤a},集合B={1,2,3},若A∩B≠∅,则1,2,3这三个元素至少有一个在集合A中,若2或3在集合A中,则1一定在集合A中,因此只要保证1∈A即可,所以a≥1.17.已知集合A={x|1<x<k},集合B={y|y=2x-5,x∈A},若A∩B={x|1<x<2},则实数k 的值为()A.5 B.4.5C.2 D.3.5答案 D解析B=(-3,2k-5),由A∩B={x|1<x<2},知k=2或2k-5=2,因为k=2时,2k-5=-1,A∩B=∅,不合题意,所以k=3.5.故选D.18.已知M,N为R的两个不等的非空子集,若M∩(∁R N)=∅,则下列结论不正确的是() A.∃x0∈N,使得x0∈M B.∃x0∈N,使得x0∉MC.∀x∈M,都有x∈N D.∀x∈N,都有x∈M答案 D解析对于D,∵M∩(∁R N)=∅,∴M是N的真子集或M,N相等,又M,N不相等且非空,∴M是N的非空真子集.∴不能保证∀x∈N,都有x∈M.【】题组层级快练(二)1.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的( )A.逆命题B.否命题C.逆否命题D.否定答案 B解析 命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题. 2.有下列四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题; ②“若a >b ,则a 2>b 2”的逆否命题; ③“若x ≤-3,则x 2+x -6>0”的否命题; ④“若a b 是无理数,则ab 是无理数”的逆命题. 其中真命题的个数是( ) A .0 B .1 C .2 D .3答案 B3.(2022·河南杞县中学月考)命题“若x 2+3x -4=0,则x =4”的逆否命题及其真假性为( )A .“若x =4,则x 2+3x -4=0”为真命题B .“若x ≠4,则x 2+3x -4≠0”为真命题C .“若x ≠4,则x 2+3x -4≠0”为假命题D .“若x =4,则x 2+3x -4=0”为假命题 答案 C解析 根据逆否命题的定义可以排除A 、D 两项,因为x 2+3x -4=0,所以x =-4或1,故原命题为假命题,即逆否命题为假命题.4.命题“若m >-1,则m >-4”以及它的逆命题、否命题、逆否命题中,假命题的个数为( ) A .1 B .2 C .3 D .4答案 B解析 原命题为真命题,从而其逆否命题也为真命题;逆命题“若m >-4,则m >-1”为假命题,故否命题也为假命题.故选B. 5.下列命题中为真命题的是( ) A .命题“若x >y ,则x >|y |”的逆命题 B .命题“若x 2≤1,则x ≤1”的否命题 C .命题“若x =1,则x 2-x =0”的否命题 D .命题“若a >b ,则1a <1b ”的逆否命题答案 A解析 A 中原命题的逆命题是“若x >|y |,则x >y ”,由x >|y |≥y 可知其是真命题;B 中原命题的否命题是“若x 2>1,则x >1”,是假命题,因为x 2>1⇔x >1或x <-1;C 中原命题的否命题是“若x ≠1,则x 2-x ≠0”,是假命题;D 中原命题的逆否命题是“若1a ≥1b ,则a ≤b ”是假命题,举例:a =1,b =-1.故选A.6.(2020·天津)设a ∈R ,则“a >1”是“a 2>a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 求解二次不等式a 2>a 可得a >1或a <0, 据此可知“a >1”是“a 2>a ”的充分不必要条件.故选A. 7.(2022·苏锡常镇一模)“0<x <π4”是“0<sin x <π4”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A8.“(m -1)(a -1)>0”是“log a m >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 (m -1)(a -1)>0等价于⎩⎪⎨⎪⎧m >1,a >1或⎩⎪⎨⎪⎧m <1,a <1,而log a m >0等价于⎩⎪⎨⎪⎧m >1,a >1或⎩⎪⎨⎪⎧0<m <1,0<a <1,所以条件具有必要性,但不具有充分性,比如m =0,a =0时,不能得出log a m >0.故选B. 9.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今,“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”,由此推断,其中最后一句“攻破楼兰”是“返回家乡”的( ) A .必要条件 B .充分条件C .充要条件D .既不充分也不必要条件答案 A解析 设p :攻破楼兰,q :返回家乡,由已知綈p ⇒綈q ,得q ⇒p ,故p 是q 的必要条件.10.(2022·衡水中学调研卷)如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件答案 C解析 “x ≠y ”不能推出“cos x ≠cos y ”,但“cos x ≠cos y ”一定有“x ≠y ”. 11.设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 方法一:当a >b >0时,a >b ⇔a |a |>b |b |;当a >0>b 时,a >b ⇔a |a |>b |b |;当b <a <0时,a >b ⇔a |a |>b |b |,∴选C.方法二:构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |.选C.12.(2021·全国甲卷)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 答案 B解析 当a 1<0,q >1时,a n =a 1q n -1<0,此时数列{S n }递减,所以甲不是乙的充分条件.当数列{S n }递增时,有S n +1-S n =a n +1=a 1q n >0,若a 1>0,则q n >0(n ∈N *),即q >0;若a 1<0,则q n <0(n ∈N *),不存在.所以甲是乙的必要条件.13.(2022·西安一模)设命题p :“x 2 +x -6<0”,命题q :“|x |<1”,那么p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 p :-3<x <2;q :-1<x <1,易知选B. 14.(1)“x >y >0”是“1x <1y ”的________条件.(2)“tan θ≠1”是“θ≠π4”的________条件.(3)在△ABC 中,“A =B ”是“tan A =tan B ”的________条件. 答案 (1)充分不必要 (2)充分不必要 (3)充要 解析 (1)1x <1y⇒xy ·(y -x )<0,即x >y >0或y <x <0或x <0<y ,则“x >y >0”是“1x <1y”的充分不必要条件.(2)题目即判断θ=π4是tan θ=1的什么条件,显然是充分不必要条件.(3)△ABC 中,若A =B ,则A ,B 只能为锐角,∴tan A =tan B ,则充分性成立;若tan A =tan B ,则只能tan A =tan B >0,∴A ,B 为锐角,∴A =B ,必要性成立.15.(1)(2022·菏泽模拟)命题“所有无理数的平方都是有理数”的否定是________. (2)若“x >1”是“不等式2x >a -x 成立”的必要不充分条件,则实数a 的取值范围是________. 答案 (1)存在一个无理数,它的平方不是有理数 (2)(3,+∞)解析 (1)全称命题的否定为特称命题,可得命题“所有无理数的平方都是有理数”的否定是:存在一个无理数,它的平方不是有理数.(2)2x >a -x ,即2x +x >a .设f (x )=2x +x ,则函数f (x )为增函数.由题意知“2x +x >a 成立,即f (x )>a 成立”能得到“x >1”,反之不成立.∵当x >1时,f (x )>3,∴a >3.16.(2021·贵阳模拟)下列不等式: ①x <1;②0<x <1;③-1<x <0;④-1<x <1.其中可以作为“x 2<1”的一个充分条件的所有序号为________. 答案 ②③④17.(2022·潍坊一中月考)若a ,b 都是实数,试从①ab =0;②a +b =0;③a (a 2+b 2)=0;④ab >0中选出适合的条件,用序号填空. (1)“a ,b 都为0”的必要条件是________; (2)“a ,b 都不为0”的充分条件是________; (3)“a ,b 至少有一个为0”的充要条件是________. 答案 (1)①②③ (2)④ (3)①解析 ①ab =0⇔a =0或b =0,即a ,b 至少有一个为0;②a +b =0⇔a ,b 互为相反数,则a ,b 可能均为0,也可能为一正一负; ③a (a 2+b 2)=0⇔a =0或⎩⎪⎨⎪⎧a =0,b =0; ④ab >0⇔⎩⎪⎨⎪⎧a >0,b >0或⎩⎪⎨⎪⎧a <0,b <0,则a ,b 都不为0.18.设命题p :2x -1x -1<0,命题q :x 2-(2a +1)x +a (a +1)≤0,若p 是q 的充分不必要条件,求实数a 的取值范围.答案 ⎣⎡⎦⎤0,12 解析2x -1x -1<0⇒(2x -1)(x -1)<0⇒12<x <1,x 2-(2a +1)x +a (a +1)≤0⇒a ≤x ≤a +1, 由题意得⎝⎛⎭⎫12,1[a ,a +1],故⎩⎪⎨⎪⎧a ≤12,a +1≥1,且等号不能同时取到,解得0≤a ≤12.【】题组层级快练(三)1.(2022·湖北宜昌一中月考)下列命题中是假命题的是( ) A .∃x 0∈R ,log 2x 0=0 B .∃x 0∈R ,cos x 0=1 C .∀x ∈R ,x 2>0 D .∀x ∈R ,2x >0答案 C解析 因为log 21=0,cos 0=1,所以A 、B 项均为真命题,因为02=0,所以C 项为假命题,因为2x >0,所以D 项为真命题.2.命题“所有奇数的立方都是奇数”的否定是( ) A .所有奇数的立方都不是奇数 B .不存在一个奇数,它的立方是偶数 C .存在一个奇数,它的立方不是奇数 D .不存在一个奇数,它的立方是奇数 答案 C解析 全称命题的否定是特称命题,即“存在一个奇数,它的立方不是奇数”. 3.命题“∀x ∈R ,⎝⎛⎭⎫13x>0”的否定是( ) A .∃x 0∈R ,⎝⎛⎭⎫13x 0<0 B .∀x ∈R ,⎝⎛⎭⎫13x≤0 C .∀x ∈R ,⎝⎛⎭⎫13x <0 D .∃x 0∈R ,⎝⎛⎭⎫13x 0≤0答案 D解析 全称命题“∀x ∈R ,⎝⎛⎭⎫13x>0”的否定是把量词“∀”改为“∃”,并把结论进行否定,即把“>”改为“≤”.故选D.4.命题“∃x0∈∁R Q,x03∈Q”的否定是()A.∃x0∉∁R Q,x03∈Q B.∃x0∈∁R Q,x03∉QC.∀x∉∁R Q,x3∈Q D.∀x∈∁R Q,x3∉Q答案 D解析该特称命题的否定为“∀x∈∁R Q,x3∉Q”.5.已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中,真命题是()A.①③B.①④C.②③D.②④答案 C解析若x>y,则-x<-y成立,即命题p为真命题,若x>y,则x2>y2不一定成立,即命题q为假命题,则綈p是假命题,綈q为真命题,故p∨q与p∧(綈q)是真命题,故选C. 6.(2022·河北保定模拟)命题“∀x∈R,f(x)·g(x)≠0”的否定是()A.∀x∈R,f(x)=0且g(x)=0 B.∀x∈R,f(x)=0或g(x)=0C.∃x0∈R,f(x0)=0且g(x0)=0 D.∃x0∈R,f(x0)=0或g(x0)=0答案 D解析根据全称命题与特称命题互为否定的关系可得命题“∀x∈R,f(x)·g(x)≠0”的否定是“∃x0∈R,f(x0)=0或g(x0)=0”.故选D.7.若命题p:x∈A∩B,则綈p:()A.x∈A且x∉B B.x∉A或x∉BC.x∉A且x∉B D.x∈A∪B答案 B8.(2022·潍坊一模)已知命题p,q,“綈p为真”是“p∧q为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析因为綈p为真,所以p为假,那么p∧q为假,所以“綈p为真”是“p∧q为假”的充分条件;反过来,若“p∧q为假”,则“p真q假”或“p假q真”或“p假q假”,所以由“p∧q为假”不能推出“綈p为真”.综上可知,“綈p为真”是“p∧q为假”的充分不必要条件.9.(2022·江南十校联考)已知命题p:复数z满足(1-i)z=1+i,则|z|=1,命题q:复数z=1-2i 在复平面内对应的点位于第二象限.则下列命题为真命题的是( ) A .p ∧q B .p ∨q C .綈p D .q答案 B解析 由(1-i)z =1+i ,得z =i ,从而|z |=1,故命题p 为真命题;复数z =1-2i 在复平面内对应的点位于第四象限,故命题q 为假命题.故p ∧q 为假命题,p ∨q 为真命题,綈p 为假命题.故选B.10.(2022·湖南邵阳高三大联考)若命题“∃x 0∈R ,x 02+2mx 0+m +2<0”为假命题,则m 的取值范围是( ) A .(-∞,-1)∪[2,+∞) B .(-∞,-1)∪(2,+∞) C .[-1,2] D .(-1,2)答案 C解析 命题的否定是“∀x ∈R ,x 2+2mx +m +2≥0”,该命题为真命题,所以Δ=4m 2-4(m +2)≤0,解得-1≤m ≤2.故选C.11.(2022·山东聊城期末)下列命题是真命题的是( ) A .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数 B .∃α0,β0∈R ,使cos(α0+β0)=cos α0+cos β0C .向量a =(2,1),b =(-1,0),则a 在b 的方向上的投影为2D .“|x |≤1”是“x ≤1”的既不充分又不必要条件 答案 B解析 当φ=π2时,f (x )=cos 2x ,为偶函数,故A 为假命题;令α0=π4,β0=-π2,则cos(α0+β0)=cos ⎝⎛⎭⎫-π4=22,cos α0+cos β0=22+0=22,cos(α0+β0)=cos α0+cos β0成立,故B 为真命题;a 在b 的方向上的投影为a ·b |b |=-2+01=-2,故C 为假命题;由|x |≤1,可得-1≤x ≤1,故充分性成立,若x ≤1,|x |≤1不一定成立,故“|x |≤1”是“x ≤1”的充分不必要条件,D 为假命题.12.(2019·课标全国Ⅲ,文)记不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题: ①p ∨q ②綈p ∨q ③p ∧綈q ④綈p ∧綈q 这四个命题中,所有真命题的编号是( ) A .①③B .①②C.②③D.③④答案 A解析方法一:作出不等式组表示的平面区域D,如图中阴影部分所示,直线2x+y=9和直线2x+y=12均穿过了平面区域D,不等式2x+y≥9表示的区域为直线2x+y=9及其右上方的区域,所以命题p为真命题;不等式2x+y≤12表示的区域为直线2x+y=12及其左下方的区域,所以命题q为假命题.所以命题p∨q和p∧綈q为真命题.故选A.方法二:在不等式组表示的平面区域D内取点(7,0),点(7,0)的坐标满足不等式2x+y≥9,所以命题p为真命题;点(7,0)的坐标不满足不等式2x+y≤12,所以命题q为假命题.所以命题p∨q和p∧綈q为真命题.故选A.13.已知命题p:∃x0∈R,mx02+1≤0;命题q:∀x∈R,x2+mx+1>0.若p∨q为假命题,则实数m的取值范围为()A.{m|m≥2} B.{m|m≤-2}C.{m|m≤-2或m≥2} D.{m|-2≤m≤2}答案 A解析由p:∃x0∈R,mx02+1≤0,可得m<0;由q:∀x∈R,x2+mx+1>0,可得Δ=m2-4<0,解得-2<m<2.因为p∨q为假命题,所以p与q都是假命题,若p是假命题,则有m≥0;若q是假命题,则有m≤-2或m≥2,故实数m的取值范围为{m|m≥2}.故选A.14.已知命题p:1x2-x-2>0,则綈p对应的x的集合为________.答案{x|-1≤x≤2}解析p:1x2-x-2>0⇔x>2或x<-1,∴綈p:-1≤x≤2.15.(1)已知命题“∀x∈R,sin x-a≥0”是真命题,则a的取值范围是________.答案(-∞,-1]解析由题意,对∀x∈R,a≤sin x成立.由于对∀x∈R,-1≤sin x≤1,所以a≤-1. (2)若命题“∃x0∈R,x02+(a-1)x0+1≤0”为假命题,则实数a的取值范围为________.答案(-1,3)解析由“∃x0∈R,x02+(a-1)x0+1≤0”为假命题,得“∀x∈R,x2+(a-1)x+1>0”为真命题,所以Δ=(a-1)2-4<0,解得-1<a<3,所以a的取值范围为(-1,3).16.(2014·课标全国Ⅰ)不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 4 C .p 1,p 2 D .p 1,p 3答案 C解析 画出可行域如图中阴影部分所示,由图可知,当目标函数z =x +2y 经过可行域内的点A (2,-1)时,z 取得最小值0,故x +2y ≥0,因此p 1,p 2是真命题,选C.17.若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________. 答案 ⎝⎛⎦⎤0,12 解析 由于函数g (x )在定义域[-1,2]内是任意取值的,且必存在x 0∈[-1,2],使得g (x 1)=f (x 0),因此问题等价于函数g (x )的值域是函数f (x )值域的子集.在[-1,2]上,函数f (x )的值域是[-1,3],函数g (x )的值域是[2-a ,2+2a ],则有2-a ≥-1且2+2a ≤3,即a ≤12.又a >0,故a 的取值范围是⎝⎛⎦⎤0,12. 【】题组层级快练(四)1.设集合P ={x |0≤x ≤2},Q ={y |0≤y ≤2},则图中能表示P 到Q 的函数的是( )答案 D解析 A 、B 中都有一个x 对应2个y 的情形,C 中1<x ≤2时,没有y 与之对应. 2.下列各组函数中,表示同一函数的是( ) A .f (x )=x +2,x ∈R 与g (x )=x +2,x ∈Z B .f (x )=x -1与g (x )=x 2-1x +1C .f (u )=1+u1-u与f (v )=1+v1-vD .y =f (x )与y =f (x +1) 答案 C3.函数y =|x |(x -1) 的定义域为( ) A .{x |x ≥1} B .{x |x ≥1或x =0} C .{x |x ≥0} D .{x |x =0}答案 B解析 由题意得|x |(x -1)≥0,∴x -1≥0或|x |=0. ∴x ≥1或x =0.4.已知f (x 5)=lg x ,则f (2)等于( ) A .lg 2 B .lg 32 C .lg132D.15lg 2 答案 D 解析 令x 5=t ,则x =t 15(t >0),∴f (t )=lg t 15=15lg t .∴f (2)=15lg 2.故选D.5.(2021·皖南八校联考)下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx答案 D解析 y =13x的定义域为{x |x ≠0},而y =1sin x 的定义域为{x |x ≠k π,k ∈Z },y =ln xx 的定义域为{x |x >0},y =x e x 的定义域为R ,y =sin xx的定义域为{x |x ≠0},故选D.6.(2022·德州一中模拟)已知函数f (x )=x [x ],其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[-3]=-3,[2.1]=2,则f (-2)的值为( ) A .-2 2 B .2 2 C .- 2 D. 2答案 B解析 ∵[-2]=-2,∴f (-2)=-2×(-2)=2 2.故选B.7.已知函数f (x )对任意实数x 满足f (2x -1)=2x 2,若f (m )=2,则m =( ) A .1 B .0 C .1或-3 D .3或-1 答案 C解析 本题考查函数的概念与解析式的求解.令2x -1=t ,t ∈R ,可得x =12(t +1),故f (t )=2×14×(t +1)2=12(t +1)2,故f (m )=12(m +1)2=2,故m =1或m =-3.8.(2022·福州模拟)已知函数f (x )的定义域为(-1,1),则函数g (x )=f ⎝⎛⎭⎫x 2+f (x -1)的定义域为( ) A .(-2,0) B .(-2,2) C .(0,2) D.⎝⎛⎭⎫-12,0 答案 C9.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则函数f (x )=|x |sgn x 的大致图象是( )答案 C解析 函数f (x )=|x |sgn x =⎩⎪⎨⎪⎧x ,x >0,0,x =0,x ,x <0,故函数f (x )=|x |sgn x 的图象为直线y =x .故选C.10.(2022·江南十校模拟)函数f (x )=⎩⎪⎨⎪⎧x 2-4x -3,x ≤2,log 2(x -1),x >2,则不等式f (x )>2的解集是( )A .(-∞,-1)B .(-∞,-1)∪(5,+∞)C .(5,+∞)D .(-∞,1)∪(3,+∞)答案 B解析 当x ≤2时,f (x )=x 2-4x -3>2,即x 2-4x -5>0,解得x <-1或x >5,故x <-1; 当x >2时,f (x )=log 2(x -1)>2,即log 2(x -1)>log 24,解得x >5,故x >5. 综上所述,不等式f (x )>2的解集是(-∞,-1)∪(5,+∞).11.(2022·烟台调研)函数f (x )=⎩⎪⎨⎪⎧e x -3,x <1,ln x ,x ≥1,则关于函数f (x )的说法不正确的是( )A .定义域为RB .值域为(-3,+∞)C .在R 上为增函数D .只有一个零点答案 B解析 f (x )=⎩⎪⎨⎪⎧e x -3,x <1,ln x ,x ≥1,∴f (x )的定义域为R ,值域为(-3,e -3)∪[0,+∞),且e -3<0,∴f (x )在R 上为增函数,且f (1)=0,∴f (x )只有一个零点.故A 、C 、D 正确,B 不正确.12.已知函数f (x )=⎩⎪⎨⎪⎧x +b ,x <1,2x -1,x ≥1,若f (f (-1))=3,则b =________.答案 3解析 ∵f (-1)=b -1,∴f (b -1)=3,当b -1≥1即b ≥2时,2b -1-1=3,解得b =3,当b -1<1即b <2时,b -1+b =3,解得b =2(舍),综上有b =3. 13.已知f ⎝⎛⎭⎫x -1x =x 2+1x 2,则f (3)=________. 答案 11解析 ∵f ⎝⎛⎭⎫x -1x =⎝⎛⎭⎫x -1x 2+2, ∴f (x )=x 2+2(x ∈R ),∴f (3)=32+2=11. 14.已知函数f (x ),g (x )分别由下表给出:则f (g (1))的值为________;满足f (g (x ))>g (f (x ))的x 的值是________.答案 1 215.已知f (2x +1)=x 2-2x ,则f (3)=________,f (x )=________. 答案 -1 14x 2-32x +54解析 令2x +1=3,则x =1,∴f (3)=12-2×1=-1.令t =2x +1,∴x =t -12,∴f (t )=⎝⎛⎭⎫t -122-2·t -12=14(t 2-2t +1)-t +1=14t 2-32t +54,∴f (x )=14x 2-32x +54. 16.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,求c 和A 的值.答案 c =60,A =16解析 因为组装第A 件产品用时15分钟,所以c A =15①,所以必有4<A ,且c 4=c2=30②,联立①②解得c =60,A =16.17.(名师原创)将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中两数差的绝对值最小的,我们称3×4为12的最佳分解.当p ×q (p ≤q 且p ,q ∈N *)是正整数n 的最佳分解时,我们规定函数f (n )=p q ,例如:f (12)=34.关于函数f (n )有下列叙述:①f (7)=17;②f (24)=38;③f (28)=47;④f (144)=916,其中正确的为________.(填序号) 答案 ①③解析 对于①,∵7=1×7,∴f (7)=17,①正确;对于②,∵24=1×24=2×12=3×8=4×6,∴f (24)=46=23,②不正确;对于③,∵28=1×28=2×14=4×7,∴f (28)=47,③正确;对于④,∵144=1×144=2×72=3×48=4×36=6×24=8×18=9×16=12×12,∴f (144)=1212=1,④不正确.18.如图,在矩形ABCD 中,BA =3,CB =4,点P 在线段AD 上移动,CQ ⊥BP ,Q 为垂足.设BP =x ,CQ =y ,试求y 关于x 的函数表达式,并画出函数的图象.答案 y =12x (3≤x ≤5),图象见解析解析 由题意,得△CQB ∽△BAP ,所以CQ BA =CB BP ,即y 3=4x .所以y =12x .连接BD ,因为BA ≤BP ≤BD ,而BA =3,CB =AD =4,所以BD =32+42=5,所以3≤x ≤5.故所求的函数表达式为y =12x(3≤x ≤5).如图所示,曲线MN 就是所求的函数图象.【】专题层级快练(五)1.(2022·上海市杨浦区高三期末)下列函数中,值域为(0,+∞)的是( ) A .y =x 2 B .y =2xC .y =2xD .y =|log 2x |答案 C解析 函数y =x 2的值域为[0,+∞),故排除A ; 函数y =2x 的值域为{y |y ≠0},故排除B ;函数y =2x 的值域为(0,+∞),故C 满足条件; 函数y =|log 2x |的值域为[0,+∞),故排除D.故选C. 2.函数y =1-|x |1+|x |的值域为( )A .(-1,1)B .[-1,1)C .(-1,1]D .[-1,1]答案 C解析 方法一(分离常数法): y =1-|x |1+|x |=-1+21+|x |, ∵|x |≥0,∴|x |+1≥1,∴0<2|x |+1≤2.∴-1<-1+21+|x |≤1.即函数值域为(-1,1]. 方法二(反解法):由y =1-|x |1+|x |,得|x |=1-y 1+y .∵|x |≥0,∴1-y1+y≥0,∴-1<y ≤1, 即函数值域为(-1,1].故选C.3.函数y =2--x 2+4x 的值域是( ) A .[-2,2] B .[1,2] C .[0,2] D .[-2,2]答案 C解析 要使函数有意义,则有-x 2+4x ≥0, ∴x 2-4x ≤0,∴0≤x ≤4,即x ∈[0,4]. ∵-x 2+4x =-(x -2)2+4, ∴0≤-(x -2)2+4≤4,即0≤-x 2+4x ≤2,∴-2≤--x 2+4x ≤0, ∴0≤2--x 2+4x ≤2, ∴0≤y ≤2,即y ∈[0,2].故选C. 4.函数y =1+x -1-2x 的值域为( ) A.⎝⎛⎭⎫-∞,32 B.⎝⎛⎦⎤-∞,32 C.⎝⎛⎭⎫32,+∞ D.⎣⎡⎭⎫32,+∞ 答案 B解析 设1-2x =t ,则t ≥0,x =1-t 22,所以y =1+1-t 22-t =12(-t 2-2t +3)=-12(t +1)2+2,因为t ≥0,所以y ≤32.所以函数y =1+x -1-2x 的值域为⎝⎛⎦⎤-∞,32.故选B. 5.(2022·昆明第一中学摸底)函数y =ln x +1ln x 的值域为( )A .(-∞,-2]B .[2,+∞)C .(-∞,-2]∪[2,+∞)D .[-2,2] 答案 C解析 当x >1时,y =ln x +1ln x≥2ln x ·1ln x=2,当且仅当x =e 时等号成立;当0<x <1时,y =ln x +1ln x=-⎣⎡⎦⎤(-ln x )+⎝⎛⎭⎫-1ln x ≤-2(-ln x )·⎝⎛⎭⎫-1ln x =-2,当且仅当x =1e时等号成立, 所以函数的值域为(-∞,-2]∪[2,+∞).故选C.6.(2022·山东菏泽模拟)已知函数f (x )=log 2x 的值域是[1,2],则函数φ(x )=f (2x )+f (x 2)的定义域为( ) A .[2,2] B .[2,4] C .[4,8] D .[1,2]答案 A解析 ∵f (x )的值域为[1,2],∴1≤log 2x ≤2, ∴2≤x ≤4,∴f (x )的定义域为[2,4], ∴φ(x )=f (2x )+f (x 2)的自变量x 满足⎩⎪⎨⎪⎧2≤2x ≤4,2≤x 2≤4,解得2≤x ≤2.∴φ(x )的定义域为[2,2].故选A.7.定义运算a *b ,a *b =⎩⎪⎨⎪⎧a (a ≤b ),b (a >b ),例如1*2=1,则函数y =1*2x 的值域为( )A .(0,1)B .(-∞,1)C .[1,+∞) D.(]0,1答案 D解析 当1≤2x ,即x ≥0时,函数y =1*2x =1,当1>2x ,即x <0时,函数y =1*2x =2x ,由图知,函数y =1*2x 的值域为(0,1].故选D. 8.下列函数中,值域为[2,+∞)的是( ) A .y =x 2-x +94B .y =x +1x (x ≥2)C .y =e sin xD .y =(x +1)-23答案 A解析 ∵y =x 2-x +94=⎝⎛⎭⎫x -122+2≥2,∴A 满足题意.∵y =x +1x ,当x ≥2时为增函数,∴y ≥52,∴排除B.∵-1≤sin x ≤1,∴y =e sin x ∈⎣⎡⎦⎤1e ,e ,∴排除C. ∵y =(x +1)-23=13(x +1)2,值域为(0,+∞),∴排除D.9.若对函数f (x )=ax 2+bx +c (a ≠0)作x =h (t )的代换,则不能改变函数f (x )的值域的代换是( ) A .h (t )=10t B .h (t )=t 2 C .h (t )=sin t D .h (t )=log 2t答案 D10.下列函数中,同一 同的是( ) A .y =x +1+1 B .y =|ln x | C .y =13x -1D .y =x +1x -1答案 D解析 对于A ,定义域为[-1,+∞),值域为[1,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为[0,+∞),不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞). 11.(1)函数y =10x +10-x10x -10-x的值域为________.(2)(2022·广东梅州市检测)函数y =x 2+41-2x 2的值域是________. 答案 (1)(-∞,-1)∪(1,+∞) (2)⎣⎡⎦⎤12,4 解析 (1)由y =10x +10-x 10x -10-x ,得x ≠0,y +1y -1=102x . ∵102x >0且不为1,∴y +1y -1>0且不为1.∴y <-1或y >1.即函数值域为(-∞,-1)∪(1,+∞). (2)令t =1-2x 2,则x 2=1-t 22, 由x 2≥0和二次根式的非负性,得0≤t ≤1, 则y =1-t 22+4t =-12t 2+4t +12,易得函数的值域为⎣⎡⎦⎤12,4.12.函数y =x 4+x 2+1的值域是________;y =x 4-x 2+1的值域是________. 答案 [1,+∞) ⎣⎡⎭⎫34,+∞13.(2022·沧衡八校联盟)函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <1,1x ,x >1的值域为________.答案 (0,+∞) 解析 当x <1时,f (x )=x 2-x +1=⎝⎛⎭⎫x -122+34≥34; 当x >1时,f (x )=1x∈(0,1),综上可得,f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <1,1x ,x >1的值域为(0,+∞).14.函数y =x 2+x +1x +1的值域为________.答案 (-∞,-3]∪[1,+∞) 解析 方法一(判别式法):由y =x 2+x +1x +1,得x 2+(1-y )x +1-y =0.∵x ∈(-∞,-1)∪(-1,+∞),∴Δ=(1-y )2-4(1-y )≥0.解得y ≤-3或y ≥1. 当y =-3时,x =-2;当y =1时,x =0, ∴函数的值域为(-∞,-3]∪[1,+∞). 方法二(分离常数法):y =x 2+x +1x +1=(x +1)2-(x +1)+1x +1=(x +1)+1x +1-1,当x >-1时,(x +1)+1x +1≥2,当且仅当x =0时取等号;当x <-1时,(x +1)+1x +1≤-2,当且仅当x =-2时取等号, ∴y ≥1或y ≤-3.∴函数的值域为(-∞,-3]∪[1,+∞).15.(2022·江西省顶级名校模拟)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________. 答案 (1,2]解析 当x ≤2时,f (x )=6-x ≥4,当x >2时,f (x )=3+log a x ,当a >1时,3+log a x >3+log a 2≥4,解得1<a ≤2;当0<a <1时,3+log a x <3+log a 2<3,不合题意,故实数a 的取值范围是1<a ≤2. 16.已知函数f (x )=lg[(a 2-1)x 2+(a +1)x +1]. (1)若f (x )的定义域为R ,求实数a 的取值范围;(2)若f (x )的值域为R ,求实数a 的取值范围. 答案 (1)(-∞,-1]∪⎝⎛⎭⎫53,+∞ (2)⎣⎡⎦⎤1,53 解析 (1)依题意(a 2-1)x 2+(a +1)x +1>0对一切x ∈R 恒成立,当a 2-1≠0时,其充要条件是⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)<0,即⎩⎪⎨⎪⎧a >1或a <-1,a >53或a <-1. ∴a <-1或a >53.若a 2-1=0,则a =±1,当a =-1时,f (x )=0,满足题意;当a =1时,f (x )=lg(2x +1),不合题意. ∴a ≤-1或a >53.即a 的取值范围为(-∞,-1]∪⎝⎛⎭⎫53,+∞. (2)当a 2-1=0时,a =1或-1,检验得a =1满足题意. 当a 2-1≠0时,若f (x )的值域为R ,则⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)≥0,解得1<a ≤53. 综上得a 的取值范围为⎣⎡⎦⎤1,53.17.(2022·山东枣庄市三中月考)已知函数f (x )=32x -2·3x +2,定义域为M ,值域为[1,2],则下列说法中不正确的是( ) A .M =[0,log 32] B .M ⊆(-∞,log 32] C .log 32∈M D .0∈M答案 A解析 令t =3x (t >0),则原函数等价于g (t )=t 2-2t +2=(t -1)2+1(t >0), 由g (t )=1,得t =1,即3x =1,得x =0; 由g (t )=2,得t =0(舍)或2,即x =log 32.根据g (t )的图象特征,知0∈M ,log 32∈M ,M ⊆(-∞,log 32].A 错误,故选A.18.(2022·沧州七校联考)设函数f (x )=2x 1+2x -12,[x ]表示不超过x 的最大整数,则函数y =[f (x )]的值域为( ) A .{0} B .{-1,0} C .{-1,0,1}D .{-2,0}解析 ∵f (x )=1-12x +1-12=12-12x +1,又2x >0,∴-12<f (x )<12.∴y =[f (x )]的值域为{-1,0}.【】题组层级快练(六)1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2 C .y =2-x D .y =log 0.5(x +1)答案 A解析 A 中,函数y =x +1在[-1,+∞)上为增函数,所以函数在(0,+∞)上为增函数,故正确;B 中,函数y =(x -1)2在(-∞,1)上为减函数,在[1,+∞)上为增函数,故错误;C 中,函数y =2-x=⎝⎛⎭⎫12x在R 上为减函数,故错误;D 中,函数y =log 0.5(x +1)在(-1,+∞)上为减函数,故错误.2.若函数y =x 2+bx +c (x ∈[0,+∞))是单调函数,则实数b 的取值范围是( ) A .b ≥0 B .b ≤0 C .b >0 D .b <0答案 A3.函数f (x )=x -2x -1( )A .在(-1,+∞)上单调递增B .在(1,+∞)上单调递增C .在(-1,+∞)上单调递减D .在(1,+∞)上单调递减 答案 B 解析 f (x )=1-1x -1,∴f (x )的图象可由y =-1x 的图象沿x 轴向右平移一个单位长度,再向上平移一个单位长度得到,如图所示. 4.函数f (x )=x |x -2|的单调递减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析 f (x )=x |x -2|=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2,其图象如图,结合图象可知函数的单调递减区间是[1,2].故选A.5.函数f (x )=log 0.5(x +1)+log 0.5(x -3)的单调递减区间是( ) A .(3,+∞) B .(1,+∞) C .(-∞,1) D .(-∞,-1)答案 A解析 由已知易得⎩⎪⎨⎪⎧x +1>0,x -3>0,即x >3,又0<0.5<1,∴f (x )在(3,+∞)上单调递减.6.若函数f (x )=x 2-2x +m 在[3,+∞)上的最小值为1,则实数m 的值为( ) A .-3 B .-2 C .-1 D .1答案 B解析 ∵f (x )=(x -1)2+m -1在[3,+∞)上为增函数,且f (x )在[3,+∞)上的最小值为1,∴f (3)=1,即3+m =1,∴m =-2.故选B.7.已知f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)答案 C解析 由已知得⎪⎪⎪⎪1x >1⇒-1<x <0或0<x <1.故选C.8.(2022·广东省佛山市佛山一中月考)已知函数f (x )是定义域为[0,+∞)的减函数,且f (2)=-1,则满足f (2x -4)>-1的实数x 的取值范围是( ) A .(3,+∞) B .(-∞,3) C .[2,3) D .[0,3)答案 C解析 f (x )在定义域[0,+∞)上是减函数,且f (2)=-1,∴f (2x -4)>-1可化为f (2x -4)>f (2),∴⎩⎪⎨⎪⎧2x -4≥0,2x -4<2,解得2≤x <3. 9.(2022·昆明诊断考试)已知函数f (x )=e x +e -x ,则( ) A .f (-2)<f (e)<f (5) B .f (e)<f (-2)<f (5) C .f (5)<f (e)<f (-2)D .f (-2)<f (5)<f (e)解析 因为f (x )定义域为R ,且f (-x )=e -x +e x =f (x ),所以函数f (x )为偶函数.又当x >0时,f ′(x )=e x -1e x >0,所以函数f (x )在(0,+∞)上单调递增.因为2<5<e ,所以f (2)<f (5)<f (e),又f (-2)=f (2),所以f (-2)<f (5)<f (e).故选D.10.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月二氧化碳的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.以下判断正确的是( ) A .该单位每月二氧化碳的处理量为200吨时,才能使每吨的平均处理成本最低 B .该单位每月最低可获利20 000元 C .该单位每月不获利,也不亏损D .每月需要国家至少补贴40 000元才能使该单位不亏损 答案 D解析 显然x >0,所以每吨的平均处理成本y x =12x +80 000x -200≥212x ·80 000x-200=2×200-200=200,当且仅当12x =80 000x 即x =400时,取等号.所以A 错误.设该单位每月获利为S 元,则S =100x -y =100x -(12x 2-200x +80 000)=-12(x -300)2-35 000,因为400≤x ≤600,所以当x =400时,S 有最大值-40 000.所以每月需要国家至少补贴40 000元才能使该单位不亏损.D 正确.B 、C 错误. 11.在给出的下列4个条件中,①⎩⎪⎨⎪⎧0<a <1,x ∈(-∞,0); ②⎩⎪⎨⎪⎧0<a <1,x ∈(0,+∞); ③⎩⎪⎨⎪⎧a >1,x ∈(-∞,0); ④⎩⎪⎨⎪⎧a >1,x ∈(0,+∞). 能使函数y =log a 1x 2为减函数的是________(把你认为正确的条件编号都填上).答案 ①④解析 利用复合函数的性质知①④正确.12.函数y =x -x (x ≥0)的最大值为________. 答案 14解析 令t =x ,则t ≥0, 所以y =t -t 2=-⎝⎛⎭⎫t -122+14, 所以当t =12,即x =14时,y max =14.13.函数f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. 答案 1 52解析 因为f (x )=-ax+b (a >0)在⎣⎡⎦⎤12,2上是增函数,所以f ⎝⎛⎭⎫12=12,f (2)=2. 即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.14.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________. 答案 -6解析 画图知函数f (x )的单调递增区间为⎣⎡⎭⎫-a 2,+∞,故3=-a2,解得a =-6. 15.(2022·西安五校联考)若函数f (x )=e x -e -x ,则不等式f (2x +1)+f (x -2)>0的解集为________. 答案 ⎝⎛⎭⎫13,+∞ 解析 由f (x )定义域为R ,且f (-x )=-f (x ),知f (x )=e x -e -x 为奇函数,又易证在定义域R 上,f (x )是增函数,则不等式f (2x +1)+f (x -2)>0等价于f (2x +1)>-f (x -2)=f (-x +2),则2x +1>-x +2,即x >13,故不等式的解集为⎝⎛⎭⎫13,+∞.16.(2021·《高考调研》原创题)若log 5x +log 51y >e -x -e -y ,则( )A .(x -1)2>(y -1)2B .(x -1)2<(y -1)2C .x 2<y 2D .x 2>y 2答案 D解析 由log 5x +log 51y >e -x -e -y ,得log 5x -e -x >log 5y -e -y ,令f (t )=log 5t -e -t ,∵y =log 5t为(0,+∞)上的增函数,y =-e-t为R 上的增函数,∴f (t )为(0,+∞)上的增函数,∴由f (x )>f (y ),得x >y >0,∴x 2>y 2.故选D.17.(2021·沧州七校联考)已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( ) A.⎝⎛⎭⎫0,34 B.⎣⎡⎭⎫0,34 C.⎝⎛⎦⎤0,34 D.⎣⎡⎦⎤0,34 答案 D解析 当a =0时,f (x )=-12x +5, 在(-∞,3)上是减函数; 当a ≠0时,由⎩⎪⎨⎪⎧a >0,-4(a -3)4a ≥3,得0<a ≤34.综上,a 的取值范围是⎣⎡⎦⎤0,34.【】题组层级快练(七)1.(2022·合肥质检)下列函数中,既是偶函数,又在(0,+∞)上单调递减的函数是( ) A .y =|x |+1 B .y =-x 2+1 C .y =ln x 2 D .y =cos x x答案 B2.(2022·唐山市高三测试)设函数f (x )=x (e x +e -x ),则f (x )( ) A .是奇函数,且在(0,+∞)上单调递增 B .是偶函数,且在(0,+∞)上单调递增 C .是奇函数,且在(0,+∞)上单调递减 D .是偶函数,且在(0,+∞)上单调递减 答案 A解析 方法一:由条件可知,f (x )定义域为R ,且f (-x )=-x (e -x +e x )=-x (e x +e -x )=-f (x ),故f (x )为奇函数.f ′(x )=e x +e -x +x (e x -e -x ),当x >0时,e x >e -x ,所以x (e x -e -x )>0,又e x +e -x >0,所以f ′(x )>0,所以f (x )在(0,+∞)上单调递增.故选A.方法二:根据题意知f (-1)=-f (1),所以排除B 、D.易知f (1)<f (2),所以排除C.故选A.3.(2022·浙江宁波十校联考)已知函数f (x )=x 3+sin x +1(x ∈R ).若f (m )=2,则f (-m )的值为( ) A .3 B .0 C .-1 D .-2答案 B解析 把f (x )=x 3+sin x +1变形为f (x )-1=x 3+sin x .令g (x )=f (x )-1=x 3+sin x ,x ∈R ,则g (x )为奇函数,有g (-m )=-g (m ),所以f (-m )-1=-[f (m )-1],得到f (-m )=-(2-1)+1=0.4.(2022·南昌市联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称答案 B解析 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y 轴对称.5.已知f (x )为奇函数,当x >0时,f (x )=x (1+x ),那么当x <0时,f (x )=( ) A .-x (1-x ) B .x (1-x ) C .-x (1+x ) D .x (1+x )答案 B解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ).又f (-x )=-f (x ),∴f (x )=x (1-x ). 6.(2022·皖南八校联考)设f (x )是定义在R 上周期为2的奇函数,当0≤x ≤1时,f (x )=x 2-x ,则f ⎝⎛⎭⎫-52=( ) A .-14B .-12C.14D.12答案 C解析 因为f (x )是定义在R 上周期为2的奇函数,所以f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-f ⎝⎛⎭⎫12.又当0≤x ≤1时,f (x )=x 2-x ,所以f ⎝⎛⎭⎫12=⎝⎛⎭⎫122-12=-14,则f ⎝⎛⎭⎫-52=14. 7.已知定义在R 上的函数f (x )满足f (-x )=-f (x ),f (3-x )=f (x ),则f (2 019)=( ) A .-3 B .0 C .1 D .3答案 B解析 由题意得f (x )为奇函数,f (0)=0,由f (3-x )=f (x ),可得f (x +3)=f (-x )=-f (x ),。

高考理科数学第一轮复习测试题9

高考理科数学第一轮复习测试题9

(时间:40分钟 满分:60分)一、填空题(每小题5分,共40分)1.已知直线ρsin ⎝⎛⎭⎫θ+π4=22,则极点到该直线的距离是________. 解析 由题意知,ρsin θ+ρcos θ=1,∴x +y -1=0,由点到直线的距离公式得所求的距离d =22. 答案222.(2011·汕头调研)在极坐标系中,ρ=4sin θ是圆的极坐标方程,则点A ⎝⎛⎭⎫4,π6到圆心C 的距离是________.解析 将圆的极坐标方程ρ=4sin θ化为直角坐标方程为x 2+y 2-4y =0,圆心坐标为(0,2).又易知点A ⎝⎛⎭⎫4,π6的直角坐标为(23,2),故点A 到圆心的距离为0-232+2-2 2=2 3. 答案 2 33.在极坐标系中,过圆ρ=6cos θ-22sin θ的圆心且与极轴垂直的直线的极坐标方程为________.解析 由ρ=6cos θ-22sin θ⇒ρ2=6ρcos θ-22ρsin θ,所以圆的直角坐标方程为x 2+y 2-6x +22y =0,将其化为标准形式为(x -3)2+(y +2)2=11,故圆心的坐标为(3,-2),所以过圆心且与x 轴垂直的直线的方程为x =3,将其化为极坐标方程为ρcos θ=3. 答案 ρcos θ=34.(2011·华南师大模拟)在极坐标系中,点M ⎝⎛⎭⎫4,π3到曲线ρcos ⎝⎛⎭⎫θ-π3=2上的点的距离的最小值为________.解析 依题意知,点M 的直角坐标是(2,23),曲线的直角坐标方程是x +3y -4=0,因此所求的距离的最小值等于点M 到该直线的距离,即为|2+23×3-4|12+32=2.答案 25.(2011·广州广雅中学模拟)在极坐标系中,圆ρ=4上的点到直线ρ(cos θ+3sin θ)=8的距离的最大值是________.解析 把ρ=4化为直角坐标方程为x 2+y 2=16,把ρ(cos θ+3sin θ)=8化为直角坐标方程为x +3y -8=0,∴圆心(0,0)到直线的距离为d =82=4.∴直线和圆相切,∴圆上的点到直线的最大距离是8. 答案 86.在极坐标系中,曲线C 1:ρ=2cos θ,曲线C 2:θ=π4,若曲线C 1与C 2交于A 、B 两点,则线段AB =________.解析 曲线C 1与C 2均经过极点,因此极点是它们的一个公共点.由⎩⎪⎨⎪⎧ρ=2cos θ,θ=π4得⎩⎪⎨⎪⎧ρ=2,θ=π4,即曲线C 1与C 2的另一个交点与极点的距离为2,因此AB = 2. 答案27.(2011·湛江模拟)在极坐标系中,圆C 的极坐标方程为:ρ2+2ρcos θ=0,点P 的极坐标为⎝⎛⎭⎫2,π2过点P 作圆C 的切线,则两条切线夹角的正切值是________.解析 圆C 的极坐标方程:ρ2+2ρcos θ=0化为普通方程:(x +1)2+y 2=1,点P 的直角坐标为(0,2),圆C 的圆心为(-1,0).如图,当切线的斜率存在时,设切线方程为y =kx +2,则圆心到切线的距离为|-k +2|k 2+1=1,∴k =34,即tan α=34.易知满足题意的另一条切线的方程为x =0.又∵两条切线的夹角为α的余角,∴两条切线夹角的正切值为43.答案 438.若直线3x +4y +m =0与曲线ρ2-2ρcos θ+4ρsin θ+4=0没有公共点,则实数m 的取值范围是________.解析 注意到曲线ρ2-2ρcos θ+4ρsin θ+4=0的直角坐标方程是x 2+y 2-2x +4y +4=0,即(x -1)2+(y +2)2=1.要使直线3x +4y +m =0与该曲线没有公共点,只要圆心(1,-2)到直线3x +4y +m =0的距离大于圆的半径即可,即|3×1+4×-2 +m |5>1,|m -5|>5,解得,m <0,或m >10.答案 (-∞,0)∪(10,+∞) 二、解答题(共20分)9.(10分)设过原点O 的直线与圆(x -1)2+y 2=1的一个交点为P ,点M 为线段OP 的中点,当点P 在圆上移动一周时,求点M 轨迹的极坐标方程,并说明它是什么曲线.解 圆(x -1)2+y 2=1的极坐标方程为ρ=2cos θ⎝⎛⎭⎫-π2≤θ≤π2,设点P 的极坐标为(ρ1,θ1),点M 的极坐标为(ρ,θ),∵点M 为线段OP 的中点,∴ρ1=2ρ,θ1=θ,将ρ1=2ρ,θ1=θ代入圆的极坐标方程,得ρ=cos θ.∴点M 轨迹的极坐标方程为ρ=cos θ-⎝⎛⎭⎫π2≤θ≤π2,它表示圆心在点⎝⎛⎭⎫12,0,半径为12的圆.10.(10分)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,已知点P 的直角坐标为(1,-5),点M 的极坐标为⎝⎛⎭⎫4,π2,若直线l 过点P ,且倾斜角为π3,圆 C 以M 为圆心、4为半径.(1)求直线l 的参数方程和圆C 的极坐标方程; (2)试判定直线l 和圆C 的位置关系.解 (1)由题意,直线l 的普通方程是y +5=(x -1)tan π3,此方程可化为y +5sin π3=x -1cos π3,令y +5sinπ3=x -1cos π3=a (a 为参数),得直线l 的参数方程为⎩⎨⎧x =12a +1,y =32a -5(a 为参数).如图,设圆上任意一点为P (ρ,θ),则在△POM 中,由余弦定理,得PM 2=PO 2+OM 2-2·PO ·OM cos ∠POM ,∴42=ρ2+42-2×4ρcos ⎝⎛⎭⎫θ-π2. 化简得ρ=8sin θ,即为圆C 的极坐标方程. (2)由(1)可进一步得出圆心M 的直角坐标是(0,4), 直线l 的普通方程是3x -y -5-3=0,圆心M 到直线l 的距离d =|0-4-5-3|3+1=9+32>4,所以直线l 和圆C 相离.。

高考理科数学第一轮复习测试题3

高考理科数学第一轮复习测试题3

A级基础达标演练(时间:40分钟满分:60分)一、选择题(每小题5分,共25分)1.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步时,正确的证法是().A.假设n=k(k∈N+),证明n=k+1命题成立B.假设n=k(k是正奇数),证明n=k+1命题成立C.假设n=2k+1(k∈N+),证明n=k+1命题成立D.假设n=k(k是正奇数),证明n=k+2命题成立解析A、B、C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数.答案 D2.用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k到n=k+1,左边需增添的代数式是().A.2k+2 B.2k+3C.2k+1 D.(2k+2)+(2k+3)解析当n=k时,左边是共有2k+1个连续自然数相加,即1+2+3+…+(2k+1),所以当n=k+1时,左边是共有2k+3个连续自然数相加,即1+2+3+…+(2k+1)+(2k +2)+(2k+3).答案 D3.对于不等式n2+n<n+1(n∈N*),某同学用数学归纳法的证明过程如下:(1)当n=1时,12+1<1+1,不等式成立.(2)假设当n=k(k∈N*且k≥1)时,不等式成立,即k2+k<k+1,则当n=k+1时,(k+1)2+(k+1)=k2+3k+2<(k2+3k+2)+(k+2)=(k+2)2=(k+1)+1,∴当n=k+1时,不等式成立,则上述证法().A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确解析在n=k+1时,没有应用n=k时的假设,不是数学归纳法.答案 D4.用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k +1时的情况,只需展开().A.(k+3)3B.(k+2)3C .(k +1)3D .(k +1)3+(k +2)3解析 假设当n =k 时,原式能被9整除,即k 3+(k +1)3+(k +2)3能被9整除.当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k 3即可.答案 A5.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( ).A .k 2+1B .(k +1)2C.(k +1)4+(k +1)22[来源:学.科.网] D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2解析 ∵当n =k 时,左侧=1+2+3+…+k 2,当n =k +1时,左侧=1+2+3+…+k 2+(k 2+1)+…+(k +1)2,∴当n =k +1时,左端应在n =k 的基础上加上(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2. 答案 D二、填空题(每小题4分,共12分)6.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________.解析 ∵f (k )=12+22+…+(2k )2,∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2;∴f (k +1)=f (k )+(2k +1)2+(2k +2)2.答案 f (k +1)=f (k )+(2k +1)2+(2k +2)27.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N ,且n >1),第一步要证的不等式是________.解析 n =2时,左边=1+12+122-1=1+12+13,右边=2. 答案 1+12+13<2 8.如下图,在杨辉三角形中,从上往下数共有n (n ∈N *)行,在这些数中非1的数字之和是________________.11 11 2 11 3 3 11 4 6 4 1…解析 所有数字之和S n =20+2+22+…+2n -1=2n -1,除掉1的和2n -1-(2n -1)=2n -2n . 答案 2n -2n三、解答题(共23分)9.(11分)试证:当n ∈N *时,f (n )=32n +2-8n -9能被64整除. 证明 法一 (1)当n =1时,f (1)=64,命题显然成立.(2)假设当n =k (k ∈N *,k ≥1)时,f (k )=32k +2-8k -9能被64整除. 当n =k +1时,由于32(k+1)+2-8(k +1)-9 =9(32k +2-8k -9)+9·8k +9·9-8(k +1)-9=9(32k +2-8k -9)+64(k +1),即f (k +1)=9f (k )+64(k +1),∴n =k +1时命题也成立.根据(1)、(2)可知,对于任意n ∈N *,命题都成立.法二 (1)当n =1时f (1)=64命题显然成立.(2)假设当n =k (k ∈N *,k ≥1)时,f (k )=32k +2-8k -9能被64整除. 由归纳假设,设32k +2-8k -9=64m (m 为大于1的自然数), 将32k +2=64m +8k +9代入到f (k +1)中得, f (k +1)=9(64m +8k +9)-8(k +1)-9=64(9m +k +1),∴n =k +1时命题也成立. 根据(1)(2)知,对于任意n ∈N *,命题都成立.10.(12分)已知数列{a n }中,a 1=a (a >2),对一切n ∈N *,a n >0,a n +1=a 2n 2(a n -1). 求证:a n >2且a n +1<a n .证明 法一 ∵a n +1=a 2n 2(a n -1)>0, ∴a n >1,∴a n -2=a 2n -12(a n -1-1)-2=(a n -1-2)22(a n -1-1)≥0, ∴a n ≥2.若存在a k =2,则a k -1=2,[来源:学。

高考理科数学第一轮复习测试题16

高考理科数学第一轮复习测试题16

A 级 基础达标演练(时间:40分钟 满分:60分)一、选择题(每小题5分,共25分) 1.下列命题中的假命题是( ). A .∃x 0∈R ,lg x 0=0 B .∃x 0∈R ,tan x 0=1 C .∀x ∈R ,x 3>0D .∀x ∈R,2x >0解析 对于A ,当x 0=1时,lg x 0=0正确;对于B ,当x 0=π4时,tan x 0=1,正确;对于C ,当x <0时,x 3<0错误;对于D ,∀x ∈R,2x >0,正确. 答案 C2.(2012·杭州高级中学月考)命题“∀x >0,x 2+x >0”的否定是( ). A .∃x 0>0,x 20+x 0>0 B .∃x 0>0,x 20+x 0≤0 C .∀x >0,x 2+x ≤0D .∀x ≤0,x 2+x >0解析 根据全称命题的否定是特称命题,可知该命题的否定是:∃x 0>0,x 20+x 0≤0. 答案 B3.(★)(2012·郑州外国语中学月考)ax 2+2x +1=0至少有一个负的实根的充要条件是( ). A .0<a ≤1 B .a <1C .a ≤1D .0<a ≤1或a <0解析 (筛选法)当a =0时,原方程有一个负的实根,可以排除A 、D ;当a =1时,原方程有两个相等的负实根,可以排除B ,故选C. 答案 C4.(2012·合肥质检)已知p :|x -a |<4;q :(x -2)(3-x )>0,若綈p 是綈q 的充分不必要条件,则a 的取值范围为( ). A .a <-1或a >6 B .a ≤-1或a ≥6 C .-1≤a ≤6D .-1<a <6解析 解不等式可得p :-4+a <x <4+a ,q :2<x <3,因此綈p :x ≤-4+a 或x ≥4+a ,綈q :x ≤2或x ≥3,于是由綈p 是綈q 的充分不必要条件,可知2≥-4+a 且4+a ≥3,解得-1≤a ≤6. 答案 C5.若函数f (x )=x 2+ax (a ∈R ),则下列结论正确的是( ).A .∀a ∈R ,f (x )在(0,+∞)上是增函数B .∀a ∈R ,f (x )在(0,+∞)上是减函数C .∃a ∈R ,f (x )是偶函数D .∃a ∈R ,f (x )是奇函数解析 对于A 只有在a ≤0时f (x )在(0,+∞)上是增函数,否则不成立;对于B ,如果a ≤0就不成立;对于D 若a =0,则f (x )为偶函数了,因此只有C 是正确的,即对于a =0时有f (x )=x 2是一个偶函数,因此存在这样的a ,使f (x )是偶函数. 答案 C二、填空题(每小题4分,共12分)6.(2012·西安模拟)若命题“∃x 0∈R,2x 20-3ax 0+9<0”为假命题,则实数a 的取值范围是________.解析 因为“∃x 0∈R,2x 20-3ax 0+9<0”为假命题,则“∀x ∈R,2x 2-3ax +9≥0”为真命题.因此Δ=9a 2-4×2×9≤0,故-22≤a ≤2 2. 答案 -22≤a ≤227.已知命题p :x 2+2x -3>0;命题q :13-x >1,若綈q 且p 为真,则x 的取值范围是________.解析 因为綈q 且p 为真,即q 假p 真,而q 为真命题时,x -2x -3<0,即2<x <3,所以q假时有x ≥3或x ≤2;p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3,由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,得x ≥3或1<x ≤2或x <-3, 所以x 的取值范围是x ≥3或1<x ≤2或x <-3. 故填(-∞,-3)∪(1,2]∪[3,+∞). 答案 (-∞,-3)∪(1,2]∪[3,+∞)8.(2012·南京五校联考)令p (x ):ax 2+2x +a >0,若对∀x ∈R ,p (x )是真命题,则实数a 的取值范围是________.解析 ∵对∀x ∈R ,p (x )是真命题. ∴对∀x ∈R ,ax 2+2x +a >0恒成立, 当a =0时,不等式为2x >0不恒成立, 当a ≠0时,若不等式恒成立,则⎩⎪⎨⎪⎧a >0,Δ=4-4a 2<0,∴a >1. 答案 a >1三、解答题(共23分)9.(11分)已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0,若“p 且q ”为真命题,求实数a 的取值范围. 解 由“p 且q ”为真命题,则p ,q 都是真命题. p :x 2≥a 在[1,2]上恒成立,只需a ≤(x 2)min =1,所以命题p :a ≤1;q :设f (x )=x 2+2ax +2-a ,存在x 0∈R 使f (x 0)=0, 只需Δ=4a 2-4(2-a )≥0, 即a 2+a -2≥0⇒a ≥1或a ≤-2, 所以命题q :a ≥1或a ≤-2.由⎩⎪⎨⎪⎧a ≤1,a ≥1或a ≤-2得a =1或a ≤-2 ∴实数a 的取值范围是a =1或a ≤-2. 10.(12分)写出下列命题的否定,并判断真假. (1)q :∀x ∈R ,x 不是5x -12=0的根; (2)r :有些质数是奇数; (3)s :∃x 0∈R ,|x 0|>0.解 (1)綈q :∃x 0∈R ,x 0是5x -12=0的根,真命题. (2)綈r :每一个质数都不是奇数,假命题. (3)綈s :∀x ∈R ,|x |≤0,假命题.B 级 综合创新备选 (时间:30分钟 满分:40分)一、选择题(每小题5分,共10分) 1.下列命题错误的是( ).A .命题“若m >0,则方程x 2+x -m =0有实数根”的逆否命题为:“若方程x 2+x -m =0无实数根,则m ≤0”B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .若p ∧q 为假命题,则p ,q 均为假命题D .对于命题p :∃x 0∈R ,使得x 20+x 0+1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0 解析 依次判断各选项,易知只有C 是错误的,因为用逻辑联结词“且”联结的两个命题中,只要一个为假整个命题为假. 答案 C2.(★)(2011·广东广雅中学模拟)已知p :∃x 0∈R ,mx 20+2≤0.q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是( ). A .[1,+∞) B .(-∞,-1] C .(-∞,-2]D .[-1,1]解析 (直接法)∵p ∨q 为假命题,∴p 和q 都是假命题.由p :∃x 0∈R ,mx 20+2≤0为假,得∀x ∈R ,mx 2+2>0,∴m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假,得∃x 0∈R ,x 20-2mx 0+1≤0,∴Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.② 由①和②得m ≥1. 答案 A【点评】 本题采用直接法,就是通过题设条件解出所求的结果,多数选择题和填空题都要用该方法,是解题中最常用的一种方法. 二、填空题(每小题4分,共8分)3.命题“∃x 0∈R ,x 0≤1或x 20>4”的否定是______________. 解析 已知命题为特称命题,故其否定应是全称命题. 答案 ∀x ∈R ,x >1且x 2≤44.(2012·太原十校联考)已知命题“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,则实数a 的取值范围是________. 解析 由“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,可知命题“∀x ∈R ,x 2-5x +152a >0”必为真命题,即不等式x 2-5x +152a >0对任意实数x 恒成立.设f (x )=x 2-5x +152a ,则其图象恒在x 轴的上方.故Δ=25-4×152a <0,解得a >56,即实数a 的取值范围为⎝⎛⎭⎫56,+∞. 答案 ⎝⎛⎭⎫56,+∞ 三、解答题(共22分)5.(10分)已知两个命题r (x ):sin x +cos x >m ,s (x ):x 2+mx +1>0.如果对∀x ∈R ,r (x )与s (x )有且仅有一个是真命题.求实数m 的取值范围.解 ∵sin x +cos x =2sin ⎝⎛⎭⎫x +π4≥-2,∴当r (x )是真命题时,m <- 2.又∵对∀x ∈R ,当s (x )为真命题时,即x 2+mx +1>0恒成立有Δ=m 2-4<0,∴-2<m <2.∴当r (x )为真,s (x )为假时,m <-2,同时m ≤-2或m ≥2,即m ≤-2.当r (x )为假,s (x )为真时,m ≥-2且-2<m <2,即-2≤m <2. 综上,实数m 的取值范围是m ≤-2或-2≤m <2.6.(12分)已知c >0,设命题p :函数y =c x 为减函数.命题q :当x ∈⎣⎡⎦⎤12,2时,函数f (x )=x +1x >1c 恒成立.如果p 或q 为真命题,p 且q 为假命题.求c 的取值范围.解 由命题p 知:0<c <1.由命题q 知:2≤x +1x ≤52要使此式恒成立,则2>1c ,即c >12.又由p 或q 为真,p 且q 为假知,p 、q 必有一真一假, 当p 为真,q 为假时,c 的取值范围为0<c ≤12.当p 为假,q 为真时,c ≥1.综上,c 的取值范围为⎩⎨⎧⎭⎬⎫c ⎪⎪0<c ≤12或c ≥1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 级 基础达标演练 (时间:40分钟 满分:60分)一、选择题(每小题5分,共25分)1.(2012·荆州二检)过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ).A .1条B .2条C .3条D .4条解析 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0). 答案 C2.(2012·银川模拟)过抛物线y 2=4x 的焦点作直线交抛物线于点A (x 1,y 1),B (x 2,y 2),若|AB |=7,则AB 的中点M 到抛物线准线的距离为( ). A.52 B.72 C .2 D .3解析 由题知抛物线的焦点为(1,0),准线方程为x =-1.由抛物线定义知:|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p ,即x 1+x 2+2=7,得x 1+x 2=5,于是弦AB 的中点M 的横坐标为52,因此M 到抛物线准线的距离为52+1=72. 答案 B3.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为( ). A.54 B .5 C.52 D. 5解析双曲线x 2a 2-y 2b 2=1的一条渐近线为y =b a x ,由方程组⎩⎨⎧y =b ax ,y =x 2+1消去y 得,x 2-b a x +1=0有唯一解,所以Δ=⎝ ⎛⎭⎪⎫b a 2-4=0,b a =2,e =c a =a 2+b 2a=1+⎝ ⎛⎭⎪⎫b a 2= 5. 答案 D4.(2011·全国)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( ). A.45 B.35 C .-35 D .-45解析 设点A (x 1,y 1)、B (x 2,y 2).由题意得点F (1,0),由⎩⎪⎨⎪⎧y 2=4xy =2x -4消去y 得x 2-5x +4=0,x =1或x =4,因此点A (1,-2)、B (4,4),F A →=(0,-2),F B →=(3,4),cos ∠AFB =F A → ·F B→|F A →||F B →|=0×3+(-2)×42×5=-45,选D.答案 D5.(2011·兰州模拟)已知A ,B 为抛物线C :y 2=4x 上的两个不同的点,F 为抛物线C 的焦点,若F A →=-4FB →,则直线AB 的斜率为( ).A .±23B .±32C .±34D .±43解析 由题意知焦点F (1,0),直线AB 的斜率必存在,且不为0,故可设直线AB 的方程为y =k (x -1)(k ≠0),代入y 2=4x 中化简得k y 2-4y -4k =0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4k ,①y 1y 2=-4,②又由F A →=-4FB →可得y 1=-4y 2,③ 联立①②③式解得k =±43. 答案 D二、填空题(每小题4分,共12分)6.(2011·北京东城检测)已知F 1、F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+|F 2B |=12,则|AB |=________.解析 由题意知(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=|AB |+|AF 2|+|BF 2|=2a +2a ,又由a =5,可得|AB |+(|BF 2|+|AF 2|)=20,即|AB |=8. 答案 87.(2012·东北三校联考)已知双曲线方程是x 2-y 22=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2的中点,则此直线方程是________. 解析设点P 1(x 1,y 1),P 2(x 2,y 2),则由x 21-y 212=1,x 22-y 222=1,得k =y 2-y 1x 2-x 1=2(x 2+x 1)y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件. 答案 4x -y -7=08.(2011·河南洛阳、安阳统考)已知抛物线C 的顶点在坐标原点,焦点为F (0,-1),直线l 与抛物线C 相交于A ,B 两点.若AB 的中点为(2,-2),则直线l 的方程为________.解析 由题意知,抛物线的方程为x 2=-4y ,设A (x 1,y 1),B (x 2,y 2),且x 1≠x 2,联立方程得⎩⎪⎨⎪⎧x 21=-4y 1,x 22=-4y 2,两式相减得x 21-x 22=-4(y 1-y 2),∴y 1-y 2x 1-x 2=x 1+x 2-4=-1, ∴直线l 的方程为y +2=-(x -2),即y =-x . 答案 x +y =0 三、解答题(共23分)9.(★)(11分)设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左,右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求|AB |;(2)若直线l 的斜率为1,求b 的值.思路分析 第(1)问由椭圆定义可求;第(2)问将直线l 与椭圆联立方程组,利用弦长公式求解.解 (1)由椭圆定义知|AF 2|+|AB |+|BF 2|=4, 又2|AB |=|AF 2|+|BF 2|,得|AB |=43. (2)l 的方程为y =x +c , 其中c =1-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2+y 2b 2=1,化简得(1+b 2)x 2+2cx +1-2b 2=0.则x 1+x 2=-2c 1+b 2,x 1x 2=1-2b 21+b 2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|,即43=2|x 2-x 1|.则89=(x 1+x 2)2-4x 1x 2=4(1-b 2)(1+b 2)2-4(1-2b 2)1+b 2=8b 4(1+b 2)2,解得b =22. 错误!10.(12分)(2011·陕西)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),离心率为35. (1)求C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 解 (1)将(0,4)代入C 的方程得16b 2=1,∴b =4, 又e =c a =35得a 2-b 2a 2=925,即1-16a 2=925,∴a =5, ∴C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3), 设直线与C 的交点为A (x 1,y 1),B (x 2,y 2), 将直线方程y =45(x -3)代入C 的方程,得x 225+(x -3)225=1,即x 2-3x -8=0. ∴x 1+x 2=3,y 1+y 2=45(x 1+x 2-6)=45(3-6)=-125. ∴x 1+x 22=32,y 1+y 22=-65. 即中点为⎝ ⎛⎭⎪⎫32,-65.B 级 综合创新备选 (时间:30分钟 满分:40分)一、选择题(每小题5分,共10分)1.(★)直线y =k x +1,当k 变化时,此直线被椭圆x 24+y 2=1截得的最大弦长是( ).A .4 B.433 C .2 D .不能确定解析 (筛选法)直线y =k x +1恒过点(0,1),该点恰巧是椭圆x 24+y 2=1的上顶点,椭圆的长轴长为4,短轴长为2,而直线不经过椭圆的长轴和短轴,因此排除A 、C ;将直线y =k x +1绕点(0,1)旋转,与椭圆有无数条弦,其中必有最大弦长,因此排除D.故选B. 答案 B【点评】 本题通过运动的观点,得到直线在各种位置下的情形,从而排除错误选项,得到正确答案,避免了冗长的计算.2.(2011·四川)在抛物线y =x 2+ax -5(a ≠0)上取横坐标为x 1=-4,x 2=2的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x 2+5y 2=36相切,则抛物线顶点的坐标为( ). A .(-2,-9) B .(0,-5) C .(2,-9)D .(1,-6)解析 由已知得抛物线经过(-4,11-4a )和(2,2a -1)两点,过这两点的割线斜率k=2a -1-(11-4a )2-(-4)=a -2.于是,平行于该割线的直线方程为y =(a -2)x +b . 该直线与圆相切,所以b 21+(a -2)2=365. 该直线又与抛物线相切,于是(a -2)x +b =x 2+ax -5有两个相等的根, 即由方程x 2+2x -5-b =0的Δ=0得b =-6,代入b 21+(a -2)2=365,注意到a ≠0,得a =4.所以抛物线方程为y =x 2+4x -5=(x +2)2-9,顶点坐标为(-2,-9). 答案 A二、填空题(每小题4分,共8分)3.(2012·揭阳模拟)过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若|AM |=|MB |,则该椭圆的离心率为________.解析 由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,∴B 点的坐标为(0,a ),故M 点的坐标为⎝ ⎛⎭⎪⎫-a 2,a 2,代入椭圆方程得a 2=3b 2,∴c 2=2b 2,∴e =63.答案 634.(2012·金华模拟)已知曲线x 2a -y 2b =1(a ·b ≠0,且a ≠b )与直线x +y -1=0相交于P 、Q 两点,且OP →·OQ →=0(O 为原点),则1a -1b 的值为________.解析 将y =1-x 代入x 2a -y 2b =1,得(b -a )x 2+2ax -(a +ab )=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=2a a -b ,x 1x 2=a +ab a -b.OP →·OQ →=x 1x 2+y 1y 2=x 1x 2+(1-x 1)(1-x 2)=2x 1x 2-(x 1+x 2)+1.所以2a +2ab a -b -2a a -b +1=0,即2a +2ab -2a +a -b =0,即b -a =2ab ,所以1a -1b =2. 答案 2三、解答题(共22分)5.(10分)(2012·株洲模拟)已知抛物线C 的顶点在坐标原点,焦点在x 轴上,△ABC 的三个顶点都在抛物线上,且△ABC 的重心为抛物线的焦点,若BC 所在直线l 的方程为4x +y -20=0. (1)求抛物线C 的方程;(2)若O 是坐标原点,P ,Q 是抛物线C 上的两动点,且满足PO ⊥OQ ,证明:直线PQ 过定点.(1)解 设抛物线C 的方程为y 2=2mx , 由⎩⎨⎧4x +y -20=0,y 2=2mx ,得2y 2+my -20m =0, ∵Δ>0,∴m >0或m <-160.设B (x 1,y 1),C (x 2,y 2),则y 1+y 2=-m2, ∴x 1+x 2=⎝ ⎛⎭⎪⎫5-y 14+⎝ ⎛⎭⎪⎫5-y 24=10+m 8.再设A (x 3,y 3),由于△ABC 的重心为F ⎝ ⎛⎭⎪⎫m 2,0,则⎩⎪⎨⎪⎧x 1+x 2+x 33=m2,y 1+y 2+y 33=0,解得⎩⎪⎨⎪⎧x 3=11m8-10,y 3=m2.∵点A 在抛物线上,∴⎝ ⎛⎭⎪⎫m 22=2m ⎝ ⎛⎭⎪⎫11m 8-10.∴m =8,抛物线C 的方程为y 2=16x .(2)证明 当PQ 的斜率存在时,设PQ 的方程为y =k x +b ,显然k ≠0,b ≠0,∵PO ⊥OQ ,∴k PO k OQ =-1,设P (x P ,y P ),Q (x Q ,y Q ),∴x P x Q +y P y Q =0, 将直线y =k x +b 代入抛物线方程,得k y 2-16y +16b =0,∴y P y Q =16b k .从而x P x Q =y 2P y 2Q 162=b2k 2,∴b 2k 2+16bk =0,∵k ≠0,b ≠0,∴直线PQ 的方程为y =k x -16k ,PQ 过点(16,0); 当PQ 的斜率不存在时,显然PQ ⊥x 轴,又PO ⊥OQ , ∴△POQ 为等腰三角形,由⎩⎨⎧y =|x |,y 2=16x ,得P (16,16),Q (16,-16),此时直线PQ 过点(16,0), ∴直线PQ 恒过定点(16,0).6.(12分)(2011·福建)已知直线l :y =x +m ,m ∈R ,(1)若以点M (2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程;(2)若直线l 关于x 轴对称的直线为l ′,问直线l ′与抛物线C :x 2=4y 是否相切?说明理由.解 法一 (1)依题意,点P 的坐标为(0,m ). 因为MP ⊥l ,所以0-m 2-0×1=-1,解得m =2,即点P 的坐标为(0,2). 从而圆的半径r =|MP |=(2-0)2+(0-2)2=22, 故所求圆的方程为 (x -2)2+y 2=8. (2)因为直线l 的方程为y =x +m , 所以直线l ′的方程为y =-x -m , 由⎩⎨⎧y =-x -m ,x 2=4y得 x 2+4x +4m =0. Δ=42-4×4m =16(1-m ).(1)当m =1,即Δ=0时,直线l ′与抛物线C 相切; (2)当m ≠1,即Δ≠0时,直线l ′与抛物线C 不相切.综上,当m =1时,直线l ′与抛物线C 相切;当m ≠1时,直线l ′与抛物线C 不相切.法二 (1)设所求圆的半径为r , 则圆的方程可设为(x -2)2+y 2=r 2依题意,所求圆与直线l :x -y +m =0相切于点P (0,m ),则⎩⎨⎧4+m 2=r 2,|2-0+m |2=r ,解得⎩⎨⎧m =2,r =2 2.所以所求圆的方程为(x -2)2+y 2=8. (2)同法一.。

相关文档
最新文档