2016年七年级上:第3章《整式及其加减》单元测试卷(含答案)

合集下载

北师大版七年级数学上册第3章《整式及其加减》单元练习题(含答案)

北师大版七年级数学上册第3章《整式及其加减》单元练习题(含答案)

北师大版七年级数学上册第3章《整式及其加减》单元练习题(含答案)一、单选题1.关于多项式2231x y xy -+-,下列说法正确的是( ).A .次数是3B .常数项是1C .次数是5D .三次项是22x y2.代数式1x , 2x +y , 13a 2b , x y π-, 54y x , 0.5 中整式的个数( ) A .3个 B .4个 C .5个 D .6个3.小李今年a 岁,小王今年(a -15)岁,过n +1年后,他们相差( )岁A .15B .n +1C .n +16D .164.已知单项式13m a b +与13n b a --可以合并同类项,则m ,n 分别为( )A .2,2B .3,2C .2,0D .3,05.若7,24m n n p +=-=,则3m n p +-=( )A .11-B .3-C .3D .116.设a 是绝对值最小的有理数,b 是最大的负整数,c 是倒数等于自身的有理数,则a b c -+的值为 ( )A .2B .0C .0或2D .0或-27.如果0xy ≠,22103xy axy +=,那么a 的值为( ) A .-3 B .13- C .0 D .38.黑板上有一道题,是一个多项式减去2351x x -+,某同学由于大意,将减号抄成加号,得出结果是2537x x +-,这道题的正确结果是( ).A .2826x x --B .214125x x --C .2288x x +-D .2139x x -+-9.代数式3x 2y-4x 3y 2-5xy 3-1按x 的升幂排列,正确的是( )A .-4x 3y 2+3x 2y-5xy 3-1B .-5xy 3+3x 2y-4x 3y 2-1C .-1+3x 2y-4x 3y 2-5xy 3D .-1-5xy 3+3x 2y-4x 3y 210.两个形状大小完全相同的长方形中放入4个相同的小长方形后,得到图①和图②的阴影部分,如果大长方形的长为m ,则图②与图①的阴影部分周长之差是( )A .2m -B .2mC .3mD .3m -二、填空题11.多项式2333325467a c bc ab a -+--最高次项为__________,常数项为__________. 12.计算42a a a +-的结果等于_____.13.已知2310x x -+=,则2395x x -+=_________.14.张老师带了100元钱去给学生买笔记本和笔,已知一本笔记本3元,一支笔2元,张老师买了a 本笔记本,b 支笔,她还剩___________________元钱(用含a ,b 的代数式表示). 15.若|1||2|0a b -+-=,则3333232a b a b ++-的值为________.16.若实数a ,b 满足2=a ,41b a -=-||,则a b +=________.三、解答题17.计算(1)()()33223410310a b b a b b -+-+; (2)22135322x x x x ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦.18.化简:(1)()()193213x x --+ (2)()()222233a b ab ab a b --+19.定义:若a b 2+=,则称a 与b 是关于1 的平衡数.()1 5与_________是关于1的平衡数;()273x -与________是关于1的平衡数;(用含x 的代数式表示)()3若()22a 2x 3x x =-+,()2b 43x 6x x =-++,判断a 与b 是否是关于1的平衡数,并说明理由.20.计算下列各式,将结果写在横线上:1×1=________;11×11=________;111×111=________;1111×1111=_________.(1)你发现了什么?(2)你能直接写出111111111×111111111=的结果吗?21.某教辅书中一道整式运算的参考答案污损看不清了,形式如下:解:原式=█()2232y x +- 118x y =-+.(1)求污损部分的整式;(2)当x =2,y =﹣3时,求污损部分整式的值.22.观察下列各式的计算结果:2113131124422-=-==⨯; 2118241139933-=-==⨯; 2111535114161644-=-==⨯; 2112446115252555-=-==⨯… (1)用你发现的规律填写下列式子的结果:1﹣216= × ;1﹣2110= × . (2)用你发现的规律计算:(1﹣212)×(1﹣213)×(1﹣214)×…×(1﹣212020)×(1﹣212021)×21(1)2022-.23.已知:23231A x xy y =++-,2B x xy =-.(1)计算:A -3B ;(2)若()2120x y ++-=,求A -3B 的值;(3)若A -3B 的值与y 的取值无关,求x 的值.24.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.25.观察算式:213142⨯+==;224193⨯+==;2351164⨯+==;2461255⨯+==,…(1)请根据你发现的规律填空:681⨯+=()2;(2)用含n的等式表示上面的规律:;(n为正整数)(3)利用找到的规律解决下面的问题:计算:11111111132********⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯⨯+⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭.26.如图,甲、乙两人(看成点)分别在数轴上表示-3和5的位置,沿数轴做移动游戏,每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)若经过第一次移动游戏,甲的位置停在了数轴的正半轴上,则甲、乙猜测的结果是______(填“谁对谁错”)(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错,设乙猜对n次,且他最终停留的位置对应的数为m.①试用含n的代数式表示m;②该位置距离原点O最近时n的值为(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,则k的值是参考答案1.A2.B3.A4.A5.D6.C7.B8.D9.D10.B11.35ab4-12.5a13.214.(100-3a-2b)15.-316.−1或517.(1)32243a b a b-;(2)293 2x x--18.(1)3x-;(2)22ab-19.(1)-3;(2)3x5-;(3)20.(1)n位(各位数字都是1)的数自乘,得到(2n-1)位的数,最中间位的数字为n,它的两边位上的数字依次减1,第一位和最后一位是1(2)1234567898765432121.(1)2687.y y x -+-(2)92.-22.(1)56,76,910,1110; (2)2023404423.(1)5xy +3y -1(2)-5 (3)35x =- 24.(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2; 25.(1)7;(2)n •(n +2)+1=(n +1)2;(3)9950. 26.(1)甲对乙错(2)①-6n +25 ;②4(3)3或5。

第三章 整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)

第三章 整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)

第三章整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、下列计算中正确的是()A.a 2+a 3=2a 5B.a 4÷a=a 4C.a 2·a 4=a 8D.(-a 2) 3=-a 62、仔细观察,探索规律:则的个位数字是( )A.1B.3C.5D.73、若x<0,y>0,且│x│>│y│,那么x+y是()A.正数B.负数C.0D.正、负不能确定4、下列变形中,错误的是()A. B.a-b-(c-d)=a-b-c-d C.a+b-(-c-d)=a+b+c+d D.5、多项式2﹣3xy+4xy2的次数及最高次项的系数分别是()A.2,﹣3B.﹣3,4C.3,4D.3,﹣36、如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8 …,顶点依次为A1, A2, A3, A4, A5,…,则顶点A55的坐标是()A.(13,13)B.(-13,-13)C.(-14,-14)D.(14,14)7、希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数。

下列数中既是三角形数又是正方形数的是()A.289B.1024C.1225D.13788、下列计算正确的是()A. a2+a2=a4B. (2a2)3=6a6C. a8÷a2=a4D. a3•a4=a79、已知x=2019时,代数式ax3+bx-2的值是0,当x=-2019时,代数式ax3+bx-2的值等于()A.0B.2C.4D.-410、已知2x m y3与x2y n是同类项,则m-n的值等于()A.1B.-1C.2D.-211、现定义一种新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则2※(﹣3)等于()A.﹣3B.﹣2C.﹣1D.012、一项工程,甲单独做需x天完成,乙单独做需y天完成,如果两人合做这项工程,则所需天数为()A. B. C. D.13、如图所示,以O为端点画六条射线OA,OB,OC,OD,OE,OF,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…,那么所描的第2017个点在()A.射线OA上B.射线OC上C.射线OD上D.射线OE上14、已知x m=6,x n=3,则x2m-n的值为( )A.9B.39C.12D.10815、下列式子中不是整式的是()A.-23xB.C.12x+5yD.0二、填空题(共10题,共计30分)16、按整式的分类,-15xy2是________(单项式、多项式),其系数是________; 3x2+2x-y2是________(单项式、多项式),其次数是________.17、平面直角坐标系中,点、、,…和、、,…分别在直线和轴上. ,,,…都是等腰直角三角形,如果,,则点的横坐标是________18、一个两位数,若个位数字为a,十位数字为b,则这个两位数可表示为________.19、观察下面一列数,按规律在横线上填写适当的数, ________、________20、若x2+3x=2,那么多项式2x2+6x﹣8=________.21、在直角坐标系中,直线与y轴交于点,按如图方式作正方形、、,、、在直线上,点、、在x轴上,图中阴影部分三角形的面积从左到右依次记为、、、,则的值为________ 用含n的代数式表示,n为正整数.22、观察下列各式:,根据其中的规律可得________(用含n的式子表示).23、如果与是同类项,则________.24、若,则代数式的值为________.25、古希腊著名的毕达哥拉斯学派把1、3、6、10 …这样的数称为“三角形数”,而把1、4、9、16 …这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是________ (填序号)①13=3+10;②25=9+16;③36=15+21;④49=18+31.三、解答题(共5题,共计25分)26、已知a,b互为相反数,b与c的积是最大的负整数,d和e的和等于,求的值.27、如图A,B,C三点表示的数分别为a,b,c.利用图形化简:.28、已知关于x的多项式不含三次项和一次项,求的值.29、飞机的无风航速为mkm/h,风速为30km/h.飞机顺风飞行5小时的行程是多少?飞机逆风飞行4小时的行程是多少?两个行程相差多少?30、当k为何值时,多项式4x|2k﹣1|y+xy﹣5是四次多项式?此时是关于x的几次式?参考答案一、单选题(共15题,共计45分)1、D2、C3、B4、B5、C6、D7、C8、D9、D10、B11、C12、D13、A14、C15、B二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)一、选择题1.小明比小强大2岁,比小华小4岁.如果小强y 岁.则小华( ) A .(y −2)岁B .(y +2)岁C .(y +4)岁D .(y +6)岁2.下列代数式中,是次数为3的单项式的是( ) A .−m 3nB .3C .4t 3−3D .x 2y 23.对于多项式−3x −2xy 2−1,下列说法中,正确的是( ) A .一次项系数是3 B .最高次项是2xy 2 C .常数项是−1D .是四次三项式4.下列各组单项式中,不是同类项的是( ) A .−2y 2a 3与12ay 2B .12x 3y 与−12xy 3 C .6a 2bn 与−a 2nbD .23与325.按如图所示的程序运算,如果输入x 的值为12,那么输出的值为( )A .3B .0C .−1D .−36.下列运算中,正确的是( ) A .3a +2b =5abB .2a 3+3a 2=5a 5C .5a 2−4a 2=1D .3a 2b −3ba 2=07.若关于x 的代数式2x 2+ax +b −(2bx 2−3x −1)的值与x 无关,则a −b 的值为( ) A .2B .4C .−2D .−48.观察下列关于m ,n 的单项式的特点:12m 2n ,23m 2n 2,34m 2n 3,45m 2n 4,56m 2n 5,……,按此规律,第n 个单项式是( ) A .nn+1m 2n n B .nn+1m n n nC .n−1nm 2n nD .n−1nm n n n二、填空题9.一支钢管需要a 元,一本管记本需要b 元,现买5支钢笔和8本笔记本共需要 元. 10.若x P +4x 3+qx 2+2x +5是关于x 的五次四项式,则qp = . 11.已知2x 6y 2和−x 3m y n 是同类项,则2m +n 的值是 .12.一种商品成本为a 元/件,商场在成本的基础上增加20%作为售价出售,现搞活动促销,按原售价的九折出售.设售出m件该商品时,总利润为元.13.已知a是−5的相反数,b比最小的正整数大4,c是相反数等于它本身的数,则a+b+c的值是.三、计算题14.计算:(1)4b−3a−3b+2a(2)(3x2−y2)−3(x2−2y2)+m2−3cd+5m的值.15.若a、b互为相反数,c、d互为倒数,|m|=3,求a+b4m四、解答题16.已知代数式A=x2+ax−2a(1)求2A−B;(2)若2A−B的值与x的取值无关,求a的值.17.如图,在一个直角三角形休闲广场的直角处设计一块四分之一圆形花坛,若圆形的半径为r米,广场一直角边长为2a米,另一直角边长为b米.(1)列式表示广场空地的面积(用含π的式子表示);(2)若a=150米,b=50米,r=20米,求广场空地的面积(π取3.14).18.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为15公里,行车时间为20分钟,则需付车费多少元?(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简)?(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,但下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?参考答案1.D2.D3.C4.B5.C6.D7.D8.A9.(5a+8b)10.011.612.0.08am13.1014.(1)解:4b−3a−3b+2a=(4−3)b+(2−3)a=b−a(2)解:(3x2−y2)−3(x2−2y2)=3x2−y2−3x2+6y2=5y215.解:依题意得a+b=0,cd=1,m=±3.当m=3时,原式=0+32−3×1+5×3=9−3+15=21.当m=−3时,原式=0+(−3)2−3×1+5×(−3)=9−3−15=−9. 因此值为21或-9.16.(1)解:原式=4ax-x-4a+1(2)解:a=1417.(1)解:四分之一圆的面积为:14πr2;直角三角形的面积为:12×2a×b=ab;所以,广场空地的面积为:ab−14πr2;(2)解:当a=150米,b=50米,r=20米,π=3.14时ab−14πr2=150×50−14×3.14×202=7186(平方米)18.(1)解:1.8×15+0.45×20+0.4×(15−10)=38(元)答:需付车费38元.(2)解:当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a−10)=(2.2a+0.45b−4)元;(3)解:小王与小张乘坐滴滴快车分别为x分钟、y分钟1.8×9.5+0.45x=1.8×14.5+0.45y+0.4×(14.5−10)整理,得:0.45x−0.45y=10.8∴x−y=24因此,这两辆滴滴快车的行车时间相差24分钟.。

第三章 整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)

第三章 整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)

第三章整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、单项式的系数和次数分别是()A.-3和2B.-3和3C. 和2D. 和32、下列各式中计算正确的是()A. B. C. D.3、根据如图所示的计算程序,若输入x=﹣1,则输出结果为()A.4B.2C.1D.﹣14、若3x2n﹣1y m与﹣5x m y3是同类项,则m,n的值分别是()A.3,﹣2B.﹣3,2C.3,2D.﹣3,﹣25、若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3B.4C.6D.96、单项式的系数和次数分别是()A.2和2B.-2和2C.-2和3D.-2和47、下列运算正确的是().A. B. C. D.8、如图,数轴上的两点A、B分别表示有理数a和b,则化简|a+b|+|a﹣b|的结果是()A.﹣2aB.﹣2bC.2aD.2b9、下列运算中,结果正确的是()A.4a﹣a=3aB.a 10÷a 2=a 5C.a 2+a 3=a 5D.a 3•a 4=a 1210、如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=2,b=3B.a=1,b=2C.a=1,b=3D.a=2,b=211、若,则( )A.2B.3C.4D.512、用一排6盏灯的亮与不亮来表示数,已知如图分别表示了数1~5,则●O O●●O表示的数是()A.23B.24C.25D.2613、下面计算正确的是()A.3x 2-x 2=3B.3a 2+2a 3=5a 5C.-0.25ab+ ab=0D.x+3=3x14、当a=﹣,b=4时,多项式2a2b﹣3a﹣3a2b+2a的值为()A.2B.﹣2C.D.﹣15、已知a﹣b=1,则代数式2a﹣2b+2013的值是()A.2015B.2014C.2012D.2011二、填空题(共10题,共计30分)16、如图,在第1个△ABA1,∠B =40°,∠BAA1=∠BA1A;在A1B上取一点C,延长AA1到A2,使得在第2个△A1C A2中,∠A1CA2=∠A1 A2C;在A2C取一点D,延长A1 A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2 A3D;…,按此顺序进行下去,第3个三角形中以A3为顶点的内角的度数为________ °,第n个三角形中以A n为顶点的内角的度数为________ °.17、单项式4x3y2的次数是________.18、已知,则的值为________.19、九格幻方有如下规律:处于同一横行、同一竖列、同一斜对角线上的三个数的和都相等(如图1).则图2的九格幻方中的9个数的和为________(用含a的式子表示)20、观察图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;…则第2017个图形中有________个三角形,第n个图形中有________个三角形.21、如图是一所住宅的建筑平面图(图中长度单位:m),这所住宅的建筑面积为________.22、如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有________个三角形(用含n的代数式表示)23、若x,y为实数,且满足|x﹣3|+ =0,则()2019的值是________.24、若单项式2a3b n+3与﹣4a m﹣1b2是同类项,则n m的值为________ .25、若a=3b,则=________.三、解答题(共5题,共计25分)26、先化简,再求值:(x+1)(x-1)+x(2-x),其中x= .27、一个含有字母x , y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式的值是32,求这个单项式.28、(1)化简2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y(2)若2a10x b与﹣a2b y是同类项,求(1)结果中的值.29、解释代数式300﹣2a的意义.30、先化简,再求值:,其中参考答案一、单选题(共15题,共计45分)1、D2、A3、D4、C5、A6、D7、C8、B9、A10、C11、C12、C13、C14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(附带参考答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(附带参考答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(附带参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是()米.A.a B.60 C.60a D.a+602.十位数字是a,个位数字是b的两位数是()A.ab B.a+10b C.ba D.10a+b3.多项式23+7x+4y的次数为多少()A.5次B.3次C.2次D.1次4.在代数式﹣2x,x+1,π,2m−3m ,0,12mn中是单项式的有()个.A.1 B.2 C.3 D.45.若a2+3a=1,则代数式2a2+6a−2的值为()A.0B.1C.2D.36.下列计算正确的是()A.a2+a2=a4 B.4a﹣3a=1C.3a2b﹣4ba2=﹣a2b D.3a2+2a3=5a57.已知关于x的多项式(m+3)x3−x n+x−mn为二次三项式,则当x=−1时,这个二次三项式的值是()A.7 B.6 C.4 D.38.若4x3m-1y3与-3x5y2n+1的和是单项式,则2m+3n的值是()A.6 B.7 C.8 D.9二、填空题9.已知单项式﹣3x3y n与5x m+4y3是同类项,则m﹣n的值为.10.若多项式2x2- 3x+b与多项式x2-bx+1的和不含一次项(b为常数),则两个多项式的和为11.若关于x、y的多项式x5-m+5y2-2x2+3的次数是3,则式子m2-3m的值为.12.已知a+22ab=−8,b2+2ab=14则a2−b2=.13.如图是一组有规律的图案,它们是由大小相同的“×”图案组成的,依此规律,第10个图案中有“×”图案个.三、解答题14.计算:(1)x2+5+x2−1(2)2a2+3ab+b2−a2−ab−2b215.先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.x m+1y2+2xy2−4x3+1是六次四项式,单项式26x2n y5−m的次数与该多项式的次数相16.已知多项式15同,求(−m)3+2n的值.17.已知关于x,y的式子(2x2+mx−y+3)−(3x−2y+1−nx2)的值与字母x的取值无关,求式子(m+ 2n)−(2m−n)的值.18.某次课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3−6a3b+3a2b)−(−3a3−6a3b+3a2b+10a3−3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案.当王红说完:“a= 65,b=−2022”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误,”亲爱的同学,你相信吗?请说出其中的道理.参考答案1.D2.D3.D4.D5.A6.C7.C8.B9.-410.3x2-211.-212.-2213.5114.(1)解:x2+5+x2−1=x2+x2+5−1=2x2+4(2)解:2a2+3ab+b2−a2−ab−2b2=2a2−a2+3ab−ab+b2−2b2=a2+2ab−b215.解:原式=x2﹣y2﹣2xy+3x2﹣4xy+x2+5xy=5x2﹣xy﹣y2当x=﹣1,y=2时原式=5×(﹣1)2﹣(﹣1)×2﹣22=5+2﹣4=3.16.解:由于多项式是六次四项式,所以m+1+2=6解得:m=3单项式26x2n y5−m应为26x2n y2,由题意可知:2n+2=6解得:n=2所以(−m)3+2n =(−3)3+2×2=−23.17.解:原式=2x 2+mx −y +3−3x +2y −1+nx 2=(2+n)x 2+(m −3)x +y +2由题可得,多项式的值与字母x 无关∴{2+n =0m −3=0解得{n =−2m =3∴(m +2n)−(2m −n)=m +2n −2m +n=3n −m代入n =−2,m =3可得:3×(−2)−3=−6−3=−9 故代数式(m +2n)−(2m −n)的值为:−9.18.解:(7a 3−6a 3b +3a 2b)−(−3a 3−6a 3b +3a 2b +10a 3−3) =7a 3−6a 3b +3a 2b +3a 3+6a 3b −3a 2b −10a 3+3=(7a 3+3a 3−10a 3)+(−6a 3b +6a 3b)+(3a 2b −3a 2b)+3 =3.∵结果为常数3∴原式的结果与字母a ,b 的取值无关∴李老师能够准确地说出代数式的值为3.。

七年级数学上册--第三章-整式及其加减---单元测试卷

七年级数学上册--第三章-整式及其加减---单元测试卷

七年级数学上册第三章 《整式及其加减》 单元测试题一、选择题:1.下列代数式中222331,3,,,,3,22m n b ab x y ab c x +-+-中,单项式共有( )A .6个B .5个C .4个D .3个2.下列各组式子中,不是同类项的是( ) A .312x y 和312y x - B .2a -和18a C .2025和5-D .32a y -和352ya -3.下列合并同类项的结果中,正确的是( ) A .330ab ab --= B .2233a a -= C .336235m m m += D .32y y y -=-4.下列添括号正确的是( ) A .()a b c a b c -+=-+ B .()a b c a b c -+=--- C .()a b c a b c -+=-- D .()a b c a b c -+=--+5.下列说法正确的是( ) A .219x π-的系数是19- B .23xy 的次数是2 C .20.5x 与25x -不是同类项D .2431x x +-是二次三项式6.若关于x 的多项式()21472x mx x ⎛⎫++- ⎪⎝⎭中不含一次项,则m 的值是( )A .4B .2C .4-D .4或4-7.若a ﹣5=6b ,则(a +2b )﹣2(a ﹣2b )的值为( ) A .5B .﹣5C .10D .﹣108.设A =x 2﹣5x ﹣3,B =2x 2﹣5x +1,则A 与B 的大小关系是( ) A .A =BB .A >BC .A <BD .无法比较9.已知M =a 2﹣3b 2+5,N =a 2﹣4b 2﹣6,则M 与N 的大小关系是( ) A .M ≥NB .M >NC .M ≤ND .M <N10.甲、乙、丙三家超市为了促销一种定价为m 元的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客购买这种商品最合算的超市是 ( )A.甲B.乙C.丙D.一样11.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有( )10.A .145个B .146个C .180个D .181个12. 在解决数学问题时,常常需要建立数学模型,如图,用大小相同的圆点摆成的图案,按照这样的规律摆放,则第7个图案中共有圆点的个数是( )A .37B .49C .50D .51二、填空题:13.单项式 2325x y - 的系数与次数的乘积为 .14.若27m n a b -+与443a b -是同类项,则m n -的值为15.写出一个含有,x y 的五次三项式 ,其中最高次项的系数为2-,常数项为6.16.若多项式72222346n x y x y x y +-+-是按字母x 降幂排列的,则整数n 的值可以是 (写出一个即可)17.a 是不为2的有理数,我们把22a-称为a 的“哈利数”.如:3的哈利数”是2223=--,2-的“哈利数”是21222=--(),已知13a =,2a 是1a 的“哈利数”,3a 是2a 的“哈利数”,4a 是3a 的“哈利数”,…,依此类推,则2024a = .18.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为cm y ,宽为cm x )的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 cm .(用含x 或y 的代数式来表示)三、解答题: 19.化简:(1)22368p pq p pq +--+; (2)()()223246x xy x xy --+-.20.先化简,再求值:22212232233x x xy y xy ⎡⎤⎛⎫-----+ ⎪⎢⎥⎝⎭⎣⎦,其中21102x y ⎛⎫-++= ⎪⎝⎭.21.化简()()222212132a b a b ab ⎡⎤----+⎣⎦,下面是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是 ;乙同学解法的依据是 ;(填序号)①加法结合律; ②加法分配律; ③乘法分配律; ④乘法交换律. (2)请选择一种解法,写出完整的解答过程:22.如果两个关于x 、y 的单项式122a mx y +与324nx y -是同类项(其中0xy ≠). (1)求a 的值.(2)如果这两个单项式的和为零,求()202121m n --的值.23. 已知2231A x xy y =++-,2B x xy =-. (1)化简2A B -;(2)若24A B -的值与y 的值无关,求x 的值.24.如图,公园有一块长为()21a -米,宽为a 米的长方形土地(一边靠着墙),现将三面留出宽都是b 米的小路,余下部分设计成花圃ABCD ,并用篱笆把花圃不靠墙的三边围起来.(1)花圃的宽AB 为______米,花圃的长BC 为______米;(用含a b ,的式子表示) (2)求篱笆的总长度;(用含a b ,的式子表示)(3)若305a b ==,,篱笆的单价为60元/米,请计算篱笆的总价.。

第三章 整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)

第三章 整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)

第三章整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、下列说法正确的是()A.﹣的系数是﹣2B. x2+ x﹣1的常数项为1C.2 2ab3的次数是6次D.2 x﹣5 x2+7是二次三项式2、下列计算正确的是()A. B. C. D.3、下列运算正确的是()A.a 2•a 3=a 6B.a 5÷a 2=a 3C.(﹣3a)3=﹣9a 3D.2x 2+3x 2=5x 44、两个5次多项式之和是()A.25次多项式B.50次多项式C.5次多项式D.不高于5次多项式5、观察图中给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第1000个点阵中的点的个数s为()A.3987B.3992C.4003D.39976、下列整式①;②;③;④单项式的个数有()A.1个B.2个C.3个D.4个7、下列运算中,正确的是()A.2x+2y=2xyB.(x 2y 3)2=x 4y 5C.(xy)2÷=(xy)3 D.2xy﹣3yx=xy8、下列运算中,正确的是()A. B. C. D.9、已知﹣0.5x a+b y a﹣b与是同类项,那么()A. B. C. D.10、下列运算正确的是()A.5a﹣3a=2B.2a+3b=5abC.﹣(a﹣b)=b+aD.2ab﹣ba=ab11、若与是同类项,那么m-n=()A.0B.1C.-1D.-212、若为方程的解,则的值为()A. B.16 C.9 D.613、某市居民自来水收费标准如下:每户每月用水不超过 4 吨时,每吨价格为 2 元,当用水超过 4吨而不超过 7 吨时,超过部分每吨水的价格为 3 元,当用水超过 7 吨时,超过部分每吨水的价格为5 元,李老师 10 月份付了水费 32 元,则李老师用水吨数为()A.7B.10C.11D.1214、多项式﹣x+x3+1﹣x2按x的升幂排列正确的是()A.x 2﹣x+x 3+1B.1﹣x 2+x+x 3C.1﹣x﹣x 2+x 3D.x 3﹣x 2+1﹣x15、如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样至少移动多少次后该点到原点的距离不小于41()A.26B.27C.28D.29二、填空题(共10题,共计30分)16、如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,...,则正方形铁片连续旋转2019次后,点P的坐标为________17、若与互为同类项,则m-n=________.18、观察下面一列数,探究其中的规律:1,,,,,,…填空:第12个数是________,第2016个数是________.如果这列数无限排列下去,越来越近的数是________.19、若a是方程2x2-4x-1=0的一个根,则式子2019+2a2-4a的值为________。

七年级数学上第三章整式及其加减单元测试题含答案

七年级数学上第三章整式及其加减单元测试题含答案

七年级数学上册 第三章 整式及其加减 单元测试题一、选择题1.一个长方形一边长是2a +3b ,另一边长是a +b ,则这个长方形的周长是( ) A .12a +16b B .6a +8b C .3a +8b D .6a +4b2.某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A .200-60xB .140-15xC .200-15xD .140-60x 3.在下列代数式中,次数为3的单项式是( ) A .xy 2 B .x 3+y 3 C .x 3y D .3xy4.如果13x a +2y 3与-3x 3y 2b -a 是同类项,那么a ,b 的值分别是( )A .1,2B .0,2C .2,1D .1,1 5.下列合并同类项正确的是( )A .4a 2+3a 3=7a 6B .4a 3-3a 3=1C .-4a 3+3a 3=-a 3D .4a 3-3a 3=a 6.多项式1+2xy -3xy 2的次数及最高次项的系数分别是( ) A .3,-3 B .2,-3 C .5,-3 D .2,37.有理数a ,b 在数轴上的位置如图所示,则|a +b|-2|a -b|化简后为( )A .b -3aB .-2a -bC .2a +bD .-a -b 8.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,给后面的三项添上括号,结果正确的是( )A .3b 3-(2ab 2+4a 2b -a 3)B .3b 3-(2ab 2+4a 2b +a 3)C .3b 3-(-2ab 2+4a 2b -a 3)D .3b 3-(2ab 2-4a 2b +a 3) 9.根据流程图中的程序,当输入数值x 为-2时,输出数值y 为( )A .4B .6C .8D .1010.小明用棋子摆放图形来研究数的规律.图①中棋子围成三角形,其颗数3,6,9,12,…称为三角形数.类似地,图②中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是( )A.2010 B.2012 C.2014 D.2016二、填空题11.根据图中数字的规律在最后一个空格中填上适当的数字.12.一个两位数,个位数字与十位数字的和为6,设十位数字为x,则这个两位数可表示为___________.13.如下图是一组有规律的图案,第1个图案由4个菱形组成,第2个图案由7个菱形组成,…,第n(n是正整数)个图案由____________个菱形组成.14.毕达哥拉斯学派对“数”与“形”的巧妙结合作了如下研究:请写出第六层各个图形的几何点数,并归纳出第n层各个图形的几何点数.15.先化简,再求值:(1)14(-4x 2+2x -8y)-(-x -2y),其中x =12,y =2016;(2)13(9ab 2-3)+(7a 2b -2)+2(ab 2-1)-2a 2b ,其中a =-2,b =3.16.已知:A =2a 2+3ab -2a -1,B =-a 2+ab -1. (1)求3A +6B ;(2)若3A +6B 的值与a 的取值无关,求b 的值;(3)如果A +2B +C =0,则C 的表达式是多少?三、解答题17.一位同学做一道题:“已知两个多项式A ,B ,计算2A +B ”.他误将“2A +B ”看成“A +2B ”,求得的结果为9x 2-2x +7.已知B =x 2+3x -2,请求出2A +B 的正确答案.18.小慧和小华玩猜数游戏,小慧对小华说:“你想好一个数,这个数乘以6,加上3;得到的数除以3,再减去你想的数.只要你告诉我正确的结果,我就知道你想的数是几.”小华很好奇,就想了一个数,并按小慧说的方法计算出结果,告诉小慧说:“我计算结果是-2.” 请你解决以下问题:(1)小慧可以猜出小华想的数是____;(2)请你用代数方法说明,小慧为什么总能猜出别人(不一定是小华)想的数.答案1---5 BCAAC 6---10 AADBD 11. 738 12. 9x +6 13. (3n +1) 14.15. (1)解:原式=-x 2+32x ,当x =12时,原式=12 (2) 解:原式=5ab 2+5a 2b -5,把a =-2,b =3代入上式,得原式=-3516. 解:(1)3A +6B =15ab -6a -9 (2)3A +6B =15ab -6a -9=a(15b -6)-9,因为3A +6B 的值与a 无关,所以15b -6=0,得b =25(3)C =-5ab +2a +317. 解:由A +2(x 2+3x -2)=9x 2-2x +7得:A =7x 2-8x +11,2A +B =2(7x 2-8x +11)+(x 2+3x -2)=15x 2-13x +20 18. (1) -3(2) 解:设小华想的数是a ,则运算结果是(6a +3)÷3-a =a +1,这说明结果总比想的数大1,即想的数是结果减去1。

北师大版七年级上册第3章《整式及其加减》单元测试卷 含答案

北师大版七年级上册第3章《整式及其加减》单元测试卷   含答案

北师大版七年级上册第3章《整式及其加减》单元测试卷满分120分一.选择题(共10小题,满分30分,每小题3分)1.下列代数式书写正确的是()A.a48B.x÷y C.a(x+y)D.abc2.在1,a,a+b,,2x2y﹣xy2,3a>2,x+1=9中,代数式有()个.A.3个B.4个C.5个D.6个3.与2ab2是同类项的是()A.4a2b B.2a2b C.5ab2D.﹣ab4.在多项式﹣3x3﹣5x2y2+xy中,次数最高的项的系数为()A.3B.5C.﹣5D.15.下列结论中正确的是()A.单项式的系数是,次数是4B.单项式m的次数是1,没有系数C.多项式2x2+xy2+3是二次三项式D.在,2x+y,,,,0中整式有4个6.下列去括号正确的是()A.a﹣(b﹣c)=a﹣b﹣c B.x2﹣[﹣(﹣x+y)]=x2﹣x+yC.m﹣2(p﹣q)=m﹣2p+q D.a+(b﹣c﹣2d)=a+b﹣c+2d7.已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1B.2C.5D.78.一个多项式加上3y2﹣2y﹣5得到多项式5y3﹣4y﹣6,则原来的多项式为()A.5y3+3y2+2y﹣1B.5y3﹣3y2﹣2y﹣6C.5y3+3y2﹣2y﹣1D.5y3﹣3y2﹣2y﹣19.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则a+b的值为()A.﹣1B.1C.﹣2D.210.若有理数a,b,c在数轴上的对应点A,B,C位置如图,化简|c|﹣|c﹣b|+|a+b|=()A.a B.2b+a C.2c+a D.﹣a二.填空题(共7小题,满分28分,每小题4分)11.若练习本每本a元,铅笔每支b元,那么代数式8a+3b表示的意义是.12.多项式2x2﹣3x+5是次项式.13.化简﹣3(a﹣2b+1)的结果为.14.已知单项式x a y3与﹣4xy4﹣b是同类项,那么a﹣b的值是.15.把多项式2m2﹣4m4+2m﹣1按m的升幂排列.16.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k=.17.观察下面的一列单项式:﹣2x、4x3、﹣8x5、16x7、…根据你发现的规律,第n个单项式为.三.解答题(共7小题,满分62分)18.(6分)把下列各代数式填在相应的大括号里.(只需填序号)(1)x﹣7,(2),(3)4ab,(4),(5)5﹣,(6)y,(7),(8)x+,(9),(10)x2++1,(11),(12)8a3x,(13)﹣1单项式集合{};多项式集合{};整式集合{}.19.(8分)整式的化简:(1)a﹣(2a﹣3b)+2(3b﹣2a)(2)3a2b﹣[4ab2﹣3(ab2+a2b)﹣ab2]﹣6a2b20.(8分)若多项式4x n+2﹣5x2﹣n+6是关于x的三次多项式,求代数式n3﹣2n+3的值.21.(12分)先化简,再求值:(1)2x3﹣(7x2﹣9x)﹣2(x3﹣3x2+4x),其中x=﹣1.(2)已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y的值.22.(9分)如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区域进行绿化,空白区域进行广场硬化,其中,四个角部分是半径为(a﹣b)米的四个大小相同的扇形,中间部分是边长为(a+b)米的正方形.(1)用含a、b的式子表示需要硬化部分的面积;(2)若a=30,b=10,求出硬化部分的面积(结果保留π的形式).23.(9分)小丽放学回家后准备完成下面的题目:化简(□x2﹣6x+8)+(6x﹣5x2﹣2),发现系数“□“印刷不清楚.(1)她把“□”猜成3,请你化简(3x2﹣6x+8)+(6x﹣5x2﹣2);(2)她妈妈说:你猜错了,我看到该题的标准答案是6.通过计算说明原题中“□”是几?24.(10分)已知A=3a2b﹣2ab2+abc,小明错将“2A﹣B”看成“2A+B”,算得结果C=4a2b ﹣3ab2+4abc.(1)计算B的表达式;(2)求正确的结果的表达式;(3)小强说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中代数式的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:选项A正确的书写格式是48a,B正确的书写格式是,C正确,D正确的书写格式是abc.故选:C.2.解:∵1,a,a+b,,2x2y﹣xy2是代数式;∴一共有5个代数式.故选:C.3.解:∵单项式2ab2只含字母a、b,且字母a的次数为1,b的次数是2,∴与2ab2是同类项的是5ab2.故选:C.4.解:在多项式﹣3x3﹣5x2y2+xy中,次数最高的项的系数为:﹣5.故选:C.5.解:A、单项式的系数是的系数是π,次数是3,不符合题意;B、单项式m的次数是1,系数是1,不符合题意;C、多项式2x2+xy2+3是三次三项式,不符合题意;D、在,2x+y,,,,0中整式有2x+y,,,0,一共4个,符合题意.故选:D.6.解:A、a﹣(b﹣c)=a﹣b+c,原式计算错误,故本选项错误;B、x2﹣[﹣(﹣x+y)]=x2﹣x+y,原式计算正确,故本选项正确;C、m﹣2(p﹣q)=m﹣2p+2q,原式计算错误,故本选项错误;D、a+(b﹣c﹣2d)=a+b﹣c﹣2d,原式计算错误,故本选项错误;故选:B.7.解:∵a﹣b=2,∴2a﹣2b﹣3=2(a﹣b)﹣3=2×2﹣3=1.故选:A.8.解:(5y3﹣4y﹣6)﹣(3y2﹣2y﹣5)=5y3﹣3y2﹣2y﹣1.故选D.9.解:x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)=x2+ax﹣2y+7﹣bx2+2x﹣9y+1,=(1﹣b)x2+(2+a)x﹣11y+8,∴1﹣b=0,2+a=0,解得b=1,a=﹣2,a+b=﹣1.故选:A.10.解:由数轴可知c>0,c﹣b>0,a+b<0,∴原式=c﹣(c﹣b)﹣(a+b)=c﹣c+b﹣a﹣b=﹣a故选:D.二.填空题(共7小题,满分28分,每小题4分)11.解:8a+3b表示的意义是买8本练习本和3支铅笔需要的钱数,故答案为:买8本练习本和3支铅笔需要的钱数.12.解:由题意可知,多项式2x2﹣3x+5是二次三项式.故答案为:二,三.13.解:原式=﹣3a+6b﹣3.故答案为:﹣3a+6b﹣3.14.解:∵单项式x a y3与﹣4xy4﹣b是同类项,∴a=1,3=4﹣b,则b=1,∴a﹣b=1﹣1=0,故答案为:0.15.解:多项式2m2﹣4m4+2m﹣1按m的升幂排列为﹣1+2m+2m2﹣4m4,故答案为:﹣1+2m+2m2﹣4m4.16.解:原式=x2+(﹣3k+6)xy﹣3y2﹣8,因为不含xy项,故﹣3k+6=0,解得:k=2.故答案为:2.17.解:∵﹣2x=(﹣1)1•21•x1;4x3=(﹣1)2•22•x3;8x5=(﹣1)3•23•x5;﹣16x7=(﹣1)4•24•x7.第n个单项式为(﹣1)n•2n•x2n﹣1.故答案为:(﹣1)n2n x2n﹣1.三.解答题(共7小题,满分62分)18.解:单项式有:,4ab,y,8a3x,﹣1;多项式有:x﹣7,x+,,x2++1;整式有:x﹣7,,4ab,y,x+,,x2++1,8a3x,﹣1.故答案为:(2)(3)(6)(12)(13);(1)(8)(9)(10);(1)(2)(3)(6)(8)(9)(10)(12)(13).19.解:(1)a﹣(2a﹣3b)+2(3b﹣2a)=a﹣2a+3b+6b﹣4a=﹣5a+9b;(2)3a2b﹣[4ab2﹣3(ab2+a2b)﹣ab2]﹣6a2b=3a2b﹣4ab2+3(ab2+a2b)+ab2﹣6a2b=3a2b﹣4ab2+3ab2+a2b+ab2﹣6a2b=﹣2a2b.20.解:由题意可知:该多项式最高次数项为3次,当n+2=3时,此时n=1,∴n3﹣2n+3=1﹣2+3=2,当2﹣n=3时,即n=﹣1,∴n3﹣2n+3=﹣1+2+3=4,综上所述,代数式n3﹣2n+3的值为2或4.21.解:(1)原式=2x3﹣7x2+9x﹣2x3+6x2﹣8x=﹣x2+x,当x=﹣1时,原式=﹣1﹣1=﹣2;(2)原式=3x2﹣6xy﹣x2+6xy﹣4y=2x2﹣4y=2(x2﹣2y),由x2﹣2y﹣5=0,得到x2﹣2y=5,则原式=10.22.解:(1)需要硬化部分的面积=(3a+b)(2a+b)﹣(a+b)2﹣π(a﹣b)2;(2)当a=30,b=10,硬化部分的面积=(90+10)×(60+10)﹣402﹣π×202=(5400﹣400π)平方米.23.解:(1)(3x2﹣6x+8)+(6x﹣5x2﹣2)=3x2﹣6x+8+6x﹣5x2﹣2=﹣2x2+6;(2)设“□”是a,则原式=(ax2﹣6x+8)+(6x﹣5x2﹣2)=ax2﹣6x+8+6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案是6,∴a﹣5=0,解得a=5.24.解:(1)∵2A+B=C,∴B=C﹣2A=4a2b﹣3ab2+4abc﹣2(3a2b﹣2ab2+abc)=4a2b﹣3ab2+4abc﹣6a2b+4ab2﹣2abc=﹣2a2b+ab2+2abc;(2)2A﹣B=2(3a2b﹣2ab2+abc)﹣(﹣2a2b+ab2+2abc)=6a2b﹣4ab2+2abc+2a2b﹣ab2﹣2abc=8a2b﹣5ab2;(3)对,与c无关,将a=,b=代入,得:8a2b﹣5ab2=8×()2×﹣5××()2=0.。

第三章 整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)

第三章 整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)

第三章整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、已知,,则M-N的值()A.为正数B.为负数C.为非负数D.不能确定2、已知x2-2x-3=0,则2x2-4x的值为( )A.-6B.6C.-2或6D.-2或303、化简(-4x+8)-3(4-5x),可得下列哪一个结果?A.-16x-10B.-16x-4C.56x-40D.14x-104、一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动.设该机器人每秒前进或后退1步,并且每步的距离是一个单位长度,x n表示第n秒时机器人在数轴上的位罝所对应的数.给出下列结论:①x3=3;②x5=1;③x108<x104;④x2007<x2008,其中,正确结论的序号是()A.①③B.②③C.①②③D.①②④5、等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和-1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2019次后,则数2019对应的点为()A.点AB.点BC.点CD.这题我真的不会6、下列各组是同类项的一组是()A.a 3与b 3B.3x 2y与﹣4x 2yzC.x 2y与﹣xy 2D.﹣2a 2b与ba 27、若关于的多项式为二次三项式,则当时,这个二次三项式的值是()A. B. C. D.8、观察下列各式:1×2=(1×2×3-0×1×2);2×3=(2×3×4-1×2×3);3×4=(3×4×5-2×3×4);计算:3×(1×2+2×3+3×4+…+99×100+100×101)=( )A.97×98×99B.98×99×100C.99×100×101D.100×101×1029、若关于x的一元二次方程ax2﹣bx+4=0的解是x=2,则2020+2a﹣b的值是()A.2016B.2018C.2020D.202210、代数式,,,中,是整式的有()A.1个B.2个C.3个D.4个11、下列各组中的两个项,不属于同类项的是()A. 与n 2mB.1与C. 与D. 与12、已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.1B.4C.7D.不能确定13、下列运算正确的是()A. B. C. D.14、若a与b互为相反数,c与d互为倒数,则式子的值是()A.0B.1C.-1D.无法确定15、下列各式中运算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、若a m b3与﹣3a2b n是同类项,则m+n=________17、如图,直线l:y=x+2交y轴于点A1,在x轴正方向上取点B1,使OB1=OA1;过点B1作A2B1⊥x轴,交l于点A2,在x轴正方向上取点B2,使B1B2=B1A2;过点B2作A3B2⊥x轴,交l于点A3,在x轴正方向上取点B3,使B2B3=B2A3……记△OA1B1面积为S1,△B1A2B2面积为S2,△B2A3B3面积为S3,…则S2018等于________.18、多项式5x2+3xy3-1的次数是________。

北师大版七年级上册数学第三章整式及其加减单元测试卷(Word版,含答案)

北师大版七年级上册数学第三章整式及其加减单元测试卷(Word版,含答案)

第 1 页 共 6 页北师大版七年级上册数学第三章整式及其加减单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.单项式334xy -的系数是( ) A .3 B .4 C .3- D .34- 2.下列去括号或添括号的变形中,正确的是( )A .2a -(3b -c )=2a -3b -cB .3a +2(2b -1)=3a +4b -1C .a +2b -3c =a +(2b -3c )D .m -n +a -b =m -(n +a -b )3.已知单项式13m a b +与13n b a --可以合并同类项,则m ,n 分别为( )A .2,2B .3,2C .2,0D .3,04.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第①个图案中有9个正方形,第①个图案中有13个正方形,第①个图案中有17个正方形,此规律排列下去,则第①个图案中正方形的个数为( )A .32B .34C .37D .415.为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8x 元B .10(100)x -元C .8(100)x -元D .(1008)x -元6.若 P 和 Q 都是关于 x 的五次多项式,则 P Q + 是( )A .关于 x 的五次多项式B .关于 x 的十次多项式C .关于 x 的四次多项式D .关于 x第 2 页 共 6 页 的不超过五次的多项式或单项式7.下列关于“代数式42x y +”的意义叙述正确的有( )个.①x 的4倍与y 的2倍的和是42x y +;①小明以x 米/分钟的速度跑了4分钟,再以y 米/分钟的速度步行了2分钟,小明一共走了()42x y +米; ①苹果每千克x 元,橘子每千克y 元,买4千克橘子、2千克苹果一共花费()42x y +元.A .3B .2C .1D .08.下列说法正确的是( )A . 3xy π的系数是3B .3xy π的次数是3C . 223xy -的系数是23-D .223xy -的次数是2 9.乐乐在数学学习中遇到了神奇的“数值转换机”,按如图所示的程序运算,若输入一个有理数x ,则可相应的输出一个结果y .若输入x 的值为1-,则输出的结果y 为( )A .6B .7C .10D .1210.两个形状大小完全相同的长方形中放入4个相同的小长方形后,得到图①和图①的阴影部分,如果大长方形的长为m ,则图①与图①的阴影部分周长之差是( )A .2m -B .2mC .3m D .3m -。

第三章 整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)

第三章 整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)

第三章整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、已知单项式与的和是单项式,则的值是()A.3B.-3C.6D.-62、已知,化简所得的结果是()A. B. C. D.3、下列去括号正确的是()A. B. C.D.4、已知整数,,,,…满足下列条件:,,,,…,(为正整数),依此类推,的值为( )A.-2017B.-2018C.-2019D.-20205、下列计算正确的是 ( )A.-3 3=9B.C.6a-5a=1D.6、若A是五次多项式,B也是五次多项式,则A+B的次数是( )A.十次B.五次C.不高于五次D.不能确定7、下列运算正确的是()A. = +B.()2=3C.3a﹣a=3D.(a 2)3=a 58、下列运算正确的是()A.a 6÷a 2=a 3B.5a 2﹣3a 2=2aC.(﹣a)2•a 3=a5 D.5a+2b=7ab9、下列判断正确的是()A. 与不是同类项B. 不是整式C.单项式的系数是-1 D. 是二次三项式10、若3x+2y=0,则代数式的值为()A.1B.-1C.-D.不能确定11、下列关于单项式―的说法中,正确的是()A.系数是―,次数是2;B.系数是,次数是2;C.系数是―3,次数是3;D.系数是―,次数是3.12、多项式x2﹣4x﹣12可以因式分解成()A.x(x﹣4)﹣12B.(x﹣2)(x+6)C.(x+2)(x﹣6) D.(x+3)(x﹣4)13、买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元.A.4m+7nB.28mnC.7m+4nD.11mn14、下列各式符合代数式书写格式的为()A. B. C. D.15、下列说法中,正确的是( )A.画直线B.射线与射线是同一条射线C.绝对值等于它本身的数是正数D.多项式是五次三项式二、填空题(共10题,共计30分)16、观察数字:-1,2,7,14,23,34,…的规律,照此规律第n个数为________.17、一个两位数,个位上的数字是,十位上的数字是,则这个两位数是________18、按一定规律排列的一列数依次为:,,,,…(a≠0),按此规律排列下去,这列数中的第n个数是________.(n为正整数)19、设某个长方形的长和宽分别为和,周长为14,面积为10,则________,________.20、今年市场上荔枝的价格比去年便宜了5%,去年的价格是每kgm元,则今年的价格是每kg________元.21、若|m﹣3|+(n+2)2=0,则m+2n的值为________.22、若y=+ ﹣3,则x+y=________.23、单项式的系数是________.24、如图,是的外角,的平分线与的平分线交于点,的平分线与的平分线交于点,…,的平分线与的平分线交于点,设,则________,________.25、函数和y=3x+n的图象交于点A(-2,m),则m n=________.三、解答题(共5题,共计25分)26、如果一个多项式与m2﹣2n2的和是5m2﹣3n2+1,求这个多项式.27、若方程与方程有相同的解,求的值.28、某人读一本名著,第一次读了它的一半少1页,第二次读了剩下的一半多1页,设这本书有m页,则还剩下多少页没有阅读?29、某种产品的原料提价,因而厂家决定对产品进行提价,现有三种方案:①第一次提价p%,第二次提价q%;②第一次提价q%,第二次提价p%;③第一、二次提价均为.其中p,q是不相等的正数,三种方案哪种提价最多?30、已知x、y互为相反数,a、b互为倒数,c的绝对值等于2,求的值.参考答案一、单选题(共15题,共计45分)2、D3、B4、B5、B6、C7、B8、C9、C10、C11、D12、C13、A14、C15、D二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

[精品]北师大版七年级上第3章《整式及其加减》单元测试卷(有答案)(数学)

[精品]北师大版七年级上第3章《整式及其加减》单元测试卷(有答案)(数学)

单元测试(三) 整式及其加减(时间:120分钟 满分:150分)一、选择题(本大题共15小题,每小题3分,共45分)1.下列各式中不是单项式的是( )A .-a 3B .-15C .0D .-3a2.单项式-3xy 2z 3的系数是( )A .-1B .5C .6D .-33.某班数学兴趣小组共有a 人,其中女生占30%,那么女生人数是( )A .30%aB .(1-30%)aC.a 30%D.a 1-30%4.下列各组式子中,为同类项的是( )A .5x 2y 与-2xy 2B .4x 与4x 2C .-3xy 与32yx D .6x 3y 4与-6x 3z 4 5.当a =-1,b =2时,代数式a 2b 的值是( )A .-2B .1C .2D .-16.列式表示“比m 的平方的3倍大1的数”是( )A .(3m )2+1B .3m 2+1C .3(m +1)2D .(3m +1)27.若m ,n 为自然数,多项式x m +y n +4m +n 的次数应是( )A .mB .nC .m ,n 中的较大数D .m +n8.化简2x -(x -y)-y 的结果是( )A .3xB .xC .x -2yD .2x -2y9.(玉林中考)下列运算中,正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=110.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( )A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 211.下列判断错误的是( )A .多项式5x 2-2x +4是二次三项式B .单项式-a 2b 3c 4的系数是-1,次数是9C .式子m +5,ab ,-2,s v都是代数式 D .多项式与多项式的和一定是多项式12.十位数字是x ,个位数字是y 的两位数是 ( )A .xyB .x +10yC .x +yD .10x +y13.(厦门中考)某商店举办促销活动,促销的方法是将原价x 元的衣服以(45x -10)元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元14.(湘西中考)已知x -2y =3,则代数式6-2x +4y 的值为( )A .0B .-1C .-3D .315.下面一组按规律排列的数:0,2,8,26,80,…,则第2 016个数是( )A .32 016B .32 015C .32 016-1D .32 015-1二、填空题(本大题共5小题,每小题5分,共25分)16.去括号:-(3x -2)=________.17.请你结合生活实际,设计具体情境,解释下列代数式30a的意义:________________________________. 18.对于有理数a ,b ,定义a⊙b=3a +2b ,则(x +y)⊙(x-y)化简后得________.19.当m=________时,代数式 2x2+(m+2)xy-5x不含xy项.20.若用围棋子摆出下列一组图形:…(1) (2) (3)按照这种方法摆下去,第n个图形共用________枚棋子.三、解答题(本大题共7小题,共80分)21.(8分)化简下列各式:(1)a+2b+3a-2b; (2)2(a-1)-(2a-3)+3.22.(8分)先化简,再求值:(2m2-3mn+8)-(5mn-4m2+8),其中m=2,n=1.23.(10分)如图所示:(1) 用代数式表示阴影部分的面积;(2) 当a=10,b=4时,求阴影部分的面积(π取3.14,结果精确到0.01).24.(12分)已知a,b,c在数轴上的位置如图所示,求|b+c|-|a-b|-|c-b|的值.25.(12分)已知长方形的一边长为2a+3b,另一边比它短(b-a),试计算此长方形的周长.26.(14分)已知A=2a2+3ab-2a-1,B=-a2+ab-1.(1)求3A+6B;(2)若3A+6B的值与a的取值无关,求b的值.27.(16分)某农户承包荒山若干亩,种果树2 000棵.今年水果总产量为18 000千克,此水果在市场上每千克售a元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1 000千克,需8人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.(1)分别用a,b表示两种方式出售水果的收入;(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.参考答案1.D 2.D 3.A 4.C 5.C 6.B 7.C 8.B 9.C 10.C11.D 12.D 13.B 14.A 15.D 16.-3x +2 17.某班级有a 名学生参加考试,30名学生成绩合格,则合格人数占总人数的30a18.5x +y 19.-2 20.3n 21.(1)原式=4a. (2)原式=4. 22.原式=2m 2-3mn +8-5mn +4m 2-8=6m 2-8mn.当m =2,n =1时,原式=6×22-8×2×1=8. 23.(1)ab -12πb 2.(2)当a =10,b =4时,ab -12πb 2≈10×4-12×3.14×42=14.88. 24.由图知:b +c >0,a -b <0,c -b >0,|b +c|-|a -b|-|c -b|=b +c -[-(a -b)]-(c -b)=b +c +a -b -c +b =a +b. 25.长方形的另一边长为3a +2b ,则周长为2[(2a +3b)+(3a +2b)]=2(5a +5b)=10a +10b. 26.(1)3A +6B=3(2a 2+3ab -2a -1)+6(-a 2+ab -1)=6a 2+9ab -6a -3-6a 2+6ab -6=15ab -6a -9.(2)因为15ab-6a -9=a(15b -6)-9,且3A +6B 的值与a 的取值无关,所以15b =6,即b =25. 27.(1)将这批水果拉到市场上出售收入为18 000a -18 0001 000×8×25-18 0001 000×100=18 000a -3 600-1 800=18 000a -5 400(元).在果园直接出售收入为18 000b 元.(2)当a =1.3时,市场收入为18 000a -5 400=18 000×1.3-5 400=18 000(元).当b =1.1时,果园收入为18 000b =18 000×1.1=19 800(元).因为18 000<19 800,所以应选择在果园出售.。

第三章 整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)

第三章 整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)

第三章整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、下列语句正确的是()A.﹣b 2的系数是1,次数是2B.2a+b是二次二项式C.多项式a 2+ab﹣1是按照a的降幂排列D. 的系数是2,次数是32、下列运算正确的是()A. B. C. D.3、下列运算中,正确的是()A.x 2y﹣yx 2=0B.2x 2+x 2=3x 4C.4x+y=4xyD.2x﹣x=14、在下列代数式中,次数为3的单项式是( )A.x 3+y 3B.xy 2C.x 3yD.3xy5、若抛物线y=x2-2x+m的最低点的纵坐标为n,则m-n的值是()A.-1B.C.1D.26、某商场举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确反映该商场的促销方法的是()A.原价打8折后再减10元B.原价减10元后再打8折C.原价减10元后再打2折D.原价打2折后再减10元7、今年市场上荔枝的价格比去年便宜了5%,去年的价格是每kgm元,则今年的价格是每kg()元A.5%mB.m-5%C.(1+5%)mD.(1-5%)m8、下列计算正确是()A. B. C. D.9、下列运算结果正确是( )A.a 2+a 3=a 5B.a 3÷a 2=aC.a 2•a 3=a 6D.(a 2) 3=a 510、已知一个多项式与3x2+9x的和等于3x2+4x-1,则此多项式是( )A.-6x 2-5x-1B.-5x-1C.-6x 2+5x+1D.-5x+111、若单项式与的和仍是单项式,则的值分别为()A.4B.7C.8D.912、下面选项中符合代数式书写要求的是 ( )A. y 2B.ay·3C.D.a×b+c13、下面计算正确的是()A. B. C. D.14、下列运算中,结果正确的是()A.2a+3b=5abB.a 2•a 3=a 6C.(a+b)2=a 2+b 2D.2a﹣(a+b)=a﹣b15、下列去括号正确的是().A. x 2−(x−3y)=x 2−x−3yB. x 2−3(y 2−2xy)=x 2−3y 2+2xyC. m 2−4(m−1)=m 2−4m+4D. a 2−2(a−3)=a 2+2a−6二、填空题(共10题,共计30分)16、如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是________.17、在劳技课上莹莹用一根铁丝正好围成一个长方形,若此长方形的一边长为cm,另一边比这条边长cm,则这根铁丝的长为________cm.18、如图,在直角坐标系中,已知点、,对连续作旋转变换,依次得到,则的直角顶点的坐标为________.19、请写出一个单项式,同时满足下列条件:①含有字母x、y;②系数是负整数;③次数是4,你写的单项式为________.20、若多项式是关于x,y的三次多项式,则________.21、若单项式2x m+4y3与x3y3的和是单项式,则常数m的值是________22、已知(a﹣1)2+|b+1|=0,则代数式2a2+4b+2018值是________ .23、若5x6y2m与-3x n+9y6和是单项式,那么n-m的值为________.24、化简|π﹣4|+|3﹣π|=________.25、已知代数式2x-3y的值是3,则5-2x+3y的值是________.三、解答题(共5题,共计25分)26、,,且,,,求的值.(注意:先化简再代值)27、已知多项式﹣3x3y|m+1|+xy3+(n﹣2)x2y2﹣4是六次三项式,求(m+1)2n﹣3的值.28、三角形的第一边长为3a+2b,第二边比第一边长a﹣b,第三边比第二边短2a.请用a、b式子分别表示第二边和第三边,并求这个三角形的周长(最后结果都要求最简)29、先化简,再求值:,其中x= .30、已知a-2b=3.求9-2a+4b的值.参考答案一、单选题(共15题,共计45分)1、C2、B3、A4、B5、C6、A7、D8、C9、B10、B11、B12、C13、B14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

第三章 整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)

第三章 整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)

第三章整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、比a的2倍少3的数的相反数用代数式表示为()A.a-2aB. 3-2aC.a+2aD.-a+3a2、若代数式2x2+3x+7的值是8,则代数式4x2+6x-7的值是()A.2B.17C.-5D.-13、下列计算正确的是()A.a 3•a=a 3B.a 6÷a 3=a 2C.a 5+a 5=a 10D.(﹣a 5)2=a 104、一个菱形链,此链按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分菱形的个数可能是()A.2008B.2010C.2012D.20145、下列说法正确的有()①-(-3)和|-3|互为相反数;②若代数式有意义,则实数x的取值范围为x≠3;③的算术平方根是6;④与最接近的整数是3;⑤“a的3倍与b的平方差”用代数式表示是(3a-b)2A.4个B.3个C. 2个D.1个6、一个多项式减去一个单项式得,则减去的单项式是()A. B. C. D.7、下列代数式中,是同类项的是()。

A. 与B. 与C. 与D.与8、下列各组中,不是同类项的是()A. 与B. 与C. 与D. 与9、按如图所示的运算程序,能使输出结果为12的是()A. B. C. D.10、若2x m+1y2与-3x3y2n是同类项,则m+n的值为( )A.3B.4C.5D.611、下列各组式子是同类项的是()A.3x 2y与3xy 2B. abc与acC.-2xy与-3ab D.xy与-xy12、单项式﹣a2b的系数和次数分别是()A. ,2B. ,3C.﹣,2D.﹣,313、如图,用火柴棍分别搭一排三角形组成的图形和一排正方形组成的图形,三角形、正方形的每一边用一根火柴棒.如果搭这两个图案一共用了2030根火柴棒,且正方形的个数比三角形的个数的少4个,则搭成的三角形的个数是()A.429B.409C.408D.40414、下列运算不正确的是()A.x 2•x 3=B.(x 2)3=C.x 3+x 3=2D.(﹣2x)3=﹣815、如图,在平面直角坐标系中,已知点,A2在x轴的正半轴上,且,过点A2作交y轴于点A3;过点A3作交x轴于点A4;过点A4作交y轴于点A5;过点A5作交x轴于点A6;…按此规律进行下去,则点A2019的坐标是()A. B. C. D.二、填空题(共10题,共计30分)16、如果与是同类项,那么________17、已知,则x3y+xy3=________.18、观察下列各式:①、,②、③、,…请用含n (n≥1)的式子写出你猜想的规律:________19、已知代数式x+2y+1的值是6,则代数式3x+6y+1的值是________.20、已知整数a1, a2, a3, a4,满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,,依次类推,则a2014的值为________.21、单项式2x m y3与-5y n x是同类项,则m-n的值是________。

北师大版初中数学七年级上册《第3章 整式及其加减》单元测试卷(含答案解析

北师大版初中数学七年级上册《第3章 整式及其加减》单元测试卷(含答案解析

北师大新版七年级上学期《第3章整式及其加减》单元测试卷一.填空题(共50小题)1.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有(填写序号)2.若﹣x n﹣2+4x是关于x的三次二项式,则n的值是.3.若n为整数,则代数式n(n+1)(n+2)表示的实际意义.4.已知代数式3x2﹣5x+3的值为1,则6x2﹣10x+7的值是.5.当x=﹣2时,多项式mx3+2x2+nx+4的值等于18,那么当x=2时,该多项式的值等于.6.体校里男生人数占学生总数的75%,女生人数是a,则学生总数是人.7.如图所示的运算程序中,若开始输入的x的值为﹣1,我们发现第一次输出的结果为2,第二次输出的结果为1,则第2018次输出的结果为.8.如图,图中阴影部分的面积是.9.如果a﹣b=﹣2,那么(a﹣b)2﹣(b﹣a)=.10.按照如图操作,若输入x的值是9,则输出的值是.11.买一个篮球需要m元,买一个足球需要n元,那么买4个篮球和7个足球共需元.12.用代数式表示:x的30%除5a的商.13.下列各式:0,,F=ma,m+2>m,2x2﹣3x+11,B≠12,,﹣y,6π,其中代数式的有个.14.已知x2﹣2x﹣1=0,则5+4x﹣2x2=.15.当x=1时,多项式px3+qx+1的值为2020,求当x=﹣1时,多项式px3+qx+1的值为.16.把多项式2m2n3+3mn2﹣2﹣m3n按字母m的降幂排列为.17.已知多项式3a4b m﹣a2b+1是六次三项式,则m=.18.单项式πr3h的系数是,次数是.多项式9x2y3﹣2x3y+5的次数是.19.下列式子:①a+2b;②﹣2xy2;③;④+5;⑤x﹣;⑥x2+x,其中属于多项式的有(填序号).20.如果多项式x b+(1﹣a)x3﹣x+1是关于x的四次三项式,那么a b的值为.21.观察给出的一列单项式:﹣2,4x,﹣8x2,16x3,…根据你发现的规律,第8个单项式为.22.多项式2x4﹣3x5﹣5是次项式,最高次项的系数是,常数项是.23.把多项式2x2﹣x3y﹣y3+xy2按字母y的降幂排列:.24.多项式2ab﹣a2b的次数是,单项式的系数是,﹣1的倒数是.25.当自然数a<b时,x a+y b+3a+b是次多项式.26.在式子,,,﹣,1﹣x﹣5xy2,﹣x,6xy+1,a2+b2中,多项式有个.27.单项式﹣的系数是.28.单项式的次数是.系数是.29.下列代数式:(1),(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有.(填序号)30.下列各式①m;②x+5=7;③2x+3y;④m>3;⑤中,整式的个数有个.31.若单项式5x4y和7x n﹣1y m是同类项,则m+n的值为.32.一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为.33.已知a+b=5,c﹣d=﹣3,则(d﹣a)﹣(b+c)的值为.34.若单项式(n+3)x3y2m和单项式﹣2x|n|y4的和仍是一个单项式,则m+n=.35.若多项式x2+kxy+4x﹣2xy+y2﹣1不含xy项,则k的值是.36.若x=y﹣3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)﹣6的值为.37.一个多项式加上3x2y﹣3xy2得x3﹣3xy2,则这个多项式为.38.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+.(1)a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.39.合并下列多项式3(4x2﹣3x+2)﹣2(1﹣4x2+x)40.若多项式3x2﹣2(5+y﹣3x2+mx2)的值与x的值无关,则m的等于.41.某同学做了一道数学题:“已知两个多项式为A、B,B=3x﹣2y,求A﹣B的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是x﹣y,那么原来的A﹣B 的值应该是.42.某同学在做计算2A+B时,误将“2A+B”看成了“2A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则2A+B的正确答案为.43.如图,已知正五角星的面积为5,正方形的边长为2,图中对应阴影部分的面积分别是S1、S2,则S1﹣S2的值为.44.去括号:2xy﹣(3xy﹣3y2+5).45.把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是.46.如果x﹣y=2,m+n=1,那么(y+2m)﹣(x﹣2n)=.47.若x=y+3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)+7等于.48.当x=﹣,y=3时,3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2=.49.将整数按如图方式进行有规律的排列,第2行最后一个数是﹣4,第3行最后一个数是9,第4行最后一个数是﹣16,…,依此类推,第21行的第21个数是.50.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…,按照上述规律,第2018个单项式是.北师大新版七年级上学期《第3章整式及其加减》单元测试卷参考答案与试题解析一.填空题(共50小题)1.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有①②(填写序号)【分析】根据书写规则,分数不能为带分数,对各项的代数式进行判定,即可求出答案.【解答】解:①1x分数不能为带分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c,书写正确;⑤;书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②共2个.故答案为:①②.【点评】此题考查了代数式的书写.注意代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)带分数要写成假分数的形式.2.若﹣x n﹣2+4x是关于x的三次二项式,则n的值是5.【分析】直接利用三次二项式的定义进而分析得出答案.【解答】解:∵﹣x n﹣2+4x是关于x的三次二项式,∴n﹣2=3,则n的值是:5.故答案为:5.【点评】此题主要考查了代数式,正确把握代数式的次数与系数的确定方法是解题关键.3.若n为整数,则代数式n(n+1)(n+2)表示的实际意义连续三个整数的乘积.【分析】根据代数式的结构即可得出答案.【解答】解:由于n为整数,所以n(n+1)(n+2)表示连续三个整数的乘积故答案为:连续三个整数的乘积【点评】本题考查代数式,解题的关键是正确理解题意,本题属于基础题型.4.已知代数式3x2﹣5x+3的值为1,则6x2﹣10x+7的值是3.【分析】先求出3x2﹣5x=﹣2,再变形后代入,即可求出答案.【解答】解:根据题意得:3x2﹣5x+3=1,3x2﹣5x=﹣2,所以6x2﹣10x+7=2(3x2﹣5x)+7=2×(﹣2)+7=3,故答案为:3;【点评】本题考查了求代数式的值,能够整体代入是解此题的关键.5.当x=﹣2时,多项式mx3+2x2+nx+4的值等于18,那么当x=2时,该多项式的值等于6.【分析】对题意进行分析,x=﹣2,mx3+2x2+nx+4=18,可求出8m+2n的值,然后将x=2代入,即可求得结果.【解答】解:当x=﹣2,mx3+2x2+nx+4=18,则8m+2n=﹣6,将8m+n=﹣6,x=2代入,可得:mx3+2x2+nx+4=6,故答案为:6.【点评】本题考查整式的加减,看清题中,弄清各个量的关系即可.6.体校里男生人数占学生总数的75%,女生人数是a,则学生总数是4a人.【分析】直接利用女生人数除以所占百分比进而得出答案.【解答】解:∵体校里男生人数占学生总数的75%,女生人数是a,∴学生总数是:a÷(1﹣75%)=4a.故答案为:4a.【点评】此题主要考查了列代数式,正确理解题意是解题关键.7.如图所示的运算程序中,若开始输入的x的值为﹣1,我们发现第一次输出的结果为2,第二次输出的结果为1,则第2018次输出的结果为1.【分析】根据题意找出规律即可求出答案.【解答】解:第一次输出为2,第二次输出为1,第三次输出为4,第四次输出为2,第五次输出为1,第六次输出为4,……从第三次起开始循环,∴(2018﹣2)÷3=672 (2)故第2018次输出的结果为:1故答案为:1.【点评】本题考查数字规律,解题的关键是正确理解程序图找出规律,本题属于基础题型.8.如图,图中阴影部分的面积是 5.7mn.【分析】直接利用总面积减去空白面积进而得出答案.【解答】解:阴影部分面积为:6mn﹣0.3nm=5.7mn.故答案为:5.7mn.【点评】此题主要考查了列代数式,正确表示矩形面积是解题关键.9.如果a﹣b=﹣2,那么(a﹣b)2﹣(b﹣a)=2.【分析】把a﹣b=﹣2代入计算即可求出值.【解答】解:把a﹣b=﹣2代入(a﹣b)2﹣(b﹣a)=4﹣2=2,故答案为:2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.10.按照如图操作,若输入x的值是9,则输出的值是193.【分析】根据题意列出代数式,将x=9代入计算即可求出值.【解答】解:根据题意得:(x+5)2﹣3,当x=9时,原式=(9+5)2﹣3=196﹣3=193.故答案为:193.【点评】此题考查了代数式求值,弄清题中的程序框图是解本题的关键.11.买一个篮球需要m元,买一个足球需要n元,那么买4个篮球和7个足球共需(4m+7n)元.【分析】买一个篮球需要m元,则买4个篮球需要4m元,买一个足球需要n 元,则买7个足球需要7n元,然后将它们相加即可.【解答】解:∵买一个篮球需要m元,买一个足球需要n元,∴买4个篮球和7个足球共需(4m+7n)元.故答案为(4m+7n).【点评】本题考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系.12.用代数式表示:x的30%除5a的商.【分析】根据题意列出代数式即可得出答案【解答】解:x的30%可表示为30%x,x的30%除5a的用代数式可表示为:.故答案为:可表示为:.【点评】本题主要考查了列代数式,正确理解题意是关键.13.下列各式:0,,F=ma,m+2>m,2x2﹣3x+11,B≠12,,﹣y,6π,其中代数式的有6个.【分析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.【解答】解:题中的代数式有:0,,2x2﹣3x+11,,﹣y,6π,共6个.故答案为:6.【点评】考查了代数式,注意:代数式中不含有“>”,“=”号.14.已知x2﹣2x﹣1=0,则5+4x﹣2x2=3.【分析】将x2﹣2x=1代入多项式5+4x﹣2x2即可求出答案.【解答】解:由题意可知:x2﹣2x=1,∴原式=5+2(2x﹣x2)=5﹣2(x2﹣2x)=5﹣2×1=3,故答案为:3【点评】本题考查代数式求值,解题的关键是将x2﹣2x看成一个整体,本题属于基础题型.15.当x=1时,多项式px3+qx+1的值为2020,求当x=﹣1时,多项式px3+qx+1的值为﹣2018.【分析】将x=1代入多项式px3+qx+1后可求出p+q的值,然后将x=﹣1代入px3+qx+1即可求出答案.【解答】解:将x=1代入多项式px3+qx+1,得:p+q+1=2020,∴p+q=2019,将x=﹣1代入多项式px3+qx+1,∴﹣p﹣q+1=﹣(p+q)+1=﹣2018.故答案为:﹣2018【点评】本题考查代数式求值,解题的关键是熟练运用有理数的运算,本题属于基础题型.16.把多项式2m2n3+3mn2﹣2﹣m3n按字母m的降幂排列为﹣m3n+2m2n3+3mn2﹣2.【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【解答】解:多项式2m2n3+3mn2﹣2﹣m3n的各项为:2m2n3,3mn2,﹣2,﹣m3n按m降幂排列为:﹣m3n+2m2n3+3mn2﹣2.故答案为:﹣m3n+2m2n3+3mn2﹣2.【点评】本题考查多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.17.已知多项式3a4b m﹣a2b+1是六次三项式,则m=﹣2.【分析】直接利用多项式的定义分析得出答案.【解答】解:∵多项式3a4b m﹣a2b+1是六次三项式,∴4+m=2,解得:m=﹣2.故答案为:﹣2.【点评】此题主要考查了多项式,正确把握多项式的定义是解题关键.18.单项式πr3h的系数是π,次数是4.多项式9x2y3﹣2x3y+5的次数是5.【分析】直接利用单项式以及多项式的次数确定方法分析得出答案.【解答】解:单项式πr3h的系数是:π,次数是:4;多项式9x2y3﹣2x3y+5的次数是:5.故答案为:π,4,5.【点评】此题主要考查了多项式以及单项式,正确把握相关次数确定方法是解题关键.19.下列式子:①a+2b;②﹣2xy2;③;④+5;⑤x﹣;⑥x2+x,其中属于多项式的有①③④⑥(填序号).【分析】直接利用多项式的定义分析得出答案.【解答】解:①a+2b;②﹣2xy2;③;④+5;⑤x﹣;⑥x2+x,其中属于多项式的有:①a+2b;③;④+5;⑥x2+x,故答案为:①③④⑥.【点评】此题主要考查了多项式,正确把握多项式的定义是解题关键.20.如果多项式x b+(1﹣a)x3﹣x+1是关于x的四次三项式,那么a b的值为1.【分析】直接利用多项式的次数与项数确定方法分析得出答案.【解答】解:∵多项式x b+(1﹣a)x3﹣x+1是关于x的四次三项式,∴b=4,a=1,则a b的值为:1.故答案为:1.【点评】此题主要考查了多项式,正确把握多项式的次数是解题关键.21.观察给出的一列单项式:﹣2,4x,﹣8x2,16x3,…根据你发现的规律,第8个单项式为28•x7.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵﹣2=(﹣1)1•21•x0;4x=(﹣1)2•22•x1;﹣8x3=(﹣1)3•23•x2;16x4=(﹣1)4•24•x3;∴第8个单项式为:(﹣1)8•28•x7=28•x7.故答案为:28•x7.【点评】本题考查了单项式的应用,解此题的关键是找出规律直接解答.22.多项式2x4﹣3x5﹣5是五次三项式,最高次项的系数是﹣3,常数项是﹣5.【分析】根据多项式的项和次数的定义,确定各个项和各个项的系数,注意要带有符号.【解答】解:多项式2x4﹣3x5﹣5是五次三项式,最高次项的系数是﹣3,常数项是﹣5;故答案为:五;三;﹣3;﹣5【点评】本题考查与多项式相关的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.23.把多项式2x2﹣x3y﹣y3+xy2按字母y的降幂排列:﹣y3+xy2﹣x3y+2x2.【分析】按字母y的指数从大到小排列即可.【解答】解:多项式2x2﹣x3y﹣y3+xy2按字母y的降幂排列为:﹣y3+xy2﹣x3y+2x2故答案为:﹣y3+xy2﹣x3y+2x2【点评】此题主要考查了多项式,关键是掌握降幂排列的定义.24.多项式2ab﹣a2b的次数是3,单项式的系数是,﹣1的倒数是﹣.【分析】直接利用多项式的次数确定方法以及系数的确定方法和倒数的定义分别分析得出答案.【解答】解:多项式2ab﹣a2b的次数是:3,单项式的系数是:,﹣1的倒数是:﹣.故答案为:3,,﹣.【点评】此题主要考查了多项式以及倒数和单项式,正确把握相关定义是解题关键.25.当自然数a<b时,x a+y b+3a+b是b次多项式.【分析】直接利用多项式的次数确定方法得出答案.【解答】解:当自然数a<b时,x a+y b+3a+b是b次多项式.故答案为:b.【点评】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.26.在式子,,,﹣,1﹣x﹣5xy2,﹣x,6xy+1,a2+b2中,多项式有3个.【分析】根据几个单项式的和叫做多项式进行分析即可.【解答】解:多项式有1﹣x﹣5xy2、6xy+1、a2+b2这3个,故答案为:3.【点评】此题主要考查了多项式,关键是掌握多项式定义.27.单项式﹣的系数是﹣.【分析】直接利用单项式的系数的确定方法分析得出答案.【解答】解:单项式﹣的系数是:﹣.故答案为:﹣.【点评】此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.28.单项式的次数是6.系数是.【分析】直接利用单项式的次数与系数确定方法分析得出答案.【解答】解:单项式的次数是:6,系数是:.故答案为:6,.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.29.下列代数式:(1),(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有(1)、(2)、(3)、(5)、(6)、(8).(填序号)【分析】利用整式的定义判断得出即可.【解答】解:(1),(2)m,(3),(5)2m+1,(6),(8)x2+2x+都是整式,故整式有(1)、(2)、(3)、(5)、(6)、(8).故答案为:(1)、(2)、(3)、(5)、(6)、(8).【点评】此题主要考查了整式的定义,正确把握整式的定义是解题关键.30.下列各式①m;②x+5=7;③2x+3y;④m>3;⑤中,整式的个数有两个.【分析】根据单项式与多项式统称为整式,可得答案.【解答】解:①m是整式;②x+5=7是方程,不是整式;③2x+3y是整式;④m>3是不等式;⑤是分式,不是整式,故答案为:两.【点评】本题考查了整式,单项式与多项式统称为整式,注意等式、不等式都不是整式,是分式,不是整式.31.若单项式5x4y和7x n﹣1y m是同类项,则m+n的值为6.【分析】直接利用同类项的定义得出m,n的值进而得出答案.【解答】解:∵单项式5x4y和7x n﹣1y m是同类项,∴4=n﹣1,1=m,解得:n=5,则m+n的值为:6.故答案为:6.【点评】此题主要考查了同类项,正确把握定义是解题关键.32.一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为x﹣1.【分析】直接利用整式的加减运算法则计算得出答案.【解答】解:∵一个多项式加上多项式2x﹣1后得3x﹣2,∴这个多项式为:3x﹣2﹣(2x﹣1)=x﹣1.故答案为:x﹣1.【点评】此题主要考查了整式的加减运算,正确掌握运算法则是解题关键.33.已知a+b=5,c﹣d=﹣3,则(d﹣a)﹣(b+c)的值为﹣2.【分析】原式去括号变形后,将已知等式代入计算即可求出值.【解答】解:∵a+b=5,c﹣d=﹣3,∴原式=d﹣a﹣b﹣c=﹣(a+b)﹣(c﹣d)=﹣5+3=﹣2,故答案为:﹣2【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.34.若单项式(n+3)x3y2m和单项式﹣2x|n|y4的和仍是一个单项式,则m+n=5或﹣1.【分析】根据同类项的定义:所含字母相同,相同字母的次数相同,即可求得m、n的值,然后代入数值计算即可求解.【解答】解:∵单项式(n+3)x3y2m和单项式﹣2x|n|y4的和仍是一个单项式,∴单项式(n+3)x3y2m和单项式﹣2x|n|y4是同类项,则|n|=3,2m=4,∴n=±3,m=2,∴m+n=5或﹣1,故答案为:5或﹣1.【点评】本题主要考查合并同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.35.若多项式x2+kxy+4x﹣2xy+y2﹣1不含xy项,则k的值是2.【分析】直接利用多项式中不含xy项,得出k﹣2=0,进而得出答案.【解答】解:∵多项式x2+kxy+4x﹣2xy+y2﹣1不含xy项,∴kxy﹣2xy=0,解得:k=2.故答案为:2.【点评】此题主要考查了合并同类项,正确合并同类项是解题关键.36.若x=y﹣3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)﹣6的值为9.【分析】直接利用合并同类项法则将原式变形,进而把已知代入求出答案.【解答】解:(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)﹣6=(+0.75)(x﹣y)2+(﹣2.3+)(x﹣y)﹣6=(x﹣y)2﹣2(x﹣y)﹣6,∵x=y﹣3,∴x﹣y=﹣3,∴原式=(﹣3)2﹣2×(﹣3)﹣6=9+6﹣6=9.故答案为:9.【点评】此题主要考查了合并同类项,正确合并同类项是解题关键.37.一个多项式加上3x2y﹣3xy2得x3﹣3xy2,则这个多项式为x3﹣3x2y.【分析】根据题意列出多项式相减的式子,再去括号,合并同类项即可.【解答】解:∵一个多项式加上3x2y﹣3xy2得x3﹣3xy2,∴这个多项式=(x3﹣3xy2)﹣(3x2y﹣3xy2)=x3﹣3xy2﹣3x2y+3xy2=x3﹣3x2y.故答案为:x3﹣3x2y.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.38.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+.(1)a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.【分析】(1)先化简4A﹣(3A﹣2B),再把A、B的值代入计算即可;(2)根据“式子的值与a的取值无关”得到关于b的一元一次方程,求解即可.【解答】解:(1)4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B,∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+,∴A+2B=2a2+3ab﹣2a﹣1+2(﹣a2+ab+)=2a2+3ab﹣2a﹣1﹣2a2+ab+=4ab﹣2a+;(2)因为4ab﹣2a+=(4b﹣2)a+,又因为4ab﹣2a+的值与a的取值无关,所以4b﹣2=0,所以b=.【点评】本题考查了整式的加减.解决本题(2)的关键是理解结果与a无关.与a无关的意思是含该未知数的项的系数为0.39.合并下列多项式3(4x2﹣3x+2)﹣2(1﹣4x2+x)【分析】先去括号,再合并同类项即可求解.【解答】解:3(4x2﹣3x+2)﹣2(1﹣4x2+x)=12x2﹣9x+6﹣2+8x2﹣2x=20x2﹣11x+4.【点评】考查了整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.40.若多项式3x2﹣2(5+y﹣3x2+mx2)的值与x的值无关,则m的等于 4.5.【分析】此题可根据多项式3x2﹣2(5+y﹣3x2+mx2)的值与x无关,则经过合并同类项后令关于x的系数为零求得m的值.【解答】解:∵3x2﹣2(5+y﹣3x2+mx2)=3x2﹣10﹣2y+6x2﹣2mx2,=(3+6﹣2m)x2﹣2y﹣10,此式的值与x的值无关,则3+6﹣2m=0,解得m=4.5.故答案为:4.5.【点评】本题考查了整式的加减运算,重点是根据题中条件求得m的值,同学们应灵活掌握.41.某同学做了一道数学题:“已知两个多项式为A、B,B=3x﹣2y,求A﹣B的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是x﹣y,那么原来的A﹣B 的值应该是﹣5x+3y.【分析】先根据题意求出多项式A,然后再求A﹣B.【解答】解:由题意可知:A+B=x﹣y,∴A=(x﹣y)﹣(3x﹣2y)=﹣2x+y,∴A﹣B=(﹣2x+y)﹣(3x﹣2y)=﹣5x+3y.故答案为:﹣5x+3y.【点评】本题考查多项式的加减运算,注意加减法是互为逆运算.42.某同学在做计算2A+B时,误将“2A+B”看成了“2A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则2A+B的正确答案为11x2+4x+11.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:2A+B=9x2﹣2x+7+2(x2+3x+2)=9x2﹣2x+7+2x2+6x+4=11x2+4x+11,故答案为:11x2+4x+11【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.43.如图,已知正五角星的面积为5,正方形的边长为2,图中对应阴影部分的面积分别是S1、S2,则S1﹣S2的值为1.【分析】设空白部分的面积为S,则S1=5﹣S,S2=22﹣S,所以S1﹣S2=5﹣S﹣(4﹣S),然后去括号后合并即可.【解答】解:设空白部分的面积为S,则S1=5﹣S,S2=22﹣S,所以S1﹣S2=5﹣S﹣(4﹣S)=5﹣S﹣4+S=1.故答案为1.【点评】本题考查了整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.44.去括号:2xy﹣(3xy﹣3y2+5)﹣xy+3y2﹣5.【分析】先去掉括号,再合并同类项即可.【解答】解:2xy﹣(3xy﹣3y2+5)=2xy﹣3xy+3y2﹣5=﹣xy+3y2﹣5,故答案为:﹣xy+3y2﹣5.【点评】本题考查了合并同类项法则和去括号,能够熟记去括号法则的内容是解此题的关键.45.把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是a﹣(3b﹣c+2d).【分析】根据添括号的法则把给出的式子按要求进行变形,即可得出答案.【解答】解:把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是a﹣(3b﹣c+2d).故答案为:a﹣(3b﹣c+2d).【点评】本题考查了添括号的法则,添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.46.如果x﹣y=2,m+n=1,那么(y+2m)﹣(x﹣2n)=0.【分析】原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:当x﹣y=2,m+n=1时,原式=y+2m﹣x+2n=﹣(x﹣y)+2(m+n)=﹣2+2=0,故答案为:0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.47.若x=y+3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)+7等于10.【分析】由x=y+3得x﹣y=3,整体代入原式计算可得.【解答】解:∵x=y+3,∴x﹣y=3,则原式=×32﹣2.3×3+0.75×32+×3+7=2.25﹣6.9+6.75+0.9+7=10,故答案为:10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握整体代入思想的运用是解本题的关键.48.当x=﹣,y=3时,3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2=﹣4.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy2+xy,当x=﹣,y=3时,原式=﹣3﹣1=﹣4.故答案为:﹣4【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.49.将整数按如图方式进行有规律的排列,第2行最后一个数是﹣4,第3行最后一个数是9,第4行最后一个数是﹣16,…,依此类推,第21行的第21个数是421.【分析】根据图形得出第n行最后一个数为(﹣1)n+1•n2,据此知第20行最后一个数为﹣400,继而由奇数行的序数为奇数的数为正数可得答案.【解答】解:根据题意知第n行最后一个数为(﹣1)n+1•n2,当n=20时,即第20行最后一个数为﹣400,又奇数行的序数为奇数的数为正数,∴第21行的第21个数是421,故答案为:421.【点评】本题主要考查数字的变化规律,解题的关键是根据已知数列得出第n 行最后一个数为(﹣1)n+1•n2.50.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…,按照上述规律,第2018个单项式是4035x2018.【分析】系数的规律:第n个对应的系数是2n﹣1,指数的规律:第n个对应的指数是n.【解答】解:系数的规律:第n个对应的系数是2n﹣1,指数的规律:第n个对应的指数是n,则第2018个单项式是4035x2018.故答案为:4035x2018.【点评】此题考查了规律型:数字的变化类,单项式的定义,分别找出单项式的系数和次数的规律是解决此类问题的关键.。

第三章 整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)

第三章 整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)

第三章整式及其加减数学七年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、已知﹣a2m b2和7a4b3+n是同类项,则n m的值是()A.﹣1B.1C.2D.32、如果2x2y3与x2y n+1是同类项,那么n的值是()A.1B.2C.3D.43、下列计算正确的是()A. B. C. D.4、已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=-1,-1的差倒数=.如果a1=-2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+……+a100的值是()A.7.35B.-7.5C.5.5D.-5.55、如图是由火柴棒搭成的几何图案,其中图形①中有4根火柴,图形②中有12根火柴,图形③中有24根火柴,则图形⑧中火柴的根数是()A.96B.112C.144D.1806、下列计算正确的是()A.a 4+a 4=a 8B.a 5•a 4=a 20C.a 4÷a=a 3D.(-a 3)2=a 57、下列说法正确的是()A.3是单项式B. 没有系数C. 是一次一项式D.是三次二项式8、下列各组数中,不相等的一组是()A.-(+7), -|-7|B.-(+7),-|+7|C.+(-7), -(+7) D.+(+7), -|-7|9、下列运算正确的是( )A.3x-2x=xB.3x+2x=5x²C.3x·2x=6xD.3x÷2x=10、下列代数式中,可以用表示的是().A. B. C. D.11、下列结论正确的是()A.x 2﹣2是二次二项式B.单项式﹣x 2的系数是1C.使式子有意义的x的取值范围是x>﹣2 D.若分式的值等于0,则a=±112、如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点,,,,…那么点A2020的坐标为()A.(1010,0)B.(505,0)C.(1010,1)D.(1011,1)13、计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳计算结果中的个位数字的规律,猜测32011+1的个位数字是()A.0B.2C.4D.814、已知m2﹣3m﹣1=0,则1+6m﹣2m2的值为()A.0B.1C.﹣1D.﹣215、小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A.(3a+4b)元B.(4a+3b)元C.4(a+b)元D.3(a+b)元二、填空题(共10题,共计30分)16、如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第________个图形共有210个小球.17、用代数式表示:“x的2倍与y的差的平方”是________.18、小明有m张邮票,小亮有n张邮票,小亮过生日时,小明把自己的邮票的一半作为礼物送给小亮,现在小亮有________张邮票.19、为了帮助某地区重建家园,某班全体学生积极捐款,捐款金额共2600元,其中18名女生人均捐款a元,则该班男生共捐款________元.(用含有a的代数式表示)20、单项式的次数为________.21、把(+4)-(-6)-(+8)+(-9)写成省略加号和括号的和的形式为________22、小明在计算多项式M加上x2﹣2x+9时,因误认为加上x2+2x+9,得到答案2x2+2x,则M 应是________.23、如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线y=x于点B1, B2,过点B2作y轴的平行线交直线y=x于点A2,过点A2作x轴的平行线交直线y= x于点B3,…,按照此规律进行下去,则点A n的横坐标为________.24、如图,把一个面积为1的正方形分成两个面积为的长方形,再把其中一个面积为的长方形分成两个面积为的正方形,再把其中一个面积为的正方形分成两个面积为的长方形,如此进行下去……,试用图形揭示的规律计算:________.25、用代数式表示:a的5倍与b的的差:________三、解答题(共5题,共计25分)26、化简求值:,其中,.27、已知x2+xy+y=12,y2+xy+x=18,求代数式3x2+3y2﹣2xy+x+y的值.28、如图所示,化简:|a|+|b|﹣|a+b|﹣|a﹣b|29、已知是系数,关于,的两个多项式与的差中不含二次项,求代数式的值.30、已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求的值.参考答案一、单选题(共15题,共计45分)1、B2、B3、D4、B5、C6、C7、A8、D9、A10、A11、A12、A13、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元测试(三) 整式及其加减
(时间:120分钟 满分:150分)
一、选择题(本大题共15小题,每小题3分,共45分)
1.下列各式中不是单项式的是( )
A .-a 3
B .-15
C .0
D .-3a
2.单项式-3xy 2z 3的系数是( )
A .-1
B .5
C .6
D .-3
3.某班数学兴趣小组共有a 人,其中女生占30%,那么女生人数是( )
A .30%a
B .(1-30%)a
C.a 30%
D.a 1-30%
4.下列各组式子中,为同类项的是( )
A .5x 2y 与-2xy 2
B .4x 与4x 2
C .-3xy 与32
yx D .6x 3y 4与-6x 3z 4 5.当a =-1,b =2时,代数式a 2b 的值是( )
A .-2
B .1
C .2
D .-1
6.列式表示“比m 的平方的3倍大1的数”是( )
A .(3m )2+1
B .3m 2+1
C .3(m +1)2
D .(3m +1)2
7.若m ,n 为自然数,多项式x m +y n +4m +n 的次数应是( )
A .m
B .n
C .m ,n 中的较大数
D .m +n
8.化简2x -(x -y)-y 的结果是( )
A .3x
B .x
C .x -2y
D .2x -2y
9.(玉林中考)下列运算中,正确的是( )
A .3a +2b =5ab
B .2a 3+3a 2=5a 5
C .3a 2b -3ba 2=0
D .5a 2-4a 2=1
10.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( )
A .-2x 2+y 2
B .x 2-2y 2
C .2x 2-4y 2
D .-x 2+2y 2
11.下列判断错误的是( )
A .多项式5x 2-2x +4是二次三项式
B .单项式-a 2b 3c 4的系数是-1,次数是9
C .式子m +5,ab ,-2,s v 都是代数式
D .多项式与多项式的和一定是多项式
12.十位数字是x ,个位数字是y 的两位数是 ( )
A .xy
B .x +10y
C .x +y
D .10x +y
13.(厦门中考)某商店举办促销活动,促销的方法是将原价x 元的衣服以(45
x -10)元出售,则下列说法中,能正确表达该商店促销方法的是( )
A .原价减去10元后再打8折
B .原价打8折后再减去10元
C .原价减去10元后再打2折
D .原价打2折后再减去10元
14.(湘西中考)已知x -2y =3,则代数式6-2x +4y 的值为( )
A .0
B .-1
C .-3
D .3
15.下面一组按规律排列的数:0,2,8,26,80,…,则第2 016个数是( )
A .32 016
B .32 015
C .32 016-1
D .32 015-1
二、填空题(本大题共5小题,每小题5分,共25分)
16.去括号:-(3x -2)=________.
17.请你结合生活实际,设计具体情境,解释下列代数式30a
的意义:________________________________.
18.对于有理数a,b,定义a⊙b=3a+2b,则(x+y)⊙(x-y)化简后得________.19.当m=________时,代数式2x2+(m+2)xy-5x不含xy项.
20.若用围棋子摆出下列一组图形:

(1)(2)(3)
按照这种方法摆下去,第n个图形共用________枚棋子.
三、解答题(本大题共7小题,共80分)
21.(8分)化简下列各式:
(1)a+2b+3a-2b; (2)2(a-1)-(2a-3)+3.
22.(8分)先化简,再求值:(2m2-3mn+8)-(5mn-4m2+8),其中m=2,n=1.
23.(10分)如图所示:
(1) 用代数式表示阴影部分的面积;
(2) 当a=10,b=4时,求阴影部分的面积(π取3.14,结果精确到0.01).
24.(12分)已知a,b,c在数轴上的位置如图所示,求|b+c|-|a-b|-|c-b|的值.
25.(12分)已知长方形的一边长为2a+3b,另一边比它短(b-a),试计算此长方形的周长.
26.(14分)已知A=2a2+3ab-2a-1,B=-a2+ab-1.
(1)求3A+6B;
(2)若3A+6B的值与a的取值无关,求b的值.
27.(16分)某农户承包荒山若干亩,种果树2 000棵.今年水果总产量为18 000千克,此水果在市场上每千克售a 元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1 000千克,需8人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.
(1)分别用a,b表示两种方式出售水果的收入;
(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.
参考答案
1.D 2.D 3.A 4.C 5.C 6.B 7.C 8.B 9.C 10.C
11.D 12.D 13.B 14.A 15.D 16.-3x +2 17.某班级有a 名学生参加考试,30名学生成绩合格,则合格人数占总人数的30a
18.5x +y 19.-2 20.3n 21.(1)原式=4a. (2)原式=4. 22.原式=2m 2-3mn +8-5mn +4m 2-8=6m 2-8mn.当m =2,n =1时,原式=6×22-8×2×1=8. 23.(1)ab -12πb 2.(2)当a =10,b =4时,ab -12
πb 2≈10×4-12
×3.14×42=14.88. 24.由图知:b +c >0,a -b <0,c -b >0,|b +c|-|a -b|-|c -b|=b +c -[-(a -b)]-(c -b)=b +c +a -b -c +b =a +b. 25.长方形的另一边长为3a +2b ,则周长为2[(2a +3b)+(3a +2b)]=2(5a +5b)=10a +10b. 26.(1)3A +6B =3(2a 2+3ab -2a -1)+6(-a 2+ab -1)=6a 2+9ab -6a -3-6a 2+6ab -6=15ab -6a -9.(2)
因为15ab -6a -9=a(15b -6)-9,且3A +6B 的值与a 的取值无关,所以15b =6,即b =25
. 27.(1)将这批水果拉到市场上出售收入为18 000a -18 0001 000×8×25-18 0001 000
×100=18 000a -3 600-1 800=18 000a -5 400(元).在果园直接出售收入为18 000b 元.(2)当a =1.3时,市场收入为18 000a -5 400=18 000×1.3-5 400=18 000(元).当b =
1.1时,果园收入为18 000b =18 000×1.1=19 800(元).因为18 000<19 800,所以应选择在果园出售.。

相关文档
最新文档