STM (扫描隧道显微镜)
STM扫描隧道显微镜
STM的原理
隧道电流I是电子波函数重叠的量度,与针尖和 样品之间距离S以及平均功函数Φ有关:
1
I Vb exp A 2 S
Vb 是加在针尖和样品之间的偏置电压ห้องสมุดไป่ตู้平均功函数 A 为常数,在真空条件下约等于1。
STM的原理
图是STM的基本原理图, 其主要构成有:顶部直径 约为50—100nm的极细金属 针尖(通常是金属钨制的针 尖),用于三维扫描的三个 相互垂直的压电陶瓷(Px, Py,Pz),以及用于扫描和 电流反馈的控制器 (Controller)等。
STM的原理
扫描隧道显微镜的基本 原理是将原子线度的极细 探针和被研究物质的表面 作为两个电极,当样品与 针尖的距离非常接近 (通常 小于1nm) 时,在外加电场 的作用下,电子会穿过两 个电极之间的势垒流向另 一电极。
谢谢观看
(a)
(b)
STM的工作环境
• 超高真空和室温条件
• 在超高真空的条件下,STM可以用来观 察所有半导体和金属样品表面的原子图。 在超高真空腔内,可以用多种方法将样 品表面清洁干净,如常用于金属表面清 洁处理的离子枪轰击和常用于半导体表 面清洁处理的直接电流预热处理等。在 超高真空中,清洁处理后的样品可以保 持长时间干净,不被氧化。对样品表面 原子结构进行重构后,就可以用STM观 察样品表面的原子结构图像。
Φ为物质表面的平均功函数
S是针尖和样品之间距离
I是隧道电流
2.STM的工作模式
• 恒流模式 • x,y方向起着扫描作用,而
Z方向具有一套反馈系统, 初始的隧道电流为一恒定 值,当样品表面凸起时, 针尖就会后退,以保持隧 道电流的值不变;当样品 表面凹进时,反馈系统将 使针尖向前移动,计算机 记录了针尖上下移动的轨 迹,合成起来,就可给出 样品表面的三维行貌。
扫描隧道显微镜STM
单原子、单分子操纵在化学上一个极具诱惑力的潜在应用是可能实现 “选键化学”──对分子内的化学键进行选择性的加工。虽然这是一个 极具挑战性的目标,但现在已有一些激动人心的演示性的结果。在康奈 尔大学Lee和Ho的实验中,STM被用来控制单个的CO分子与Ag(110)表 面的单个Fe原子在13K的温度下成键,形成FeCO和Fe(CO)2分子。同 时,他们还通过利用STM研究C-O键的伸缩振动特性等方法来确认和研 究产物分子。他们发现CO以一定的倾角与Fe-Ag(110)系统成键(即CO分 子倾斜地立在Fe原子上),这被看成是Fe原子局域电子性质的体现。
5
2.STM的原理
图是STM的基本原理 图,其主要构成有:顶部 直径约为50—100nm的极 细金属针尖(通常是金属钨 制的针尖),用于三维扫描 的三个相互垂直的压电陶 瓷(Px,Py,Pz),以及用 于扫描和电流反馈的控制 器(Controller)等。
6
2.STM的原理
扫描隧道显微镜的基本 原理是将原子线度的极细 探针和被研究物质的表面 作为两个电极,当样品与 针尖的距离非常接近 (通常 小于1nm) 时,在外加电场 的作用下,电子会穿过两 个电极之间的势垒流向另 一电极。
16
溶液中固/液界面的原子和分子化学反应示意图
4.STM的工作环境
溶液条件
17
图是有机分子苯在Rh(111)—3x3(铑)表面 上的单层吸附结果。实验时,在0.01M(摩 尔)的HF(氢氟酸)溶液里含有0.25mM (毫 摩尔)浓度的有机分子苯。
图是另一种有机分子卟啉在I-Au(111)(碘-金) 表面上的单层吸附结果。实验时,在0.1M 的HClO4(高氯酸)溶液里含有0.57uM(微摩 尔)浓度的有机分子卟啉。
扫描隧道显微镜STM和原子力显微镜AFM
智能化与自动化
提高STM和AFM的智能化和自动化 水平,简化操作过程,提高测量效率。
STM和AFM在各领域的应用前景
表面科学
STM和AFM将继续在表面科学 领域发挥重要作用,研究表面
重构、吸附、反应等过程。
纳米技术
STM和AFM在纳米技术领域的 应用将更加广泛,涉及纳米材 料、纳米器件的制备与表征。
隧道电流。
电流控制
STM通过控制探针和样品之间的电 压和电流,使隧道电流保持恒定, 从而实现对样品表面形貌的扫描。
高分辨率
由于隧道电流对探针和样品之间的 距离非常敏感,STM能够实现原子 级分辨率的表面形貌成像。
AFM技术原理
原子力检测
反馈系统
AFM通过检测探针和样品之间的微小 原子力变化来获取样品表面的形貌信 息。
05 STM和AFM的未来发展 与展望
STM和AFM的技术创新与改进
更高的分辨率
随着技术的不断进步,STM和AFM 有望实现更高的空间分辨率,从而揭 示更细微的表面结构和特性。
实时原位测量
未来STM和AFM将进一步实现实时 原位测量,以便在动态过程中观察表 面结构和性质的变化。
多模式测量能力
开发具有多模式测量能力的STM和 AFM,能够同时获取多种物理信息, 从而更全面地了解表面性质。
扫描隧道显微镜STM和原子力显 微镜AFM
目录
• 引言 • STM和AFM的技术原理 • STM和AFM的优缺点比较 • STM和AFM的实际应用案例 • STM和AFM的未来发展与展望
01 引言
STM和AFM的定义与工作原理
要点一
扫描隧道显微镜STM(Scanning Tunneli…
利用量子力学中的隧道效应,通过测量针尖与样品之间的 微弱电流来获取样品表面形貌的显微镜。
扫描隧道显微镜(STM)
图9-4
返回
图9-5
返回
二、原子力显微镜的微悬臂及其变形的检测 方法
(一)微悬臂(力传感器) (二)微悬臂变形的检测方法
返回
(一)微悬臂(力传感器)
原子力显微镜所研究的力其数值很小。要实现力的高灵敏度测量,首 先要求力的感知件——微悬臂对微小力的变化具有足够高的灵敏度。
(1)弹性系数k值应在10 -2~10 2 N/m范围。极低的弹性系数 可满足极其灵敏地检测出零点几个nN
品表面之间的作用力,一般针尖曲率半径为30 nm
下一页 返回
(二)微悬臂变形的检测方法
原子力显微镜的图像是通过扫描时测量微悬臂受力后弯曲形变的程度 获得的,并利用Hooke定律来确定操作时的样品与针尖的作用力。
1 2 3 4
上一页 返回
三、原子力显微镜的成像模式
(一)接触成像模式 (二)非接触成像模式 (三)轻敲成像模式
返回
一、扫描隧道显微镜的基本原理
与光学显微镜和电子显微镜不同,STM不采用任何光学或电子透镜 成像,而是当尖锐金属探针在样品表面扫描时,利用针尖〖CD*2〗 样品间纳米间隙的量子隧道效应引起隧道电流与间隙大小呈指数关系, 获得原子级样品表面形貌特征图像,其基本原理如图9-1所示。
顶部有一直径约50~100 nm的极细金属探针(通常是金属钨制作 的针尖),功能是在其与样品互相作用时,可根据样品性质的不同 (如表面原子的几何结构和电子结构)产生变化的隧道电流。在扫描 隧道显微镜工作时,针尖与样品表面距离一般约为0.3~1.0 nm, 此时针尖和样品之间的电子云互相重叠。当在它们之间施加一偏压时, 电子就因量子隧道效应由针尖(或样品)转移到样品(或针尖);金 属探针安置在三个相互垂直的压电陶瓷〖WTBX〗(P x、P y、 P z)架上,当在压电陶瓷器件上施加一定电压时,由于压电陶瓷 器件产生变形,便可驱动针尖在样品表面实现三维扫描;控制器是用 STM
扫描隧道显微镜
样品
隧道电流 i A
探针
U
d
B
样品
隧道电流 i A
探针
U
d
B
i Ue A d A — 常量
— 样品表面平均势
垒高度(~ eV)
。 d ~ 1nm( 10A )
d 变 i 变,反映表面情况
d 变 ~ 0.1nm i 变几十倍,非常灵 敏。竖直分辨本领可达约10 2 nm
横向分辨本领与探针、样品材料及 绝缘物有关,在真空中可达 0. 2 nm。
技术关键:
1. 消震:多级弹簧,底部铜盘涡流阻尼。 2. 探针尖加工:电化学腐蚀,强电场去污,
针尖只有1~2个原子! 3. 驱动和到位:利用压电效应的逆效应 —
电致伸缩,一步步扫描,扫描一步 0.04nm,扫描1(m)2 约0.7s。
4. 反馈:保持 i 不变 d 不变(不撞坏针尖)
显示器
1991年2月IBM的 “原子书法”小组又 创造出“分子绘画” 艺术 — “CO 小人”
图中每个白团是单个 CO分子竖在铂片表面 上的图象,上端为氧 原子 CO分子的间距: 0.5 nm “分子人”身 高:5 nm堪称世界上 最小的“小人图”
48个Fe原子形成“量子围栏”,围 栏中的电子形成驻波。 Fe原子间距: 0.95 nm,圆圈平均半径:7.13 nm
压电 控制
加电压 反馈传感器
隧道 电流
参考信号
扫描隧道显微镜示意图
中国科学院化学研究所研制的CST图象
用原子操纵写出的“100”和“中国”
1991年恩格勒等用STM在镍单晶表面逐个移动 氙原子,拼成了字母IBM,每个字母长5纳米
扫描隧道显微镜(STM)
(Scanning Tunneling Microscopy)
STM扫描隧道显微镜
STM扫描隧道显微镜几十年来,人类研制成功了许多用于表面结构分析的现代仪器.例如光学显微镜、电子显微镜、离子显微镜、电子探针、衍射仪、能谱仪等等。
这些物理技术在表面科学研究领域都起着重要的作用;但它们的物理原理不同,作用范围、精度、环境条件等都不尽相同。
也就是说,每一种技术对表面微观结构观察与分析都有它自己的特长与意义,但每一种技术都必然受着自身原理的条件限制,只能在一定的领域内开展工作。
例如光学显微镜受其分辩率的影响无法分辩出表面的原子;高分辩率的透射电子显微镜(TEM)主要用于薄层样品的体相和界面研究。
X射线的光电子能谱等只能提供空间平均电子的电子结构信息;有的技术只能获得间接结果,还需要用试差模型来拟合等等。
虽然人们早就知道物质是由分子和原子组成的,但这大多是通过实验间接验证的。
1982年,国际商业机器公司苏黎世实验室的Binning和Rohrer博士研制成世界上第一台扫描隧道显微镜(STM)。
它的出现,使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关物理、化学性质。
而且在其测量过程中不会对样品形成任何损伤。
其惊人的原子分辩能力已被广泛地应用于材料科学、微电子科学、纳米加工技术等领域。
[实验原理]扫描隧道显微镜(STM)的工作原理是基于量子力学中的隧道效应。
见图1:图1当一粒子的动能E低于前方势垒的高度V0时,根据经典力学理论,粒子不可能穿过此势垒,即透射系数等于零。
但按照量子力学原理,粒子越过势垒区而出现在另一边的几率不为零,这个现象称为隧道效应。
实验中,将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm)见图2:在外加电场作用下,电子会穿过两个电极之间的势垒流向另一电极。
隧道电流I是电子波函数重叠的量度。
与针尖和样品之间距离S 和平均功函数Φ有关: )21exp(S A b V I Φ−∝(1) b V 是加在针尖和样品之间的偏置电压,平均功函数),21(21Φ+Φ⋅≈Φ1Φ和2Φ分别为针尖和样品表面的功函数。
扫描隧道电子显微镜
三维扫描控制器
减震系统
电子学控制系统
离线数据分析软件
主要特点
• 扫描隧道显微镜具有以下特点∶ • 1、高分辨率 扫描隧道显微镜具有原子级的空间分辨率,其横向空间分辨率为 l Å , 纵向分辨率达0.1 Å. 可以观察单个原子层的局部表面结构,而不是体相或整个表面 的平均性质,因而可直接观察到表面缺陷、表面重构、表面吸附体的形态和位置以 及由吸附体引起的表面重构等。 • 2、扫描隧道显微镜可直接探测样品的表面结构,绘出立体三维结构图像。并且可 用于具有周期性或不具备周期性的表面结构的研究,这种可实时观察的性能可用于 表面扩散等动态过程的研究。 • 3、扫描隧道显微镜可在真空、常压、空气、甚至溶液中探测物质的结构,它的优 点是三态(固态、液态和气态)物质均可进行观察,而普通电镜只能观察制作好的 固体标本,由于没有高能电子束, 对表面没有破坏作用(如辐射,热损伤等),所以 能对生理状态下生物大分子和活细胞膜表面的结构进行研究,样品不会受到损伤而 保持完好。 • 4、扫描隧道显微镜的扫描速度快,获取数据的时间短,成像也快,有可能开展生 命过程的动力学研究。 • 5、不需任何透镜, 体积小,有人称之为“口袋显微镜”(pocket microscope)。 • 6、配合扫描隧道谱(STS)可以得到有关表面电子结构的信息,例如表面不同层次 的态密度、表面电子阱、电荷密度波、表面势垒的变化和能隙结构等。
恒高度模式
• 在对样品进行扫描过程中保持针尖的绝 对高度不变;于是针尖与样品表面的局 域距离将发生变化,隧道电流 I 的大小也 随着发生变化;通过计算机记录隧道电 流的变化,并转换成图像信号显示出 来,,即得到了扫描隧道电子显微镜显微 图。这种工作方式仅适用于样品表面较 平坦、且组成成分单一。
什么是扫描隧道显微镜
什么是扫描隧道显微镜
扫描隧道显微镜(Scanning Tunneling Microscope,缩写为STM)是一种扫描探针显微术工具,它可以让科学家观察和定位单个原子,具有比同类原子力显微镜更高的分辨率。
STM在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。
扫描隧道显微镜利用量子力学中的隧道效应,当扫描针尖在样品表面上方沿z轴来回扫描时,由于针尖和样品之间的距离非常近,使得针尖和样品之间产生隧道效应,从而获得表面形貌的微细结构信息。
扫描隧道显微镜具有原子级(埃级)的空间分辨率和优于500飞秒的时间分辨率,成为国内首套自主研制的太赫兹扫描隧道显微镜系统。
STM在原子级扫描、材料表面探伤及修补、引导微观化学反应、控制原子排列等领域广泛应用。
如需了解更多有关扫描隧道显微镜的信息,可以查阅相关的专业文献,或者咨询相关领域的专家学者。
扫描隧道显微镜
扫描隧道显微镜扫描隧道显微镜亦称为“扫描穿隧式显微镜”、“隧道扫描显微镜”,是一种利用量子理论中的隧道效应探测物质表面结构的仪器。它于1981年由格尔德·宾宁(G.Binning)及海因里希·罗雷尔(H.Rohrer)在IBM位于瑞士苏黎世的苏黎世实验室发明,两位发明者因此与恩斯特·鲁斯卡分享了1986年诺贝尔物理学奖。
在线扫描控制系统
离线数据分析软件
工作原理
工作模式 恒电流模式
恒高度模式
具体应用 扫描
探伤及修补
微观操作
产品分析 优越性
局限性
产品评价
展开 编辑本段简介
扫描隧道显微镜 scanning tunneling microscope 缩写为STM。它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外,扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操 扫描隧道显微镜
编辑本段具体应用
扫描
STM工作时,探针将充分接近样品产生一高度空间限制的电子束,因此在成像工作时,STM具有极高的空间分辩率,可以进行科学观测[7]。
目录
简介
基本结构隧道针尖
三维扫描控制器
减震系统
电子学控制系统
在线扫描控制系统
离线数据分析软件
工作原理
工作模式恒电流模式
恒高度模式
具体应用扫描
探伤及修补
微观操作
产品分析优越性
局限性
产品评价简介
基本结构 隧道针尖
三维扫描控制器
减震系统
电子学控制系统
扫描隧道显微镜科技名词定义
扫描隧道显微镜
1. 扫描
VI. 具体应用
STM工作时,探针将充分接近样品产生一高度
空间限制的电子束,因此在成像工作时,STM具有
极高的空间分辨率,可以进行科学观测。
2. 探伤及修补
STM在对表面进行加工处理的过程中可实时对 表面形貌进行成像,用来发现表面各种结构上的缺 陷和损伤,并用表面淀积和刻蚀等方法建立或切断 连线,以消除缺陷,达到修补的目的,然后还可用
子学控制系统也是一个重要的部分。扫描隧道显微 镜要用计算机控制步进电机的驱动,使探针逼近样 品,进入隧道区,而后要不断采集隧道电流,在恒 电流模式中还要将隧道电流与设定值相比较,再通 过反馈系统控制探针的进与退,从而保持隧道电流 的稳定。所有这些功能,都是通过电子学控制系统 来实现的。
扫描隧道显微镜下图:
X射线光电子能谱(XPS)等只能提供空间平均的电子结构信 息;
扫描隧道显微镜概述
1982年IBM公司苏黎世研究所Gerd Binning 和Heinrich Rohrer研制第一台扫描隧道显微 镜(Scanning tunneling microscope, STM);
第一次直接观察到物质表面上单个原子及其排 列状态,并能研究其相关物理和化学特性;
2.恒高度模式 在对样品进行扫描过程中保持针尖的绝对高度不变, 于是针尖与样品表面的局域距离将发生变化,隧道 电流I的大小也随着发生变化;通过计算机记录隧道 电流的变化,并转换成图像信号显示出来,即得到 了STM显微图像。这种工作方式仅适用于样品表面
较平坦、且组成成分单一(如由同一种原子组成)的 情形。 从STM的工作原理可以看到:STM工作的特 点是利用针尖扫描样品表面,通过隧道电流获取显
由此可见,隧道电流 I 对针尖与样品表面之间的距 离S极为敏感,如果S减小0.1nm,隧道电流就会增 加一个数量级。当针尖在样品表面上方扫描时,即 使其表面只有原子尺度的起伏,也将通过其隧道电 流显示出来。借助于电子仪器和计算机,在屏幕上 即显示出样品的表面形貌。
扫描隧道显微镜(STM)单原子操纵技术
1985年
STM被授予诺贝尔物理学奖。
2000年
单原子操纵技术取得突破。
STM技术的应用领域
01
02
03
04
材料科学
研究表面结构、化学组成、电 子态等。
物理
研究表面物理现象,如表面量 子现象、表面相变等。
纳米科技
制造和操纵纳米结构,如纳米 电路、量子点等。
05 结论
STM和单原子操纵技术的重要性和意义
揭示物质表面结构和性质
STM通过测量隧道电流能够精确地探测物质表面的原子结构,而单原子操纵技术则能够实现对单个原子的精确操控, 这对于深入理解物质表面结构和性质具有重要意义。
促进纳米科技和材料科学的发展
STM和单原子操纵技术为纳米科技和材料科学领域的研究提供了强有力的工具,有助于推动相关领域的技术创新和 进步。
生物医学
研究生物分子结构和功能,如 蛋白质、DNA等。
02 STM的组成和工作原理
STM的组成
针尖
通常由钨或铂-铱合金制成,针尖的形状和 尺寸对STM的分辨率和成像质量至关重要。
扫描隧道显微镜主体
包括扫描隧道显微镜的控制器、扫描隧道显微镜的 信号处理系统、扫描隧道显微镜的电源系统等。
计算机系统
用于控制STM的扫描、采集和显示图像。
扫描隧道显微镜(STM)单原子操纵 技术
contents
目录
• STM技术概述 • STM的组成和工作原理 • 单原子操纵技术 • STM在单原子操纵中的应用 • 结论
01 STM技术概述
STM技术的原理
隧道效应
当两个导电物体非常接近时,一 个带电粒子的隧道效应可以穿过 它们之间的势垒,从一导电体流 向另一导电体。
扫描隧道显微镜(CSTM)
1.概述
1982年,国际商业机器公司苏黎世实验室的Gerd Binnig博士和Heinrich Rohrer博士及其同事们, 共同研制成功了世界第一台新型表面分析仪器—扫 描隧道显微镜(ScanningTunneling Microscope, 以下简称STM ) 。它的出现,使人类第一次能够原 地观察物质表面单个原子的排列状态和与表面电子 行为有关的物理、化学性质,被国际科学界公 认为是80年代世界十大科技成就之一。
1. 2隧道电流 两种金属(即电极)靠得很近(通常小 于lnm)时,两种金属的电子云将互相 渗透,当加上适当的电位时,即使两 种金属并未真正接触,也会有电流由 一种金属流向另一种金属,这种电流 就称为隧道电流。
2. 2
STM工作原理
STM的工作原理是利用量子理论中 的隧道效应,将原子线度的极细探针和 被研究的物质表面作为两个电极。当样 品与针尖的距离非常接近时(通常小于 1nm),在外加电场的作用下,电子会 穿过两个电极之间的势垒流向另一电极。
3. 3计算机控制单元 计算机控制单元的任务主要是仪器控 制、数据采集、存储和图像显示与处理等。
4、实验方法
4. 1 STM的操作 4. 2 STM针尖的制备 目前制备针尖的方法主要有电化学腐蚀法、机械成 型法等。 4. 2.1 钨针尖的制备 钨针尖的电化学腐蚀方法通常涉及金属电极的阳极 溶解。有两种方法可以进行这一阳极溶解过程,依据 所加的电势而分成交流(AC)或直流(DC)腐蚀,这两种 方法产生的针尖形状是不同的。AC针尖呈圆锥体形状, 锥度角比DC方法制成的针尖大,DC方法制成的针尖 呈双曲线体形状,针尖比用AC法制成的更尖锐,更适 用于STM的高分辨成像。
扫描隧道显微镜原理
扫描隧道显微镜原理
扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)是一种利用隧道效应实现原子尺度分辨率的显微镜。
其原理基于尖端和样品之间存在的隧道电流。
STM主要由扫描探头和表面的样品组成。
探头的尖端通常由
金属制成,尖端尺寸非常小,只有几个原子大小。
样品表面通常是导体,如金属或半导体。
当探头与样品非常接近时,尖端和样品表面之间会产生一个微小的隧道间隙。
由于量子力学的量子隧道效应,即使隧道间隙非常窄,也可以允许电子从尖端隧道到样品表面。
为了保持探头和样品间的恒定隧道电流,STM中的探头是以
非常小的步长在样品表面进行扫描。
在每个位置,测量和控制系统会调整探头高度,以保持隧道电流的恒定。
根据隧道电流的变化情况,可以得到样品表面的形貌信息。
当尖端在不同的位置上进行扫描时,可以得到一个二维图像,显示出样品表面的原子排列情况。
由于STM的原理基于隧道电流,因此只有在样品表面是导体
的情况下才能使用。
此外,由于隧道电流十分微弱,所以要求实验环境必须非常安静并且稳定。
总之,扫描隧道显微镜通过利用隧道效应实现原子尺度的高分
辨率观测。
通过测量隧道电流的变化,可以得到样品表面的形貌信息,从而揭示出微观尺度下的材料特征。
扫描隧道显微镜
现代分析技术的发展
1933年德国Ruska和Knoll等人在柏林制成第一台电子显 微镜后,几十年来,有许多用于表面结构分析的现代仪器 先后问世:
透射电子显微镜(TEM) 扫描电子显微镜(SEM) 低能电子衍射(LEED) 俄歇谱仪(AES) 光电子能谱(ESCA) 电子探针(EPMA)、 x射线光电子能谱(XPS) ………
现代表面技术的缺陷
低能电子衍射(LEED)及X射线衍射(XRD)等衍射方法 要求样品具备周期性结构(晶体);
பைடு நூலகம்学显微镜(OM)和扫描电子显微镜(SEM)的分辨率不 足以分辨出表面原子;
高分辨透射电子显微镜(TEM)主要用于薄层样品的体相 和界面研究
场电子显微镜(FEM)和场离子显微镜(FIM)只能探测在 半径小于100nm的针尖上的原子结构和二维几何性质,且 制样技术复杂,研究对象十分有限;
方势垒高度V0时,它不可能越过此势垒,即透射系 数等于零,粒子将完全被弹回。
而按照量子力学的计算, 在一般情况下,其透射系数 不等于零,也就是说,粒子 可以穿过比它的能量更高的 势垒,这就是隧道效应。
根据量子力学的波动理论,粒子穿过势垒的透 射系数
由式中可见,透射系数T与势垒高度a、能量差( V0-E) 以及粒子的质量m有着很敏感的依赖关系,随着a的增加, T将指数衰减。 2. 工作原理
扫描隧道微镜(Scanning Tunneling Microscope, 简称STM )
➢ STM的出现使人类第一次能够实时地观察单个原 子在物质表面的排列状态和与表面电子行为有关 的物理、化学性质。在表面科学、材料科学、生 命科学等方面有广阔的应用前景。
1 扫描隧道显微镜(STM)
1 扫描隧道显微镜(STM)扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。
将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。
这种现象即是隧道效应。
隧道电流I 是电子波函数重叠的量度,与针尖和样品之间距离S 和平均功函数Φ 有关:V b是加在针尖和样品之间的偏置电压,平均功函数,分别为针尖和样品的功函数,A 为常数,在真空条件下约等于1。
扫描探针一般采用直径小于1mm的细金属丝,如钨丝、铂―铱丝等;被观测样品应具有一定导电性才可以产生隧道电流。
由上式可知,隧道电流强度对针尖与样品表面之间距非常敏感,如果距离S 减小0.1nm,隧道电流I 将增加一个数量级,因此,利用电子反馈线路控制隧道电流的恒定,并用压电陶瓷材料控制针尖在样品表面的扫描,则探针在垂直于样品方向上高低的变化就反映出了样品表面的起伏,见图1(a)。
将针尖在样品表面扫描时运动的轨迹直接在荧光屏或记录纸上显示出来,就得到了样品表面态密度的分布或原子排列的图象。
这种扫描方式可用于观察表面形貌起伏较大的样品,且可通过加在z 向驱动器上的电压值推算表面起伏高度的数值,这是一种常用的扫描模式。
对于起伏不大的样品表面,可以控制针尖高度守恒扫描,通过记录隧道电流的变化亦可得到表面态度的分布。
这种扫描方式的特点是扫描速度快,能够减少噪音和热漂移对信号的影响,但一般不能用于观察表面起伏大于1nm的样品。
(a)(b)从式可知,在V b和I 保持不变的扫描过程中,如果功函数随样品表面的位置而异,也同样会引起探针与样品表面间距S 的变化,因而也引起控制针尖高度的电压V z的变化。
如样品表面原子种类不同,或样品表面吸附有原子、分子时,由于不同种类的原子或分子团等具有不同的电子态密度和功函数,此时扫描隧道显微镜(STM)给出的等电子态密度轮廓不再对应于样品表面原子的起伏,而是表面原子起伏与不同原子和各自态密度组合后的综合效果。
扫描隧道显微镜STM和原子力显微镜AFM分析技术
1
I Vb exp( A 2 S )
三、 扫描隧道显微镜的基本原理
尖锐金属探针在样品表面扫描,利用针尖-样 品间纳米间隙的量子隧道效应引起隧道电流与间 隙大小呈指数关系,获得原子级样品表面形貌特 征图象。
图 STM的基本原理图
4)分辨率高,扫描隧道显微镜在水平和垂直分 辨率可以分别达到0.1nm和0.01nm。因此可直接观 察到材料表面的单个原子和原子在材料表面上的三 维结构图像。
5)在观测材料表面结构的同时,可得到材料表 面的扫描隧道谱(STS),从而可以研究材料表面 化学结构和电子状态。
6)不能探测深层信息,无法直接观察绝缘体。
粒子可以穿过比它能量更高的势垒,这个 现象称为隧道效应。
隧道效应是由于粒子的波动性而引起的,只有 在一定的条件下,隧道效应才会显著。经计算,透 射系数T为:
T
16E(V0
E)
2a
0-E)以及粒子的质量 m有着很敏感的关系。随着势垒厚(宽)度a的增加,
2. 机械设计(扫描控制)
机械设计应满足:
1)Z方向伸缩范围≥1μm,精度约为 0.001nm;
2)X、Y方向扫描范围≥1μm ×1μm,精度约 为0.01nm;
3)Z方向机械调节精度高于0.1μm ,精度至少 应在压电陶瓷驱动器Z方向变化范围,机械调节范 围>1mm;
4)能在较大范围内选择感兴趣的区域扫描; 5)针尖与样品间距离d具有高的稳定性。
隧道电流的变化曲线
∆Z有0.1nm的变化; ∆ IT即有数量级的变化
隧道电流的变化曲线
四、 扫描隧道显微镜的工作模式
根据针尖与样品间相对运动方式的不同,STM有 两种工作模式:恒电流模式(a)和恒高模式(b)。
扫描隧道显微镜
图中针尖与样品间隔 占约lnm,针尖与在X、 Y和Z三个方向上互成 直角的三根压电陶瓷 相连。电压改变时, 压电陶瓷即伸长或收 缩,其灵敏度或分辨 率可达10-2nm。
改变加在X和Y方向压
电陶瓷的电压,针尖 即可在XY平面上扫描; 改变Z方向上的电压, 针 尖 即 可 在 纵 向 (Z 方 向)升降使针尖与样品 间距离改变。
恒流工作模式可用于 起伏较大的表面,是 最常用的模式。恒高 模式则是在扫描时保 持针尖的高度不变 (间距S在变),观测 隧道电流的变化与X 和Y位置的关系。
这也反映出表面形 貌的变化,这种模 式可以扫描较快, 但对起伏较大的表 面,扫描时针尖易 与表面相碰使针尖 损坏。
二、STM仪器
STM仪器为了实现原子级分辨率,需要解决 诸如隔绝振动、机械设计、电路及样品制备中 的一系列技术关键。
但根据量子力学,电子 具有波动性,电子能够以 一定几率穿过势垒,这就 是所谓的隧道效应。
例如,当一个金属针尖 和一个导电样品很接近时 (相距约lnm),尽管两者间 仍是一很薄的绝缘层,有 较高的势垒,但两者波函 数已有一定程度的交叠。
把针尖和样品作为两个 电极,加上微小的电压, 电子即可穿过其间的势垒 产生所谓隧道电流。
可使针尖被驱动,也可使样品被驱动,Z方向 的伸缩范围约μm,分辨率达10-3nm;X-Y方 向的扫描范围至少μm,精度达10-2nm。
为了能方便地换样品,换样品后能快速
使针尖和样品接近而又不相互碰撞,需要 粗调装置,粗调到Z压电陶瓷能用电压调 节的区域(一般几十纳米),然后通过Z压 电陶瓷细调到产生所需隧道电流的状态 (约 l nm)。
还可用高定向热解石墨(HOPG)及MoS2或单 晶金作为载体,它们表面平整度很好,可以载 负生物或有机分子进行研究。在空气中则多用 这类载体,载负某些分子进行研究。
stm表征cdw的原理
stm表征cdw的原理
STM(扫描隧道显微镜)表征CDW(charge density wave,电荷密度波)的原理主要依赖于STM的工作原理和CDW的特性。
STM(扫描隧道显微镜)是一种扫描探针显微术,它通过检测量子隧道效应来获取物质表面结构的信息。
STM的工作原理是当两个电极(一个金属针尖和一个样品)之间的距离足够近(约1nm)时,会出现隧道效应。
电子从一个电极穿过空间势垒到达另一个电极形成电流。
STM利用这个原理来观察和测量样品表面的原子尺度结构。
CDW是一种在固体材料中传播的电荷密度波动,其存在表现为材料的原子间距在不同程度上发生了周期性变化。
当STM针尖扫描CDW材料表面时,由于CDW引起的原子间距的周期性变化,会导致隧道电流的变化。
通过测量这种电流变化,STM可以揭示CDW在材料表面的分布和规律。
在STM表征CDW的过程中,通常采用恒高模式(保持针尖高度恒定)或恒流模式(保持隧道电流不变)进行扫描。
恒高模式适用于表面起伏较小的样品,而恒流模式适用于表面起伏较大的样品。
通过这两种模式的不同组合,可以获得关于CDW的详细信息。
总之,STM表征CDW的原理主要是利用STM的隧道效应在原子尺度上检测和测量CDW引起的表面原子间距的周期性变化。
这种方法可以揭示CDW的分布、规律和相互作用,为研究CDW的物理性质和应用提供有力支持。
stm研究报告
STM研究报告一、简介STM(扫描隧道显微镜)是一种高分辨率的显微技术,可以实现对物质表面的原子级分辨率成像。
STM的原理是利用电子的量子隧道效应,通过扫描探针尖端与样品表面的距离和信号变化来获取样品表面的形貌和电子结构信息。
本文旨在介绍STM的原理、工作原理、应用和发展前景。
二、原理STM的作用机制基于量子力学中的隧道效应,即电子通过势垒隧道穿越的现象。
在STM中,探针尖端与样品表面之间存在微弱的隧道电流,这个电流与探针尖端与样品表面的距离密切相关。
当探针尖端沿着样品表面扫描时,通过测量隧道电流的变化,可以得到样品表面的拓扑结构信息。
三、工作原理STM的工作原理分为两个主要步骤:扫描和反馈控制。
1. 扫描在扫描步骤中,探针尖端沿着样品表面进行水平和垂直方向的扫描。
探针尖端通过微调移动以保持探针尖端与样品表面的恒定距离。
扫描步骤中获取的隧道电流信号被送入反馈控制系统。
2. 反馈控制反馈控制系统是STM操作中的一个重要组成部分。
它基于样品表面的电子结构,通过改变探针尖端的位置来保持扫描过程中的隧道电流恒定。
在反馈控制中,隧道电流信号被检测,并传递给控制电路。
控制电路会调整探针尖端的位置,以便与样品表面的隧道电流保持一定的值。
四、应用STM作为一种高分辨率的显微技术,已经在许多领域得到了广泛应用。
1. 表面形貌研究STM可以用来观察和研究物质的表面形貌。
通过对样品表面的原子级分辨成像,可以揭示材料的晶格结构、晶面形貌以及表面缺陷等信息。
2. 分子自组装研究由于STM的高分辨率和原子级探测能力,它也被广泛应用于研究分子自组装。
通过在STM下观察分子的自组装过程,可以揭示分子间相互作用、形成有序结构等过程。
3. 表面电子结构研究STM还可以用于研究物质表面的电子结构。
通过测量样品表面的局域隧道电流,可以获得表面电子态密度和工作函数等信息。
4. 导电性研究STM不仅可以观察材料的表面形貌,还可以测量材料的局域电导性。