七年级(上)期中数学复习卷(含答案)

合集下载

湖南省岳阳市汨罗市2023-2024学年七年级上学期期中考试数学试卷(含答案)

湖南省岳阳市汨罗市2023-2024学年七年级上学期期中考试数学试卷(含答案)

2023年-2024学年度第一学期义务教育学业水平监测七年级数学科时量:120分钟总分:120分一、选择题(共10小题,每小题3分,共30分)1.中国是世界上最早使用负数的国家,战国时期李悝所著的《法经》中已使用负数.如果公元前500年记作500-年,那么公元2023年应记作()A.2023-年.B.1523+年.C.2023+年.D.2523+年.2.下列各数不是有理数的是()A.1.21B.2- C.2πD.123.12023-的相反数是()A.12023B.12023-C.2023- D.20234.在汨罗市委、市政府“捐资助学、众筹兴教”号召下,汨罗市各镇及部门单位持续发力,商会、企业、爱心人士及全市人民共同努力和无私奉献,截至2023年3月,全市教育基金累计已超10001万元,10001万用科学计数法表示为()A.41000110⨯ B.81.000110⨯ C.71.000110⨯ D.90.1000110⨯5.下列各组数中,相等的一组是()A.()1--与1-- B.23-与()23-C.()34-与34- D.223与223⎛⎫⎪⎝⎭6.下列各组式子中,是同类项的是().A 2a b 与2b aB.ab -与3baC.22a bc 与25a bD.ab -与22ab -7.下列计算正确的是()A.347a a a += B.22a a -= C.23a a a+= D.43a a a-=8.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》卷记载了一道有趣的数学问题:今有共买物,人出八,盈三;人出七,不足四人.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?设人数为x 人,则表示物价的代数式()A.83-x B.83x + C.74x - D.()74x +9.下列说法正确的是()A.25xy -的系数是5- B.单项式x 的系数为1,次数为0C.多项式42242a a b b -+是四次三项式D.222xyz π-的次数为610.生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n 来表示,即:122=,224=,328=,4216=,5232=,……,请你推算123452023222222+++++⋅⋅⋅⋅⋅⋅+的个位数字是()A.8B.6C.4D.2二、填空题(共6小题,每小题3分,共18分)11.如果|x |=4,则x 的值是_____.12.在数轴上,位于10-与2之间的整数有______个.13.若221m m -=,则2324m m +-的值是______.14.已知多项式128m x x -++是关于x 的二次三项式,则m m =_____.15.用符号()a b ,表示a b 、两数中较小的一个数,用符号[]a b ,表示a b 、两数中较大的一个数,计算[]()211 2.5----,,=_______.16.化学中直链烷烃的名称用“碳原子数+烷”来表示,当碳原子数为110 时,依次用天干——甲、乙、丙、丁、戊、己、庚、辛、壬、癸——表示,其中甲烷、乙烷、丙烷,丁烷的分子结构式如图所示,则第7个庚烷分子结构式中“H ”的个数是_________.三、解答题(共9小题,17,18,19每小题6分,20,21每小题8分,22,23每小题9分,24,25每小题10分,共72分)17.将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来.2、3-、()2.5--、()1+-、0、()2---18.计算:(1)135134612⎛⎫-+÷⎪⎝⎭(2)()()20232110.54-+-⨯-19.已知a 、b 互为相反数,c 、d 互为倒数,m 到原点距离为3,求3a bcd m cd++-的值.20.先化简,再求值:()()2232261a b a b ---+﹐其中1a =,2023b =.21.已知:232101A x xy y =++-,2B x xy =-.(1)计算:3A B -;(2)若3A B -的值与y 的取值无关,求x 的值.22.已知有理数a ,b ,c在数轴上的位置如图所示,且a b =.(1)a b +=,a b=;(2)b c +0,bc0,()()+-b c a b 0(用“>”或“=”或“<”填空);(3)求b c a c +--的值.23.“十一”期间,汨罗市多个景区人气“爆棚”,屈子文化园“国潮楚韵与你狂欢”、长乐古镇甜酒滑翔、池山巅“达摩秘境”……让游客感受集文化、体验、休闲于一体的旅游行程.景区在7天中每天游客的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数),若9月30日的游客人数为1万人,人均消费100元.日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化单0.7+0.9+0.6+0.4-0.8-0.2+ 1.4-位:万人(1)10月4日的游客人数为万人.(2)七天内游客人数最多的是;游客人数为万人.(3)请帮景区计算“十一”期间所有游客在景区的总消费是多少万元?24.定义新运算:11a b a b *=-,1a b ab⊗=(右边的运算为平常的加、减、乘、除).例如:114373721*=-=,11373721⊗==⨯.若a b a b ⊗=*,则称有理数a ,b 为“隔一数对”.例如:1123236⊗==⨯,11123236*=-=,2323⊗=*,所以2,3就是一对“隔一数对”.(1)下列各组数是“隔一数对”的是;(请填序号)①1a =,2b =;②1a =-,1b =;③43a =-,13b =-(2)计算:()()()()34343141531415-*--⊗+-*-;(3)已知两个连续的非零整数都是“隔一数对”,计算1223344520222023⊗+⊗+⊗+⊗+⋅⋅⋅+⊗.25.已知:b 是最小的正整数,且a 、b 满足()250c a b -++=,请回答问题:(1)请直接写出a 、b 、c 的值:=a ;b =;c =.(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 在数轴上运动,点A 到点B 的距离是,点B 到点C 的距离是,点P 到点A 、B 、C 的距离之和的最小值是.(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动,则经过t 秒钟时,请问:BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求出它的值.2023年-2024学年度第一学期义务教育学业水平监测七年级数学科时量:120分钟总分:120分一、选择题(共10小题,每小题3分,共30分)【1题答案】C【2题答案】C【3题答案】A【4题答案】B【5题答案】C【6题答案】B【7题答案】C【8题答案】A【9题答案】C【10题答案】C二、填空题(共6小题,每小题3分,共18分)【11题答案】4【12题答案】11【13题答案】5【14题答案】27【15题答案】3.5【16题答案】16三、解答题(共9小题,17,18,19每小题6分,20,21每小题8分,22,23每小题9分,24,25每小题10分,共72分)【17题答案】数轴见解析,()()()2.520123-->>>+->--->-【18题答案】(1)5(2)7【19题答案】0或6【20题答案】251a -,4【21题答案】(1)5101xy y +-(2)2x =-【22题答案】(1)0,1-(2)<,>,<(3)b c a c a b+--=--【23题答案】(1)10月4日的游客人数为2.8万人(2)七天内游客人数最多的是10月3日;游客人数为3.2万人(3)该景区计算“十一”期间所有游园人员在此风景区的总消费是918万元【24题答案】(1)①③(2)12-(3)20222023【25题答案】(1)1-;1;5(2)2;4;6(3)BC AB -的值不随着时间t 的变化而改变,BC AB -为定值2。

人教版 七年级数学上册 第1_3章 期中综合复习(3份)及答案

人教版 七年级数学上册 第1_3章 期中综合复习(3份)及答案

人教版 七年级数学上册 第1~3章 期中综合复习(一)一、选择题(本大题共10道小题)1. 计算2a -3a ,结果正确的是( )A .-1B .1C .-aD .a 2. 下列各数:53,+4,-7,0,-0.5,3.456,-516中,负数有( )A .2个B .3个C .4个D .5个3. 计算4+(-3)+(-2)+(-1)+2的结果是( )A .0B .1C .2D .34. 解方程x +12-2x -36=1时,去分母正确的是( )A .3(x +1)-2x -3=6B .3(x +1)-2x -3=1C .3(x +1)-(2x -3)=12D .3(x +1)-(2x -3)=65. 下列各式的计算结果是负数的是( )A .-2×3×(-2)×5B .3÷(-3)×2.6÷(-1.5)C .|-3|×4×(-2)÷(-12) D .(-7)×52÷|-10|6. 下列计算运用运算律恰当的有( )①28+(-19)+6+(-21)=[(-19)+(-21)]+28+6;②14+1+⎝ ⎛⎭⎪⎫-14+13=⎣⎢⎡⎦⎥⎤14+⎝ ⎛⎭⎪⎫-14+1+13;③3.25+⎝ ⎛⎭⎪⎫-235+534+(-8.4)=⎝ ⎛⎭⎪⎫3.25+534+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-235+(-8.4).A .0个B .1个C .2个D .3个7. 有理数m ,n 在数轴上的位置如图所示,则下列各式正确的是 ()A .m>n B.-n>|m|C .-m>|n|D .|m|<|n|8. 已知M =4x 2-3x -2,N =6x 2-3x +6,则M 与N 的大小关系是() A .M <N B .M >NC .M =ND .以上都有可能9. 下列说法错误的是 ( )A .若|a |=|b |,则a =b 或a =-bB .若a ≠b ,则|a |≠|b |C .若|a |+|b |=0,则|a |=0且|b |=0D .若|a |=a ,则a ≥0;若|b |=-b ,则b ≤010. 若三个连续偶数的和是24,则它们的积是( )A .48B .480C .240D .120 二、填空题(本大题共10道小题)11. 计算:(14+16-12)×12=________. 12. 计算:(-14)×23-23=________. 13. 5G 信号的传播速度为300000000 m/s ,将300000000用科学记数法表示为 .14. 用“>”“<”或“=”填空:(1)-31×(-58)×(-4)×(-7)________0;(2)(-32.75)×(-1)×101×⎝ ⎛⎭⎪⎫-9918×0________0; (3)-|-3|×(-5)×(-11)×51________0.15. 已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为________. 16. 若m +1与-2互为相反数,则m 的值为________.17. 李勇同学假期打工收入了一笔钱,他立即存入银行,存期为一年,整存整取,若年利率为 2.16%,一年后李勇同学共得到本息和510.8元,则李勇同学存入________元.18. 若定义一种运算*,其规则是:a *b =-1b ÷1a ,则(-3) * (-2)=________. 19. 一项工作,甲单独做4天完成,乙单独做8天完成.现甲先做1天,然后和乙共同完成余下的工作,则甲一共做了________天.20. 某班学生在实践基地进行拓展活动,因为器材的原因,教练要求分成固定的a 组,若每组5人,则多出9名同学;若每组6人,最后一组的人数将不满,则最后一组的人数用含a 的式子可表示为 .三、解答题(本大题共5道小题)21. 水葫芦是一种水生漂浮植物,有着惊人的繁殖能力.据研究表明:适量的水葫芦生长对水质的净化是有利的,关键是对水葫芦的科学管理和转化利用.若在适宜的条件下,1株水葫芦每5天就能繁殖1株(不考虑死亡、被打捞等其他因素).(1)假设湖面上现有1株水葫芦,填写下表(其中n 为正整数):天数5 10 15 … 50 … 5n 总株数 2 4 … …(2)假定某个流域的水葫芦维持在1280株以内对水质净化有益,若现有10株水葫芦,请你计算,按照上述生长速度,多少天后该流域内有1280株水葫芦?22. 求关于x 的一元一次方程21(1)(1)80k k x k x --+--=的解.23. 解方程:0.10.020.10.10.30.0020.05x x -+-=24. 解方程:0.10.90.210.030.7x x --=25. 已知1abc =,求关于x 的方程2004111x x x a ab b bc c ca++=++++++的解.人教版 七年级数学上册 第1~3章 期中综合复习(一)-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B3. 【答案】A4. 【答案】D [解析] 由此方程的分母2,6可知,其最小公倍数为6,故去分母得3(x +1)-(2x -3)=6.故选D.5. 【答案】D6. 【答案】D7. 【答案】C8. 【答案】A [解析] 因为M -N =(4x 2-3x -2)-(6x 2-3x +6)=4x 2-3x -2-6x 2+3x -6=-2x 2-8<0,所以M <N.9. 【答案】B10. 【答案】B [解析] 两个连续偶数相差2,所以可设中间一个偶数为x ,则第一个偶数为x -2,第三个偶数为x +2,则有x -2+x +x +2=24,解得x =8,故这三个偶数为6,8,10,所以它们的积为6×8×10=480.二、填空题(本大题共10道小题)11. 【答案】-112. 【答案】-10 [解析] (-14)×23-23=-14×23-1×23=23×(-14-1)=-10. 13. 【答案】3×108[解析] 将300000000用科学记数法表示为3×108. 14. 【答案】(1)>(2)= (3)< 15. 【答案】1 [解析] 把x =2代入原方程,得2×2+a -5=0,解得a =1,故答案为1.16. 【答案】117. 【答案】500 [解析] 本题中要求的未知数是本金.设存入的本金为x 元,由于年利率为2.16%,期数为一年,则利息为2.16%x 元.根据题意,得x +2.16%x =510.8,解得x =500.18. 【答案】-32 [解析] (-3) * (-2)=12÷(-13)=12×(-3)=-32. 19. 【答案】3 [解析] 设乙做了x 天,则甲做了(x +1)天,根据题意,得x +14+x 8=1,解得x =2,x +1=3.故甲一共做了3天.20. 【答案】15-a [解析] 最后一组的人数可表示为5a +9-6(a -1)=15-a .三、解答题(本大题共5道小题)21. 【答案】解:(1)表中依次填入23,210,2n .(2)根据题意,得10×2n =1280,解得n=7,7×5=35(天).答:按照上述生长速度,35天后该流域内有1280株水葫芦.22. 【答案】2x =或者4x =-【解析】由一元一次方程的概念可知,原方程是一元一次方程,有两种情况:(1)当11k -=,即2k =时,原方程可化为:380x x +-=,解得2x =; (2)当210k -=且10k -≠时,即1k =-时,原方程可化为280x --=,解得4x =-.综上所得2x =或者4x =-.23. 【答案】 4116024. 【答案】121925. 【答案】2004 【解析】原方程可化为:111()2004111x a ab b bc c ca++=++++++, 因为1abc =,所以11111111(1)a abc a ab b bc c ca a ab a b bc abc c ca++=++++++++++++++ 1111111a ab a ab a ab a ab a ab a ab++=++==++++++++,故2004x =.人教版 七年级数学上册 第1~3章 期中综合复习(二)一、选择题(本大题共10道小题)1. 据市统计局调查数据显示,我市目前常住人口约为4470000人.数据“4470000”用科学记数法可表示为( )A. 4.47×106B. 4.47×107C. 0.447×107D. 447×1042. 若海平面以上1045米,记作+1045米,则海平面以下155米,记作() A .-1200米 B .-155米C .155米D .1200米3. 下列方程中是一元一次方程的是( )A .x +2y =9B .x 2-3x =1C .2x +4=1x D.12x -1=3x4. 计算-2(x -y )-2y 的结果是( )A .-2x -4yB .-2xC .2x -4yD .-4x +2y5. 给出一个数-0.1010010001,下列说法正确的是 ( )A .这个数不是分数,但是有理数B .这个数是负数,也是分数C .这个数与π一样,不是有理数D .这个数是一个负小数,不是有理数6. 下列各组数中,互为相反数的一组是( )A .|-3|与-13B .|-3|与-(-3)C .|-3|与-|-3|D .|-3|与|-13|7. 计算(-2)2020÷(-2)2019所得的结果是 ( )A.22019B.-22019C.-2D.18. 二模若a >0,b <0,则a -b 的值( )A .大于零B .小于零C .等于零D .不能确定9. 某企业今年第一季度盈利22000元,第二季度亏损5000元,若盈利记为正,亏损记为负,则该企业今年上半年盈利(或亏损)的金额(单位:元)可用算式表示为( )A .(+22000)+(+5000)B .(-22000)+(+5000)C .(-22000)+(-5000)D .(+22000)+(-5000) 10. 计算0-(-5)-(+1.71)+(+4.71)的结果是( )A .7B .-8C .8D .-7 二、填空题(本大题共10道小题)11. 化简:-54-8=________,-6-0.3=________. 12. 对于算式(-3)÷13×(-3),下面有几种算法: ①原式=(-3)×3×(-3);②原式=(-3)×(-3)÷13;③原式=(-3)÷⎣⎢⎡⎦⎥⎤13×(-3); ④原式=(-3)÷⎣⎢⎡⎦⎥⎤13÷(-3). 其中正确的算法有________.(填序号)13. 当x =________时,式子5x -3的值为7.14. 化简下列各数:(1)-(+3)=________;(2)-(-3)=________;(3)+(+3)=________;(4)+(-3)=________;(5)-[-(+3)]=________;(6)-[-(-3)]=________. 15. 合并同类项:4a 2+6a 2-a 2=________.16. 一只蜗牛从地面开始爬高为6米的墙,先向上爬3米,然后向下滑1米,接着又向上爬3米,然后又向下滑1米,则此时蜗牛离地面的距离为________米. 17. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元.”该物品的价格是________元.18. 把a -b 看作一个整体,合并同类项:3(a -b )+4(a -b )2-2(a -b )-3(a -b )2-(a -b )2= .19. 观察下列砌钢管的横截面(如图),则第n (n 是正整数)个图中的钢管数是__________.(用含n 的式子表示)20. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之.”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走________步才能追到速度慢的人.三、解答题(本大题共5道小题)21. 先化简,再求值:12(8x 2-3xy )-3(x 2-12xy +13y ),其中x =-2,y =1.22. 去掉下列各式中的括号:(1)8m -(3n +5); (2)n -4(3-2m ); (3)2(a -2b )-3(2m -n ).23. 据美国詹姆斯·马丁的测算,在近十年,人类知识总量已达到每3年翻一番,到2020年甚至要达到每73天翻一番的空前速度,因此,基础教育的任务已不是“教会一切人一切知识,而是让一切人会学习”.已知2000年底,人类知识总量为a,假如从2000年底到2009年底是每3年翻一番;从2009年底到2019年底是每1年翻一番;从2020年是每73天翻一番.(1)2009年底人类知识总量是多少?(2)2019年底人类知识总量是多少?(3)2020年按365天计算,2020年底人类知识总量是多少?24. 暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠.” 乙旅行社说:“所有人按全票价的六折优惠.”已知全票价为a元,学生有x人,带队老师有1人.(1)试用含a和x的式子分别表示甲、乙旅行社的收费情况;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.25. 解方程:4213 2[()] 3324x x x--=人教版七年级数学上册第1~3章期中综合复习(二)-答案一、选择题(本大题共10道小题)1. 【答案】A【解析】把一个大数用科学记数法表示为a×10n的形式,其中1≤a <10,故a=4.47,n等于原数的整数位数减1,即n=7-1=6,∴4470000=4.47×106.2. 【答案】B3. 【答案】D4. 【答案】B5. 【答案】B6. 【答案】C7. 【答案】C8. 【答案】A9. 【答案】D10. 【答案】C二、填空题(本大题共10道小题)11. 【答案】27 42012. 【答案】①②④13. 【答案】2[解析] 由题意,得5x-3=7.两边同时加上3,得5x=10.两边同时除以5,得x=2.14. 【答案】(1)-3(2)3(3)3(4)-3(5)3 (6)-3[解析] “-”号不仅是运算符号、性质符号,还可理解为“相反”的意义,如-(+3)表示+3的相反数.15. 【答案】9a216. 【答案】417. 【答案】53[解析] 设有x个人共同购买该物品,依题意,得8x-3=7x+4,解得x=7.8x-3=8×7-3=53.故答案为53.18. 【答案】a -b[解析] 3(a -b )+4(a -b )2-2(a -b )-3(a -b )2-(a -b )2=(3-2)·(a -b )+(4-3-1)·(a -b )2=a -b .19. 【答案】32n (n +1) [解析] 第1个图中钢管数为1+2=3,第2个图中钢管数为2+3+4=12×(2+4)×3=9,第3个图中钢管数为3+4+5+6=12×(3+6)×4=18,第4个图中钢管数为4+5+6+7+8=12×(4+8)×5=30,…依此类推,第n 个图中钢管数为n +(n +1)+(n +2)+(n +3)+(n +4)+2n =12(n +2n )(n +1)=32n (n +1).20. 【答案】250[解析] 设速度快的人追上速度慢的人所用时间为t ,根据题意,得(100-60)t =100,解得t =2.5.所以100t =100×2.5=250,即速度快的人要走250步才能追上速度慢的人.三、解答题(本大题共5道小题)21. 【答案】解:原式=4x 2-32xy -3x 2+32xy -y =x 2-y . 当x =-2,y =1时,原式=(-2)2-1=3.22. 【答案】解:(1)8m -(3n +5)=8m -3n -5.(2)n -4(3-2m )=n -(12-8m )=n -12+8m .(3)2(a -2b )-3(2m -n )=2a -4b -(6m -3n )=2a -4b -6m +3n .23. 【答案】解:(1)23×a .(2)213×a .(3)218×a .24. 【答案】解:(1)甲旅行社收取的费用为a+50%ax=a+ax元,乙旅行社收取的费用为(x+1)×60%a=ax+a元.(2)当x=30时,甲旅行社收取的费用为=a+15a=16a(元),乙旅行社收取的费用为a·31=a(元).因为a>0,所以16a<a.所以选择甲旅行社更优惠.25. 【答案】127人教版七年级数学上册第1~3章期中综合复习(三)一、选择题(本大题共10道小题)1. 下列各组数中,不相等的是()A.-(+8)和+(-8) B.-5和-(+5)C.+(-7)和-7 D.+(-23)和+232. 计算-2×3×(-4)的结果是()A.24 B.12 C.-12 D.-24 3. 下列关于“0”的说法正确的是()A.0既是正数,也是负数B.0是偶数,但不是自然数C.0既不是正数,也不是负数D.0 ℃表示没有温度4. 小磊解题时,将式子(-12)+(-7)+(+7)先变成(-12)+[(-7)+(+7)],再计算结果,则小磊运用了()A.加法交换律B.加法交换律和加法结合律C.加法结合律D.无法判断5. 如果x=y,那么根据等式的性质,下列变形不正确的是()A.x+2=y+2 B.3x=3yC.5-x=y-5 D.-x3=-y36. 下列交换加数位置的变形中,正确的是()A.1-4+5-4=1-4+4-5B.1-2+3-4=2-1-4-3C.5.5-4.2-2.5+1.2=5.5-2.5+1.2-4.2D.13+2.3-5-4.3=13+5-2.3-4.37. 下列各式中,不相等的是()A.(-3)2和-32B.(-3)2和32C.(-2)3和-23D.|-2|3和|-23|8. 若a,b互为倒数,则-4ab的值为()A.-4 B.-1 C.1 D.09. 如图所示,下列判断正确的是()A.ab<0B.ab=0C.ab>0D.-ab<010. 已知七年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72-x)=30 B.3x+2(30-x)=72C.2x+3(30-x)=72 D.3x+2(72-x)=30二、填空题(本大题共10道小题)11. 若|x|=2,则x的倒数是________.12. 计算:(-12)÷(-4)÷(-115)=________.13. 如图,数轴上点A,B分别表示数a,b,则a+b________0.(填“>”或“<”).14. 原价为a元的书包,现按8折出售,则售价为________元.15. a的相反数是-9,则a=________.16. 若关于x,y的多项式4xy3-2ax2-3xy+2x2-1不含x2项,则a=.17. 用算式表示(写成省略加号和括号的和的形式):(1)负20、正15、负40、负15、正14的和:________________________;(2)40减35加12减16减4:________________.18. 甲、乙两列火车分别从相距660千米的A,B两地同时出发,相向而行,2小时后相遇,其中甲车的速度是乙车速度的1.2倍,则甲车的速度是________千米/时.19. 某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件的销售利润为________元.20. 一只蜘蛛有8条腿,一只蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,那么蜘蛛有________只.三、解答题(本大题共5道小题)21. 解方程:4x-3=2(x-1).22. 一张铁皮可生产10个盒底或6个盒身,两个盒底与一个盒身配套.现有110张铁皮,怎样安排生产盒身和盒底的铁皮张数,才能使生产出来的盒底和盒身恰好配套?(注:一张铁皮只能生产一种产品)23. 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润率定价,乙服装按40%的利润率定价.在实际出售时,应顾客要求,两件服装均按九折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元.24. 小李读一本名著,第一天读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?25. 若1abc =,解关于x 的方程:2221111ax bx cxab a bc b ca c ++=++++++人教版 七年级数学上册 第1~3章 期中综合复习(三)-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】A3. 【答案】C4. 【答案】C5. 【答案】C6. 【答案】C7. 【答案】A 8. 【答案】A 9. 【答案】A 10. 【答案】B二、填空题(本大题共10道小题) 11. 【答案】±12 12. 【答案】-5213. 【答案】< 14. 【答案】45a15. 【答案】916. 【答案】1[解析] 因为关于x ,y 的多项式4xy 3-2ax 2-3xy +2x 2-1不含x 2项,所以2-2a =0,解得a=1.17. 【答案】(1)-20+15-40-15+14(2)40-35+12-16-418. 【答案】180[解析] 根据相等关系:甲车的路程+乙车的路程=总路程列方程.设乙车的速度为x千米/时,则甲车的速度为1.2x千米/时.根据题意,得2·1.2x +2x=660,解方程,得x=150.150×1.2=180(千米/时).19. 【答案】4[解析] 设该商品每件的销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.故该商品每件的销售利润为4元.故答案为4.20. 【答案】6[解析] 设蜘蛛有x只,则蜻蜓有2x只,由题意,得8x+2x·6=120,解得x=6.三、解答题(本大题共5道小题)21. 【答案】[解析] 去括号、移项、合并同类项、系数化为1,即可得到方程的解.解:4x-3=2(x-1),4x-3=2x-2,4x-2x=-2+3,2x=1,x=1 2.22. 【答案】解:设用x张铁皮生产盒底,则用(110-x)张铁皮生产盒身,依题意可列方程10x=6(110-x)×2.解得x=60.于是110-x=50.答:用60张铁皮生产盒底,用50张铁皮生产盒身,才能使生产出来的盒底和盒身恰好配套.23. 【答案】解:设甲服装的成本是x元,则乙服装的成本是(500-x)元,依题意可列方程0.9[(1+50%)x+(1+40%)(500-x)]=500+157.解得x=300,于是500-x=200.答:甲、乙两件服装的成本分别是300元和200元.24. 【答案】[解析] 根据相等关系“这两天共读了整本书的38”列一元一次方程求解.解:设这本名著共有x页.根据题意,得36+14(x -36)=38x .解得x =216. 答:这本名著共有216页.25. 【答案】12【解析】由2221111ax bx cxab a bc b ca c ++=++++++得2111a b c x ab a abc bc b ca c ⎛⎫⨯++= ⎪++++++⎝⎭,1211b c x bc b abc ca c +⎛⎫⨯+= ⎪++++⎝⎭,()()12111b bcx b ca c b ca c ⎛⎫+⨯+= ⎪ ⎪++++⎝⎭,()211abc b bcx b ca c ++⨯=++故12x =.。

人教版七年级数学上册期中考试卷(附带答案)

人教版七年级数学上册期中考试卷(附带答案)

人教版七年级数学上册期中考试卷(附带答案)(满分:150分时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.单选题。

(每小题4分,共10题,共40分)1.﹣2023的绝对值是()A.﹣12023B.﹣2023 C.12023D.20232.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值。

如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同(第2题图)(第5题图)(第7题图)3.在数﹣2,﹣3.14156,﹣13,﹣5%,﹣6.3,2023,200%,0,﹣0.01001中,负分数有()A.4个B.5个C.6个D.7个4.风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为()A.0.358X105B.35.8X103C.3.58X105D.3.58X1045.如图,小红把一密闭且透明的圆柱形水杯中装一半的水,随意转动水杯,水面的形状不可能是()A.圆形B.长方形C.三角形D.椭圆6.下面的说法中,正确的是()A.x +3是多项式B.(﹣2)3中底数是2C.3ab35的系数是3 D.单项式﹣ab2的次数是2次7.如图,是一个正方体的表面展开图,则原正方体中与"就"字相对的面上的字是()A.知B.是C.力D.量8.有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是()A.a+b>0B.a-b>0C.ab>0D.ab<0(第8题图)(第9题图)9.将两边长分别为a和b(a>b)的正方形纸片按图1、图2两种方式置于长方形ABCD中,(图1、图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1上中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则C 1-C 2的值( )A.0B.a -bC.2a -2bD.2b -2a10.已知:m=|a+b |c +2|b+c |a +3|c+a |b ,且abc >0,a+b+c=0.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则x+y=( )A.4B.3C.2D.1第II 卷 (非选择题 共110分)二.填空题(共6小题,每小题4分,满分24分)11.中国是最早采用正负数来表示相反意义的量的国家,如果盈利50元,记作"+50元",那么亏损30元,记作 元.12.《雨不绝》是唐代诗人杜甫的作品,其中有诗句:鸣雨既过渐细微,映空摇如丝飞.译文:喧哗的雨已经过去、逐渐变得细微,映着天空摇漾的是如丝的细雨飘飞.诗中描写雨滴滴下来形成雨丝,用数学知识解释为 .13.若(m+1)2+|n -2|=0,则m n = .14.若一个棱柱有12个顶点,且所有侧棱长的和为30cm ,则每条侧棱长为 cm.15."整体思想"是中学数学解题中重要的思想方法,在多项式的求值中应用极为广泛.若3a 2-a -2=0,则﹣6a 2+2a+3值为 ﹣ .16.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成2023次变换后,骰子朝上一面的点数是 .三.解答题(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分6分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.18.(本小题满分6分)在数轴上表示下列各数:0,﹣4.5,312,﹣2,+7,113.并用"<"号把各数连接起来.19.(本小题满分12分)计算:(1)5+(﹣6)﹣(﹣3) (2)﹣58×(﹣4)÷(﹣52)(3)(﹣16+34-112)×(﹣24) (4)﹣14+(﹣2)3÷4×[5-(-3)3]20.(本小题满分6分)一个几何体的三种视图如图所示.(1)这个几何体的名称是 .(2)求这个几何体的体积.(结果保留π)21.(本小题满分6分)化简:(1)x2+5y-4x2-y-1 (2)7a+3(a-3b)-(b+3a)22.(本小题满分8分)山东是红富士苹果的主要产地,现有30箱红富士苹果,以每箱25kg 为标准,其中重量超过或不足的千克数分别用正数或负数来表示,记录如表所示:(1)30箱红富士苹果中,最重的一箱比最轻的一箱多kg.(2)与标准重量相比,30箱红富士苹果总计超过或不足的重量为多少?(3)若红富士苹果每千克售价6元,则这30箱红富士苹果可卖多少钱?23.(本小题满分8分)如图,某居民小区有一块长为a,宽为2b的长方形空地.为了美化环境,准备在这个长方形空地的四个顶点处修建一个半径为b的扇形花台,其余部分铺设草坪.(1)草坪(阴影部分)的周长为,面积为.(结果用含有a,b,π的式子表示)(2)如果铺设草坪的费用为每平方米50元.当a=6米,b=2米,π取3时,铺设草坪共需多少元?24.(本小题满分10分)学校餐厅中,一张桌子可坐6人,现有以下两种摆放方式:(1)当有5张桌子时,第一种方式能坐人,第二种方式能坐人.(2)当有n张桌子时,第一种方式能坐人,第二种方式能坐人.(3)新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,现在请你当一回小老师,你打算选择以下哪种方式来摆放餐桌?为什么?25.(本小题满分12分)阅读材料,回答问题.材料一:因为23=2×2×2,22=2×2,所以23×22=(2×2×2)×(2×2)=25.材料二:求31+32+33+34+35+36的值.解:设S=31+32+33+34+35+36①则3S=32+33+34+35+36+37②用②-①得,3S -S=(32+33+34+35+36+37)-(31+32+33+34+35+36)=37-3所以2S=37-3,即S=37-32 所以31+32+33+34+35+36=37-32这种方法我们称为"错位相减法".(1)填空:5×58=5( ),a 2·a 5=a ( ).(2)"棋盘摆米"是一个著名的数学故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏.阿基米德对国王说:"我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒…按这个方法放满整个棋盘就行"国王以为要不了多少粮食,就随口答应了.①国际象棋共有64个格子,则在第64格中应放 粒米.(用幂表示)②设国王输给阿基米德的总米粒数为S ,求S.26.(本小题满分12分)如图,已知数轴点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=22.(1)写出数轴上点B 表示的数.(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x -3|的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.试探究:①若|x -8|=3,则x= .②动点P 从O 点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.求当t 为多少秒时,A ,P 两点之间的距离为2?(3)动点P ,Q 分别从O ,B 两点,同时出发,点P 以每秒2个单位长度沿数轴向右匀速运动,Q 点以P 点速度的两倍,沿数轴向右匀速运动,设运动时间为t(1>0)秒.求当t 为多少秒时,P ,Q 之间的距离为4?答案解析一.单选题。

广西南宁市第三中学2023-2024学年七年级上学期期中数学试卷(含解析)

广西南宁市第三中学2023-2024学年七年级上学期期中数学试卷(含解析)

2023-2024学年度秋季学期期中学业质量监测七年级数学学科(满分:120分时间:120分钟)一、选择题(共12小题,满分36分,每小题3分)1规定:(2)→表示向右移动2,记作+2,则(5)←表示向左移动5,记作()A.+5 B.-5C.15 D.-15【答案】B解析:解:因为(2)→表示向右移动2,记作+2,∴则(5)←表示向左移动5,记作-5;故选B 2.在﹣3.5,227,0.161161116…,π2中,有理数有()个.A.1B.2C.3D.4【答案】B解析:解:-3.5是负分数,故是有理数;227是正分数,故为有理数;π2,0.161161116…都是无限不循环小数,故不是有理数;∴有理数有两个,故选:B .3.被誉为:“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积约为2250000m ,将250000用科学记数法可表示为()A.42510⨯B.52.510⨯ C.42.510⨯ D.60.2510⨯【答案】B解析:250000=2.5×105,故选:B .4.下列说法中,正确的是()A.212x y -的系数是12 B.21x -的常数项是1C.24x y 次数是2次D.222x x -+是二次三项式【答案】D解析:解:A 、单项式212x y -的系数是12-,原说法错误,不符合题意;B 、21x -的常数项是1-,原说法错误,不符合题意;C 、24x y 次数是3次,原说法错误,不符合题意;D 、多项式222x x -+是二次三项式,原说法正确,符合题意.故选:D .5.手机移动支付给生活带来便捷,如图是张老师2021年9月18日微信账单的收支明细(正数表示收入,负数表示支出,单位:元),张老师当天微信收支的最终结果是()A.收入19元B.支出8元C.支出5元D.收入6元【答案】D解析:根据题意,有:()()19856++-+-=+(元),即张老师当天微信收支的最终结果是收入6元,故选:D .6.如果x =y ,那么根据等式的性质下列变形正确的是()A.x +y =0B.55x y= C.x ﹣2=y ﹣2D.x +7=y ﹣7【答案】C解析:解:x y = ,0,x y y y ∴-=-=故A 错误;x y = ,,55x y∴=故B 错误;x y = ,22,x y ∴-=-故C 正确;x y = ,77,x y ∴+=+故D 错误;故选:.C 7.若5x =,则x 等于()A.5- B.5C.5± D.0或5【答案】C解析:解:因为5x =,所以5x =±,故选:C .8.下列选项中,能用26a +表示的是()A.整条线段的长度:B.整条线段的长度:C.这个长方形的周长:D.这个图形的面积:【答案】C解析:解:A 、整条线段的长度为268a a ++=+,故不合题意;B 、整条线段的长度为6612a a ++=+,故不合题意;C 、这个长方形的周长为()2326a a +=+,故符合题意;D 、这个图形的面积为()268a a ⨯+=,故不合题意;故选:C .9.如果a 、b 互为相反数0a ≠),x 、y 互为倒数,那么代数式2a b axy b+--的值是()A.0B.1C.-1D.2【答案】A解析:因为a 、b 互为相反数,所以a+b=0,1ab=-,因为x 、y 互为倒数,所以xy=1,代入原式=()0111102---=-+=,故答案选择A10.代数式23x y -与2x y +的大小关系()A.只与x 有关B.只与y 有关C.与x y 、有关D.与,x y 无关【答案】B解析:解:∵()2324x y x y y --+=-,∴要判断代数式23x y -与2x y +的大小关系,只需判断4y -与0的大小关系即可;∴代数式23x y -与2x y +的大小关系只与y 有关;故选B .11.两数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是()A.1a>b+ B.1b>a+ C.0-<a b D.0a b +>【答案】A解析:根据题意可知,01a <<,1b -<,可得出1a b +>,故选B .12.有一个数值转换器,原理如图所示,若开始输入x 的值是5,可发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4.依次继续下去,第2023次输出的结果是()A.8B.4C.2D.1【答案】C解析:解:由于开始输入x 的值是5,可发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,∴第4次输出的结果是1422⨯=,∴第5次输出的结果是1212⨯=,∴第6次输出的结果是3114⨯+=,∴第7次输出的结果是2,故从第3次开始,3次一个循环,分别是4,2,1,(20232)36732-÷= ,∴第2023次输出的结果是2.故选C .二、填空题(共6小题,满分12分,每小题2分)13.﹣7的相反数是_____.【答案】7解析:﹣7的相反数是-(-7)=7.故答案是:7.14.近似数12.336精确到百分位的结果是______.【答案】12.34解析:解:12.33612.34≈(精确到百分位),故答案为:12.34.15.若2m x y 与35n x y 是同类项,则m n +的值是______.【答案】4解析:解:2m x y 与35n x y 是同类项,3m ∴=,1n =,314m n ∴+=+=.故答案为:4.16.方程24x a +=的解为2x =-,则a 的值为______.【答案】8解析:解:将2x =-代入得()224a ⨯-+=,解得:8a =,故答案为:8.17.如图,表中给出的是某月的月历,任意选取“H ”型框中的7个数(如阴影部分所示),发现这7个数的和可能是①50②77③91④112⑤154,请你运用所学的数学知识来研究,其中正确的可能是______.(填写序号)【答案】②④⑤解析:解:设H 框形中间数为x ,∴可得到H 框形的其他值为:1x -,1x +,178x x --=-,176x x +-=-,178x x ++=+,176x x -+=+,1186867x x x x x x x x ∴-+++-+-+++++=,当750x =时,507x =,故①不符合题意;当777x =时,11x =,故②符合题意;当791x =时,13x =,13位于最右端,故③不符合题意;当7112x =时,16x =,故④符合题意;当7154x =时,22x =,故⑤符合题意;故答案为:②④⑤.18.如图,把五个长为b 、宽为a (b a >)的小长方形,按图1和图2两种方式放在一个宽为m 的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为1C ,图2中阴影部分的周长为2C ,若大长方形的长比宽大()6a -,则21C C -的值为______.【答案】12【解析】由图可知()()1232222642242C b m a a m b b m a a m b m a=+-++-=+-++-=-22525422C b a m m b a b b a a a b m=+++-++++-=++∴2142242622C C a b m m a a b m -=++-+=+-又26b a a m+=-+∴()212263212C C a a m m -=+-+-=故答案为12.三、解答题(共8小题,满分72分)19.计算:(1)()()128715--+--;(2)()()34252804+-⨯--÷.【答案】(1)-2(2)34【小问1解析】解:原式128715=+--2022=-2=-;【小问2解析】解:原式()()48570=+-⨯--44070=-+34=.20.解方程:(1)529x x -=;(2)9355y y -=+.【答案】(1)3x =(2)12y =【小问1解析】解:合并同类项,得39x =,系数化为1,得3x =;【小问2解析】解:移项,得3559--=-y y ,合并同类项,得84y -=-,系数化为1,得12y =.21.先化简,再求值:()()224333ab a ab a -+--,其中1a =-,2b =.【答案】3ab +,1解析:解:原式2243333ab a ab a =-+-+3ab =+,当1a =-,2b =时,原式=1231-⨯+=.22.在数轴上表示下列各数()12,, 3.5,0, 2.54-----,并将它们用“<”号连接起来.【答案】图见解析,()13.520 2.54-<--<<<--解析:解:()22 2.5 2.5--=---=,,如图所示:()13.520 2.54-<--<<<--23.今年上林县的稻谷喜获丰收,老李家的一片地收割的稻谷用规定可装45kg 稻谷的袋子共装了12袋,经过称重,这12袋稻谷的重量(单位:kg )记录如下;(超出45kg 的记作“+”)3+、1-、 1.5+、0.5-、2-、 2.5+、2+、1-、 1.2+、 1.8+、 1.3-、0.2-(1)老李家的这片地一共收割了多少千克稻谷?(2)平均每袋装了多少千克稻谷?(3)若每千克稻谷卖2.5元,求老李家这片地的稻谷一共可卖多少元?【答案】(1)老李家的这片地一共收割了546千克稻谷(2)平均每袋装了45.5千克稻谷(3)老李家这片地的稻谷一共可卖1365元【小问1解析】解:()()()()()()()()()()()31 1.50.52 2.521 1.2 1.8 1.30.2++-+++-+-+++++-+++++-+-126=-6=,451265406546⨯+=+=(千克),答:老李家的这片地一共收割了546千克稻谷.【小问2解析】5461245.5÷=(千克),答:平均每袋装了45.5千克稻谷.【小问3解析】546 2.51365⨯=(元),答:老李家这片地的稻谷一共可卖1365元.24.先阅读下面材料,再完成任务:【材料】下列等式:3333441,771,5544-=⨯+-=⨯+⋅⋅⋅,具有1a b ab -=+的结构特征,我们把满足这一特征的一对有理数称为“共生有理数对”,记作(),a b .例如:334,7,55⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭、都是“共生有理数对”.【任务】(1)在两个数对()12,12,3⎛⎫- ⎪⎝⎭、中,“共生有理数对”是______.(2)若(),3x -是“共生有理数对”,求x 的值;(3)若(),8m 是“共生有理数对”,判断()8,m -是不是“共生有理数对”,并说明理由.【答案】(1)12,3⎛⎫⎪⎝⎭(2)12x =-(3)()8,m -不是“共生有理数对”,理由见解析掌握“共生有理数对”的定义,是解题的关键.【小问1解析】解:∵213,2111--=--⨯+=-,∴21211--≠-⨯+,∴()2,1-不是共生有理数对;∵1212121333-==⨯+,∴12,3⎛⎫ ⎪⎝⎭是共生有理数对;故答案为:12,3⎛⎫⎪⎝⎭;【小问2解析】∵(),3x -是“共生有理数对”,()331x x ∴--=-+,12x ∴=-;【小问3解析】()8,m -不是“共生有理数对”,理由:(),8m 是“共生有理数对”,881m m ∴-=+,97m ∴=-,当97m =-时,()65798,8177m m --=-+=,()881m m ∴--≠-+,()8,m ∴-不是“共生有理数对”.25.窗户的形状如图所示(图中长度单位:米),其上部是半圆形,下部是边长相同的四个小正方形,整个窗户是铝合金窗框(包含内窗格、外窗框),内部全部安装玻璃,已知下部小正方形的边长是a 米,窗框的宽度、厚度不计.(1)求窗户的总面积(计算结果保留π);(2)计算窗户内外所有铝合金窗框的总长(计算结果保留π);(3)若窗户的玻璃每平方米200元,所有铝合金窗框平均每米50元,材料买好后交付工人制作费300元/个,当0.6a =米时,求制作十个这种窗户成品需要总费用是多少元?(其中,π取3)【答案】(1)窗户的面积是2242a a π⎛⎫+ ⎪⎝⎭平方厘米(2)窗户内外所有铝合金窗框的总长是()15a a π+厘米(3)制作十个这种窗户成品需要总费用是12360元【小问1解析】解: 下部小正方形的边长是a 米,∴上部半圆形的半径是a 米,∴窗户的总面积为:2242a a π⎛⎫+ ⎪⎝⎭平方厘米;答:窗户的面积是2242a a π⎛⎫+ ⎪⎝⎭平方厘米;【小问2解析】解:()1515a a a a ππ+=+厘米;答:窗户内外所有铝合金窗框的总长是()15a a π+厘米;【小问3解析】解:当0.6a =米时,()224200155030010123602a a a a ππ⎡⎤⎛⎫+⨯++⨯+⨯=⎢⎥ ⎪⎝⎭⎣⎦(元)答:制作十个这种窗户成品需要总费用是12360元.26.在数轴上原点O 表示数0,A 点表示的数是,m B 点表示的数是n ,并且满足1050m n ++-=.(1)请通过计算求出A 点和B 点所表示的数;(2)若动点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右运动;同时动点Q 从点B 出发以每秒2个单位长度的速度沿数轴向左运动,设P 运动的时间为t 秒,并且P Q 、两点在C 点相遇.请求出t 的值及C 点所表示的数;(3)在(2)的条件下,若点P 运动到达B 点后按原速立即返回向数轴负方向运动,点Q 继续按原速原方向运动,动点P 从点A 开始运动多少秒后,P Q 、两点的距离为4个单位长度?请直接写出结果.【答案】(1)A 点:10-;B 点:5(2)3,1t =-(3)动点P 从点A 开始运动1119s,s,11s,19s 55秒后,P Q 、两点的距离为4个单位长【小问1解析】1050,100,50m n m n ++-=+≥-≥ ,100,50m n ∴+=-=,∴10,5m n =-=;∴点A 表示的数为10-,点B 表示的数为5;【小问2解析】由题意,得:32510t t +=+,解得:3t =,此时C 所表示的数为10331-+⨯=-.【小问3解析】点P 到达点B 需要的时间为()10535+÷=秒,点P 从点B 返回追上点Q 时:2315t t =-,15t =秒;①03t <≤时,23154t t +=-,解得:115t =;②35t <≤时,23154t t +=+,解得:195t =;③515t <≤时,24315t t -=-,解得:11t =;④15t >时,24315t t +=-,解得:19t =;综上:动点P 从点A 开始运动1119s,s,11s,19s 55秒后,P Q 、两点的距离为4个单位长.。

七年级上学期数学期中考试卷(含答案)

七年级上学期数学期中考试卷(含答案)

七年级上学期数学期中考试卷(含答案)一.选择题(共30分)1.若气温上升2℃记作+2℃,则气温下降3℃记作()A.﹣2℃B.+2℃C.﹣3℃D.+3℃2.在有理数﹣1,﹣2,0,2中,最小的是()A.﹣1B.﹣2C.0D.23.如果|x|=2,那么x=()A.2B.﹣2C.2或﹣2D.2或4.计算(﹣3)+(﹣2)的结果等于()A.﹣5B.﹣1C.5D.15.圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为﹣6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A.﹣8℃B.﹣4℃C.4℃D.8℃6.若a,b互为相反数,c的倒数是4,则3a+3b﹣4c的值为()A.﹣8B.﹣5C.﹣1D.167.与2÷3÷4运算结果相同的是()A.2÷(3÷4)B.2÷(3×4)C.2÷(4÷3)D.3÷2÷48.2022年3月11日,新华社发文总结2021年中国取得的科技成就.主要包括:北斗全球卫星导航系统平均精度2~3米;中国高铁运营里程超40000000米;“奋斗者”号载人潜水器最深下潜至10909米;中国嫦娥五号带回月壤重量1731克.其中数据40000000用科学记数法表示为()A.0.4×108B.4×107C.4.0×108D.4×106 9.下列结论不正确的是()A.abc的系数是1B.多项式1﹣3x2﹣x中,二次项是﹣3x2C.﹣ab3的次数是4D.-3xy不是整式410.当x=﹣2时,式子3x2+ax+8的值为16,当x=﹣1时,这个式子的值为()A.2B.9C.21D.311.下列说法正确的是()A.﹣3xy的系数是3B.xy2与﹣xy2是同类项C.﹣x3y2的次数是6D.﹣x2y+2x﹣3是四次三项式12.化简3xy2﹣xy2结果正确的是()A.2xy B.2xy2C.2x2y D.2y213.下列添括号正确的是()A.﹣b﹣c=﹣(b﹣c)B.﹣2x+6y=﹣2(x﹣6y)C.a﹣b=+(a﹣b)D.x﹣y﹣1=x﹣(y﹣1)14.一个长方形的长是a+b,宽是a,其周长是()A.2a+b B.4a+b C.4a+2b D.2a+2b15.如果a和﹣4b互为相反数,那么多项式2(b﹣2a+10)+7(a﹣2b﹣3)的值是()A.﹣3B.﹣1C.1D.3二.填空题(共30分)16.若x=﹣3,则|x|的值为.17.数轴上的点A、B分别表示﹣3、2,则点离原点的距离较近(填“A”或“B”).18.已知|m|=5,|n|=2,且n<0,则m+n的值是.19.中秋节当天,高州市的最高气温是32℃,而在我国最北端的漠河市的最高气温是﹣3℃,则两城市中最大的温差是℃.20.若a是最大的负整数,b是最小的正整数,c的相反数等于它本身,则代数式a﹣b+2c=.21.若代数式2x2+3x+7的值是8,则代数式2x2+3x﹣7的值是.22.若单项式﹣5x2y m与x n y是同类项,则m﹣n=.23.﹣x2﹣2x+3=﹣()+3.24.某校购买价格为a元/个的排球100个,价格为b元/个的篮球50个,则该校一共需支付元.25.“24点游戏”指的是将一副扑克牌中任意抽出四张,根据牌面上的数字进行加减乘除混合运算(每张牌只能使用一次),使得运算结果是24或者是﹣24,现抽出的牌所对的数字是4,﹣5,3,﹣1,请你写出刚好凑成24的算式.三.解答题(共40分)26.(12分)计算:+(﹣2);(1)(﹣1)×(﹣4)+(﹣9)÷3×13)﹣|﹣1﹣5|;(2)﹣12022+(﹣2)3×(﹣12(3)4a3﹣3a2b+5ab2+a2b﹣5ab2﹣3a3;(4)5x2﹣7x﹣[3x2﹣2(﹣x2+4x﹣1)].27.(5分)将下列各数在给出的数轴上表示出来,并用“<”把它们连接起来:﹣1,﹣(﹣3.5),﹣|﹣3|,0,|﹣5|.228.(5分)若a、b互为相反数,c、d互为倒数,m的绝对值为2,求a+b+m﹣2022cd的值.29.(5分)如图,请用两种不同的方法求阴影部分的面积.30.(8分)代入求值.(1)已知|a﹣2|+(b+1)2=0,求代数式5ab﹣[2a2b﹣(4b2+2a2b)]的值;(2)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.31.(5分)已知关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,求m,n的值.参考答案一.选择题1.C.2.B.3.C.4.A.5.D.6.C.7.B.8.B.9.D.10.B.11.B.12.B.13.C.14.C.15.B.二.填空题16.3.17.B.18.3或﹣7.19.35.20.﹣2.21.﹣6;22.﹣1.23.x2+2x.24.(100a+50b).25.3×[4﹣(﹣5)﹣1](答案不唯一).三.解答题26.解:(1)(﹣1)×(﹣4)+(﹣9)÷3×1+(﹣2)3﹣2=4﹣3×13=4﹣1﹣2=1;)﹣|﹣1﹣5|(2)﹣12022+(﹣2)3×(﹣12)﹣6=﹣1﹣8×(﹣12=﹣1+4﹣6=﹣3;(3)4a3﹣3a2b+5ab2+a2b﹣5ab2﹣3a3=(4﹣3)a3+(﹣3+1)a2b+(5﹣5)ab2=a3﹣2a2b;(4)5x2﹣7x﹣[3x2﹣2(﹣x2+4x﹣1)]=5x2﹣7x﹣(3x2+2x2﹣8x+2)=5x2﹣7x﹣3x2﹣2x2+8x﹣2=x﹣2.27.解:如图所示:,从左到右用“<”连接为:.28.解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1,m=±2,∴当m=2时,a+b+m﹣2022cd=0+2﹣2022×1=2﹣2022=﹣2020;当m=﹣2时,a+b+m﹣2022cd=0﹣2﹣2022×1=﹣2﹣2022=﹣2024.29.解:方法1:(2a+3b)(2a+b)﹣2a×3b=4a2+2ab+6ab+3b2﹣6ab=4a2+2ab+3b2;方法2:2a×a×2+b(2a+3b)=4a2+2ab+3b2.30.解:(1)原式=5ab﹣(2a2b﹣4b2﹣2a2b)=5ab﹣2a2b+4b2+2a2b=5ab+4b2,由题意可知:a﹣2=0,b+1=0,∴a=2,b=﹣1,原式=5×2×(﹣1)+4×1=﹣10+4=﹣6.(2)原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=1,y=﹣1时,原式=﹣5×1×(﹣1)+5×1×(﹣1)=5﹣5=0.31.解:∵关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,∴m+5=0,n﹣1=0,∴m=﹣5,n=1.。

人教版七年级上学期期中数学试卷(含答案)

人教版七年级上学期期中数学试卷(含答案)

人教版七年级第一学期期中数学试卷一、选择题(每小题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.20222.(3分)计算(﹣2)﹣(﹣4)的结果等于()A.﹣2B.2C.﹣6D.63.(3分)截至2021年12月31日,全国共有少先队员110425000名,该数据用科学记数法表示为()A.110.425×106B.11.0425×107C.1.10425×108D.0.110425×1094.(3分)四位同学所画的数轴分别如下,其中正确的是()A.B.C.D.5.(3分)计算:8×5的结果是()A.8B.25C.40D.416.(3分)某地8:00的气温是﹣2℃,15:00的气温比8:00的气温上升了5℃,则该地15:00的气温是()A.2℃B.3℃C.4℃D.5℃7.(3分)从﹣4,5,﹣3,2中任取两个数相乘,所得积最大的是()A.﹣20B.12C.10D.﹣88.(3分)两个有理数a,b表示在数轴上如图所示,则有理数a,b,﹣a,﹣b的大小关系是()A.a<b<﹣b<﹣a B.a<﹣a<b<﹣b C.﹣b<b<a<﹣a D.﹣b<﹣a<a<b9.(3分)下列说法正确的是()A.﹣15x2y的系数是﹣15,次数是2B.多项式﹣x3﹣2x2y2+3y2有3项,次数是4C.单项式x的系数和次数都是0D.多项式4x2﹣4x2y+y2的次数是210.(3分)新冠疫情期间,某药店对一品牌橡胶手套进行优惠促销,将原价m元的橡胶手套每盒以元售出,则以下四种说法中可以准确表达该药店促销方法的是()A.将原价打6折之后,再降低8元B.将原价降低8元之后,再打3折C.将原价降低8元之后,再打6折D.将原价打8折之后,再降低6元二、填空题(每小题2分,共10分)11.(2分)有理数的倒数是.12.(2分)化简分数:﹣=.13.(2分)计算:(+5)+(﹣6)+(﹣4)=.14.(2分)王叔叔把3000元存入银行,银行的利率存一年的是3%,存两年的是3.75%,王叔叔存了两年,到期时他取回元.15.(2分)如图,搭一个三角形需要3根火柴,搭两个三角形需要5根火柴,搭三个三角形需要7根火柴,…,按这个规律,搭n个这样的三角形的需要火柴棒根数为.三、解答题(共60分)16.(6分)计算:(﹣0.5)+3+2.75+(﹣5).17.(6分)计算:﹣22×[5﹣(﹣1)2022]+|﹣1+5|.18.(6分)先化简,后求值:x2y+2(2xy2﹣3x2y)﹣3(xy2﹣2x2y+1),其中x=﹣2,y=1.19.(6分)一甲虫从点A开始左右来回爬行8次,如果规定向右为正,向左为负,这8次爬行的记录如下:+10、﹣9、+8、﹣6、+7.5、﹣6、+8、﹣7(单位:cm).(1)求甲虫停止运动时,所在位置距A点多远?(2)如果该甲虫运动的速度是2cm/s,那么甲虫来回爬行8次一共需要多长时间?20.(6分)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期—二三四五六日柚子销售超过或不足计划量情况(单位:千克)+3﹣5﹣2+11﹣7+13+5(1)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?21.(6分)小明家最近刚购置了一套商品房,如图是这套商品房的平面图(阴影部分)(单位:m).(1)请用含字母x,y的式子表示这套房子的总面积:(2)若x=5,y=8,并且房价为每平方米0.5万元,则购买这套房子共需要多少万元?22.(6分)已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5.(1)求A﹣3B;(2)若+|xy+1|=0,求A﹣3B的值.23.(6分)阅读材料:若点A,B在数轴上分别表示有理数a,b,则A,B两点间的距离表示为AB=|a﹣b|.例如:|x﹣3|表示的几何意义是:数轴上的有理数x对应的点与有理数3对应的点之间的距离.解决问题:根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,请求出x的值;(2)请求出式子|x﹣3|+|x+1|的最小值.(参考答案与详解)一、选择题(每小题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.2022【解答】解:﹣2022的相反数是2022,故选:D.2.(3分)计算(﹣2)﹣(﹣4)的结果等于()A.﹣2B.2C.﹣6D.6【解答】解:(﹣2)﹣(﹣4)=﹣2+4=2,故选:B.3.(3分)截至2021年12月31日,全国共有少先队员110425000名,该数据用科学记数法表示为()A.110.425×106B.11.0425×107C.1.10425×108D.0.110425×109【解答】解:110425000=1.10425×108.故选:C.4.(3分)四位同学所画的数轴分别如下,其中正确的是()A.B.C.D.【解答】解:A选项的数轴1,2的位置不对,故不符合题意;B选项的数轴有单位长度,有正方向,有原点,故符合题意;C选项的数轴正数和负数的位置反了,不符合题意;D选项的数轴单位长度不一致,故不符合题意;故选:B.5.(3分)计算:8×5的结果是()A.8B.25C.40D.41【解答】解:8×5=×5=41.故选:D.6.(3分)某地8:00的气温是﹣2℃,15:00的气温比8:00的气温上升了5℃,则该地15:00的气温是()A.2℃B.3℃C.4℃D.5℃【解答】解:﹣2+5=3(℃),即该地15:00的气温是3℃.故选:B.7.(3分)从﹣4,5,﹣3,2中任取两个数相乘,所得积最大的是()A.﹣20B.12C.10D.﹣8【解答】解:积最大的是(﹣4)×(﹣3)=12,故选:B.8.(3分)两个有理数a,b表示在数轴上如图所示,则有理数a,b,﹣a,﹣b的大小关系是()A.a<b<﹣b<﹣a B.a<﹣a<b<﹣b C.﹣b<b<a<﹣a D.﹣b<﹣a<a<b【解答】解:由题意可知,a<b<0,∴a<b<﹣b<﹣a.故选:A.9.(3分)下列说法正确的是()A.﹣15x2y的系数是﹣15,次数是2B.多项式﹣x3﹣2x2y2+3y2有3项,次数是4C.单项式x的系数和次数都是0D.多项式4x2﹣4x2y+y2的次数是2【解答】解:A、﹣15x2y的系数是﹣15,次数是3,故A不符合题意;B、多项式﹣x3﹣2x2y2+3y2有3项,次数是4,正确,故B符合题意;C、单项式x的系数是1,次数是1,故C不符合题意;D、多项式4x2﹣4x2y+y2的次数是3,故D不符合题意,故选:B.10.(3分)新冠疫情期间,某药店对一品牌橡胶手套进行优惠促销,将原价m元的橡胶手套每盒以元售出,则以下四种说法中可以准确表达该药店促销方法的是()A.将原价打6折之后,再降低8元B.将原价降低8元之后,再打3折C.将原价降低8元之后,再打6折D.将原价打8折之后,再降低6元【解答】解:的意义是将原价打6折之后,再降低8元.故选:A.二、填空题(每小题2分,共10分)11.(2分)有理数的倒数是.【解答】解:有理数的倒数是.故答案为:.12.(2分)化简分数:﹣=﹣.【解答】解:﹣=﹣=﹣,故答案为:﹣.13.(2分)计算:(+5)+(﹣6)+(﹣4)=﹣5.【解答】解:(+5)+(﹣6)+(﹣4)=5+[(﹣6)+(﹣4)]=5+(﹣10)=﹣5.故答案为:﹣5.14.(2分)王叔叔把3000元存入银行,银行的利率存一年的是3%,存两年的是3.75%,王叔叔存了两年,到期时他取回3225元.【解答】解:3000+3000×3.75%×2=3000+225=3225(元),∴到期时他取回3225元,故答案为:3225.15.(2分)如图,搭一个三角形需要3根火柴,搭两个三角形需要5根火柴,搭三个三角形需要7根火柴,…,按这个规律,搭n个这样的三角形的需要火柴棒根数为2n+1.【解答】解:搭1个三角形需要火柴棒的根数为:3,搭2个三角形需要火柴棒的根数为:5=3+2=3+2×1,搭3个三角形需要火柴棒的根数为:7=3+2+2=3+2×2,…搭n个三角形需要火柴棒的根数为:3+2(n﹣1)=2n+1,故答案为:2n+1.三、解答题(共60分)16.(6分)计算:(﹣0.5)+3+2.75+(﹣5).【解答】解:原式=[(﹣0.5)+(﹣5.5)]+(3.25+2.75)=﹣6+6=0.17.(6分)计算:﹣22×[5﹣(﹣1)2022]+|﹣1+5|.【解答】解:﹣22×[5﹣(﹣1)2022]+|﹣1+5|=﹣4×(5﹣1)+4=﹣4×4+4=﹣16+4=﹣12.18.(6分)先化简,后求值:x2y+2(2xy2﹣3x2y)﹣3(xy2﹣2x2y+1),其中x=﹣2,y=1.【解答】解:原式=x2y+4xy2﹣6x2y﹣3xy2+6x2y﹣3=(1﹣6+6)x2y+(4﹣3)xy2﹣3=x2y+xy2﹣3,当x=﹣2,y=1时,原式=(﹣2)2×1+(﹣2)×12﹣3=4×1﹣2×1﹣3=4﹣2﹣3=﹣1.19.(6分)一甲虫从点A开始左右来回爬行8次,如果规定向右为正,向左为负,这8次爬行的记录如下:+10、﹣9、+8、﹣6、+7.5、﹣6、+8、﹣7(单位:cm).(1)求甲虫停止运动时,所在位置距A点多远?(2)如果该甲虫运动的速度是2cm/s,那么甲虫来回爬行8次一共需要多长时间?【解答】解:(1)10﹣9+8﹣6+7.5﹣6+8﹣7=10+8+7.5+8﹣9﹣6﹣6﹣7=33.5﹣28=5.5(cm),答:停止时所在位置距A点5.5cm,在A点的右方;(2)10+9+8+6+7.5+6+8+7=61.5(cm),61.5÷2=30.75(秒).答:共用30.75秒.20.(6分)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期—二三四五六日+3﹣5﹣2+11﹣7+13+5柚子销售超过或不足计划量情况(单位:千克)(1)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?【解答】解:(1)3﹣5﹣2+11﹣7+13+5+100×7=18+700=718(千克).答:小王第一周实际销售柚子的总量是718千克.(2)718×(8﹣3)=718×5=3590(元).答:小王第一周销售柚子一共收入3590元.21.(6分)小明家最近刚购置了一套商品房,如图是这套商品房的平面图(阴影部分)(单位:m).(1)请用含字母x,y的式子表示这套房子的总面积:(2)若x=5,y=8,并且房价为每平方米0.5万元,则购买这套房子共需要多少万元?Array【解答】解:(1)这套房子的总面积为:3x+xy+6y+3x=(6x+6y+xy)m2,答:这套房子的总面积为(5x+6y+xy)m2;(2)当x=5,y=8时,房子的总面积为:30+48+40=118(m2),0.5×118=59(万元),答:购买这套房子共需要59万元.22.(6分)已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5.(1)求A﹣3B;(2)若+|xy+1|=0,求A﹣3B的值.【解答】解:(1)∵A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5,∴A﹣3B=(3x2﹣x+2y﹣4xy)﹣3(x2﹣2x﹣y+xy﹣5)=3x2﹣x+2y﹣4xy﹣3x2+6x+3y﹣3xy+15=5x+5y﹣7xy+15;(2)∵+|xy+1|=0,∴x+y﹣=0,xy+1=0,∴x+y=,xy=﹣1,∴A﹣3B=5x+5y﹣7xy+15=5(x+y)﹣7xy+15=5×﹣7×(﹣1)+15=4+7+15=26.23.(6分)阅读材料:若点A,B在数轴上分别表示有理数a,b,则A,B两点间的距离表示为AB=|a﹣b|.例如:|x﹣3|表示的几何意义是:数轴上的有理数x对应的点与有理数3对应的点之间的距离.解决问题:根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,请求出x的值;(2)请求出式子|x﹣3|+|x+1|的最小值.【解答】解:(1)∵|x﹣3|=|x+1|,∴x=(﹣1+3)=1;(2)由数轴得:|x﹣3|+|x+1|≤4,∴式子|x﹣3|+|x+1|的最小值为4.。

人教版七年级上学期期中数学试卷(含解析)

人教版七年级上学期期中数学试卷(含解析)

人教版七年级第一学期期中数学试卷及答案一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.02.下列各式中不是整式的是()A.3a B.C.D.03.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=04.|﹣3|的相反数是()A.﹣3B.3C.D.﹣5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.26.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.87.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣28.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于111.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.4912.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是.17.(3分)按下图的程序计算,若输入n=32,则输出结果是.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为人.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣2222.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.参考答案与试题解析一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.0【分析】利用“负数<0<正数,两个负数比大小,绝对值大的反而小”比较大小.【解答】解:∵负数<0<正数,两个负数比大小,绝对值大的反而小,||>|﹣1|,∴<﹣1<0<,∴最小的数是.故选:A.【点评】本题考查了有理数的大小比较,解题的关键是熟知有理数大小比较方法“两个负数比大小,绝对值大的反而小”.2.下列各式中不是整式的是()A.3a B.C.D.0【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3a是单项式,是整式,故本选项不符合题意;B、既不是单项式,又不是多项式,不是整式,故本选项符合题意;C、是单项式,是整式,故本选项不符合题意;D、0是单项式,是整式,故本选项不符合题意;故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义;单项式与多项式统称为整式.3.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=0【分析】根据一元一次方程的定义即可求出答案.只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.【解答】解:A.不是整式方程,故本选项不合题意;B.含有两个未知数,不是一元一次方程,故本选项不合题意;C.是一元一次方程,故本选项符合题意;D.未知数的最高次数2次,不是一元一次方程,故本选项不合题意;故选:C.【点评】本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义,本题属于基础题型.4.|﹣3|的相反数是()A.﹣3B.3C.D.﹣【分析】根据绝对值定义得出|﹣3|=3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.【解答】解:∵|﹣3|=3,∴3的相反数是﹣3.故选:A.【点评】此题主要考查了绝对值,相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0,难度适中.5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.2【分析】根据相反数的概念:只有符号不同的两个数是互为相反数,即可得出x的值,即可得出答案.【解答】解:∵x与3互为相反数,∴x=﹣3,∴x+1=﹣3+1=﹣2.故选:A.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.6.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.8【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:∵单项式a m+1b3与﹣a3b n是同类项,∴m+1=3,n=3,∴m=2,n=3,∴m n=23=8.故选:D.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.7.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣2【分析】首先把2a﹣2b﹣1化成2(a﹣b)﹣1;然后把a﹣b=1代入化简后的算式计算即可.【解答】解:∵a﹣b=1,∴2a﹣2b﹣1=2(a﹣b)﹣1=2×1﹣1=2﹣1=1.故选:A.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元【分析】根据3月份、2月份与1月份的产值的百分比的关系列式计算即可求解.【解答】解:∵今年1月份产值为a万元,2月份比1月份减少了15%,∴2月份的产值为a(1﹣15%)万元,∵3月份比2月份增加了5%,∴3月份的产值为a(1﹣15%)(1+5%)万元.故选:D.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my【分析】根据等式的性质2进行准确运用辨别.【解答】解:根据等式的性质1,等式mx=my两边都加1可得mx+1=my+1,故选项A不符合题意;∵m可能为0,∴根据等式的性质2,等式mx=my两边都除以m可能无意义,故选项B符合题意;∵π≠0,∴根据等式的性质2,等式mx=my两边都乘以π可得πmx=πmy,故选项C不符合题意;∵,∴根据等式的性质2,等式mx=my两边都乘以可得mx=my,故选项D不符合题意;故选:B.【点评】此题考查了等式性质的应用能力,关键是能准确理解性质,并在运用等式性质2时,明确等式两边都除以的数是否为0.10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于1【分析】把|m﹣1|+m=1,转化为|m﹣1|=1﹣m,再根据绝对值的性质判断即可.【解答】解:∵|m﹣1|+m=1,∴|m﹣1|=1﹣m,∴m﹣1≤0,∴m≤1,故选:D.【点评】本题考查了绝对值,通过转化得到|m﹣1|=1﹣m是解题的关键.11.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.49【分析】设最中间的数为x,根据题意列出方程即可求出判断.【解答】解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣7、x﹣6、x、x+8、x+7、x+6,∴这7个数的和为:x﹣8+x﹣7+x﹣6+x+x+8+x+7+x+6=7x,当7x=161时,此时x=23,当7x=91时,此时x=13,当7x=78时,此时x=11不是整数,当7x=49时,此时x=7,故选:C.【点评】本题考查了一元一次方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.12.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形【分析】设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,分别表示出m、n的值,就可计算出m﹣n的值为4c,从而可得只需知道正方形③的周长即可.【解答】解:设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,可得m=2[c+(a﹣c)]+2[b+(a+c﹣b)]=2a+2(a+c)=2a+2a+2c=4a+2c,n=2[(a+b﹣c)+(a+c﹣b)]=2(a+b﹣c+a+c﹣b)=2×2a=4a,∴m﹣n=4a+2c﹣4a=2c,故选:D.【点评】该题考查了数形结合解决问题的能力,关键是能根据图形正确列出算式并计算.二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为9.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:将95000000用科学记数法可以表示为9.5×107.故答案为:9.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为20.【分析】利用有理数的加减法法则,统一成加法,然后运算即可.【解答】解:25+(﹣12)﹣(﹣7)=25﹣12+7=20.故答案为20.【点评】本题考查有理数的加减混合运算,关键是熟练掌握相应的运算法则.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=3.【分析】利用一元一次方程的定义得到:k﹣2=1.【解答】解:根据题意,得k﹣2=1.解得k=3.故答案是:3.【点评】此题考查了一元一次方程的定义,只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是5.【分析】利用数轴,从点A向右数2个单位,即得点B表示的数为5.【解答】解:3+2=5,故答案为:5.【点评】本题考查数轴上的有理数,关键分清正负方向,右加左减.17.(3分)按下图的程序计算,若输入n=32,则输出结果是806.【分析】根据程序框图的要求计算即可.【解答】解:输入n=32,5n+1=5×32+1=161<500,把n=161再输入得:5n+1=5×161+1=806>500,故输出结果为806.故答案为:806.【点评】本题考查代数式求值,解题关键是读懂题意,根据程序框图的要求准确计算.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=﹣6.【分析】直接利用整式的加减运算法则化简,进而合并同类项,得出x2项和x项的系数为零,进而得出答案.【解答】解:∵多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,∴ax2+3x﹣1﹣(2x2﹣bx﹣4)=ax2+3x﹣1﹣2x2+bx+4=(a﹣2)x2+(b+3)x+3,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,故ab=﹣6.故答案为:﹣6.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=8或2.【分析】若|a+b|=a+b,则a+b≥0,结合a|=5,|b|=3,求出a,b的值即可求解.【解答】解:∵a|=5,|b|=3,∴a=±5,b=±3,∵|a+b|=a+b,∴a=5,b=±3,∴a+b=8或2,故答案为:8或2.【点评】此题主要考查了绝对值的性质和有理数的减法,解决问题的关键是判断出a+b≥0.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为8人.【分析】由题意可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片草地的面积是小片草地的2倍,列出方程解答即可.【解答】解:由题可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片地的面积是小片地的2倍,列出方程,0.5xy+0.5×0.5xy=2×(0.5×0.5xy+y),0.5xy+0.25xy=0.5xy+2y,0.75xy﹣0.5xy=2y,0.25xy=2y,0.25x=2,x=8.答:此次参加社会实践活动的人数为8人.故答案为:8.【点评】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设次参加社会实践活动的人数为x人,每人每天除草量为y,根据题意找到关系即可解答.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣22【分析】先准确地画出数轴,并在数轴上找到各数对应的点,即可解答.【解答】解:在数轴上表示各数如图所示:∴﹣22<﹣3<0<|﹣2|<3.【点评】本题考查了实数大小比较,数轴,绝对值,有理数的乘方,准确在数轴上找到各数对应的点是解题的关键.22.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.【分析】(1)由有理数乘法法则计算即可;(2)先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=+5×7×2=70;(2)原式=﹣1+(﹣2)×(﹣3)﹣9=﹣1+6﹣9=﹣4.【点评】本题考查有理数运算,解题的关键是掌握有理数运算的顺序及相关运算的法则.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)移项,可得:5x﹣x=4+4,合并同类项,可得:4x=8,系数化为1,可得:x=2.(2)去分母,可得:3x﹣(5x+11)=6+2(2x﹣4),去括号,可得:3x﹣5x﹣11=6+4x﹣8,移项,可得:3x﹣5x﹣4x=6﹣8+11,合并同类项,可得:﹣6x=9,系数化为1,可得:x=﹣1.5.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.【分析】(1)把整式去括号、合并同类项,即可得出答案;(2)把整式去括号、合并同类项化简后,代入计算,即可得出答案.【解答】解:(1)ab+3b2﹣(2b2+ab)=ab+3b2﹣2b2﹣ab=b2;(2)3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy=3x2y﹣2xy+(2xy﹣x2y)﹣xy=3x2y﹣2xy+2xy﹣x2y﹣xy=2x2y﹣xy,当x=﹣2,y=﹣1时,原式=2×(﹣2)2×(﹣1)﹣(﹣2)×(﹣1)=﹣8﹣2=﹣10.【点评】本题考查了整式的加减—化简求值,把整式去括号、合并同类项正确化简是解决问题的关键.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?【分析】(1)对本周每天使用口罩数量进行比较、计算即可;(2)先求出两种口罩各用的只数,再进行求解此题结果.【解答】解:(1)由题意得﹣20<﹣14<﹣5<+11<+48,48+500=548(只),答:本周周四这天七年级同学使用口罩最多,数量是548只;(2)本周共使用口罩数量为:500×5+(﹣14+11﹣20+48﹣5)=2500+20=2520(只),设本周使用N95型口罩x只,得x+x+520=2520,解得x=1000,∴x+520=1000+520=1520(只),∴1×1520+3×1000=1520+3000=4520(元),答:本周七年级所有同学们购买口罩的总金额为4520元.【点评】此题考查了运用正负数解决实际问题的能力,关键是能准确理解该知识和题目间的数量关系,进行列式计算.26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?【分析】(1)根据题意和题目中的数据,可知原计划购买的文具袋个数×10﹣17=(原计划购买文具袋数+1)×10×0.85,然后列出相应的方程,再求解即可;(2)根据题意和(1)中的结果,可以列出相应的方程,然后求解即可.【解答】解:(1)设洪洪原计划购买文具袋x个,由题意可得:10x﹣17=10(x+1)×0.85,解得x=17,答:洪洪原计划购买文具袋17个;(2)设洪洪班里共有a名同学,由题意可得:10×(17+1)×0.85+(8a+6a×2)×0.85=612,解得a=27,答:洪洪班里共有27名同学.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.【分析】(1)根据加油数的定义即可判断;(2)设x的十位数为a,y的个位数为b,则x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,根据F(x)+F(y)=30列出等式即可解答.【解答】解:(1)8624是“加油数”,理由如下:∵8=6+2,6=2+4,∴8624是“加油数”;3752不是“加油数”,理由如下:∵3≠7+5,7=5+2,∴3752是“加油数”;(2)设x的十位数为a,y的个位数为b,∴x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,∴F(x)=2a+1+a+1+a+1=4a+3,F(y)=4+b+b+2+b+2=3b+8,∴F(x)+F(y)=4a+3+3b+8=30,∴4a+3b=19,∵0≤a≤9,0≤b≤9,且a,b为整数,∴a=1,b=5或a=4,b=1,∴有满足条件的“加油数”x为3211或9541.【点评】本题以新定义考查了列代数式,整式的加减,解题的关键是根据新定义列出代数式.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.【分析】(1)设运动时间为t,利用路程=速度×时间,再根据点P与点Q相遇,列关于t的一元一次方程,解方程即可;(2)①分点P在AO上,点Q在BC上和点P在OC上,点Q在AO上两种情况,结合题意列出方程即可求解;②分别求出点Q的运动时间,结合点P,点Q的不同位置,根据=2列出方程求解即可.【解答】解:(1)设运动时间为t秒,点P与点Q相遇,∵点P从点A出发,以2个单位/秒的速度向右运动,点Q从点B出发,以1个单位/秒的速度向左运动,∴2t+t=14,解得:t=,∴点P与点Q经过秒相遇;(2)①(Ⅰ)当点P在AO上,点Q在BC上时,设点P与点Q运动的时间为t秒时,=2,∵=AO﹣AP+BC﹣BQ,8﹣2t+6﹣t=2,解得:t=4,此时,点P运动至点O,点Q运动至点C;(Ⅱ)∵点P在OC上运动速度为1个单位/秒,点Q在OC上运动速度为2个单位/秒,结合(1),当点P运动到OC中点时,点Q运动到点O,此时,=1,∵=8,=2,点P在AO上运动速度为2个单位/秒,在OC上运动速度为1个单位/秒,∴点P运动到OC中点所需时间为:+1=5秒,。

七年级数学上册期中考试卷(附答案解析)

七年级数学上册期中考试卷(附答案解析)

七年级数学上册期中考试卷(附答案解析)一.选择题(共8小题,满分24分,每小题3分)1.下列各对数中,互为相反数的()A.﹣(﹣2)和2B.﹣(﹣5)和+(﹣5)C.和﹣2D.+(﹣3)和﹣(+3)2.圆锥的截面不可能是()A.三角形B.圆C.长方形D.椭圆3.下列是同类项的是()A.3x2y与2xy2B.4abc与4acC.mn与﹣nm D.﹣125x与﹣1254.7的倒数是()A.B.C.D.5.“无风才到地,有风还满空.缘渠偏似雪,莫近鬓毛生”是唐朝诗人雍裕之描写每年四月许多地方杨絮、柳絮如雪花般漫天飞舞的诗句,柳絮带给人们春天的讯息外也让人们不堪其扰,据测定,杨絮纤维的直径约为0.00000105m,该数值用科学记数法表示为()A.1.05×105B.0.105×10﹣5C.1.05×10﹣6D.105×10﹣76.如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的左视图是()A.B.C.D.7.下列去括号中,正确的是()A.a﹣(b﹣c)=a﹣b﹣c B.c+2(a﹣b)=c+2a﹣bC.a﹣(b﹣c)=a+b﹣c D.a﹣(b﹣c)=a﹣b+c8.下列各数中,其中最小的是()A.B.﹣C.0D.﹣5二.填空题(共6小题,满分18分,每小题3分)9.长方形绕其一边旋转一周形成的几何体是,直角三角板绕其一直角边旋转一周形成的几何体是.10.比较大小:;﹣(﹣7)﹣|﹣7|(用“>,<,=”填空).11.单项式﹣4πa3b的系数是.12.规定:类比有理数的乘方,我们把若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2等.我们把2÷2÷2记作2③,读作“2的圈3次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.下列说法准确的选项有.(只需填入正确的序号)①任何非零数的圈2次方都等于1;②对于任何正整数n,1ⓝ=1;③3④=4③;④负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.13.若要使如图中的平面展开图折叠成正方体后,相对面上的两个数为相反数,则2xy=.14.小明的存款是a元,小华的存款比小明存款的一半多2元,则小华的存款为元.三.解答题(共10小题,满分78分)15.(6分)计算:(1)6﹣(﹣2)+(﹣3)﹣5(2)﹣(﹣2)2﹣[2+0.4×(﹣)]÷()216.(6分)已知A=2a2﹣a+3b﹣ab,B=a2+2a﹣b+ab.(1)化简A﹣2B;(2)当a﹣b=2,ab=﹣1,求A﹣2B的值;(3)若A﹣2B的值与b的取值无关,求A﹣2B的值.17.(8分)一个几何体由几个大小相同的小立方块搭成,从上面和正面观察这个几何体,看到的形状都一样(如图所示).(1)这个几何体最少有个小立方块,最多有个小立方块;(2)当摆放的小立方块最多时,请画出从左面观察到的视图.18.(8分)某中学的小卖部最近进了一批计算器,每个16元,今天共卖出20个,实际卖出时以每个18元为标准,超过的记为正,不足的记为负,记录如下:+3﹣1+2+15个4个6个5个(1)这个小卖部的计算器今天卖出的平均价格是多少?(2)这个小卖部今天的计算器赚了多少元?19.(8分)2x2y﹣5xy2+6y2与哪个多项式的和为3xy2﹣4x2y+5y2,求出这个多项式.20.(8分)阅读下面的材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图①,|OB|=|b|=|a﹣b|.当A、B两点都不在原点时:(i)如图②,点A、B都在原点的右边:|AB|=|OB|﹣|OA|=|b|﹣|a|;(ⅱ)如图③,点A、B都在原点的左边:|AB|=|OB|﹣|OA|=|b|﹣|a|:(ⅲ)如图④,点A、B在原点的两边:|AB|=|OA|+|OB|=|a|+|b|.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离|AB|=2,那么x为.21.(8分)如图所示,有长为l的篱笆,利用它和一面墙围成长方形园子,在园子的长边上开了1米的门,园子的宽为t.(1)用关于l,t的代数式表示园子的面积.(2)当l=100m,t=30m时,求园子的面积.22.(8分)用简便方法计算:(1)(﹣2)×(﹣)××(﹣28);(2)(﹣24)×(﹣1+﹣)﹣1.4×6+3.9×6;(3)0.7××(﹣15)+0.7××(﹣15).23.(9分)用火柴棒按照如图示的方式摆图形.按照这样的规律继续摆下去.(1)请根据图填写下表:图形编号12345…火柴棒根数7…(2)计算第2013个图形需要多少根火柴棒?(3)第n个图形需要多少根火柴棒(用含n的代数式表示)24.(9分)观察下列等式:第1个等式:a1=;第2个等式:a2=;第3个等式:a3=;第4个等式:a4=…请解答下列问题:(1)按以上规律写出:第n个等式a n=(n为正整数);(2)求a1+a2+a3+a4+…+a100的值;(3)探究计算:.参考答案与解析一.选择题(共8小题,满分24分,每小题3分)1.解:∵﹣(﹣5)=5,+(﹣5)=﹣5,5和﹣5互为相反数,故选:B.2.解:如果用平面取截圆锥,圆锥的截面可能是三角形,圆,椭圆,不可能是长方形.故选:C.3.解:A、3x2y与2xy2中所含有相同字母的次数不同,不是同类项,故本选项不符合题意.B、4abc与4ac中所含有的字母不相同,不是同类项,故本选项不符合题意.C、mn与﹣nm符合同类项的定义,是同类项,故本选项符合题意.D、﹣125x与﹣125中所含有的字母不相同,不是同类项,故本选项不符合题意.故选:C.4.解:∵7×=1,∴7的倒数是.故选:D.5.解:0.00000105=1.05×10﹣6.故选:C.6.解:从左面看去,一共两列,左边有2个小正方形,右边有1个小正方形,左视图是.故选:C.7.解:A、a﹣(b﹣c)=a﹣b+c,故不对;B、c+2(a﹣b)=c+2a﹣2b,故不对;C、a﹣(b﹣c)=a﹣b+c,故不对;D、正确.故选:D.8.解:在、﹣、0、﹣5中,最小的数为:﹣5.故选:D.二.填空题(共6小题,满分18分,每小题3分)9.解:长方形绕它的一边旋转一周可形成圆柱,直角三角形绕它的直角边旋转一周可形成圆锥.故答案为圆柱,圆锥.10.解:∵|﹣|==,|﹣|==,>,∴<;∵﹣(﹣7)=7,﹣|﹣7|=﹣7,7>﹣7,∴﹣(﹣7)>﹣|﹣7|,故答案为:<;>.11.解:单项式﹣4πa3b的系数是:﹣4π.故答案为:﹣4π.12.解:①任意非零数x的圈2次方为x÷x=1,那么①正确.②1ⓝ==1,那么②正确.③3④=3÷3÷3÷3=,4③=4÷4÷4=,故3④≠4③,那么③不正确.④把(a≠0)记作aⓝ,读作“a的圈n次方”.当a为负数,n为奇数,根据有理数的除法,结果是负数;当a是负数,n是偶数,根据有理数的除法,结果是正数,那么④正确.综上:正确的有①②④.故答案为:①②④.13.解:根据正方体表面展开图“相间、Z端是对面”可知,“1”与“x”相对,“3”与“y”相对,所以x=﹣1,y=﹣3,故2xy=2×(﹣1)(﹣3)=6,故答案为:6.14.解:依题意得,小华存款:a+2.故答案为:a+2.三.解答题(共10小题,满分78分)15.解:(1)原式=6+2﹣3﹣5=0;(2)原式=﹣4﹣(2﹣1)×4=﹣4﹣4=﹣8.16.解:(1)A﹣2B=(2a2﹣a+3b﹣ab)﹣2(a2+2a﹣b+ab)=2a2﹣a+3b﹣ab﹣2a2﹣4a+2b﹣2ab=﹣5a+5b﹣3ab;(2)由(1)得,因为a﹣b=2,ab=﹣1,所以A﹣2B=﹣5a+5b﹣3ab=﹣5(a﹣b)﹣3ab=﹣5×2﹣3×(﹣1)=﹣10+3=﹣7;(3)由(1)得,﹣5a+5b﹣3ab=(5﹣3a)b﹣5a,由于A﹣2B的值与b的取值无关,因此5﹣3a=0,即a=,所以A﹣2B=﹣5a=﹣5×=﹣.答:A﹣2B的值为﹣.17.解:(1)如图,这个几何体最少有5个小正方体,最多有6个小正方体.故答案为:5,6;(2)当摆放的小立方块最多时,从左面观察到的视图如图所示:18.解:(1)根据题意得:(21×5+17×4+20×6+19×5)=19.4元;(2)根据题意得:3×5﹣1×4+2×6+1×5=15﹣4+12+5=28(元),则(18﹣16)×20+28=68(元),即净赚68元.19.解:(3xy2﹣4x2y+5y2)﹣(2x2y﹣5xy2+6y2)=3xy2﹣4x2y+5y2﹣2x2y+5xy2﹣6y2=8xy2﹣6x2y﹣y2.20.解:(1)数轴上表示2和5的两点之间的距离为5﹣2=3,数轴上表示﹣2和﹣5的两点之间的距离为﹣2﹣(﹣5)=3,数轴上表示1和﹣3的两点之间的距离为1﹣(﹣3)=4;(2)根据题意得|x﹣(﹣1)|=2,即x+1=±2,所以x=1或﹣3.故答案为3,3,4;1或﹣3.21.解:(1)由题意和图知,园子的长为:(l+1﹣2t)m,所以园子的面积为:S=(l+1﹣2t)t(m2).(2)当l=100m,t=30m时,S=(100+1﹣2×30)×30=42×30=1230(m2).答:园子的面积为1230m2.22.解:(1)原式=﹣×××28=﹣35;(2)原式=(﹣24)×(﹣)+×(﹣24)﹣×(﹣24)+6×(3.9﹣1.4)=32﹣20+21+6×2.5=32﹣20+21+15=48;(3)原式=0.7×(+)+(﹣15)×(2+)=0.7×2+(﹣15)×3=1.4﹣45=﹣43.6.23.解:(1)如表格所示:图形编号(1)(2)(3)…n 火柴根数71217…5n+2(2)当n=2013时,5n+2=10067;(3)5n+2.24.解:(1)∵第1个等式:a1=;第2个等式:a2=;第3个等式:a3=;第4个等式:a4=;…,∴第n个等式:a n=,故答案为:;(2)a1+a2+a3+a4+…+a100=+…+=1﹣+++…+=1﹣=;(3)=×(1﹣++…+)===.第11页共11页。

人教版七年级上册数学《期中考试卷》(带答案)

人教版七年级上册数学《期中考试卷》(带答案)

人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. ﹣7步C. +12步D. ﹣2步2.单项式-3x2y系数和次数分别是( )A. -3和2B. 3和-3C. -3和3D. 3和23.下列不是同类项的是( )A. 3x2y与﹣6xy2B. ﹣ab3与b3aC. 12和0D. 2xyz与-12zyx4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×1055.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)6.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有( )A. 1个B. 2个C. 3个D. 4个7.下列去括号正确的是( )A. a-(b-c)=a-b-cB. x2-[-(-x+y)]=x2-x+yC. m-2(p-q)=m-2p+qD. a+(b-c-2d)=a+b-c+2d8.如图,数轴上的A、B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是( )A. ab<0B. a+b<0C. a-b<0D. a2b<09.下列说法:①若|a|=a ,则a=0;②若a ,b 互为相反数,且ab≠0,则b a =﹣1; ③若a 2=b 2,则a=b ;④若a <0,b <0,则|ab ﹣a|=ab ﹣a .其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个 10.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A. 4mB. 2(m +n )C. 4nD. 4(m ﹣n )二、填空题(本大题共8小题,每题3分,满分24分,将答案填在答题纸上)11.鄂州位于中纬度地区,冬冷夏热,四季分明.冬季的某天最高气温是6 ℃,最低气温是-4 ℃,则当天的温差为___________℃.12.已知13(3)m m x y +- 是关于x ,y 的七次单项式,则222m m -+的值为________13.一个多项式减去-5x 等于3x 2-5x +9,这个多项式是___________.14.规定图形表示运算a b c -+,图形表示运算x z y w +--,则__________(直接写出答案).15.若2210m m +-=,则2425m m ++的值为__________16.一组按规律排列的数:95、1612、2521、3632、……,请推断第7个数是_______. 17.一条数轴由点A 处对折,表示﹣30数的点恰好与表示4的数的点重合,则点A 表示的数是_____. 18.如图所示,用同样大小的黑、白两种颜色的棋子摆成正方形图案,则第5个图形中有白子___________个,有黑子___________个.三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.计算下列各题(1)10﹣(﹣19)+(﹣5)﹣167(2)411(1)6232⎛⎫--⨯-⨯÷ ⎪⎝⎭ (3)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ (4)(﹣36)×99717220.先化简,再求值:22225(3)2(3)a b ab ab a b --+,其中a =-2,b =-1.21.已知代数式43232235762x ax x x x bx x +++--+-合并同类项后不含,2x 项,求23a b +值. 22.有理数a ,b 在数轴上所对应的点的位置如图所示:(1)用“<”连接 : 0,-a ,-b ,-1,1,a ,b ;(2)化简: 11a a b b a -+----.23.邮递员骑车从邮局出发,先向西骑行 2 km 到达 A 村,继续向西骑行 3 km 到达 B 村, 然后向东骑行 9 km 到达 C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用 1 cm 表示 1 km 画数轴,并在该数轴上表示 A ,B ,C 三个村庄的位置;(2)C 村离 A 村有多远?(3)邮递员一共骑行了多少千米?24.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星 一 二 三 四 五 六 日增 +6 ﹣3 ﹣5 +11 ﹣8 +14 ﹣9(1)根据记录可知前三天共生产 个;(2)产量最多的一天比产量最少的一天多生产 个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?25.如图,四边形ABCD 与四边形CEFG 是两个正方形,边长分别为a ,b ,其中B ,C ,E 在一条直线上,G 在线段CD 上,三角形AGE 的面积为S .(1)①当a=5,b=3时,求S 值;②当a=7,b=3时,求S 的值;(2)从以上结果中,请你猜想S 与a ,b 中的哪个量有关?用字母a ,b 表示S ,并对你的猜想进行证明.26.已知2|4|(2)0a b ++-=,数轴上A B 、两点所对应数分别是和.(1)填空:a = ,b = ;(2)数轴上是否存在点,点在点的右侧,且点到点的距离是点到点的距离的2倍?若存在,请求出点表示的数;若不存在,请说明理由;(3)点以每秒2个单位的速度从点出发向左运动,同时点Q 以每秒3个单位的速度从点出发向右运动,点M 以每秒4个单位的速度从原点点出发向左运动.若为PQ 的中点,当16PQ =时,求M N 、两点之间的距离.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. ﹣7步C. +12步D. ﹣2步【答案】B【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向北走5步记作+5步,∴向南走7步记作﹣7步.故选B.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.单项式-3x2y系数和次数分别是( )A. -3和2B. 3和-3C. -3和3D. 3和2【答案】C【解析】试题解析:∵单项式-3x2y的数字因数是-3,所有字母指数的和=1+2=3,∴此单项式的系数是-3,次数是3.故选C.3.下列不是同类项的是( )A. 3x2y与﹣6xy2B. ﹣ab3与b3aC. 12和0D. 2xyz与-12zyx【答案】A【解析】【分析】根据同类项的定义,所含字母相同并且相同字母的指数也相同的项是同类项,逐一判断即可.【详解】A. 相同字母指数不同,不是同类项;B. C.D都是同类项,故选:A.【点睛】考查同类项的概念: 所含字母相同并且相同字母的指数也相同的项是同类项,与字母的位置无关.4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×105【答案】A【解析】【分析】科学记数法表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A:0.05019精确到0.1是0.1,正确;B:0.05019精确到百分位是0.05,正确;C:0.05019精确到千分位是0.050,错误;D:0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.6.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】先对每个数进行化简,然后再确定负数的个数.【详解】解:|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,﹣4,﹣8是负数,∴负数有2个.故选B.【点睛】本题考查绝对值,有理数的乘方、正数和负数的意义,正确化简各数是解题的关键.7.下列去括号正确的是( )A. a-(b-c)=a-b-cB. x2-[-(-x+y)]=x2-x+yC. m-2(p-q)=m-2p+qD. a+(b-c-2d)=a+b-c+2d【答案】B【解析】【分析】根据去括号法则即可求解.【详解】A. a-(b-c)=a-b+c,故错误;B. x2-[-(-x+y)]= x2-[x-y]=x2-x+y,正确;C. m-2(p-q)=m-2p+2q,故错误;D. a+(b-c-2d)=a+b-c-2d,故错误;故选B.【点睛】此题主要考查整式的加减,解题的关键是熟知去括号法则.8.如图,数轴上的A、B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是( )A. ab<0B. a+b<0C. a-b<0D. a2b<0【答案】D【解析】试题解析:A、由ab异号得,ab<0,故A正确,不符合题意;B、b>0,a<0,|a|>|b|,a+b<0,故B正确,不符合题意;C、由b>0,a<0,|得a-b<0,故C正确,不符合题意;D、由ab异号得,a<0,b>0,a2b>0,故D错误;故选D.点睛:根据数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,可得a、b的大小,根据有理数的运算,可得答案.9.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则ba=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据有理数的运算法则及绝对值的性质逐一判断可得.【详解】①若|a|=a,则a=0或a为正数,错误;②若a,b互为相反数,且ab≠0,则ba=−1,正确;③若a2=b2,则a=b或a=−b,错误;④若a<0,b<0,所以ab−a>0,则|ab−a|=ab−a,正确;故选B.【点睛】此题考查相反数,绝对值,有理数的乘法,有理数的除法,解题关键在于掌握运算法则.10.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A. 4mB. 2(m+n)C. 4nD. 4(m﹣n)【答案】A【解析】【分析】设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y,然后分别求出阴影部分的2个长方形的长宽即可.【详解】解:设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y.∴GF=DH=y,AG=CD=x,∵HE+CD=n,∴x+y=n,∵长方形ABCD的长为:AD=m﹣DH=m﹣y=m﹣(n﹣x)=m﹣n+x,宽为:CD=x,∴长方形ABCD的周长为:2(AD+CD)=2(m﹣n+2x)=2m﹣2n+4x∵长方形GHEF的长为:GH=m﹣AG=m﹣x,宽为:HE=y,∴长方形GHEF的周长为:2(GH+HE)=2(m﹣x+y)=2m﹣2x+2y,∴分割后的两个阴影长方形的周长和为:2m﹣2n+4x+2m﹣2x+2y=4m﹣2n+2(x+y)=4m,故选A.【点睛】本题考查整式的运算,解题的关键是设2张形状大小完全相同的小长方形卡片的长和宽分别为x 、y ,然后根据图中的结构求出分割后的两个阴影长方形的周长和.本题属于中等题型.二、填空题(本大题共8小题,每题3分,满分24分,将答案填在答题纸上)11.鄂州位于中纬度地区,冬冷夏热,四季分明.冬季的某天最高气温是6 ℃,最低气温是-4 ℃,则当天的温差为___________℃.【答案】10【解析】【分析】根据“某天的温差=当天的最高温度-当天的最低温度”计算即可得出答案.【详解】根据题意可得,温差=6℃-(-4℃)=10℃,故答案为10.【点睛】本题考查的是有理数的运算,熟练掌握有理数的运算法则是解决本题的关键.12.已知13(3)m m x y+- 是关于x ,y 的七次单项式,则222m m -+的值为________ 【答案】17【解析】分析】根据单项式次数的定义即可求出m 的值,再将m 代入后面的式子即可得出答案. 【详解】∵13(3)m m x y +- 是关于x ,y 的七次单项式 ∴3014m m -≠⎧⎨+=⎩解得33m m ≠⎧⎨=±⎩ 综上所述:m=-3将m=-3代入2222=(-3)-2(-3)+2=17m m -+⨯故答案为17.【点睛】本题主要考查的是单项式次数的定义,单项式的次数指单项式中所有字母的指数和.13.一个多项式减去-5x 等于3x 2-5x +9,这个多项式是___________.【答案】3x 2-10x +9【解析】【分析】将3x 2-5x +9加上-5x 即可得出答案.【详解】由题意可得:3x 2-5x +9+(-5x )=3x 2-10x +9故答案为3x 2-10x +9.【点睛】本题考查的是整式的加减,熟练掌握整式加减的运算法则是解决本题的关键,14.规定图形表示运算a b c -+,图形表示运算x z y w +--,则__________(直接写出答案).【答案】0【解析】【分析】 根据“规定图形表示运算a b c -+,图形表示运算x z y w +--.”得出新的运算方法,再根据新的运算方法,解答即可.【详解】原式=1-2+3+(4+6-7-5)=2-2=0,故答案为:0.【点睛】解答此题的关键是,根据所给的式子,找出新的计算方法,再运用新的计算方法,解答即可. 15.若2210m m +-=,则2425m m ++的值为__________【答案】7【解析】【分析】根据2210m m +-=得出22=1-m m ,将22=1-m m 代入2425m m ++中即可得出答案.【详解】∵2210m m +-=∴22=1-m m将22=1-m m 代入2425m m ++中得原式=2(1-m )+2m+5=7故答案为7.【点睛】本题考查的是求代数式的值,整体代入法是解决本题的关键.16.一组按规律排列的数:95、1612、2521、3632、……,请推断第7个数是_______.【答案】81 77【解析】【分析】由题中数据可知第n个数的分子为(n+2)2,分母为(n+2)2-4=n2+4n.故可求得第7个数.【详解】第一个数的分子为(1+2)2=9,分母为1×1+4×1=5;第二个数的分子为(2+2)2=16,分母为2×2+4×2=12;第三个数的分子为(3+2)2=25,分母为3×3+4×3=21;第四个数的分子为(4+2)2=36,分母为4×4+4×4=32;第n个数的分子为(n+2)2,分母为n2+4n.第7个数是=()22727487771=++⨯.故答案为:81 77.【点睛】考查了规律型:数字的变化,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.17.一条数轴由点A处对折,表示﹣30的数的点恰好与表示4的数的点重合,则点A表示的数是_____.【答案】-13【解析】【分析】根据对称的知识,若﹣30表示的点与4表示的点重合,则对称点是两个点的表示的数的和的平均数,由此求得点A表示的数.【详解】解:点A表示的数是(-30+4)÷2=﹣13.故答案为﹣13.【点睛】此题考查数轴,掌握点和数之间的对应关系以及中心对称的性质是解决问题的关键.18.如图所示,用同样大小的黑、白两种颜色的棋子摆成正方形图案,则第5个图形中有白子___________个,有黑子___________个.【答案】 (1). 白子24个 (2). 黑子25个【解析】【分析】本题以正方形的周长计算公式为基础,分析图形规律,即可得出答案.【详解】第一个图形:棋子共有23个,其中黑子有1个,白子有231-个;第二个图形:棋子共有个,其中黑子有个,白子有2242-个;第三个图形:棋子共有25个,其中黑子有23个,白子有2253-个;……由此可以推出,第n 个图形:棋子共有()22n +个,其中黑子有2n 个,白子有()222n n +-个;故第五个图形:棋子共有2749=个,其中黑子有2525=个,白子有2275492524-=-=个; 故答案为24,25.【点睛】本题是图形类找规律类题型,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论. 三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.计算下列各题(1)10﹣(﹣19)+(﹣5)﹣167(2)411(1)6232⎛⎫--⨯-⨯÷ ⎪⎝⎭(3)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ (4)(﹣36)×997172【答案】(1)-143;(2)12;(3)5;(4)﹣359912. 【解析】根据有理数的混合运算的法则计算即可.【详解】解:(1)原式=10+19﹣5﹣167=29﹣172=﹣143;(2)原式=﹣1×(13 ﹣12 )×6÷2 =﹣6×(13﹣12)÷2 =(﹣6×13+6×12 )÷2 =(﹣2+3)÷2 =12; (3)原式=278 ×(253 ﹣258)÷2524 ×827 =278 ×(253 ﹣258)×2425 ×827 =(253 ﹣258 )×2425 =253 ×2425 ﹣258×2425 =8﹣3=5;(4)(﹣36)×997172=﹣36×(100﹣172) =﹣3600+12=﹣359912 . 故答案为(1)-143;(2)12 ;(3)5;(4)﹣359912. 【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及其运算律. 20.先化简,再求值:22225(3)2(3)a b ab ab a b --+,其中a =-2,b =-1.【答案】化简结果为:229-7a b ab ,值为:-22.【分析】根据整式的加减法则先化简22225(3)2(3)a b ab ab a b --+,再将a =-2,b =-1代入化简后的式子即可得出答案.【详解】解:222222225(3)2(3)=15-5-2-6a b ab ab a b a b ab ab a b --+22=9-7a b ab将a =-2,b =-1代入得原式22=9(2)(1)-7(2)(1)22⨯-⨯-⨯-⨯-=-【点睛】本题考查的是整式的化简求值,注意先化简再求值.21.已知代数式43232235762x ax x x x bx x +++--+-合并同类项后不含,2x 项,求23a b +的值.【答案】-22【解析】【分析】根据多项式不含有的项的系数为零,求出a,b 的值代入2a+3b 即可.【详解】解:原式4332223(5)(37)62x ax x x x bx x =+++--+-=432(5)(4)62x a x b x x +++--+-由题意,得50a +=,40b --=,解得5a =-,4b =-,所以232(5)3(4)22a b +=⨯-+⨯-=-.【点睛】本题考查了合并同类项,利用多项式不含有的项的系数为零得出a ,b 是解题关键.22.有理数a ,b 在数轴上所对应的点的位置如图所示:(1)用“<”连接 : 0,-a ,-b ,-1,1,a ,b ;(2)化简: 11a a b b a -+----.【答案】(1)a <-1<-b <0<b <1<-a ;(2)a【解析】【分析】(1)根据数轴得出a<-1<0<b<1,再比较,即可得出答案;(2)先根据第(1)问的结果判断出每个绝对值的正负并去掉绝对值,再进行计算即可得出答案.【详解】解:(1)根据题意可得:a<-1<-b<0<b<1<-a(2)∵a<0,a+b-1<0,b-a-1>0∴原式=-a-[-(a+b-1)]-(b-a-1)=-a+(a+b-1)-(b-a-1)=-a+a+b-1-b+a+1=a【点睛】本题考查了数轴、绝对值、合并同类项以及有理数的大小比较等知识点,能正确去掉绝对值符号是解决本题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.23.邮递员骑车从邮局出发,先向西骑行2 km 到达A村,继续向西骑行3 km到达B 村,然后向东骑行9 km到达C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1 cm 表示1 km 画数轴,并在该数轴上表示A,B,C三个村庄的位置;(2)C村离A 村有多远?(3)邮递员一共骑行了多少千米?【答案】(1)答案见解析;(2)6km;(3)18km【解析】【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据数轴列出算式即可得出答案;(3)根据题意可求出从邮局到C处所走的路程为:2+3+9=14km,再由数轴可得C到邮局的距离为4km,相加即可得出答案.【详解】解:(1)根据题意可得:(2)C村离A村的距离为9-3=6(km)(3)邮递员一共行驶了2+3+9+4=18(千米)【点睛】本题考查的是正负数的应用,解题的关键是理解题目中“正”和“负”的相对概念.24.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星一二三四五六日增+6 ﹣3 ﹣5 +11 ﹣8 +14 ﹣9(1)根据记录可知前三天共生产个;(2)产量最多的一天比产量最少的一天多生产个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?【答案】(1)298;(2)23;(3)该厂工人这一周的工资是35390元.【解析】【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;(2)求出超产的最多数与最少数的差即可;(3)求得这一周生产的总辆数,然后按照工资标准求解.【详解】解:(1)前三天生产的辆数是100×3+(6﹣3﹣5)=298(个).答案是:298;(2)14﹣(﹣9)=23(个),故答案是23;(3)这一周多生产的总辆数是6﹣3﹣5+11﹣8+14﹣9=6(个).50×700+65×6=35390(元).答:该厂工人这一周的工资是35390元.【点睛】本题考查有理数的运算,理解正负数的意义,求得这一周生产的总数是关键.25.如图,四边形ABCD与四边形CEFG是两个正方形,边长分别为a,b,其中B,C,E在一条直线上,G在线段CD上,三角形AGE的面积为S.(1)①当a=5,b=3时,求S值;②当a=7,b=3时,求S的值;(2)从以上结果中,请你猜想S 与a ,b 中的哪个量有关?用字母a ,b 表示S ,并对你的猜想进行证明.【答案】(1)①4.5;②4.5;(2)S =12b 2,证明见解析 【解析】【分析】(1)①根据S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG ,即可得出答案;②方法同①;(2)结论S =12b 2,根据S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG 即可证明. 【详解】(1)①∵四边形ABCD 与四边形CEFG 是两个正方形,AB =5,EC =3,∴DG =CD -CG =5-3=2.∴S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=25+9-12×8×5-12×5×2-12×3×3=4.5. ②∵四边形ABCD 与四边形CEFG 是两个正方形,AB =7,EC =3,∴DG =CD -CG =7-3=4.∴S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=49+9-12×10×7-12×7×4-12×3×3=4.5 (2)结论S =12b 2. 证明:∵S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=a 2+b 2-12(a +b )•a -12•a (a -b )-12b 2 =a 2+b 2-12a 2-12ab -12a 2+12ab -12b 2 =12b 2, ∴S =12b 2. 【点睛】本题主要考查的是整式的加减,需要熟练掌握整式的加减规律.26.已知2|4|(2)0a b ++-=,数轴上A B 、两点所对应的数分别是和.(1)填空:a = ,b = ;(2)数轴上是否存在点,点在点的右侧,且点到点的距离是点到点的距离的2倍?若存在,请求出点表示的数;若不存在,请说明理由;(3)点以每秒2个单位的速度从点出发向左运动,同时点Q 以每秒3个单位的速度从点出发向右运动,点M 以每秒4个单位的速度从原点点出发向左运动.若为PQ 的中点,当16PQ =时,求M N 、两点之间的距离.【答案】(1)-4,2;(2)0或8;(3)MN=8.【解析】【分析】(1)由“几个非负数和为0,则这几个数都为0”列出方程解答;(2)分两种情况:点C 在A 、B 之间;点C 在B 的右侧.列出方程进行解答;(3)设运动时间为t 秒,根据PQ=16,列出t 的方程求得t ,再求得运动后的M 、N 点表示的数即可.【详解】:(1)由题意得,a+4=0,b-2=0,解得,a=-4,b=2,故答案为:-4,2;(2)设C 点表示的数为x ,根据题意得,①当点C 在A 、B 之间时,有x+4=2(2-x ),解得,x=0;②当点C 在B 的右侧时,有x+4=2(x-2),解得,x=8.故点C 表示的数为0或8;(3)设运动的时间为t 秒,根据题意得, 2t+3t+AB=16,即2t+3t+6=16,解得,t=2,∴运动2秒后,各点表示的数分别为:P :-4-2×2=-8,Q :2+3×2=8,M :0-4×2=-8,N :2808-+=, ∴MN=0-(-8)=8.【点睛】本题主要考查了一元一次方程的应用,用数轴上的点表示数,数轴上的动点问题,两点间的距离,非负数的性质,解题的关键是正确列出一元一次方程.。

人教版数学七年级上册《期中考试卷》(含答案)

人教版数学七年级上册《期中考试卷》(含答案)

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017-3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33< 4.下列各式中,等号不成立的是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab 7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.10.单项式 35ab -8的系数是__,次数是__. 11.若315k y x 与3873x y -是同类项,则k=_____. 12.我国2006年参加高考报名总人数约为950万人,则该人数可用科学记数法表示为_____人. 13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).14.已知单项式3a m b 2与423n a b -和是单项式,那么m=_____,n=_____. 15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48. (3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78. (4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m 2n ﹣5mn)﹣(4m 2n ﹣5mn) (6)13(9a ﹣3)+2(a +1). 四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=ab a b+,试求2*(﹣4)的值. 19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?21.已知:m,x,y满足:(1)23(x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.答案与解析一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元【答案】B【解析】试题分析:若规定收入为“+”,则“﹣”表示与之相反的意义,即支出.解:∵收入用“+”表示,∴﹣50元表示支出50元,故选B .考点:正数和负数.2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017- 【答案】D【解析】分析】根据乘积为1的两个数互为倒数,可得答案.【详解】解:-2017的倒数是12017-.故选D.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33<【答案】C【解析】【分析】(1)根据两个负数,绝对值大的其值反而小作答;(2)根据负数都小于0作答;(3)根据两个负数,绝对值大的其值反而小作答;(4)根据两个正数,绝对值大的数较大作答.【详解】A.∵|−6|<|−8|,∴−6>−8,错误;B.∵11000-−11000是负数,∴11000-<0,错误; C.∵11,57->- ∴1157--<,正确; D.1 3>0.3,错误.故选C.【点睛】考查有理数的大小比较,掌握正数都大于0,负数都小于0,正数大于负数,两个负数,绝对值大的反而小是解题的关键.4.下列各式中,等号不成立是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 【答案】B【解析】试题分析:正数绝对值等于它本身,负数的绝对值等于它的相反数,零的绝对值为零.444-==,则本题不成立的是B .5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项【答案】D【解析】试题分析:由同类项的定义可知,D 选项中的两个单项式所含字母m 、n 相同,并且相同字母的指数也相等,因此本题选D.考点:同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab【答案】B【解析】【详解】解:A 选项不是同类项,无法进行加减法计算;B 选项计算正确;C 、原式=2x ;D 选项不是同类项,无法进行加减法计算.故选B .【点睛】本题主要考查的就是合并同类项的计算,属于简单题目.对于同类项的加减法,我们只需要将同类项的系数进行相加减,字母和字母的指数不变即可得出答案,很多同学会将字母的指数也进行相加减,这样就会出错.如果两个单项式不是同类项,我们无法进行加减法计算,这一点很多同学会出错.7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1) 【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A :0.05019精确到0.1是0.1,正确;B :0.05019精确到百分位是0.05,正确;C :0.05019精确到千分位是0.050,错误;D :0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元 【答案】D【解析】 由题意得0.7a 元,所以选D. 点睛:涨价,降价与折扣一个物品价格为a ,涨价b %,现价 为a (1+b %),一个物品价格为a ,降价b %,现价 为a (1-b %),一个物品价格为a ,9折出售,现价为90%a.二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.【答案】(t +15)【解析】(t +15).10.单项式 35ab -8的系数是__,次数是__. 【答案】 (1). 58- (2). 4【解析】 因为单项式的系数是指字母前数字因数,所以358ab -的系数是58-,单项式的次数是指所含字母指数之和,所以358ab -的次数是4,故答案为5 8-,4. 11.若315k y x 与3873x y -是同类项,则k=_____. 【答案】8【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:k=8.12.我国2006年参加高考报名的总人数约为950万人,则该人数可用科学记数法表示为_____人.【答案】9.5×106【解析】试题分析:科学计数法是指将一个数字表示成a 10n ⨯的形式,其中1≤a <10,n 为原数的整数位数减一,则950万人=9500000人=69.510⨯人.13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).【答案】不合格【解析】【分析】根据正负数的意义,求得合格零件的直径的范围,再进一步分析.【详解】解:根据题意,得该零件直径最小是20-0.02=19.98(mm ),最大是20+0.02=20.02(mm ),因为19.9<19.98,所以该零件不合格.故答案为不合格.【点睛】此题考查了正、负数在实际生活中的意义,±0.02表示和标准相比,超过或不足0.02. 14.已知单项式3a m b 2与423n a b -的和是单项式,那么m=_____,n=_____. 【答案】 (1). 4 (2). 2【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:m=4,n=2.15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.【答案】0或﹣6.【解析】试题分析:在数轴上两点所表示的数的差的绝对值为这两个点之间的距离.设这个点表示的数为x ,则()33x --=,则x 33+=±,解得:x=0或-6,即这个点表示的数为0或-6.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.【答案】5或1.【解析】试题分析:根据绝对值的计算方法可得:a 3=±,b 2=±,根据a b >可得:a=3,b 2=±,则a+b=3+2=5或a+b=3+(-2)=1.点睛:正数的绝对值等于它本身,负数的绝对值等于它的相反数,零的相反数为零;互为相反数的两个数的绝对值相等.本题首先根据绝对值的性质求出a 和b 的值,然后根据有理数的大小比较方法确认a 和b 的值,然后进行计算得出答案.这种题目有的时候还是会出现平方根,根据平方根的性质得出答案.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48.(3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78.(4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m2n﹣5mn)﹣(4m2n﹣5mn)(6)13(9a﹣3)+2(a+1).【答案】(1)﹣1;(2)24;(3)﹣1;(4)19;(5)3m2n;(6)5a+1【解析】试题分析:(1)、首先将同号的进行相加,然后再进行异号的加法计算;(2)、利用乘法分配律进行简便计算;(3)、首先进行绝对值和去括号计算,然后将同分母的放在一起进行计算,最后进行整数之间的计算;(4)、先进行幂的计算,然后进行加减法计算;(5)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案;(6)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案.试题解析:解:(1)、原式=﹣23+22=﹣1;(2)、原式=﹣8+36﹣4=24;(3)、原式=0.75﹣3+0.25+18+78=1﹣3+1=﹣1;(4)、原式=﹣4+3×1+20=﹣4+3+20=19;(5)、原式=7m2n﹣5mn﹣4m2n+5mn=3m2n;(6)、原式=3a﹣1+2a+2=5a+1四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=aba b+,试求2*(﹣4)的值.【答案】4【解析】【分析】根据给出的新定义的计算法则将数字分别代入公式计算即可得出答案.【详解】2*(﹣4)=()()248 244⨯--=+--=4.【点睛】考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.【答案】6.【解析】试题分析:首先根据去括号的法则将括号去掉,然后再进行合并同类项计算,最后将x 和y 的值代入化简后的式子进行计算即可得出答案.试题解析:解:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y)=2x 2y ﹣4xy 2+3xy 2﹣x 2y=x 2y ﹣xy 2,当x=﹣1,y=2时,原式=(﹣1)2×2﹣(﹣1)×22=1×2+1×4=2+4=6.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?【答案】(1)A 处在岗亭南方,距离岗亭14千米;(2)34L【解析】【分析】(1)由已知,把所有数据相加,如果得数是正数,则A 处在岗亭北方,否则在北方.所得数的绝对值就是离岗亭的距离.(2)把所有数据的绝对值相加就是行驶的路程,已知摩托车每行驶1千米耗油0.5升,那么乘以0.5就是一天共耗油的量.【详解】解:(1)(+10)+(-8)+( +7)+(-15)+(+6)+(-16)+(+4)+(-2) 1分=-14答:停留时,A 处在岗亭的南方,距离14千米(2)()108715616420.5+++++++++++⨯---- ()108715616420.5=+++++++⨯680.5=⨯34=答:这一天共耗油34升考点:正数和负数.21.已知:m,x,y 满足:(1)23(x -5)2+5|m|=0;(2)-2a 2b y +1与7b 3a 2是同类项. 求:代数式2x 2-6y 2+m(xy -9y 2)-(3x 2-3xy +7y 2)的值.【答案】-47.【解析】【分析】根据几个非负数的和为零,则每一个非负数都是零的性质求出x 和m 的值;根据同类项的定义求出y 的值,然后将x 、y 和m 的值代入所求的代数式得出答案. 【详解】解:∵()225503x m -+=,(x ﹣5)2≥0,|m |≥0, ∴(x ﹣5)2=0,|m |=0, ∴x ﹣5=0,m=0,∴x=5∵﹣2a 2b y +1与7b 3a 2是同类项∴y +1=3,∴y=2∴2x 2﹣6y 2+m(xy ﹣9y 2)﹣(3x 2﹣3xy +7y 2)=2x 2﹣6y 2+mxy ﹣9my 2﹣3x 2+3xy ﹣7y 2=﹣x 2﹣13y 2﹣9my 2+mxy +3xy=﹣52﹣13×22﹣9×0×22+0×5×2+3×5×2=﹣47.【点睛】本题主要考查的就是非负数的性质、同类项的定义以及代数式的化简求值问题.计算结果为非负数的我们在初中阶段学过三种:平方、绝对值、算术平方根.这种题目经常会在考试当中出现,我们一定要引起重视.对于同类项,我们一定要明确同类项的定义,根据定义可以得出未知数的值.。

七年级(上)期中数学复习测试卷(一)及答案

七年级(上)期中数学复习测试卷(一)及答案

七年级(上)期中数学复习测试卷(一)考生须知:1、 全卷满分为100分,考试时间90分钟,试卷共4页,有五大题,25小题.2、 请用钢笔或圆珠笔答卷,并将姓名、考号分别填写在考卷的相应位置上. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现! 一、 精心选一选(10小题,每小题3分,共30分) 1.有理数-13的倒数( ) A . 13B .- 13C .3D .-32.下列计算正确的是( )A .(-3)-(-5)=-8B .=-9C .24=--D .±=9 3 3.用科学记数法表示106 000,其中正确的是( )A .1.06×105B .1.06×106C .106×103D .10.6×104 4.一个数的立方根是它本身,则这个数是( )A 1B 0或1C -1或1D 1, 0或-1 5.实数0、2 、13-、π、0.1010010001……中,无理数有 ( ) A .1个 B .2个 C .3个 D .4个 6.估算227-的值在( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间 7.室内温度10℃,室外温度是-3℃,那么室内温度比室外温度高( )A 、-13℃B 、-7℃C 、7℃D 、13℃8.已知c b a ,,在数轴上的位置如图所示,则下列结论正确的是 ( ) A .0>-c a B .0<abcC .0<cabD .||||c a > 9.有下列说法:c a o b①任何无理数都是无限小数; ②有理数与数轴上的点一一对应; ③在1和3之间的无理数有且只有2,3,5,7这4个;④2π是分数,它是有理数. ⑤近似数7.30所表示的准确数a 的范围是:7.295≤a <7.305. 其中正确的个数是( )A .1 B. 2 C. 3 D. 4 10.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作。

人教版七年级上学期期中考试数学试卷(含答案)

人教版七年级上学期期中考试数学试卷(含答案)

人教版七年级第一学期期中数学试卷及答案一、单选题(共10题,每小题4分,合计40分)1.(4分)的相反数是()A.6B.﹣6C.D.﹣【解答】解:的相反数是﹣,故选:D.2.(4分)如果和﹣x2y n是同类项,则m+n=()A.3B.2C.1D.﹣1【解答】解:∵和﹣x2y n是同类项,∴m=2,n=1,∴m+n=2+1=3.故选:A.3.(4分)如果m=n,那么下列等式不一定成立的是()A.m﹣3=n﹣3B.2m+3=3n+2C.5+m=5+n D.【解答】解:A.∵m=n,∴m﹣3=n﹣3,故本选项不符合题意;B.∵m=n,∴2m=2n,∴2m+3=2n+3,不能推出2m+3=3n+2,故本选项符合题意;C.∵m=n,∴5+m=5+n,故本选项不符合题意;D.∵m=n,∴=,故本选项不符合题意;故选:B.4.(4分)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.5.(4分)已知x=2是方程3x﹣5=2x+m的解,则m的值是()A.1B.﹣1C.3D.﹣3【解答】解:∵x=2是方程3x﹣5=2x+m的解,∴把x=2代入方程可得6﹣5=4+m,解得m=﹣3,故选:D.6.(4分)解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.7.(4分)多项式a2+a与多项式﹣a+1的差为()A.a2+1B.a2+2a+1C.a2﹣1D.a2+2a﹣1【解答】解:(a2+a)﹣(﹣a+1)=a2+a+a﹣1=a2+2a﹣1,故选:D.8.(4分)多项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,则k的值是()A.0B.1C.2D.﹣2【解答】解:∵项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,∴﹣k+1=0,∴k=2.故选:C.9.(4分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.10.(4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.二.填空题(共6题,每小题4分,合计24分)11.(4分)我市2020年常住人口约9080000人,该人口数用科学记数法可表示为9.08×106人.【解答】解:9080000人用科学记数法可表示为9.08×106人.故答案为:9.08×106.12.(4分)若a﹣b=1,则代数式2a﹣(2b﹣1)的值是3.【解答】解:整理代数式得,2a﹣2b+1=2(a﹣b)+1,∵a﹣b=1,∴原式=2+1=3.13.(4分)当x=1时,代数式x+2与代数式的值相等.【解答】解:∵代数式x+2与代数式的值相等,∴x+2=,2x+4=7﹣x,2x+x=7﹣4,3x=3,x=1,故答案为:1.14.(4分)若|x|=3,|y|=4,且xy>0,则x+y的值为7或﹣7.【解答】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵xy>0,∴x=3时,y=4,x+y=7,x=﹣3时,y=﹣4,x+y=﹣3+(﹣4)=﹣7,综上所述,x+y的值是7或﹣7.故答案为:7或﹣7.15.(4分)一台整式转化器原理如图,开始时输入关于x的整式M,当M=x+1时,第一次输出3x+1,继续下去,则第2次输出的结果是7x+1.【解答】解:第一次输入M=x+1得整式:(x+1+)×2+N=3x+1,整理得3x+2+N=3x+1,故2+N=1,解得N=﹣1,故运算原理为:(M+)×2﹣1,第二次输入M=3x+1,运算得(3x+1+)×2﹣1=7x+1.故答案为:7x+1.16.(4分)有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣c|+|b﹣c|的结果是﹣2a.【解答】解:根据图形,c<b<0<a,且|a|<|b|<|c|,∴a+b<0,a﹣c>0,b﹣c>0,∴原式=(﹣a﹣b)﹣(a﹣c)+(b﹣c),=﹣a﹣b﹣a+c+b﹣c,=﹣2a.故答案为:﹣2a.三.解答题(共9题,合计86分)17.(8分)计算:(1);(2).【解答】解:(1)=()×(﹣60)=﹣×60+×60﹣×60+×60=﹣20+15﹣12+10=﹣7;(2)=﹣1﹣×(﹣20)+4=﹣1+8+4=11.18.(8分)先化简再求值:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab,其中a=﹣3,b=﹣2.【解答】解:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab=3a2b﹣2a2b+(2ab﹣a2b)+4a2﹣ab=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab=ab+4a2当a=﹣3,b=﹣2时,原式=(﹣3)×(﹣2)+4×(﹣3)2=6+36=42.19.(8分)解方程:(1)y﹣3(20﹣2y)=10(2)(x﹣2)=1﹣(4﹣3x)【解答】解:(1)去括号得:y﹣60+6y=10,移项得:y+6y=10+60,合并同类项得:7y=70,系数化为1得:y=10,(2)方程两边同时乘以12得:3(x﹣2)=12﹣2(4﹣3x),去括号得:3x﹣6=12﹣8+6x,移项得:3x﹣6x=12﹣8+6,合并同类项得:﹣3x=10,系数化为1得:x=﹣.20.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)﹣5﹣20136袋数143453这批样品的平均质量比标准质量多还是少?多或少几克,若标准质量为450克,则抽样检测的总质量是多少?【解答】解:与标准质量的差值的和为﹣5×1+(﹣2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).21.(8分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【解答】解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.22.(10分)已知:M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2.(1)求M;(2)若|x﹣2|+(y+1)2=0,计算M的值.(2)直接利用非负数的性质得出x,y的值,进而代入计算得出答案.【解答】解:(1)∵M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2,∴M=4x3+16xy2+8y3﹣(3x3﹣4y3+16xy2)=4x3+16xy2+8y3﹣3x3+4y3﹣16xy2=x3+12y3;(2)∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,解得:x=2,y=﹣1,∴M=23+12×(﹣1)=8﹣12=﹣4.23.(10分)阅读下面解题过程.利用运算律有时能进行简便计算.例1:98×12=(100﹣2)×12=1200﹣24=1176;例2:﹣16×233+17×233=(﹣16+17)×233=233;请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15);(2)999×118+999×(﹣)﹣999×18.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)﹣1×(﹣15)=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×[118+(﹣)+(﹣18)]=999×100=99900.24.(12分)有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8;继续依次操作下去.问(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和是多少?【解答】解:(1)第一次操作后增加的新数是6,﹣1,则6+(﹣1)=5.(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和为3+3+(﹣10)+9=5.(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和为5.25.(14分)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【解答】解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.。

人教版七年级上学期期中考试数学试题(含答案)

人教版七年级上学期期中考试数学试题(含答案)

人教版七年级上学期期中数学试卷及答案一、选择题(每小题3分,共36分)1.﹣2022的绝对值是()A.B.﹣2022C.2022D.﹣2.检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,在其下方标注了检测结果,其中质量最接近标准的是()A.﹣0.3B.+0.4C.﹣0.1D.﹣0.63.如图,表示互为相反数的两个点是()A.点A和点D B.点B和点C C.点A和点C D.点B和点D4.下列等式正确的是()A.|﹣9|=﹣9B.|﹣|=3C.﹣|﹣7|=7D.﹣(+2)=﹣25.在代数式m,﹣2,4ab2,,中,单项式有()A.3个B.4个C.5个D.6个6.低碳奥运,能源先行,2022冬奥会所有场馆在奥运历史上首次100%使用绿色电力,其中数据14000000000用科学记数法表示为()A.1.4×1010B.1.4×1012C.14×109D.0.14×10117.将多项式x3﹣4xy2+7y3+6x2y按字母y升幂排列的是()A.7y3+4xy2+6x2y+x3B.7y3﹣4xy2+6x2y+x3C.x3﹣6x2y+4xy2+7y3D.x3+6x2y﹣4xy2+7y38.一个点从数轴的原点开始,先向左移动2个单位长度,再向右移动7个单位长度()A.﹣9B.+9C.﹣5D.+59.若|a|=4,|b|=2,且|a+b|=﹣(a+b)()A.﹣2B.﹣6C.﹣2或﹣6D.2或610.《九章算术》中记载一问题:今有共买物,人出八,盈三,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱;每人出7钱,又差4钱.问人数、物价各多少?设人数为x人()A.8x﹣3B.8x+3C.7x﹣4D.7(x+4)11.一个含有多个字母的整式,如果把其中任何两个字母互换位置,所得的结果与原式相同,x2+y2+z2是对称整式.x2﹣2y2+3z2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式;②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式:④若某对称整式只含字母z,y,z,且其中有一项为x2y,则该多项式的项数至少为3.以上结论中错误的个数是()A.4B.3C.2D.112.如图是一个运算程序的示意图,若开始输入x的值为125,则第2022次输出的结果为()A.5B.25C.1D.125二、填空题(每小题3分,共18分)13.﹣1 ﹣0.5.(填“>”、“<”或“=”)14.如果零上2℃记作+2℃,那么零下5℃记作℃.15.用代数式表示:x减去y的平方的差.16.如果6x2﹣3x+5=11,那么代数式2x2﹣x+3的值是.17.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“1cm”和“9cm”分别对应数轴上的﹣5和x.18.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,是世界上最早的“幻方”.如图是仅可以看到部分数值的“九宫格”,则其中x﹣y的值为.三、解答题:(共计66分)19.(12分)计算.(1)25+(﹣18)+4+(﹣10);(2)(﹣3)﹣(﹣15)÷(﹣3);(3)(﹣+﹣)×(﹣12);(4)(﹣1)10×2+(﹣2)3÷4.20.(6分)规定一种运算:=ad﹣bc,例如,,请你按照这种运算的规定,计算.21.(6分)有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.22.(6分)若x,y互为相反数,a,b互为倒数,求()2022﹣(﹣ab)2022+c2的值.23.(8分)小明读一本共m页的书,第一天读了该书的,第二天读了剩下的.(1)用含m的代数式表示小明两天共读的页数;(2)当m=120时,求小明两天共读的页数.24.(8分)已知关于x的多项式mx4+(m﹣3)x3﹣(n+2)x2+4x﹣n不含二次项和三次项.(1)求出这个多项式;(2)求当x=2时代数式的值.25.(8分)当今,人们对健康意加重视,跑步成了人们进行体育锻炼的首要选择(即手机应用小程序)应运而生.小明苦爸给自己定了健身目标,每天跑步a千米.以目标路程为基准,不足的部分记为“﹣”,他记下了“十一”长假期间七天跑步的实际路程如下:日期1日2日3日4日5日6日7日略程(千米)+1.72+3.20﹣1.92﹣0.90﹣1.88+3.30+0.08(1)10月5日小明爸爸的跑步路程是千米;(用舍a的代数式表示)(2)小明爸爸给自己定的健身目标是每天跑5千米,若跑步一千米消耗的热量为60千卡,求小明爸爸这七天跑步一共清耗了多少热量?26.(12分)在数轴上点A表示a,点B表示b,且a、b满足|a+5|+|b﹣7|=0.(1)求a,b的值,并计算点A与点B之间的距离.(2)若动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后(3)若动点P从A点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q从B点出发,运动几秒后,P、Q两点间的距离为4个单位长度?参考答案与试题解析1.【解答】解:﹣2022的绝对值是2022.故选:C.2.【解答】解:|﹣0.3|=2.3,|+0.2|=0.4,|﹣2.6|=0.6,∵0.1<2.3<0.3<0.6,∴C选项的排球最接近标准质量.故选:C.3.【解答】解:2和﹣2互为相反数,故选:C.4.【解答】解:A.根据绝对值的定义,那么A错误.B.根据绝对值的定义,,故B不符合题意.C.根据绝对值的定义,那么C错误.D.根据相反数的定义,那么D正确.故选:D.5.【解答】解:代数式m,﹣22,,中,单项式有m,4ab4,共3个.故选:A.6.【解答】解:14000000000=1.4×1010.故选:A.7.【解答】解:将多项式x3﹣4xy6+7y3+7x2y按字母y升幂排列的是7y7﹣4xy2+3x2y+x3,故选:B.8.【解答】解:∵点从原点向左移动2个单位长度,∴该点移动到数轴上的﹣2处,∵再向右移动5个单位长度,∴﹣2+7=3,∴这个点最终所对应的数是5,故选:D.9.【解答】解:∵|a|=4,|b|=2,∴a=±7,b=±2,∵|a+b|=﹣(a+b),∴a+b≤0,∴当a=﹣7时,b=2或﹣2,∴a﹣b=﹣2﹣2=﹣6或a﹣b=﹣2﹣(﹣2)=﹣2,∴a﹣b的值为﹣3或﹣6.故选:C.10.【解答】解:根据题意得,物价为:8x﹣3或8x+4;故选:A.11.【解答】解:①假设两个对称整式分别为M和N(含相同的字母),由题意可知:任何两个字母互换位置,所得的结果与原式相同,则M+N的结果不变,故①不符合题意;②反例:x3+y3+z4+x+y+z为对称整式,x3与y互换后,所得的结果都不会是一个对称的整式;③反例:xyz为单项式,但也是对称整式;④对称整式只含字母x,y,z,且其中有一项为x2y,若x,y互换3y:y2x,则有一项为y2x;若z,x互换2y:z2y,则有一项为z2y;若y,z互换8y:x2z,则有一项为x2z;第三项中x,y,z的次数相同,同理:可以换不相同的字母,至少含有四项:xy2,x2y,x2z,yz5,则该多项式的项数至少为4.故④符合题意.所以以上结论中错误的是②③④,共3个.故选:B.12.【解答】解:第一次:当x=125,,第二次:当x=25,,第三次:当x=4,,第四次:当x=1,x+4=4,第五次:当x=5,,……根据前五次输出结果可知从第二次开始,第奇数次输出结果为1.∴第2022次输出的结果为4.故选:A.13.【解答】解:|﹣1|=1,|﹣3.5|=0.5,∵1>0.7,∴﹣1<﹣0.7,故答案为:<.14.【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣5℃.故答案为:﹣5.15.【解答】解:y的平方即y2,则x减去y的平方的差就可以表示为:x﹣y2故答案为:x﹣y616.【解答】解:∵6x2﹣7x+5=11,∴6x7﹣3x=6,∴5(2x2﹣x)=4,即2x2﹣x=3,∴2x2﹣x+2=2+3=8.故答案为:5.17.【解答】解:∵刻度尺上“1cm”对应数轴上的﹣5,∴刻度尺上“3cm”对应数轴上的0,∴刻度尺上“9cm”对应数轴上的3,故答案为:3.18.【解答】解:这九个数的和为1+2+2+...+9=45,∵每一行、每一列的数之和均相对,∴每一行、每一列的数之和为15.∴下中为15﹣9﹣6=1,下右为15﹣8﹣7=6,左中为15﹣4﹣2=3,∴x﹣y=4﹣6=﹣3.故答案为:﹣3.19.【解答】解:(1)25+(﹣18)+4+(﹣10)=25﹣18+4﹣10=2;(2)(﹣3)﹣(﹣15)÷(﹣3)=﹣3﹣5=﹣8;(3)(﹣+﹣)×(﹣12)=×(﹣12)﹣×(﹣12)﹣=﹣9+8﹣4+10=3;(4)(﹣1)10×6+(﹣2)3÷8=1×2+(﹣5)÷4=2﹣7=0.20.【解答】解:∵=ad﹣bc,∴=(﹣1)2018×(﹣2)﹣4×1.25=5×(﹣9)﹣5=﹣5﹣5=﹣14.21.【解答】解:∵在数轴上原点右边的数大于0,左边的数小于0,b<a<8,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b.22.【解答】解:∵x,y互为相反数,a,c的绝对值等于2,∴x+y=0,ab=7,c2=4,∴()2022﹣(﹣ab)2022+c2=()2022﹣(﹣1)2022+4=6﹣1+4=7.23.【解答】解:(1)∵第一天读了该书的,∴小明第一天读了m页;∵第二天读了剩下的,∴小明第二天读了(4﹣m(页).∴小明两天共读的页数为:m+m(页).(2)当m=120时,m=×120=56(页).答:当m=120时,小明两天共读的页数为56 页.24.【解答】解:(1)∵关于x的多项式mx4+(m﹣3)x2﹣(n+2)x2+7x﹣n不含二次项和三次项,∴m﹣3=0,﹣(n+2)=0,∴m=3,n=﹣3,∴这个多项式为:3x4+4x+2;(2)当x=2时,7x4+4x+4=3×28+4×2+4=58.25.【解答】解:(1)由题意得:10月5日小明爸爸的跑步路程是(a﹣1.88)千米,故答案为:(a﹣6.88);(2)根据题意得:(5×7+2.72+3.20﹣1.92﹣6.90﹣1.88+3.30+5.08)×60=2316(千卡),答:小明爸爸这七天跑步一共消耗了2316千卡热量.26.【解答】解:(1)∵|a+5|+|b﹣7|=8,∴a=﹣5,b=7,∴A与点B之间的距离为6﹣(﹣5)=12;(2)∵A与点B之间的距离为12,∴12÷2=7(秒),答:运动6秒后,点P到达B点;(3)P、Q相遇前:(12﹣4)÷(3+3)=2(秒),P、Q相遇后:(12+7)÷(1+3)=6(秒),答:运动2秒或4秒后,P、Q两点间的距离为3个单位长度.。

人教版七年级数学上册期中试卷(含答案)

人教版七年级数学上册期中试卷(含答案)

人教版七年级数学上册期中试卷七年级数学满分:120分时间:90分钟一、选择题。

(每小题3分,共30分)1.下列各式不成立的是A. |−2| = 2B. |+2 |= |−2|C. −|+2| =±|−2| C. −|3| = + (−3)2.在+3.5、−43、0、−2、−0.56、−0.101001中,负分数有A. 4个B. 3个C. 2个D. 1个3.已知有理数a,b在数轴上的位置如图所示,比较a、b、−a、−b的大小,正确的是A. a<b<−a<−bB. b<−a<−b<aC. −a<a<b<−bD. −b<a<−a<b4.冰箱冷冻室的温度为−6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高A. 26℃B. 14℃C. −26℃D. −14℃5.下列判断中,正确的是A. 若a是有理数,则|a|−a=0一定成立B. 两个有理数的和一定大于每个加数C. 两个有理数的差一定小于被减数D. 0减去任何数都等于这个数的相6.计算(−2)2022+(−2)2023的结果是A. −1B. −2C. −22022D. 220237.如果一个多项式的次数是6,那么这个多项式的任何一项的次数A. 都小于6B. 都等于6C. 都不小于6D. 都不大于68.在式子:−35ab、2x2y5、x+y2、−a2bc、1、x2−2x+3、3a、1x+1中,单项式个数为A. 2B. 3C. 4D. 59.如果整式x n−3−5x2+2是关于x的三次三项式,那么n等于A. 3B. 4C. 5D. 610.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是A. (1−10%)(1+15%)x万元B. (1−10%+15%)x万元C. (x−10%)(x+15%)万元D. (1+10%−15%)x万元二、填空题。

初中数学七年级上期中复习题(含答案解析)

初中数学七年级上期中复习题(含答案解析)

一、选择题1.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是2015,则m 的值是( ) A .43 B .44 C .45 D .46 2.用科学记数方法表示0.0000907,得( )A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯3.生物学家发现一种病毒的长度约为0.000043mm ,用科学记数法表示这个数的结果为(单位:mm )( ) A .4.3×10﹣5B .4.3×10﹣4C .4.3×10﹣6D .43×10﹣54.7-的绝对值是 ( ) A .17-B .17C .7D .7-5.2019的倒数的相反数是( ) A .-2019B .12019-C .12019D .20196.下面四个图形中,是三棱柱的平面展开图的是( ) A .B .C .D .7.23的相反数是 ( ) A .32B .32-C .23D .23-8.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( ) A .8×1012 B .8×1013 C .8×1014 D .0.8×1013 9.若关于x 的方程3x +2a =12和方程2x -4=12的解相同,则a 的值为( ) A .6 B .8 C .-6 D .4 10.已知,OA ⊥OC ,且∠AOB :∠AOC =2:3,则∠BOC 的度数为( ) A .30°B .150°C .30°或150°D .90°11.下列说法:①﹣a 一定是负数;②|﹣a |一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 12.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤ 13.我县人口约为530060人,用科学记数法可表示为( )A .53006×10人 B .5.3006×105人 C .53×104人 D .0.53×106人14.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >015.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( ) A .8374x x +=+B .8374x x -=+C .8374x x +=-D .8374x x -=-二、填空题16.某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).17.几个人共同种一批树苗,如果每人种15棵,则剩下4棵树苗未种;如果每人种16棵树苗,则缺4棵树苗,则这批树苗共有_____棵.18.2018年2月3日崂山天气预报:多云,-1°C~-9°C ,西北风3级,则当天最高气温比最低气温高_______℃19.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.20.如右图是正方体的一个平面展开图,如果原正方体前面的字为“友”,则后面的字为____________.21.如图,依次用火柴棒拼三角形:照这样的规律拼下去,拼n 个这样的三角形需要火柴棒______________根.22.有理数a 、b 、c 在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|= ________.2323______. 24.用科学记数法表示:-206亿=______. 25.若一个角的余角是其补角的13,则这个角的度数为______. 三、解答题26.先化简,再求值:2(x 2y +3xy )﹣3(x 2y ﹣1)﹣2xy ﹣2,其中x =﹣2,y =2. 27.学校餐厅中,一张桌子可坐6人,现有以下两种摆放方式: (1)当有5张桌子时,第一种方式能坐 人,第二种方式能坐 人. (2)当有n 张桌子时,第一种方式能坐 人,第二种方式能坐 人.(3)新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,若你是老师,你打算选择以下哪种方式来摆放餐桌?为什么?28.已知BAD ∠,点C 是AD 边上的一点,按要求画图,并保留作图痕迹.(1)用尺规作图法在AD 的右侧以点C 为顶点作DCP DAB ∠=∠; (2)射线CP 与AB 的位置关系是____________,理由是____________. (3)画出表示点C 到AB 的距离的线段和表示点B 到AD 的距离的线段. 29.用四个长为m ,宽为n 的相同长方形按如图方式拼成一个正方形.(1).请用两种不同的方法表示图中阴影部分的面积. 方法①: ; 方法②: .(2).由 (1)可得出()m n +2,2()m n - ,4mn 这三个代数式之间的一个等量关系为: . (3)利用(2)中得到的公式解决问题:已知2a+b=6,ab =4,试求2(2)a b -的值.30.工厂某车间有48名工人,平均每人每天加工大齿轮10个或小齿轮15个,已知1个大齿轮与3个小齿轮配成一套,那么怎么安排工人,才能使每天加工的大小齿轮刚好配套?【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题二、填空题16.【解析】【分析】首先设标价x元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x的值【详解】设标价x元由题意得:80x﹣b=a解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关17.124【解析】【分析】由题意设这批树苗共有x棵根据题意利用种树人数相等建立方程并解出方程即可【详解】解:由题意设这批树苗共有x棵根据题意列出方程:解得故答案为:124【点睛】本题考查一元一次方程的应18.8【解析】【分析】根据有理数的减法解答即可【详解】-1-(-9)=8所以当天最高气温是比最低气温高8℃故答案为:8【点睛】此题考查有理数的减法关键是根据有理数的减法解答19.2【解析】试题分析:由题意可得:2x2+3x+7=10所以移项得:2x2+3x=10-7=3所求多项式转化为:6x2+9x﹣7=3(6x2+9x)-7=3×3-7=9-7=2故答案为2考点:求多项式20.诚【解析】【分析】正方体的平面展开图中相对的两个面中间必须隔着一个小正方形根据这一特点结合题意可正确解答【详解】如果原正方体上友所在的面为前面则信所在的面为左面所以相对的正方体的右面是国后面是诚故答21.【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴第三个三角形是7根火柴依次多2个可推出第n个这样的三角形需要多少根火柴【详解】∵第一个三角形是322.b+2c【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a<b则c-a<0原式=23.【解析】【分析】直接根据相反数的定义进行解答即可【详解】解:由相反数的定义可知的相反数是即故答案为:【点睛】本题考查的是相反数的定义即只有符号不同的两个数叫互为相反数24.-206×1010【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时25.【解析】【分析】设这个角的度数为x则它的余角为90°-x补角为180°-x再根据题意列出方程求出x的值即可【详解】设这个角的度数为x则它的余角为90°-x补角为180°-x依题意得:90°-x=(1三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题二、填空题16.【解析】【分析】首先设标价x元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x的值【详解】设标价x元由题意得:80x﹣b=a解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关解析:5()4a b+【解析】【分析】首先设标价x元,由题意得等量关系:标价×打折﹣利润=进价,代入相应数值,再求出x 的值.【详解】设标价x元,由题意得:80%x﹣b=a,解得:x=5()4a b+,故答案为:5()4a b+.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,标价×打折﹣利润=进价.17.124【解析】【分析】由题意设这批树苗共有x棵根据题意利用种树人数相等建立方程并解出方程即可【详解】解:由题意设这批树苗共有x棵根据题意列出方程:解得故答案为:124【点睛】本题考查一元一次方程的应解析:124【解析】【分析】由题意设这批树苗共有x棵,根据题意利用种树人数相等建立方程并解出方程即可.【详解】解:由题意设这批树苗共有x棵,根据题意列出方程:441516x x-+=,解得124x=.故答案为:124.【点睛】本题考查一元一次方程的应用,读懂并理解题意以及根据题意等量关系列方程求解是解题的关键.18.8【解析】【分析】根据有理数的减法解答即可【详解】-1-(-9)=8所以当天最高气温是比最低气温高8℃故答案为:8【点睛】此题考查有理数的减法关键是根据有理数的减法解答解析:8【解析】【分析】根据有理数的减法解答即可.【详解】-1-(-9)=8,所以当天最高气温是比最低气温高8℃,故答案为:8【点睛】此题考查有理数的减法,关键是根据有理数的减法解答.19.2【解析】试题分析:由题意可得:2x2+3x+7=10所以移项得:2x2+3x=10-7=3所求多项式转化为:6x2+9x﹣7=3(6x2+9x)-7=3×3-7=9-7=2故答案为2考点:求多项式解析:2【解析】试题分析:由题意可得:2x2+3x+7=10,所以移项得:2x2+3x=10-7=3,所求多项式转化为:6x2+9x﹣7=3(6x2+9x)-7=3×3-7=9-7=2,故答案为2.考点:求多项式的值.20.诚【解析】【分析】正方体的平面展开图中相对的两个面中间必须隔着一个小正方形根据这一特点结合题意可正确解答【详解】如果原正方体上友所在的面为前面则信所在的面为左面所以相对的正方体的右面是国后面是诚故答解析:诚【解析】【分析】正方体的平面展开图中,相对的两个面中间必须隔着一个小正方形,根据这一特点,结合题意可正确解答.【详解】如果原正方体上“友”所在的面为前面,则“信”所在的面为左面,所以相对的正方体的右面是“国”,后面是“诚”故答案为:诚【点睛】本题考查正方体相对两个面上的文字,立意新颖,是一道不错的题.关键是分清每一个面的位置.21.【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴第三个三角形是7根火柴依次多2个可推出第n个这样的三角形需要多少根火柴【详解】∵第一个三角形是3 n解析:21【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴,依次多2个,可推出第n个这样的三角形需要多少根火柴.【详解】∵第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴,发现依次多2个,即可推出第n个这样的三角形需要2n+1根火柴.【点睛】本题考查图形的变换规律,得到每个图形中火柴的根数与图形的个数的关系式解决本题的关键.22.b+2c【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a<b则c-a<0原式=解析:b+2c【解析】【分析】由图可知, c-a<0,根据正数的绝对值等于它本身,负数的绝对值等于它的相反数,分别求出绝对值,再根据整式的加减运算,去括号,合并同类项即可.【详解】由图可知c<0,0<a<b,则c-a<0,原式=(c-a)+b+a-(-c)=c-a+b+a+c=b+2c.【点睛】本题考查的知识点是整式的加减和绝对值,解题关键是熟记整式的加减运算实际上就是去括号、合并同类项.23.【解析】【分析】直接根据相反数的定义进行解答即可【详解】解:由相反数的定义可知的相反数是即故答案为:【点睛】本题考查的是相反数的定义即只有符号不同的两个数叫互为相反数【解析】【分析】直接根据相反数的定义进行解答即可.【详解】-【点睛】本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.24.-206×1010【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时解析:-2.06×1010【解析】【分析】科学记数法的表示形式为a×10 n 的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将-206亿=-20600000000用科学记数法表示为-2.06×1010 .故答案为:-2.06×1010.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10 n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.25.【解析】【分析】设这个角的度数为x则它的余角为90°-x补角为180°-x再根据题意列出方程求出x的值即可【详解】设这个角的度数为x则它的余角为90°-x补角为180°-x依题意得:90°-x=(1解析:45︒【解析】【分析】设这个角的度数为x,则它的余角为90°-x,补角为180°-x,再根据题意列出方程,求出x的值即可.【详解】设这个角的度数为x,则它的余角为90°-x,补角为180°-x,依题意得:90°-x=13(180°-x),解得x=45°.故答案为:45°.【点睛】本题考查的是余角及补角的定义,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,能根据题意列出关于x的方程是解答此题的关键.三、解答题26.﹣x2y+4xy+1,-23【解析】【分析】原式去括号再合并即可得到最简结果,将x与y的值代入计算即可求出值.【详解】原式=2x2y+6xy﹣3x2y+3﹣2xy﹣2=﹣x2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.【点睛】本题考查了整式的加减运算-化简求值,解题的关键是熟练的掌握整式的加减运算.27.(1)22,14; ( 2)(2+4n), (4+2n); (3)解: 打算以第一种方式来摆放餐桌,见解析【解析】【分析】(1)第一种中,只有一张桌子是6人,后边多一张桌子多4人,即有n张桌子时是6+4(n-1)=4n+2;第二种中,有一张桌子时6人,后边多一张桌子多2人,即6+2(n-1)=2n+4,将n=5代入即可得出答案;(2)根据(1)找出的规律即可得出答案;(3)分别求出n=60时,两种不同的摆放方式对应的人数,即可得出答案.【详解】解:(1)第一种22人,第二种14人;(2)第一种(2+4n)人,第二种(4+2n)人;(3)打算以第一种方式来摆放餐桌∵第一种中,当n=60时,4×60+2=242>200第二种中,当n=60时,2×60+4=124<200∴选择第一种摆放方式.【点睛】本题主要考查图形的变化规律,找出图形之间的联系,得出运算规律,利用规律解决问题. 28.(1)详见解析;(2)平行;同位角相等,两直线平行;(3)详见解析.【解析】【分析】(1)由题意直接根据尺规作图的方法进行作图即可;(2)根据平行线的判定定理进行分析判定即可;(3)由题意点C 到AB 的距离的线段和表示点B 到AD 的距离的线段可知作点C 到AB 的垂线即高线和表示点B 到AD 的垂线即高线即可.【详解】解:(1)作图如下:(2)∵DCP DAB ∠=∠,∴CP //AB .故答案为:平行;同位角相等,两直线平行.(3)作图如上,CE BF 、就是所求作的线段即高.【点睛】本题考查尺规作图,熟练掌握平行线的判定定理和点和线段间垂线最短是解题的关键. 29.(1) 2()m n -;2()4m n mn +-;(2)2()m n -=2()4m n mn +-;(3)4.【解析】【分析】(1)直接利用正方形的面积公式得到图中阴影部分的面积为(m-n )2;也可以用大正方形的面积减去4个长方形的面积得到图中阴影部分的面积为(m+n )2-4mn ;(2)根据图中阴影部分的面积是定值得到等量关系式;(3)利用(2)中的公式得到(2a-b )2=(2a+b )2-4×2ab . 【详解】方法①:()2m n -;方法②:()24m n mn +-(2)()2m n -=()24m n mn +-(3) (2a-b)2=(2a+b)2-8ab=36-32=4【点睛】考查了列代数式:根据题中的已知数量利用代数式表示其他相关的量. 30.32名工人加工大齿轮,16人加工小齿轮【解析】【分析】设需安排x名工人加工大齿轮,则(48﹣x)人加工小齿轮,由1个大齿轮与3个小齿轮配成一套可知小齿轮的个数是大齿轮个数的3倍,从而得出等量关系,就可以列出方程求出即可.【详解】解:设需安排x名工人加工大齿轮,则(48﹣x)人加工小齿轮,由题意得10x×3=15(48﹣x),解得:x=32.所以 48﹣x=16.答:需安排32名工人加工大齿轮,16人加工小齿轮.【点睛】本题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.。

2023-2024学年北师大新版七年级上册数学期中复习试卷(含答案)

2023-2024学年北师大新版七年级上册数学期中复习试卷(含答案)

2023-2024学年北师大新版七年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.已知a,b为有理数,且a>0,b<0,a<|b|,则a,b,﹣a,﹣b的大小关系是( )A.﹣a<a<b<﹣b B.﹣a<b<a<﹣b C.﹣b<﹣a<a<b D.b<﹣a<a<﹣b 2.2019年10月1日,天安门广场迎来新中国成立以来的第15次国庆阅兵.据统计,截止至当天下午6点,央视新闻置顶的“国庆阅兵”阅读数已超过34亿.数据34亿用科学记数法表示为( )A.0.34×1010B.3.4×109C.3.4×108D.34×1083.如图,四个几何体分别为四棱锥、三棱柱、圆柱体和长方体,这四个几何体中截面可能是圆形的几何体是( )A.四棱锥B.三棱柱C.圆柱体D.长方体4.下列式子中和3x2y3是同类项的是( )A.xy4B.3x2+3y3C.x3y2D.y3x25.如图,有理数m,n在数轴上对应的点分别为M,N,则m﹣n的结果可能是( )A.﹣1B.1C.2D.36.如图是一个正方体展开图,把展开图折叠成正方体后,“牢”字一面的相对面上的字是( )A.初B.心C.使D.命7.通道县出租车的收费标准是:起步价5元(行驶距离不超过3km,都需付5元车费),超过3km每增加1km(不足1km时,以1km计算),加收1.5元,设小陈乘出租车到达目的地的路程为xkm(x>3),[x]是大于x的最小整数,则小陈应付的车费是( )A.(5+1.5x)元B.(5+1.5[x])元C.(0.5+1.5[x])元D.(0.5+1.5x)元8.若A为五次多项式,B为四次多项式,则A+B一定是( )A.次数不高于九次多项式B.四次多项式C.五次多项式或五次单项式D.次数不定9.下列说法正确的个数有( )(1)若a2=b2,则|a|=|b|;(2)若a、b互为相反数,则;(3)绝对值相等的两数相等;(4)单项式7×102a4的次数是6;(5)﹣a一定是一个负数;(6)平方是本身的数是1A.1B.2C.3D.410.72021+1的个位数字是( )A.8B.4C.2D.0二.填空题(共5小题,满分15分,每小题3分)11.将一个长3cm宽2cm的长方形沿着边所在直线旋转形成的几何体体积是 .12.若有理数m、n满足|2m﹣1|+(n+1)2=0,则mn= .13.如果单项式﹣3x2m y3与2x6y n是同类项,那么m的值为 .14.已知x+3y=﹣3,则2x+6y+3= .15.已知A,B,C三点在数轴上对应的数为a,b,c,它们在数轴上的位置如图所示,化简:|a+b+c|﹣|c﹣b﹣a|= .三.解答题(共7小题,满分75分)16.计算:(1)(﹣2)2×5﹣(﹣2)3÷4.(2)(﹣10)3+[(﹣4)2﹣(1﹣32)×2].17.先化简,再求值:3(x2y+xy)﹣(2x2y﹣xy)﹣5xy,其中x=﹣1,y=1.18.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图,并将形状图的内部用阴影表示.19.出租车司机小王某天上午营运是在东西走向的大街上进行的.如果规定向东为正,向西为负;他这天上午行车里程(单位:千米)如下:﹣2,﹣1,+10,﹣9,+11,﹣5.(1)将最后一名乘客送到目的地时,小王距出发点多远?(2)若汽车耗油量为0.05升/千米,小王的汽车共耗油多少升?(3)出租车在营运过程中,离开出发点最远多少千米?20.为了提高业主的宜居环境,在某居民区的建设中,因地制宜规划修建一个草坪(图中阴影部分).(1)用字母表示图中阴影部分的面积(写出化简后的结果);(2)若a=2,b=4,计算阴影部分的面积(π取3)21.爱读书的乐乐在读一本古书典籍上有这么一段记载:相传大禹治水时,“洛水”中出现了一个神龟,其背上有美妙的图案,史称“洛书”.用现在的数字翻译出来,就是三阶幻方.三阶幻方是最简单的幻方,又叫九宫格,其对角线、横行、纵向的数字之和均相等,这个和叫做幻和,正中间那个数叫中心数,且幻和恰好等于中心数的3倍.如图1,是由1、2、3、4、5、6、7、8、9所组成的一个三阶幻方,其幻和为15,中心数为5.(1)如图2所示,则幻和= ;(2)若b=4,c=6,求a的值;(3)通过研究问题(1)和(2),利用你发现的规律,将5,7,﹣5,3,9,﹣1,11,﹣3,1这九个数字分别填入图3的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.22.如图,数轴上点A在原点O的左侧,点B在原点的右侧,AO=5,BO=7.(1)请写出点A表示的数为 ,点B表示的数为 ,A、B两点的距离为 ;(2)若一动点P从点A出发,以3个单位长度/秒的速度向右运动;同一时刻,另一动点Q从点B出发,以1个单位长度/秒的速度向右运动.①点P刚好在点C追上点Q,请你求出点C对应的数;②经过多长时间PQ=5?参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵a>0,b<0,a<|b|,∴﹣a<0,﹣b>0,﹣b>a,﹣a>b,即b<﹣a<a<﹣b.故选:D.2.解:34亿=3400000000=3.4×109.故选:B.3.解:四棱锥、三棱柱和长方体的截面不可能是圆,圆柱的截面可能是圆.故选:C.4.解:下列式子中和3x2y3是同类项的是y3x2.故选:D.5.解:∵M,N所对应的实数分别为m,n,∴﹣2<n<﹣1<0<m<1,1<m﹣n<3∴m﹣n的结果可能是2.故选:C.6.解:牢”字一面的相对面上的字是命,故选:D.7.解:∵x>3,∴小陈应付的车费是:5+1.5(x﹣3)=5﹣4,5+1.5x=0.5+1.5x,∵不足1km时,以1km计算,∴陈应付的车费是:(0.5+1.5[x])元.故选:C.8.解:∵A是五次多项式,B是四次多项式,∴A+B的次数是5.∴A+B一定是五次多项式或五次单项式,9.解:(1)若a2=b2,则|a|=|b|,原说法正确;(2)若a、b互为相反数且ab≠0时,,原说法错误;(3)绝对值相等的两数相等或互为相反数,原说法错误;(4)单项式7×102a4的次数是4,原说法错误;(5)当a=0时,说法“﹣a一定是一个负数”错误;(6)平方是本身的数是1或0,原说法错误.故选:A.10.解:∵71=7,72=49,73=343,74=2401,75=16807,…,∴这列数的个位数字依次以7,9,3,1循环出现,∵2021÷4=505……1,∴72021的个位数字是7,∴72021+1的个位数字是8,故选:A.二.填空题(共5小题,满分15分,每小题3分)11.解:长方形沿着长或宽旋转的圆柱,故答案为:圆柱.12.解:∵m、n满足|2m﹣1|+(n+1)2=0,∴2m﹣1=0,m=;n+1=0,n=﹣;则mn=×(﹣)=﹣.故答案为:﹣.13.解:∵单项式﹣3x2m y3与2x6y n是同类项,∴2m=6,故答案为:3.14.解:2x+6y+3=2(x+3y)+3=2×(﹣3)+3=﹣6+3=﹣3.故答案为:﹣3.15.解:由题意得:a<b<0<c,|a|>|b|>|c|,∴a+b+c<0,c﹣b﹣a>0,∴|a+b+c|﹣|c﹣b﹣a|=﹣a﹣b﹣c﹣(c﹣b﹣a)=﹣a﹣b﹣c﹣c+b+a=﹣2c,故答案为:﹣2c.三.解答题(共7小题,满分75分)16.解:(1)(﹣2)2×5﹣(﹣2)3÷4=4×5+8÷4=20+2=22.(2)(﹣10)3+[(﹣4)2﹣(1﹣32)×2]=﹣1000+16+8×2=﹣968.17.解:3(x2y+xy)﹣(2x2y﹣xy)﹣5xy =3x2y+3xy﹣2x2y+xy﹣5xy=x2y﹣xy;当x=﹣1,y=1时,原式=1×1﹣(﹣1)×1=2.18.解:如图所示:19.解:(1)﹣2+(﹣1)+(+10)+(﹣9)+(+11)+(﹣5)=4(千米),答:将最后一名乘客送到目的地时,小王距出发点4千米;(2)0.05×(2+1+10+9+11+5)=1.9(升),答;小王的汽车共耗油1.9升;(3)将第一名乘客送到目的地时离出发点的距离为|﹣2|=2(千米),将第二名乘客送到目的地时离出发点的距离为|﹣2﹣1|=3(千米),将第三名乘客送到目的地时离出发点的距离为|﹣2﹣1+10|=7(千米),将第四名乘客送到目的地时离出发点的距离为|﹣2﹣1+10﹣9|=2(千米),将第五名乘客送到目的地时离出发点的距离为|﹣2﹣1+10﹣9+11|=9(千米),将最后一名乘客送到目的地时,小王距出发点4千米;所以离开出发点最远9千米.20.解:(1)阴影部分的面积=ab﹣﹣=ab﹣﹣=ab﹣;(2)当a=2,b=4时,阴影部分的面积=2×4﹣3×22=8﹣=.21.解:(1)由题意可得,幻和=﹣2×3=﹣6,故答案为:﹣6;(2)如图:由(1)知:b﹣2+x=﹣6=c﹣2+y,∵b=4,c=6,∴4﹣2+x=﹣6=6﹣2+y,∴x=﹣8,y=﹣10,∵c+x+z=﹣6,∴6﹣8+z=﹣6,∴z=﹣4,∵y+a+z=﹣6,∴﹣10+a﹣4=﹣6,∴a=8;(3)如图:22.解:(1)∵点A在原点O的左侧,点B在原点的右侧,AO=5,BO=7,∴点A表示的数为﹣5,点B表示的数为7,AB=AO+BO=12.故答案为:﹣5;7;12.(2)当运动时间为t秒时,点P表示的数为3t﹣5,点Q表示的数为t+7.①依题意,得:3t﹣5=t+7,解得:t=6,∴3t﹣5=13.答:点C对应的数为13.②当点P在点Q的左侧时,t+7﹣(3t﹣5)=5,解得:t=;当点P在点Q的右侧时,3t﹣5﹣(t+7)=5,解得:t=.答:经过秒或秒时,PQ=5.。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

2023-2024学年人教新版七年级上册数学期中复习试卷(含解析)

2023-2024学年人教新版七年级上册数学期中复习试卷(含解析)

2023-2024学年人教新版七年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.若一个数的相反数为6,则这个数为( )A.B.±6C.6D.﹣62.下列各组中的两个项不属于同类项的是( )A.3x2y和﹣2x2y B.﹣xy和2yxC.﹣1和1D.a2b和ab23.在下列有理数中:9,﹣3,0,,3.14,﹣(+5.3),﹣(﹣6)中,正数的个数为( )A.3个B.4个C.5个D.6个4.若5个有理数的积是负数,则5个因数中正因数的个数可能是( )A.1个B.3个C.1或3或5个D.以上答案都不对5.太阳的半径大约是696 000千米,用科学记数法可表示为( )A.696×103千米B.6.96×105千米C.6.96×106千米D.0.696×106千米6.如图,将7张相同的长方形纸片不重叠的放在长方形ABCD内,已知小长方形纸片的长为a,宽为b,且a>b,若未被覆盖的两个长方形周长相等,则( )A.B.a=3b C.D.a=4b7.在同一数轴上表示数﹣0.5,0.2,﹣2,+2,其中表示0.2的点的左边的点有( )A.1个B.2个C.3个D.4个8.若数轴上A,B两点之间的距离为8个单位长度,点A表示的有理数是﹣10,并且A,B 两点经折叠后重合,此时折线与数轴的交点表示的有理数是( )A.﹣6B.﹣9C.﹣6或﹣14D.﹣1或﹣99.单项式﹣a2b3的系数和次数分别是( )A.2、3B.﹣1、3C.﹣1、5D.0、510.在矩形ABCD内,将一张边长为a和两张边长为b(a>b)的正方形纸片按图1,图2两种方式放置,矩形中未被这三张正方形纸片覆盖的部分用阴影表示,设图2中阴影部分的周长与图1中阴影部分的周长的差为l,若要知道l的值,只要测量图中哪条线段的长( )A.AB B.AD C.a D.b二.填空题(共8小题,满分24分,每小题3分)11.如果关于x的多项式ax2+x+b与多项式(2﹣3a)x2+2x﹣3的和是一个单项式,那么a+b 的值是 .12.某商店三月份的销售额为a万元,三月份比二月份减少10%,二月份比一月份增加10%,则一月份的销售额为 万元.13.若单项式3x m+5y2与x3y n是同类项,则m+n= ,合并同类项后得到 .14.数学考试成绩以90分为标准,老师将5位同学的成绩简单记作:+15,﹣4,+11,﹣7,0,则这五名同学的平均成绩为 .15.已知|a+3|+|b+2|=0,则= .16.当|x|=2,|y|=4,且xy<0,则x+y= .17.﹣22的读法是 .18.a与3b互为倒数,x与y互为相反数,那么2000ab﹣2001(x+y)= .三.解答题(共9小题,满分66分)19.(1)计算:12﹣(﹣8)+(﹣6)﹣15;(2)计算:4+(﹣2)3×5﹣(﹣28)÷4+(﹣6)2;(3)化简:3x2+x﹣5﹣x﹣2x2+4;(4)化简:(2x2+1)﹣2(5﹣x2).20.把下列各数填在相应的大括号里:+2,﹣|﹣2|,﹣3,0,﹣3,﹣1.414,17,,(﹣1)2正整数:{}整数:{}负分数:{}正有理数:{}.21.根据题意列出式子计算.(1)一个加数是1.8,和是5.9,求另一个加数;(2)求5的绝对值与﹣6的相反数的差.22.点A,B在数轴上的位置如图①所示,表示的数分别为a,b.(1)将点A沿着数轴向右移动1个单位长度得到点A',则点A'表示的数是 ;将点B沿着数轴向左移动2个单位长度得到点B',则点B'表示的数是 .(2)将点A沿着数轴先向右移动(3b﹣3a+2)个单位长度,再向左移动(b﹣a+2)个单位长度得到点P.①求点P表示的数;②将点P沿着数轴移动,如果向左移动m个单位长度恰好到达点A,如果向右移动n个单位恰好到达点B,那么m n.(填“>,<或=”)(3)点C在数轴上的位置如图②所示,表示的数为c.若a+b=4,请用刻度尺或圆规在图②中画出点D,使点D表示的数为(4﹣c).(保留画图痕迹,写出必要的文字说明)23.已知a=﹣1,求(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣6)的值.24.有一包长方体的东西,用三种不同的方法打包,哪一种方法使用的绳子最短?哪一种方法使用的绳子最长?(a +b >2c )25.先简化,再求值:(2a 2﹣5a )﹣2(a 2+3a ﹣5),其中a =﹣.26.出租司机沿东西向公路送旅客,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,+11,﹣15,﹣3.(1)出租司机最后到达的地方在出发点的哪个方向?距出发点多远?(2)出租司机最远处离出发点有多远?(3)若汽车耗油量为0.08升/千米,则这天共耗油多少升?27.某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下表:与标准重量的差值(单位:千克)﹣0.5﹣0.2500.250.30.5箱数1246n2(1)求n 的值及这20箱樱桃的总重量:(2)若水果店打算以每千克25元销售这批樱桃,若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损,盈利或亏损多少元.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵6的相反数为﹣6,∴这个数为﹣6.故选:D.2.解:A、字母相同且相同字母的指数也相同,故A正确;B、字母相同且相同字母的指数也相同,故B正确;C、字母相同且相同字母的指数也相同,故C正确;D、相同字母的指数不同,故D错误;故选:D.3.解:﹣(+5.3)=﹣5.3,﹣(﹣6)=6.∴大于0的数有9,﹣(﹣6),3.14,共3个.故选:A.4.解:∵5个有理数的积是负数,则5个因数中负因数的个数为1个,3个或5个,∴正因数的个数为4个或2个.故选:D.5.解:696000=6.96×105;故选:B.6.解:依题意,小长方形纸片的长为a,宽为b,如图所示,长方形AEFJ的周长为:2(JH+HF+EF)=2(3b+HF+4b)=14b+2HF,长方形HGCJ的周长为:2(GF+HF+HI)=2(a+HF+a)=4a+2HF,∵长方形AEFJ的周长与长方形HGCJ的周长相等,∴4a+2HF=14b+2HF,∴4a=14b,∴,故选:C.7.解:根据数轴上,左边的数小于右边的数的原则可知:﹣2<﹣0.5<0.2<2,所以,表示0.2的点的左边的点有﹣2,﹣0.5共2个.故选:B.8.解:当点B在点A的左侧时,点B表示的有理数是﹣10﹣8=﹣18,∴折线与数轴的交点表示的有理数是=﹣14;当点B在点A的右侧时,点B表示的有理数是﹣10+8=﹣2,∴折线与数轴的交点表示的有理数是=﹣6.故选:C.9.解:单项式﹣a2b3的系数和次数分别是:﹣1,5.故选:C.10.解:图1中阴影部分的周长=2AD+2AB﹣4b,图2中阴影部分的周长=2AD﹣2b+4AB﹣2b,l=2AD﹣4b+4AB﹣(2AD+2AB﹣4b)=2AD﹣4b+4AB﹣2AD﹣2AB+4b=2AB.故若要知道l的值,只要测量图中线段AB的长.故选:A.二.填空题(共8小题,满分24分,每小题3分)11.解:根据题意得:ax2+x+b+(2﹣3a)x2+2x﹣3=(a+2﹣3a)x2+3x+(b﹣3)=(2﹣2a)x2+3x+(b﹣3),∵和为单项式,∴2﹣2a=0,解得:a=1,b﹣3=0,解得:b=3,∴a+b=1+3=4.故答案为:4.12.解:设一月份的销售额为x,由题意可得,x(1+10%)(1﹣10%)=a解得,x=故答案为.13.解:由同类项的定义可知,m+5=3,n=2,解得:m=﹣2,∴m+n=﹣2+2=0,根据m=﹣2,n=2,得出单项式:3x3y2与x3y2,合并同类项得:3x3y2+x3y2=4x3y2,故答案为:0,4x3y2.14.解:90+×(15﹣4+11﹣7+0),=90+×15,=90+3,=93(分).故答案为:93分.15.解:∵|a+3|+|b+2|=0,∴a+3=0,b+2=0,解得:a=﹣3,b=﹣2,∴===.故答案为:.16.解:∵|x|=2,|y|=4,∴x=±2,y=±4,又∵xy<0,∴当x=2,y=﹣4时,x+y=﹣2;当x=﹣2,y=4时,x+y=2.∴x+y=±2.故答案为:±2.17.解:﹣22读作2的2次方的相反数.故答案为:2的2次方的相反数.18.解:由题意得:a•3b=1,即ab=1,x+y=0,则原式=2000﹣0=2000,故答案为:2000三.解答题(共9小题,满分66分)19.解:(1)原式=12+8﹣6﹣15=﹣1;(2)原式=4+(﹣8)×5﹣(﹣7)+36=4﹣40+7+36=7;(3)原式=(3x2﹣2x2)+(x﹣x)+(4﹣5)=x2﹣1;(4)原式=2x2+1﹣10+2x2=4x2﹣9.20.解:正整数:{+2,17,(﹣1)2};整数:{+2,﹣|﹣2|,﹣3,0,(﹣1)2};负分数:{﹣3,﹣1.414};正有理数:{+2,17,,(﹣1)2};故答案为:+2,17,(﹣1)2;+2,﹣|﹣2|,﹣3,0,(﹣1)2;﹣3,﹣1.414;+2,17,,(﹣1)2.21.解:(1)5.9﹣1.8=4.1,∴另一个加数为4.1;(2)|5|﹣[﹣(﹣6)]=5﹣6=﹣1.22.解:(1)将点A沿着数轴向右移动1个单位长度得到点A',则点A'表示的数是a+1;将点B沿着数轴向左移动2个单位长度得到点B',则点B'表示的数是b﹣2.故答案为:a+1,b﹣2;(2)①将点A沿着数轴先向右移动(3b﹣3a+2)个单位长度,再向左移动(b﹣a+2)个单位长度得到点P.∴点P表示的数为:a+3b﹣3a+2﹣b+a﹣2=b+a;②将点P沿着数轴移动,如果向左移动m个单位长度恰好到达点A,如果向右移动n个单位恰好到达点B,∴a=(a+b)﹣m,b=n+(a+b),∴m=(b﹣a),n=(b﹣a),∴m=n.故答案为:=.(3)如图,点D即为所求.方法:①作出AB的中点E;②在EB上取一点D,使得ED=EC,点D即为所求.23.解:原式=4a2﹣2a﹣6﹣4a2+4a+12=2a+6,当a=﹣1时,原式=﹣2+6=4.24.解:第(1)种方法的绳子长为4a+4b+8c,第(2)种方法的绳子长为4a+4b+4c,第(3)种方法的绳子长为6a+6b+4c,∵(6a+6b+4c)﹣(4a+4b+8c)=2a+2b﹣4c,又a+b>2c,得到2a+2b>4c,故第(3)比(1)长;∵(6a+6b+4c)﹣(4a+4b+4c)=2a+2b>0,故第(3)比(2)长,又(4a+4b+8c)﹣(4a+4b+4c)=4c>0,故第(3)种方法绳子最长,第(2)种方法绳子最短.25.解:原式=2a2﹣5a﹣2a2﹣6a+10=﹣11a+10,当a=﹣时,原式=3+10=13.26.解:(1)∵约定向东为正,向西为负,当天的行驶记录为+17,﹣9,+7,+11,﹣15,﹣3,∴出租司机最后到达的地方为(+17)+(﹣9)+)(+7)+(+11)+(﹣15)+(﹣3)=8>0,∴在出发点的东边,距离8km;(2)∵第1次送旅客位置出发点的距离为|+17|=17,第2次送旅客位置出发点的距离为|+17+(﹣9)|=8,第3次送旅客位置出发点的距离为|(+17)+(﹣9)+)(+7)|=15,第4次送旅客位置出发点的距离为|(+17)+(﹣9)+)(+7)+(+11)|=26,第5次送旅客位置出发点的距离为|(+17)+(﹣9)+)(+7)+(+11)+(﹣15)|=11,第6次送旅客位置出发点的距离为|(+17)+(﹣9)+)(+7)+(+11)+(﹣15)+(﹣3)|=8,∴出租司机最远处离出发点最远的距离为26;(3)∴出租司机实际行驶的路程为:|+17|+|﹣9|+|+7|+|+11|+|﹣15|+|﹣3|=62,∴这天共耗油量为:62×0.08=4.96(升)27.解:(1)n=20﹣1﹣2﹣4﹣6﹣2=5(箱),10×20+(﹣0.5)×1+(﹣0.25)×2+0.25×6+0.3×5+0.5×2=203(千克);答:n的值是5,这20箱樱桃的总重量是203千克;(2)25×203﹣200×20=1075(元);答:全部售出可获利1075元;(3)25×203×60%+25×203×(1﹣60%)×70%﹣200×20=466(元).答:是盈利的,盈利466元.。

人教版七年级上册期中数学复习试卷(含答案)

人教版七年级上册期中数学复习试卷(含答案)
【详解】解:因为 、 互为相反数
所以a+b=0,
∵ 、 互为倒数,∴cd=1
的绝对值是2,m=±2
=0±2-3
原式=-1或原式=-5
23.【答案】(1)前三天共生产297个;
(2)24个;(3)42490元.
【解析】
【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;
(2)求出超产最多数与产量最少数的差即可;
A 640×104B. 64×105C. 6.4×106D. 6.4×107
4.在数轴上把数2对应的点移动3个单位长度后所得的点表示的数是()
A. 5B.-1C. 5或-1D.不确定
5.下列各式可以写成 的是()
A. B.
C. D.
6.若数轴上表示-1和-3的两点分别是点A和点B,则点A和点B之间的距离是()
①数轴上的点都表示有理数
②﹣4a2b,3ab,5是多项式﹣4a2b+3ab﹣5的项
③单项式﹣23a2b3的系数是﹣2,次数是5
④ 是二次二项式
⑤互为相反数的两数之积一定为负数
⑥整数包括正整数和负整数.
A. 1B. 2C. 3D. 4
10.观察下列算式:
21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为220的末位数字是( )
【解析】
【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.
【详解】解:AB=|-1-(-3)|=2.
故选:C.
7.【答案】A
【解析】
【详解】设这个代数式为A,则根据已知条件可得:
A-(-6a)=4a2-2a+5,
∴A=4a2-2a+5+(-6a)=4a2-2a+5-6a=4a2-8a+5
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(上)期中数学复习卷
一、选择题(本题有10小题,每小题3分,共30分) 1. 比-1小1的数是 ( )
A. -2
B. 0
C. 1
D.-1 2.下列计算中,错误的是( )
A.(+
37)+(-67)=-37 B.(-37)+(+67)=-97 C.(-37)+(-67)=-97 D.(+37)+(-3
7
)=0
3. 近似数0.03080的有效数字有( ) A .3个
B. 6个
C. 5个
D. 4个
4. 实数2-,4-,0.3,1
7
∙∙15.1, π-中,无理数的个数是( )
A .2
B .3
C .4
D .5
5. 一粒纽扣电池能够污染60升水,某市每年报废的电池有近1000000粒,如果报废的电池不回收,那么一年报废的电池所污染的水约( )
A. 6
100.6⨯升 B. 7
100.6⨯升 C. 8
100.6⨯升 D. 9
100.6⨯升 6. 己知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( ) A .b a < B. 0>-a b C. 0<ab
D. 0<+b a
7. 下列选项是同类项的是 ( ) A.22x xy 与 B.22242xyz x y z -与 C.2
2
33ab ab -与 D.3a 与2b 8. 下列说法正确的是( )
A. 整数就是正整数和负整数
B. 分数包括正分数、负分数
C. 正有理数和负有理数组成全体有理数
D. 一个数不是正数就是负数.
9. 如果a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,那么 a +b +m 2-cd 的值为( ) A. 3
B. ±3
C. 3±2
1
D. 4±2
1
10. 现定义两种运算―⊕‖ ―*‖.对于任意两个整数,1a b a b ⊕=+-,1a b a b *=⨯-,则6⊕〔8*(3⊕5)〕的结果是( )
A. 60
B. 70
C. 112
D. 69 二、填空题(本题有10小题,每小题3分,共30分) 11.
16的算术平方根是________,8
1
-的立方根是________.
12. 单项式52b a -的系数是 ; 多项式2
532
b a -是 次多项式,其中二次
项的系数是 .
13. 比较大小,-π -3.14; |-4| 0;
2
1
2- 1 14. 如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A
点表示的数是 .若点B 表示-3.14,则点B 在点A 的 边(填―左‖或―右‖).
15. 已知,3,2,1===c b a 且c b a >>,那么=+-c b a 23 . 16. 如图所示的运算程序中,若开始
输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为 三、解答题(本题有7小题,共46分)
17. (4分)8箱苹果,以每箱10千克为准,称重记录如下:(超过正数,单位:千克) 1.5, -1, 3, 0, 0.5, -1.5, 2, -0.5 这8箱苹果的总重量是多少?
18. (6分)把-1
2
1
,2,2,π各数(或近似值)在数轴上表示出来,并比较它们的大小,用―<‖号连接.
19.计算(2+2+3+3,共10分;要有必要的计算过程) (1)12912-+- (2)]2)3
2
(3[4322--⨯--
(3)-2
2412732)()(-⨯--+ (4)(
21—95+12
7
)×(—36)
20、(6分)为体现社会对教师的尊重,教师节这一天上午,出租车司机小聪在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,-4,+13,―10,―12,+3,―13,―17.
(1)出车地记为0,最后一名老师送到目的地时,小聪距出车地点的距离是多少? (2)若汽车耗油量为0.1升/千米,这天上午汽车共耗油多少升?
21.(8分)
(1)先化简再求值:)](3[)(2222y x xy y x -+-+-,其中x= 1 , y= -2。

(2)已知A = 3x ―2y ,B = x ―3y +1,求3(A +B )―2(2A ―B )的值(结果用x 、y 表示)。

22.(6分)观察右下图,每个小正方形的边长均为1,可以得到每个小正方形的面积为1. (1) 图中阴影部分的面积是多少?
(2) 阴影部分正方形的边长是多少? (3) 估计边长的值在哪两个整数之间?
23.(6分)让我们轻松一下,做一个数字游戏:
第一步:取一个自然数1n =5,计算12
1+n 得1a ;
=1a .
第二步:算出1a 的各位数字之和得2n ,计算12
2+n 得2a ;
=2a .
第三步:算出2a 的各位数字之和得3n ,计算12
3+n 得3a ;
…………
以此类推则2010a =________________.
参考答案
1.D
2.B
3.D
4.A
5.B
6.D
7.C
8.B
9.A 10.A 11. 2 -0.5 12.51-
,二,2
5- 13.< ,> 错误!未定义书签。

错误!未定义书签。

14. –π,右侧 15. 4或-2 16. 3
17.84千克 18. 略 19. ⑴ 9 ⑵
2
9
⑶-2 ⑷-19 20. ⑴ -25 ⑵ 8.7升 21. (1) xy x 322--,4,(2) 5132+-y x 22. ⑴ 10 ⑵ 10 ⑶
3与4 之间 23. 26 65 122。

相关文档
最新文档