2018年上海市普陀区初三一模数学试题及答案
2018年上海普陀区初三数学一模

已知一个二次函数的图像经过点 A(0,-3)、B(1,0)、C(m,2m+3)、D(-1,-2)四点,求这个函数的解析式及点 C 的坐标.
如图 8,已知圆O 经过△ABC 的顶点 A、B,交边 BC 于点 D,点 A 恰为弧BD
的中点,且 BD=8,AC=9,sinC=1/3,求圆O 的半径
已知:如图9,四边形ABCD 的对角线AC 和BD 相交于点E,AD=DC,DC2=DE·DB. 求证:(1)△BCE∽△ADE;(2)AB·BC=BD·BE.)
如图 10,在平面直角坐标系中,已知抛物线 y=ax2+2ax+c(其中 a、c 为
常数,且a<0)与x轴交于点 A,它的坐标是(-3, 0),与 y 轴交于点 B,此抛物线顶点C到x轴的距离为4.
(1)求该抛物线的表达式;(2)求∠CAB 的正切值;
(3)如果点 P 是抛物线上的一点,且∠ABP=∠CAO,试直接写出点 P 的坐标.
2,点 D 是线段 AB 上的一动点(点 D 如图 11,∠BAC 的余切值为 2,AB=5
不与点 A、B 重合),以点 D 为顶点的正方形 DEFG 的另两个顶点 E、F 都在射线 AC 上,且点 F 在点 E 的右侧.联结 BG,并延长 BG,交射线 EC 于点 P.(1)点 D 在运动时,下列的线段和角中,______是始终保持不变的量(填序号);
①AF;②FP;③BP;④∠BDG;⑤∠GAC;⑥∠BPA;
(2)设正方形的边长为 x,线段 AP 的长为 y,求 y 与 x 之间的函数关系式,并写出定义域;
(3)如果△PFG 与△AFG 相似,但面积不相等,求此时正方形的边长.。
上海市普陀区2018届九年级数学上学期质量调研(一模)试题

7. 如果 a 2 ,那么 b a _______________
b3
ab
8. 已知线段 a 4 厘米, b 9 厘米,线段 c 是线段 a 和线段 b 的比例账项,线段 c 的商
都等于_______________厘米 9. 化简: b 4(a 3 b) _______________
19。 (本题满分 10 分)
计算:
1
tan 60 sin2 45
2 cos 30 cot 45
20. (本题满分 10 分) 已知一个二次函数的图像经过 A(0, 3) , B(1, 0) , C(m, 2m 3) , D(1, 2) 四点,求这 个函数解析式以及点 C 的坐标
21.(本题满分 10 分) 如图 8,已知 O 经过 ABC 的顶点 A、B,交边 BC 于点 D,点 A 恰为 BD 的中点,
5.如图 2,在平行四边形 ABCD 中, F 是边 AD 上的一点,射线 CF 和 BA 的延长线
交于点 E ,如果 CEAF 1 ,那么 SEAF 的值是(
CCDF 2
SEBC
)
E
A
F
D
B
C
(A) 1 ; (B) 1 ; (C) 1 ; (D) 1 .
2
3
4
9
6.如图 3,已知 AB 和 CD 是 O 的两条等弦. OM AB , ON CD ,垂足分别为点
(2) AB BC BD BE
A
E
D
24.(本题满分 12 分)
B
C
如图 10,已知在平面直角坐标系中,已知抛物线 y ax2 2ax c (其中 a 、 c 为 常数,且 a 0 )与 x 轴交于点 A ,它的坐标是( 3 , 0 ),与 y 轴交于点 B ,此抛物线 顶点 C 到 x 轴的距离为 4 (1)求抛物线的表达式; (2)求 CAB 的正切值; (3)如果点 P 是抛物线上的一点,且 ABP CAO ,试直接写出点 P 的坐标
普陀区2018学年第一学期九年级质量调研考试数学试卷答案.

普陀区2018学年度第一学期九年级数学期终考试试卷参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.(D);2.(B);3.(D);4.(C);5.(B);6.(C).二、填空题:(本大题共12题,每题4分,满分48分)三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解:原式2242=⨯+-··································································(4分)34=+-······································································(4分)34=-·······················································································(2分)20.解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD BC =.·································································(2分)∴AG AD GE BE=.···················································································(2分)∵31AG GE =,∴31AD BE =.·····································································(1分)∴23EC BC =.·····················································································(1分)7.32;8.72a b →→+;9.1;10.21112()y x =+-;11.4-;12.24;13.13;14.45;15.;16.15;17.<;18.3215.(2)EC = 2433a b + ,GB = 1122a b -- .················································(2分+2分)21.解:(1)∵12O O 是连心线,AB 是公共弦,∴12AB O O ⊥,2AB AC =.······························································(2分)∵点E 为AD 的中点,O 1是圆心,∴O E AD ⊥1,2AD AE =.······························································(1分)∵AE AC =,∴AD AB =.···················································································(1分)∴11O E O C =.·················································································(1分)(2)∵O E AD ⊥1,12O O AB ⊥,∴12290O EO ACO ∠=∠=︒.在Rt △12O O E 中,1290O EO ∠=︒,1210O O =,16O E =,∴28EO =.·····················································································(1分)∵11O E O C =,∴24O C =.······························································(1分)设2O A x =,那么8AE AC x ==-.在Rt △2ACO 中,290ACO ∠=︒,∴22222O A AC O C =+.∴22284()x x =-+.·······································································(2分)解得5x =.∴25O A =.·····················································································(1分)22.解:延长AB 交于直线DF 点G ,过点E 作EH DC ⊥,垂足为H .·············(1分)由题意得90ABE AGF ∠=∠=︒,31AFG ∠=︒,45AEB ∠=︒,5DF =米.··(2分)在Rt △EDH 中,152.412EH i DH ===,····················································(1分)得13DE =,。
2018上海初三数学一模卷

2018上海初三数学一模卷
2018上海初三数学一模卷指的是2018年上海市初三学生的第一次模拟考试数学试卷。
一模通常是在中考前的重要测试,用于评估学生的学习情况和备考状态。
以下是2018上海初三数学一模卷题目:
1. 下列计算正确的是()
A. √2 + √3 = √5
B. (x^2)^3 = x^5
C. a^6 ÷ a^2 = a^3
D. (a - b)^2 = a^2 - b^2
2. 下列四个命题中,假命题是()
A. 对角线互相垂直平分且相等的四边形是正方形
B. 等腰三角形底边上的中点到两腰的距离相等
C. 在圆上顺次连结四个点,则所连的四边形一定是平行四边形
D. 三角形的内心到三角形三边的距离相等
3. 下列各式中,是一元一次方程的是()
A. 3x + 4y = 0
B. x^2 - 4x = 0
C. x - 1
D. x + 2 = 3x - 2
4. 若关于 x 的方程 ax^2 + bx + c = 0 的两根为 x1 和 x2,则 x1 + x2 = ( )
A. -b/a
B. b/a
C. -b/2a
D. b/2a
5. 下列函数中,y 随 x 的增大而减小的是()
A. y = x^2
B. y = -x + 1
C. y = 1/x
D. y = -x^2。
2018年普陀区中考数学一模及答案

实用标准文档文案大全普陀区2017学年度第一学期初三质量调研数学试卷(时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.下列函数中,y关于x的二次函数是()(A)2yaxbxc???;(B)(1)yxx??;(C)21yx?;(D)22(1)yxx???.2.在RtABC?中,90C???,2AC?,下列结论中,正确的是()(A)2ABsinA?;(B)2ABcosA?;(C)2BCtanA?;(D)2BCcotA?.3.如图1,在ABC?中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判断//EDBC的是()(A)BACABDCE?;(B)EADAECDB?;(C)EDEABCAC?;(D)EAACADAB?.4.已知5ab?,下列说法中,不正确的是()(A)50ab??;(B)a与b方向相同;(C)//a b;(D)5ab?.5.如图2,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果12EAFCDF CC???,那么EAFEBC SS??的值是()(A)12;(B)13;(C)14;(D)19.FDBCEA.实用标准文档文案大全CNOP BD6.如图3,已知AB和CD是O的两条等弦.OMAB?,ONCD?,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中,①ABCD?;②OMON?;③PAPC?;④BPODPO???,正确的个数是()(A)1;(B)2;(C)3;(D)4.二.填空题(本大题共12题,每题4分,满分48分)7. 如果23ab?,那么baab???_______________ 8. 已知线段4a?厘米,9b?厘米,线段c是线段a和线段b的比例账项,线段c的商都等于_______________厘米9. 化简:34()2bab???_______________ 10. 在直角坐标系平面内,抛物线232yxx??在对称轴的左侧部分是___________的(填“上升”或“下降”)11. 二次函数2(1)3yx???的图像与y轴的交点坐标是______________12. 将抛物线22yx?平移,使顶点移动到点(3,1)P?的位置,那么平移后所得新抛物线的表达式是______________13. 在直角坐标平面内有一点(3,4)A,点A与原点O的连线与x轴的正半轴夹角为?,那么角?的余弦值是_________________ 14. 如图4,在ABC△中,ABAC?,点D、E分别在边BC、AB上,且ADE?∠B∠,如果:2:5DEAD?,3BD?,那么AC?________________EDCB A620CBDA15. 如图5,某水库大坝的横断面是梯形ABCD,坝顶宽6AD?米,坝高是20米,背水坡AB的坡角为30?,迎水坡CD的坡度为1:2,那么坝底BC的长度等于______________米(结果保留根号)16. 已知RtABC△中,90C??∠,3AC?,7BC?,CDAB⊥,垂足为点D,以点D为圆心作D,使得点A在D外,且点B在D内,设D的半径为r,那么r的取值范围是________________实用标准文档文案大全17. 如图6,点D在ABC△的边BC上,已知点E、点F分别为ABD△和ADC△的重心,如果12BC?,那么两个三角形重心之间的距离EF的长等于_______________DCBA18. 如图7. ABC△中,5AB?,6AC?,将ABC△翻折,使得点A落到边BC上的点/A处,折痕分别交边AB、AC于点E,点F,如果AFAB‖,那么BE?_______________ CBA三、解答题(本大题共7题,满分78分)19. (本题满分10分)计算:21tan60sin452cos30cot45???????20. (本题满分10分)已知一个二次函数的图像经过(0,3)A?,(1,0)B,(,23)Cmm?,(1,2)D??四点,求这个函数解析式以及点C的坐标21.(本题满分10分)如图8,已知O经过ABC?的顶点A、B,交边BC于点D,点A恰为BD的中点,且8BD?,9AC?,求O的半径.DOACB实用标准文档文案大全22.(本题满分10分)下面是一位同学的一道作图题:(1)试将结论补完整(2)这位同学作图的依据是______________(3)如果4OA?,5AB?,ACm?,试用向量m表示向量DB23.(本题满分12分)已知:如图9,四边形ABCD的对角线AC和BD相交于点E,ADDC?,2DCDEDB??求证:(1)BCEADE??;(2)ABBCBDBE???EBADC实用标准文档文案大全24.(本题满分12分)如图10,已知在平面直角坐标系中,已知抛物线22yaxaxc???(其中a、c为常数,且0a?)与x轴交于点A,它的坐标是(3?,0),与y轴交于点B,此抛物线顶点C 到x轴的距离为4(1)求抛物线的表达式;(2)求CAB?的正切值;(3)如果点P是抛物线上的一点,且ABPCAO???,试直接写出点P的坐标11y实用标准文档文案大全25.(本题满分14分)如图11,BAC?的余切值为2,25AB?,点D是线段AB上的一动点(点D不与点A、B重合),以点D为顶点的正方形DEFG的另两个顶点E、F都在射线AC上,且点F在点E的右侧,联结BG,并延长BG,交射线EC于点P.(1)点D在运动时,下列的线段和角中,是始终保持不变的量(填序号);①AF;②FP;③BP;④BDG?;⑤GAC?;⑥BPA?;(2)设正方形的边长为x,线段AP的长为y,求y与x之间的函数关系式,并写出定义域;(3)如果PFG?与AFG?相似,但面积不相等,求此时正方形的边长.CPEFABGDCAB实用标准文档1 2 3 4 5 6 选项 BCCADD7.15;8. 6;9.47ab??;10. 下降11. (0,2)?12.22(3)1yx???13.3514.15215. 46203?16.7944r??17.418.251119. 1220. 解析式为:223yxx???;点C坐标为(2,7)或3(,0)2?21. 半径为25622. (1)CD;(2)三角形一边的平行线;(3)94DBm??23. (1)∵ADDC?,∴DACDCA?∠∠,∵2DCDEDB??, ∴EBCDAE??∠,∴BCEADE△△∽(2)∵2DCDEDB??, ADDC?∴2ADDEDB??,∴ADEBDA△△∽,∵BCEADE△△∽,∴BCEBDA△△∽实用标准文档文案大全24. (1)223yxx????;(2)13;(3)P的坐标为(1,0)或532(,)39?25. (1)④⑤(2)DGAP‖,利用DBDGADAP?即2552225xxxy????,整理得22xyx??(12x??)(3)分类讨论:1)13FGFP?;2)3FGPF?正方形的边长为75或54。
上海市普陀区2018届九年级数学上学期质量调研一模试题

上海市普陀区2018届九年级数学上学期质量调研(一模)试题(时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.1、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.下列函数中,y 关于x 的二次函数是( )(A )2y ax bx c =++; (B )(1)y x x =-; (C )21y x=; (D )22(1)y x x =--.2.在Rt ABC ∆中,90C ∠=︒,2AC =,下列结论中,正确的是( )(A )2AB sinA =; (B )2AB cosA =; (C )2BC tanA =; (D )2BC cotA =.3.如图1,在ABC ∆中,点D 、E 分别在边AB 、AC 的反向延长线上,下面比例式中,不能判断//ED BC 的是( )(A )BA CA BD CE =; (B )EA DAEC DB =; (C )ED EA BC AC =; (D )EA ACAD AB =.4.已知5a b =,下列说法中,不正确的是( )(A )50a b -= ; (B )a 与b 方向相同; (C )//a b ; (D )5a b = .5.如图2,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果12EAF CDF C C ∆∆=,那么EAF EBCSS ∆∆的值是( )(A )12; (B )13; (C )14; (D )19.P6.如图3,已知AB 和CD 是O :的两条等弦.OM AB ⊥,ON CD ⊥,垂足分别为点M 、N ,BA 、DC 的延长线交于点P ,联结OP .下列四个说法中,①::AB CD=;②OM ON =;③PA PC =;④BPO DPO ∠=∠,正确的个数是( (A )1; (B )2; (C )3; (D )4.二.填空题(本大题共12题,每题4分,满分48分)7. 如果23a b =,那么b a a b-=+_______________8.已知线段4a =厘米,9b =厘米,线段c 是线段a 和线段b 的比例账项,线段c 的商都等于_______________厘米9. 化简:34()2b a b --=_______________10. 在直角坐标系平面内,抛物线232y x x =+在对称轴的左侧部分是___________的(填“上升”或“下降”)11. 二次函数2(1)3y x =--的图像与y 轴的交点坐标是______________12. 将抛物线22y x =平移,使顶点移动到点(3,1)P -的位置,那么平移后所得新抛物线的表达式是______________13.在直角坐标平面内有一点(3,4)A ,点A 与原点O 的连线与x 轴的正半轴夹角为α,那么角α的余弦值是_________________14. 如图4,在ABC △中,AB AC =,点D 、E 分别在边BC 、AB 上,且ADE =∠B ∠,如果:2:5DE AD =,3BD =,那么AC =________________EDBA15. 如图5,某水库大坝的横断面是梯形ABCD ,坝顶宽6AD =米,坝高是20米,背水坡AB 的坡角为30︒,迎水坡CD 的坡度为1:2,那么坝底BC 的长度等于______________米(结果保留根号)16. 已知Rt ABC △中,90C =︒∠,3AC =,BC =CD AB ⊥,垂足为点D ,以点D 为圆心作D :,使得点A 在D :外,且点B 在D :内,设D :的半径为r ,那么r 的取值范围是________________17. 如图6,点D 在ABC △的边BC 上,已知点E 、点F 分别为ABD △和ADC △的重心,如果12BC =,那么两个三角形重心之间的距离EF 的长等于_______________DCBA18. 如图7. ABC △中,5AB =,6AC =,将ABC △翻折,使得点A 落到边BC 上的点/A 处,折痕分别交边AB 、AC 于点E ,点F ,如果AF AB ‖,那么BE =_______________CBA三、 解答题(本大题共7题,满分78分)19. (本题满分10分)计算:21tan 60sin 452cos30cot 45-︒⋅︒︒-︒20. (本题满分10分)已知一个二次函数的图像经过(0,3)A -,(1,0)B ,(,23)C m m +,(1,2)D --四点,求这个函数解析式以及点C 的坐标21.(本题满分10分)如图8,已知O :经过ABC ∆的顶点A 、B ,交边BC 于点D ,点A 恰为:BD 的中点,且8BD =,9AC =,求O :的半径.C22.(本题满分10分)下面是一位同学的一道作图题:(1)试将结论补完整(2)这位同学作图的依据是______________(3)如果4OA =,5AB =,AC m = ,试用向量m 表示向量DB23.(本题满分12分)已知:如图9,四边形ABCD 的对角线AC 和BD 相交于点E ,AD DC =,2DC DE DB =⋅求证:(1)BCE ADE ∆∆:;(2)AB BC BD BE⋅=⋅24.(本题满分12分)如图10,已知在平面直角坐标系中,已知抛物线22y ax ax c =++(其中a 、c 为常数,且0a <)与x 轴交于点A ,它的坐标是(3-,0),与y 轴交于点B ,此抛物线顶点C 到x 轴的距离为4(1)求抛物线的表达式;(2)求CAB ∠的正切值;(3)如果点P 是抛物线上的一点,且ABP CAO ∠=∠,试直接写出点P 的坐标25.(本题满分14分)如图11,BAC ∠的余切值为2,AB =D 是线段AB 上的一动点(点D 不与点A 、B 重合),以点D 为顶点的正方形DEFG 的另两个顶点E 、F 都在射线AC 上,且点F 在点E 的右侧,联结BG ,并延长BG ,交射线EC 于点P .(1)点D 在运动时,下列的线段和角中, 是始终保持不变的量(填序号);①AF ;②FP ;③BP ;④BDG ∠;⑤GAC ∠;⑥BPA ∠;(2)设正方形的边长为x ,线段AP 的长为y ,求y 与x 之间的函数关系式,并写出定义域;(3)如果PFG ∆与AFG ∆相似,但面积不相等,求此时正方形的边长.EGD答案:题号123456选项BCCADD7.15; 8. 6;9.47a b -+;10. 下降11. (0,2)-12.22(3)1y x =++13.3514.15215. 463+16.7944r <<17.418.251119.1220. 解析式为:223y x x =+-;点C 坐标为(2,7)或3(,0)2-21. 半径为25622. (1)CD ;(2)三角形一边的平行线;(3)94DB m=-23. (1)∵AD DC =,∴DAC DCA =∠∠,∵2DC DE DB =⋅, ∴EBC DAE =∠∠,∴BCE ADE △△∽(2)∵2DC DE DB =⋅, AD DC=∴2AD DE DB =⋅,∴ADE BDA △△∽,∵BCE ADE △△∽,∴BCE BDA△△∽24. (1)223y x x =--+;(2)13;(3)P 的坐标为(1,0)或532(,39-25. (1)④⑤(2)DG AP ‖,利用DB DGAD AP=即2552225x x xy --==,整理得22x y x =-(12x ≤<)(3)分类讨论:1)13FG FP =;2)3FGPF=正方形的边长为75或54。
普陀区2018年初三数学一模试卷及问题详解

文档普陀区2017学年度第一学期初三质量调研数 学 试 卷一、选择题(本大题共6题,每题4分,共24分) 1.下列函数中,y 关于x 的二次函数是( ). (A)y =ax 2+bx +c ;(B) y =x (x -1);(C)21y x=;(D) y =(x -1)2-x 2.2.在Rt △ABC 中,∠C =90°,AC =2,下面结论中,正确的是( ). (A) AB =2sin A ;(B) AB =2cos A ;(C) BC =2tan A ;(D) BC =2cot A .3.如图1,在△ABC 中,点D 、E 分别在边AB 、AC 的反向延长线上,下面比例式中,不能判断ED ∥BC 的是( ).(A) BA CA BD CE =; (B) EA DA EC DB =; (C) ED EABC AC=; (D)EA ACAD AB=. 4.已知5a b =r r,下列说法中,不正确的是( ).(A) 50a b -=r r ; (B) a r 与b r 方向相同; (C) a r ∥b r ; (D) 5a b =r r .图15.如图2,在平行四边形ABCD 中,F 是边AD 上一点,射线CF 和BA 的延长线交于点E ,如果12EAF CDF C C ∆∆=,那么EAF EBC S S ∆∆的值是( ).(A)12; (B)13; (C)14; (D)19.图26.如图3,已知AB 和CD 是e O 的两条等弦.OM ⊥AB ,ON ⊥CD ,垂足分别为点M 、N ,BA 、DC 的延长线交于点P ,联结OP .下列四个说法中,①»»AB CD=;②OM =ON ;③PA 学校…=PC ;④∠BPO =∠DPO ,正确的个数是( ). (A)1个; (B)2个; (C)3个; (D)4个.图3二、填空题(每小题4分,共48分) 7.如果那么=________. 8.已知线段a =4厘米,b =9厘米,线段c 是线段a 和线段b 的比例中项,线段c 的长度等于_________厘米. 9.化简:_________. 10.在直角坐标平面,抛物线y =3x 2+2x 在对称轴的左侧部分是_______的.(填“上升”或“下降”)11.二次函数y =(x -1)2-3的图像与y 轴的交点坐标是_________.12.将抛物线y =2x 2平移,使顶点移动到点P (-3,1)的位置,那么平移后所得新抛物线的表达式是_________.13.在直角坐标平面有一点A (3,4),点A 与原点O 的连线与x 轴的正半轴夹角为α,那么角α的余弦值是_________.14.如图4,在△ABC 中,AB =AC ,点D 、E 分别在边BC 、AB 上,且∠ADE =∠B ,如果DE ∶AD =2∶5,BD =3,那么AC =_________.15.如图5,某水库大坝的横断面是梯形ABCD ,坝顶宽AD 是6米,坝高是20米,背水坡AB 的坡角为30°,迎水坡CD 的坡度为1∶2,那么坝底BC 的长度等于_________米.(结果保留根号)图4 图532a =b ba a+-b =--)23(4b b a ρρρ16.已知Rt △ABC 中,∠C =90°,AC =3,BC =,CD ⊥AB ,垂足为点D ,以点D 为圆心作⊙D ,使得点A 在⊙D 外,且点B 在⊙D ,设⊙D 的半径为r ,那么r 的取值围是_________. 17.如图6,点D 在△ABC 的边BC 上,已知点E 、点F 分别为△ABD 和△ADC 的重心,如果BC =12,那么两个三角形重心之间的距离EF 的长等于__________.18.如图7,△ABC 中,AB =5,AC =6,将△ABC 翻折,使得点A 落到边BC 上的点A ´处,折痕分别交边AB 、AC 于点E 、点F ,如果A′F ∥AB ,那么BE =______________.图6 图7三、解答题(本题共7题,满分78分) 19.(本题满分10分)计算:21tan 60sin 452cos30cot 45︒︒︒︒-⋅-.20.(本题满分10分)已知一个二次函数的图像经过点A (0,-3)、B (1,0)、C (m ,2m +3)、D (-1,-2)四点,求这个函数的解析式及点C 的坐标.7如图8,已知Oe经过△ABC的顶点A、B,交边BC于点D,点A恰为»BD的中点,且BD=8,AC=9,求Oe的半径.图822.(本题满分10分)下面是一位同学的一道作图题:已知:如图9,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE·DB.求证:(1)△BCE∽△ADE;(2)AB·BC=BD·BE.图924.(本题满分12分,每小题满分各4分)如图10,在平面直角坐标系中,已知抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A,它的坐标是(-3, 0),与y轴交于点B,此抛物线顶点C到x轴的距离为4.(1)求该抛物线的表达式;(2)求∠CAB的正切值;(3)如果点P是抛物线上的一点,且∠ABP=∠CAO,试直接写出点P的坐标.图1025.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图11,∠BAC 的余切值为2,AB =D 是线段AB 上的一动点(点D 不与点A 、B 重合),以点D 为顶点的正方形DEFG 的另两个顶点E 、F 都在射线AC 上,且点F 在点E 的右侧.联结BG ,并延长BG ,交射线EC 于点P .(1)点D 在运动时,下列的线段和角中,______是始终保持不变的量(填序号); ①AF ; ②FP ; ③BP ; ④∠BDG ; ⑤∠GAC ; ⑥∠BP A ;(2)设正方形的边长为x ,线段AP 的长为y ,求y 与x 之间的函数关系式,并写出定义域;(3)如果△PFG 与△AFG 相似,但面积不相等,求此时正方形的边长.图11 备用图答案:7.5; 8. 6;9.47a b -+r r;10. 下降 11. (0,2)- 12.22(3)1y x =++13.35 14.15215. 46+16.7944r << 17.418.2511 19. 1220. 解析式为:223y x x =+-;点C 坐标为(2,7)或3(,0)2- 21. 半径为25622. (1)CD ;(2)三角形一边的平行线;(3)94DB m =-u u u r ur23. (1)∵AD DC =,∴DAC DCA =∠∠,∵2DC DE DB =⋅, ∴EBC DAE =∠∠,∴BCE ADE △△∽ (2)∵2DC DE DB =⋅, AD DC =∴2AD DE DB =⋅,∴ADE BDA △△∽,∵BCE ADE △△∽,∴BCE BDA △△∽24. (1)223y x x =--+;(2)13;(3)P 的坐标为(1,0)或532(,)39-25. (1)④⑤ (2)DG AP ‖,利用DB DGAD AP=即22x x y -==,整理得22xy x =-(12x ≤<) (3)分类讨论:1)13FG FP =;2)3FGPF= 正方形的边长为75或54。
2018年上海市初三数学一模试卷18题汇总解析

2018年上海市初三一模数学考试18题解析2018.01一. 普陀区18. 如图,ABC 中,5AB ,6AC ,将ABC 翻折,使得点A 落到边BC 上的点A 处,折痕分别交边AB 、AC 于点E 、点F ,如果A F ∥AB ,那么BE【解析】设BE x ,由题意可知:5A E AE xA F ∥AB 13 又∵12 ∴23 A E ∥AC ∴AE BE AC AB 即565x x 解得2511x 即2511BE 二. 奉贤区18. 已知ABC ,AB AC ,8BC ,点D 、E 分别在边BC 、AB 上,将ABC 沿着直线DE 翻折,点B 落在边AC 上的点M 处,且4AC AM ,设BD m ,那么ACB 的正切值是 (用含m 的代数式表示)【解析】作MN BC 于N ,AH BC 于H ,MD BD mAB AC ,8BC ,AH BC 4BH CHMN BC ,AH BC MN ∥AH CN CM CH AC3CN ∴835DN BC BD CN m m在Rt MND 中,222MN DN MD 3MN∴tan 9MN ACB CN三. 杨浦区18. 如图,在ABC 中,AB AC ,将ABC 绕点A 旋转,当点B 与点C 重合时,点C 落 在点D 处,如果2sin 3B ,6BC ,那么BC 的中点M 和CD 的中点N 的距离是【解析】12 ,M 为BC 的中点,N 为CD 的中点 1MAN ,AM AN 又∵AB AC ∴AB AM AC AN ,1MAN AMN ∽ABC AM MN AB BC ∵2sin 3AM B AB,6BC ∴4MN 四. 黄浦区18. 如图,平面上七个点A 、B 、C 、D 、E 、F 、G ,图中所有的连线长均相等,则cos BAF【解析】联结AC 、AD 、BF ,作CH AD 于H∵ABG 、BCG 、AEF 、DEF 为等边三角形 120ABC AED 又∵AB BC AE DE ∴ABC ≌AED AC AD四边形ABCG 和四边形AEDF 为菱形 12 BAF CAD又AB AF ,AC AD ∴ABF ∽ACD设2AB 那么AC ADCH CH,解得3AH ,5cos 6AH BAF AC解法二:根据上面分析,问题可以简化为,已知边长比为2CD ,∴AC AD ,取CD 中点K ,∴1CK KD ,易得△ADK ∽△CDH ,∴3KD HD HD AD CD,即3AH 5cos 6AH CAH AC .五. 松江区18. 如图,在ABC 中,90C ,4AC BC ,将ABC 翻折,使得点A 落在边BC 的中点A 处,折痕分别交边AB 、AC 于点D 、点E ,那么:AD AE 的值为【解析】作AF AB 于F在Rt ECA 中,222CE A C A E 即222()AC A E A C A E∵4AC ,2A C ∴52A E 即52AEAF AB ,2A B ,45B A F BF在Rt A DF 中,222A F DF A D 即222()A F AB BF A D A D∵AB ,A F BF∴3A D AD ∴5::323AD AE 六. 徐汇区18. 在ABC 中,90C ,3AC ,4BC (如图),将ACB 绕点A 顺时针方向旋转得ADE (点C 、B 的对应点分别为点D 、E ),点D 恰好落在直线BE 上,直线BE 与直线AC 交于点F ,则线段AF 的长为【解析】如图所示,点D 恰好落在直线BE 上AD BE ,AB AE 4BD DE在Rt BCF ,222BC CF BF 即BFADF ∽BCF AD AFBC BF ,即34 ,解得757AF七. 闵行区18. 如图,在等腰ABC 中,AB AC ,30B ,以点B 为旋转中心,旋转30°,点A 、 C 分别落在点A 、C 处,直线AC 、A C 交于点D ,那么AD AC的值为【解析】设2AB AC ,那么BC(1)顺时针旋转,如图1,303060C BA ,30C AB C D在Rt BC E 中,30C ,BC BC BE 2AE60BAD ABC AD ∥BC 1sin 42AE ADE AD AD∴ 422AD AC (2)逆时针旋转,如图2,303060CBA ,30C A B CD在Rt BCE 中,30C ,BC BE 2A E 1AE60BA D A BC tan 33A E A DE DE DE∴ 2AD ,1AD AC综上所述:AD AC 的值为21 八. 虹口区18. 在Rt ABC 中,90C ,6AC ,8BC (如图),点D 是边AB 上一点,把ABC 绕着点D 旋转90°,得到A B C ,边B C 与边AB 相交于点E ,如果AD BE ,那么AD 长为【解析】当点D 位于图1位置时,边B C 与边AB 不相交当点D 位于图2位置时,设AD x ,BE x ,10B D BD x ,① 当ABC 是顺时针旋转时,AD BE AB DE 210DE xB DE ∽BC A DE BD A C B C 即2101068x x 解得7011x ② 当ABC 是逆时针旋转时,AD BE DE AB 102DE xB DE ∽BC ADE B D A C B C 即1021068x x 解得2x , 当2x 时,即图1的情况,不符,舍去,综上,7011AD九. 静安区18. 如图,矩形纸片ABCD ,4AD ,3AB ,如果点E 在边BC 上,将纸片沿AE 折叠,使点B 落在点F 处,联结FC ,当EFC 是直角三角形时,那么BE 的长为【解析】① 当EFC 是直角时(如图1),设BE x ,4CE x∵190B ∴1180EFC 即A 、F 、C 在同一条直线上∴532CF AC AF在Rt EFC 中,222EF CF CE 即2222(4)x x 解得32x② 当CEF 是直角时(如图2)那么1245 ,点B 正好落在边AD 上∵90B ,245 ,∴3BE AB ,综上:BE 的长为32或3.十. 浦东新区18. 如图,已知在Rt ABC 中,90ACB ,4cos 5B ,8BC ,点D 在边BC 上, 将ABC 沿着过点D 的一条直线翻折,使点B 落在AB 边上的点E 处,联结CE 、DE , 当BDE AEC 时,则BE 的长是【解析】作CF AB 于F ,DH AB 于H设3DH x ,那么4BH EH x ,5BD x 90ACB ,4cos 5B,8BC 245AC BC CF AB DH BH CF BF 325BF ∴3285EF BE BF x 在Rt CEF 中,222222432((8)55CE CF EF x ∵BDE AEC ,∴CEB CDE 又∵ECB DCE , ∴BCE ∽ECD 2CE BC CD ∴222432((8)8(85)55x x 解得3940x ∴3985BE x 十一. 长宁18. 如图,在边长为2的菱形ABCD 中,60D ,点E 、F 分别在边AB 、BC 上,将BEF 沿着直线EF 翻折,点B 恰好与边AD 的中点G 重合,则BE 的长等于【解析】如右图所示,在Rt △GFC 中,设GF BF x ,2FC x ,GC ,∴22(2)3x x ,74x ,即74BF ,∵2IO ,1BI ,∴34IF ,设BH m ,∴EH ,74HF m ,EH OI HF IF ,解得710m ,∴725BE m18. 如图,点M 是正方形ABCD 的边BC 的中点,联结AM ,将BM 沿某一过M 的直线翻折,使B 落在AM 上的E 处,将线段AE 绕A 顺时针旋转一定角度,使E 落在F 处,如果E 在旋转过程中曾经交AB 于G ,当EF BG 时,旋转角EAF 的度数是【解析】作FE FH ,设2AB ,AM ,1MB ME ,1AE AF AG ,∴3GB EF FH AFE ∽△FEH ,∴24EF AE HE HE ,∴3AH ,∴AH HF FE ,∴5180EAF AFE FEA EAF , 即36EAF .十三. 崇明县18. 如图,在ABC 中,90ACB ,点D 、E 分别在AC 、BC 上,且CDE B ,将CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处,如果8AC ,10AB ,那么CD 的长为【解析】CF DE ,CDE B 190CDE∵CDE B ,90A B ∴1A∴ABC ∽CDOAC AB OC CD45OC CD ∴85CF CD 12A ACF ∽CFD AC CF CFDF即2CF AC CD ∴28()85CD CD 解得258CD18. 如图,在直角梯形ABCD 中,AD ∥BC ,90B ,3AD ,4AB ,8BC ,点E 、F 分别在边CD 、BC 上,联结EF ,如果CEF 沿直线EF 翻折,点C 与点A 恰好重合,那么DE EC的值是【解析】作DG ∥EF 交AC 于G在Rt ABC 中,8BC ,4AB AC ∴12CH AC DG ∥EF ,EF AC DG AC 又AD ∥BC 12∴ADG ∽CAB AD AG AC BC AG HG AC AG CH DG ∥EF 25DE HG EC CH十五. 青浦区18. 如图,在ABC 中,7AB ,6AC ,45A ,点D 、E 分别在边AB 、BC 上,将BDE 沿着DE 所在直线翻折,点B 落在点P 处,PD 、PE 分别交边AC 于点M 、N ,如果2AD ,PD AB ,垂足为点D ,那么MN 的长是【解析】7AB ,2AD 5BD DPPD AB ,45A ,2AD 2DM ∴3MPPD AB 1245又45A DE ∥ACDE BD AC AB 307DE ,MN MP DE DP 187MN18. 如图,在矩形ABCD 中,E 是AD 上一点,把ABE 沿直线BE 翻折,点A 正好落在BC 边上的点F 处,如果四边形CDEF 和矩形ABCD 相似,那么四边形CDEF 和矩形ABCD 面积比是【解析】四边形CDEF 和矩形ABCD 相似DE CD CD AD 即2CD DE AD ∵()CD EF AE AD DE∴2()AD DE DE AD 即2230AD AD DE DE解得32DE AD3=2CDEFABCD S CD DE DE S CD AD AD 四边形矩形。
2018届普陀区中考数学一模

【精品资料】上海市中考备考资料九年级一模卷Word精排版普陀区2017学年度第一学期初三质量调研数学试卷一、选择题(本大题共6题,每题4分,满分24分) 1. 下列函数中,y 关于x 的二次函数是( )A. 2y ax bx c =++B. (1)y x x =-C. 21y x =D. 22(1)y x x =--2. 在Rt ABC 中,90,2C AC ∠==,下面结论中,正确的是( ) A. 2sin AB A = B. 2cos AB A = C. 2tan BC A = D. 2cot BC A =3. 如图1,在ABC 中,点D 、E 分别在边AB 、AC 的反向延长线上,下面比例式中,不能判断//ED BC 的是( ) A.BA CABC CE = B.EA DAEC DB = C. ED EABC AC=D. EA ACAD AB=4. 已知5a b =,下列说法中,不正确的是( )A. 50a b -=B. a 与b 方向相同C. //a bD. 5a b =5. 如图2,在平行四边形ABCD 中,F 是边AD 上一点,射线CF 和BA 的延长线交于点E ,如果12EAF CDFCC=,那么EAF EBCS S的值是( )A.12B.13C.14D.196. 如图3,已知AB 和CD 是O 的两条等弦.,OM AB ON CN ⊥⊥,垂足分别为点M 、N ,BA 、DC 的延长线交于点P ,联结OP .下列四个说法中,①AB CD =; ②OM ON =; ③PA PC =; ④BPO DPO ∠=∠,正确的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共12题,每题4分,满分48分)7. 如果23a b =,那么b aa b -=+____________.8. 已知线段4a =厘米,9b =厘米,线段c 是线段a 和线段b 的比例中项,线段c 的长度等于__________厘米.图1B图2B图3P9. 化简:342b a b ⎛⎫--= ⎪⎝⎭____________. 10. 在直角坐标平面内,抛物线232y x x =+在对称轴的左侧部分是____________的.(填“上升”或“下降”)11. 二次函数2(1)3y x =--的图像与y 轴的交点坐标是____________.12. 将抛物线22y x =平移,使顶点移动到点(3,1)P -的位置,那么平移后所得新抛物线的表达式是____________.13. 在直角坐标平面内有一点(3,4)A ,点A 与原点O 的连线与x 轴的正半轴夹角为α,那么角α的余弦值是____________.14. 如图4,在ABC 中,AB AC =,点D 、E 分别在边BC 、AB 上,且ADE B ∠=∠,如果:2:5DE AD =,3BD =,那么AC =____________.15. 如图5,某水库大坝的横断面是梯形ABCD ,坝顶宽AD 是6米,坝高是20米,背水坡AB 的坡角为30°,迎水坡CD 的坡度为1:2,那么坝底BC 的长度等于____________米.(结果保留根号)16. 已知Rt ABC中,90,3,C AC BC CD AB ∠===⊥,垂足为点D ,以点D 为圆心作D ,使得点A 在D 外,且点B 在D 内,设D 的半径为r ,那么r 的取值范围是____________. 17. 如图6,点D 在ABC 的边BC 上,已知点E 、点F 分别为ABD 和ADC 的重心,如果12BC =,那么两个三角形重心之间的距离EF 的长等于____________.18. 如图7,ABC 中,5,6AB AC ==,将ABC 翻折,使得点A 落到边BC 上的点'A 处,折痕分别交边AB 、AC 于点E 、点F ,如果'//A F AB ,那么BE =____________.三、解答题(本大题共7题,满分78分)图5图4BCB图7图6BC ABCD19. (本题满分10分)计算:21tan 60sin 452cos30cot 45-⋅-.20. (本题满分10分) 已知一个二次函数的图像经过(0,3)A -、(1,0)B 、(,23)C m m +、(1,2)D --四点,求这个函数的解析式及点C 的坐标.21. (本题满分10分)如图8,已知O 经过ABC 的顶点A 、B ,交边BC 于点D ,点A 恰为BD 的中点,且18,9,sin 3BD AC C ===,求O 的半径.22. (本题满分10分)图8C(1)试将结论补完整:线段____________就是所求的线段x . (2)这位同学作图的依据是___________;(3)如果4,5,OA AB AC m ===,试用向量m 表示向量DB .23. (本题满分12分)已知:如图9,四边形ABCD 的对角线AC 和BD 相交于点E ,2,AD DC DC DE DB ==⋅. 求证:(1)BCE ADE ∽;(2)··AB BC BD BE =.24.(本题满分12分,每小题满分各4分)图9Bx如图10,在平面直角坐标系中,已知抛物线22y ax ax c +=+(其中a c 、为常数,且0a <)与x 轴交于点A ,它的坐标是()3, 0-,与y 轴交于点B ,此抛物线顶点C 到x 轴的距离为4.(1)求该抛物线的表达式; (2)求CAB ∠的正切值;(3)如果点P 是抛物线上的一点,且ABP CAO ∠=∠,试直接写出点P 的坐标.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图11,BAC ∠的余切值为2, AB =点D 是线段AB 上的一动点(点D 不与点A B 、重合),以点D 为顶点的正方形DEFG 的另两个顶点E F 、都在射线AC 上,且点F 在点E 的右侧.联结BG ,并延长BG ,交射线EC 于点P .(1)点D 在运动时,下列的线段和角中,______是始终保持不变的量(填序号);①AF ; ②FP ; ③BP ; ④BDG ∠; ⑤GAC ∠; ⑥BPA ∠;(2)设正方形的边长为x ,线段AP 的长为y ,求y 与x 之间的函数关系式,并写出定义域; (3)如果PFG 与AFG 相似,但面积不相等,求此时正方形的边长.备用图图11P ACC E F参考答案1-6、BCCADD7、158、6 9、74b a - 10、下降11、()0,2- 12、()2231y x =++ 13、35 14、15215、46+ 16、7944r << 17、4 18、251119、1220、223y x x =+-;13,02C ⎛⎫- ⎪⎝⎭,()22,7C21、256r =22、(1)CD ;(2) 平行线分线段成比例定理;(3)94DB m =-23、(1)证明略;(2)证明略 24、(1)223y x x =--+;(2)13;(3)()1,0或532,39⎛⎫- ⎪⎝⎭25、(1)④⑤;(2)()2022x y x x =<<-;(3)75或54。
2018届普陀区中考数学一模

普陀区2017学年度第一学期初三质量调研数学试卷一、选择题(本大题共6题,每题4分,满分24分) 1. 下列函数中,y 关于x 的二次函数是( )A. 2y ax bx c =++B. (1)y x x =-C. 21y x=D. 22(1)y x x =--2. 在Rt ABC 中,90,2C AC ∠==,下面结论中,正确的是( ) A. 2sin AB A = B. 2cos AB A = C. 2tan BC A = D. 2cot BC A =3. 如图1,在ABC 中,点D 、E 分别在边AB 、AC 的反向延长线上,下面比例式中,不能判断//ED BC 的是( ) A.BA CABC CE = B.EA DAEC DB = C. ED EABC AC=D. EA ACAD AB=4. 已知5a b =,下列说法中,不正确的是( )A. 50a b -=B. a 与b 方向相同C. //a bD. 5a b =5. 如图2,在平行四边形ABCD 中,F 是边AD 上一点,射线CF 和BA 的延长线交于点E ,如果12EAF CDFCC=,那么EAF EBCS S的值是( )A.12B.13C.14D.196. 如图3,已知AB 和CD 是O 的两条等弦.,OM AB ON CN ⊥⊥,垂足分别为点M 、N ,BA 、DC 的延长线交于点P ,联结OP .下列四个说法中,①AB CD =; ②OM ON =; ③PA PC =; ④BPO DPO ∠=∠,正确的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共12题,每题4分,满分48分)7. 如果23a b =,那么b aa b -=+____________.8. 已知线段4a =厘米,9b =厘米,线段c 是线段a 和线段b 的比例中项,线段c 的长度等于__________厘米.图1B图2B图3P9. 化简:342b a b ⎛⎫--= ⎪⎝⎭____________. 10. 在直角坐标平面内,抛物线232y x x =+在对称轴的左侧部分是____________的.(填“上升”或“下降”)11. 二次函数2(1)3y x =--的图像与y 轴的交点坐标是____________.12. 将抛物线22y x =平移,使顶点移动到点(3,1)P -的位置,那么平移后所得新抛物线的表达式是____________.13. 在直角坐标平面内有一点(3,4)A ,点A 与原点O 的连线与x 轴的正半轴夹角为α,那么角α的余弦值是____________.14. 如图4,在ABC 中,AB AC =,点D 、E 分别在边BC 、AB 上,且ADE B ∠=∠,如果:2:5DE AD =,3BD =,那么AC =____________.15. 如图5,某水库大坝的横断面是梯形ABCD ,坝顶宽AD 是6米,坝高是20米,背水坡AB 的坡角为30°,迎水坡CD 的坡度为1:2,那么坝底BC 的长度等于____________米.(结果保留根号)16. 已知Rt ABC中,90,3,C AC BC CD AB ∠===⊥,垂足为点D ,以点D 为圆心作D ,使得点A 在D 外,且点B 在D 内,设D 的半径为r ,那么r 的取值范围是____________. 17. 如图6,点D 在ABC 的边BC 上,已知点E 、点F 分别为ABD 和ADC 的重心,如果12BC =,那么两个三角形重心之间的距离EF 的长等于____________.18. 如图7,ABC 中,5,6AB AC ==,将ABC 翻折,使得点A 落到边BC 上的点'A 处,折痕分别交边AB 、AC 于点E 、点F ,如果'//A F AB ,那么BE =____________.三、解答题(本大题共7题,满分78分)图5图4BCB图7图6BC ABCD19. (本题满分10分)计算:21tan 60sin 452cos30cot 45-⋅-.20. (本题满分10分) 已知一个二次函数的图像经过(0,3)A -、(1,0)B 、(,23)C m m +、(1,2)D --四点,求这个函数的解析式及点C 的坐标.21. (本题满分10分)如图8,已知O 经过ABC 的顶点A 、B ,交边BC 于点D ,点A 恰为BD 的中点,且18,9,sin 3BD AC C ===,求O 的半径.22. (本题满分10分)图8C(1)试将结论补完整:线段____________就是所求的线段x . (2)这位同学作图的依据是___________;(3)如果4,5,OA AB AC m ===,试用向量m 表示向量DB .23. (本题满分12分)已知:如图9,四边形ABCD 的对角线AC 和BD 相交于点E ,2,AD DC DC DE DB ==⋅. 求证:(1)BCE ADE ∽;(2)··AB BC BD BE =.24.(本题满分12分,每小题满分各4分)图9Bx如图10,在平面直角坐标系中,已知抛物线22y ax ax c +=+(其中a c 、为常数,且0a <)与x 轴交于点A ,它的坐标是()3, 0-,与y 轴交于点B ,此抛物线顶点C 到x 轴的距离为4.(1)求该抛物线的表达式; (2)求CAB ∠的正切值;(3)如果点P 是抛物线上的一点,且ABP CAO ∠=∠,试直接写出点P 的坐标.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图11,BAC ∠的余切值为2, AB =点D 是线段AB 上的一动点(点D 不与点A B 、重合),以点D 为顶点的正方形DEFG 的另两个顶点E F 、都在射线AC 上,且点F 在点E 的右侧.联结BG ,并延长BG ,交射线EC 于点P .(1)点D 在运动时,下列的线段和角中,______是始终保持不变的量(填序号);①AF ; ②FP ; ③BP ; ④BDG ∠; ⑤GAC ∠; ⑥BPA ∠;(2)设正方形的边长为x ,线段AP 的长为y ,求y 与x 之间的函数关系式,并写出定义域; (3)如果PFG 与AFG 相似,但面积不相等,求此时正方形的边长.备用图图11P ACC E F参考答案1-6、BCCADD7、158、6 9、74b a - 10、下降11、()0,2- 12、()2231y x =++ 13、35 14、15215、46+ 16、7944r << 17、4 18、251119、1220、223y x x =+-;13,02C ⎛⎫- ⎪⎝⎭,()22,7C21、256r =22、(1)CD ;(2) 平行线分线段成比例定理;(3)94DB m =-23、(1)证明略;(2)证明略 24、(1)223y x x =--+;(2)13;(3)()1,0或532,39⎛⎫- ⎪⎝⎭25、(1)④⑤;(2)()2022x y x x =<<-;(3)75或54。
上海市普陀区2018届九年级数学上学期质量调研(一模)试题

5.如图 2,在平行四边形 ABCD 中, F 是边 AD 上的一点,射线 CF 和 BA 的延长线交于点 E ,
如果 C EAF
1
,那么
S EAF
的值是(
)
C CDF 2
S EBC
( A) 1 ; (B) 1 ; ( C) 1 ; ( D) 1 .
2
3
4
9
E
A
F
D
B
C
2
6.如图 3,已知 AB 和 CD 是 O 的两条等弦. OM AB ,ON CD ,垂足分别为点 M 、N ,BA 、
1 x2 ;
( D) y
( x 1)2
90 , AC 2 ,下列结论中,正确的是(
)
x2 .
( A) AB 2sinA ; ( B) AB 2cosA; (C) BC 2tanA ; ( D) BC 2cotA .
3.如图 1,在 ABC 中,点 D 、 E 分别在边 AB 、 AC 的反向延长线上,下面比例式中,不能判
1
上海市普陀区 2018 届九年级数学上学期质量调研(一模)试题
(时间: 100 分钟,满分: 150 分) 考生注意: 1.本试卷含三个大题,共 25 题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草
稿纸、本试卷上答题一律无效. 2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主 要步骤.
一、选择题: (本大题共 6 题,每题 4 分,满分 24 分)
[ 下列各题的四个选项中, 有且只有一个选项是正确的, 选择正确项的代号并填涂在答题纸的相应位
置上 ]
1.下列函数中, y 关于 x 的二次函数是(
上海市普陀区2018届九年级数学一模试题(含答案)

普陀区2017学年度第一学期初三质量调研数 学 试 卷(时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.下列函数中,y 关于x 的二次函数是( ) (A )2y ax bx c =++; (B)(1)y x x =-; (C )21y x=; (D )22(1)y x x =--. 2.在Rt ABC ∆中,90C ∠=︒,2AC =,下列结论中,正确的是( )(A )2AB sinA =; (B )2AB cosA =; (C )2BC tanA =; (D )2BC cotA =. 3.如图1,在ABC ∆中,点D 、E 分别在边AB 、AC 的反向延长线上,下面比例式中,不能判断//ED BC 的是( )(A )BA CA BD CE =; (B )EA DAEC DB =; (C )ED EA BC AC =; (D )EA AC AD AB=. 4.已知5a b =,下列说法中,不正确的是( )(A )50a b -=; (B )a 与b 方向相同; (C )//a b ; (D )5a b =. 5.如图2,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果12EAF CDF C C ∆∆=,那么EAF EBCSS ∆∆的值是( )(A )12; (B )13; (C )14; (D )19.FCEAP6.如图3,已知AB 和CD 是O 的两条等弦.OM AB ⊥,ON CD ⊥,垂足分别为点M 、N ,BA 、DC 的延长线交于点P ,联结OP .下列四个说法中,①AB CD =;②OM ON =;③PA PC =;④BPO DPO ∠=∠,正确的个数是( ) (A )1; (B )2; (C )3; (D )4.二.填空题(本大题共12题,每题4分,满分48分)7。
原卷无答案-上海市普陀区2018-2019学年九年级上学期期末考试(一模)

上海市普陀区2018-2019学年上学期期末考试(一模)九年级数学试卷一、选择题(本大题共6题,每题4分,满分24分)1.已知二次函数的图像有最高点,那么的取值范围是()A. B. C. D.2.下列二次函数中,如果图像能与y轴交于点A)0)1),那么这个函数是()A. B. C. D.3.如图,在中,点D)E分别在的边AB)AC上,如果添加下列其中之一的条件,不一定能使与相似,那么这个条件是()A. B. C. D.4.已知))都是非零向量,如果),那么下列说法中,错误的是()A. B. C. D. 与方向相反5.已知⊙和⊙,其中⊙为大圆,半径为3.如果两圆内切时圆心距等于2,那么两圆外切时圆心距等于()A. 1B. 4C. 5D. 86.如图,在中,点D)E分别在边AB)AC上,DE//BC,且DE经过重心G,在下列四个说法中,))),正确的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共12题,每题4分,满分48分)7.如果,那么的值是_________)8.化简:=_______________)9.如果抛物线经过原点,那么的值等于________)10.将抛物线先右平移2个单位,再向上平移3个单位,那么平移后所得新抛物线的表达式是_______)11.已知抛物线的对称轴是直线,那么的值等于________)12.已知三边的比为,与它相似的最小边的长等于12,那么最大边的长等于________)13.在中,)AB=3)BC=1,那么的正弦值是________)14.正八边形的中心角等于__度.15.如图,在梯形ABCD中,AD//BC)AB BC)BD DC))BC=5,那么DC的长等于________)16.如图,AB//CD)AD)BC相交于点E,过点E作EF//CD交BD于点F,如果)EF=6,那么CD的长等于________)17.已知二次函数))的图像上有纵坐标分别为)的两点A)B,如果点A)B到对称轴的距离分别等于2)3,那么______.(填“<”)“=”或“>”)18.如图,中,AB=AC=8),点D在边BC上,将沿直线AD翻折得到,点B的对应点为点E)AE与边BC相交于点F,如果BD=2,那么EF=________)三、解答题(本大题共7题,满分78分)19.计算:)20.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点E在边BC上,AE与BD相交于点G,.(1)求的值;(2)设,,那么=____________.21.如图,⊙和⊙相交于A)B两点,与AB交于点C)的延长线交⊙于点D,点E为AD的中点,AE=AC,联结))1)求证:))2)如果),求⊙的半径长.22.如图,小山的一个横断面是梯形BCDE)EB//DC,其中斜坡DE的坡长为13米,坡度.小山上有一座铁塔AB,在山坡的坡顶E处测得铁塔顶端A的仰角为,在与山坡的坡底D相距5米的F处测得铁塔顶端A的仰角为(点F)D)C在一直线上),求铁塔AB的高度.(参考数值:)))23.已知:如图,的顶点E在的边BC上,DE与AB相交于点F))))1)求证:∽))2)求证:)24.如图,在平面直角坐标系中,抛物线))与轴交于点A))0)和点B,且OB=3OA,与轴交于点C,此抛物线顶点为点D))1)求抛物线的表达式及点D的坐标;)2)如果点E是轴上的一点(点E与点C不重合),当BE DE时,求点E的坐标;)3)如果点F是抛物线上的一点,且,求点F的坐标.25.如图,点O在线段AB上,AO=2OB=2),点C是射线OP上的一个动点.)1)如图①,当)OC=2,求的值;)2)如果②,当AC=AB时,求OC的长(用含的代数式表示);)3)在第(2)题的条件下,过点A作AQ//BC,并使,求的值.。
★试卷3套精选★上海市普陀区2018年中考数学三月一模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知一次函数y=kx+b 的图象如图,那么正比例函数y=kx 和反比例函数y=b x在同一坐标系中的图象的形状大致是( )A .B .C .D .【答案】C【解析】试题分析:如图所示,由一次函数y=kx+b 的图象经过第一、三、四象限,可得k >1,b <1.因此可知正比例函数y=kx 的图象经过第一、三象限,反比例函数y=b x的图象经过第二、四象限.综上所述,符合条件的图象是C 选项.故选C .考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系2.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠ 【答案】A【解析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a 的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-14; 当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根, 所以a 的取值范围为a≥1.故选A .【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.3.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是()A.B.C.D.【答案】A【解析】以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.【详解】如图,点E即为所求作的点.故选:A.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.4.下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【答案】B【解析】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C 、x 2+3=2x.x 2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根;D 、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B .点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.5.如图,平行四边形 ABCD 中, E 为 BC 边上一点,以 AE 为边作正方形AEFG ,若 40BAE ∠=︒,15CEF ∠=︒,则 D ∠的度数是A .65︒B .55︒C .70︒D .75︒【答案】A 【解析】分析:首先求出∠AEB ,再利用三角形内角和定理求出∠B ,最后利用平行四边形的性质得∠D=∠B 即可解决问题.详解:∵四边形ABCD 是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四边形ABCD 是平行四边形,∴∠D=∠B=65°故选A .点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.6.如图,在△ABC 中,点D 是AB 边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC 的面积为1,则△BCD 的面积为( )A .1B .2C .3D .4 【答案】C【解析】∵∠ACD=∠B ,∠A=∠A ,∴△ACD ∽△ABC , ∴12AC AD AB AC ==, ∴2ACDABC S AD SAC ⎛⎫= ⎪⎝⎭, ∴2112ABCS ⎛⎫= ⎪⎝⎭, ∴S △ABC =4,∴S △BCD = S △ABC - S △ACD =4-1=1.故选C考点:相似三角形的判定与性质.7.已知二次函数y =ax 1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc >0;②b 1﹣4ac =0;③a >1;④ax 1+bx+c =﹣1的根为x 1=x 1=﹣1;⑤若点B (﹣14,y 1)、C (﹣12,y 1)为函数图象上的两点,则y 1>y 1.其中正确的个数是( )A .1B .3C .4D .5【答案】D 【解析】根据二次函数的图象与性质即可求出答案.【详解】解:①由抛物线的对称轴可知:02b a-<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;②抛物线与x 轴只有一个交点,∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=, ∵12b a -=-, ∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确;⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D .【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.8.一、单选题在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( ) A . B . C . D .【答案】B【解析】根据反比例函数k y x=中k 的几何意义,过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|解答即可.【详解】解:A 、图形面积为|k|=1;B 、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=1.故选B.【点睛】主要考查了反比例函数kyx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.9.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【答案】C【解析】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴2AB,∵2AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质10.如图,以两条直线l1,l2的交点坐标为解的方程组是( )A.121x yx y-=⎧⎨-=⎩B.121x yx y-=-⎧⎨-=-⎩C.121x yx y-=-⎧⎨-=⎩D.121x yx y-=⎧⎨-=-⎩【答案】C【解析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:1 21 x yx y-=-⎧⎨-=⎩.故选C.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.二、填空题(本题包括8个小题)11.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是___.【答案】4m【解析】设路灯的高度为x(m),根据题意可得△BEF∽△BAD,再利用相似三角形的对应边正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因为两人相距4.7m,可得到关于x的一元一次方程,然后求解方程即可.【详解】设路灯的高度为x(m),∵EF∥AD,∴△BEF∽△BAD,∴,即,解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴,即,解得:DN=x﹣1.5,∵两人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路灯AD的高度是4m.12.某航班每次飞行约有111名乘客,若飞机失事的概率为p=1.111 15,一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿41万元人民币.平均来说,保险公司应向每位乘客至少收取_____元保险费才能保证不亏本.【答案】21【解析】每次约有111名乘客,如飞机一旦失事,每位乘客赔偿41万人民币,共计4111万元,由题意可得一次飞行中飞机失事的概率为P=1.11115,所以赔偿的钱数为41111111×1.11115=2111元,即可得至少应该收取保险费每人2000100=21元.13.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB 于G,连接EF,则线段EF的长为_____.【答案】1【解析】在△AGF和△ACF中,{GAF CAFAF AFAFG AFC∠=∠=∠=∠,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,则BG=AB−AG=6−4=2.又∵BE=CE,∴EF是△BCG的中位线,∴EF=12BG=1.故答案是:1.14.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.【答案】4610【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:6×1,故答案为:6×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD 为_______米(结果保留根号).【答案】3 4【解析】分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB 求CM,作差可求DC.【详解】因为∠MAD=45°, AM=4,所以MD=4,因为AB=8,所以MB=12,因为∠MBC=30°,所以CM=MBtan30°3.所以3【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键.16.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.【答案】11.【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.17.如图,△ABC与△DEF位似,点O为位似中心,若AC=3DF,则OE:EB=_____.【答案】1:2【解析】△ABC与△DEF是位似三角形,则DF∥AC,EF∥BC,先证明△OAC∽△ODF,利用相似比求得AC =3DF,所以可求OE:OB=DF:AC=1:3,据此可得答案.【详解】解:∵△ABC与△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,则OE:EB=1:2故答案为:1:2【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,位似图形的对应顶点的连线平行或共线.18.如图,在平行四边形ABCD中,过对角线AC与BD的交点O作AC的垂线交于点E,连接CE,若AB=4,BC=6,则△CDE的周长是______.【答案】1【解析】由平行四边形ABCD 的对角线相交于点O ,OE ⊥AC ,根据线段垂直平分线的性质,可得AE=CE ,又由平行四边形ABCD 的AB+BC=AD+CD=1,继而可得结论.【详解】∵四边形ABCD 是平行四边形,∴OA=OC ,AB=CD ,AD=BC .∵AB=4,BC=6,∴AD+CD=1.∵OE ⊥AC ,∴AE=CE ,∴△CDE 的周长为:CD+CE+DE=CD+CE+AE=AD+CD=1.故答案为1.【点睛】本题考查了平行四边形的性质,线段的垂直平分线的性质定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.三、解答题(本题包括8个小题)19.如图,在平面直角坐标系中,抛物线y =x 2+mx +n 经过点A(3,0)、B(0,-3),点P 是直线AB 上的动点,过点P 作x 轴的垂线交抛物线于点M ,设点P 的横坐标为t .分别求出直线AB 和这条抛物线的解析式.若点P 在第四象限,连接AM 、BM ,当线段PM 最长时,求△ABM 的面积.是否存在这样的点P ,使得以点P 、M 、B 、O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由.【答案】 (1)抛物线的解析式是223y x x =--.直线AB 的解析式是3y x =-. (2) 278. (3)P 点的横坐标是3212或3212. 【解析】(1)分别利用待定系数法求两函数的解析式:把A (3,0)B (0,﹣3)分别代入y=x 2+mx+n 与y=kx+b ,得到关于m 、n 的两个方程组,解方程组即可;(2)设点P 的坐标是(t ,t ﹣3),则M (t ,t 2﹣2t ﹣3),用P 点的纵坐标减去M 的纵坐标得到PM 的长,即PM=(t ﹣3)﹣(t 2﹣2t ﹣3)=﹣t 2+3t ,然后根据二次函数的最值得到当t=﹣=时,PM 最长为=,再利用三角形的面积公式利用S △ABM =S △BPM +S △APM计算即可; (3)由PM ∥OB ,根据平行四边形的判定得到当PM=OB 时,点P 、M 、B 、O 为顶点的四边形为平行四边形,然后讨论:当P 在第四象限:PM=OB=3,PM 最长时只有,所以不可能;当P 在第一象限:PM=OB=3,(t 2﹣2t ﹣3)﹣(t ﹣3)=3;当P 在第三象限:PM=OB=3,t 2﹣3t=3,分别解一元二次方程即可得到满足条件的t 的值.【详解】解:(1)把A (3,0)B (0,-3)代入2y x mx n =++,得 093{3m n n =++-=解得2{3m n =-=- 所以抛物线的解析式是223y x x =--.设直线AB 的解析式是y kx b =+,把A (3,0)B (0,3-)代入y kx b =+,得 03{3k b b =+-=解得1{3k b ==- 所以直线AB 的解析式是3y x =-.(2)设点P 的坐标是(3p p -,),则M (p ,223p p --),因为p 在第四象限,所以PM=22(3)(23)3p p p p p ----=-+,当PM 最长时94PM =,此时3,2p = ABM BPM APM S S S =+=19324⨯⨯=278. (3)若存在,则可能是:①P 在第四象限:平行四边形OBMP ,PM=OB=3, PM 最长时94PM =,所以不可能. ②P 在第一象限平行四边形OBPM : PM=OB=3,233p p -=,解得1321p +=,2321p -=(舍去),所以P 点的横坐标是3212+. ③P 在第三象限平行四边形OBPM :PM=OB=3,233p p -=,解得13212p +=(舍去), ①23212p =,所以P 点的横坐标是3212. 所以P 点的横坐标是3212或3212. 20.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?【答案】(1)作图见解析;(2)1.【解析】试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;试题解析:解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=1人.答:该校九年级大约有1名志愿者.21.探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手次:;若参加聚会的人数为5,则共握手次;若参加聚会的人数为n(n为正整数),则共握手次;若参加聚会的人共握手28次,请求出参加聚会的人数.拓展:嘉嘉给琪琪出题:“若线段AB 上共有m 个点(含端点A ,B ),线段总数为30,求m 的值.”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?【答案】探究:(1)3,1;(2)(1)2n n -;(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析. 【解析】探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;(2)由(1)的结论结合参会人数为n ,即可得出结论;(3)由(2)的结论结合共握手28次,即可得出关于n 的一元二次方程,解之取其正值即可得出结论; 拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m 的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.【详解】探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.故答案为3;1.(2)∵参加聚会的人数为n (n 为正整数),∴每人需跟(n-1)人握手,∴握手总数为()12n n -. 故答案为()12n n -. (3)依题意,得:()12n n -=28,整理,得:n 2-n-56=0,解得:n 1=8,n 2=-7(舍去).答:参加聚会的人数为8人.拓展:琪琪的思考对,理由如下:如果线段数为2,则由题意,得:()12m m -=2, 整理,得:m 2-m-60=0,解得m 1=12+,m 2=2(舍去). ∵m 为正整数,∴没有符合题意的解,∴线段总数不可能为2.【点睛】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n 的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.22.先化简再求值:a b a -÷(a ﹣22ab b a-),其中a =2cos30°+1,b =tan45°.【答案】1a b -【解析】先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角的三角函数值得出a 和b 的值,代入计算可得. 【详解】原式=a b a -÷(2a a ﹣22ab b a-) =222a b a ab b a a--+÷ =()2•a b a a a b -- =1a b-,当a =2cos30°+1=,b =tan45°=1时,原式= 【点睛】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,也考查了特殊锐角的三角函数值.23.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m =162﹣3x .请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【答案】(1)y=﹣3x 2+252x ﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.【解析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【详解】(1)由题意得:每件商品的销售利润为(x ﹣2)元,那么m 件的销售利润为y=m (x ﹣2). 又∵m=162﹣3x ,∴y=(x ﹣2)(162﹣3x ),即y=﹣3x 2+252x ﹣1.∵x ﹣2≥0,∴x≥2.又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x2+252x﹣1(2≤x≤54).(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点睛】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.24.一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;搅匀后,从中任意取一个球,标号为正数的概率是;搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.【答案】(1)23;(2)49【解析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率. 【详解】解:(1)因为1、-1、2三个数中由两个正数,所以从中任意取一个球,标号为正数的概率是2 3 .(2)因为直线y=kx+b经过一、二、三象限,所以k>0,b>0,又因为取情况:共9种情况,符合条件的有4种,所以直线y=kx+b经过一、二、三象限的概率是4 9 .【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出.25.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x 的取值范围;若双曲线上点C (2,n )沿OA 5B ,判断四边形OABC 的形状并证明你的结论.【答案】(1)2y x= (2)﹣1<x <0或x >1.(3)四边形OABC 是平行四边形;理由见解析.【解析】(1)设反比例函数的解析式为k y x =(k >0),然后根据条件求出A 点坐标,再求出k 的值,进而求出反比例函数的解析式.(2)直接由图象得出正比例函数值大于反比例函数值时自变量x 的取值范围;(3)首先求出OA 的长度,结合题意CB ∥OA 且5判断出四边形OABC 是平行四边形,再证明OA=OC【详解】解:(1)设反比例函数的解析式为k y x=(k >0) ∵A (m ,﹣2)在y=2x 上,∴﹣2=2m ,∴解得m=﹣1.∴A (﹣1,﹣2).又∵点A 在k y x=上,∴k 21-=-,解得k=2., ∴反比例函数的解析式为2y x =. (2)观察图象可知正比例函数值大于反比例函数值时自变量x 的取值范围为﹣1<x <0或x >1. (3)四边形OABC 是菱形.证明如下:∵A (﹣1,﹣2),∴22OA 125=+由题意知:CB ∥OA 且5∴CB=OA .∴四边形OABC 是平行四边形.∵C (2,n )在2y x=上,∴2n 12==.∴C (2,1). ∴22OC 215+∴OC=OA .∴平行四边形OABC 是菱形.26.在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【答案】(1)3,补图详见解析;(2)7 12【解析】(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可【详解】由扇形图可以看到发箴言三条的有3名学生且占25%,故该班团员人数为:325%12÷=(人),则发4条箴言的人数为:1222314----=(人),所以本月该班团员所发的箴言共212233441536⨯+⨯+⨯+⨯+⨯=(条),则平均所发箴言的条数是:36123÷=(条).(2)画树形图如下:由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为712 P=.【点睛】此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,⊙O 是等边△ABC 的外接圆,其半径为3,图中阴影部分的面积是()A.πB.32πC.2πD.3π【答案】D【解析】根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.【详解】∵△ABC 为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积=2 1203360π⨯=3π.故选D.【点睛】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键.2.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【答案】D【解析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D .【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.3.如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O ,AC 8=,BD 6=,DH AB ⊥于点H ,且DH 与AC 交于G ,则OG 长度为( )A .92B .94 C.35 D .35 【答案】B【解析】试题解析:在菱形ABCD 中,6AC =,8BD =,所以4OA =,3OD =,在Rt AOD △中,5AD =, 因为11641222ABD S BD OA =⋅⋅=⨯⨯=,所以1122ABD S AB DH =⋅⋅=,则245DH =,在Rt BHD 中,由勾股定理得,22222418655BH BD DH ⎛⎫=-=-= ⎪⎝⎭,由DOG DHB ∽可得,OG OD BH DH =,即3182455OG =,所以94OG =.故选B.4.如图,在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥AB ,下列四个判断中不正确的是( )A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形【答案】C【解析】A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四边形AEDF是平行四边形;即A正确;B选项,∵四边形AEDF是平行四边形,∠BAC=90°,∴四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA 证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.5.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是()A.28cm2B.27cm2C.21cm2D.20cm2【答案】B【解析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.【详解】解:依题意,在矩形ABDC中截取矩形ABFE,则矩形ABDC∽矩形FDCE,则AB BD DF DC设DF=xcm,得到:68 = x6解得:x=4.5,则剩下的矩形面积是:4.5×6=17cm1.【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.6.关于反比例函数y=2x,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上【答案】C【解析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数2yx的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.7.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是A.有两个相等的实数根B.有两个异号的实数根C.有两个不相等的实数根D.没有实数根【答案】A【解析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年12月27日,考试时间100分钟,满分150分
一、选择题(本大题共6题,每题4分,共24分)
1.下列函数中,y关于x的二次函数是( ).
(A)y=ax2+bx+c; (B) y=x(x-1); (C) 21yx; (D) y=(x-1)2-x2.
2.在Rt△ABC中,∠C=90°,AC=2,下面结论中,正确的是( ).
(A) AB=2sinA; (B) AB=2cosA; (C) BC=2tanA; (D) BC=2cotA.
3.如图1,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判断ED∥BC的是( ).
(A) BACABDCE; (B) EADAECDB; (C) EDEABCAC; (D) EAACADAB.
4.已知5ab,下列说法中,不正确的是( ).
(A) 50ab; (B) a与b方向相同; (C) a∥b; (D) 5ab.
图1 图2 图3
5.如图2平行四边形ABCD中F是边AD上一点射线CF和BA的延长线交于点E如果12EAFCDFCC那么EAFEBCSS的值是( ).
(A)12; (B)13; (C)14; (D)19.
6.如图3,已知AB和CD是O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,
联结OP.下列四个说法中,①ABCD;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是( ).
(A)1个; (B)2个; (C)3个; (D)4个.
二、填空题(每小题4分,共48分)
7.如果32ab那么baab=________
.
8.已知线段a=4厘米,b=9厘米,线段c是线段a和线段b的比例中项,线段c的长度等于_________厘米.
9.化简:)23(4bba_________
.
10.在直角坐标平面内,抛物线y=3x2+2x在对称轴的左侧部分是_______的.(填“上升”或“下降”)
11.二次函数y=(x-1)2-3的图像与y轴的交点坐标是_________.
12.将抛物线y=2x2平移,使顶点移动到点P(-3,1)的位置,那么平移后所得新抛物线的表达式是_________.
13.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是_________.
14.如图4,在△ABC中,AB=AC,点D、E分别在边BC、AB上,且∠ADE=∠B,如果DE∶AD=2∶5,BD=3,那么
AC=_________.
15.如图5,某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高是20米,背水坡AB的坡角为30°,迎水坡
CD的坡度为1∶2,那么坝底BC的长度等于_________米.(结果保留根号)
图4 图5
16.已知Rt△ABC中,∠C=90°,AC=3,BC=7,CD⊥AB,垂足为点D,以点D为圆心作⊙D,使得点A在⊙D
外,
且点B在⊙D内,设⊙D的半径为r,那么r的取值范围是_________.
17.如图6,点D在△ABC的边BC上,已知点E、点F分别为△ABD和△ADC的重心,如果BC=12,那么两个三角形
重心之间的距离EF的长等于__________.
18.如图7,△ABC中,AB=5,AC=6,将△ABC翻折,使得点A落到边BC上的点A′处,折痕分别交边AB、AC于点
E、点F,如果A′F∥AB,那么BE=______________.
图6 图7
三、解答题(本题共7题,满分78分)
19.(本题满分10分)
计算:21tan60sin452cos30cot45.
20.(本题满分10分)
已知一个二次函数的图像经过点A(0,-3)、B(1,0)、C(m,2m+3)、D(-1,-2)四点,求这个函数的解析式及点C的坐标.
21.(本题满分10分)
如图8,已知O经过△ABC的顶点A、B,交边BC于点D,点A恰为BD的中点,且BD=8,AC=9,求O的半径.
图8
22.(本题满分10分)
下面是一位同学的一道作图题:
已知线段a,b,c(如图),求作线段x,使a:b=c:x.
他的作法如下:
1. 以点O为端点画射线OM,ON.
2. 在OM上依次截取OA=a,AB=b.
3. 在ON上截取OC=c.
联结AC,过点B作BDACmmDB求证:(1)△BCE∽△ADE;
(2)AB·BC=BD·BE.
图9
24.(本题满分12分,每小题满分各4分)
如图10,在平面直角坐标系中,已知抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A,它的坐标
是(-3, 0),与y轴交于点B,此抛物线顶点C到x轴的距离为4.
(1)求该抛物线的表达式;
c
b
a
N
M
B
D
C
O
A
c
b
a
(2)求∠CAB的正切值;
(3)如果点P是抛物线上的一点,且∠ABP=∠CAO,试直接写出点P的坐标.
图10
25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)
如图11,∠BAC的余切值为2,AB=25,点D是线段AB上的一动点(点D不与点A、B重合),以点D为顶点
的正方形DEFG的另两个顶点E、F都在射线AC上,且点F在点E的右侧.联结BG,并延长BG,交射线EC于点P.
(1)点D在运动时,下列的线段和角中,______是始终保持不变的量(填序号);
①AF; ②FP; ③BP; ④∠BDG; ⑤∠GAC; ⑥∠BPA;
(2)设正方形的边长为x,线段AP的长为y,求y与x之间的函数关系式,并写出定义域;
(3)如果△PFG与△AFG相似,但面积不相等,求此时正方形的边长.
图11 备用图
·