安徽省黄山市高一上学期数学第一次月考试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省黄山市高一上学期数学第一次月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分) (2017高一上·吉林月考) 已知集合满足,则集合的个数为()
A . 2
B . 4
C . 3
D . 5
2. (2分)设全集U=R,集合,则下图中阴影部分表示的集合为()
A .
B .
C .
D .
3. (2分)(2020·陕西模拟) 已知集合,,则()
A .
B .
C .
D .
4. (2分)下列各组函数f(x)与g(x)的图象相同的是()
A . f(x)=x,g(x)=() 2
B . 与g(x)=x+2
C . f(x)=1,g(x)=x0
D . f(x)=|x|,g(x)=
5. (2分) (2016高二下·哈尔滨期末) 已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()
A . (﹣1,1)
B .
C . (﹣1,0)
D .
6. (2分)(2019·天津模拟) 已知函数的部分图象如图所示,这个图象经过点和点,则如下区间是的单调递增区间的是()
A .
B .
C .
D .
7. (2分) (2020高三上·永州月考) 已知为定义在上的奇函数,当时,
,则不等式的解集为()
A .
B .
C .
D .
8. (2分) (2019高一上·武威期末) 若,则f(-3)的值为()
A . 2
B . 8
C .
D .
9. (2分)定义域为R的函数f(x)满足f(x+2)=2f(x),当[0,2)时,若
时,恒成立,则实数t的取值范围是()
A . [-2,0)(0,1)
B . [-2,0)[1,+∞)
C . [-2,1]
D . (,-2](0,1]
10. (2分) (2018高一下·汕头期末) 下列函数中,既是偶函数又在区间上单调递减的是()
A .
B .
C .
D .
11. (2分)下列函数中,满足的是()
A .
B .
C .
D .
12. (2分) (2016高三上·集宁期中) 已知函数f(x)=log2x+ ,若x1∈(1,2),x2∈(2,+∞),则()
A . f(x1)<0,f(x2)<0
B . f(x1)<0,f(x2)>0
C . f(x1)>0,f(x2)<0
D . f(x1)>0,f(x2)>0
二、填空题 (共4题;共4分)
13. (1分) (2016高一上·延安期中) 若3∈{1,m+2},则m=________.
14. (1分)若y=f(x)为一次函数,且f[f(x)]=x﹣2,则f(x)=________.
15. (1分) (2018高一上·浙江期中) 已知定义域为R的函数的值域为,若关于x的不等式的解集为(1,7),则实数c的值为________.
16. (1分)(2016·静宁模拟) 若f(x)=3x+sinx,则满足不等式f(2m﹣1)+f(3﹣m)>0的m的取值范围为________.
三、解答题 (共6题;共70分)
17. (10分) (2019高一上·延安期中) 已知全集,集合 ,
.
(1)若,求及 .
(2)若,求实数的取值范围.
18. (15分) (2017高一上·长春期中) 已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补出完整函数f(x)的图象,并根据图象写出函数f(x)的增区间;
(2)写出函数f(x)的解析式和值域;
(3)若方程f(x)﹣m=0有四个解,求m的范围.
19. (15分) (2016高一上·南通期中) 已知函数f(x)= ,且f(1)=﹣1.
(1)求f(x)的解析式,并判断它的奇偶性;
(2)判断函数f(x)在(0,+∞)上的单调性并证明.
20. (10分) (2019高一上·平遥月考) 某公司试销一种成本单价为500元/件的新产品,规定试销时销售单价不低于成本单价,又不高于800元/件.经试销调查,发现销售量(件)与销售单价(元/件)可近似看作一次函数的关系(如图所示).
(1)由图象,求函数的表达式;
(2)设公司获得的毛利润(毛利润=销售总价﹣成本总价)为元.试用销售单价表示毛利润,并求销售单价定为多少时,该公司获得最大毛利润?最大毛利润是多少?此时的销售量是多少?
21. (10分) (2019高一上·嘉兴期中) 已知, .
(1)当时,求;
(2)试判断在的单调性,并用定义证明;
(3)求的最小值 .
22. (10分) (2016高一上·揭阳期中) 已知函数f(x)=loga(x+1),g(x)=loga ,(a>0且a≠1).记F(x)=2f(x)+g(x).
(1)求函数F(x)的零点;
(2)若关于x的方程F(x)﹣2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.
参考答案一、单选题 (共12题;共24分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、
考点:
解析:
二、填空题 (共4题;共4分)答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
答案:15-1、
考点:
解析:
答案:16-1、
考点:
解析:
三、解答题 (共6题;共70分)
答案:17-1、
答案:17-2、考点:
解析:
答案:18-1、答案:18-2、
答案:18-3、考点:
解析:
答案:19-1、
答案:19-2、考点:
解析:
答案:20-1、
答案:20-2、考点:
解析:
答案:21-1、答案:21-2、
答案:21-3、考点:
解析:
答案:22-1、
答案:22-2、考点:
解析:。

相关文档
最新文档