全国2014年10月高等教育自学考试复变函数与积分变换试题

合集下载

复变函数与积分变换(14-15-1.A2)参考答案 (1)

复变函数与积分变换(14-15-1.A2)参考答案 (1)

2014---2015学年第1学期:复变函数与积分变换(30学时,A 卷)参考答案及评分标准一.填空题1、3; 2;2、e -; i π-2;3、0;4、0;5、πi ;6、12<+i z ;7、 -+-!6!4!2142z z ; 8、3; 9、t cos ; 10、1. 二.解:令,θi e z = 则,θθd ie dz i =,izdzd =θ 且根据Euler 公式, 有 ()(),2121cos 1--+=+=z z e e i i θθθ ()(),21212cos 2222--+=+=z z e e i i θθθ则有()()⎰⎰=--⋅+-+=-112220256cos 452cos 12z iz dzzz z z d πθθθ ()⎰=+-+=122425216z dz z z z z i().61⎰==z dz z f i 4分上述积分中被积函数()z f 有三个有限奇点 .2,21,0 而在积分曲线1=z 围成区域内只有二个奇点,21,0 分别是二级和一级极点. 6分 根据留数定理, 有()[]()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+=⎰21,Re 0,Re 2)(z f s z f s i dz z f Cπ. 8分根据留数计算规则, 分别有⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡→)(21lim 21),(Re 21z f z z f s z()221lim 2421-+=→z z z z ()2124221=-+=z z z z1217-=; 11分[][])(lim0),(Re 20z f z dzd z f s z →=2521lim 240+-+=→z z z dz d z ()()()()2242302525412524lim+--+-+-=→z zz z z z z z()()()()224232525412524=+--+-+-=z z z z z z z z.45=14分 所以有 ()[](),6121,Re 0,Re -=⎥⎦⎤⎢⎣⎡+z f s z f s.3)(i dz z f Cπ-=⎰则积分πθθθπ2cos 452cos 1220=-⎰d 15分三.解: (1) 解:根据钟形脉冲函数的Fourier 变换公式, 有822222][ωπ--=e e F t. 2分又22cos 22ti t i e e t -+=, 根据Fourier 变换位移性质, 有[][]()2222222221]2[cos t t i t t i t e e F e e F et F ----⋅+⋅=⋅[][])(21222222+=--=-+=ωωωωtt e F e F())(42828)2(22+---+=ωωπee . 6分根据能量谱密度的定义()()2ωωF S =得到函数222cos )(te t tf -⋅=的能量谱密度())2(84)2(44)2(222+----++=ωωωπωee eeS . 8分(2)解:根据能量谱密度()ωS 和相关函数()τR 之间有关系式, 有()()[]ωτS F R 1-=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎥⎦⎤⎢⎢⎣⎡=--+-----414)2(14)2(122248ωωωππe F e e F e F 2分根据Fourier 变换的位移性质, 有,4124)2(122⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡-----ωτωe F e e F i .4124)2(122⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡-----ωτωe F e e F i 4分 则有()()⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎥⎦⎤⎢⎢⎣⎡+=----4141222248ωωττππτe F e e F eeR i i 注意到 τττ2cos 222=+-i i e e , 则()()⎥⎥⎦⎤⎢⎢⎣⎡+=---41122cos 4ωτπτe F e R . 6分 根据钟形脉冲函数的Fourier 变换公式 []βωββπ422--=e eF t , 有22141τωπ---=⎥⎥⎦⎤⎢⎢⎣⎡e e F . 所以有()()212cos 4ττπτ--+=ee R . 8分四.解:根据Laplace 变换积分性质, 有[]t e L sdt t e L t tt 2sin 1]2sin [0--=⎰. 2分 由42]2[sin 2+=s t L , 根据Laplace 变换的位移性质, 有 ()412]2sin [2++=-s t e L t ,即422]2sin [2++=-s s t e L t. 4分 所以有 ()522]2sin [2++=⎰-s s s dt t e L tt . 6分 五.解:(1) 根据Euler 公式和Fourier 变换的定义, 有[]⎰+∞∞-⋅-=dx xe x F x i ω2sin 2sin⎰∞+∞-⋅--⎪⎪⎭⎫ ⎝⎛-=dx e i e e xi xi x i ω222 ()()⎥⎦⎤⎢⎣⎡-=⎰⎰+∞∞-⋅+-+∞∞-⋅--dx e dx e i x i x i 2221ωω. 4分 根据基本公式可以得到[]()()[]2222212sin +--=ωπδωπδix F ()()[]22--+=ωδωδπi . 8分(2) 对方程两边关于函数自变量x 作Fourier 变换. 记()()[]x y F Y =ω. 根据Fourier 变换的微分和积分性质, 有()()[]02sin 322=++x F i Y Y i ωωωω. 2分 利用(1)的结论, 有()()()()[]221232+---=ωδωδωπωωY . 4分 根据Fourier 逆变换的定义和-δ函数的筛选性质, 有()()[]ωY F x y 1-=()()[]⎰+∞∞--+--=ωωωωδωδωd e xi 122432()()⎥⎦⎤⎢⎣⎡-+---=⎰⎰∞+∞-∞+∞-ωωωωδωωωωδωωd e d e xi x i 12124322⎪⎪⎭⎫ ⎝⎛-⋅--⋅=-==22221143ωωωωωωωωxi xi e e()x i xi e e 2221-+=x 2cos =. 8分六.解:根据Laplace 变换的位移性质, 有()[]()()()⎥⎦⎤⎢⎣⎡++++=--1212122211s s L s F L()()⎥⎦⎤⎢⎣⎡++=--11122212s s L et. 2分 令()()()11122++=ss s G ,则()s G 有两个一级极点i i ,-和一个二级极点-.14分 根据求Laplace 逆变换的留数公式, 有()[]()[]()[]()[]1,Re ,Re ,Re 1-++-=-s G e s i s G e s i s G e s s G L st st st . 6分根据留数计算规则, 有()[]()()[]s G e i s i s G e s st is st +=--→lim ,Re()()i s s e stis -+=-→21lim()()is sti s s e -=-+=21()212i i e it --=-.4it e --=9分()[]()()[]s G e i s i s G e s st is st -=→lim ,Re()()i s s e stis ++=→21lim()()is sti s s e =++=21()212i i e it +=.4it e -=12分()[]()()[]s G e s ds d s G e s st s st 211lim1,Re +=--→1lim21+=-→s e ds d sts()()2221121lim +-+=-→s se s te stst s()()1222121-=+-+=s ststs se s te().21t e t -+=15分代入上式,并利用Euler 公式, 有()[]()4211itit t e e e t s G L---+-+=()2cos 1te t t -+=-. 所以有()[]().cos 1231t t e t e t s F L ---⋅-+=17分。

复变函数与积分变换试题和答案

复变函数与积分变换试题和答案

复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。

2.-8i得三个单根分别为:、、。

3.Lnz在得区域内连续。

4.得解极域为:ﻩﻩﻩﻩﻩ。

5.得导数ﻩﻩﻩﻩﻩ。

6. ﻩﻩ。

7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。

8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。

9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。

10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。

二、(10分)已知、求函数使函数为解析函数、且f(0)=0。

三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。

五、(10分)求函数在以下各圆环内得罗朗展式。

1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。

八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。

复变函数与积分变换试题及答案5

复变函数与积分变换试题及答案5

复变函数与积分变换试题及答案5复变函数与积分变换试题与答案 1.若(,)u x y 与(,)v x y 都是调和函数,则()(,)i (,)f z u x y v x y =+是解析函数。

() 2.因为|sin |1z ≤,所以在复平⾯上sin z 有界。

()3.若()f z 在0z 解析,则()()n f z 也在0z 解析。

() 4.对任意的z ,2Ln 2Ln z z =()⼆填空(每题3分)1.i 22i =-- , ia r g 22i =-- 。

2.ln(3i)-= , i i = 。

3.在映照2()24f z z z =+下,曲线C在iz =处的伸缩率是,旋转⾓是。

4.0z =是241e zz -的阶极点,241Re [,0]ze s z -=。

三解答题(每题7分)设2222()i()f z x axy by cx dxy y =++-++。

问常数,,,a b c d为何值时()f z 在复平⾯上处处解析?并求这时的导数。

求(1)-的所有三次⽅根。

3.2d Cz z其中C 是0z=到34i z =+的直线段。

4.||2e cos d z z z z=?。

(积分曲线指正向)5.||2d (1)(3)z zz z z =+-?。

(积分曲线指正向)6 将1()(1)(2)f z z z =--在1||2z <<上展开成罗朗级数。

7.求将单位圆内||1z <保形映照到单位圆内||1w <且满⾜1()02f =,1πarg ()22f '=的分式线性映照。

四解答题(1,2,3题各6分, 4题各9分)1.求0 0()e 0ktt f t t -设22()e e sin 6()t t f t t t t t δ-=+++, 求()f t 的拉⽒变换。

设221()(1)F s s s =+,求()F s 的逆变换。

4. 应⽤拉⽒变换求解微分⽅程23e (0)0, (0)1t'==? 复变函数与积分变换试题答案 1若(,)u x y 与(,)v x y 都是调和函数,则()(,)i (,)f z u x y v x y =+是解析函数。

(完整版)复变函数与积分变换习题答案

(完整版)复变函数与积分变换习题答案
证明:(1)在负实轴上,任取一点z a,则分别由水平方向和垂直方向趋近z点有:
lim f (z) lim Arg( a i y)
y 0y 0
lim f (z) lim Arg( a i y)
y 0y 0
显然函数在负实轴上不连续。
lim f (z) lim Arg (rei)
2sin
cos( )
2 2 2
isin(
2
i
2sin e2 2
2
(5)
z3
解:
i3
3i
re
cos3
isin3
(6)
e1 i
解:
ee
cos1 i sin1
(7)
1i
解:
1i
1i
i ei3 /4cos3
/ 4 isin3 /4
1i
1i
、计算下列数值
(1)
a ib
解:
ib
i ar ctgb2k
2 2 abe
cos2
L
L
cosn
1i i(e e
2
L
L
in i i2e ) (e e
L
in
L ein)
1 ei
(1
ine
)e
i(1 ein)
1
ie
(1
in i ie ) 1 e e
(1
in ie ) 1 e
2
1
ie
1 ei
2
2(1cos
)
cos
i i i(n 1) i(n 1) in in
1 e e 2 e e e e
22(1cos )
2sin
2
(8)
sin

复变函数与积分变换试题及解答

复变函数与积分变换试题及解答

复变函数与积分变换试题系别班级学号姓名得分评卷人-------------- 一、填空(每题3分,共24分)1.(上£1严的实部是 _______ ,虚部是________ ,辐角主值是______1-V3/2.满足lz + 21 + lz-2K5的点集所形成的平面图形为,该图形是否为区域—.3. 7(z)在福处可展成Taylor级数与/(%)在处解析是否等价? .4. (l + i)i的值为______________________________________________主值为.5.积分,的值为 _____________ ,f '—dz. = ________ .Juw z J izi=2 4)a--)"1 -L6.函数J (z)=——7"-3在Z =。

处Taylor展开式的收敛半径是 ______ .z-l7.设F [<(。

]=Z3), F 则F [/1(0*/2(r)]=,其中力⑺* /2(0定义为.8.函数/(外=任的有限孤立奇点z°=_,Z。

是何种类型的奇点? .Z得分评卷人二、(6分)设/仁)=/一丫3+2//〃问/仁)在何处可导?何处解析?并在可导处求出导数值.三、(8分)设i ,= eXsiny,求p 的值使P 为调和函数,并求出解析函数 f(z) = u + iv.四、(10分)将函数〃z) = "—在有限孤立奇点处展开为 2z~ — 3z+1Laurent 级数.得分评卷人 -------------- 五、计算下列各题(每小题6分,共24分)1. /(z) = f求/(1 + )J 图7 4-z2. 求出/(z) = eV 在所有孤立奇点处的留数3. L(f 32产(”。

)4. 尸——二~<公J 。

1 + sin- x六、(6分)求上半单位圆域{2:1[1<1,11]12>0}在映射卬=22下的象.七、(8分)求一映射’将半带形域-恭,<”,>。

复变函数与积分变换试题及答案9

复变函数与积分变换试题及答案9

∂u ∂v =x= ∂x ∂y
∴ u = xy + g ( x )
∂v ∂u =y= ∂y ∂x
∴ u = xy + c (3 分)
∴ u = xy + g ′( x )
∵ f (0) = u (0,0) + iv (0,0) = c = 0 ∴ f ( z ) = (−
(2 分)
x2 1 2 i + y )i + xy = − z 2 2 2 2
v = 3x 2 y − y 3
∂u ∂u ∂u ∂u = 3x 2 − 3 y 2 = , = −6 xy = − 且四个偏导连续 ∂x ∂y ∂y ∂x
∴f(z)在整个复平面上解析 ∴ f ′( z ) = 3x − 3 y + i 6 xy = 3 z
2 2
2
(4 分) (3 分)
2.解:∵ −
原式(4 分)= 2πi
∑ Re s ⎢ z ( z − i)
k =1
2
⎡ ⎣
1
3
⎤ , zk ⎥ ⎦
z1 = 0, z 2 = i
(3 分)= 2πi⎜ +
⎛1 ⎝i
1 2⎞ ⋅ ⎟ =0 2! i 3 ⎠
7
4.解:∵
1 1 1 = = z i + z −i z −i
1 1+ i z −i
=
1 ∞ 1 (−i) n ∑ z − i m=0 ( z − i) n
4.解: s 3 F ( s ) + 3s 2 F ( s ) + F ( s ) =
1 s
(4 分)
F (S ) =
1 1 1 1 = = ⋅ 2 3 s( s + 3s + 3s + 1) s ( s + 1) s ( s + 1) 3

自考复变函数与积分变换试题试卷真题

自考复变函数与积分变换试题试卷真题

复变函数与积分变换试题一、单项选择题(本大题共15小题,每小题2分,共30分)1.z=2-2i ,|z 2|=( )A.2B.8C.4D.82.复数方程z=cost+isint 的曲线是( )A.直线B.圆周C.椭圆D.双曲线3.Re(e 2x+iy )=( )A.e 2xB.e yC.e 2x cosyD.e 2x siny4.下列集合为有界单连通区域的是( )A.0<|z-3|<2B.Rez>3C.|z+a|<1D.π≤<πargz 215.设f(z)=x 3-3xy 2+(ax 2y-y 3)i 在Z 平面上解析,则a=( )A.-3B.1C.2D.36.若f(z)=u(x ,y)+iv(x ,y)在Z 平面上解析,v(x,y)=e x (ycosy+xsiny),则u(x ,y)=()A.e x (ycosy-xsiny)B.e x (xcosy-xsiny)C.e x (ycosy-ysiny)D.e x (xcosy-ysiny) 7.⎰=-3|i z |zdz =( )A.0B.2πC.πiD.2πi 8.⎰=---11212z z sinzdz |z |=( ) A.0 B.2πisin1C.2πsin1D.1sin 21i π9.⎰302dz zcosz =( ) A.21sin9 B.21cos9 C.cos9D.sin9 10.若f(z)=tgz ,则Res[f(z),2π ]=( ) A.-2πB.-πC.-1D.0 11.f(z)=2i)z(z cosz -在z=1处泰勒展开式的收敛半径是( ) A.0B.1C.2D.3 12.z=0为函数cosz 1的( ) A.本性奇点B.极点C.可去奇点D.解析点 13.f(z)=)z )(z (121--在0<|z-2|<1内的罗朗展开式是( ) A.∑∞=-01n n n z )( B.∑∞=-021n n z )z ( C.∑∞=-02n n )z ( D.∑∞=---0121n n n )z ()(14.线性变换ω=iz z i +-( ) A.将上半平面Imz>0映射为上半平面Im ω>0B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<115.函数f(t)=t 的傅氏变换J [f(t)]为( )A.δ(ω)B.2πi δ(ω)C.2πi δ'(ω)D.δ'(ω)二、填空题(本大题共5小题,每小题2分,共10分)16.若z 1=e 1+i π,z 2=3+i ,则z 1·z 2=________.17.若cosz=0,则z=________.18.设f ′(z)=⎰==ζ<-ζζζL )z (f L )|z (|,则|:|, 55d ζz)( cos e 2________. 19.幂级数∑∞=1n n n z n !n 的收敛半径是________.20.线性映射ω=z 是关于________的对称变换.三、计算题(本大题共8小题,每小题5分,共40分)21.计算复数z=327-的值.22.已知调和函数v=arctg xy ,x>0,求f ′(z),并将它表示成z 的函数形式. 23.设f(z)=x 2+axy+by 2+i(-x 2+2xy+y 2)为解析函数,试确定a ,b 的值.24.求积分I=⎰+C dz z i 的22值,其中C :|z|=4为正向. 25.求积分I=⎰+C zdz )i z (e 的42值,其中C :|z|=2为正向. 26.利用留数计算积分I=⎰C zsinzdz ,其中C 为正向圆周|z|=1. 27.将函数f(z)=ln(3+z)展开为z 的泰勒级数.28.将函数f(z)=()22+z z 在圆环域0<|z|<2内展开为罗朗级数. 四、综合题(下列3个小题中,第29小题必做,第30、31小题中只选做一题。

高等教育自学考试-复变函数与积分变换试题与答案-课程代码

高等教育自学考试-复变函数与积分变换试题与答案-课程代码

全国2010年4月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.arg(-1+i 3)=( ) A.-3π B.3π C.π23 D.π23+2n π 2.w =|z |2在z =0( )A.不连续B.可导C.不可导D.解析3.设z =x +iy ,则下列函数为解析函数的是( )A.f (z )=x 2-y 2+i 2xyB.f (z )=x -iyC.f (z )=x +i 2yD.f (z )=2x +iy 4.设C 为由z =-1到z =l 的上半圆周|z |=1,则⎰C z z d ||=( ) A.2πiB.0C.1D.2 5.设C 为正向圆周|z |=1,则⎰-C z z z )2(d =( ) A.-πiB.0C.πiD.2πi 6.设C 为正向圆周|z |=2,则⎰-C izi z z e 3)(d z =( )A.0B.e -1C.2πiD.-πe -1i7.z =0是3sin z z的极点,其阶数为( )A.1B.2C.3D.48.以z=0为本性奇点的函数是( ) A.z z sin B.2)1(1-z z C.z 1e D.1e 1-z9.设f (z )的罗朗展开式为-11)1(22---z z +(z -1)+2(z -l)2+…+n (z -1)n +…则Res[f (z ),1]=() A.-2 B.-1C.1D.210.设z =a 为解析函数f (z )的m 阶零点,则函数)()(z f z f '在z =a 的留数为( )A.-mB.-m +lC.m -1D.m二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.|z -i |=|z -1|的图形是_______________.12.设z =i i ,则Im z =_______________.13.设C 为由点z =-l-i 到点z =l+i 的直线段,则⎰C z 3d z =_______________.14.设C 是顶点为z=±21,z=±i 56的菱形的正向边界,则⎰-C i z e 2dz=______________.15.设C 为正向圆周|z|=1,则⎰C z cos z d z =_________.16.函数21-z 在点z =4的泰勒级数的收敛半径为_________.三、计算题(本大题共8小题,共52分)17.设z =x +iy ,求复数11+-z z 的实部与虚部.(6分)18.求复数i 8-4i 25+i 的模.(6分)19.求f (z )=(z -1)2e z 在z =1的泰勒展开式.(6分)20.求f (z )=)2)(1(2--z z 在圆环域1<|z|<2内的罗朗展开式.(6分) 21.求解方程cos z =2.(7分)22.设z =x +iy ,试证v (x ,y )=x 2+2xy -y 2为调和函数,并求解析函数f (z )=u (x ,y )+iv (x ,y ).(7分)23.设C 为正向圆周|z-2|=1,求⎰-C z z z 2)2(e d z .(7分) 24.设C 为正向圆周|z|=1,求⎰C z1sin d z .(7分) 四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。

全国自学考试复变函数与积分变换试题

全国自学考试复变函数与积分变换试题

全国2011年4月自学考试复变函数与积分变换试题1做试题,没答案?上自考365,网校名师为你详细解答!全国2011年4月自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设复数z 1cos i sin 33ππ=++,则arg z=( ) A.-3πB.6π C.3π D.23π 2.w=z 2将Z 平面上的实轴映射为W 平面的( ) A.非负实轴 B.实轴 C.上半虚轴 D.虚轴 3.下列说法正确的是( ) A.ln z 的定义域为 z>0 B.|sin z|≤1 C.e z ≠0 D.z -3的定义域为全平面4.设C 为正向圆周|z|=1,n C sin zdz z ⎰=2π i ,则整数n 为( )A.-1B.0C.1D.25.设C 为正向圆周|z|=2,则2Czdz z ⎰=( ) A.-2πi B.0 C.2πi D.4πi6.设C 为正向圆周|ξ|=2,f(z)=2C sin 6d (z)πςςς-⎰,则f′(1)=( ) A.-3i 36πB.3i 36π7.设nn n 0a z∞=∑nn n 0b z∞=∑和n n n n 0(a b )z ∞=+∑的收敛半径分别为R 1,R 2和R ,则( )全国2011年4月自学考试复变函数与积分变换试题2A.R=R 1B.R=min{R 1,R 2}C.R=R 2D.R≥min{R 1,R 2}8.罗朗级数nn n 1n 0n 01z z 2∞∞-==+∑∑的收敛域为( )A.|z|<1B.|z|<2C.1<|z|<2D.|z|>29.已知sinz=n 2n 1n 0(1)z (2n 1)!+∞=-+∑,则Res 4sin z ,0z ⎡⎤=⎢⎥⎣⎦( )A.1B.-13!C.13! D.15! 10.整数k≠0,则Res[cot kz, π]=( ) A.-1kB.0C.1kD.k 二、填空题(本大题共6小题,每小题2分,共12分) 请在每小题的空格中填上正确答案。

《复变函数与积分变换》试卷及答案

《复变函数与积分变换》试卷及答案

得分得分«复变函数与积分变换»期末试题(A )题号 一 二 三 四 五 六 总分 得分一.填空题(每小题3分,共计15分)1.231i -的幅角是( ); 2.)1(i Ln +-的主值是( );3.211)(z z f +=,=)0()5(f ( );4.0=z 是 4sin z zz -的( )极点;5. zz f 1)(=,=∞]),([Re z f s ( );二.选择题(每小题3分,共计15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z . 3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞(D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共计40分)(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a得分(2).计算⎰-Czz z z e d )1(2其中C 是正向圆周:2=z ;(3)计算⎰=++3342215d )2()1(z z z z z(4)函数323 2)(sin)3 ()2)(1()(z zzzzzfπ-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级.四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数; (1)110<-<z ,(2)10<<z ,(3)∞<<z 1得分五.(本题10分)用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、(本题6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos得分得分«复变函数与积分变换»期末试题(A )答案及评分标准一.填空题(每小题3分,共计15分)1.231i -的幅角是( 2,1,0,23±±=+-k k ππ);2.)1(i Ln +-的主值是( i 432ln 21π+ ); 3.211)(z z f +=,=)0()5(f ( 0 ),4.0=z 是 4sin z zz -的( 一级 )极点;5. zz f 1)(=,=∞]),([Re z f s (-1 );二.选择题(每题4分,共24分)1.解析函数),(),()(y x iv y x u z f +=的导函数为(B );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z . 3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在(C )(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( B )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( D ).的可去奇点;为、zA 1sin )(∞的本性奇点;为、z B sin )(∞.sin )(的孤立奇点为、zC 11∞的孤立奇点;为、z D sin )(1∞ 三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。

复变函数与积分变换试题和答案

复变函数与积分变换试题和答案

复变函数与积分变换试题(一)1.一、填空(3 分×10)1.ln(-1- 3 i ) 的模 .幅角 。

2.-8i 的三个单根分别为: . . 。

3.Ln z 在的区域内连续。

4. f ( z ) = z 的解极域为: 。

5. f (z ) = x 2 - y 2 + 2xyi 的导数 f (z ) =。

7.指数函数的映照特点是: 。

8.幂函数的映照特点是: 。

9.若F () =F [f (t )].则 f (t )= F -1 f [()] 。

10.若f (t )满足拉氏积分存在条件.则 L [f (t )]=二、(10 分)-1x 2+ 1 y 2.求函数u (x ,y )使函数f (z )=u (x ,y )+iv (x ,y )为解析函数.且 f (0)=0。

、(10 分)应用留数的相关定理计算dz|z |=2 z 6(z -1)(z -3)四、计算积分(5 分×2)dz |z |=2 z ( z - 1)6. Re ssin 3z ,0 z 3已知v (x , y ) =2.c(z co-s i z)3 C:绕点i一周正向任意简单闭曲线。

五、(10 分)求函数f ( z) =z(z1-i)在以下各圆环内的罗朗展式。

1.0 | z - i | 12.1 | z - i | +六、证明以下命题:(5 分×2)(1)(t - t )与e-iwt o构成一对傅氏变换对。

+(2)+e-i t dt=2()-x + y + z = 1七、(10分)应用拉氏变换求方程组x + y+z = 0满足x(0)=y(0)=z(0)=0的解y + 4z = 0y(t)。

八、(10 分)就书中内容.函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)= 2i [-1+1] =02 分)一、1. 3. 8.二、解: 2 4 - ln 2 2 + 2. arctg 3 + 2k9 ln 2Z 不取原点和负实轴 角形域映为角形域 v u = - x = - x y 2. 2i 3 -i 、解: 四、 4. 空集 5. 2z 6. 1 +9. 1 +F ()e i d 2 -v =y =y f (z )=i - x + y +xy +c 7.将常形域映为角形域 10. 0+f (t )e -st dt ∵f (0)=0 c =0 ∴ f (z ) = xy - ( x - y ) = - ( x 2原式=(2 分) 2i Re s k =1 42 分)= -2i Re s k =3 Re sRe s,3z 6(z -1)(z -3),z 6(z -1)(z -3)u ∴ u = xy + c x 3 分) - y + 2xyi ) = z 6(z -1)(z -3) kz 6(z -1)(z -3) k(2分)3612= (2分)Re s 5 分) -2i z 2 2 分)z 3 z 1 = 0 z 2 =3 z 4 =1 = 1∴原式=(2分) 2i3 62=-36 i21.解:原式 = 2i Re s k =11 z (z -1),zk16(1-1)(1-3)z 2,0 z6 z z3 分) z 1=0z 2=1=0八、解:①定义; ②C-R 充要条件 Th ; ③v 为 u 的共扼函数 10 分1 +2)解:∵ 1+2()e -i t dw =e -i t2 -S (2)-(1):∴Y (t )=1-12e t -12e -t =1-cht2.解: 原式 = cos z 2! z =i = i (- cos z ) = -i cos i = -ich 1 五、1.解:f ( z ) (1分)( z - i ) z - i + i 1分)(z 1-i ) 11 i 1+ z-iin =01分)z1- i1in - 1n = i (z -i )n -1 = i (z -i )n2 分)n =0 n =-12. 解: f (z )1分)=(z 1- i )i + ( z - i )1分)11+1 分)1 (z - i )2n =01 1=1n (z -1i )n +2n =0 i n -i n (z -i )n -2 (2 分) n =0六、1.+ +(t -t )e -i tdt = e--i t t =t =e -it3 分) ∴结论成立++e -i t dt = 2() -(2 分)sX (s )+Y (s )+sZ (s )= 1S (1)X (s )+sY (s )+Z (s ) = 0 (2) (3 分) Y (s )+4sZ (s ) = 0(3)∴ 2( w ) 与 1 构成傅氏对七、解:∵∴Y (s )=s21-1s 2 -1= s - 2s -1+ s +13 分)=1=02 分)复变函数与积分变换试题(二)一、填空(3 分×10)7.若 z 0为 f (z )的 m 级极点.则Re s [ f (z ),z ]=( )。

全国高等教育自学考试复变函数与积分变换真题与答案

全国高等教育自学考试复变函数与积分变换真题与答案

全国2011年4月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设复数z 1cos i sin 33ππ=++,则arg z=( ) A.-3π B.6πC.3πD.23π2.w=z 2将Z 平面上的实轴映射为W 平面的( )A.非负实轴B.实轴C.上半虚轴D.虚轴3.下列说法正确的是( )A.ln z 的定义域为 z>0B.|sin z|≤1C.e z ≠0D.z -3的定义域为全平面4.设C 为正向圆周|z|=1,n Csin zdz z ⎰=2π i ,则整数n 为( )A.-1B.0C.1D.2 5.设C 为正向圆周|z|=2,则2Czdz z ⎰=( )A.-2πiB.0C.2πiD.4πi6.设C 为正向圆周|ξ|=2,f(z)=2C sin 6d (z)πςςς-⎰,则f′(1)=( )A.-3i 36π B.3i 36π7.设nn n 0a z∞=∑n n n 0b z ∞=∑和n n n n 0(a b )z ∞=+∑的收敛半径分别为R 1,R 2和R ,则( )A.R=R 1B.R=min{R 1,R 2}C.R=R 2D.R≥min{R 1,R 2}8.罗朗级数nn n 1n 0n 01z z 2∞∞-==+∑∑的收敛域为( ) A.|z|<1 B.|z|<2C.1<|z|<2D.|z|>29.已知sinz=n 2n 1n 0(1)z (2n 1)!+∞=-+∑,则Res 4sin z,0z ⎡⎤=⎢⎥⎣⎦( )A.1B.-13!C.13! D.15!10.整数k≠0,则Res[cot kz, π]=( ) A.-1k B.0 C.1kD.k 二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

复变函数及积分变换试题及答案

复变函数及积分变换试题及答案

第一套第一套一、选择题(每小题3分,共21分)1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。

A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。

2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。

A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C +3.2|2|1(2)z dzz -==-⎰( )。

A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。

A. 101()2()n n f d c iz ξξπξ+=-⎰ B. 0()!n n f z c n =C. 201()2n k f d c iz ξξπξ=-⎰D. 210!()2()n n k n f d c iz ξξπξ+=-⎰5. z=0是函数zz sin 2的( )。

A.本性奇点B.极点C. 连续点D.可去奇点6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。

A.1z zw -=B. z 1z w -=C. zz 1w -= D. z11w -=7. sin kt =()L ( ),(()Re 0s >)。

A.22k s k +; B.22k s s +; C. k s -1; D. ks 1.二、填空题(每小题3分,共18分)1.23(1)i += [1] ;----------------------------------------装--------------------------------------订-------------------------------------线----------------------------------------------------2. 幂级数∑∞=1n nn z !收敛于 [2] ;3. 设0Z 为复函数)(z f 的可去奇点,则)(z f 在该点处的留数为 [3] . ;4. 通过分式线性映射z kz λωλ-=-(k 为待定复常数)可将 [4] 映射成单位圆内部1ω<;5. 一个一般形式的分式线性映射可由z b ω=+、az ω=、1zω=三种特殊形式的映射复合而成,分别将ω平面看成z 平面的平移映射、旋转与伸缩映射、 [5] ; 6. 求积分()i x e x dx ωδ∞--∞=⎰[6] ;三、判断题 (每小题2分,共10分)1. 平面点集D 称为一个区域,如果D 中任何两点都可以用完全属于D 的一条折线连接起来,这样的集合称为连通集。

复变函数与积分变换试题及答案16

复变函数与积分变换试题及答案16

复变函数与积分变换试题与答案一、判断题(每题3分,共12分,请在正确的题后打“√”,错误的题后打“×”)1、()z Ln 在其定义域内解析。

( )2、解析函数()()()y x iv y x u z f ,,+=的()y x u ,与()y x v ,互为共轭调和函数。

( )3、如果0z 是()z f 的奇点,则()z f 在0z 不可导。

( )4、函数()z f 在0z 处的转动角与0z 所在曲线C 的形状及方向无关。

( ) 二、填空题(每题3分,共15分)1、31i --的指数表达式为2、21123n z z nz -+++⋅⋅⋅++⋅⋅⋅的和函数的解析域是:3、0=z 是21z e z -的 级极点,=⎥⎦⎤⎢⎣⎡-012,Re z e s z4、在映照()2z z f =下,曲线C 在i z =处的伸缩率是5、设F ()1[]f z i βω=+则F [f (t-2)]= 三、计算(每题7分,共28分)1、求022=-i z 的全部根2、⎰=13z dz z zcos (积分曲线取正向)3、()⎰=-21z z z dz(积分曲线取正向)4、应用留数的相关定理计算:⎰=--2631||))((z z z z dz(积分曲线取正向)四、解答题(每题8分,共24分)1、求以()222121y x y x v +-=,为虚部的解析函数()z f ,使()00=f2、将函数()211z z z f -=)(在圆环110<-<z 内展成罗朗级数3、求把上半平面Im()0z >映照成单位圆||1w <的分式线性函数,并使f (i )=0,f (-1)=1。

五、 解答题(每题7分,共21分)1、设)]()([)(00ωωδωωδπω+--⋅=i F ,求其像原函数)(t f2、利用拉氏变换的性质求L [2cos3t t e ⋅]3、解微积分方程:00 10==-⎰)(,d )()('y y t y tττ。

复变函数与积分变换试题(九)

复变函数与积分变换试题(九)

《复变函数与积分变换》试题(九)第一部分 选择题 (共30分)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列复数中,位于第Ⅱ象限的复数是( )A.1+iB.1-iC.-1+iD.-1-i 2.下列等式中,对任意复数z 都成立的等式是( ) A.z·z =Re(z·z ) B. z·z =Im(z·z ) C. z·z =arg(z·z ) D. z·z =|z|3.不等式4z arg 4π<<π-所表示的区域为( )A.角形区域B.圆环内部C.圆的内部D.椭圆内部4.函数z1=ω把Z 平面上的单位圆周|z|=1变成W 平面上的( ) A.不过原点的直线 B.双曲线 C.椭圆 D.单位圆周 5.下列函数中,不解析...的函数是( ) A.w=z B.w=z 2C.w=e zD.w=z+cosz 6.在复平面上,下列关于正弦函数sinz 的命题中,错误..的是( ) A.sinz 是周期函数 B.sinz 是解析函数 C.|sinz|1≤D.z cos )z (sin ='7.在下列复数中,使得e z =2成立的是( ) A.z=2 B.z=ln2+2i π C.z=2D.z=ln2+i π8.若f(z)在D 内解析,)z (Φ为f(z)的一个原函数,则( ) A.)z ()z (f Φ=' B. )z ()z (f Φ='' C. )z (f )z (='Φ D. )z (f )z (=Φ'' 9.设C 为正向圆周|z|=1,则⎰+-C 2dz )i 1z (1等于( )A.0B.i21πC.i 2πD.i π10.对于复数项级数∑∞=+0n nn6)i 43(,以下命题正确的是( ) A.级数是条件收敛的B.级数是绝对收敛的C.级数的和为∞D.级数的和不存在,也不为∞11.级数∑∞=-0n n )i (的和为( )A.0B.不存在C.iD.-i12.对于幂级数,下列命题正确的是( ) A.在收敛圆内,幂级数条件收敛 B.在收敛圆内,幂级数绝对收敛C.在收敛圆周上,幂级数必处处收敛D.在收敛圆周上,幂级数必处处发散13.z=0是函数zz sin 2的( )A.本性奇点B.极点C.连续点D.可去奇点14.z1sin 在点z=0处的留数为( ) A.-1 B.0 C.1 D.2 15.将点∞,0,1分别映射成点0,1,∞的分式线性映射是( ) A.1z zw -=B. z 1z w -=C. zz1w -=D. z11w -=第二部分 非选择题 (共70分)二、填空题(本大题共5小题,每小题2分,共10分) 16.设4i e2z π=,则Rez=____________.17.f(z)=(x 2-y 2-x)+i(2xy-y 2)在复平面上可导的点集为_________. 18.设C 为正向圆周|z-i 4π|=1,则积分⎰=C dz zcos 1____________. 19.函数)1z (z 1z )z (f 2-+=在奇点z=0附近的罗朗级数的收敛圆环域为_______.20.3)1z (1-在点z=1处的留数为____________.三、计算题(本大题共8小题,每小题5分,共40分) 21.设i3i2z -+=,求z+z 和z-z . 22. 设z cos 2z 1z )z (f 22+-=. (1)求f(z)的解析区域,(2)求).z (f '23.设f(z)=x 2-2xy-y 2-i(x 2-y 2).求出使f(z)可导的点, (2)求f(z)的解析区域. 24.设z=x+iy,L 为从原点到1+i 的直线段.求.dz )iyy x (L 2⎰++25.计算积分⎰+-i30.dz )3z 2(26.设C 为正向圆周|z-1|=3,计算积分I=⎰-C 2z.dz )2z (z e27.将函数f(z)=)i z (z i 2+在圆环0<|z|<1内展开成罗朗级数.28.将函数f(z)=ln(3-2z)在点z=0处展开为泰勒级数,并求其收敛半径.四、综合题(下列3个小题中,29题必做,30、31题中只选做一题,需考《积分变换》者做31题,其他考生做30题,两题都做者按31题给分。

2014年10月全国自考高等数学(工本)真题试卷(题后含答案及解析)

2014年10月全国自考高等数学(工本)真题试卷(题后含答案及解析)

2014年10月全国自考高等数学(工本)真题试卷(题后含答案及解析)题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 综合题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.平面2x一3y+z一1=0的法向量为( )A.{2,3,一1}B.{4,一6,2}C.{一2,一3,一1}D.{2,3,1}正确答案:B解析:平面2x一3y+z一1=0的法向量为n={2,一3,1},所以{4,一6,2}也是其法向量.2.设函数f(x,y)=φ(x)g(y)在点(x0,y0)的某邻域内有定义,且存在一阶偏导数,则fx(x0,y0)= ( )A.B.C.D.正确答案:D解析:3.设积分区域D:1≤x2+y2≤4,则二重积分( )A.πB.2πC.3πD.4π正确答案:C解析:积分区域D:1≤x2+y2≤4,如图所示,则二重积分=∫θ2πdθ∫12rdr=3π.4.微分方程y”=sinx的通解是y= ( )A.sinx+C1x+C2B.sinx+C1+C2C.一sinx+C1x+C2D.一sinx+C1+C2正确答案:C解析:y”=sinx,则y’=∫y”dx=∫sinxdx=-cosx+C1 y=∫y’dx=∫(-cosx+C1)dx=-sinx+C1x+C2.5.设无穷级数发散,则在下列数值中p的取值为( )A.1B.2C.3D.4正确答案:A解析:填空题请在每小题的空格中填上正确答案。

错填、不填均无分。

6.已知向量a={2,1,2},b={一1,3,5},则a.(2b)=_______.正确答案:22解析:a.(2b)=2a.b=2×[2×(一1)+1×3+2×5]=22.7.函数f(x,y)=+ln(x2+y2一1)的定义域是________.正确答案:1<x2+y2≤4解析:由题意知得1<x2+y2≤4.8.设积分区域D:0≤x≤2,|y|≤1,则二重积分正确答案:解析:积分区域D:0≤x≤2,|y|≤1,则9.微分方程y”+y=e-2x的特解y*=______.正确答案:解析:齐次微分方程y”+y=0的特征方程r2+1=0,显然λ=一2不是特征方程的根,则设特解y*=Ae-2x.y*”=4Ae-2x,代入原微分方程得5Ae-2x=e-2x,10.已知无穷级数,则un=______.正确答案:解析:计算题11.求过点A(一2,1,4)及点B(6,一5,7)的直线方程.正确答案:直线过点A(一2,1,4)和B(6,一5,7),则其方向向量n=(8,一6,3),则直线方程为=t,化简得直线方程为12.求函数z=e2ycos3x的全微分dz.正确答案:z=e2ycos3x,z’x=一3e2ysin3x,z’y=2e2ycos3x,则dz=z’xdx+z’ydy=一3e2ysin3xdx+2e2ycos3xdy.13.求曲面z=3xy在点处的切平面方程.正确答案:F(x,y,z)=z—3xy,则Fx=-3y,Fy=一3x.Fz=1,则所以法向量n=(一1,一3,1),所求切平面方程为一1×(x一1)一3×+1×(z一1)=0,即x+3y—z一1=0.14.求函数f(x,y)=的梯度gradf(x,y).正确答案:15.计算二重积分.其中D是由y=x,=2及xy=1所围成的区域.正确答案:积分区域D如图所示.=∫12一4x+4x3dx=(-2x2+x4)|12=9.16.计算三重积分,其中Ω是由x2+y2=1,z=0及z=1所围成的区域.正确答案:积分区域如图示在柱面下的积分区域Ω:0≤r≤1,0≤θ<2π,0≤z≤1,17.计算对弧长的曲线积分∫C(x2y一2)ds,其中C为从点A(一2,1)到B(1,1)的直线段.正确答案:C为直线y=1,则C的参数方程所以∫C(x2y一2)ds=∫-21(x2一2)dx=一3.18.计算对坐标的曲线积分∫C(y2一xy)dy,其中C为抛物线y=x2上从点A(一1,1)到点B(1,1)的一段弧.正确答案:曲线C的方程为y=x2,则dy=2xdx,于是∫C(y2一xy)dy=∫-11(x4一x3)2xdx=19.求微分方程=e3x-2y的通解.正确答案:,得e2ydy=e3xdy,两边同时程分得∫e2ydy=∫e3xdx,则20.求微分方程y”+2y’+2y=0的通解.正确答案:微分方程y”+2y’+2y=0的特征方程为r2+2r+2=0,解之得r1,2=一1±i,所以微分方程的通解为y=e-x(C1cosx+C2sinx).21.判断无穷级数的敛散性.正确答案:22.已知f(x)是周期为2π的周期函数,它在[一π,π)上的表达式为求f(x)傅里叶级数(ancosnx+bnsinnx)中的系数b4.正确答案:综合题23.求函数f(x,y)=14x+32y一8xy一2x2一10y2一26的极值.正确答案:求对x,y的偏导数得fx=14—8y一4x,fy=32-8x-20y,二阶偏导数A=fxx(x0,y0)=一4,B=fxy=一8,C=fyy=一20,△=B2-AC=-16<0则点是函数的极值点,A<0,此驻点为极大值点,代入函数得极大值为24.证明对坐标的曲线积分∫C(3x2y+8xy2一20)dx+(x3+8x2y+14)dy在整个xOy面内与路径无关.正确答案:P=3x2y+8xy2一20,Q=x3+8x2y+14,25.将函数f(x)=展开为x的幂级数.正确答案:已知=1一x+x2+…+(一1)nxn+…(一1<x<1),用2x代替x得=1—2x+(2x)2+…+(一1)n(2x)n+…=1—2x+4x2+…+(一2)nxn+…(一1<x<1).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档