概率论实验作业

合集下载

概率论作业

概率论作业

第一次作业1(20分)口袋中有编号分别为1、2、3的三个球,试写出下列随机试验的样本空间。

(1)从口袋中任取2颗球,观察取到的球的编号;(2)先从口袋中取一颗球,观察其编号后放回口袋中,再从口袋中取一颗球并观察编号;(3)先从口袋中取一颗球,观察其编号后,从剩余的球中再取一颗并观察编号。

2(20分)抛三次硬币,表示第次为正面,,试用表示下列事件:(1)三次都是正面;(2)三次都是反面;(3)至少有一次是正面;(4)至少有一次是反面;(5)至少有两次是正面。

第二次作业1(20分)甲乙两只口袋各有5颗球,其中甲袋中有3颗红球2颗白球,乙袋中有2颗红球3颗白球。

现在从两个口袋中各取一球。

问:(1)取到的两颗球颜色相同的概率是多少?(2)取到的两颗球中至少有一颗是红球的概率又是多少?2(20分)10件同型号产品中有2件是次品,从中取2次,每次取1件,做不放回抽样。

求下列事件的概率。

(1)两次取到的都是正品;(2)两次都是次品;(3)一件是正品一件是次品;(4)第二次取到的是次品。

3(20分)假设你家订了一份牛奶,送奶员每天在6:30到7:30之间把牛奶送到你家,而你每天7:00到8:00之间离开家去上班。

求你在离开家之前能够喝到当天牛奶的概率。

5(20分)据以往资料表明,某三口之家患某种传染病的概率有如下规律:孩子患病的概率为0.6;如果孩子患病,那么母亲患病的概率为0.5;如果母亲及孩子都患病,那么父亲也患病的概率为0.4。

求母亲及孩子都患病但父亲未患病的概率。

第三次作业2(20分)玻璃杯成箱出售,每箱20只。

假设每箱玻璃杯中含有0、1、2只残次品的概率分别为0.8、0.1、0.1。

一顾客欲购买一箱玻璃杯,售货员随意取一箱,顾客从中随机抽取4只检查,若无残次品则买下该箱,否则退回。

(1)求顾客买下该箱玻璃杯的概率;(2)求在顾客买下的这箱玻璃杯中确无残次品的概率。

3(20分)据数据显示,每1000名50岁的低风险男性中,有3名患有结肠癌。

概率论实验作业

概率论实验作业

概率论实验作业一,利用Matlab 或C++等计算机语言验证以下两题中任意其中一题的结论:(a)甲、乙两人相约在0 到T 这段时间内, 在预定地点会面。

先到的人等候另一个人,经过时间t( t<T ) 后离去.设每人在0到T 这段时间内各时刻到达该地是等可能的,且两人到达的时刻互不牵连.求甲、乙两人能会面的概率。

(答案:提示:验证具体取具体某一种取值情形即可,利用均匀分布随机变量,比如T 为1 小时,t 为15 分钟)程序:(c)利用Matlab 或C++等计算机语言编程验证说明二项分布B(n,p)中n 较大,p较小时,二项分布与泊松分布P(λ) (λ= np)近似。

(提示:说明他们的分布律相同,画出类似如下的随机变量取值(横坐标)—概率(纵坐标)图,n,p 的取值不要与下图完全一样,至少做一组)程序运行结果:(1)设随机变量X 的分布密度为:f(x)={求随机变量Y=|X|的期望。

程序:ex=int(-x*0.5*exp(-x),-inf,0)+int(x*0.5*exp(x),0,inf)运行结果:通过实验验证林德贝格-列维中心极限定理:林德贝格-列维中心极限定理表明大量独立随机变量的和近似服从正态分布,产生指数分布或均匀分布或泊松分布随机变量X ,假设其期望为u , 方差为σ,通过独立重复实验(Monte Carlo实验)验证当样本充分大时有(提示:可利用X 的独立重复实验得到数据的分布直方图与的分布曲线做比较)>> N = 100;>> p = 0.5;>> x = sum(rand(1000,100)<p,2);>> hist(x,10)>> mean(x)ans =49.8160>> var(x)ans =25.3555>> plot(x,y)>> x=30:0.1:70; >> y=normpdf(x,50); >> plot(x,y)运行结果:。

概率论实验报告_2

概率论实验报告_2

概率论试验报告试验一:随机掷硬币1、模拟掷一枚硬币的随机试验(可用0——1随机数来模拟试验结果),取n=100,模拟掷n次硬币的随机试验。

记录试验结果,观察样本空间的确定性及每次试验结果的偶然性,统计正面出现的次数,并计算正面的出现的频率;试验结果如下:测试中出现零代表正面,出现一代表反面,其中共计50次正面50次反面。

2、取试验次数n=1000,将过程(1)重复三次,比较三次试验结果试验结果如下3、三次结果分别是0.501,0.503,0.521 。

这充分说明模拟情况接近真实情况,频率接近概率0.5。

试验二:高尔顿钉板试验1、自高尔顿钉板上端放一个小球, 任其自由下落. 在其下落过程中,当小球碰到钉子时从左边落下的概率为p , 从右边落下的概率为,1p -碰到下一排钉子又是如此, 最后落到底板中的某一格子. 因此任意放入一球, 则此球落入哪个格子事先难以确定. 设横排共有20=m 排钉子, 下面进行模拟实验:(1) 取,5.0=p 自板上端放入一个小球, 观察小球落下的位置; 将该实验重复作5次, 观察5次实验结果的共性及每次实验结果的偶然性;(2) 分别取,85.0,5.0,15.0=p 自板上端放入n 个小球, 取,5000=n 观察n 个小球落下后呈现的曲线我们分析可知,这是一个经典的古典概型试验问题2、具体程序:3、我们分析实验结果可知,若小球碰钉子后从两边落下的概率发生变化, 则高尔顿钉板实验中小球落入各个格子的频数发生变化, 从而频率也相应地发生变化. 而且, 当,5.0p曲线峰值的格子位置向右偏; 当><p曲线峰值的格子位置向左偏。

,5.0试验三:抽签试验1、我们做模拟实验,用1-10的随机整数来模拟实验结果。

在1-10十个随机数中,假设10代表抽到大王,将这十个数进行全排,10出现在哪个位置,就代表该位置上的人摸到大王。

每次随机排列1-10共10个数,10所在的位置随机变化,分别输出模拟实验10次, 100次,1000次的结果, 将实验结果进行统计分析, 给出分析结果。

《概率论与数理统计》实验练习题

《概率论与数理统计》实验练习题

实验一、 各种分布的密度函数与分布函数 实验内容: 1、选择 3 种常见随机变量的分布,计算它们的期望和方差(参数自己设定)。 2、向空中抛硬币 100 次,落下为正面的概率为 0.5。记正面向上的次数为 x , (1)计算 x = 45 和 x < 45 的概率。 (2)给出随机数 x 的概率累积分布图像和概率密度图像。 3、比较 t (10) 分布和标准正态分布的图像(要求写出程序并作图)。
19 28 19 12 14 19 28 28 28 13 21 28 19 11 15 18 24 18 16 28 19 15 13 22 14 16 24 20 28 18 18 28 14 13 28 29 24 28 14 18 18 18 08 21 16 24 32 16 28 19 15 18 18 10 12 16 26 18 19 33 08 11 18 27 23 11 22 22 13 28 14 22 18 26 18 16 32 27 25 24 17 17 28 33 16 20 28 32 19 23 18 28 15 24 28 29 16 17 19 18]
12.15,12.12,12.01,12.28,12.09,12.16,12.03,12.01, 12.06,12.13,12.07,12.11,12.08,12.01,12.03,12.06 设零件长度服从正态分布,求方差的置信区间(取置信水平为 0.95) 。 (4) 、有一大批袋装化肥,现从中随机地取出 16 袋,称得重量( kg )如下: 50.6,50.8,49.9,50.3,50.4,51.0,49.7,51.2, 51.4,50.5,49.3,49.6,50.6,50.2,50.9,49.6 设袋装化肥的重量近似地服从正态分布,试求总体均值 µ 的置信区间与总体 。 方差 σ 2 的置信区间(置信度分别为 0.95 与 0.90) (5) 、甲乙两台机床生产同一种滚珠,从它们加工的滚珠中抽取 17 个,测得直 径( mm )如下: 甲:15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8 乙:15.2,15.0,14.8,15.2,15.0,15.0,14.8,15.1,14.8 假定滚珠的直径服从正态分布,求甲乙两台车床加工零件直径的平均值之差的 。 置信区间( α = 0.01 ) (6) 、其它教材上的题目或自己感兴趣的题目。

概率论与数理统计作业及解答

概率论与数理统计作业及解答

概率论与数理统计作业及解答第一次作业★1. 甲, 乙, 丙三门炮各向同一目标发射一枚炮弹, 设事件A , B , C 分别表示甲, 乙, 丙击中目标, 则三门炮最多有一门炮击中目标如何表示. 事件E ={事件,,A B C 最多有一个发生},则E 的表示为;E ABC ABC ABC ABC =+++或;AB AC BC =U U 或;AB AC BC =U U或;AB ACBC =或().ABC ABC ABC ABC =-++(和A B +即并A B U ,当,A B 互斥即AB φ=时,A B U 常记为A B +.) 2. 设M 件产品中含m 件次品, 计算从中任取两件至少有一件次品的概率.221M mM C C --或1122(21)(1)m M m m MC C C m M m M M C -+--=- ★3. 从8双不同尺码鞋子中随机取6只, 计算以下事件的概率.A ={8只鞋子均不成双},B ={恰有2只鞋子成双},C ={恰有4只鞋子成双}. ★4. 设某批产品共50件, 其中有5件次品, 现从中任取3件, 求: (1)其中无次品的概率; (2)其中恰有一件次品的概率.(1)34535014190.724.1960C C == (2)21455350990.2526.392C C C ==5. 从1~9九个数字中, 任取3个排成一个三位数, 求:(1)所得三位数为偶数的概率; (2)所得三位数为奇数的概率.(1){P 三位数为偶数}{P =尾数为偶数4},9=(2){P 三位数为奇数}{P =尾数为奇数5},9=或{P 三位数为奇数}1{P =-三位数为偶数45}1.99=-=6. 某办公室10名员工编号从1到10,任选3人记录其号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率.记事件A ={最小号码为5}, B ={最大号码为5}.(1) 253101();12C P A C ==(2) 243101().20C P B C ==7. 袋中有红、黄、白色球各一个,每次从袋中任取一球,记下颜色后放回,共取球三次,求下列事件的概率:A ={全红},B ={颜色全同},C ={颜色全不同},D ={颜色不全同},E ={无黄色球},F ={无红色且无黄色球},G ={全红或全黄}.☆.某班n 个男生m 个女生(m ≤n +1)随机排成一列, 计算任意两女生均不相邻的概率. ☆.在[0, 1]线段上任取两点将线段截成三段, 计算三段可组成三角形的概率. 第二次作业1. 设A , B 为随机事件, P (A )=0.92, P (B )=0.93, (|)0.85P B A =, 求:(1)(|)P A B , (2)()P A B ∪. (1) ()()0.85(|),()0.850.080.068,()10.92P AB P AB P B A P AB P A ====⨯=- (2)()()()()P A B P A P B P AB =+-U 0.920.930.8620.988.=+-= 2. 投两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率. 记事件A ={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}, B ={(1,6),(6,1)}.★.在1—2000中任取一整数, 求取到的整数既不能被5除尽又不能被7除尽的概率.记事件A ={能被5除尽}, B ={能被7除尽}.4001(),20005P A ==取整2000285,7⎡⎤=⎢⎥⎣⎦28557(),2000400P B ==200057,57⎡⎤=⎢⎥⨯⎣⎦57(),2000P AB = 3. 由长期统计资料得知, 某一地区在4月份下雨(记作事件A )的概率为4/15, 刮风(用B 表示)的概率为7/15, 既刮风又下雨的概率为1/10, 求P (A |B )、P (B |A )、P (A B ). 4. 设某光学仪器厂制造的透镜第一次落下时摔破的概率是1/2,若第一次落下未摔破,第二次落下时摔破的概率是7/10,若前二次落下未摔破,第三次落下时摔破的概率是9/10,试求落下三次而未摔破的概率.记事件i A ={第i 次落下时摔破},1,2,3.i = 5. 设在n 张彩票中有一张奖券,有3个人参加抽奖,分别求出第一、二、三个人摸到奖券概率.记事件i A ={第i 个人摸到奖券},1,2,3.i =由古典概率直接得1231()()().P A P A P A n ===或212121111()()()(|),1n P A P A A P A P A A n n n -====-或 第一个人中奖概率为11(),P A n=前两人中奖概率为12122()()(),P A A P A P A n +=+=解得21(),P A n=前三人中奖概率为1231233()()()(),P A A A P A P A P A n ++=++=解得31().P A n=6. 甲、乙两人射击, 甲击中的概率为0.8, 乙击中的概率为0.7, 两人同时射击, 假定中靶与否是独立的.求(1)两人都中靶的概率; (2)甲中乙不中的概率; (3)甲不中乙中的概率. 记事件A ={甲中靶},B ={乙中靶}.(1) ()()()0.70.70.56,P AB P A P B ==⨯=(2) ()()()0.80.560.24,P AB P A P AB =-=-= (3) ()()()0.70.560.14.P AB P B P AB =-=-=★7. 袋中有a 个红球, b 个黑球, 有放回从袋中摸球, 计算以下事件的概率: (1)A ={在n 次摸球中有k 次摸到红球}; (2)B ={第k 次首次摸到红球};(3)C ={第r 次摸到红球时恰好摸了k 次球}.(1) ();()k n kk n kk k nnna b a b P A C C a b a b a b --⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭(2) 11();()k k kb a ab P B a b a b a b --⎛⎫== ⎪+++⎝⎭ (3) 1111().()rk rr k rr r k k ka b a b P C CCa b a b a b ------⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭8.一射手对一目标独立地射击4次, 已知他至少命中一次的概率为80.81求该射手射击一次命中目标的概率.设射击一次命中目标的概率为,1.p q p =-4801121,,1.818133q q p q =-===-= 9. 设某种高射炮命中目标的概率为0.6, 问至少需要多少门此种高射炮进行射击才能以0.99的概率命中目标.(10.6)10.99,n -<-0.40.01,n <由50.40.01024,=60.40.01,<得 6.n ≥ ☆.证明一般加法(容斥)公式证明 只需证分块111,,k k n k i i i i i i A A A A A A +⊂L L L 只计算1次概率.(1,,n i i L 是1,,n L 的一个排列,1,2,,.k n =L )分块概率重数为1,,k i i A A L 中任取1个-任取2个1(1)k -++-L 任取k 个,即将,U I 互换可得对偶加法(容斥)公式☆.证明 若A , B 独立, A , C 独立, 则A , B ∪C 独立的充要条件是A , BC 独立. 证明充分性:⇐(())()()()()(),P A B C P A P B P A P C P ABC =+-U 代入()()()P ABC P A P BC = ()(()()())P A P B P C P BC =+-()(),P A P B C =U 即,A B C U 独立. 必要性:⇒()()(),P ABC P A P BC =即,A BC 独立.☆.证明:若三个事件A 、B 、C 独立,则A ∪B 、AB 及A -B 都与C 独立. 证明 因为所以A ∪B 、AB 及A -B 都与C 独立. 第三次作业1. 在做一道有4个答案的选择题时, 如果学生不知道问题的正确答案时就作随机猜测. 设他知道问题的正确答案的概率为p , 分别就p =0.6和p =0.3两种情形求下列事件概率: (1)学生答对该选择题; (2)已知学生答对了选择题,求学生确实知道正确答案的概率. 记事件A ={知道问题正确答案},B ={答对选择题}.(1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+113,444p pp -=+=+当0.6p =时,13130.67()0.7,444410p P B ⨯=+=+==当0.3p =时,13130.319()0.475.444440p P B ⨯=+=+==(2) 由贝叶斯公式得()4(|),13()1344P AB p pP A B p P B p ===++当0.6p =时,440.66(|),13130.67p P A B p ⨯===++⨯ 当0.3p =时,440.312(|).13130.319p P A B p ⨯===++⨯ 2. 某单位同时装有两种报警系统A 与B , 当报警系统A 单独使用时, 其有效的概率为0.70; 当报警系统B 单独使用时, 其有效的概率为0.80.在报警系统A 有效的条件下, 报警系统B 有效的概率为0.84.计算以下概率: (1)两种报警系统都有效的概率; (2)在报警系统B 有效的条件下, 报警系统A 有效的概率; (3)两种报警系统都失灵的概率. (1) ()()(|)0.70.840.588,P AB P A P B A ==⨯=(2) ()0.588(|)0.735,()0.8P AB P A B P B === (3) ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+U U☆.为防止意外, 在矿内同时设有两种报警系统A 与B . 每种系统单独使用时, 其有效的概率系统A 为0. 92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85,. 求: (1)发生意外时, 两个报警系统至少有一个有效的概率; (2) B 失灵的条件下, A 有效的概率.3. 设有甲、乙两袋, 甲袋中有n 只白球, m 只红球; 乙袋中有N 只白球, M 只红球. 从甲袋中任取一球放入乙袋, 在从乙袋中任取一球, 问取到白球的概率是多少. 记事件A ={从甲袋中取到白球},B ={从乙袋中取到白球}. 由全概率公式得☆.设有五个袋子, 其中两个袋子, 每袋有2个白球, 3个黑球. 另外两个袋子, 每袋有1个白球, 4个黑球, 还有一个袋子有4个白球, 1个黑球. (1)从五个袋子中任挑一袋, 并从这袋中任取一球, 求此球为白球的概率. (2)从不同的三个袋中任挑一袋, 并由其中任取一球, 结果是白球, 问这球分别由三个不同的袋子中取出的概率各是多少?★4. 发报台分别以概率0.6和0.4发出信号 “·” 及 “-”. 由于通信系统受到于扰, 当发出信号 “·” 时, 收报台分别以概率0.8及0.2收到信息 “·” 及 “-”; 又当发出信号 “-” 时, 收报台分别以概率0.9及0.l 收到信号 “-” 及 “·”. 求: (1)收报台收到 “·”的概率;(2)收报台收到“-”的概率;(3)当收报台收到 “·” 时, 发报台确系发出信号 “·” 的概率;(4)收到 “-” 时, 确系发出 “-” 的概率. 记事件B ={收到信号 “·”},1A ={发出信号 “·”},2A ={发出信号“-”}. (1) )|()()|()()(2211A B P A P A B P A P B P +=;52.01.04.0)2.01(6.0=⨯+-⨯= (2) ()1()10.520.48;P B P B =-=-=(3) 1111()()(|)(|)()()P A B P A P B A P A B P B P B ==0.60.8120.923;0.5213⨯=== (4)2222()()(|)(|)()()P A B P A P B A P A B P B P B ==0.40.930.75.0.484⨯=== 5. 对以往数据分析结果表明, 当机器调整良好时, 产品合格率为90%, 而机器发生某一故障时, 产品合格率为30%. 每天早上机器开动时, 机器调整良好的概率为75%. (1)求机器产品合格率,(2)已知某日早上第一件产品是合格品, 求机器调整良好的概率. 记事件B ={产品合格},A ={机器调整良好}. (1) 由全概率公式得(2) 由贝叶斯公式得()()(|)(|)()()P AB P A P B A P A B P B P B ==0.750.90.9.0.75⨯== ☆.系统(A), (B), (C)图如下, 系统(A), (B)由4个元件组成, 系统(C)由5个元件组成, 每个元件的可靠性为p , 即元件正常工作的概率为p , 试求整个系统的可靠性. (A) (B) (C) 记事件A ={元件5正常},B ={系统正常}.(A) 222(|)(1(1)(1))(44),P B A p p p p p =---=-+(B) 2222(|)1(1)(1)(2),P B A p p p p =---=- (C) 由全概率公式得 第四次作业1. 在15个同型零件中有2个次品, 从中任取3个, 以X 表示取出的次品的个数, 求X 的分布律.☆.经销一批水果, 第一天售出的概率是0.5, 每公斤获利8元, 第二天售出的概率是0.4, 每公斤获利5元, 第三天售出的概率是0.1, 每公斤亏损3元. 求经销这批水果每公斤赢利X 的概率分布律和分布函数.2. 抛掷一枚不均匀的硬币, 每次出现正面的概率为2/3, 连续抛掷8次, 以X 表示出现正面的次数, 求X 的分布律.3. 一射击运动员的击中靶心的命中率为0.35, 以X 表示他首次击中靶心时累计已射击的次数, 写出X 的分布律, 并计算X 取偶数的概率.解得0.6513()=0.394.110.6533q P X q ==++B 偶 4. 一商业大厅里装有4个同类型的银行刷卡机, 调查表明在任一时刻每个刷卡机使用的概率为0.1,求在同一时刻:(1)恰有2个刷卡机被使用的概率;(2)至少有3个刷卡机被使用的概率; (3)至多有3个刷卡机被使用的概率;(4)至少有一个刷卡机被使用的概率. 在同一时刻刷卡机被使用的个数(4,0.1).X B n p ==:(1) 2224(2)0.10.90.00486,P X C ==⨯⨯= (2) 3344(3)(3)(4)0.10.90.10.0037,P X P X P X C ≥==+==⨯⨯+= (3) 4(3)1(4)10.10.9999,P X P X ≤=-==-=(4)4(1)1(0)10.910.65610.3439.P X P X ≥=-==-=-=5. 某汽车从起点驶出时有40名乘客, 设沿途共有4个停靠站, 且该车只下不上. 每个乘客在每个站下车的概率相等, 并且相互独立, 试求: (1)全在终点站下车的概率; (2)至少有2个乘客在终点站下车的概率; (3)该车驶过2个停靠站后乘客人数降为20的概率. 记事件A ={任一乘客在终点站下车},乘客在终点站下车人数(40,1/4).X B n p ==:(1) 40231(40)8.271810,4P X -⎛⎫===⨯ ⎪⎝⎭(2) 403940140313433(2)1(0)(1)1144434P X P X P X C ⎛⎫⎛⎫⎛⎫≥=-=-==--⨯=-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3) 记事件B ={任一乘客在后两站下车},乘客在后两站下车人数(40,1/2).Y B n p ==:2020202040404011(20)0.1268.222C P Y C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭(精确值)应用斯特林公式!,nn n e ⎫⎪⎭其中 1.7724538509.π==参:贝努利分布的正态近似.6. 已知瓷器在运输过程中受损的概率是0.002, 有2000件瓷器运到, 求: (1)恰有2个受损的概率; (2)小于2个受损的概率; (3)多于2个受损的概率; (4)至少有1个受损的概率.受损瓷器件数(2000,0.002),X B n p ==:近似为泊松分布(4).P n p λ=⨯=(1) 2441480.146525,2!P e e --=== (2) 4424150.0915782,1!P e e --⎛⎫=+== ⎪⎝⎭(3) 431211130.761897,P P P e-=--=-= (4) 4410.981684.P e -=-=7. 某产品表面上疵点的个数X 服从参数为1.2的泊松分布, 规定表面上疵点的个数不超过2个为合格品, 求产品的合格品率.产品合格品率2 1.2 1.21.2 1.212.920.879487.1!2!P e e --⎛⎫=+=== ⎪⎝⎭ ★8. 设随机变量X求:X 的分布函数, 以及概率(||5).X ≤随机变量X 的分布函数为 第五次作业1. 学生完成一道作业的时间X 是一个随机变量(单位: 小时), 其密度函数是试求: (1)系数k ; (2)X 的分布函数; (3)在15分钟内完成一道作业的概率; (4)在10到20分钟之间完成一道作业的概率. (1) 0.50.523200111(0.5),21,32248kk F kx xdx x x k ⎛⎫==+=+=+= ⎪⎝⎭⎰(2) 23200,01()()217,00.5,2(0.5)1,0.5.x x F x P X x x xdx x x x F x <⎧⎪⎪=≤=+=+≤<⎨⎪=≥⎪⎩⎰(3) 322011119()2170.140625,442464x F P X x x xdx ⎛⎫⎛⎫⎛⎫=≤=+=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰(4) 3212316111111129217.6336424108P X F F x xdx ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫≤≤=-=+=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎰2. 设连续型随机变量X 服从区间[-a , a ](a >0)上的均匀分布, 且已知概率1(1)3P X >=, 求: (1)常数a ; (2)概率1()3P X <.(1) 1111(1),3,223aa P X dx a a a ->====⎰(2) 13311115()3.36639P X dx -⎛⎫<==+= ⎪⎝⎭⎰3. 设某元件的寿命X 服从参数为θ 的指数分布, 且已知概率P (X >50)=e -4, 试求:(1)参数θ 的值; (2)概率P (25<X <100) .补分布()()|,0.x x xx x S x P X x e dx e ex θθθθ+∞--+∞->==-=>⎰@ (1) 504502(50)(50),0.08,25x S P X e dx e e θθθθ+∞---=>=====⎰(2) 由()(),,0,rx r S rx e S x r x θ-==>取50,x =依次令1,2,2r =得其中 2.7182818284.e B4. 某种型号灯泡的使用寿命X (小时)服从参数为1800的指数分布, 求: (1)任取1只灯泡使用时间超过1200小时的概率; (2)任取3只灯泡各使用时间都超过1200小时的概率. (1) 1312008002(1200)0.2231301602,P X ee-⨯->===1.6487212707001.= (2) 932(1200)0.0111089965.P X e->==5. 设X ~N (0, 1), 求: P (X <0.61), P (-2.62<X <1.25), P (X ≥1.34), P (|X |>2.13). (1) (0.61)(0.61)0.72907,P X <=Φ=(2) ( 2.62 1.25)(1.25)( 2.62)(1.25)(2.62)1P X -<<=Φ-Φ-=Φ+Φ- (3) ( 1.34)1(1.34)10.909880.09012,P X >=-Φ=-= (4)(|| 2.13)22(2.13)220.983410.03318.P X >=-Φ=-⨯=6. 飞机从甲地飞到乙地的飞行时间X ~N (4, 19). 设飞机上午10: 10从甲地起飞, 求: (1)飞机下午2: 30以后到达乙地的概率; (2)飞机下午2: 10以前到达乙地的概率; (3)飞机在下午1: 40至2: 20之间到达乙地的概率.(1) 131331/34111(1)10.841340.15866,331/3P X P X -⎛⎫⎛⎫⎛⎫>=-≤=-Φ=-Φ=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2) (4)(0)0.5,P X <=Φ=(3) 72525/647/24261/31/3P X --⎛⎫⎛⎫⎛⎫<<=Φ-Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭★7. 设某校高三女学生的身高X ~N (162, 25), 求: (1)从中任取1个女学生, 求其身高超过165的概率; (2)从中任取1个女学生, 求其身高与162的差的绝对值小于5的概率; (3)从中任取6个女学生, 求其中至少有2个身高超过165的概率.(1) 162165162(165)0.61(0.6)10.72580.2742,55X P X P --⎛⎫>=>==-Φ=-=⎪⎝⎭ (2) 162(|162|5)12(1)120.8413410.6827,5X P X P ⎛-⎫-<=<=Φ-=⨯-= ⎪⎝⎭(3) 记事件A ={任一女生身高超过165}, ()(165)0.2742,p P A P X ==>= 随机变量Y :贝努利分布(6,0.2742),B n p == 第六次作业★1.设随机变量X 的分布律为 (1)求Y =|X |的分布(2)求Y =X 2+X 的分布律.(1)(2)★.定理X 密度为()X f x ,()y g x =严格单调,反函数()x x y =导数连续,则()Y g X =是连续型变量,密度为 证明 1)若()0,x x y ''=>{}{()()}{},Y y g X g x X x ≤=≤=≤ 两边对y 求导,2)若()0,x x y ''=<{}{()()}{},Y y g X g x X x ≤=≤=≥ 两边对y 求导,因此总有()(())|()|,.Y X f y f x y x y y αβ'=<< 或证明两边对y 求导,或两边微分2. 设随机变量X 的密度函数是f X (x ), 求下列随机变量函数的密度函数: (1)Y =tan X ; (2)1Y X=; (3)Y =|X |. (1) 反函数()arctan ,x y y ='21(),1x y y =+由连续型随机变量函数的密度公式得 或 反函数支()arctan ,i x y i y i π=+为整数,'21(),1i x y y=+(2) 1,X Y =反函数1,y x y ='211()()().Y X y y X f y f x x f y y==(3) ()()(||)()()()Y X X F y P Y y P X y P y X y F y F y =≤=≤=-≤≤=--. 两边对y 求导得Y 的密度函数为()()(),0.Y X X f y f y f y y =+-> ★3. 设随机变量X ~U [-2, 2], 求Y =4X 2-1的密度函数. 两边对y 求导得随机变量Y 的密度为或解反函数支12()()x y x y ==★4. 设随机变量X 服从参数为1的指数分布, 求Y =X 2的密度函数(Weibull 分布). 当0y ≤时, 2Y X =的分布()0Y F y =,当0y >时, 两边对y 求导得或反函数y x='()()0.Y X y y f y f x x y ==>★5. 设随机变量X~N (0, 1), 求(1)Y =e X 的密度函数; (2)Y =X 2的密度函数(Gamma 分布). (1) 当0y ≤时, e X Y =的分布()0Y F y =,当0y >时, 因而Y 的密度为或 反函数ln ,X Y =ln ,y x y ='1()()(ln )Y y yf y x x y y ϕϕ=={}2(ln ),0.2y y =-> (2) 当0y ≤时,()0Y F y =;当0Y >时,2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=-.两边对y 求导得Y的密度函数为2,0,()0.yY y f y ->=⎩或反函数支12()()x y x y ==6. 设随机变量X 的密度函数是21,1()0,1X x f x x x ⎧>⎪=⎨⎪≤⎩, 求Y =ln X 的概率密度. 反函数,y y x e ='()()(),0.y y y Y X y y X f y f x x f e e e y -===>第七次作业☆.将8个球随机地丢入编号为1, 2, 3, 4, 5的五个盒子中去, 设X 为落入1号盒的球的个数, Y 为落入2号盒的球的个数, 试求X 和Y 的联合分布律. 1. 袋中装有标上号码1, 2, 2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球,. 以X , Y 分别记第一、二次取到球上的号码数, 求: (1)(X , Y )的联合分布律(设袋中各球被取机会相等); (2)X , Y 的边缘分布律; (3)X 与Y 是否独立? (1)(X , Y )的联合分布律为(2) X , Y 的分布律相同,12(1),(2).33P X P X ==== (3) X 与Y 不独立.2. 设二维连续型变量(,)X Y 的联合分布函数35(1)(1),,0,(,)0,.x y e e x y F x y --⎧-->=⎨⎩其它求(,)X Y 联合密度.★3. 设二维随机变量(X , Y )服从D 上的均匀分布, 其中D 是抛物线y =x 2和x =y 2所围成的区域, 试求它的联合密度函数和边缘分布密度函数, 并判断Y X ,是否独立.分布区域面积213123200211,333x S x dx x x ⎛⎫===-= ⎪⎝⎭⎰⎰联合密度213,1,(,)0,.x y f x y S ⎧=<<⎪=⎨⎪⎩其它边缘X的密度为22()),01,X x f x dy x x ==<<边缘Y的密度为22()),0 1.Y yf y dy y y ==<<(,)()(),X Y f x y f x f y ≠⋅因此X 与Y 不独立.或(,)f x y 非零密度分布范围不是定义在矩形区域上,因此X 与Y 不独立.4. 设二维离散型变量),(Y X 联合分布列是问,p q 取何值时X 与Y 两行成比例1/151/52,1/53/103q p ===解得12,.1015p q == ★5.设(,)X Y 的联合密度为2,11,0,(,)0,.y Ax e x y f x y -⎧-<<>=⎨⎩其它求:(1)常数A ;(2)概率1(0,1);2P X Y <<>(3)边缘概率密度f X (x ), f Y (y ); (4)X 与Y 是否相互独立?(1) 2220()(,),11,y y X f x f x y dy Ax e dy Axe dy Ax x +∞+∞+∞--====-<<⎰⎰⎰(2) 112201113(0,1)(0)(1).22216y e P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰ (3) 23(),11,2X f x x x =-<<(4)由23,11,0()()(,),20,yX Y x e x y f x f y f x y -⎧-<<>⎪⋅==⎨⎪⎩其它得X 与Y 独立. 或因为2(,),11,0,y f x y Ax e x y -=-<<>可表示为x 的函数与y 的函数的积且分布在矩形区域上,所以X 与Y 相互独立.由此得(),0;y Y f y e y -=>2(),11,X f x Ax x =-<<6. 设X 服从均匀分布(0,0.2),U Y 的密度为55,0,()0,y Y e y f y -⎧>=⎨⎩其它.且,X Y 独立.求:(1)X的密度;(2) (,)X Y 的联合密度. (1)X 的密度为()5,00.2,X f x x =≤≤(2)(,)X Y 的联合密度为525,00.2,0,(,)0,y e x y f x y -⎧≤≤>=⎨⎩其它.第八次作业★1.求函数(1)Z 1=X +Y , (2) Z 2=min{X , Y }, (3) Z 3=max{X , Y }的分布律.(1) 11(0)(0),6P Z P X Y =====1111(1)(0,1)(1,0),362P Z P X Y P X Y ====+===+=(2) 2111(1)(1,1)(1,2),1264P Z P X Y P X Y ====+===+=223(0)1(1).4P Z P Z ==-==(3) 31(0)(0),6P Z P X Y =====2. 设随机变量(求函数Z =X /Y 的分布律.3. 设X 与Y 相互独立, 概率密度分别为220()00,xX ex f x x -⎧>=⎨≤⎩0()00,y Y ey f y x -⎧>=⎨≤⎩试求Z =X +Y 的概率密度.★4. 设X ~U (0, 1), Y ~E (1), 且X 与Y 独立, 求函数Z =X +Y 的密度函数. 当01z <≤时, 当1z >时, 因此★5. 设随机变量(X , Y )的概率密度为()101,0(,)10x y e x y f x y e -+-⎧⎪<<<<+∞=⎨-⎪⎩其它(1)求边缘概率密度f X (x ), f Y (y ); (2)求函数U =max (X , Y )的分布函数; (3)求函数V =min(X , Y )的分布函数.(1) 1,01,()10,x X e x f x e --⎧<<⎪=-⎨⎪⎩其它.,0,()0,yY e y f y -⎧>=⎨⎩其它. (2) 11000,0,1()(),01,111,1x xx x X X x e e F x f x dx dx x e e x ----≤⎧⎪-⎪===<<⎨--⎪≥⎪⎩⎰⎰.min{,1}10,0,1,01x x e x e --≤⎧⎪=⎨->⎪-⎩. (3) 111,0,()1(),01,10,1x X X x e eS x F x x e x ---≤⎧⎪-⎪-=<<⎨-⎪≥⎪⎩@.6. 设某种型号的电子管的寿命(以小时计)近似地服从N (160, 202)分布. 随机地选取4只求其中没有一只寿命小于180小时的概率.随机变量2(160,20),X N :180160(180)(1)0.84134,20P X -⎛⎫≤=Φ=Φ= ⎪⎝⎭没有一只寿命小于180小时的概率为 第九次作业★1.试求: E (X ), E (X 2+5), E (|X |).2. 设随机变量X 的概率密度为0 0,() 01, 1.x x f x x x Ae x -⎧≤⎪=<≤⎨⎪>⎩求: (1)常数A ; (2)X 的数学期望.(1) 1100111(),2x f x dx xdx Ae dx Ae +∞+∞--==+=+⎰⎰⎰,2e A =(2) 12100114()2.2323x e e EX xf x dx x dx xe dx e +∞+∞--==+=+⨯=⎰⎰⎰★3. 设球的直径D 在[a , b ]上均匀分布,试求: (1)球的表面积的数学期望(表面积2D π);(2)球的体积的数学期望(体积316D π).(1) 22222()();3ba x E D ED dx a ab b b a ππππ===++-⎰ (2) 33322()().6624b a x E D ED dx a b a b b a ππππ⎛⎫===++ ⎪-⎝⎭⎰ ★4.20.10 0.15 0.05 0.05求E (X ), E (Y ), E (XY ).★5. 设随机变量X 和Y 独立, 且具有概率密度为2,01,()0,X x x f x <<⎧=⎨⎩其它,3(1)3,1,()0, 1.y Y e y f y y --⎧>=⎨≤⎩(1)求(25)E X Y +; (2)求2()E X Y .(1) 112002()2,3X EX xf x dx x dx ===⎰⎰或随机变量1Z Y =-:指数分布(3),E 141,,33EZ EY EY =-==(2) 11223001()2,2X EX x f x dx x dx ===⎰⎰由X 和Y 独立得22142().233E X Y EX EY ==⨯=第十次作业1. 设离散型随机变量试求: (1) D (X ); (2) D (-3X +2) .(1) 20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑(2) 2(32)(3)9 2.0418.36.D X DX -+=-=⨯=★2. 设随机变量X 具有概率密度为22,02,()0,Ax x x f x ⎧+<<=⎨⎩其他,试求: (1)常数A ; (2)E (X ); (3) D (X ); (4) D (2X -3) .(1) 22081()(2)4,3f x dx Ax x dx A +∞-∞==+=+⎰⎰解得9.8A =-(2) 22095()(2).86EX xf x dx x x x dx +∞-∞==-+=⎰⎰(3) 22222094()(2),85EX x f x dx x x x dx +∞-∞==-+=⎰⎰2224519.56180DX EX E X ⎛⎫=-=-= ⎪⎝⎭(4) 21919(23)24.18045D X DX -==⨯=★3. 设二维随机变量(,)X Y 联合概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其他,试求: (1),X Y 的协方差和相关系数A ; (2)(21).D X Y -+(1) 103()(,)(2),01,2X f x f x y dy x y dy x x +∞-∞==--=-<<⎰⎰由,x y 的对称性3(),0 1.2Y f y y y =-<<因此(2) 由随机变量和的方差公式()2(,)D X Y DX DX Cov X Y +=++得★4. 设二维随机变量(,)X Y 具有联合分布律试求,,,EX DX EY DY 以及X 和Y 的相关系数. (1) X 的分布列为由变量X 分布对称得0,EX =或10.4500.4510.450,i i iEX x p ==-⨯+⨯+⨯=g(2) Y 的分布列为(,)X Y 取值关于原点中心对称由变量Y 分布对称得0,EY =或20.20.250.2520.20,j j iEY y p ==-⨯-++⨯=∑g(3) 由二维变量(,)X Y 的联合分布列关于两坐标轴对称得,()0,i j i j ijE XY x y p ==∑∑(,)()0,Cov X Y E XY EXEY =-=因此,0.X Y ρ==5. 设随机变量X 服从参数为2的泊松分布(2)P ,随机变量Y 服从区间(0,6)上的均匀分布(0,6),U 且,X Y 的相关系数,X Y ρ=记2,Z X Y =-求,.EZ DZ (1) 2,EX =063,2EY +==(2)2223 4.EZ E X Y EX EY =-=-=-⨯=-(2) 2(60)2, 3.12DX DY -===由,X Y ρ==得(,)1,Cov X Y = 由随机变量和的方差公式()2(,)D X Y DX DY Cov X Y +=++得 第十一次作业★1. 试用切比雪夫不等式估计下一事件概率至少有多大: 掷1000次均匀硬币, 出现正面的次数在400到600次之间.出现正面的次数~(1000,0.5),X B n p == 应用切比雪夫不等式,有2. 若每次射击目标命中的概率为0.1, 不断地对靶进行射击, 求在500次射击中, 击中目标的次数在区间(49, 55)内的概率. 击中目标的次数~(500,0.1),X B n p ==根据中心极限定理,X 近似服从正态分布(50,45).N EX DX ==★3. 计算器在进行加法时, 将每个加数舍入最靠近它的整数.设所有舍入误差是独立的且在(-0.5, 0.5)上服从均匀分布, (1)若将1500个数相加, 问误差总和的绝对值超过15的概率是多少?(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90.(1) 误差变量,1,2,.i X i =⋅⋅⋅独立同均匀分布(0.5,0.5),X U -:10,.12EX DX ==由独立变量方差的可加性150011500125,12i i D X =⎛⎫== ⎪⎝⎭∑15001i i X =∑近似(0,125).N :(2) 1||10n i i P X =⎧⎫<⎨⎬⎩⎭∑1||n i i P X =⎧⎪=<=⎨⎪⎩210.90,⎛≈Φ-≥ ⎝ 因此,最多可有4个数相加,误差总和的绝对值小于10的概率不小于0.90.★4. 一个系统由n 个相互独立的部件所组成, 每个部件的可靠性(即部件正常工作的概率)为0.90. 至少有80%的部件正常工作才能使整个系统正常运行, 问n 至少为多大才能使系统正常运行的可靠性不低于0.95.正常工作的部件数~(,),X B n p 其中0.9.p =0.9,EX np n ==0.09.DX npq n ==1.645,24.354.n ≥≥因此n 至少取25. ★5. 有一大批电子元件装箱运往外地, 正品率为0.8, 为保证以0.95的概率使箱内正品数多于1000只, 问箱内至少要装多少只元件?正品数~(,),X B n p 其中0.8.p =0.8,EX np n ==0.16.DX npq n == 解得1637.65,n ≥因此n 至少取1638.★.贝努利分布的正态近似.投掷一枚均匀硬币40次出现正面次数20X =的概率. 正面次数(40,1/2),X B n p ==:400.520,400.50.510.EX np DX npq ==⨯===⨯⨯= 离散值20X =近似为连续分组区间19.520.5,X << 第十二次作业★1. 设X 1, X 2, ⋅⋅⋅, X 10为来自N (0, 0.32)的一个样本, 求概率1021{ 1.44}i i P X =>∑.标准化变量(0,1),1,2,...,10.0.3i X N i =:由卡方分布的定义,10222211~(10).0.3ii X χχ==∑ 略大,卡方分布上侧分位数20.1(10)15.9872.χ= ★2. 设X 1, X 2, X 3, X 4, X 5是来自正态总体X ~(0, 1)容量为5的样本, 试求常数c , 使得统计量t 分布, 并求其自由度.由独立正态分布的可加性,12(0,2),X X N +:标准化变量(0,1),U N =:由卡方分布的定义,22222345~(3),X X X χχ=++U 与2χ独立.由t 分布的定义,(3),T t ===:因此c =自由度为3.★3. 设112,,,n X X X L 为来自N (μ1, σ2)的样本, 212,,,nY Y Y L为来自N (μ2, σ2)的样本, 且两样本相互独立, 2212,S S 分别为两个样本方差, 222112212(1)(1)2pn S n S S n n -+-=+-. 试证明22().p E S σ=证 由221112(1)~(1),n S n χσ--及()211(1)1E n n χ-=-得类似地222.ES σ=★4. 设1,...,n X X 为总体2(,)N μσ的简单样本,样本均值和样本方差依次为2,.X S 求满足下式的k 值:()0.95.P X kS μ>+=统计量(1),X T t n =-:因此k = ☆.设正态总体2(,)N μσ的容量为12n =的简单样本为112,...,X X ,样本均值和样本方差依次为2,.X S 求满足下式的k 值:()0.95.P X kS μ>+= 正态总体样本方差未知,统计量(1),12.X T t n n =-=:★5. 设X 1, X 2, ⋅⋅⋅, X n , X n +1为来自N (μ, σ2)的样本, 记11nii X X n ==∑, 2211()1ni i S X X n ==--∑. 证明:1~n X X T S+-(1)t n -. 证 由独立正态分布的可加性,21(,),ni i X N n n μσ=∑:211,,ni i X X N n n σμ=⎛⎫= ⎪⎝⎭∑:1n X +及2S 相互独立,()2110,n n X X N nσ++-:和2S 独立,标准化变量(0,1),U N =: 2222(1)~(1),n S n χχσ-=-/,S σ=由t 分布的定义,第十三次作业★1. 设总体的密度函数为22(),0,(;)0,x x f x αααα-⎧<<⎪=⎨⎪⎩其他,,求参数α的矩估计.总体期望23220002()2(;),33x x x EX xf x dx x dx ααααααααα⎛⎫-==⋅=-= ⎪⎝⎭⎰⎰3,EX α= 用样本均值X 估计(或替换)总体期望EX 即ˆ,EXX =得α矩估计为ˆ3.X α= ★2. 设总体的密度函数为1(1)(1),01(;)0,x x x f x θθθθ-⎧+-<<=⎨⎩其他, 求参数θ 的矩估计.总体期望解得2,1EX EX θ=-用样本均值X 估计(或替换)总体期望EX 即ˆ,EX X =得θ 矩估计为2ˆ.1X Xθ=-3. 设总体的密度函数为||1(;),2x f x e x σσσ-=-∞<<+∞, 求参数σ 的最大似然估计.似然函数1111()(;)exp ||,2nn i i n n i i L f x x σσσσ==⎧⎫==-⎨⎬⎩⎭∑∏取对数得对数似然函数11ln ()ln 2ln ||,ni i L n n x σσσ==---∑令21ln ()1||0,ni i L n x σσσσ=∂=-+=∂∑ 解得σ的最大似然估计为11ˆ||.nL i i x n σ==∑ 4. 设总体的密度函数为222,0(;)0,0x x e x f x x θθθ-⎧⎪>=⎨⎪<⎩, 求参数θ 的最大似然估计. 似然函数2122111()(;)exp ,ninn i i i ni i xL f x x θθθθ===⎧⎫==-⎨⎬⎩⎭∏∑∏取对数得对数似然函数22111ln ()ln 2ln ,nn i i i i L x n x θθθ===--∑∑令231ln ()220,n i i L n x θθθθ=∂=-+=∂∑ 解得θ的最大似然估计为ˆL θ= ★5. 设总体X 的均值和方差分别为μ与σ 2, X 1, X 2, X 3是总体的一个样本, 试验证统计量(1)112311ˆ4412X X X μ=++; (2)2123111ˆ333X X X μ=++; (3)3123311ˆ882X X X μ=++. 均为μ 的无偏估计量, 并比较其有效性.(1)1123123111111ˆ.442442E E X X X EX EX EX μμ⎛⎫=++=++= ⎪⎝⎭ (2)1123123111111ˆ.333333E E X X X EX EX EX μμ⎛⎫=++=++= ⎪⎝⎭ (3)1123123311311ˆ.882882E E X X X EX EX EX μμ⎛⎫=++=++= ⎪⎝⎭ 因此123ˆˆˆ,,μμμ均为μ的无偏估计量. 由独立变量方差的可加性因此无偏估计量123ˆˆˆ,,μμμ中2ˆμ最有效,1ˆμ比3ˆμ有效. ★7. 设2ˆθ为θ 2的无偏估计, 且ˆ()0D θ>, 试证ˆθ不是θ 的无偏估计; 反之, 若ˆθ为θ 的无偏估计, ˆ()0D θ>, 则2ˆθ也不是θ 2的无偏估计.证(1) 22ˆ,E θθ=2222ˆˆˆˆ0,D E E E θθθθθ=-=->22ˆˆ,,E E θθθθ<≠得ˆθ不是θ 的无偏估计. (2) ˆ,E θθ=222222ˆˆˆˆˆ0,,D E E E E θθθθθθθ=-=->>得2ˆθ不是2θ的无偏估计. 8.设$$12,θθ是参数θ的两个相互独立的无偏估计量,且$$124D D θθ=,找出常数12,k k ,使$$1212k k θθ+也是θ的无偏估计量,并使它在所有这种形状的估计量中方差最小.$$$$1212121212()()E k k k E k E k k θθθθθθ+=+=+=,121k k +=,$$$$$222212122121212()(4)D k k k D k D k k D θθθθθ+=+=+,121222121,0,1,min{4}.k k k k s k k +=≤≤⎧⎨=+⎩求最小值得1214,55k k ==,4min 5s =,$$$121124min ().5D k k D θθθ+=第十四次作业★1. 某车间生产滚珠, 从长期实践中知道, 滚珠直径X 可以认为服从正态分布.从某天的产品里随机抽取6个, 测得直径(单位:mm)为14.6, 15.1, 14.9, 14.8, 15.2, 15.1.若已知总体方差为0.06, 试求平均直径的置信区间.(置信度为0.95). 若总体方差未知, 试求平均直径的置信区间.(置信度为0.95).(1)μ的置信区间中心当20.06σ=时,μ的95.01=-α置信区间半长为 因此μ的0.95置信区间为(2) 样本方差2211()0.051,1ni S X X n =-=-∑ μ的95.01=-α置信区间半长为因此μ的0.95置信区间为★2. 为了解某型号灯泡使用寿命X (单位:小时)的均值μ和标准差σ, 今测量10只灯泡, 测得1500x =, S =20. 若已知X 服从正态分布N (μ, σ 2), 求: (1)置信度为0.95的总体均值μ 的置信区间; (2)置信度为0.90的总体方差σ2的置信区间.(1) 置信区间半长/20.025( 2.262 6.32214.3,t n t α-==⨯= 当2σ未知时,μ的95.01=-α置信区间为(2) 已知参数2210,20,0.10,n S α===上侧分位数为 置信区间两端(下限,上限)为因此灯泡使用寿命方差2σ置信度为10.90α-=的置信区间为★3. 对方差220σσ=为已知的正态总体, 问须抽取容量n 为多大的样本, 方能使总体均值μ 的置信度为1-α的置信区间的长度不大于L .总体均值μ的置信区间长度为/22,u L α≤取220/224n u L ασ≥的整数. ★4. 已知某种元件的寿命X ~N (μ, σ 2), 现随机地抽取10个试件进行试验, 测得数据如下:82, 93, 57, 71, 10, 46, 35, 18, 94, 69.(1)若已知σ =3, 求平均抗压强度μ 的95%的置信区间;(2)求平均抗压强度μ的95%的置信区间; (3)求σ 的95%的置信区间. (1)μ的置信区间中心当223σ=时,μ的95.01=-α置信区间半长/21.96 1.861,u α==因此μ的0.95置信区间为(2) 上侧分位数220.02510.025(9)19.023,(9) 2.700,χχ-== 样本方差σ的10.95α-=的置信区间两端(下限,上限)为因此元件寿命标准差σ的0.95置信区间为★.两正态总体均值差21μμ-的1α-置信区间.当22212σσσ==未知时, 由于22,,,x yX Y S S 相互独立,构造服从分布(2)t m n +-的统计量(枢轴量) 记222(1)(1)2x ywm S n S S m n -+-=+-,则21μμ-的二样本t 置信区间为★5. 随机地抽取A 批导线4根, B 批导线5根, 测得起电阻为(单位: 欧姆) A : 0.143, 0.142, 0.143, 0.137;B : 0.140, 0.142, 0.136, 0.138, 0.140设测得数据分别服从正态分布N (μ1, σ 2), N (μ2, σ 2), 且它们相互独立, μ1, μ2, σ 均未知, 求μ1-μ2的95%的置信区间.上侧分位数20.025(2)(7) 2.3646,t m n t α+-==当22212σσσ==未知时,21μμ-的1α-置信区间半长为 21μμ-的95.01=-α置信区间为★6. 假设人体身高服从正态分布, 今抽测甲、乙两地区18岁~ 25岁女青年身高得数据如下: 甲地区抽取10名, 样本均值1.64米, 样本标准差0.2米; 乙地区抽取10名, 样本均值1.62米, 样本标准差0.4米. 求: (1)两正态总体均值差的95%的置信区间; (2)两正态总体方差比的95%的置信区间. (1) 分位数20.025(2)(18) 2.1009,t m n t α+-==当22212σσσ==未知时,21μμ-的1α-置信区间半长为 21μμ-的95.01=-α置信区间为★(2)两正态总体(期望未知)的方差比2212/σσ的1α-置信区间.由于22111(1)/n S σ-~21(1),n χ-22222(1)/n S σ-~22(1),n χ-且2212,S S 独立,构造统计量(枢轴量) 2211122222~(1,1),S F F n n S σσ=-- 对给定的置信度α-1,由其中/2211/2121(1,1),(1,1)F n n F n n αα-=---- 因此2212/σσ的α-1置信区间为第十五次作业★1. 某工厂生产的固体燃料推进器的燃烧率服从正态分布N (μ, σ 2), μ =40cm/s, σ =2cm/s . 现在用新方法生产了一批推进器. 从中随机抽取25只, 测得燃烧率的样本均值为X =41.25cm/s . 设在新方法下总体均方差仍为2cm/s , 问这批推进器的燃烧率是否较以往生产的推进器的燃烧率有显著的改变?取显著性水平α=0.05. 1).提出原假设及备择假设.0010:40;:.H H μμμμ==≠ 2).选取统计量并确定其分布.~(0,1).U N =3).确定分位数及拒绝域.上侧分位数0.025 1.96,u =拒绝域{|| 1.96}.W U =≥ 4).计算统计量的观测值并作出统计推断.因此拒绝原假设,认为在显著性水平0.05α=下,推进器的燃烧率显著改变. ★2. 某苗圃规定平均苗高60(cm)以上方能出圃. 今从某苗床中随机抽取9株测得高度分别为 62, 61, 59, 60, 62, 58, 63, 62, 63. 已知苗高服从正态分布, 试问在显著性水平α =0.05下, 这些苗是否可以出圃? 1).原假设及备择假设0010:60;:.H H μμμμ≥=< 2).取统计量(8).X T t =: 3).上侧分位数0.05(8) 1.8595,t =得拒绝域(, 1.8595).W =-∞- 4).由样本计算得61.11,X=0,.T T W S ==>∉因此接受原假设0,H 即认为在显著性水平0.05α=下,这些苗可以出圃.★3. 5名测量人员彼此独立地测量同一块土地, 分别测得这块土地面积(单位: km 2)为1.27, 1.24, 1.20, 1.29, 1.23算得平均面积为 1.246. 设测量值总体服从正态分布, 由这批样本值能否说明这块土地面积不到1.25km 2?(α =0.05)1).原假设及备择假设0010: 1.25;:.H H μμμμ≥=< 2).取统计量(4).X T t =:3).上侧分位数0.05(4) 2.1318,t =得拒绝域(, 2.1318).W =-∞-4).样本方差为2211()0.00123,1ni S X X n =-=-∑0.035,S = 统计量的实现值为因此接受原假设0,H 认为在显著性水平0.05下,这块土地面积达到1.25km 2. ★4. 设某电缆线的抗拉强度X 服从正态分布N (10600, 822), 现从改进工艺后生产的一批电缆线中随机抽取10根, 测量其抗拉强度, 计算得样本均值x =10653, 方差S 2=6962. 当显著水平α=0.05时, 能否据此样本认为(1)新工艺下生产的电缆线抗拉强度比过去生产的电缆线抗拉强度有显著提高? (2)新工艺下生产的电缆线抗拉强度的方差有显著变化? (1)提出原假设及备择假设.0010:10600;:.H H μμμμ≥=<选取统计量并确定其分布.(9).X T t =: 确定分位数及拒绝域.0.05(9) 1.8331,t =得拒绝域(, 1.8331).W =-∞- 计算统计量的观测值并作出统计推断.因此接受原假设,认为在显著性水平0.05α=下,新工艺电缆抗拉强度比过去工艺有显著提高.(2)提出原假设及备择假设222220010:82;:.H H σσσσ==≠ 在原假设成立的前提下,构造统计量2222(1)~(9).n S χχσ-=确定上侧分位数2210.0250.025(9) 2.700,(9)19.023,χχ-==得拒绝域 计算2χ统计量的观测值并作出统计推断因而接受原假设0,H 即认为新工艺下的电缆抗拉强度的方差无显著变化.★5. 设某涤纶强度X ~N (μ, σ 2), 用老方法制造的涤纶强度均值是0.528, 标准差0.016,现改进工艺后, 从新生产的产品中随机抽取9个样品, 测得起强度如下: 0.519, 0.530, 0.527, 0.541, 0.532, 0.523, 0.525, 0.511, 0.541 在显著性水平0.05α=下,涤纶强度的均值和标准差是否发生了改变? (1)提出原假设及备择假设.0010:0.528;:.H H μμμμ==≠ 选取统计量并确定其分布.~(0,1).U N =确定分位数及拒绝域.上侧分位数0.025 1.96,u =拒绝域{|| 1.96}.W U =≥计算统计量的实现值并作出统计推断.样本均值为 统计量的实现值为因此接受原假设0,H 即认为在显著性水平0.05α=下,涤纶强度均值未改变.(2)提出原假设及备择假设222220010:0.016;:,H H σσσσ==≠ 在原假设成立的前提下,构造统计量2222(1)~(8).n S χχσ-=确定上侧分位数2210.0250.025(8) 2.180,(8)17.535,χχ-==得拒绝域计算2χ统计量的观测值并作出统计推断样本平方和 样本偏差平方和 统计量的观测值因而接受原假设0,H 即认为涤纶强度的标准差未改变.★6. 测定某饮料中糖份的含量, 测得10个观察值的均值X =0.0452%,标准差S =0.037%. 设饮料中糖份的含量服从正态分布N (μ, σ 2), 试在显著性水平α=0.05下, 分别检验。

概率论大作业

概率论大作业

1.运用所学概率知识,举例说明概率在日常生活中的应用概率论来源于生活,最终也将运用于生活。

伴随着科技的发展和计算机的普及,概率论已被广泛的应用于各行各业,对于分析社会现象、研究自然科学,以及处理工程和公共事业提供了极大的帮助。

近年来,人们的生活水平越来越高,对身体健康锻炼越来越重视,对于体育比赛关注和热爱的程度也普遍提高。

掌握好概率论对于现代许多体育比赛有很大的帮助.比如射击时,可以按照运动员平时的水平估算成绩概率,以及根据位置估算射中的概率等等。

例:设向一目标连射三枪,A i表示第i枪击中目标(i=1,2,3),则下列事件可表示为:1)只有第一枪击中:A1A2̅̅̅ A3̅̅̅=A1−A2−A32)只击中一枪:A1A2̅̅̅ A3̅̅̅∪A1̅̅̅A2A3̅̅̅∪A1̅̅̅ A2̅̅̅A33)三枪都未击中:A1̅̅̅ A2̅̅̅ A3̅̅̅=A1∪A2∪A3̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅4)至多击中一枪:A1̅̅̅ A2̅̅̅∪A2̅̅̅ A3̅̅̅∪A1̅̅̅ A3̅̅̅5)至少击中一枪:A1∪A2∪A3此例运用到了和事件、对立事件。

例:甲、乙两人射击,射击技术如下:问甲、乙谁的水平高?解:设射击N枪甲总环数8×0.3N+9×0.1N+10×0.6N=9.3N乙总环数8×0.3N+9×0.5N+10×0.2N=8.9N∴甲水平高此例运用数学期望来分析甲乙的射击水平。

例:靶子半径2m圆盘,击中靶上任一同心圆上的点的概率与同心圆的面积成正比,设射击都能中靶,X为弹着点与圆心的距离,求F(x)该例求随机变量的分布函数解:①若x<0,P{X≤x}=0 F(x)=0②若0≤x≤2,P{0≤X≤x}=kx2x=2时,P{0≤x≤2}=1=4k ∴k=14F(x)=P{X≤x}=P{X<0}+P{0≤X≤x}=0+14x2=14x2③x>2时,P{X≤x}=1 F(x)=1∴F(x)={0,x<014x2,0≤x<21,x≥2日常生活中,不管什么东西都需要根据使用情况来设置大小等等,如何估算合适的尺寸才能基本让所有人都能正常使用,这就需要用到概率论中随机变量的分布。

概率论练习题(随机试验)

概率论练习题(随机试验)

第一次作业(随机试验;样本空间、随机事件;频率与概率)1、设()P A a =,()P B b =,()P A B c = ,则()P A B =2、设A 、B 两事件满足()()P AB P A B =,()P A p =,则()P B =3、事件A 为“甲种产品畅销而已种产品滞销”则A =4、写出下列随机试验的样本空间(1)记录一个人数为n 的教学班一次数学考试的平均分数(百分制); (2)同时掷三颗骰子,记录三颗骰子之和; (3)一只口袋中装有许多红,白,蓝三种乒乓球,在其中任取4只,观察它们具有哪几种颜色;5、设A 和B 为两个随机事件, A 、B 至少有一个发生的概率为13,A 发生且B 不发生的概率为19,则()P B =___________6、设A 、B 、C 是三个事件,则与A 互斥的事件是 ( ) (1)AB A B (2) ()A B B (3) ABC (4) A B C7、当事件A 和B 同时发生时,事件C 必发生,则下列结论正确的是( )(1)()()P C P AB = (2) ()()P C P A B = (3)()()()1P C P A P B ≥+- (4)()()()1P C P A P B ≤+- 8、设A 、B 表示两事件,则A B -= ( )(1) AB (2) A B (3)AB (4)A B9、设A 、B 是任意两个概率不为零的不相容事件,则结论肯定正确的是 ( )(1)A 与B 不相容 (2) A 与B 相容 (3)()()()P AB P A P B = (4) ()()P A B P A -=10、在电炉上安装了4个温控器,其显示温度的误差是随机的。

在使用过程中,只要有两个温控器的显示温度不低于临界温度0t ,电炉就断电。

以事件E 表示“电炉断电”,而)4()3()2()1(T T T T ≤≤≤为4个温控器显示的按递增序列排列的温度值,则事件E 等于( )。

概率论作业习题

概率论作业习题

概 率 论 作 业1.写出下列随机试验的样本空间:(1)记录一个小班一次数学考试的平均分数(以百分制记分); (2)在单位圆内任取一点,记录它的坐标;(3)一射手射击,直到击中目标为止,观察射击情况。

(4)把A ,B 两个球随机地放到3个盒子中去,观察球的分布情况(假设每个盒子可容纳球的个数不限)。

2.一工人生产了四件产品,以A 表示他生产的第i 件产品是正品)4,3,2,1i (=,试用A 表示)4,3,2,1i (=下列事件:(1)没有一件产品是次品; (2)至少有一件产品是次品; (3)恰有一件产品是次品; (4)至少有两件产品不是次品。

3.对飞机进行两次射击,每次射一弹,设事件A={第一次击中飞机},B={第二次击中飞机} C={恰有一弹击中飞机},D={至少有一弹击中飞机},E={两弹都击中飞机}。

(1)试用事件A ,B ,表示事件C ,D ,E 。

(2)C 与E 是互逆事件吗?为什么?4.从一批产品中任意抽取5件样品进行质量检查。

记事件A 表示“发现i 件次品”)5,,2,1,0i ( =,试用A 来表示下列事件:(1)发现2件或3件次品;(2)最多发现2件次品;(3)至少发现1件次品。

5.把事件B A ⋃与C B A ⋃⋃分别写成互不相容事件和的形式。

6.指出下列命题中哪些成立,哪些不成立?(1)B B A B A =;(2)C B A C B A =)(;(3)φ=)B A )(AB (;(4)若B A ⊂,则A B A =;(5)若φ=AB 且A C ⊂,则φ=BC 。

7.设}2x 0|x {S ≤≤=,1}21|{≤<=x x A ,}x x B 2341|{<≤=。

具体写出下列各事件: (1)B A ; (2)B A ⋃; (3)B A ⋂ (4)AB8.一袋中有十个质地、形状相同且编号分别为1、2、…、10的球.今从袋中任意取出三个球并记录球上的号码,求(1)最小号码为5的概率,(2)最大号码为5的概率,(3)一个号码为5,另外两个号码一个大于5,一个小于5的概率。

统计学第5章概率论作业

统计学第5章概率论作业

一、选择1、一项试验中所有可能结果的集合称为()A事件B简单事件C样本空间D基本事件2、每次试验可能出现也可能不出现的事件称为()A必然事件B样本空间C随机事件D不可能事件3、抛3枚硬币,用0表示反面,1表示正面,其样本空间Ω=()A{000,001,010,100,011,101,110,111}B{1,2,3}C{0,1}D{01,10}4、随机抽取一只灯泡,观察其使用寿命t,其样本空间Ω=()A{t=0} B{t<0} C{t>0} D{t≥0}5、观察一批产品的合格率P,其样本空间为Ω=()A{0<P<1} B{0≤p≤1} C{p≤1} D{p≥0}6、若某一事件取值的概率为1,则这一事件被称为()A随机事件B必然事件C不可能事件D基本事件7、抛掷一枚骰子,并考察其结果。

其点数为1点或2点或3点或4点或5点或6点的概率为( )。

A.1 B.1/6 C.1/4 D.1/28、一家计算机软件开发公司的人事部门最近做了一项调查,发现在最近两年内离职的公司员工中有40%是因为对工资不满意,有30%是因为对工作不满意,有15%是因为他们对工资和工作都不满意。

设A一员工离职是因为对工资不满意;B一员工离职是因为对工作不满意。

则两年内离职的员工中.离职原因是因为对工资不满意、或者对工作不满意、或者二者皆有的概率为( )。

A.0.40 B.0.30 C.0.15 D.0.559、一家超市所作的一项调查表明,有80%的顾客到超市是来购买食品,60%的人是来购买其他商品,35%的人既购买食品也购买其他商品。

设A一顾客购买食品,B一顾客购买其他商品。

则某顾客来超市购买食品的条件下,也购买其他商品的概率为()。

A.0.80 B.0.60 C.0.437 5 D.0.3510.一家电脑公司从两个供应商处购买了同一种计算机配件,质量状况如下表所示:正品数次品数合计供应商甲84 6 90供应商乙102 8 110合计186 14 200设A=取出的一个为正品;B=取出的一个为供应商甲供应的配件。

概率论作业习题及答案

概率论作业习题及答案

1 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。

设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则 (1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω(2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”. 解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω}.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件: (1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品; (4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A2 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C 有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A 指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P 设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P 故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率.解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=75.04341313131==-++=3 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==B A P B P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯= (2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率.解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=4 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率.解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++=)7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率.解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+=328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++=6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P )()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P 故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作出正确决策的概率. 解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则)9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+0403.01556.02668.02668.01715.0++++=901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.5 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布.解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X 的概率分布为四、电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------=16308.0≈ 设随机变量X 的概率分布为 2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦1=λae ,所以.λe a -=6 随机变量的分布函数·连续随机变量的概率密度一、函数211x+可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-). 解:(1)设211)(x x F +=,则1)(0<<x F因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数. (2)设211)(xx F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x 因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π.解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度.(3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形.解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度. 解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A == 即)( ,arctan 121)(+∞<<-∞+=x x πx F . (2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F ξP(3) X 的概率密度为)1(1)()(2x x F x f +='=π.五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Aex f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数. 解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Aex x,解得21=A ,即有 ).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰021102121)()(x e x e dx e dx x f x F x xx xx .7 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率. 解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰ee dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-e X P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率.解:(1)因为)(~λe X ,所以R x ∈∀,有xex F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X XY -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f yyY π.8 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布.解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F ++=.求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度. 解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π (3)X 及Y 的边缘分布函数分别为 x xxX xdx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan1)4(2),()(2ππ2arctan 121xπ+=yxyY ydy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan1)9(3),()(2ππ3arctan 121y π+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ)4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx xy dx y x dx y x f y f Y ππ )9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X 落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它00,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰30006),()(3032y y ex x dxe e dx y xf y f yy x Y (4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰Cx x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有 ⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx2713)322(92922132102=-++=x x x x .9 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY 求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥. 解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意YX ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx edy e dx dxdy y x f X Y P x xyxyXY ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e e x二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jjn Y in i i n X ====--证明它们的和Y X Z +=也服从二项分布. 证明: 设j i k +=, 则ik n i k i k n ki i n i i n ki Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()( ∑=-+=ki k n n k i n in q p C C2121)( 由knm ki ik nk m C C C +=-=∑, 有k n n ki i n i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p Ck P k n n k i n n Z +==-++由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是z y x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z zz z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z四、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ 先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax (21==i Y i i i ξξ 从而有)3,2,1( =i i η的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321ηηη=Z .从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ10 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为于是有3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为于是有4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.09.04091.0)(22=-=-=EX EX DX565.03191.0≈==DX X σ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为p q p q q p q p iqp ipqEX ni i ni i ni i 1)1()1()(211111=-='-='===∑∑∑==-=- 2X 的分布为p pp p q q p q p q q p pqi EX ni i n i i ni i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑===- 进一步有p pp p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx xx dx xx dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-122112221211)()(ππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)11 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY72.072.0128.002=⨯+⨯=EY 2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf . 弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRRd R4sin 4cos 42020===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0,0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x 进而有 41)1(1)1(-=<-=≥eX P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---eee EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni in i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0 于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-= 即停车次数的数学期望为748.8.12 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X . 解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰022022220223]11)1ln([1)1(211r r dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f 求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么? 解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-1210322),(dx x dy xdx dxdy y x xf EX x x 0),(1===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),( 010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f yy因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==npq D ξ于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以)3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ. 查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n 答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.13 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P)]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---= .0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率. 解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--=于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(2221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z=2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++= 212222212221μσμσσσ++=.14 二维正态分布·正态随机变量线性函数的分布·中心极限定理三、设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,。

概率论作业大全

概率论作业大全

、解答题1・已知总体X〜3(1, p), Xi,X2,…,X”是X的一个样本,求(1)X1, X2,…,X〃的联合分布律;(2)£ &的分布律;1-1(3)三E(Q,D(X),E$).解:因为X的分布律为P{X = /:} = (1 - p)l-k p\k = 04 (0< p<l)且X1,X2,…X?均于x独立同分布, 所以(1) X1, X2,…,X”的联合分布律为P{X l=x l,X2=x2,...,X ll=x il} = YlP{X i=x i}f=l=pz (1 一p) z ,兀=0丄j = l,2,…/(2 ) 因为Y = ±Xj ~ B(n, p) , 所以(-1P{Y = y} = C; P>'(1- p)f = 0丄2,3,..., n .(3)因为,所以如2 =理二£2,E(S2) = D(X)=/?(1-P)・E(X) = E(X) = p, D(X) =n n2.从总体N(52, 6.32)中随机抽取一个容量为36 的样本,计算样本均值X落在50.8到53.8之间的概率.解:因为X〜N(52, 6.32),所以八N(52,薯P{50.8<X<53.8} =①(A 8,)一 ①严8,)= 0.82936.3/V36 6.3/V363. 某种灯管寿命X (以小时计)服从正态分布 X 〜N (“,o-2), 乂为来自总体X 的样本均值.(1)求乂与“的偏差大于手的概率.(2)若“未知,a 2 = 100,现随机取100只这种灯管,求乂与“的偏差小于1的概率.解:因为X 〜N (“,□), 仏口,与川(0,1),所 < 11 ) a/yjn以4. 在天平上反复称量重量为w 的物体,每次称量结果独立同服从N(w, 0.04),若以乂表示斤次称重的算术平均,则为使P{|X-w|< 0.1} >0.95 ,斤至少应该是多少?解:Xi ,X2, X”为称重的结果,则 Xi ,X2,…,X 〃相(2)因为er 2 = 100, n=100,訂屁 1,所以=①(1)一 ①(一 1) = 24>(1)-1 = 2- 24>(1) = 2x 0.8413-1 = 0.6826.互对立且均服从叽°叫于是欲使P{|x-w|< 0.1} >0.95, 须使> 0.95,< 0.5y/n \ = 2①(0.5亦)- 1 > 0.95,解得①(0.5亦) >0.975, 查表得①(1.96) = 0.975,由于①⑴是递增函数,须使0.5^ >1-96,解得11>15.366?故11 至少为16.5.从正态总体N(“,oQ 中抽取样本Xi ,X2,…,X10 (1)已知 “=0,求I /-I-(2) “未知,求H 丈(乙 -X)2 >0.6751 ・解:(1 )因为 &〜N(0, 0・5 2), 口 ~ N(0, I),即 2X( ~ N(0,l)?0 • 5令力2 = Y(2XJ 29 贝|J 才=工(2£尸~才(10)(-1 I由于查表知 xls (10) = 16 ,所以 >A=p{x 2>16}=0,l.(2))因为Xi 〜N®, 0.5 2),即八竺],所以I 10 ;10>16P丈疋刊"任(2X/pjgC^-X)2 >0.675J吕 X.-XlS (T^75)-0.675 0.275Xj-乂 V0.275)'〜才(10) > 2.4545 r10E(1-170.275查表知加98㈣* 2.45,所以=0.9924 •解:⑴由归一性知:1=0 f(x,y)dxdy = & & Axydxdy =扌,故A=4(2)P{X=Y}=0(3)P{X<Y}=J01f 4xydydx =扌⑷jm(u,v)dudv = F(x,y)=" 0, xVO 或yVO4 Q Q uvdudv, 0<x<l,0<y<l< 4uvdudv, 0 < x < l,y > 14fofo uvdudv, x > 1,0 < y < 1< 1, x > l,y > 1"0, xVO 或yVO x2y2, 0<x<l,0<y<l即F(x,y)气x2, 0 <x< l,y> 1y2, x > 1,0 < y < 1< 1, x > l,y > 15•解:P{X+Y>1}=打(3)如严忙(宀¥如*等.v+y>l $ ' 上6解:X 的所有可能取值为0,l ,2,Y 的所有可能取值为 0,1,2,3.P{X=0,Y=0}=0.53=0.125; 、P{X=0,Y=l}=0.53=0.125P{X=1,Y=1}=C ;0.5'x 0.5 = 0.25,P{X=1,Y=2}=C ;0.5'x0.5 = 0.25P{X=2,Y=2}=0.53=0.125, P{X=2,Y=3}==0.53=0.125 X ,Y 的分布律可用表格表示如下:八0 1 2 3Pi.0 0.125 0.125 0 0 0.25 1 0 0.25 0.250.520.125 0.125 0.250.125 0.375 0.375 0.125 17.解:+•»f W = “(兀 y^y = <r —xJ", X0,x>0 x<00.x>0 x <0(1)因为 x 〜N(3,4) P{2<X <5}=尸(5)-F(2)=0(1)—①(0.5)-1 = 0.8413+ 0.6915-1 = 0.5328P{-4<X <10}= F(10)-尸(-4)=①(3.5)-①(一3.5) -1 = 2 ①(3.5) -1= 2x0.998-1 = 0.996P|jx|>2}=l-P{x<2} = l-P{-2<X <2}=1-[F(2)-F(-2)]=l-[①(一0.5)-①(_2.5)]=1-[①(2.5)-①(0.5) ] = 1-0.3023 = 0.6977+x九(刃=”(兀加={! -XQdx 、y >0y <09T0,y>0y <08.解」g)= f JX 2 < y < 1x<0(1)1 =匚匚/(x, y)dxdy = (J ; ex 2 ydydx = 2c£ x 2 2 21所以c=21/4⑵氏仏)=匚/(尢刃dy =21——兀 4 Jr 2畔2叶】其它121fy(y)= i x f^y)dx=\^,+ocr _x 2ydx0,OV)Y1 = <其它ZzZ 2 0,0<y<l13.解:其它所以P{X >3}=1-P{X <3} = 1-F(3) =1-0(0) =1-0.5 =0.5(2) P{X >c}=l-P{X <c},贝I 」P{X <c}=- = F(c)二①(—) = -,2 2经查表得①(0) = \即字二0,得c = 3;由概率密度关于x=3 对称也容易看出。

概率论作业习题

概率论作业习题

概 率 论 作 业1.写出下列随机试验的样本空间:(1)记录一个小班一次数学考试的平均分数(以百分制记分);(2)在单位圆内任取一点,记录它的坐标;(3)一射手射击,直到击中目标为止,观察射击情况。

(4)把A ,B 两个球随机地放到3个盒子中去,观察球的分布情况(假设每个盒子可容纳球的个数不限)。

2.一工人生产了四件产品,以A 表示他生产的第i 件产品是正品)4,3,2,1i (=,试用A 表示)4,3,2,1i (=下列事件:(1)没有一件产品是次品; (2)至少有一件产品是次品;(3)恰有一件产品是次品; (4)至少有两件产品不是次品。

3.对飞机进行两次射击,每次射一弹,设事件A={第一次击中飞机},B={第二次击中飞机} C={恰有一弹击中飞机},D={至少有一弹击中飞机},E={两弹都击中飞机}。

(1)试用事件A ,B ,表示事件C ,D ,E 。

(2)C 与E 是互逆事件吗?为什么?4.从一批产品中任意抽取5件样品进行质量检查。

记事件A 表示“发现i 件次品”)5,,2,1,0i ( =,试用A 来表示下列事件:(1)发现2件或3件次品;(2)最多发现2件次品;(3)至少发现1件次品。

5.把事件B A ⋃与C B A ⋃⋃分别写成互不相容事件和的形式。

6.指出下列命题中哪些成立,哪些不成立?(1)B B A B A =;(2)C B A C B A =)(;(3)φ=)B A )(AB (;(4)若B A ⊂,则A B A =;(5)若φ=AB 且A C ⊂,则φ=BC 。

7.设}2x 0|x {S ≤≤=,1}21|{≤<=x x A ,}x x B 2341|{<≤=。

具体写出下列各事件: (1)B A ; (2)B A ⋃; (3)B A ⋂ (4)AB8.一袋中有十个质地、形状相同且编号分别为1、2、…、10的球.今从袋中任意取出三个球并记录球上的号码,求(1)最小号码为5的概率,(2)最大号码为5的概率,(3)一个号码为5,另外两个号码一个大于5,一个小于5的概率。

概率论与数理统计实践考核37作业

概率论与数理统计实践考核37作业

概率论与数理统计实践考核37作业第⼀章随机事件与概率三、计算题1.设P (A )=0.4, P (B )=0.2, (|)0.3P B A =, 求P (AB )以及P (A |B ).解:由(|)0.3P B A =得:()0.3,()P AB P A =即()()0.31()P B P AB P A -=-, 解得:P (AB )=0.02. 从⽽, ()0.02(|)0.1()0.2P AB P A B P B ===.2.已知,()0.2,()0.3,A B P A P B ?==求:(1)(),()P A P B ;(2)P (AB );(3)()P AB ;(4) ()P A B ;(5)P (B -A ).解:(1)由概率的性质,知()1()0.8,P A P A =-=()1()0.7P B P B =-=; (2)因为A B ?,所以AB A =,P (AB )=P (A )=0.2; (3)()P AB =P (A -AB )=P (A )-P (AB )=P (A )-P (A )=0; (4) 因为A B ?,所以A B B =, ()P A B =P (B )=0.3;或者,()P A B =P (A )+P(B )-P (AB )=0.2+0.3-0.2=0.3; (5) P (B -A )=P (B )-P (AB )=0.3-0.2=0.1.3.若事件A 与B 互不相容,P (A )=0.6, P (A+B )=0.9, 求:(1)()P AB ;(2)(|)P A B ;(3)()P AB .解:(1) 因A 与B 互不相容,故AB =Φ,P (AB )=0,所以()P AB =1-P (AB )=1;(2) 因A 与B 互不相容,由加法公式:P (A+B )=P (A )+P (B ),得P (B )=0.3,从⽽ (|)P A B =()()()0.661()0.77()P AB P A P AB P B P B -===-;(3) ()P AB =1()1()10.90.1P AB P A B -=-+=-=.4.已知事件A 与B 相互独⽴,且P (A )=0.4, P (A+B )=0.6, 求(1)P (B );(2)()P AB ;(3)P (A|B ).解:(1)因为事件A 与B 相互独⽴,所以P (AB )=P (A )P (B ),()()()()()()()()P A B P A P B P AB P A P B P A P B +=+-=+- 0.6=0.4+P (B )-0.4P (B ),解得:P (B )=13;(2) 因为事件A 与B 相互独⽴,所以A 与B 也相互独⽴,故()P AB =4()()15P A P B =; (3) 因为事件A 与B 相互独⽴,所以P (A|B )=P (A )=0.4.四、应⽤题6.盒⼦中有8个红球和4个⽩球,每次从盒⼦中任取⼀球,不放回地抽取两次,试求:(1) 两次取出的都是红球的概率;(2)在第⼀次取出⽩球的条件下,第⼆次取出红球的概率;(3)第⼆次取到红球的概率.解:A 1“第⼀次取出的是红球”,A 2“第⼆次取出的是红球”,则 (1)由乘法公式得,两次取出的都是红球的概率为:121218714()()(|)121133P A A P A P A A ===; (2)在第⼀次取出⽩球的条件下,第⼆次取出红球的概率为:218(|)11P A A =; (3)由全概率公式得,第⼆次取到红球的概率为: 2121121()()(|)()(|)P A P A P A A P A P A A =+ 87482121112113 =+=. 第⼆章随机变量及其概率分布三、计算题1.设连续型随机变量X 的分布函数为20,0(),011,1x F x x x x=≤,求X 的概率密度函数.解:由分布函数与概率密度函数之间的关系()()F x f x '=知,当0当1x ≥或0x ≤时,()f x =0,所以,X 的概率密度为2,01()0,x x f x <2.设X 服从参数p =0.2的0-1分布,求X 的分布函数及P (X <0.5).解:X 的分布律为当0x <时,()()F x P X x =≤=0;当01x ≤<时,()()F x P X x =≤=(0)0.8P X ==;当1x ≥时,()()F x P X x =≤=(0)(1)0.80.21P X P X =+==+=.所以,X 的分布函数为0,0()0.8,011,1x F x x x=≤;⽽P (X <0.5)= P (X =0)=0.8.3.设随机变量X ~U (a , b ),求X 的密度函数与分布函数.解:X 的密度函数为1,()0,a xb f x b a ?<=-其它;分布函数()()x F x f t dt -∞=?,当x a <时,()()x F x f t dt -∞=?00xdt -∞==?;当a x b ≤<时,()()xF x f t dt -∞=?10a xax a dt dt b a b a-∞-=+=--??;当x b ≥时,()()xF x f t dt -∞=?1001abx ab dt dt dt b a-∞=++=-??.所以,X 的分布函数为0,(),1,x a x a F x a x b b ax b=≤4.设随机变量X ~N (3, 4),求:(1)P (2P (|X|>2);(4)P (X >3).解:(1)P (2(3)(2)()()22F F ---=Φ-Φ(0)(0.5)=Φ-Φ- (0)[1(0.5)]=Φ--Φ=0.1915;(2) P (-4(10)(4)()()22F F -----=Φ-Φ =(3.5)(3.5)2(3.5)1Φ-Φ-=Φ-=0.9996;(3) P (|X|>2)=1(||2)P X -≤=1(22)1[(2)(2)]P X F F --≤≤=--- =2323 1[()()]22----Φ-Φ=(0.5)(2.5)1Φ-Φ+=0.6977; (4)P (X >3)=1(3)P X -≤=33 1(3)1()1(0)2F --=-Φ=-Φ=0.5.5.已知随机变量X 的密度函数为2,01()0,kx x f x ?<<=??其它,求:(1)常数k ;(2)分布函数;(3)(10.5)P X -<<..解:(1)因为()1f x dx +∞-∞=?,所以123100|133k kkx dx x ===?,故k =3. 即随机变量X 的概率密度为23,01()0,x x f x ?<<=??其它;(2)当0x <时,()()xF x f t dt -∞=?=0,当01x ≤<时,()()x F x f t dt -∞=?=023003xdt t dt x -∞+=??,当1x ≥时,()()xF x f t dt -∞=?=01210301xdt t dt dt -∞++=.所以,随机变量X 的分布函数为30,0(),011,1x F x x x x=≤;(3)(10.5)P X -<<3(0.5)(1)0.500.125F F =--=-=;第三章多维随机变量及其概率分布三、计算题1.已知⼆维离散型随机变量(X , Y )的联合分布为:(1)确定常数C ;(2)求(X , Y )关于X ,Y 的边缘分布.解:(1)由概率分布的性质知,11111+++++=1464812C ,解得:C =18;(2)11113(0)46824P X ==++=,11111(1)481224P X ==++=,从⽽,(X , Y )关于X 的边缘分布为:111(0)442P Y ==+=,117(1)6824P Y ==+=,115(2)81224P Y ==+=,从⽽,(X, Y)关于Y的边缘分布为:2.已知⼆维离散型随机变量(X, Y)的联合分布为:求(X , Y )关于X ,Y 的边缘分布. 解:111(0)012126P X ==++=,,,,所以,(X , Y )关于X 的边缘分布为:,,,从⽽,(X , Y )关于Y 的边缘分布为:3.设⼆维离散型随机变量(X , Y )的等可能值为(0, 0), (0, 1), (1, 0), (1, 1).求: (1) (X , Y )的联合概率分布律; (2) (X , Y )关于X , Y 的边缘概率分布. 解:(1)由题设知:115(1)+04612P X ==+=111(3)0+1264P X ==+=111(5)012126P X ==++=11(1)01241212P Y ==+++=(2)006124P Y ==+++=1111P Y ==+++=所以,(X , Y )的联合概率分布为:(2) 与上⾯1,2题作法相同,可得(X , Y )关于X , Y 的边缘概率分布分别为:1(0,0)(0,1)(1,0)(1,1)4P X Y P X Y P X Y P X Y ============4.设⼆维随机变量(X , Y )只能取下列数组中的值:1(0,0),(1,1),(1,),(2,0)3--,且取这些值的概率依次为1115,,,631212.(1)写出(X , Y )的分布律;(2)求(X , Y )关于X ,Y 的边缘分布律.解:(1)由题设可得(X , Y )的分布律为:(2) ,,,所以,(X , Y )关于X 的边缘分布为:115(1)012312P X =-=++=1(0)6P X ==5(2)12P X ==,,,从⽽,(X , Y )关于Y 的边缘分布为:5.设⼆维随机变量(X , Y )的分布律为:试问:X 与Y 是否相互独⽴?为什么?157(0)061212P Y ==++=11()312P Y ==1.解:可求得(X , Y )关于X ,Y 的边缘概率分布分别为:因为所以,X 与Y 相互独⽴.第四章随机变量的数字特征三、计算题1.设随机变量X 的分布律为求:(1)EX ;(2)E (X 2);(3)E (3X 3+5).解:(1)EX =; (2)E (X 2)=;(3)E (3X 3+5)=3E (X 3)+5,⽽E (X 3)=,所以,.(,)()(),1,2;1,2.P X i Y j P X i P Y j i j =======(2)0.400.320.30.2-?+?+?=-222(2)0.400.320.3 2.8-?+?+?=333(2)0.400.320.30.8-?+?+?=-33(35)3()53(0.8)5 2.6E X E X +=+=?-+=2.设随机变量X 的分布律为求:期望EX 与⽅差DX ..解:;, .3.设随机变量X 的概率密度为6(1),01()0,x x x f x -<解:;, . 10.220.530.3 2.1EX =?+?+?=2222()10.220.530.3 4.9E X =?+?+?=222()() 4.9(2.1)0.49DX E X EX =-=-=()EX xf x dx +∞-∞=?1234100316(1)(2)|22x x dx x x =-=-=?22()()E X x f x dx +∞-∞=?13451003636(1)()|2510x x dx x x =-=-=?22()()DX E X EX =-31110420=-=4.设随机变量X的概率密度为||1()0,||1x f x x <=≥?,求:期望EX 与⽅差DX ..解:;,=.5.设随机变量X 的概率密度为,01()2,120,x x f x x x ≤≤??=-<其它,求:期望EX 与⽅差DX .解:=; =, =.第五章⼤数定律及中⼼极限定理三、计算题()EX xf x dx +∞-∞=10-==?22()()E X x f x dx +∞-∞=22110122-===?22()()DX E X EX =-1()EX xf x dx +∞-∞=?12231232010111(2)|()|133x dx x x dx x x x +-=+-=??22()()E X x f x dx +∞-∞=?12324134201011217(2)|()|4346x dx x x dx x x x +-=+-=?22()()DX E X EX =-161.已知随机变量X 服从均匀分布U [0,1],估计下列概率:(1){|0.5|P X -≥; (2) 13{}22P X -<<.解:因为X ~U [0,1],所以.(1)由切⽐雪夫不等式,得;(2).2.设X i (i =1, 2, ...,50)是相互独⽴的随机变量,且都服从泊松分布P (0.03), 令1i i Z X ==∑,试⽤中⼼极限定理计算(3)P Z ≥.解:因为X i ~P (0.03), 故EX i =DX i =0.03,且,11,212EX DX =={|0.5|P X -≥21112143DX ≤==13{}22P X -<<11{11}{||1}22P X P X =-<-<=-<21111111212DX ≥-=-=5011.5i i EZ EX ===∑,由中⼼极限定理知:.所以 ==1-0.8888=0.1112.3.设P (A )=0.4,现在进⾏1000次独⽴重复试验,(1)估计事件A 发⽣的次数在300~500之间的概率;(2)求事件A 发⽣的次数在300~500之间的概率.解:设随机变量X 表⽰1000次试验中A 发⽣的次数,由题意知:X ~B (1000,0.4), EX =400, DX =240.(1)由切⽐雪夫不等式得, =0.976.(2)因为n =1000很⼤,所以不能直接⽤⼆项分布计算. 由中⼼极限定理知,.≈1.4.设P (A )=0.5,利⽤中⼼极限定理求在100次重复独⽴试验中A ⾄少发⽣60次的概率.5011.5i i DZ DX ===∑~(1.51.5)Z N 近似,(3)P Z≥1(3)1(3)1P Z F =-<=-≈-Φ1(1.22)-Φ2(300500)(|400|100)1100DXP X P X <<=-<≥-~(400,240)X N近似(300500)21P X <<≈Φ-Φ=Φ-解:X 表⽰在100次重复独⽴试验中A 发⽣的次数,则X ~B (100,0.5),EX =50,DX =25,由中⼼极限定理:.所求概率为=1-0.9772=0.0228. 5.设X ~U [-1,1], Y ~N (0,14),且X 与Y 相互独⽴,估计概率P (-1. 第六章统计量及其抽样分布三、计算题 1.已知样本值如下:19.1, 20.0, 21.2, 18.8, 19.6, 20.5, 22.0, 21.6, 19.4, 20.3. 求样本均值x ,样本⽅差2s ,样本⼆阶中⼼矩2b .解:样本均值;样本⽅差; ~(50,25)X N近似(60)1(60)1P X P X ≥=-<≈-Φ14410,123EX DX ===14()0,E X Y EX EY +=+=7(),12D X Y DX DY +=+=2()75(11)(||1)1111212D X Y P X Y P X Y +-<+<=+<≥-=-=101120.2510i i x x ===∑102211() 1.165101i i s x x ==-=-∑样本⼆阶中⼼矩2.设总体2~(,)X N µσ,样本121,,...,,n n X X X X +来⾃总体X ,2,n n X S 表⽰12,,...,n X X X 的样本均值和样本⽅差..解:因为,,且与相互独⽴,所以. ⼜,由t 分布的定义知:t (n -1).102211() 1.048510i i b x x ==-=∑211~(,)n n i i X X N n nσµ==∑21~(,)n X N µσ+n X 1n X +211~(0, )n n n X X N n σ++-~(0,1)n N 222(1)~(1)nn S n χσ--~(1),t n -。

概率论习题全部

概率论习题全部

概率论习题全部习题一1. 用集合的形式写出下列随机试验的样本空间与随机事件A :(1)掷两枚均匀骰子,观察朝上面的点数,事件A 表示“点数之和为7”;(2)记录某电话总机一分钟内接到的呼唤次数,事件A 表示“一分钟内呼唤次数不超过3次”;(3)从一批灯泡中随机抽取一只,测试它的寿命,事件A 表示“寿命在2 000到2 500小时之间”.2. 投掷三枚大小相同的均匀硬币,观察它们出现的面. (1)试写出该试验的样本空间;(2)试写出下列事件所包含的样本点:A ={至少出现一个正面},B ={出现一正、二反},C ={出现不多于一个正面};(3)如记i A ={第i 枚硬币出现正面}(i =1,2,3),试用123,,A A A 表示事件A ,B ,C . 3. 袋中有10个球,分别编有号码1~10,从中任取1球,设A ={取得球的号码是偶数},B ={取得球的号码是奇数},C ={取得球的号码小于5},问下列运算表示什么事件:(1)A B U ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)B C U ;(7)A C -. 4. 在区间上任取一数,记112A x x ??=<≤,1342B x x ??=≤≤,求下列事件的表达式:(1)A B U ;(2)AB ;(3)AB ,(4)A B U .5. 用事件A ,B ,C 的运算关系式表示下列事件:(1)A 出现,B ,C 都不出现;(2)A ,B 都出现,C 不出现;(3)所有三个事件都出现;(4)三个事件中至少有一个出现;(5)三个事件都不出现;(6)不多于一个事件出现;(7)不多于二个事件出现;(8)三个事件中至少有二个出现.6. 一批产品中有合格品和废品,从中有放回地抽取三个产品,设表示事件“第次抽到废品”,试用的运算表示下列各个事件:(1)第一次、第二次中至少有一次抽到废品;(2)只有第一次抽到废品;(3)三次都抽到废品;(4)至少有一次抽到合格品;(5)只有两次抽到废品.7. 接连进行三次射击,设={第i 次射击命中}(i =1,2,3),试用表示下述事件:(1)A ={前两次至少有一次击中目标};(2)B ={三次射击恰好命中两次};]2,0[i A i i A i A 321,,A A A(3)C ={三次射击至少命中两次};(4)D ={三次射击都未命中}.8. 盒中放有a 个白球b 个黑球,从中有放回地抽取r 次(每次抽一个,记录其颜色,然后放回盒中,再进行下一次抽取).记={第i 次抽到白球}(i =1,2,…,r ),试用{}表示下述事件:(1)A ={首个白球出现在第k 次};(2)B ={抽到的r 个球同色},其中1k r ≤≤.*9. 试说明什么情况下,下列事件的关系式成立:(1)ABC =A ;(2)A B C A =U U .i A i A习题二1. 从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰有1件次品的概率.2. 一口袋中有5个红球及2个白球.从这袋中任取一球,看过它的颜色后放回袋中,然后,再从这袋中任取一球.设每次取球时口袋中各个球被取到的可能性相同.求:(1)第一次、第二次都取到红球的概率;(2)第一次取到红球、第二次取到白球的概率;(3)两次取得的球为红、白各一的概率;(4)第二次取到红球的概率. 3. 一个口袋中装有6只球,分别编上号码1~6,随机地从这个口袋中取2只球,试求:(1)最小号码是3的概率;(2)最大号码是3的概率.4. 一个盒子中装有6只晶体管,其中有2只是不合格品,现在作不放回抽样.接连取2次,每次随机地取1只,试求下列事件的概率:(1)2只都是合格品;(2)1只是合格品,一只是不合格品;(3)至少有1只是合格品.5. 从某一装配线上生产的产品中选择10件产品来检查.假定选到有缺陷的和无缺陷的产品是等可能发生的,求至少观测到一件有缺陷的产品的概率,结合“实际推断原理”解释得到的上述概率结果.6. 某人去银行取钱,可是他忘记密码的最后一位是哪个数字,他尝试从0~9这10个数字中随机地选一个,求他能在3次尝试之中解开密码的概率.7. 掷两颗骰子,求下列事件的概率:(1)点数之和为7;(2)点数之和不超过5;(3)点数之和为偶数.8. 把甲、乙、丙三名学生随机地分配到5间空置的宿舍中去,假设每间宿舍最多可住8人,试求这三名学生住在不同宿舍的概率.9. 总经理的五位秘书中有两位精通英语,今偶遇其中的三位秘书,求下列事件的概率:(1)事件A ={其中恰有一位精通英语};(2)事件B ={其中恰有两位精通英语};(3)事件C ={其中有人精通英语}.10. 甲袋中有3只白球,7只红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球,现从两个袋中各取一球,求两球颜色相同的概率.11. 有一轮盘游戏,是在一个划分为10等份弧长的圆轮上旋转一个球,这些弧上依次标着0~9十个数字.球停止在那段弧对应的数字就是一轮游戏的结果.数字按下面的方式涂色:0看作非奇非偶涂为绿色,奇数涂为红色,偶数涂为黑色.事件A ={结果为奇数},事件B ={结果为涂黑色的数}.求以下事件的概率:(1))(A P ;(2))(B P ;(3)()P A B U ;(4))(AB P .12. 设一质点一定落在xOy 平面内由x 轴,y 轴及直线x +y =1所围成的三角形内,而落在这三角形内各点处的可能性相等,即落在这三角形内任何区域上的可能性与这区域的面积成正比,计算这质点落在直线x =的左边的概率. 13. 甲、乙两艘轮船都要在某个泊位停靠6 h ,假定它们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停靠泊位时必须等待的概率.3114. 已知B A ?,4.0)(=A P ,6.0)(=B P ,求:(1))(),(B P A P ;(2)()P A B U ;(3))(AB P ;(4))(),(B A P A B P ;(5))(B A P . 15. 设A ,B 是两个事件,已知P (A )=0.5,P (B )=0.7,()P A B U =0.8,试求:P (A -B )与P (B -A ).*16. 盒中装有标号为1~r 的r 个球,今随机地抽取n 个,记录其标号后放回盒中;然后再进行第二次抽取,但此时抽取m 个,同样记录其标号,这样得到球的标号记录的两个样本,求这两个样本中恰有k 个标号相同的概率.习题三1. 已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)(=A B P ,试求)(AB P 及)(B A P .2. 一批零件共100个,次品率为10%,每次从中任取一个零件,取出的零件不再放回去,求第三次才取得正品的概率.3. 某人有一笔资金,他投入基金的概率为0.58,购买股票的概率为0.28,两项投资都做的概率为0.19.(1)已知他已投入基金,再购买股票的概率是多少?(2)已知他已购买股票,再投入基金的概率是多少?4. 罐中有m 个白球,n 个黑球,从中随机抽取一个,若不是白球则放回盒中,再随机抽取下一个;若是白球,则不放回,直接进行第二次抽取,求第二次取得黑球的概率.5. 一个食品处理机制造商分析了很多消费者的投诉,发现他们属于以下列出的6种类型:如果收到一个消费者的投诉,已知投诉发生在保质期内,求投诉的原因是产品外观的概率.6. 给定5.0)(=A P ,3.0)(=B P ,15.0)(=AB P ,验证下面四个等式:)()(A P B A P =;)()(A P B A P =;)()(B P A B P =;)()(B P A B P =.7. 已知甲袋中装有6只红球,4只白球,乙袋中装有8只红球,6只白球.求下列事件的概率:(1)随机地取一只袋,再从该袋中随机地取一只球,该球是红球;(2)合并两只口袋,从中随机地取1只球,该球是红球.8. 设某一工厂有A ,B ,C 三间车间,它们生产同一种螺钉,每个车间的产量,分别占该厂生产螺钉总产量的25%、35%、40%,每个车间成品中次货的螺钉占该车间出产量的百分比分别为5%、4%、2%.如果从全厂总产品中抽取一件产品,(1)求抽取的产品是次品的概率;(2)已知得到的是次品,求它依次是车间A ,B ,C 生产的概率.9. 某次大型体育运动会有1 000名运动员参加,其中有100人服用了违禁药品.在使用者中,假定有90人的药物检查呈阳性,而在未使用者中也有5人检验结果显示阳性.如果一个运动员的药物检查结果是阳性,求这名运动员确实使用违禁药品的概率.10. 发报台分别以概率0.6和0.4发出信号“*”和“—”.由于通信系统受到干扰,当发出信号“*”时,收报台未必收到信号“*”,而是分别以概率0.8和0.2收到信号“*”和“—”.同样,当发出信号“—”时,收报台分别以概率0.9和0.1收到信号“—”和“*”.求:(1)收报台收到信号“*”的概率;(2)当收报台收到信号“*”时,发报台确是发出信号“*”的概率.*11. 甲袋中有4个白球6个黑球,乙袋中有4个白球2个黑球.先从甲袋中任取2球投入乙袋,然后再从乙袋中任取2球,求从乙袋中取到的2个都是黑球的概率.12. 设事件B A ,相互独立.证明:B A ,相互独立,B A ,相互独立.13. 设事件A 与B 相互独立,且p A P =)(,q B P =)(.求下列事件的概率:(),(),().P A B P A B P A B U U U14. 已知事件A 与B 相互独立,且91)(=B A P ,)()(B A P B A P =.求:)(),(B P A P . 15. 三个人独立破译一密码,他们能独立译出的概率分别为0.25,0.35,0.4,求此密码被译出的概率.16. 设六个相同的元件,如下图所示那样安置在线路中.设每个元件不通达的概率为p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独立的.*17. (配对问题)房间中有n 个编号为1~n 的座位.今有n 个人(每人持有编号为1~n 的票)随机入座,求至少有一人持有的票的编号与座位号一致的概率. (提示:使用概率的性质5的推广,即对任意n 个事件12,,,n A A A L ,有1121111111()()(1)()(1)().)k k n nk k i j k i j n k k n i i n i i i nP A P A P A A P A A P A A =≤<≤=--≤<<<≤??=-+ +-++-∑∑∑L LL L L U*18. (波利亚(Pólya )罐子模型)罐中有a 个白球,b 个黑球,每次从罐中随机抽取一球,观察其颜色后,连同附加的c 个同色球一起放回罐中,再进行下一次抽取.试用数学归纳法证明:第k 次取得白球的概率为aa b+(1k ≥为整数).(提示:记{}k A k =第次取得白球,使用全概率公式1111()=()()+()()k k k P A P A P A A P A P A A 及归纳假设.)19. 甲乙两人各自独立地投掷一枚均匀硬币n 次,试求:两人掷出的正面次数相等的概率.20. 假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作.若一周五个工作日里每天是否发生故障相互独立,试求一周五个工作日里发生3次故障的概率.21. 灯泡耐用时间在1 000 h 以上的概率为0.2,求:三个灯泡在使用1 000 h 以后最多只有一个坏了的概率.22. 某宾馆大楼有4部电梯,通过调查,知道在某时刻T ,各电梯正在运行的概率均为0.75,求:(1)在此时刻所有电梯都在运行的概率;(2)在此时刻恰好有一半电梯在运行的概率;(3)在此时刻至少有1台电梯在运行的概率.23. 设在三次独立试验中,事件A 在每次试验中出现的概率相同.若已知A 至少出现一次的概率等于2719,求事件A 在每次试验中出现的概率)(A P . *24. 设双胞胎中为两个男孩或两个女孩的概率分别为a 及b .今已知双胞胎中一个是男孩,求另一个也是男孩的概率.25. 两射手轮流打靶,谁先进行第一次射击是等可能的.假设他们第一次的命中率分别为0.4及0.5,而以后每次射击的命中率相应递增0.05,如在第3次射击首次中靶,求是第一名射手首先进行第一次射击的概率.26. 袋中有2n-1个白球和2n个黑球,今随机(不放回)抽取n 个,发现它们是同色的,求同为黑色的概率.*27. 3个外形相同但可辨别的球随机落入编号1~4的四个盒子,(1)求恰有两空盒的概率;(2)已知恰有两空盒,求有球的盒子的最小编号为2的概率.习题四1. 下列给出的数列,哪些可作为随机变量的分布律,并说明理由. (1)15i ip =(0,1,2,3,4,5)i =;(2)6)5(2i p i -=(0,1,2,3)i =;(3)251+=i p i (1,2,3,4,5)i =. 2. 试确定常数C ,使i Ci X P 2)(==(0,1,2,3,4)i =成为某个随机变量X 的分布律,并求:(1)(2)P X >;(2)1522P X ??<< ;(3)(3)F (其中F (·)为X 的分布函数).3. 一口袋中有6个球,在这6个球上分别标有-3,-3,1,1,1,2这样的数字.从这口袋中任取一球,设各个球被取到的可能性相同,求取得的球上标明的数字X 的分布律与分布函数.4. 一袋中有5个乒乓球,编号分别为1,2,3,4,5.从中随机地取3个,以X 表示取出的3个球中最大号码,写出X 的分布律和分布函数.5. 在相同条件下独立地进行5次射击,每次射击时击中目标的概率为0.6,求击中目标的次数X 的分布律.6. 从一批含有10件正品及3件次品的产品中一件一件地抽取产品.设每次抽取时,所面对的各件产品被抽到的可能性相等.在下列三种情形下,分别求出直到取得正品为止所需次数X 的分布律:(1)每次取出的产品立即放回这批产品中再取下一件产品;(2)每次取出的产品都不放回这批产品中;(3)每次取出一件产品后总以一件正品放回这批产品中.7. 设随机变量X ),6(~p B ,已知)5()1(===X P X P ,求p 与)2(=X P 的值. 8. 一张试卷印有十道题目,每个题目都为四个选项的选择题,四个选项中只有一项是正确的.假设某位学生在做每道题时都是随机地选择,求该位学生未能答对一道题的概率以及答对9道以上(包括9道)题的概率.9.市120接听中心在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为0.5t 的泊松分布,而与时间间隔的起点无关(时间以小时计算):求:(1)某天中午12点至下午3点没有收到紧急呼救的概率;(2)某天中午12点至下午5点至少收到1次紧急呼救的概率. 10.某商店出售某种物品,根据以往的经验,每月销售量X 服从参数4=λ的泊松分布.问在月初进货时,要进多少才能以99%的概率充分满足顾客的需要?11. 有一汽车站有大量汽车通过,每辆汽车在一天某段时间出事故的概率为0.000 1.在某天该段时间内有1 000辆汽车通过,求事故次数不少于2的概率.12. 设鸡下蛋数X 服从参数为λ的泊松分布,但由于鸡舍是封闭的,我们只能观察到从鸡舍输出的鸡蛋.记Y 为观察到的鸡蛋数,即Y 的分布与给定>0X 的条件下X 的分布相同,今求Y 的分布律.(提示:()(0),1,2,.P Y k P X k X k ===>=L 对于)13. 袋中有n 把钥匙,其中只有一把能把门打开,每次抽取一把钥匙去试着开门.试在:(1)有放回抽取;(2)不放回抽取两种情况下,求首次打开门时试用钥匙次数的分布律.14. 袋中有a 个白球、b 个黑球,有放回地随机抽取,每次取1个,直到取到白球停止抽取,X 为抽取次数,求()P X n ≥.15. 据统计,某高校在2010年上海世博会上的学生志愿者有6 000名,其中女生3 500名.现从中随机抽取100名学生前往各世博地铁站作引导员,求这些学生中女生数X 的分布律.16. 设随机变量X 的密度函数为2,()0,x f x ?=??0,x A <<其他,试求:(1)常数 A ;(2))5.00(<<="" bdsfid="206" p="">17.设随机变量X 的密度函数为()e xf x A -=()x -∞<<+∞,求:(1)系数A ;(2))10(<<="" ;(3)x="">18.证明:函数22e ,0,()0,0,xc x x f x c x -??≥=??(c 为正的常数)可作为一个密度函数.19. 经常往来于某两地的火车晚点的时间X (单位:min )是一个连续型随机变量,其密度函数为23(25),55,()5000,x x f x ?--<=其他. X 为负值表示火车早到了.求火车至少晚点2 min 的概率.20. 设随机变量X 的分布函数为0()1(1)e xF x x -?=?-+?,0,,0,x x ≤>求X 的密度函数,并计算)1(≤X P 和)2(>X P .21. 设随机变量X 在(1,6)上服从均匀分布,求方程012=++Xt t 有实根的概率. 22. 设随机变量X 在)1,0(上服从均匀分布,证明:对于0,0,1a b a b ≥≥+≤,()P a X b b a ≤≤=-,并解释这个结果.23. 设顾客在某银行的窗口等待服务的时间X (单位:min )是一随机变量,它服从51=λ的指数分布,其密度函数为51e ()50xf x -??=,0,,x >其它.某顾客在窗口等待服务,若超过10 min ,他就离开.(1)设某顾客某天去银行,求他未等到服务就离开的概率;(2)设某顾客一个月要去银行五次,求他五次中至多有一次未等到服务而离开的概率. 24. 以X 表示某商店从早晨开始营业起直到第一个顾客到达的等待时间(单位:min ),X 的分布函数是0.21e ,0,()0,x x F x -?->=??其他.求:(1)X 的密度函数;(2)P (至多等待2 min );(3)P (至少等待4 min );(4)P (等待2 min 至4 min 之间);(5)P (等待至多2 min 或至少4 min ).25. 设随机变量X 的分布函数为()arctan ()F x A B x x =+-∞<<+∞,求:(1)常数A ,B ;(2)(1)P X <;(3)随机变量X 的密度函数.26. 设随机变量X 服从)1,0(N ,借助于标准正态分布的分布函数表计算:(1))2.2(X P ;(3))78.0(-X P ;(6)确定a ,使得99.0)(=27. 设随机变量X 服从)16,1(-N ,借助于标准正态分布的分布函数表计算:(1))44.2(X P ;(3))8.2(-<="" bdsfid="252" p=""> )25(<<-X P ;(6))11(>-X P ;(7)确定a ,使得)()(a X P a X P <=>.28. 设随机变量X 服从正态分布2(,)N μσ,且二次方程240t t X ++=无实根的概率为12,求μ的值. 29. 某厂生产的滚珠直径X 服从正态分布)01.0,05.2(N ,合格品的规格规定直径为2.02±,求滚珠的合格率.30. 某人上班路上所需的时间)100,30(~N X (单位:min ),已知上班时间是8:30.他每天7:50分出门,求:(1)某天迟到的概率;(2)一周(以5天计)最多迟到一次的概率.习题五1. 二维随机变量),(Y X 只能取下列数组中的值:(0,0),(-1,1),11,3??-,(2,0),且取这些组值的概率依次为125,121,31,61.求这二维随机变量的分布律,并写出关于X 及关于Y 的边缘分布律.2. 一口袋中有四个球,它们依次标有数字1,2,2,3.从这袋中任取一球后,不放回袋中,再从袋中任取一球.设每次取球时,袋中每个球被取到的可能性相同.以Y X ,分别记第一、二次取得的球上标有的数字,求),(Y X 的分布律及)(Y X P =.*3. 从3名数据处理经理、2名高级系统分析师和2名质量控制工程师中随机挑选4人组成一个委员会,研究某项目的可行性.设X 表示从委员会选出来的数据处理人数,Y 表示选出来的高级系统分析师的人数,求:(1)X 与Y 的联合分布律;(2)()P X Y ≥.*4. 盒中有4个红球4个黑球,不放回抽取4次,每次取1个,X ={前2次抽中红球数},Y ={4次共抽中红球数},求(1)二维随机变量),(Y X 的联合分布律:(2)给定1X =,Y 的条件分布律.5. 箱子中装有10件产品,其中2件是次品,每次从箱子中任取一件产品,共取2次.定义随机变量Y X ,如下:?=10X ,,若第一次取出正品,若第一次取出次品,??=10Y ,,若第二次取出正品,若第二次取出次品,分别就下面两种情况(1)放回抽样,(2)不放回抽样.求:(1)二维随机变量),(Y X 的联合分布律; (2)关于X 及关于Y 的边缘分布律;(3)X 与Y 是否独立,为什么?6. 设二维随机变量),(Y X的联合密度函数为01,01,(,)0,x y f x y <<<<=?其他.求:(1)关于X 及关于Y 的边缘密度函数;(2)110,022P X Y ??≤≤≤≤. 7. 设二维随机变量),(Y X 服从在区域D 上的均匀分布,其中区域D 为x 轴,y 轴及直线y =2x +1围成的三角形区域.求:(1)),(Y X的联合密度函数;(2)110,044P X Y ??-<<<< ;(3)关于X 及关于Y 的边缘密度函数;(4)X 与Y 是否独立,为什么?8. 设二维随机变量),(Y X 服从在区域D 上的均匀分布,其中D 为由直线x +y =1,x +y =-1,x -y =1,x -y =-1围成的区域.求:(1)关于X 及关于Y 的边缘密度函数;(2)()P X Y ≤;(3)X 与Y 是否独立,为什么?9. 设随机变量X ,Y 是相互独立且分别具有下列分布律:写出表示),(Y X 的联合分布律.10.设进入邮局的人数服从参数为λ的泊松分布,每一个进入邮局的人是男性的概率为p (0<="" 的边缘分布律;(2)x="">11. 设X 与Y 是相互独立的随机变量,X 服从[0,0.2]上的均匀分布,Y 服从参数为5的指数分布,求:),(Y X 的联合密度函数及)(Y X P ≥.12. 设二维随机变量),(Y X 的联合密度函数为(34)e (,)0x y k f x y -+?=??,0,0,x y >>其他,求:(1)系数k ;(2))20,10(≤≤≤≤Y X P ;(3)证明X 与Y 相互独立.13. 已知二维随机变量),(Y X 的联合密度函数为?-=0)1(),(y x k y x f ,01,0,x y x <<<<其他,,(1)求常数k ;(2)分别求关于X 及关于Y 的边缘密度函数;(3)X 与Y 是否独立?为什么.14. 设随机变量X 与Y 的联合分布律为:且53)01(===X Y P ,求:(1)常数a ,b 的值;(2)当a ,b 取(1)中的值时,X 与Y 是否独立,为什么?*15. 对于第2题中的二维随机变量),(Y X 的分布,求当2=Y 时X 的条件分布律.*16. 对于第7题中的二维随机变量),(Y X 的分布,求:(1)1110442P X Y ??-<<<< ;(2)当102X x x ??=-<<时Y 的条件密度函数()Y X f y x . *17. 设二维连续型随机变量),(Y X ,证明:对任何x ,有()()()d ,Y P X x P X x Y y f y y +∞-∞≤=≤=?其中()Y f g 为Y 的边缘密度函数.习题六1. 设随机变量的分布律为求出:(1)2+X ;(2)1+-X ;(3)2X 的分布律.2. 设随机变量服从参数1=λ的泊松分布,记随机变量=10Y ,11.X X ≤>若,若试求随机变量Y 的分布律.3. 设随机变量的分布密度为=02)(x x f ,01,,x <<其他,求出以下随机变量的密度函数:(1)X 2;(2)1+-X ;(3)2X .4. 对圆片直径进行测量.测量值服从上的均匀分布,求圆片面积的密度函数.5. 设随机变量服从正态分布),(10N ,试求随机变量函数2Y X =的密度函数)(y f Y .6. 设随机变量服从参数1=λ的指数分布,求随机变量函数e X Y =的密度函数)(y f Y .7. 设随机变量服从,证明:服从,其中为两个常数且.8. 设随机变量在区间]2,1[-上服从均匀分布,随机变量-=101Y 0,0,0.X X X >=<,若,若,若试求随机变量函数Y 的分布律.9. 设二维随机变量的分布律:X X X X )6,5(Y X X X )1,0(N a X +σ),(2σa N σ,a 0>σX ),(Y X求以下随机变量的分布律:(1);(2);(3);(4). 10. 设随机变量,相互独立,且11,4X B ?? ???:,11,4Y B ??:,(1)记随机变量,求的分布律;(2)记随机变量,求的分布律.从而证实:即使,服从同样的分布,与的分布并不一定相同.*11. 设随机变量X 服从参数为λ的泊松分布,给定X k =,Y 的条件分布为参数为k ,p 的二项分布(0<="" 与x="" 为非负整数).求:(1)y="" 的分布律;(2)x="" 的分布律;(3)证明:y="" 相互独立.="" (提示:()()(),0,1,.k=""> P Y y P Y y X k P X k y +∞=======∑L )12. 设二维随机变量X ,Y 的联合分布律为:求:(1)max(,)U X Y =的分布律;(2)),min(Y X V =的分布律;(3)(,)U V 的联合分布律.13. 设二维随机变量()Y X ,服从在D上的均匀分布,其中D为直线0,0==y x ,2,2==y x 所围成的区域,求X Y -的分布函数及密度函数.*14. 设随机变量X ,Y 相互独立,且有相同的分布(0,1)N ,U X Y =-,V X Y =-,求:(1)U 的密度函数;(2)V 的密度函数.15. 设二维随机变量,X Y 的分布密度为),(y x f ,用函数f 表达随机变量Y X +的密度函数.16. 设随机变量2~(,)X N a σ,2~(,)Y N b τ,且X ,Y 相互独立,Z X Y =+,求Z X x =的条件分布密度函数.17. 用于计算机接线柱上的保险丝寿命服从参数2.0=λ的指数分布.每个接线柱要求两个这样的保险丝,这两个保险丝有独立的寿命X 与Y .(1)其中一个充当备用件,仅当第一个保险丝失效时投入使用.求总的有效寿命Z =X +Y 的密度函数.(2)若这两个保险丝同时Y X +Y X -X 2XY X Y Y X Z +=Z X U 2=U X Y Y X +X 2独立使用,则求有效寿命max(,)U X Y =的密度函数.18. 设随机变量X ,Y 相互独立,且都服从区间(0,1)上的均匀分布,记Z 是以X ,Y 为边长的矩形的面积,求Z 的密度函数.*19. 设随机变量X ,Y 相互独立,且都服从区间(0,1)上的均匀分布,求XZ Y=的密度函数.(提示:使用1()()()()d ()d Z Y F z P Z z P Z z Y y f y y P X yz y =≤=≤==≤??,其中用到X与Y 的独立性.)习题七1. 设随机变量的分布律为求:(1)()E X ;(2))1(+-X E ;(3))(2X E ;(4)()D X .2. 设随机变量服从参数为λ的泊松分布(0>λ),且已知((2)(3))2E X X --=,求λ的值.3. 设表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,试求2X 的数学期望2()E X .4. 国际市场每年对我国某种出口商品的需求量X 是一个随机变量.它在[2 000,4 000](单位:吨)上服从均匀分布.若每售出一吨,可得外汇3万美元,若销售不出而积压,则每吨需保养费1万美元.问应组织多少货源,才能使平均收益最大?5. 一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率相应为0.1,0.2,0.3.假设各部件的状态相互独立,以表示同时需要调整的部件数,试求的数学期望()E X 和方差()D X .6. 设随机变量X 有分布律:1()(1,2,),k k p P X k pq k -====L其中01,1p q p <<=-,称X 服从具有参数p 的几何分布,求()E X 和()D X .(提示:由幂级数逐项求导的性质可知211011k kk k kq q q ∞∞-=='== ? ?-∑∑ ,21(1)k k k k q∞-=-=∑3012)11k k q q q q ∞=''''= ? ? ?--∑ 7. 设随机变量的密度函数为1()e 2x f x -=,求:(1)()E X ;(2))(2X E 的值.8. 某商店经销商品的利润率的密度函数为2(1)0,x -?=??,01,x <<其他,求()E X ,()D X .9. 设随机变量X 服从参数为λ的泊松分布,求1(1)E X -+.10. 设随机变量X 服从参数为p 的几何分布,0M >为整数,max(,)Y X M =,求X X X X X X X )(x f()E Y .*11. 设随机变量X 有分布律:(),0,1,2,,k M N M k n k p P X k k n M N n -???? ???-====∧?? ???L ,其中min(,)n M n M ∧=. 12(1):.12(1)n n n n n n m m m m m m ?---== ? ? ? ?---提示使用*12. 将已写好n 封信的信纸随机地装入已写好的n 个收信人的对应地址的信封,若有一封信的信纸的收信人与信封一致时,称之为有一个配对.今X 为n 封已随机装好的信的配对数,求(),()E X D X .111111,:(1,2,,),,(),()0,cov(,),()=()2cov(,).n i i i i j i n n ni j i j i=1i j j i X i n X X E X E X X X X D X D X X X =-==+??=== ? ??+??∑∑∑∑L 第封信配对,提示记有先求其他及使用公式13. 设随机变量的概率密度为1e ,0,()0,0,x x f x x -?>=?≤?求()E X ,)2(X E ,2(e )X E X -+,()D X .14. 设随机向量的联合分布律为:求,(),(),(2),(3),(),(),cov(,),.X Y E X E Y E X Y E XY D X D Y X Y ρ-15. 盒中有3个白球和2个黑球,从中随机抽取2个,X ,Y 分别是抽到的2个球中的白球数和黑球数,求X 与Y 之间的相关系数Y X ,ρ.16. 设随机变量相互独立,它们的密度函数分别为22e ()0x X f x -?=?,0,,0,x x >≤44e ()0y Y f y -?=??,0,,0,y y >≤求)(Y X D +.*17. 设随机变量1,,n X X L 独立,具有公共的(0,1)上的均匀分布,令1min ,i i nY X ≤≤=求(),()E Y D Y .X ),(Y X Y X ,*18. 设随机变量X 有密度函数1e ,0,()()0,xx x f x ααλλα--?>?=Γ其他λα>>(0,0为常数),则称X 服从具有参数αλ(,)的伽玛分布,记为~X αλΓ(,),其中10()e d y y y αα∞--Γ?=.有性质:对任意实数x ,有(1)()x x x Γ+=Γ,特别对正整数n 有(1)!n n Γ+= .今设1~(,)Y αλΓ,2~(,)Z αλΓ,且Y 与Z 相互独立,ZW Y=,求()E W 1:()().Z E W E E Z E Y Y == ? ?提示使用独立性,有 *19. 设随机变量X 服从参数为(a ,b )的贝搭分布,即有密度11()(1),01,()()()0,a b a b x x x a b f x --Γ+?-<ΓΓ=其他,求(),()E X D X .[提示:已知贝搭函数1110:(,)(1)d ,.t t t αβαββαββαβαβ--??ΓΓ=- ?Γ??()()提示已知贝搭函数有关系式(,)=(+) 20. 验证:当),(Y X 为二维连续型随机变量时,按公式()(,)d d E X xf x y y x +∞+∞-∞-∞=??及按公式()()d E X xf x x +∞-∞=?算得的()E X 值相等.这里,),(y x f ,)(x f 依次表示X Y X ),,(的分布密度,即证明:()(,)d d E X xf x y y x +∞+∞-∞-∞=()d xf x x +∞-∞=?21. 设二维随机变量服从在A 上的均匀分布,其中A 为x 轴,y 轴及直线x +y +1=0所围成的区域,求:(1)()E X ;(2))23(Y X E +-;(3))(XY E 的值.22. 设随机变量的联合密度函数为212,01,(,)0,y y x f x y ?≤≤≤=??其他.求()E X ,()E Y , ()E XY ,22()E X Y +,()D X ,()D Y .23. 设随机变量相互独立,且()()1E X E Y ==,()2D X =,()3D Y =.求:(1)22(),()E X E Y ;(2))(XY D .24. 袋中有2n个外形完全相同的球,其中n k ??个标有数字k (k =0,1,…,n ),从中不放回抽取m 次(每次取1个),以X 表示取到的m 个球上的数字之和,求E (X ).),(Y X ),(Y X Y X ,。

概率论作业hw1

概率论作业hw1

Probability and Statistics-Homework11.i)Consider two events A and B such that P(A)=1/2and P(B)=1/3:Determinethe value of P(B∩A c)for each of the following conditions:(a)A and B are disjoint;(b)A⊃B;(c)P(A∩B)=1/8.ii)Suppose P(A)=1/4and P(B c)=1/3.Is it possible that A and B are mutually exclusive?2.Show the general version of distributivity law of sets B∩(∪ni=1A i)=∪ni=1(B∩A i).3.Cornell women’s hockey team is being chosen.The chances of fresher Anna,Donnaand Elena being chosen are50%,60%and40%respectively.The chance that both Anna and Donna are chosen is30%,that both Donna and Elena are chosen is30%, that both Anna and Elena are chosen is20%and that all of them are chosen is10%.What are the chances that at least one of them is chosen?4.A new test has been devised for detecting a particular type of cancer.If the test isapplied to a person who has this type of cancer,the probability that the person will have a positive reaction is0.95and the probability that the person will have a negative reaction is0.05.if the test is applied to a person who does not have this type of cancer,the probability that the person will have a positive reaction is0.05and the probability that the person will have a negative reaction is0.95.Suppose that in the general population,one person out of every100,000people has this type of cancer.Ifa person selected at random has a positive reaction to the test,what is the probabilitythat he has this type of cancer?1。

概率论作业

概率论作业

实验一常见分布的概率密度、分布函数生成[实验目的]1. 会利用MATLAB软件计算离散型随机变量的概率,连续型随机变量概率密度值。

2.会利用MATLAB软件计算分布函数值,或计算形如事件。

3.会求上分位点以及分布函数的反函数值。

[实验要求]1.掌握常见分布的分布律和概率密度的产生命令,如binopdf,normpdf2. 掌握常见分布的分布函数命令,如binocdf,normcdf3. 掌握常见分布的分布函数反函数命令,如binoinv,norminv[实验内容]1 事件A在每次试验中发生的概率是0.1,计算(1)在10次试验中A恰好发生5次的概率;(2)在10次试验中A至多发生5次的概率.(1)实验代码:binopdf(5,10,0.1)实验结果:ans =0.0015即在10次试验中A恰好发生5次的概率为0.0015.(2)binocdf(5,10,0.1)ans =0.9999即在10次试验中A至多发生5次的概率为0.99992设随机变量X服从参数是4的泊松分布,求概率P{X=10}poisspdf(10,4)ans =0.0053即概率P{X=10}=0.00533设随机变量X服从区间[1,10]上的均匀分布,求(1)X=5时的概率密度值;(2)P{X<=4}(1)unifpdf(5,1,10)ans =0.1111即X=5时的概率密度值为0.11111.(2)unifcdf(4,1,10)ans =0.3333即P{X<=4}=0.33334设随机变量X服从参数是10的指数分布,求(1)X=0,1,2,3,4,5,6,7,8,9,10时的概率密度值;(2)P{X<=8}(1)exppdf(0:10,10)ans =Columns 1 through 60.1000 0.0905 0.0819 0.0741 0.0670 0.0607Columns 7 through 110.0549 0.0497 0.0449 0.0407 0.0368即X=0,1,2,3,4,5,6,7,8,9,10时的概率密度值分别为0.1,0.0905,0.0819,0.0741,0.0670,0.0607,0.0549,0.0497,0.449,0.0368.(2)expcdf(8,10)ans =0.5507即P{X<=8}=0.55075设随机变量X服从均值是5,标准差是3的正态分布,求(1) X=1,2,3,4,5,6,7,8,9时的概率密度值;(2)X=1,2,3,4,5,6,7,8,9时的分布函数值;(3)若=0. 5,求x;(4)求标准正态分布的上0.25分位数。

概率论作业习题及答案

概率论作业习题及答案

1 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。

设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则 (1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω(2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”. 解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω}.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件: (1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品; (4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A2 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C 有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A 指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P 设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P 故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率.解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=75.04341313131==-++=3 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==B A P B P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯= (2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率.解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=4 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率.解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++=)7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率.解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+=328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++=6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P )()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P 故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作出正确决策的概率. 解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则)9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+0403.01556.02668.02668.01715.0++++=901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.5 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布.解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X 的概率分布为四、电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------=16308.0≈ 设随机变量X 的概率分布为 2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦1=λae ,所以.λe a -=6 随机变量的分布函数·连续随机变量的概率密度一、函数211x+可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-). 解:(1)设211)(x x F +=,则1)(0<<x F因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数. (2)设211)(xx F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x 因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π.解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度.(3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形.解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度. 解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A == 即)( ,arctan 121)(+∞<<-∞+=x x πx F . (2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F ξP(3) X 的概率密度为)1(1)()(2x x F x f +='=π.五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Aex f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数. 解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Aex x,解得21=A ,即有 ).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰021102121)()(x e x e dx e dx x f x F x xx xx .7 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率. 解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰ee dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-e X P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率.解:(1)因为)(~λe X ,所以R x ∈∀,有xex F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X XY -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f yyY π.8 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布.解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F ++=.求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度. 解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π (3)X 及Y 的边缘分布函数分别为 x xxX xdx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan1)4(2),()(2ππ2arctan 121xπ+=yxyY ydy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan1)9(3),()(2ππ3arctan 121y π+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ)4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx xy dx y x dx y x f y f Y ππ )9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X 落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它00,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰30006),()(3032y y ex x dxe e dx y xf y f yy x Y (4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰Cx x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有 ⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx2713)322(92922132102=-++=x x x x .9 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY 求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥. 解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意YX ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx edy e dx dxdy y x f X Y P x xyxyXY ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e e x二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jjn Y in i i n X ====--证明它们的和Y X Z +=也服从二项分布. 证明: 设j i k +=, 则ik n i k i k n ki i n i i n ki Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()( ∑=-+=ki k n n k i n in q p C C2121)( 由knm ki ik nk m C C C +=-=∑, 有k n n ki i n i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p Ck P k n n k i n n Z +==-++由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是z y x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z zz z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z四、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ 先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax (21==i Y i i i ξξ 从而有)3,2,1( =i i η的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321ηηη=Z .从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ10 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为于是有3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为于是有4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.09.04091.0)(22=-=-=EX EX DX565.03191.0≈==DX X σ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为p q p q q p q p iqp ipqEX ni i ni i ni i 1)1()1()(211111=-='-='===∑∑∑==-=- 2X 的分布为p pp p q q p q p q q p pqi EX ni i n i i ni i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑===- 进一步有p pp p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx xx dx xx dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-122112221211)()(ππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)11 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY72.072.0128.002=⨯+⨯=EY 2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf . 弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRRd R4sin 4cos 42020===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0,0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x 进而有 41)1(1)1(-=<-=≥eX P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---eee EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni in i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0 于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-= 即停车次数的数学期望为748.8.12 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X . 解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰022022220223]11)1ln([1)1(211r r dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f 求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么? 解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-1210322),(dx x dy xdx dxdy y x xf EX x x 0),(1===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),( 010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f yy因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==npq D ξ于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以)3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ. 查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n 答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.13 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P)]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---= .0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率. 解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--=于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(2221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z=2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++= 212222212221μσμσσσ++=.14 二维正态分布·正态随机变量线性函数的分布·中心极限定理三、设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,。

概率论作业【范本模板】

概率论作业【范本模板】

概率论作业本姓名: 任课教师:专业:班级:学号:黑龙江八一农垦大学文理学院数学系第一章 随机事件与概率1、设C B A 、、为已知事件,用C B A 、、表示以下事件:(1) 不发生发生,、C B A (2) C B A 、、都不发生(3)C B A 、、至少有一个发生 (4) C B A 、、恰有一个发生(5) C B A 、、至多有一个发生 (6)C B A 、、至少有两个发生2、设有一批产品共有100件,其中95件合格品,5件次品。

从中任取10件,试求:(1)样本空间所含基本事件个数n 。

(2)设"10"1件全是合格品所取=A 所含基本事件个数1m 。

(3)设"10"2件恰有两件次品所取=A 所含基本事件个数2m 。

3、把10本书任意地放在书架上,求其中指定的3本书放在一起的概率。

4、一盒中装有60个零件.其中甲厂生产的占31,乙厂生产的占32。

现随机地从盒中取3 个,求其中恰有一支是甲厂生产的概率。

5、一份试卷上有6道试题。

某位学生在解答时,由于粗心随机地犯了4处不同的错误。

试求:(1)这4处错误发生在最后一道题上的概率。

(2)这4处错误发生在不同题上的概率。

(3)至少有3道题全对的概率。

6、将数字54321、、、、写在5张卡片上.任意取出三张排成三位数,则这三位数是奇数的概率.7、将4个小球随机地投入3个盒内,求有空盒的概率和没有空盒的概率。

8、将3个球随机地放入4个杯子中,求杯子中球的最大个数分别为1,2,3的概率各是多少?9、,B A ⊂5.0)(,1.0)(==B P A P ,试求)(),(),(B A P B A P AB P ⋃⋃。

10、6.0)(,3.0)(==B P A P ,7.0)(=⋃B A P .求)()(B A P B A P 和。

11、某射手在三次射击中至少命中一次的概率为875.0,试求该射手在一次射击中命中的概率.12、五名篮球运动员独立地投篮,每个运动员投篮的命中率都是8.0。

《概率论》作业题

《概率论》作业题

《概率论》作业题一、填空题。

1. 集合A £1,2 ?, B = 34 ,分别在A和B中任取一个数记为x和y ,组成点(x, y)。

写出基本事件空间2. 一超市在正常营业的情况下,某一天内接待顾客的人数。

则此随机试验的样本空间为3. 同时投掷三颗骰子,记录三颗骰子点数之和。

此随机试验的样本空间为4. 记录电话交换台1分钟内接到的呼唤次数。

此随机试验的基本事件空间为P{2 :: X ::: 4} =________ 。

15. 设随机变量X和Y相互独立,X : B '5 - Y: Z I则E(3X +Y)=13, 12 丿D(3X -丫) =16. 设随机变量X和丫相互独立,X : N 0,2 , Y : U 0,4 则E(2X 3Y)=D(2X 3Y)二二、计算题。

1、袋中有5个球,编号为1、2、3、4、5,现从中任意抽取3个球,用X表示取出的3个球中的最小(大)编号,求E(X).2、有放回的抽样试验,袋子中有10个球7黑3白,每次抽一个,有放回的抽取 3 次,以A表示第一次抽得白球,B表示第二次抽得白球,C表示第三次抽得白球。

求三次抽取中至少有一个白球的概率•3、设随机变量X的概率分布为求⑴常数a;( 2)Y=X2-1的概率分布.(3)Y^e2"的概率分布4. 设随机变量X : N(0,1),求Y=X2和丫二e X的概率密度函数。

1 x, -1 -x :: 05. 设随机变量X具有概率密度函数为f(x) =』1-x, 0兰xv1,求E(X)和D(X).0, qitaXC16. 设随机变量X具有概率密度函数为f (x)才Q7 ' ,求(1)系数A,(2)0 x芒1〔1P |X <耳I 2 JQx £ —5; 1-,-^<x<-2; 57.设型随机变量X 的分布函数为F(x)=l —^2<x<0;求X 的分布列.10 1一,0 兰 x c2;21, x _2.8.设离散型随机变量X 与Y 的联合分布列为1. 有朋友自远方来,他乘坐火车、船、汽车、飞机来的概率分别为0.3, 0.2, 0.4, 0.1 .如果他坐火车来,迟到的概率是0.25;坐船来,迟到的概率是0.3;坐汽车来,迟到的概率是0.1,坐飞机来,则不会迟到.(1)求他迟到的概 率.(2)如果他迟到了,求他是坐汽车来的概率 .2. 甲乙丙三个车间加工同一种产品,加工量分别占总量的25%,35%,40%,次品率分别为0.03, 0.02, 0.01。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论实验作业
一,利用Matlab 或C++等计算机语言验证以下两题中任意其中一题的结论:
(a)甲、乙两人相约在0 到T 这段时间内, 在预定地点会面。

先到的人等候另一个人,经过时间t( t<T ) 后离去.设每人在0到T 这段时间内各时刻到达该地是等可能的,且两人到达的时刻互不牵连.求甲、乙两人能会面的概率。

(答案:提示:验证具体取具体某一种取值情形即可,利用均匀分布随
机变量,比如T 为1 小时,t 为15 分钟)
程序:
(c)利用Matlab 或C++等计算机语言编程验证说明二项分布B(n,p)中n 较大,p较小时,二项分布与泊松分布P(λ) (λ= np)近似。

(提示:说明他们的分布律相同,画出类似如下的随机变量取值(横坐标)—概率(纵
坐标)图,n,p 的取值不要与下图完全一样,至少做一组)
程序
运行结果:
(1)设随机变量X 的分布密度为:f(x)={求随机变量Y=|X|的期望。

程序:ex=int(-x*0.5*exp(-x),-inf,0)+int(x*0.5*exp(x),0,inf)
运行结果:
通过实验验证林德贝格-列维中心极限定理:林德贝格-列维中心极限定理表明大量独立随机变量的和近似服从正态分布,产生指数分布或均匀分布或泊松分布随机变量X ,假设其期望为u , 方差为σ,通过独立重复实验(Monte Carlo实验)验证当样本充分大时有
(提示:可利用X 的独立重复实验得到数据的分布直方图与的分布曲线做比较)
>> N = 100;
>> p = 0.5;
>> x = sum(rand(1000,100)<p,2);
>> hist(x,10)
>> mean(x)
ans =
49.8160
>> var(x)
ans =
25.3555
>> plot(x,y)
>> x=30:0.1:70; >> y=normpdf(x,50); >> plot(x,y)
运行结果:。

相关文档
最新文档