初中数学教学案例(3)
初中数学信息技术与学科教学融合教学案例3
初中数学信息技术与学科教学融合教学案例3一、案例背景这个案例展示了初中数学教学中如何融合信息技术,提高学生的研究效果和兴趣。
这个案例适用于初中数学课堂,课程内容为线性方程。
二、教学目标1. 了解线性方程的概念和求解方法。
2. 通过信息技术工具,提高学生对线性方程的理解和应用能力。
3. 培养学生自主研究和团队合作的能力。
三、教学过程1. 导入- 提出一个日常生活中的问题,需要使用线性方程进行求解。
例如:某商店购买n件相同商品可享受折扣,学生需要计算不同数量的商品的实际花费。
- 引发学生对线性方程的兴趣和思考,引导他们思考如何用数学的方法解决实际问题。
2. 基础知识讲解- 通过简洁明了的语言和图示,讲解线性方程的基本概念和求解方法。
- 引导学生思考线性方程与实际问题的联系,如何将问题转化为数学表达式。
3. 信息技术融合- 引入信息技术工具,如计算机软件或在线教学平台,让学生通过实际操作来解决线性方程相关问题。
- 学生可以使用电脑或平板电脑上的软件进行方程的求解和可视化展示,提高他们对线性方程的理解和兴趣。
4. 团队合作- 将学生分为小组,每个小组解决一个线性方程问题。
- 鼓励学生相互合作、交流和讨论,解决问题过程中互相借鉴和研究。
5. 总结和评价- 学生在小组内分享自己的解决思路和答案。
- 教师引导学生总结本节课所学的内容,并进行评价和反馈。
四、教学评价1. 观察学生在课堂中的表现,包括参与度、合作能力和对线性方程应用的掌握情况。
2. 收集学生完成的解决问题的作业,评估他们对线性方程的理解和应用能力。
3. 根据学生的表现和作业评估结果,调整和改进教学方法,提高教学效果。
五、延伸活动1. 鼓励学生继续探索线性方程在实际生活中的应用,并制作相关展示或报告。
2. 推荐学生使用在线研究平台或相关研究资源,继续提高自己的数学和信息技术能力。
六、教学反思通过这个案例的教学,我发现信息技术的融合可以极大地促进学生对数学知识的理解和应用。
初中数学 教学案例
初中数学教学案例一、引言随着教育改革的不断深入,初中数学教学也在不断探索新的教学模式和方法。
教学案例作为一种生动形象的教学方式,能够帮助学生更好地理解和掌握数学知识,提高他们的学习兴趣和主动性。
本文将探讨初中数学教学中的一些创新案例,以期为初中数学教师提供一些有益的参考。
二、创新案例一:游戏化教学游戏化教学是一种将游戏元素融入到教学中的教学方法,具有趣味性强、互动性高等特点。
在初中数学教学中,教师可以利用游戏化教学的方式,让学生在轻松愉快的氛围中学习数学知识。
例如,在教授“平面直角坐标系”这一节时,教师可以设计一个“找宝藏”的游戏。
在游戏中,学生需要使用平面直角坐标系的知识,通过计算来确定宝藏的位置。
通过这种方式,学生可以在游戏中学习和掌握数学知识,提高他们的学习兴趣和主动性。
三、创新案例二:生活化教学生活化教学是一种将生活中的问题与数学教学相结合的教学方法,具有贴近生活、直观形象等特点。
在初中数学教学中,教师可以利用生活化教学的方式,让学生在实际问题中学习和掌握数学知识。
例如,在教授“一元一次方程”这一节时,教师可以引入生活中的问题,如“购物打折”、“工资收入”等。
通过这些实际问题,学生可以更好地理解一元一次方程的概念和应用。
同时,生活化教学还可以帮助学生认识到数学在生活中的重要性,激发他们的学习热情。
四、创新案例三:探究式教学探究式教学是一种以探究为主要手段的教学方法,具有注重学生自主性、互动性强等特点。
在初中数学教学中,教师可以利用探究式教学的方式,让学生在探究中学习和掌握数学知识。
例如,在教授“多边形的内角和”这一节时,教师可以引导学生探究多边形内角和的规律。
通过观察、猜想、验证等探究过程,学生可以自己发现多边形内角和的规律,并深入理解多边形的内角和与边数之间的关系。
通过这种方式,学生可以在探究中培养自己的观察能力、推理能力和实践能力。
五、结论教学案例是初中数学教学中的一种有益的教学方式,可以帮助学生在轻松愉快的氛围中学习和掌握数学知识。
数学教学设计案例三篇
数学教学设计案例三篇数学教学设计案例一教学目的:1、知识目的:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。
2、才能目的:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与理论的辩证关系,适时浸透分类讨论的数学思想,培养学生的探究发现才能和分析^p 问题、解决问题的才能。
3、情感目的:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探究、锲而不舍的治学精神。
教学重点、难点:1、重点:指数函数的图像和性质2、难点:底数 a 的变化对函数性质的影响,打破难点的关键是利用多媒体动感显示,通过颜色的区别,加深其感性认识。
教学方法:引导发现教学法、比拟法、讨论法教学过程:一、事例引入T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。
什么是函数?S: --------T:主要是表达两个变量的关系。
我们来考虑一个与医学有关的例子:大家对“非典”应该并不生疏,它与其它的传染病一样,有一定的埋伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。
我们来看一种球菌的分裂过程:C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,------。
一个这样的球菌分裂_次后,得到的球菌的个数y与_的函数关系式是: y = 2 _ )S,T:(讨论) 这是球菌个数 y 关于分裂次数 _ 的函数,该函数是什么样的形式(指数形式),从函数特征分析^p :底数 2 是一个不等于 1 的正数,是常量,而指数 _ 却是变量,我们称这种函数为指数函数点题。
二、指数函数的定义C:定义:函数 y = a _ (a》0且a≠1)叫做指数函数, _∈R.。
问题 1:为何要规定 a 》 0 且 a ≠1?S:(讨论)C: (1)当 a <0 时,a _ 有时会没有意义,如 a=﹣3 时,当_=就没有意义;(2)当 a=0时,a _ 有时会没有意义,如_= - 2时,(3)当 a = 1 时,函数值 y 恒等于1,没有研究的必要。
初中数学课堂教学案例
初中数学课堂教学案例初中数学课堂教学案例一教学目的1、理解并掌握等腰三角形的断定定理及推论2、能利用其性质与断定证明线段或角的相等关系.教学重点:等腰三角形的断定定理及推论的运用教学难点:正确区分等腰三角形的断定与性质,可以利用等腰三角形的断定定理证明线段的相等关系.教学过程:一、复习等腰三角形的性质二、新授:I提出问题,创设情境出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段间隔到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的断定”.II引入新课1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,那么AB=AC吗?作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?2.引导学生根据图形,写出、求证.2、小结,通过论证,这个命题是真命题,即“等腰三角形的断定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要根据,类似于性质定理可简称“等角对等边”.4.引导学生说出引例中地质专家的测量方法的根据.III例题与练习1.如图2其中△ABC是等腰三角形的是[]2.①如图3,△ABC中,AB=AC.∠A=36°,那么∠C______(根据什么?).②如图4,△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).③假设∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.④假设AD=4cm,那么BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.例:假如三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.分析^p :引导学生根据题意作出图形,写出、求证,并分析^p 证明.练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB 的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?(2)上题中,假设去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?练习:P53练习1、2、3。
初中数学教学设计案例(热门18篇)
初中数学教学设计案例(热门18篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、述职报告、心得体会、工作计划、演讲稿、教案大全、作文大全、合同范文、活动方案、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as work summaries, job reports, insights, work plans, speeches, lesson plans, essays, contract samples, activity plans, and other materials. If you want to learn about different data formats and writing methods, please pay attention!初中数学教学设计案例(热门18篇)范文范本可以帮助我们发现和分析自己写作中的问题和不足,促进我们的自我评价和提高。
中学数学教学设计与案例6篇
中学数学教学设计与案例6篇中学数学教学设计与案例6篇好的教学课件是很重要的。
通过引导学生把握课文内容,培养学生观察、思维能力,培养他们善于通过普通事物发现不寻常的“美”,并能根据对事物的描写,抒发自己的感情。
下面小编给大家带来关于中学数学教学设计与案例,希望会对大家的工作与学习有所帮助。
中学数学教学设计与案例【篇1】一、教学目标1.把握菱形的判定.2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.3.通过教具的演示培养学生的学习爱好.4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.二、教法设计观察分析讨论相结合的方法三、重点·难点·疑点及解决办法1.教学重点:菱形的判定方法.2.教学难点:菱形判定方法的综合应用.四、课时安排1课时五、教具学具预备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨七、教学步骤复习提问1.叙述菱形的定义与性质.2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.引入新课师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法生答:定义法.此外还有别的两种判定方法,下面就来学习这两种方法.讲解新课菱形判定定理1:四边都相等的四边形是菱形.菱形判定定理2:对角钱互相垂直的平行四边形是菱形.图1分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形. 分析判定2:师问:本定理有几个条件生答:两个.师问:哪两个生答:(1)是平行四边形(2)两条对角线互相垂直.师问:再需要什么条件可证该平行四边形是菱形生答:再证两邻边相等.(由学生口述证实)证实时让学生注重线段垂直平分线在这里的应用,师问:对角线互相垂直的四边形是菱形吗为什么可画出图,显然对角线,但都不是菱形.菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.例4已知:的对角钱的垂直平分线与边、分别交于、,如图.求证:四边形是菱形(按教材讲解).总结、扩展1.小结:(1)归纳判定菱形的四种常用方法.(2)说明矩形、菱形之间的区别与联系.2.思考题:已知:如图4△中,,平分,,,交于.求证:四边形为菱形.八、布置作业教材P159中9、10、11、13中学数学教学设计与案例【篇2】教学目标1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4.掌握向量垂直的条件.教学重难点教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学工具投影仪教学过程一、复习引入:1.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结(1)请学生回顾本节课所学过的知识内容有哪些所涉及到的主要数学思想方法有那些(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
初中数学教学案例3篇
初中数学教学案例第一篇:初中数学教学案例——整数的加减法教学一、教学目标:1.了解整数的概念及其在实际生活中的运用。
2.掌握整数的加减法运算规律。
3.能够解决整数加减法运算实际问题。
二、教学内容:1.整数的概念及运用。
2.整数的加减法运算规律。
3.整数加减法运算实际问题的解决。
三、教学方法:1.概念讲解法。
2.板书法。
3.示范演示法。
4.课堂练习方法。
四、教学步骤:1.导入。
教师通过巧妙的导入,介绍整数是数学中的一种运算类型,从而激发学生的兴趣,让学生主动参与。
2.讲解整数基本概念。
通过生动的例子,引导学生了解整数的基本概念及其符号表示法。
3.掌握整数的加减法运算规律。
介绍整数加减法运算规律,由浅入深地讲解各类运算方法,同时涉及一些特殊情况的处理方法。
4.例题解析和举一反三。
通过逐步解析典型例题、变化多端的例题,让学生逐渐掌握整数加减法运算的方法和技巧,并通过举一反三的方法,培养学生发散思维。
5.课堂练习。
练习题目与教材内容相结合,使学生通过课内课后的集中、分散练习逐步掌握整数加减法运算能力。
6.总结点拨。
通过引导学生对课后练习的检查,发现和分析错误,总结提炼法则,加深认识,巩固知识。
五、教学评估:通过考试、作业、课堂表现等方式,对学生实施模拟和评估,评定学生对整数的掌握程度。
六、教学后记:本课教学过程中,教师要注重学生思维方法、技能和思维复合能力的发展,立足于问题解决,使学生掌握数学核心思想,运用数学技能和工具解决实际问题。
初中数学教学案例分析
初中数学教学案例分析教学案例一:解一元一次方程教学目标:通过解一元一次方程的案例,帮助学生理解方程的概念,掌握解方程的方法。
案例描述:小明购买了若干部手机,每部手机的售价为x元。
总共花费了450元。
他注意到,如果手机的售价再便宜20元,他就能多买一部手机。
请问,每部手机的售价是多少?解答过程:1. 设每部手机的售价为x元;2. 根据题意,得到方程:x * n + (x - 20) = 450,其中n为手机的数量;3. 将方程化简为一元一次方程:x * n + x - 20 = 450;4. 将方程进一步化简,得到:(n + 1) * x = 470;5. 除以(n + 1)后,得到x = 470 / (n + 1);6. 根据选项可得n + 1 = 10,因此n = 9;7. 将n = 9代入方程,解得x = 470 / 10 = 47。
教学评析:通过这个案例,学生能够通过实际问题推导出方程,然后运用解一元一次方程的方法求解,并且将解代入验证答案的正确性。
教师在教学过程中可以适时引导学生思考问题和求解思路,激发学生的学习兴趣。
教学案例二:几何图形的构造教学目标:通过几何图形的构造案例,帮助学生巩固几何图形的基本概念和构造方法。
案例描述:已知一个三角形ABC,已知AB = 5 cm,BC = 6 cm,AC = 7 cm。
请你用尺规作图的方法,构造这个三角形。
解答过程:1. 画一条线段AB,长度为5 cm;2. 以点A为圆心,以5 cm为半径画一个圆,与线段AB交于点C 和点D;3. 以点B为圆心,以6 cm为半径画一个圆,与线段BC交于点E;4. 连接线段AE,AE即为所求的线段AC;5. 连接线段CE,CE即为所求的线段BC。
教学评析:通过这个案例,学生不仅能够巩固三角形的基本概念,还能够通过尺规作图的方法进行几何图形的构造。
在教学过程中,教师可以引导学生观察图形,分析问题,运用几何知识进行构造,培养学生的空间想象能力和解决问题的能力。
初中数学教研教改案例(3篇)
第1篇一、背景随着新课程改革的深入推进,我国初中数学教学面临着前所未有的机遇与挑战。
为了提高初中数学教学质量,培养学生的数学素养,我们学校数学教研组积极开展教研教改活动,力求探索出一条适合我校初中数学教学的新路径。
二、案例描述1. 问题提出我校初中数学教学存在以下问题:(1)教学方式单一,以教师讲解为主,学生参与度低。
(2)教学内容与实际生活脱节,难以激发学生的学习兴趣。
(3)评价方式单一,注重结果评价,忽视过程评价。
(4)教师专业素养参差不齐,缺乏创新意识和实践能力。
2. 改革措施(1)优化教学方式,提高学生参与度为了改变教学方式单一的问题,我们教研组开展了以下改革措施:①开展小组合作学习,让学生在小组内互相讨论、交流,提高学生的合作能力和沟通能力。
②引入多媒体教学手段,运用图片、视频、动画等丰富教学内容,激发学生的学习兴趣。
③开展数学实践活动,让学生在实际操作中感受数学的魅力。
(2)联系实际生活,激发学生学习兴趣为了解决教学内容与实际生活脱节的问题,我们教研组采取了以下措施:①将数学知识与实际生活相结合,设计贴近学生生活的教学案例。
②开展数学竞赛、数学游戏等活动,激发学生的学习兴趣。
(3)多元化评价,关注学生发展为了改变评价方式单一的问题,我们教研组采取了以下措施:①建立多元化的评价体系,注重过程评价和结果评价相结合。
②关注学生的学习态度、学习方法、学习习惯等方面,促进学生全面发展。
(4)提升教师专业素养,促进教师成长为了提高教师专业素养,我们教研组开展了以下活动:①组织教师参加各类培训,提升教师的教育教学能力。
②开展教师之间的交流与研讨,促进教师共同成长。
③鼓励教师参加教学比赛,激发教师的创新意识和实践能力。
3. 改革效果经过一段时间的教研教改,我校初中数学教学取得了以下成效:(1)学生参与度提高,学习兴趣浓厚。
(2)教学效果显著,学生数学素养得到提升。
(3)教师专业素养得到提高,创新意识和实践能力得到增强。
优秀教师教学案例分享
优秀教师教学案例分享教师是教育事业中的中坚力量,他们的教学案例对于推动教育的发展和提升学生的学习效果起到了至关重要的作用。
下面将分享一些优秀教师的教学案例,以期为广大教师提供一些可借鉴的经验和方法。
I. 案例一:启发式教学法一位初中数学教师在教授平面图形时采取了启发式教学法。
她让学生通过观察、实践和比较的方式来发现平行线的性质。
学生们在小组中合作讨论,通过自主学习和探索,激发了他们的学习兴趣和动力。
这种启发式教学法不仅培养了学生的独立学习能力,还提高了他们的问题解决能力和创造力。
II. 案例二:合作学习法一位小学语文教师在教授作文写作时采用了合作学习法。
她组织学生分为小组,让每个小组成员扮演不同的角色,如写作指导员、审稿人等。
通过合作学习,学生们可以交流彼此的想法和建议,互相帮助改进作文。
这种合作学习法激发了学生的合作意识和团队精神,提高了他们的写作水平和表达能力。
III. 案例三:多媒体教学法一位高中物理教师运用多媒体教学法来讲解抛体运动。
他使用动画、视频等多种媒体资源,生动形象地展示了抛体运动的规律和特点。
通过多媒体教学,学生们对物理的抽象概念有了更深刻的理解,提高了他们的学习兴趣和学习效果。
IV. 案例四:情景教学法一位小学老师在教授英语时采用了情景教学法。
她通过创设情景,如购物、旅行等,让学生在真实的语境中应用所学的英语知识。
学生们通过角色扮演和情景对话来增强对语言的理解和运用能力。
这种情景教学法培养了学生的语言交际能力,提高了他们的学习动力和记忆效果。
V. 案例五:差异化教学法一位初中英语教师在面对班级中不同学习水平的学生时,采用差异化教学法。
她根据学生的能力和特点,设计了不同的教学内容和任务。
通过分组合作、个别指导等方式,她满足了每个学生的学习需求,并激发了他们的学习兴趣和积极性。
这种差异化教学法促进了学生成绩的提高和个性发展。
VI. 案例六:引导式提问法一位初中地理教师在教授气候变化时采用了引导式提问法。
数学科目优秀教学说课案例三篇
数学科目优秀教学说课案例三篇数学科目优秀教学说课案例三篇根据新课程标准的评价理念,在教学过程中,不仅注重学生的参与意识和学生对待学习的态度是否积极,而且注重引导学生尝试从不同角度分析和解决问题。
以下是职场为大家整理的数学科目优秀教学说课案例资料,提供参考,希望对你有所帮助,欢迎你的阅读。
数学科目优秀教学说课案例一各位专家领导,上午好:今天我说课的课题是《勾股定理》一、教材分析:(一)本节内容在全书和章节的地位这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。
勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。
教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。
(二)三维教学目标:1.【知识与能力目标】⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;⒉通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
2.【过程与方法目标】在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。
3.【情感态度与价值观】通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
(三)教学重点、难点:【教学重点】勾股定理的证明与运用【教学难点】用面积法等方法证明勾股定理【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
初中数学教学案例50篇
初中数学教学案例50篇案例1:整数运算应用问题描述:小明乘以一个整数后得到的结果是-30,如果小明除以这个整数,商是-6。
请问这个整数是多少?解决思路:设这个整数为x,根据题意可以建立如下方程:x * (-30) = -6。
解这个方程可以得到整数x的值。
案例2:解一元一次方程问题描述:有一辆火车从A地出发,以每小时60公里的速度向B 地行驶。
另外一辆从B地出发,以每小时80公里的速度向A地行驶。
两车相遇时,两地相距1200公里,则两车分别行驶多长时间?解决思路:假设两车相遇所行驶的时间为t小时,利用速度和时间的关系可以建立方程:60t + 80t = 1200。
解这个方程可以得到时间t的值。
案例3:等差数列求和问题描述:有一个等差数列,首项是5,公差是2,求这个数列的前10项和。
解决思路:根据等差数列的求和公式,可以得到这个数列的前10项和。
案例4:三角形面积计算问题描述:已知一个三角形的底是5cm,高是8cm,求这个三角形的面积。
解决思路:利用三角形面积的计算公式,可以得到这个三角形的面积。
案例5:平方根运算问题描述:求解方程x^2 = 16的解。
解决思路:通过开平方的运算,可以得到方程的解。
案例6:倍数关系问题描述:某个数的13倍再加上5等于123,请问这个数是多少?解决思路:设这个数为x,可以建立如下方程:13x + 5 = 123。
解这个方程可以得到数x的值。
案例7:解一元二次方程问题描述:解方程x^2 + 5x - 6 = 0。
解决思路:通过解一元二次方程的方法,可以得到方程的解。
案例8:等差数列通项计算问题描述:有一个等差数列,公差是3,第5项是14,求解这个数列的通项。
解决思路:利用等差数列的通项公式,可以得到数列的通项。
案例9:计算百分比问题描述:小明考试得了80分,满分是100分,他的得分占总分的百分之多少?解决思路:通过计算分数所占百分比的方法,可以得到小明的得分在总分中的百分比。
初中数学教学实践案例(3篇)
第1篇一、案例背景随着新课程改革的不断深入,初中数学教学越来越注重培养学生的逻辑思维能力、空间想象能力和实际问题解决能力。
三角形全等是初中数学教学中的重要内容,也是学生必须掌握的基础知识。
为了提高学生对三角形全等判定方法的理解和应用能力,我设计了一节以“三角形全等的判定方法”为主题的数学课。
二、教学目标1. 知识与技能:掌握三角形全等的判定方法,并能熟练运用这些方法解决实际问题。
2. 过程与方法:通过观察、实验、讨论、归纳等方法,引导学生发现和总结三角形全等的判定方法。
3. 情感态度与价值观:培养学生的逻辑思维能力、空间想象能力和实际问题解决能力,激发学生对数学学习的兴趣。
三、教学重难点1. 教学重点:三角形全等的判定方法,包括SSS、SAS、ASA、AAS、HL。
2. 教学难点:运用三角形全等的判定方法解决实际问题,提高学生的空间想象能力和逻辑思维能力。
四、教学过程1. 导入新课(1)回顾三角形全等的定义,引导学生思考如何判断两个三角形是否全等。
(2)提出问题:有哪些方法可以判断三角形全等?2. 新课讲授(1)教师引导学生观察课本上的三角形全等判定方法,并举例说明。
(2)学生分组讨论,尝试运用SSS、SAS、ASA、AAS、HL等方法证明两个三角形全等。
(3)每组派代表展示证明过程,其他组进行评价和补充。
(4)教师点评学生的证明过程,强调证明方法的选择和逻辑推理的重要性。
3. 巩固练习(1)教师出示一些三角形全等的证明题,要求学生独立完成。
(2)学生互相批改,教师巡视指导。
(3)对学生的解答进行点评,指出错误和不足,引导学生总结经验。
4. 应用拓展(1)教师出示一些实际问题,要求学生运用三角形全等的判定方法解决。
(2)学生分组讨论,尝试找出解题思路。
(3)每组派代表展示解题过程,其他组进行评价和补充。
(4)教师点评学生的解题过程,强调实际问题解决能力的重要性。
5. 总结与反思(1)教师引导学生回顾本节课所学内容,总结三角形全等的判定方法。
初中数学教学案例(精选8篇)
初中数学教学案例(精选8篇)1. 线性方程组的解法教学目标:理解线性方程组的概念,掌握解法方法。
教学内容:线性方程组的定义,解法方法,实例演练等。
教学过程:教师引导学生理解线性方程组的概念,引入解法方法,通过实例演练提高学生的解题能力。
教学效果:学生在实践中掌握了线性方程组的解法方法,能够独立完成相关题目。
2. 平面几何与三维几何的联系教学目标:认识平面几何与三维几何的联系,培养学生的几何思维。
教学内容:平面几何与三维几何的基本概念及联系,实例演练。
教学过程:教师通过生动的例子和图像让学生了解平面几何与三维几何的联系,鼓励学生发挥几何思维来解决相关问题。
教学效果:学生掌握了平面几何与三维几何的联系,培养了几何思维。
3. 十字相乘法因式分解教学目标:掌握十字相乘法因式分解的方法。
教学内容:十字相乘法因式分解的概念,方法和实例演练。
教学过程:教师通过具体的实例,引导学生理解十字相乘法因式分解的方法,提高学生的解题能力。
教学效果:学生掌握了十字相乘法因式分解的方法,能够独立解题。
4. 直线与平面的位置关系教学目标:了解直线与平面的位置关系,培养学生的几何思维。
教学内容:直线与平面的基本概念、位置关系及公式推导,实例演练。
教学过程:教师通过生动的图像,引导学生了解直线与平面的位置关系,鼓励学生发挥几何思维来解决相关问题。
教学效果:学生掌握了直线与平面的位置关系,培养了几何思维。
5. 平移、旋转和翻转变换教学目标:了解平移、旋转和翻转变换的概念及应用。
教学内容:平移、旋转和翻转变换的基本概念,公式推导及实例演练。
教学过程:教师以具体的图像为例,引导学生了解平移、旋转和翻转变换的概念及公式推导,并通过实例演练提高学生的应用能力。
教学效果:学生掌握了平移、旋转和翻转变换的概念及应用。
6. 加减法与倍数基本关系教学目标:认识加减法与倍数基本关系,掌握解题方法。
教学内容:加减法与倍数基本关系的定义,解题方法及实例演练。
初中数学课堂教学精彩教学案例设计【三篇】
初中数学课堂教学精彩教学案例设计【三篇】教学案例是真实而典型的问题大事。
以下是为大家整理的学校数学课堂教学精彩教学案例设计的文章3篇 ,欢迎品鉴!学校数学课堂教学精彩教学案例设计一、教学目标:1、理解二元一次方程及二元一次方程的解的概念;2、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;4、在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。
二、教学重点、难点:重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程变形成用一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学方法与教学手段:通过与一元一次方程的比较,加强同学的类比的思想方法;通过"合作学习',使同学熟悉数学是依据实际的需要而产生进展的观点。
四、教学过程:1、情景导入:新闻链接:x70岁以上老人可领取生活补助。
得到方程:80a+150b=902880、2、新课教学:引导同学观看方程80a+150b=902880与一元一次方程有异同?得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。
做一做:(1)依据题意列出方程:①小明去探望奶奶,买了5kg苹果和3kg梨共花去23元,分别求苹果和梨的单价、设苹果的单价x元/kg,梨的单价y元/kg;②在高速大路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,假如设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:(2)课本P80练习2、判定哪些式子是二元一次方程方程。
合作学习:活动背景爱心满人间记求是中学"学雷锋、关爱老人'志愿者活动。
问题:参与活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人、团支书拟支配8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由同学检验得出代入方程后,能使方程两边相等、得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。
2023年最新的初中数学优秀教学案例范文三篇
2023年最新的初中数学优秀教学案例范文三篇第一篇: 初中数学优秀教学案例一、背景新课标要求,应让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程。
在实际工作中让学生学会从具体问题情景中抽象出数学问题,使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能,这些多数教师都注意到了,但要做好,还有一定难度。
二、教学片段在刚过去的这个学期,我上了一节一元一次不等式组的应用。
出示例题:小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在另一端。
这时,爸爸的一端仍然着地,后来小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果,爸爸被高高地跷起。
猜猜看,小宝的体重约多少千克?我问学生:你们玩过跷跷板吗?先看看题,一会请同学复述一下。
学生复述后,基本已经熟悉了题目。
我接着让学生思考:他们三人坐了几次跷跷板?第一次坐时情况怎样?第二次呢?学生议论了一会儿,自主发言,很快发现本题中存在的两种文字形式的不等关系:爸爸体重>小宝体重+妈妈体重爸爸体重<小宝体重+妈妈体重+一副哑铃重量我引导:你还能怎么判断小宝体重?学生安静了几分钟后,开始议论。
一学生举手了:可以列不等式组。
我给出提示:小宝的体重应该同时满足上述的两个条件。
怎么把这个意思表达成数学式子呢?这时学生们七嘴八舌地讨论起来,都抢着回答,我注意到一位平时不爱说话的学生紧锁眉头,便让他发言:可以设小宝的体重为x千克,能列出两个不等式。
可是接下来我就不知道了。
我听了心中一动,意识到这应是思想渗透的好机会,便解释说:我们在初中会遇到许多问题都可以用类似的方法来研究解决,比方说前面列方程组不等我说完,学生都齐声答:列不等式组。
全班12小组积极投入到解题活动中了。
5分钟后,我请学生板演,自己下去巡查、指导,发现学生的解题思路都很清楚,只是部分学生对答案的表达不够准确。
初一数学教学实践案例(3篇)
第1篇一、案例背景随着新课程改革的不断深入,我国初中数学教学越来越注重培养学生的数学思维能力和实践能力。
图形变换是初中数学的重要内容,它不仅有助于学生理解图形的内在联系,还能培养学生的空间想象力和几何直观能力。
为了提高学生对图形变换中对称性的认识,本案例以“探究图形变换中的对称性”为主题,通过一系列教学活动,引导学生深入理解对称性的概念及其在图形变换中的应用。
二、案例设计(一)教学目标1. 知识与技能:理解轴对称图形的概念,掌握轴对称变换的基本方法,能够识别和构造轴对称图形。
2. 过程与方法:通过观察、操作、探究等活动,培养学生的观察能力、动手操作能力和合作学习能力。
3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生的审美情趣和探究精神。
(二)教学重点与难点1. 教学重点:轴对称图形的概念,轴对称变换的基本方法。
2. 教学难点:轴对称图形的识别和构造,轴对称变换的应用。
(三)教学过程1. 导入新课- 教师展示生活中常见的轴对称图形,如蝴蝶、剪纸等,引导学生观察并思考这些图形的特点。
- 学生分享观察到的特点,教师总结:这些图形都是关于某条直线对称的,这条直线就是它们的对称轴。
2. 探究活动- 教师分发轴对称图形的模板,让学生动手操作,将图形沿对称轴折叠,观察折叠后的结果。
- 学生汇报操作过程和结果,教师引导学生总结出轴对称图形的定义:如果一个图形沿某条直线折叠后,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形。
- 教师讲解轴对称变换的基本方法:将图形沿对称轴折叠,然后将折叠后的图形展开,得到新的图形。
3. 案例分析- 教师展示一些生活中的轴对称图形,如建筑、家具等,让学生分析这些图形的对称轴和对称性。
- 学生分组讨论,教师巡视指导,帮助学生总结出识别和构造轴对称图形的方法。
4. 练习巩固- 教师布置练习题,让学生独立完成,巩固所学知识。
- 学生展示解题过程,教师点评并总结。
5. 总结反思- 教师引导学生回顾本节课的学习内容,总结轴对称图形的概念、轴对称变换的方法以及应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学教学案例分析【案例1】学生积极参与教学,集中体现了现代教学理念:活动、民主、自由【案例简述】我在进行数学七年级上册一元一次不等式的应用教学时,在拓展思维环节举出了下面这样一个例题,随着教学过程的深入,很有感想:……例题:在一个双休日,某公司决定组织48名员工到附近一水上公园坐船游园,公司先派一个人去了解船只的租金情况,这个人看到的租金价格如下表所示:船型每只船载人数租金大船 5 3元小船 3 2元请你帮助设计一下:怎样的租船才能使所付租金最少?(严禁超载)……师:谁能公布一下自己的设计方案?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生这次第一个举起了手,很惊奇,便马上让他发言了。
也有了我思想上的一次飞跃。
)生:我认为可以租大船,可以租小船,也可以大船和小船合租!(这时,教室里哄堂大笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。
)师:很好!你为他们设计了三种方案。
那你能不能再具体为他们计算出租金呢?生(一下子来劲了):如果租大船,则需要船只数为48/5=9.6只,因为不能超载,所以租大船需10只,则所付租金要3×10=30元。
如果租小船,则需要船只数为48/3=16只,则所付租金要16×2=32元。
如果既租大船又租小船……(说到这里,该生卡了壳)(我边认真听,边将他的方案结论板书在黑板上,看见卡了壳,便赶紧答上话)师:刚才×××同学真的不错,不但一下子设计了三种方案,还差不多完成了全部租金的计算,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。
要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。
好,下面我就让我们一同把剩下的一种方案的租金来完成吧。
(在师生的共同研讨中得出):设租用X只大船,Y只小船,所付租金为A元。
则: 5X + 3Y = 48 A = 3X + 2Y 得到:A = 1/3X + 32 因为:0 < 5X < 48 且X为正整数所以:X = 9时,A最小值 = 29 即租用9只大船和1只小船时,所付租金最少,最少租金为29元。
此时有 45人(5×9)坐大船,有3人坐小船。
……师:今天的课程内容还有一项,那就是请×××同学(示意刚才的同学)谈谈这堂课的感想。
生:……以前我不敢发言,我怕说的不对会被同学们笑话,而今天的游船题目恰好是我前几天才去坐过的,所以一下子……我今天才发现不是这样……我今后还会努力发言的……【案例分析】从这一个学生的举手发言到说得头头是道的“意外”中,让教师明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。
也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、民主、自由。
1、民主是现代课程中的重要理念。
民主最直接的体现是在课程实施中学生能够平等地参与。
没有主动参与,只有被动接受,就没有民主可言。
相反,如果没有民主,学生的参与就不是主动性参与,而是被动的、消极的参与。
在课程进行中,教师应形成一种有利于学生主动参与的人际关系氛围。
尊重是进行一切活动的前提,只有尊重学生,才能理解学生,才能做到平等,学生才会感到安全,才不会出现有的学生被冷落,被讽刺,甚至被耻笑的现象。
2、在提问时,应设计开放性的问题,如:“请你帮助设计一下,怎样租用,才能使所付租金最少?”这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。
3、在课堂上,老师应不只关注“优等生”,而应平等地对待每一个学生,让学困生”和“学优生”同时享有尊严和拥有一份自信。
特别是发现到一个学困生在举了手时,应及时给“学困生”展示的机会,让他们发言,学生在发言中,虽然有时不能把问题完全解决,老师也要充分的肯定这个学生的成绩和能够大胆发言的勇气。
【案例2】《圆周角》教学--利用多媒体技术进行的探索发现学习【案例实录】教学过程 :1. 习旧引新⑴在⊙O 上 , 任到三个点 A 、 B 、 C, 然后顺次连接 , 得到的是什么图形 ? 这个图形与⊙O 有什么关系 ?⑵由圆内接三角形的概念 , 能否得出什么叫圆的内接四边形呢 ( 类比 )?2. 概念学习⑴什么叫圆的内接四边形 ?⑵如图 1, 说明四边形 ABCD 与⊙O 的关系。
3. 探讨性质⑴前面我们已经学习了一类特殊四边形 ---- 平行四边形 , 矩形 , 菱形 , 正方形 , 等腰梯形的性质 , 那么要探讨圆内接四边形的性质 , 一般要从哪几个方面入手 ?⑵打开《几何画板》 , 让学生动手任意画⊙O 和⊙O 的内接四边形ABCD 。
( 教师适当指导 )⑶量出可测量的所有值 ( 圆的半径和四边形的边 , 内角 , 对角线 , 周长 , 面积 ), 并观察这些量之间的关系。
⑷改变圆的半径大小 , 这些量有无变化 ? 由 (3) 观察得出的某些关系有无变化 ?⑸移动四边形的一个顶点 , 这些量有无变化 ? 由 (3) 观察得出的某些关系有无变化 ? 移动四边形的四个顶点呢 ? 移动三个顶点呢 ?⑹如何用命题的形式表述刚才的实验得出来的结论呢 ?( 让学生回答 )4. 性质的证明及巩固练习⑴证明猜想已知 : 如图 1, 四边形 ABCD 内接于⊙O 。
求证 :∠BAD+∠BCD=180°,∠ABC+∠ADC=180°。
⑵完善性质①若将线段 BC 延长到 E( 如图 2), 那么 ,∠DCE 与∠BAD 又有什么关系呢 ?②圆的内接四边形的性质定理 : 圆内接四边形的对角互补 , 并且任何一个外角都等于它的内对角。
⑶练习①已知 : 在圆内接四边形 ABCD 中 , 已知∠A=50°,∠D-∠B=40°, 求∠B,∠C,∠D 的度数。
②已知 : 如图 3, 以等腰△ABC 的底边 BC 为直径的⊙O 分别交两腰AB,AC 于点 E,D, 连结 DE,求证 :DE∥BC 。
( 演示作业本 )5. 例题讲解引例已知 : 如图 4,AD 是△ABC 中∠BAC 的平分线 , 它与△ABC 的外接圆交于点 D 。
求证 :DB=DC 。
( 引例由学生证明并板演 )教师先评价学生的板演情况 , 然后提出 , 若将已知中的“ AD 是△ABC 中的∠BAC 的平分线”改为“ AD 是△ABC 的外角∠EAC 的平分线”, 又该如何证明 ? 引出例题。
例已知 : 如图 5,AD 是△ABC 的外角∠EAC 的平分线 , 与△ABC 的外接圆交于点 D,求证 :DB=DC 。
6. 小结 : 为了使学生对所学的内容有一个完整而深刻的印象 , 让学生组成小组 , 从概念 , 性质 , 方法 , 特殊性进行讨论 , 然后对讨论的结果进行归纳。
⑴本节课我们学习了圆内接四边形的概念和圆内接四边形的和要性质 ,要求同学们理解圆内接四边形和四边形的外接圆的概念 , 理解圆内接四边形的性质定理 ; 并初步应用性质定理进行有关命题的证明和计算。
⑵我们结合《几何画板》的使用导出了圆内接四边形的性质 , 在这一过程中用到了许多数学方法 ( 实验 , 观察 , 类比 , 分析 , 归纳 , 猜想等 ), 同学们要逐步学会用并关于应用这些方法去探讨有关的数学问题 , 提高我们的数学实践能力与创新能力。
7. 作业⑴如图 6, 在等腰直角△ABC 中 ,∠C=90°, 以 AC 为弦的⊙O 分别交BC,AB 于 D,E, 连结 DE 。
求证 :△BDE 是等腰直角三角形。
⑵已知 :⊙O 和⊙O '相交于 A,B 两点 , 经过 A,B 两点分别作直线 CD 和 EF,CD 交⊙O,⊙O '于 C,D,EF 交⊙O,⊙O '于 E,F, 连结 CE,AB,DF 。
问 : 当 CD 和 EF 满足怎样的条件时 , 四边形 CEDF 是怎样的特殊四边形 ? 并证明所得的结论。
( 选做 )【案例分析】这一教学案例当然不能被看作是培养学生创新意识的初中数学课堂教学的范例 , 其中许多环节还需要进一步改进完善。
但其较为真实地反映了目前数学课堂教学的一些情况 , 一些教学环节的处理还是值得肯定的。
1. 突出了数学课堂教学中的探索性关于圆的内接四边形性质的引出 , 在本教学案例上没有像教材那样直接给出定理 , 然后证明 ; 而是利用《几何画板》采取了让学生动手画一画 , 量一量的方式 , 使学生通过对直观图形的观察归纳和猜想 , 自己去发现结论 ,并用命题的形式表述结论。
关于圆内接四边形性质的证明 , 没有采用教师给学生演示定理证明 , 而是引导学生证明猜想 , 并做了进一步的完善。
这种探索性的数学教学方式在其后的例题讲解中亦得到了进一步的贯彻。
这样既调动了学生学习数学的积极性和主动性 , 增强了学生参与数学活动的意识 , 又培养了学生的动手实践能力。
同时 , 也向学生渗透了实践 ---- 认识 ---- 再实践---- 再认识的辩证观点。
一方面 , 使数学不再是一门单调枯燥 , 缺乏直观印象的高度抽象的学科 , 通过提供生动活泼的直观演示 , 让学生多角度 , 快节奏地去认识教学内容 , 达到事半功倍的教学效果 ; 另一方面 , 计算机所特有的 , 对数学活动过程的展示 , 对数学细节问题的处理可以使学生体验到用运动的观点来研究图形的思想 , 让学生充分感受到发现总是代和解决问题带来的愉悦 , 培养学生的数学创新意识。
2. 引进了计算机《几何画板》技术本课例在引导学生得出圆内接四边形的性质时 , 通过使用《几何画板》 , 从而实现了改变圆的半径 , 移动四边形的顶点等 , 从而使初中平面几何教学发生了重大的变化 , 那就是让图形出来说话 , 充分调动学生的直觉思维。
这样一来不仅极大地激发了学生学习的兴趣 , 而且比过去的教学更能够使学生深刻地理解几何。
当然 , 本教学案例在这方面的探索还是初步的 , 设想今后通过计算机技术的进一步开发与应用 , 初中平面几何课能够给学生更多动手的机会 , 让学生以研究的方式学习几何 , 进一步突出学生在学习中的主体地位。
3. 引入了数学开放题本教学案例在增大数学课堂教学的探索性 , 计算机技术进入数学课堂的同时 , 在学生作业中还增加了开放题 ( 作业 2), 为学生创造了更为广阔的思维空间 , 对此应大力提倡。
目前 , 世界各国在数学教育改革中都十分强调高层次思维能力的培养 , 这些高层次思维能力包括了推理 , 交流 , 概括和解决问题等方面的能力。