北师大版-数学-七年级上册-《字母表示数》典型例题

合集下载

秋七年级数学上册北师大版习题课件:第三章 3.1 字母表示数(共13张PPT)

秋七年级数学上册北师大版习题课件:第三章 3.1 字母表示数(共13张PPT)
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

探究 :设 n 为整数,用含有 n 的式子表示下列各 数.
(1)偶数为 2n ; (2)奇数为 2n+1 ; (3)能被 7 整除的数为 7n ; (4)被 5 除商余 2 的数为 5n+2 ; (5)不能被 3 整除的数为 3n+1 与 3n+2 ; (6)三个连续奇数为 2n-1,2n+1,2n+3 .
2.用字母公式表示小学学过的几何图形的周长与面 积:
①长方形面积: S=ab ;
②梯形面积: S=12(a+b)h ; ③圆的面积: S=πr2 ; ④平行四边形面积: S=ah . 3.字母可以表示任何数.
◎自主检测 知识点 :用字母表示规律 1.如图是一组有规律的图案:
它们是按一定规律排列的,其中第 1 个图案由4 个 组成,第 2 个图案由 7 个 组成,第 3 个图案由 10 个 组成,第 4 个图案由 13 个 组成,…,则第 n(n 为 正整数)个图案由 (3n+1) 个 组成.
第三章 整式及其加减 3.1 字母表示数
◎学习目标 1.经历探索规律并用代数式表示规律的过程. 2.能用代数式表示以前学过的运算律和计算公式. 3.体会字母表示数的意义,形成初步的符号感.
◎知识梳理
1.用含 a、b、c 的式子表示以下有理数的运算律: 加法结合律 a+(b+c)=(a+b)+c ; 乘法结合律 a·(b·c)=(a·b)·c ; 乘法对加法的分配律 a·(b+c)=ab+ac .
这批图书的一半捐给社区,则捐给社区的图书为 2 册 (用含 a、b 的代数式表示).

七年级数学上册第三章用字母表示数3.2代数式典型例题

七年级数学上册第三章用字母表示数3.2代数式典型例题

《代数式》典型例题例1 列代数式,并求值.有两种学生用本,一种单价是0.25元,另一种单价是0.28元,买这两种本的数分别是m 和n .(1)问共需要多少元?(2)如果单价是0.25元的本和单价是0.28元的本分别买了20和25本,问共花了多少钱?例2 某城市居民用电每千瓦时(度)0.33元,某户本月底电能表显示数m ,上月底电能表显示数为n ,(1)用m 和n 把本月电费表示出来;(2)若本月底电能表显示数是1601,上月底电能表显示数为1497,问本月的电费是多少?例3 春节前夕,铁路为了控制客流,使其卧铺票票价上浮20%,春节期间按原价下浮10%,若某地到北京的卧铺票原价是x 元,如果在春节期间乘坐要比春节前少花多少钱,用x 表示出;当228=x 时,求这个代数式的值。

例4 22b a -可以解释为___________.例5 一个三位数,百位数上的数是a ,十位上的数是b ,个位上的数是c .(1)用代数式表示这个三位数.(2)把它的三位数字颠倒过来,所得的三位数又该怎样表示?例6 选择题1.x 的3倍与y 的2倍的和,除以x 的2倍与y 的3倍的差,写成的代数式是( )A .y x y x 3223-+B .xy y x 2323-+ C .y x y x 3223-+ D .y x y x 2223-+ 2.如图,正方形的边长是a ,圆弧的半径也是a ,图中阴影部分的面积是( )A .224a a -πB .22a a π-C .22a a -πD .224a a π-例7 通过设20031413121,20021413121++++=++++= b a 来计算:).20021413121()200314131211()20031413121()200214131211(++++⋅+++++-++++⋅+++++ 例8 按给的例子,把输出的数据填上例9 对于正数,运算“*”定义为b a abb a +=*,求)333**(.参考答案例1 分析 已知单价和商品数量,求商品的总价,就是用单价乘以商品数量.解:(1)共需要n m 28.025.0+(元);(2)把25,20==n m 代入上式,得122528.02025.028.025.0=⨯+⨯=+n m (元)所以,共花了12元钱.说明:在列代数式时经常要用到小学学过的常用数量关系,然后和小学列算式基本相似,把数量关系中的各量用已知数和表示该量的字母表示出来,就列出了代数式.例2 分析:根据电费=电费 / 度×电量,就可以把本月的电费表示出来.解:(1)本月电费可表示为)(33.0n m -元;(2)把1497,1601==n m 代入上式,得 32.34)14971601(33.0)(33.0=-=-n m (元).说明:本月底电能表显示的电量应包含以前的用电费,所以)(n m -才是本月的用电量.例3 分析:把春节前夕的票价和春节期间的票价分别用x 表示出来,就可求出春节期间乘坐比春节前夕乘坐少花的钱数。

北师大版七年级数学上册字母表示数和代数式专题复习(含答案)

北师大版七年级数学上册字母表示数和代数式专题复习(含答案)

北师大版七年级数学上册字母表示数和代数式专题复习一、选择题1.某商品打八折后价格为a元,则原价为()A. a元B. 20%a元C. 54a元 D. 45a元2.一辆汽车在a秒内行驶m6米,则它在2分钟内行驶()A. m3米 B. 20ma米 C. 10ma米 D. 120ma米3.某商品原价每件x元,后来店主将每件增加10元,再降价25﹪,则现在的单价是()A. (25﹪x+10)元B. ﹝(1−25﹪)x+10﹞元C. 25﹪(x+10)元D. (1−25﹪)(x+10)元4.一块地有a公顷,平均每公顷产粮食m千克;另一块地有b公顷,平均每公顷产粮食n千克,则这两块地平均每公顷的粮食产量为()A. m+n2B. a+b2C. am+bna+bD. am+bmm+n5.用18米长的铝合金做成一个长方形的窗框(如图),设长方形的窗框的横条长度为x米,则长方形窗框的面积为()A. x(18−3x2)平方米 B. x(x−9)平方米C. x(18−x)平方米D. x(18−2x3)平方米6.工人师傅要把一根质地均匀的圆柱形木料锯成若干段,按如图的方式锯开,每锯断一次所用的时间相同.若锯成6段需要时间10分钟,则锯成n(n≥2,且n为整数)段所需的时间为()n分钟 B. 2n分钟 C. (2n+2)分钟 D. (2n−2)分钟A. 537.小慧家购买一套价格为12万元的住房.按要求,需首期(第一年)付房款3万元,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和.假设剩余房款年利率为0.4%,小慧列表推算如下:第一年第二年第三年…应还款(万元)30.5+9×0.4%0.5+8.5×0.4%…剩余房款(万元)98.58…若第n年小慧家仍需还款,则第n年(n>1)应还款().A. 0.5+[9−0.5(n+1)]×0.4%B. 0.5+(9−0.5n)×0.4%C. 0.5+[9−0.5(n−1)]×0.4%D. 0.5+[9−0.5(n−2)]×0.4%8.我们知道,式子|x−3|的几何意义是数轴上表示x的点与表示3的点之间的距离,则式子|x−2|+2|x+1|的最小值是()A. 2B. 3C. 4D. 59.如图是一正方体的展开图,若正方体相对面所表示的数相等,则x+y的值为()A. −5B. −4C. 1D. 510.甲乙两个超市为了促销一种定价相等的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买同样数量的这种商品最合算()A. 甲B. 乙C. 相同D. 不能确定11.若x2−3y−5=0,则6y−2x2−6的值为()A. 4B. −4C. 16D. −1612.若分式|x|−23x−2的值是负数,则x的取值范围是().A. 23<x<2 B. x>23或x<−2C. −2<x<2且x≠23D. 23<x<2或x<−2二、填空题13.一种商品每件成本是a元,原来按成本增加20%定出价格进销售,一段时间后,由于库存积压减价,按原价的9折出售,则现在每件售价为______元.14.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数,这个三位数可表示为.15.一个两位数,个位数字是x,十位数字比个位数字大3,则这个两位数是______.16.若x2−3y−5=0,则6y−2x2−6=______.17.已知当x=2时,ax5+bx5+cx5+5=9,则当x=−2时,ax5+bx5+cx5+5的值是_____.18.若2a−b=2,则6+4b−8a=______.三、解答题19.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分长四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的大正方形的边长为_____;阴影部分的正方形的边长为_____;(2)请用两种方式表示图②中阴影部分的面积.20.如图,已知长方形的长为a,宽为2,两个半圆的直径都是2,用含a的式子表示阴影部分的面积.21.用1块A型钢板可制成2块C型钢板和1块D型钢板,用1块B型钢板可制成1块C型钢板和3块D型钢板.现有A、B型钢板共100块,并全部加工成C、D型钢板,其中A型钢板有x块(x为整数).(1)用含x的代数式分别表示可制成C型钢板和D型钢板的数量;(2)出售C型钢板每块利润为100元,出售D型钢板每块利润为120元.现将这些C型钢板与D型钢板全部售出,则所得的总利润为多少?22.已知当x=2,y=−4时,代数式ax+12by的值为2016.求当x=−1.y=−12时,代数式3ax−24by3+2015的值.答案和解析1.【答案】C【解析】解:a÷80%=54a(元).2.【答案】B【解答】解:汽车每秒行驶路程为m6a米,故2分钟内行驶距离为120× m 6a =20ma米.故选B.3.【答案】D【解答】解:由题意可得,现在的单价是:(x+10)(1−25%),故选D.4.【答案】C【解答】解:两块地的总产量为ma+nb(千克),所以,这两块地平均每公顷的粮食产量为:am+bna+b (千克).故选:C.5.【答案】A【解答】解:窗框的另一边是18−3x2米,根据长方形的面积公式,得:窗框的面积是x(18−3x2)平方米.故选A.6.【答案】D【解答】解:∵锯成6段需要锯5次,需要时间10分钟,∴每锯断一次所用的时间是2分钟,∵锯成n段需要锯(n−1)次,∴需要时间2(n−1)=2n−2(分钟).故选D.7.【答案】D【解答】解:根据还款规律,首付3万元后,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和可得,第n年小慧家需还款:0.5+[9−0.5(n−2)]×0.4%.故选D.8.【答案】B【解答】解:根据题意,可知当−1≤x≤2时,|x−2|+2|x+1|有最小值。

七年级数学上册字母表示数配套练习及答案

七年级数学上册字母表示数配套练习及答案

第三章用字母表示数3.1字母表示数一、基础训练1.在生活中,经常用图标表示某种意义;在数学中,经常用表示数.2.用字母表示数可以简明地描述许多实际问题中的.3.长为5cm,宽为xcm的长方形,周长是cm,面积是cm.4. 初一(1)班男生有a人,女生人数是男生人数的一半多8,则女生有人,全班共人. 5.某品牌空调原价m元,降价20%以后,现售价为元.二、典型例题例1 填空题:(用字母表示)(1)akg苹果售价b元,则5kg这种苹果售价元;(2)某运动员参加百米赛跑,每秒跑8米,出发t秒后,他离终点还有米(0≤t≤12.5秒);(3)两地相距s千米,汽车走国道,速度为x千米/小时,该走高速公路后,车速每小时可提高40千米,这样可提前小时到达目的地.分析:列式时注意理清数量关系,遵循列式规则,注意运算关系.例2按下图的方式用火柴棒搭成正方形…(1)请根据上图填写下表(2)(3)当正方形个数变为n时,火柴棒的根数为.(4)当三角形个数为1000时,火柴棒的根数为多少?分析:每个正方形都有四根火柴组成.每多一个正方形,由于合用一边,就少用一根火柴.所以当正方形个数分别是1、2、3、4、…时,需要火柴棒根数分别是4、7、10、13、…找出其中规律.三、拓展提升一张很大的正方形纸片,第一次把它剪成4张正方形,以后,将其中的一片再剪成4张正方形纸片……如此进行下去,(1)剪5次后,共有多少张正方形纸片?(2)剪10次后,共有多少张正方形纸片?(3)剪n次后,共有多少张正方形纸片?分析:每次剪都多出来3个正方形.四、课后作业1.小华比爸爸小25岁,当爸爸a 岁时,小华是 岁. 2.每台a 元的电脑降价11%后,售价是 元. 3.一打铅笔有12支,a 打铅笔共有 支. 4.若a 表示偶数,b 表示奇数,则a+b 表示 .5.有一个两位数,十位上的数字是x ,个位上的数字是y ,如果把它们的位置交换,得到的两位数是 .6.若x 、y 表示两个有理数,则它们的和是 ,它们的倒数和是 ,它们的和的倒数是 ,x 与y 的差的相反数是 ,x 与y 的绝对值的差是 ,x 与y 的商是 . 7.三角形的三边长分别为a 、b 、c ,则周长为 . 8. 1只青蛙4条腿,1声扑通跳下水;2只青蛙8条腿,2声扑通跳下水; 3只青蛙12条腿,3声扑通跳下水;…… 你能用字母表示这首儿歌吗?9.用火柴棒按图中所示方式搭图:……(1) 填写下表(①②③④3.1字母表示数 一、基础训练 1.字母 2.数量关系 3. ()2a b +,ab4. 82a ⎛⎫+⎪⎝⎭,82a a ⎛⎫++ ⎪⎝⎭5. 0.8m 二、典型例题 例1 (1)5b a (2)()1008t - (3)40s s x x ⎛⎫- ⎪+⎝⎭例2 4、7、10、13、301 ,()13n +根 ,3001 三、拓展提升1. (1)16 (2)31 (3)()13n + 四、课后作业 1. ()25a - 2. 0.89a 3. 12a 4.奇数 5.10y+x 6.x y +,11x y +,1x y +,()x y --,x y -,xy7.()a b c ++8. n 只青蛙4n 条腿,n 声扑通跳下水9(1)3,9,18,30,45 (2) ()312n n +。

字母表示数与代数式(6种题型)-2023年新七年级数学核心知识点与常见题型(北师大版)(解析版)

字母表示数与代数式(6种题型)-2023年新七年级数学核心知识点与常见题型(北师大版)(解析版)

字母表示数与代数式(6种题型)【知识梳理】一、字母表示数1.用字母表示数(1)意义:使用一个字母a可以表示任意一个数字。

(2)优越性:用字母还可以表示数的运算律和一些图形的面积、周长和体积。

2.字母表示数要注意的几点:数字与字母及字母与字母的乘号要省略;除法运算要用分数线来表示;数学应写在字母的前面,当字母前的数字是1的时候应省略不写(当字母前的数字是带分数时,一定要带分数化成假分数;主体为和的形式,后面有单位需加括号;注意:字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明地将数量关系表示出来.3.字母表示数常见的类型:(1)用字母表示运算律;(2)用字母表示数学公式;(3)用字母表示实际问题;(4)用字母表示性质二、代数式:用运算符合和括号把数或表示数的字母连接而成的式子叫做代数式.注:①单独一个数或一个字母也是代数式;②“=”不是运算符号,不能将等式与代数式混淆)三、代数式的值用数字代替代数式里的字母,按照代数式中的运算关系计算得出的记过叫做代数式的值.求代数式的值第一步:用数值代替代数式里的字母.第二步:按照代数式指明的运算,计算出结果.【考点剖析】 题型一:字母表示图形的周长和面积例1.黑板的长为2.5米,宽为b 米,则他的面积和周长分别是多少?【分析】本题是根据长方形的性质求解的,要熟记长方形的面积公式,周长公式。

【解答】面积22.5 2.5()b b =⨯=米 周长()()2.522 2.5()b b =+⨯=+米 【点评】数字与字母或数字与括号相乘时,通常省略乘号,但要把数字写在字母或括号前面。

【变式1】若长方形的长为,a 宽为,b 则长方形的周长是________, 面积是________. 答案:2(a+b ) ab 题型二:字母表示运算律例2.请用字母表示已学过的四则运算律,如加法结合律等。

【解答】加法交换律:a b b a +=+ 加法结合律:)()(c b a c b a ++=++ 乘法交换律:a b b a ⨯=⨯乘法结合律:)()(c b a c b a ⨯⨯=⨯⨯ 乘法分配律:bc ac c b a +=⨯+)(【点评】这里的“×”号,只是为了使表达清晰,实际做题时要注意书写规范。

初一数学知识点梳理及典型例题

初一数学知识点梳理及典型例题

侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数北师大版 知识点汇总[七年级上册]第一章 丰富的图形世界¤1.¤2.¤3. 球体:由球面围成的(球面是曲面)¤4. 几何图形是由点、线、面构成的。

①几何体与外界的接触面或我们能看到的外表就是几何体的表面。

几何的表面有平面和曲面;②面与面相交得到线;③线与线相交得到点。

※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。

※6. 侧棱:相邻两个侧面的交线叫做侧棱..,所有侧棱长都相等。

¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。

¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……¤9. 长方体和正方体都是四棱柱。

¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。

※12. 设一个多边形的边数为n(n≥3,且n 为整数),从一个顶点出发的对角线有(n-3)条;可以把n 边形成(n-2)个三角形;这个n 边形共有2)3(-n n 条对角线。

◎13. 圆上两点之间的部分叫做弧.,弧是一条曲线。

◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。

¤15. 凸多边形和凹多边形都属于多边形。

有弧或不封闭图形都不是多边形。

第二章 有理数及其运算 ※※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

初一数学知识点梳理及典型例题

初一数学知识点梳理及典型例题

侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数北师大版 知识点汇总[七年级上册]第一章 丰富的图形世界¤1.¤2.;¤3. 球体:由球面围成的(球面是曲面)¤4. 几何图形是由点、线、面构成的。

①几何体与外界的接触面或我们能看到的外表就是几何体的表面。

几何的表面有平面和曲面;②面与面相交得到线;③线与线相交得到点。

※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。

※6. 侧棱:相邻两个侧面的交线叫做侧棱..,所有侧棱长都相等。

¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。

&¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……¤9. 长方体和正方体都是四棱柱。

¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。

※12. 设一个多边形的边数为n(n≥3,且n 为整数),从一个顶点出发的对角线有(n-3)条;可以把n 边形成(n-2)个三角形;这个n 边形共有2)3(-n n 条对角线。

◎13. 圆上两点之间的部分叫做弧.,弧是一条曲线。

◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。

¤15. 凸多边形和凹多边形都属于多边形。

有弧或不封闭图形都不是多边形。

》第二章 有理数及其运算 ※ 。

※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

北师大版初中数学七年级上册《3.1 字母表示数》同步练习卷(含答案解析

北师大版初中数学七年级上册《3.1 字母表示数》同步练习卷(含答案解析

北师大新版七年级上学期《3.1 字母表示数》同步练习卷一.选择题(共18小题)1.下列代数式的书写格式正确的是()A.1bc B.a×b×c÷2C.3x•y÷2D.xy2.在下列的代数式的写法中,表示正确的一个是()A.“负x的平方”记作﹣x2B.“y与1的积”记作y1C.“x的3倍”记作x3D.“2a除以3b的商”记作3.下列式子中,符合代数式书写格式的有()①m×n;②3ab;③;④m+2天;⑤abc3A.2个B.3个C.4个D.5个4.下列各式子中,符合代数式书写要求的是()A.x•5B.4m×n C.x(x+1)D.﹣ab5.下列各式符合代数式书写规范的是()A.a9B.m﹣5元C.D.1x6.代数式a2+b2的意义是()A.a的平方与b的和B.a与b和的平方C.a与b的平方的和D.a的平方与b的平方的和7.我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a 实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数8.以下各式不是代数式的是()A.0B.C.D.9.代数式a2﹣的正确解释是()A.a与b的倒数的差的平方B.a的平方与b的差的倒数C.a的平方与b的倒数的差D.a与b的差的平方的倒数10.下列代数式书写符合要求的是()A.a48B.x+y C.1D.a(x+y)11.下列说法正确的是()A.a是代数式,1不是代数式B.表示a、b、2的积的代数式为2abC.代数式的意义是:a与4的差除b的商D.是二项式,它的一次项系数是12.下列各式符合代数式书写规范的是()A.B.a×7C.2m﹣1元D.3x13.下列代数式书写正确的是()A.ab•B.ab C.2ab D.3a×b 14.下列代数式的意义表示错误的是()A.2x+3y表示2x与3y的和B.表示5x除以2y所得的商C.9﹣y表示9减去y的所得的差D.a2+b2表示a与b和的平方15.在2x2,1﹣2x=0,ab,a>0,0,,π中,是代数式的有()A.5个B.4个C.3个D.2个16.代数式3(1﹣x)的意义是()A.1与x的相反数的和的3倍B.1与x的相反数的差的3倍C.1减去x的3倍D.1与x的相反数乘3的积17.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有()A.5个B.4个C.3个D.2个18.数学的符号语言简练、准确;而文字语言通俗易懂,但有时不够精炼,甚至容易引起歧义,下面4句文字语言没有歧义的是()A.a与b的平方的和B.a,b两数相差8C.a与b的和的平方D.a除以b与c的和二.填空题(共22小题)19.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有(填写序号)20.一个等边三角形的边长为x,一个正方形的边长为y,则代数式3x+4y表示的实际意义是.21.赋予式子“ab”一个实际意义:.22.请你写出一个同时符合下列条件的代数式,(1)同时含有字母a,b;(2)(3)它的系数是一个正数,你写出的一个代数式是.是一个4次单项式;23.对于字母x,y表示的数量关系“2x+y”的一个实际问题可以是.24.代数式3x+2y表示的实际意义可叙述为.25.代数式a2﹣b2可以读作.26.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式,下列三个代数式:①a﹣b﹣c;②﹣a﹣b﹣c+2;③ab+bc+ca;④a2b+b2c+c2a,其中是完全对称式的是.27.若等边三角形的边长是a,正方形的边长为b,则3a+4b表示两图形的周长和.请你再举出一个该式表示的实际意义.28.在一项居民住房节能改造工程中,某社区计划用a天完成建筑面积为1000平方米的居民住房节能改造任务,若实际比计划提前b天完成改造任务,则代数式“”表示的意义为.29.代数式a2﹣用文字语言表示为.30.代数式“5﹣4a”用文字语言表示为.31.对单项式“0.6a”可以解释为:一件商品原价为a元,若按原价的6折出售,这件商品现在的售价是0.6a元,请你对“0.6a”再赋予一个含义:.32.一个长方形的长是0.9米,宽是b米,这个长方形的面积是0.9b米.请你再赋予0.9b一个含义.33.代数式可以把实际问题的数量关系用式子的形式表示出来,同时,代数式也可以代表很多实际意义,例如“酸奶每瓶3.5元,3.5a的实际意义可以是买a 瓶酸奶的价钱”,请你给4x+y赋予一个实际意义.34.下列各式:0,,F=ma,m+2>m,2x2﹣3x+11,B≠12,,﹣y,6π,其中代数式的有个.35.给式子“2b”表示的意义用一个实际问题可解释为.36.代数式3a+4b可以表示不同的实际意义,试举实例说明:.37.如果mkg苹果的售价为a元.则代数式表示的实际意义是.38.请举一个例子说明代数式3m+2n的意义:.39.我们知道,用字母表示代数式是有一般意义的.如:a可以表示数量,若每千克苹果的价格为5元,则5a表示.40.代数式5m+2的实际意义可表示为.三.解答题(共10小题)41.已知如图,在数轴上点A,B所对应的数是﹣4,4.对于关于x的代数式N,我们规定:当有理数x在数轴上所对应的点为AB之间(包括点A,B)的任意一点时,代数式N取得所有值的最大值小于等于4,最小值大于等于﹣4,则称代数式N,是线段AB的封闭代数式.例如,对于关于x的代数式|x|,当x=±4时,代数式|x|取得最大值是4;当x=0时,代数式|x|取得最小值是0,所以代数式|x|是线段AB的封闭代数式.问题:(1)关于x代数式|x﹣1|,当有理数x在数轴上所对应的点为AB之间(包括点A,B)的任意一点时,取得的最大值和最小值分别是.所以代数式|x﹣1| (填是或不是)线段AB的封闭代数式.(2)以下关于x的代数式:①;②x2+1;③x2+|x|﹣8;④|x+2|﹣|x﹣1|﹣1.是线段AB的封闭代数式是,并证明(只需要证明是线段AB的封闭代数式的式子,不是的不需证明).(3)关于x的代数式+3是线段AB的封闭代数式,则有理数a的最大值是,最小值是.42.根据你的生活与学习经验,对代数式2(x+y)表示的实际意义作出两种不同的解释.43.根据你的生活与学习经验,对代数式2(x+y)表示的实际意义作出两种不同的解释.44.根据你的生活与学习经验,对代数式3x+2y作出两种解释.45.请你结合生活实际,设计具体情境,解释下列代数式的意义:(1);(2)(1+20%)x.46.用字母表示图中阴影部分的面积.47.请你做评委:在一堂数学活动课上,同在一合作学习小组的小明、小亮、小丁、小彭对刚学过的知识发表了自己的一些感受:小明说:“绝对值不大于4的整数有7个.”小丁说:“若|a|=3,|b|=2,则a+b的值为5或1.”小亮说:“﹣<﹣,因为两个负数比较大小,绝对值大的数反而小.”小彭说:“代数式a2+b2表示的意义是a与b的和的平方”依次判断四位同学的说法是否正确,如不正确,请帮他们修正,写出正确的说法.48.(1)根据生活经验,对代数式3x+2y作出解释.(2)两个有理数的和是负数,那么这两个数一定都是负数,这种说法对吗?如果不对,请举例说明?49.根据代数式50a﹣40b自编一道应用题.50.王刚同学拟了一张招领启事:“今天拾到钱包一个,内有人民币8.5元,请失主到一(1)班认领”.你认为这个启事合理吗?如果不合理,问题在哪里?请你改正过来.北师大新版七年级上学期《3.1 字母表示数》同步练习卷参考答案与试题解析一.选择题(共18小题)1.下列代数式的书写格式正确的是()A.1bc B.a×b×c÷2C.3x•y÷2D.xy【分析】根据代数式的书写要求判断各项即可.【解答】解:A.bc正确的书写格式是bc,故选项错误;B.a×b×c÷2正确的书写格式是abc,故选项错误;C.3x•y÷2正确的书写格式是xy,故选项错误;D.代数式xy书写正确.故选:D.【点评】本题考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.2.在下列的代数式的写法中,表示正确的一个是()A.“负x的平方”记作﹣x2B.“y与1的积”记作y1C.“x的3倍”记作x3D.“2a除以3b的商”记作【分析】根据代数式的书写要求逐一分析判断各项.【解答】解:A、“负x的平方”记作(﹣x)2,此选项错误;B、“y与1的积”记作y,此选项错误;C、“x的3倍”记作3x,此选项错误;D、“2a除以3b的商”记作,此选项正确;【点评】此题考查代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.3.下列式子中,符合代数式书写格式的有()①m×n;②3ab;③;④m+2天;⑤abc3A.2个B.3个C.4个D.5个【分析】根据代数式的书写要求判断各项.【解答】解:①正确的书写格式是mn;②正确的书写格式是ab;③的书写格式是正确的,④正确的书写格式是(m+2)天;⑤的书写格式是正确的.故选:A.【点评】此题考查代数式问题,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.4.下列各式子中,符合代数式书写要求的是()A.x•5B.4m×n C.x(x+1)D.﹣ab【分析】根据代数式的书写要求对各个式子依次进行判断即可解答.【解答】解:A.x•5需要写成5x,故A选项错误;B.4m×n需要写成4mn,故B选项错误;C.x(x+1)需要写成x(x+1),故C选项错误;D.﹣ab符合代数式书写要求;【点评】本题主要考查代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.5.下列各式符合代数式书写规范的是()A.a9B.m﹣5元C.D.1x【分析】按照代数式的书写要求判断即可.【解答】解:A、代数式为9a,不符合题意;B、代数式为(m﹣5)元,不符合题意;C、代数式为,符合题意;D、代数式为x,不符合题意,故选:C.【点评】此题考查了代数式,熟练掌握代数式的书写要求是解本题的关键.6.代数式a2+b2的意义是()A.a的平方与b的和B.a与b和的平方C.a与b的平方的和D.a的平方与b的平方的和【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【解答】解:代数式a2+b2的意义是a与b两数的平方的和.故选:D.【点评】此题考查了代数式的意义,用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.7.我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a 实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数【分析】分别判断每个选项即可得.【解答】解:A、若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,正确;B、若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,正确;C、将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,正确;D、若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,此选项错误;故选:D.【点评】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.8.以下各式不是代数式的是()A.0B.C.D.【分析】代数式是指把数或表示数的字母用+、﹣、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.由此可得答案.【解答】解:A、0是单独数字,是代数式;B、是代数式;C、是不等式,不是代数式;D、是数字,是代数式;故选:C.【点评】此类问题主要考查了代数式的定义,只要根据代数式的定义进行判断,就能熟练解决此类问题.9.代数式a2﹣的正确解释是()A.a与b的倒数的差的平方B.a的平方与b的差的倒数C.a的平方与b的倒数的差D.a与b的差的平方的倒数【分析】根据代数式的意义,可得答案.【解答】解:代数式a2﹣表示a的平方与b的倒数的差,故选:C.【点评】本题考查了代数式,理解代数式的意义是解题关键.10.下列代数式书写符合要求的是()A.a48B.x+y C.1D.a(x+y)【分析】根据代数式书写规范逐一判断即可得.【解答】解:A、a48正确书写是48a,此选项错误;B、x+y书写正确,此选项正确;C、1正确书写应该是,此选项错误;D、a(x+y)正确书写是ax+ay,此选项错误;故选:B.【点评】此题考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.11.下列说法正确的是()A.a是代数式,1不是代数式B.表示a、b、2的积的代数式为2abC.代数式的意义是:a与4的差除b的商D.是二项式,它的一次项系数是【分析】利用代数式的定义判断即可.【解答】解:A、a是代数式,1也是代数式,不符合题意;B、表示a、b、2的积的代数式为ab,不符合题意;C、代数式的意义是:a与4的差除以b的商,不符合题意;D、是二项式,它的一次项系数为,符合题意,故选:D.【点评】此题考查了代数式,熟练掌握各自的性质是解本题的关键.12.下列各式符合代数式书写规范的是()A.B.a×7C.2m﹣1元D.3x【分析】根据代数式的书写要求判断各项.【解答】解:A、代数式书写规范,故A符合题意;B、数字与字母相乘时,数字要写在字母的前面,故B不符合题意;C、代数式作为一个整体,应该加括号,故C不符合题意;D、带分数要写成假分数的形式,故D不符合题意;故选:A.【点评】本题考查了代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.13.下列代数式书写正确的是()A.ab•B.ab C.2ab D.3a×b【分析】根据代数式的书写要求判断各项.【解答】解:A、正确的书写格式是,错误;B、正确的书写格式是,正确;C、正确的书写格式是,错误;D、正确的书写格式是,错误;故选:B.【点评】此题考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.14.下列代数式的意义表示错误的是()A.2x+3y表示2x与3y的和B.表示5x除以2y所得的商C.9﹣y表示9减去y的所得的差D.a2+b2表示a与b和的平方【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【解答】解:A、2x+3y表示2x与3y的和,说法正确,不符合题意;B、表示5x除以2y所得的商,说法正确,不符合题意;C、9﹣y表示9减去y的所得的差,说法正确,不符合题意;D、a2+b2表示a的平方与b的平方的和,原来的说法错误,符合题意.故选:D.【点评】此题主要考查了代数式的表示方法,题目比较简单.15.在2x2,1﹣2x=0,ab,a>0,0,,π中,是代数式的有()A.5个B.4个C.3个D.2个【分析】代数式是有数和字母组成,表示加、减、乘、除、乘方、开方等运算的式子,或含有字母的数学表达式,注意不能含有=、<、>、≤、≥、≈、≠等符号.【解答】解:∵1﹣2x=0,a>0,含有=和>,所以不是代数式,∴代数式的有2x2,ab,0,,π,共5个.故选:A.【点评】此题主要考查了代数式的定义,掌握代数式的定义是本题的关键,注意含有=、<、>、≤、≥、≈、≠等符号的不是代数式.16.代数式3(1﹣x)的意义是()A.1与x的相反数的和的3倍B.1与x的相反数的差的3倍C.1减去x的3倍D.1与x的相反数乘3的积【分析】本题较为简单,对代数式3(1﹣x)的意义进行分析,弄清括号内部分与括号外的关系即可求出答案.【解答】解:代数式3(1﹣x)表示的是括号内部分的3倍,而括号内部分表示的1与x的差,也可表示1与x的相反数的和.故选:A.【点评】本题考查代数式的意义问题,对代数式进行分析,较为简单.17.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有()A.5个B.4个C.3个D.2个【分析】根据书写规则,分数不能为带分数,不能出现除号,单位名称前面的代数式不是单项式要加括号,对各项的代数式进行判定,即可求出答案.【解答】解:①1x分数不能为带分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c不能出现除号;⑤,书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②④共3个.故选:C.【点评】此题考查了代数式的书写.注意代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.18.数学的符号语言简练、准确;而文字语言通俗易懂,但有时不够精炼,甚至容易引起歧义,下面4句文字语言没有歧义的是()A.a与b的平方的和B.a,b两数相差8C.a与b的和的平方D.a除以b与c的和【分析】根据文字语言列代数式分析说明得出正确选项.【解答】解:A、a与b的平方的和,可列代数式为:①a+b2或②a2+b2,所以有分歧;B、a,b两数相差8,可列代数式为:a﹣b=8或b﹣a=8,所以有分歧;C、a与b的和的平方,列代数式为:(a+b)2,没有分歧;D、a除以b与c的和可列代数式为:a÷(b+c)或a÷b+c,所以有分歧;故选:C.【点评】此题考查的知识点是代数式,关键是根据文字语言列出代数式.二.填空题(共22小题)19.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有①②(填写序号)【分析】根据书写规则,分数不能为带分数,对各项的代数式进行判定,即可求出答案.【解答】解:①1x分数不能为带分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c,书写正确;⑤;书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②共2个.故答案为:①②.【点评】此题考查了代数式的书写.注意代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)带分数要写成假分数的形式.20.一个等边三角形的边长为x,一个正方形的边长为y,则代数式3x+4y表示的实际意义是边长为x的等边三角形周长和边长为y的正方形周长的和.【分析】根据图形的周长的即可得到结论.【解答】解:3x+4y表示边长为x的等边三角形周长和边长为y的正方形周长的和.故答案为:边长为x的等边三角形周长和边长为y的正方形周长的和.【点评】本题考查了代数式的意义,正确的理解题意是解题的关键.21.赋予式子“ab”一个实际意义:边长分别为a,b的矩形面积.【分析】根据题意可以写出一个符合题目中代数式的语句,本题的答不唯一,只要符合实际即可.【解答】解:赋予式子“ab”一个实际意义:边长分别为a,b的矩形面积,故答案为:边长分别为a,b的矩形面积.【点评】本题考查代数式,解答本题的关键是明确题意,写出相应的语句.22.请你写出一个同时符合下列条件的代数式,(1)同时含有字母a,b;(2)(3)它的系数是一个正数,你写出的一个代数式是2a3b.是一个4次单项式;【分析】根据单项式、单项式次数的定义,结合题意要求书写即可,答案不唯一.【解答】解:根据题意,满足这些条件的代数式可以是2a3b(答案不唯一),故答案为:2a3b【点评】本题考查了单项式的定义,属于基础题,注意按照题目要求书写.23.对于字母x,y表示的数量关系“2x+y”的一个实际问题可以是答案不唯一,如已知钢笔2元,一只铅笔1元,购买x只铅笔和y支钢笔共计(2x+y)元.【分析】结合实际情境作答,答案不唯一.【解答】解:2x+y赋予一个实际意义:如已知钢笔2元,一只铅笔1元,购买x 只铅笔和y支钢笔共计(2x+y)元.故答案为:答案不唯一,如已知钢笔2元,一只铅笔1元,购买x只铅笔和y支钢笔共计(2x+y)元.【点评】此题主要考查了代数式,此类问题应结合实际,根据代数式的特点解答.24.代数式3x+2y表示的实际意义可叙述为一个苹果的质量是x,一个桔子的质量是y,那么3个苹果和2个桔子的质量和是3x+2y(答案不唯一).【分析】结合实际情境作答,答案不唯一,如一个苹果的质量是x,一个桔子的质量是y,那么3个苹果和2个桔子的质量和是3x+2y.【解答】解:如一个苹果的质量是x,一个桔子的质量是y,那么3个苹果和2个桔子的质量和是3x+2y.故答案为:一个苹果的质量是x,一个桔子的质量是y,那么3个苹果和2个桔子的质量和是3x+2y(答案不唯一).【点评】考查了代数式的实际意义,此类问题应结合实际,根据代数式的特点解答.25.代数式a2﹣b2可以读作a的平方与b的平方的差.【分析】根据题目中的式子可以解答本题.【解答】解:代数式a2﹣b2可以读作a的平方与b的平方的差,故答案为:a的平方与b的平方的差.【点评】本题考查代数式,解题的关键是明确代数式的读法.26.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式,下列三个代数式:①a﹣b﹣c;②﹣a﹣b﹣c+2;③ab+bc+ca;④a2b+b2c+c2a,其中是完全对称式的是②③.【分析】若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,据此逐项判断即可.【解答】解:∵把a、b两个字母交换,b﹣a﹣c不一定等于a﹣b﹣c,a2b+b2c+c2a 不一定等于a2b+b2c+c2a,∴①④不符合题意.∵若将代数式中的任意两个字母交换,代数式不变,∴②③符合题意.故答案为:②③.【点评】此题主要考查了完全对称式的含义和应用,要熟练掌握,解答此题的关键是要明确:若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式.27.若等边三角形的边长是a,正方形的边长为b,则3a+4b表示两图形的周长和.请你再举出一个该式表示的实际意义三角形和正方形周长的和.【分析】根据图形的周长的即可得到结论.【解答】解:3a+4b表示三角形和正方形周长的和.故答案为:三角形和正方形周长的和.【点评】本题考查了代数式的意义,正确的理解题意是解题的关键.28.在一项居民住房节能改造工程中,某社区计划用a天完成建筑面积为1000平方米的居民住房节能改造任务,若实际比计划提前b天完成改造任务,则代数式“”表示的意义为实际每天完成的改造任务.【分析】根据计划完成建筑面积为1000平方米的居民住房节能改造任务需要a 天,实际提前b天,可知实际完成需要(a﹣b)天,从而可以得到代数式“”表示的意义.【解答】解:∵计划完成建筑面积为1000平方米的居民住房节能改造任务需要a天,实际提前b天,∴实际完成需要(a﹣b)天,∴代数式“”表示的意义是实际每天完成的改造任务,故答案为:实际每天完成的改造任务.【点评】本题考查代数式,解题的关键是明确代数式在原题中表示的实际含义.29.代数式a2﹣用文字语言表示为a的平方与b的倒数的差.【分析】分别解释a2,的意义,再表示差即可.【解答】解:a2 表示为a的平方,可表示为b的倒数,∴代数式可表示为a的平方与b的倒数的差,故答案为:a的平方与b的倒数的差.【点评】本题考查代数式的意义,易错点是根据最后的运算顺序得到相应的解释.30.代数式“5﹣4a”用文字语言表示为5减去a的4倍的差.【分析】4a表示a的4倍,即5﹣4a表示5减去a的4倍的差.【解答】解:代数式“5﹣4a”用文字语言表示为5减去a的4倍的差.故答案为:5减去a的4倍的差.【点评】本题考查了代数式,培养了学生的语言表达能力,关键是理解代数式的意义.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《字母表示数》典型例题
例1 举出三个小学已学过的用字母表示数的例子,并说明其中字母的含义。

例2 用字母表示下面实际问题。

(1)行驶中的火车的速度为v 米 / 秒,汽车行驶的速度是火车速度的
3
1,用v 表示汽车速度;
(2)如图,表示圆环的面积;
(3)如图,是用火柴摆出的三角形的图案,当摆n 个三角形时,需火柴多少根。

例3 观察等式
1+2+1=4
1+2+3+2+1=9
1+2+3+4+3+2+1=16
1+2+3+4+5+4+3+2+1=25
(1)写出和上面等式具有同样结构,等号左边最大数是10的式子.
(2)写出一个等式,要求它能代表所有类似的等式,清楚地反映出这类等式的特点. 例4 选择题
(1)如图是L 形钢条截面,它的面积为( )
A .lt cl +
B .lt t t c +-)(
C .t t l t t c )()(-+-
D .)()(2t l t c t c l -+-+++
(2)一个到火星旅行的计划,来回的行程需要三个地球年(包括在火星上停留a 个地球天),已知火星和地球之间的距离为34000000千米.那么,这个旅行的平均速度是每小时多少千米?(说明:地球年、地球天,是指在地球上一年或一天,即一年=365天,一天=24小时)
A .34000000
12
)3653(⨯-⨯a B .24)3653(34000000⨯-⨯a C .24)3653(34000000
2⨯-⨯⨯a D .)3653(224
34000000a -⨯⨯⨯
参考答案
例1 解 (1)加法结合律:)(c b a c b a ++=++;其中a 、b 、c 分别表示三个加数。

(2)长方形面积=b a ⨯,其中a 、b 分别表示长方形的长和宽。

(3)圆的面积=2r π,其中π表示圆周率,r 表示圆的半径。

说明:π的值是固定不变的。

例2 分析 (1)如果v 是一个数,该题就是求v 的31是多少,可表示为v 3
1; (2)分别用R 、r 把大圆和小圆的面积表示出来,用大圆面积减去小圆的面积就是圆环的面积;
(3)由图可以发现,当第一个三角形摆完之后,每增加一个三角形就要增加2根火柴,所以摆n 个三角形需)]1(23[-+n 根火柴。

解 (1)汽车的速度可表示为v 31;
(2)圆环的面积为:22r R ππ-;
(3)摆成n 个三角形需要火柴)1(23-+n 根。

说明:(1)用含字母的式子表示实际问题时,我们必须弄清实际问题中的数量关系;(2)字母和字母相乘可以把“×”写在“·”或不写,如b a ⨯可写成b a ⋅或ab ;而b a ÷或b ÷1,则写成b
b a 1,;(3)数乘以字母,或数乘以含有字母的式子,一般省略乘号,并把数写在前面,如a ⨯3写成a 3,不写成3a ,同理,)(3b a +⨯写成)(3b a +。

例3 分析:我们通过观察等式发现,这些式子右边都是一个自然数的平方,左边是一连串自然数相加,其中,最在的自然数的平方恰好是右边的数.即左边最大的数与右边二次幂的底数相同,要表示所有这类式子都具有的这种相等关系,只有使用字母.
解:(1)1+2+3+…+10+9+8+7+…+1=102

(2)21)3()2()1(321n n n n n =++-+-+-+++++
说明:题中所给的每一个式子都只是一个特殊的情况,多个这样的式子也能反映出普遍规律,但是比较麻烦.要想用一个式子表示类似许多式子的规律性,只有用字母.
例4 分析:第(1)小题lt cl +表示的是两个宽都是t 的长方形的面积之和,如图,
c ,可把原图形分为两个长方形,它们的宽都是t,其中一个的长为l,而另一个的长为t
见A不正确,而B正确.
第(2)小题所求速度应为路程除以小时数之商,由此排除A、D(它们的除数分别是千米数与天数),题目中谈的是往返行程,是距离的2倍.
解:(1)B (2)C.
说明:第(1)小题中的C小于实际面积,D是周长的表达式,这些粗心就容易导致错误.。

相关文档
最新文档