数据挖掘关联规则

合集下载

数据挖掘方法——关联规则(自己整理)

数据挖掘方法——关联规则(自己整理)

6
四、关联规则的分类
按照不同情况,关联规则可以进行分类如下: 1.基于规则中处理的变量的类别,关联规则可以分为布尔型和数值型。 布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值 型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动 态的分割,或者直接对原始的数据进行处理,当然数值型关联规则中也可以包含种类变量。 例如:性别=“女”=>职业=“秘书” ,是布尔型关联规则;性别=“女”=>avg(收入)= 2300,涉及的收入是数值类型,所以是一个数值型关联规则。 2.基于规则中数据的抽象层次,可以分为单层关联规则和多层关联规则。 在单层的关联规则中,所有的变量都没有考虑到现实的数据是具有多个不同的层次的;而 在多层的关联规则中,对数据的多层性已经进行了充分的考虑。例如:IBM台式机=>Sony打 印机,是一个细节数据上的单层关联规则;台式机=>Sony打印机,是一个较高层次和细节层 次之间的多层关联规则。 3.基于规则中涉及到的数据的维数,关联规则可以分为单维关联规则和多维关联规则。 在单维的关联规则中,我们只涉及到数据的一个维,如用户购买的物品;而在多维的关联 规则中,要处理的数据将会涉及多个维。换成另一句话,单维关联规则是处理单个属性中的 一些关系;多维关联规则是处理各个属性之间的某些关系。例如:啤酒=>尿布,这条规则 只涉及到用户的购买的物品;性别=“女”=>职业=“秘书”,这条规则就涉及到两个字段 的信息,是两个维上的一条关联规则。
小结:Apriori算法可以分为频繁项集的生成和关联规则的生成两 大步骤;FP-Growth算法可以分成FP-Tree的生成,频繁项集的生成和 关联规则的生成3大步骤。
Copyright © 2009, MANAGEMENT SCIENCE ASSOCIATES, INC.

简述关联规则算法流程

简述关联规则算法流程

简述关联规则算法流程摘要:一、关联规则简介二、关联规则算法流程1.数据预处理2.事务数据库的构建3.寻找频繁项集4.生成关联规则5.剪枝与优化三、关联规则应用实例四、关联规则算法的优缺点正文:一、关联规则简介关联规则是数据挖掘中的一种重要方法,主要用于发现数据集中的关联关系。

关联规则的表示形式为:A1 → A2,表示如果事务中包含A1,那么很可能也包含A2。

关联规则算法旨在找出频繁出现在数据集中的项集(即支持度高的项组合),然后根据置信度生成关联规则。

二、关联规则算法流程1.数据预处理:首先对原始数据进行清洗,包括去除重复记录、填补缺失值等,以便后续算法顺利进行。

2.事务数据库的构建:将清洗后的数据组织成事务数据库,其中每个事务由一组项目组成。

3.寻找频繁项集:通过遍历事务数据库,计算每个项集的出现次数,找出支持度大于设定阈值的频繁项集。

这一步可以使用递归、Apriori算法等方法。

4.生成关联规则:对于每个频繁项集,生成满足置信度要求的关联规则。

例如,如果一个频繁项集为{A, B},且其在事务数据库中的支持度为0.8,那么可以生成如下关联规则:A → B,支持度为0.8。

5.剪枝与优化:为了消除冗余规则和降低规则置信度,可以对生成的关联规则进行剪枝。

剪枝方法包括:前缀剪枝、闭包剪枝等。

此外,还可以通过优化算法提高计算效率,如采用矩阵运算、FP-growth等方法。

三、关联规则应用实例关联规则在许多领域都有广泛应用,如购物篮分析、搜索引擎、信用评估等。

以购物篮分析为例,通过挖掘顾客购买商品的关联关系,可以为顾客推荐相关商品,提高销售额和客户满意度。

四、关联规则算法的优缺点关联规则算法具有较强的可读性和实用性,能够发现数据集中的潜在关联关系。

但同时,它也存在一定的局限性,如对数据量较大、项目较多的情况处理效果不佳,以及生成大量冗余规则等问题。

为了解决这些问题,研究人员不断提出新的关联规则算法,以提高算法的效率和准确性。

数据挖掘(第2版)-课件 第5章关联规则

数据挖掘(第2版)-课件 第5章关联规则
• 如:规则{尿布}—>{啤酒}表示尿布和啤酒的销售之间存在关联—— “啤酒与尿布”的故事。
• 关联分析用以发现事物间存在的关联性,除了购物篮分析外,有广泛应用, 如:辅助决策——挖掘商场销售数据、发现商品间的联系;医疗诊断—— 用于发现某些症状与某种疾病之间的关联;网页挖掘——用于发现文档集 合中某些词之间的关联,发现主题词演化模式、学科发展趋势;电子商 务——进行产品的关联推荐等。
频繁项集
支持度不小于最小支持度阈值的项集
强关联规则
根据用户预先定义的支持度和置信度阈值,支持度不小于最小支持度阈值 并且置信度不小于最小置信度阈值的规则
5.2.1 基本概念(4)
关联分析挖掘的关联规则分类 根据处理值分类
布尔关联规则 量化关联规则
根据涉及维度分类
单维关联规则 多维关联规则
支持度 (support)
事务数据库D中包含项A和B的事务占所有 事务的百分比
可表示为:support(A,B ) P(A B ) (A B )/ N
5.2.1 基本概念(3)
置信度
事务数据库D中同时包含项A和B的事务占包含项A的事务的百分比
条件概率表示为: confindence(A,B ) P(B | A) (A B )/ (A)
根据数据抽象层次分类
单层关联规则 多层关联规则
【例5-1】 设有事务集合如表5-1,计算规则{bread,milk tea} 的支持度、置信度。
交易号TID
顾客购买的商品
ห้องสมุดไป่ตู้
交易号TID
T1
bread, cream, milk, tea
T6
T2
bread, cream, milk
T7

数据挖掘方法——关联规则(自己整理)

数据挖掘方法——关联规则(自己整理)

小结:Apriori算法可以分为频繁项集的生成和关联规则的生成两 大步骤;FP-Growth算法可以分成FP-Tree的生成,频繁项集的生成和 关联规则的生成3大步骤。
Copyright © 2009, MANAGEMENT SCIENCE ASSOCIATES, INC.
9
五、关联规则挖掘的相关算法
Copyright © 2009, MANAGEMENT SCIENCE ASSOCIATES, INC.
Copyright © 2009, MANAGEMENT SCIENCE ASSOCIATES, INC.
7
五、关联规则挖掘的相关算法
1.Apriori算法:使用候选项集找频繁项集 Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是 基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关 联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。 该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和 预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小 支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集 合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定 义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被 留下来。为了生成所有频集,使用了递推的方法。 Apriori算法可以产生相对较小的候选项目集,扫描数据库的次数由最大频繁 项目集的项目数决定。因此,该算法适合于最大频繁项目集相对较小的数据集中 的关联规则挖掘问题。 Apriori算法的两大缺点:1.可能产生大量的候选集;2.可能需要重复扫描数据库。
关联分析的目的:找出数据库中隐藏的关联网。一般用Support(支 持度)和Confidence(可信度)两个阀值来度量关联规则的相关性,引入 lift(提高度或兴趣度)、相关性等参数,使得所挖掘的规则更符合需求。

数据挖掘中的关联规则算法

数据挖掘中的关联规则算法

数据挖掘中的关联规则算法数据挖掘是伴随着信息技术的不断发展而产生的一种新的工具和方法。

它可以从大量的数据中挖掘出有用的信息,并为实际决策提供帮助。

关联规则算法是其中的一种重要方法,它可以找到项集之间的关系,并预测未来的行为或者趋势。

接下来,我们将对关联规则算法进行详细的介绍。

一、关联规则算法的定义关联规则算法是在数据挖掘中使用频率最广泛的算法之一。

其基本思想是通过寻找数据之间的关联,提取出频繁出现的项集以及项集之间的关系。

在实际应用中,关联规则算法可以广泛应用于市场营销、电子商务、人口统计学等领域。

它可以帮助用户挖掘到有用的信息,理清数据之间的关系,从而做出更明智的决策。

二、关联规则算法的原理关联规则算法有两个基本参数:支持度和置信度。

支持度是指指定的项集在总事务中出现的频率。

置信度则是指在满足条件A的前提下,出现B的概率。

关联规则算法通过计算这两个参数来判断各个项集之间的关系。

举个例子:假设我们想要了解一个超市的销售情况。

我们首先需要确定项集,比如说可乐和糖果在同一笔订单出现的概率。

如果我们设定支持度为50%,即一笔订单至少含有一种可乐和一种糖果,那么我们就可以通过统计数据得到可乐和糖果同时出现的频率。

如果这个频率高于50%,那么我们就可以得出这两个项集之间存在关联规则。

三、关联规则算法的应用关联规则算法可以应用于很多领域,如市场营销、电子商务、人口统计学等。

在市场营销方面,关联规则算法可以帮助企业挖掘到产品之间的关联性,从而了解顾客的需求和偏好,并制定相应的定价策略。

在电子商务中,关联规则算法可以根据用户购买历史记录来推荐相似的产品,提高用户的购买率。

在人口统计学方面,关联规则算法可以帮助政府了解不同人群之间的联系,从而制定更为精准的政策。

四、关联规则算法的优缺点优点:关联规则算法具有较高的算法效率,可以处理大规模数据。

其结果易于理解,可以呈现给用户。

同时,关联规则算法可以挖掘出隐藏在数据中的规律性,帮助用户发现新的信息。

第6章 数据挖掘技术2(关联规则挖掘)

第6章 数据挖掘技术2(关联规则挖掘)

求L3。比较候选支持度计数与最小支持度计数得: 项集 I1,I2,I3 I1,I2,I5 支持度计数 2 2


所以 L3=C3 求C4= L3 ∞ L3={I1,I2,I3,I5} 子集{I2,I3,I5} L3,故剪去; 故C4=,算法终止。 结果为L=L1 U L2 U L3
24
19:40
定义5:强关联规则。同时满足最小支持度(min_sup) 和最小可信度(min_conf)的规则称之为强关联规 则 定义6:如果项集满足最小支持度,则它称之为频繁项 集(Frequent Itemset)。
19:40 9
2. 关联规则挖掘过程

关联规则的挖掘一般分为两个过程: (1)找出所有的频繁项集:找出支持度大于 最小支持度的项集,即频繁项集。
由L1 产生C2
项集 支持度 计数 {I1} {I2} {I3} {I4} {I5} 6 7 6 2 2
19:40
19
C2
C2
比较候 支持度 选支持 度计数 4 与最小 4 支持度 1 计数 2
4 2 2 0 1 0
L2
项集 支持度
{I1,I4} {I1,I5} {I2,I3} {I2,I4} {I2,I5} {I3,I4} {I3,I5} {I4,I5}
Apriori是挖掘关联规则的一个重要方法。 算法分为两个子问题: 找到所有支持度大于最小支持度的项集 (Itemset),这些项集称为频繁集 (Frequent Itemset)。 使用第1步找到的频繁集产生规则。
19:40
14



Apriori 使用一种称作逐层搜索的迭代方法, “K-项集”用于探索“K+1-项集”。 1.首先,找出频繁“1-项集”的集合。该集合 记作L1。L1用于找频繁“2-项集”的集合L2, 而L2用于找L3, 如此下去,直到不能找到“K-项集”。找每个 LK需要一次数据库扫描。

数据挖掘中的关联规则挖掘

数据挖掘中的关联规则挖掘

数据挖掘中的关联规则挖掘数据挖掘是一种从大量数据中自动发现有用信息的过程。

将数据挖掘应用于商业领域,可以帮助企业做出更明智的决策,发现潜在客户,提高销售业绩。

而关联规则挖掘则是数据挖掘中的一个重要方法,它可以帮助我们发现数据集中项集之间的关联关系。

什么是关联规则挖掘?在数据挖掘中,关联规则挖掘是指通过挖掘数据集中的关联规则,从而发现数据集中的频繁项集之间的关联关系。

举个例子,在超市购物场景中,如果我们发现顾客购买了尿布,并伴随着啤酒的购买,那么我们就可以发现尿布和啤酒之间存在关联规则。

这个规则的意义就在于,我们一旦发现顾客购买了尿布,就有可能会购买啤酒,因此我们可以在超市中增加这两种商品的陈列位置,以提高销量。

如何进行关联规则挖掘?关联规则挖掘的过程如下:1.确定数据集和支持度阈值关联规则挖掘需要一个数据集,并且需要指定一个最小支持度阈值。

支持度是指所有包含该项集的事务数除以总事务数,即$supp(X) = \frac{count(X)}{|D|}$其中,X指数据集中的一个项集,count(X)指包含该项集的事务数,D指整个数据集。

2.寻找频繁项集频繁项集是指在数据集中出现次数超过最小支持度阈值的项集,即$\{X | supp(X) \geq minsupp\}$3.生成关联规则根据频繁项集生成关联规则,关联规则的形式为$X \rightarrow Y$其中,X和Y是项集,表示在购买X的情况下,也会购买Y。

关联规则的质量可以通过支持度和置信度来衡量。

4.衡量关联规则的质量关联规则的置信度是指在购买X的情况下,也购买了Y的概率,即$conf(X \rightarrow Y) = \frac{supp(X \cup Y)}{supp(X)}$其中,conf代表置信度,X和Y是项集,supp(X∪Y)代表同时包含X和Y的事务数,supp(X)代表X的支持度。

同时,也可以通过提升度来衡量规则的质量。

提升度是指在购买X的情况下,购买Y的概率是在没有购买X的情况下购买Y的概率的多少倍,即$lift(X \rightarrow Y) = \frac{conf(X \rightarrow Y)}{supp(Y)}$关联规则挖掘的应用场景关联规则挖掘可以被广泛应用于各种业务场景中,例如:1.零售业在零售业场景中,关联规则挖掘可以帮助零售商发现顾客之间的购买模式和趋势,从而提高销售额和客户忠诚度。

【数据挖掘技术】关联规则(Apriori算法)

【数据挖掘技术】关联规则(Apriori算法)

【数据挖掘技术】关联规则(Apriori算法)⼀、关联规则中的频繁模式关联规则(Association Rule)是在数据库和数据挖掘领域中被发明并被⼴泛研究的⼀种重要模型,关联规则数据挖掘的主要⽬的是找出:【频繁模式】:Frequent Pattern,即多次重复出现的模式和并发关系(Cooccurrence Relationships),即同时出现的关系,频繁和并发关系也称为关联(Association).⼆、应⽤关联规则的经典案例:沃尔玛超市中“啤酒和尿不湿”的经典营销案例购物篮分析(Basket Analysis):通过分析顾客购物篮中商品之间的关联,可以挖掘顾客的购物习惯,从⽽帮助零售商可以更好地制定有针对性的营销策略。

以下列举⼀个最简单也最经典的关联规则的例⼦:婴⼉尿不湿—>啤酒[⽀持度=10%,置信度=70%]这个规则表明,在所有顾客中,有10%的顾客同时购买了婴⼉尿不湿和啤酒,⽽在所有购买了婴⼉尿不湿的顾客中,占70%的⼈同时还购买了啤酒。

发现这个关联规则后,超市零售商决定把婴⼉尿不湿和啤酒摆在⼀起进⾏销售,结果明显提⾼了销售额,这就是发⽣在沃尔玛超市中“啤酒和尿不湿”的经典营销案例。

三、⽀持度(Support)和置信度(Confidence)事实上,⽀持度和置信度是衡量关联规则强度的两个重要指标,他们分别反映着所发现规则有⽤性和确定性。

【⽀持度】规则X->Y的⽀持度:事物全集中包含X U Y的事物百分⽐。

Support(A B)= P(A B)⽀持度主要衡量规则的有⽤性,如果⽀持度太⼩,则说明相应规则只是偶发事件,在商业实践中,偶发事件很可能没有商业价值。

【置信度】规则X->Y的置信度:既包括X⼜包括Y的事物占所有包含了X的事物数量的百分⽐。

Confidence(A B)= P(B|A)置信度主要衡量规则的确定性(可预测性),如果置信度太低,那么从X就很难可靠的推断出Y来,置信度太低的规则在实践应⽤中也没有太⼤⽤途。

数据挖掘中的关联规则挖掘算法

数据挖掘中的关联规则挖掘算法

数据挖掘中的关联规则挖掘算法数据挖掘是通过对大量数据的分析和处理,发现其中隐藏的模式、关系和规律的过程。

而关联规则挖掘算法就是其中的一种重要方法,它帮助我们发现数据集中的频繁项集和关联规则。

一、关联规则挖掘算法简介关联规则挖掘算法是指在事务型数据中挖掘频繁项集和关联规则的方法。

频繁项集指的是在一组数据事务中频繁出现的项集,而关联规则则是指形如{A}→{B}的规则,其中A和B为项集。

常用的关联规则挖掘算法包括Apriori算法和FP-growth算法。

二、Apriori算法Apriori算法是最早被提出和广泛应用的关联规则挖掘算法之一。

它基于频繁项集的性质,使用候选集和剪枝策略来逐步生成频繁项集。

1. 候选集生成Apriori算法的第一步是生成候选集,即通过扫描数据集来获取初始的候选项集C1。

然后根据C1生成候选项集C2,再根据C2生成C3,以此类推,直到生成不再增长的候选集。

2. 剪枝策略在生成候选集的过程中,Apriori算法采用了一种称为“Apriori性质”的剪枝策略,即如果一个项集不是频繁的,那么它的超集也不是频繁的。

这样可以减少不必要的计算。

3. 频繁项集生成通过候选集生成步骤得到的候选集,通过扫描数据集来计算支持度,并筛选出频繁项集,即满足最小支持度阈值的项集。

4. 关联规则生成根据频繁项集,生成关联规则。

对于每个频繁项集,可以根据置信度阈值来筛选出满足条件的关联规则。

三、FP-growth算法FP-growth算法是一种用于挖掘频繁项集的高效算法。

它通过构建一种称为FP树的数据结构,显著减少了候选项集的生成和扫描数据集的次数。

1. 构建FP树FP-growth算法首先通过扫描数据集构建FP树。

FP树是一种前缀树,它通过链接相似的项集,将频繁项集的信息压缩到了树中。

2. 构建条件模式基通过FP树,可以获取每个项集的条件模式基。

条件模式基是指以某个项集为后缀的路径集合。

3. 递归挖掘频繁项集利用条件模式基,可以递归地挖掘频繁项集。

数据挖掘中的关联规则与频繁项集挖掘算法

数据挖掘中的关联规则与频繁项集挖掘算法

数据挖掘中的关联规则与频繁项集挖掘算法在当今信息爆炸的时代,随着数据规模的不断增加,数据挖掘技术越来越受到重视。

数据挖掘是一种从大量数据中提取隐含的、以前未知的、潜在有用的信息的过程。

数据挖掘技术可以帮助企业和机构更好地理解其数据,发现其中的规律和模式,并据此做出合理的决策。

在数据挖掘中,关联规则与频繁项集挖掘算法是两个重要的技术,本文将对它们进行详细介绍。

一、关联规则关联规则是数据挖掘中常用的一种技术,用于发现数据中的关联关系。

关联规则通常用来描述数据之间的相关性,并找出一些隐藏的规律和关系。

它可以被应用于很多领域,例如市场营销、医疗诊断、天气预测等。

一个典型的关联规则可以表示为“A→B”,意思是当事件A发生时,事件B也会发生。

其中A和B可以是单个项或者项集。

1.找出频繁项集在关联规则挖掘中,首先需要找出频繁项集。

频繁项集是指经常出现在一起的一组项的集合。

找出频繁项集有多种算法,其中最著名的是Apriori算法和FP-growth算法。

Apriori算法是一种基于候选集生成的方法,它通过不断迭代的方式来找出频繁项集。

而FP-growth 算法则是一种基于数据压缩的方法,它通过构建FP树来高效地发现频繁项集。

2.计算关联规则在找出频繁项集之后,接下来需要计算关联规则。

计算关联规则的方法通常有两种,一种是基于支持度和置信度的方法,另一种是基于卡方检验的方法。

支持度是指一个项集在数据集中出现的频率,而置信度是指如果项集A出现,则项集B也出现的概率。

通过对支持度和置信度的限定,可以筛选出符合要求的关联规则。

3.应用关联规则找出关联规则之后,可以将其应用于实际业务中。

例如在市场营销中,可以根据关联规则来设计促销活动;在医疗诊断中,可以根据关联规则来发现疾病的潜在因素。

因此,关联规则在实际应用中具有广泛的价值。

二、频繁项集挖掘算法频繁项集挖掘算法是数据挖掘中的一种重要技术,它用来找出在数据集中频繁出现的项集。

数据挖掘中的关联规则挖掘技术

数据挖掘中的关联规则挖掘技术

数据挖掘中的关联规则挖掘技术数据挖掘是现代信息技术领域中非常重要的一种技术,它通过对大规模数据的分析、处理、挖掘和建模等过程,发现有价值的知识和信息,提供决策支持和业务优化等功能,对企业的发展和决策起到了至关重要的作用。

其中,关联规则挖掘技术是数据挖掘领域中非常常见和重要的技术之一,它可以通过构建数据集中的项集和频繁项集之间的关系模型,发现数据集中隐藏的规律和关联性,为企业优化和决策提供有力支持。

在本文中,我们将对关联规则挖掘技术进行介绍和探讨,旨在为读者深入了解该技术提供一定的参考和指导。

一、关联规则挖掘技术的基本概念关联规则挖掘技术是数据挖掘领域中一种常见的算法,主要用于在大规模数据集中发现项集之间的关联关系。

关联规则是指两个或以上相关的项之间的逻辑关系,通常用“IF-THEN”语句的形式来表示。

例如,一个关联规则可能表示为:“如果用户购买了牛奶和鸡蛋,那么他们有51%的概率会购买面包。

”可以看出,关联规则挖掘技术主要是通过计算不同项集之间的支持度和置信度等指标来发现数据中的潜在关联关系。

在关联规则挖掘中,常用的几个基本概念包括:1、频繁项集:指在数据集中出现频率较高的项的集合,可以通过自底向上逐层扫描数据集,发现每个阶段出现频率高于最小支持度阈值的所有项的集合来获取。

2、支持度:指数据集中出现某个项集的比例,它可以用来衡量一个项集在数据集中的频繁程度。

支持度越高,说明项集越常出现。

3、置信度:指一个关联规则成立的概率,它可以用来判断规则是否具有实际的关联性。

置信度越高,说明规则越有可能成立。

4、提升度:指一个规则中后件项的出现是否依赖于前件项的出现,它可以用来衡量规则的强度和关联度。

二、关联规则挖掘技术的算法流程关联规则挖掘技术主要有两种算法:Apriori算法和FP-Growth算法。

1、Apriori算法Apriori算法是经典的关联规则挖掘算法之一,主要是可以通过集合的包含关系来枚举所有可能的频繁项集。

数据挖掘方法——关联规则(自己整理)

数据挖掘方法——关联规则(自己整理)
一、关联规则概念 二、关联规则应用领域 三、关联规则挖掘的过程 四、关联规则的分类 五、关联规则挖掘的相关算法 六、关联规则的优缺点
1
一、关联规则概念
关联分析(Association analysis):就是从给定的数据集发现频繁出 现的项集模式知识(又称为关联规则,association rules)。
按照不同情况,关联规则可以进行分类如下: 1.基于规则中处理的变量的类别,关联规则可以分为布尔型和数值型。 布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值 型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动 态的分割,或者直接对原始的数据进行处理,当然数值型关联规则中也可以包含种类变量。 例如:性别=“女”=>职业=“秘书” ,是布尔型关联规则;性别=“女”=>avg(收入) =2300,涉及的收入是数值类型,所以是一个数值型关联规则。 2.基于规则中数据的抽象层次,可以分为单层关联规则和多层关联规则。 在单层的关联规则中,所有的变量都没有考虑到现实的数据是具有多个不同的层次的;而 在多层的关联规则中,对数据的多层性已经进行了充分的考虑。例如:IBM台式机=>Sony打 印机,是一个细节数据上的单层关联规则;台式机=>Sony打印机,是一个较高层次和细节层 次之间的多层关联规则。 3.基于规则中涉及到的数据的维数,关联规则可以分为单维关联规则和多维关联规则。 在单维的关联规则中,我们只涉及到数据的一个维,如用户购买的物品;而在多维的关联 规则中,要处理的数据将会涉及多个维。换成另一句话,单维关联规则是处理单个属性中的 一些关系;多维关联规则是处理各个属性之间的某些关系。例如:啤酒=>尿布,这条规则 只涉及到用户的购买的物品;性别=“女”=>职业=“秘书”,这条规则就涉及到两个字段 的信息,是两个维上的一条关联规则。

数据挖掘中的关联规则挖掘方法

数据挖掘中的关联规则挖掘方法

数据挖掘中的关联规则挖掘方法数据挖掘作为一种从大量数据中发现潜在模式、关系和规律的技术,已经在各个领域得到了广泛应用。

其中,关联规则挖掘是数据挖掘的重要任务之一,旨在从数据集中挖掘出物品之间的频繁关联关系。

本文将介绍数据挖掘中常用的关联规则挖掘方法,包括Apriori算法、FP-Growth算法以及关联规则评估方法。

一、Apriori算法Apriori算法是一种经典的关联规则挖掘算法,其基本思想是通过逐层搜索的方式,从含有k个项的频繁模式集构建含有k+1个项的频繁模式集,直至无法继续生长为止。

具体而言,Apriori算法包括以下步骤:1. 初始化:扫描数据集,统计每个项的支持度,并根据最小支持度阈值过滤掉不满足条件的项。

2. 生成候选集:根据频繁项集构建候选集,即通过组合频繁项集生成含有k+1个项的候选集。

3. 剪枝:剪枝操作用于去除候选集中不满足Apriori性质的项,即如果一个候选项的子集不是频繁项集,则该候选项也不可能成为频繁项集。

4. 计算支持度:扫描数据集,统计候选项集的支持度,并根据最小支持度阈值过滤掉不满足条件的候选项。

5. 迭代生成频繁项集:根据支持度筛选后的候选项集作为新的频繁项集,继续进行候选集生成、剪枝和支持度计算的过程,直到无法继续生成新的频繁项集为止。

二、FP-Growth算法FP-Growth算法是一种基于数据结构FP树的关联规则挖掘算法,相比于Apriori算法,FP-Growth算法在构建频繁项集时能够避免候选集的生成和扫描数据集的过程,从而提高了挖掘效率。

具体而言,FP-Growth算法包括以下步骤:1. 构建FP树:通过扫描数据集,构建一颗FP树,其中每个节点表示一个项,并记录该项在数据集中的支持度。

2. 构建条件模式基:对于每个项,构建其对应的条件模式基,即以该项为后缀的所有路径。

3. 递归挖掘频繁模式:对于每个项,通过递归的方式挖掘其条件模式基,得到频繁模式集。

数据挖掘中的关联规则分析方法

数据挖掘中的关联规则分析方法

数据挖掘中的关联规则分析方法数据挖掘是一种从大量数据中挖掘出有价值信息的技术。

而关联规则分析是数据挖掘中常用的一种方法,用于发现数据集中的相关关系。

本文将介绍数据挖掘中的关联规则分析方法,以及它的基本原理和应用领域。

一、关联规则分析方法简介关联规则分析是一种用于发现数据集中隐含关系的技术。

它能够帮助我们了解数据集中的项集之间的关联性,从而可以用来做出预测、推荐等。

关联规则分析的核心思想是找到数据集中频繁出现的项集,并根据支持度和置信度等指标来评估项集之间的关联程度。

二、Apriori算法Apriori算法是关联规则分析中最经典的算法之一。

它基于频繁项集的定义,通过递归地产生候选项集,并利用候选项集的支持度进行筛选,最后得到频繁项集。

Apriori算法的主要步骤包括:扫描数据集,生成候选项集,计算支持度,筛选频繁项集。

三、FP-growth算法FP-growth算法是Apriori算法的改进算法,它采用了不同的数据结构来提高算法的效率。

FP-growth算法通过构建频繁模式树(FP-tree)来表示数据集,并根据树的节点连接方式来挖掘频繁项集。

相比于Apriori算法,FP-growth算法具有更高的效率和更小的内存消耗。

四、关联规则评估指标在关联规则分析中,我们需要对生成的关联规则进行评估和选择。

常用的关联规则评估指标包括支持度、置信度、提升度等。

支持度指标可以衡量一个规则在数据集中出现的频率,置信度可以衡量规则的可靠性,而提升度可以反映规则的独特性。

五、关联规则分析的应用领域关联规则分析在很多领域都有着广泛的应用。

比如在市场营销中,可以利用关联规则分析来挖掘潜在的商品之间的关系,从而制定针对性的促销策略。

在电子商务中,关联规则分析可以用来做商品推荐。

在医疗领域,可以运用关联规则分析来挖掘患者的病因和治疗方法等。

六、总结关联规则分析是数据挖掘中常用的方法之一,可以帮助我们发现数据集中的相关关系。

关联规则挖掘算法

关联规则挖掘算法

关联规则挖掘算法关联规则挖掘算法(Association Rule Mining Algorithm)是一种用于从大规模数据集中发现项之间的关联关系的数据挖掘算法。

该算法可以发现数据集中出现频率较高的项集,并基于这些项集生成关联规则。

关联规则挖掘算法的基本原理是通过计算项集之间的支持度和置信度来判断它们之间的关联关系。

支持度(Support)表示包含一些项集的事务的比例,置信度(Confidence)表示在一些项集出现的条件下,另一个项集出现的概率。

常用的关联规则挖掘算法有Apriori算法和FP-Growth算法。

1. Apriori算法:Apriori算法是一种基础的关联规则挖掘算法。

该算法的核心思想是使用一种叫做“逐层”的方法来找出频繁项集。

它通过生成候选项集,并通过计算支持度来筛选出频繁项集,在不断迭代的过程中找出所有的频繁项集。

Apriori算法的流程如下:(1)扫描整个数据集,统计每个项的出现频率,生成频繁1-项集;(2)根据频繁1-项集生成候选2-项集,并计算每个候选项集的支持度,筛选出频繁2-项集;(3)根据频繁2-项集生成候选3-项集,并计算每个候选项集的支持度,筛选出频繁3-项集;(4)重复上述过程,直到没有更多的频繁项集生成。

2. FP-Growth算法:FP-Growth算法是一种基于频繁模式树的关联规则挖掘算法。

与Apriori算法不同,FP-Growth算法通过构建一个FP树来节约生成候选项集和计算支持度的时间,从而提高算法的效率。

FP-Growth算法的流程如下:(1)扫描整个数据集,统计每个项的出现频率,生成频繁1-项集;(2)构建FP树,树的节点包含项和频率信息;(3)构建条件模式基,即所有以一些项为结尾的路径;(4)从条件模式基构建条件FP树,递归生成频繁项集;(5)重复上述过程,直到没有更多的频繁项集生成。

关联规则挖掘算法在实际应用中有着广泛的应用。

例如,在市场营销领域,可以通过分析购物篮中的商品,发现一些商品之间的关联关系,从而可以做出更好的商品搭配和促销策略。

关联规则的名词解释

关联规则的名词解释

关联规则的名词解释关联规则是数据挖掘领域中一种重要的数据分析方法,被广泛应用于市场营销、推荐系统、生物信息学等多个领域。

它主要用来发现数据集中的特定项之间的关联关系,帮助人们了解和预测数据中的潜在模式和规律。

一、关联规则的定义在关联规则中,数据集被表示为一个包含多个项的集合,每个项有唯一的标识符。

关联规则则表示为一个条件和一个结果的逻辑表达式,表示条件项与结果项之间的关联关系。

例如,一个关联规则可以表示为:{洗发水,牙膏} -> {沐浴露},其中条件项 {洗发水,牙膏} 表示在购买了洗发水和牙膏的情况下,结果项 {沐浴露} 也会被购买。

关联规则还有两个常用的度量指标,分别是支持度和置信度。

支持度表示规则在整个数据集中出现的频率,置信度则表示条件项出现时结果项同时出现的概率。

通过这两个指标,可以筛选出具有较高支持度和置信度的关联规则,从而得到更有价值的关联关系。

二、关联规则的挖掘方法关联规则的挖掘方法主要包括两个步骤:候选集生成和规则选择。

1. 候选集生成候选集生成即从原始数据集中生成所有可能的候选规则。

在这一步骤中,算法会通过扫描数据集来识别频繁项集,即在数据中频繁出现的项集。

频繁项集是指支持度大于等于预设阈值的项集。

通过找到频繁项集,可以减少候选集的数量,提高挖掘效率。

2. 规则选择规则选择是在候选集中挑选出具有较高置信度的规则。

这一步骤的核心目标是在所有可能的规则中筛选出有意义且能够适应实际需求的规则。

常用的筛选方法包括设置最小支持度和置信度的阈值,以及优化算法的设计,如Apriori算法和FP-Growth算法等。

三、关联规则的应用领域关联规则作为一种有效的数据分析工具,在市场营销、推荐系统、生物信息学等领域都有广泛的应用。

1. 市场营销关联规则在市场营销中被用于分析顾客购买行为和产品关联性。

通过挖掘规则,可以了解顾客购买的偏好、产品之间的关系以及销售策略的优化。

例如,超市可以通过关联规则分析发现购买尿布的顾客会购买啤酒,从而将尿布和啤酒放置在一起,提高销售额。

数据挖掘关联规则

数据挖掘关联规则

数据挖掘关联规则
数据挖掘关联规则,又称“关联规则挖掘”,是数据挖掘中的一项重要技术。

它是基于数据中的频繁项集来发现不同属性之间的关联关系。

所谓频繁项集,指的是在数据集合中同时出现的项的集合。

数据挖掘中关联规则的基本挖掘方法是:先找到频繁项集,然后使用这些频繁项集来生成关联规则。

常用的关联规则挖掘算法有Apriori算法、FP-Growth算法等。

关联规则挖掘的应用包括:市场篮子分析、医学诊断、推荐系统、网络安全等领域。

例如,在市场篮子分析中,可以通过关联规则来发现哪些商品经常一起被购买,以便超市等零售商来做商品的组合销售。

在医学诊断中,可以通过关联规则来发现某些疾病在特定人群中的高发情况,以便医生做出更准确的诊断。

在推荐系统中,可以通过关联规则来推荐用户可能感兴趣的商品或内容。

在网络安全中,可以通过关联规则来发现网络攻击的规律或模式,以便及时采取相应的防范措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验内容:
1、单一关联规则挖掘:产品之间
2、层次关联规则挖掘:产品类型之间或产品类型与产品之间
3、多维关联规则挖掘:客户类型与产品之间
4、序列规则挖掘
关联规则挖掘(Association rule mining)是数据挖掘中最活跃的研究方法之一,可以用来发现事情之间的联系。

如果两个或者多个事务之间存在一定的关联关系,那么,其中一个事务就能够通过其他事务预测到。

本实验要求根据提供的数据集实现单一关联规则挖掘,层次关联规则挖掘,多维关联规则挖掘,序列规则挖掘,并得出相关结论。

使用的数据集:
数据集名称:association2014.csv
数据集字段说明:
CUSTID-客户编号
userType-客户类型
NUMSRVID-产品编号
datetime-交易日期
srvClass-产品类型
二、实验过程:
从SAS顶端的【Solutions】菜单下调出企业数据挖掘【Enterprise Miner
点击【N e x t>】,选择c s v文件及相应的工作

区域之后再放开鼠标,此时S A S/E M界面如下
由于列NUMSRVID的类型为数值型,而列srvClass的类型为字符型,因此我将列srvClass的值编号代替。

对应关系如下表:
表格1. srvClass的值与编号对应关系
按照支持度降序排列:
原值动感地全球通神州行编号621622623
在SAS中导入处理后的数据集association2014 –zhangx2.csv,放在的ASSOCI
A
TION_ZHANGX2下。

在SAS EM中连接Input Node和Association Node,并设置Input Node的数据
源为association2014 –zhangx2.csv。

在General选项卡中,设置分析模式为Sequence,设置支持度为2%。

D h’g/
意义。

在关联规则挖掘时主要关注两个问题:找出交易数据库中所有大于或等于用户指定的最小支持度的频繁项集;以及利用频繁项集生成所需要的关联规则,根据用户设定的最小可信度筛选出强关联规则。

在关联规则挖掘中有几个指标需要注意,它们是置信度、支持度和提升度。

在进行关联规则的数据挖掘中,通过指定这三个标准的最小值,三个标准的值都大于临界值的关联规则就被列出。

而且以上这三个标准缺一不可,孤立地使用这三个标准中的任意一个,都可能导致错误结果。

相关文档
最新文档