最新初二数学知识点大全-word文档
初二数学知识点大全(中考必备)
初二数学知识点大全(中考必备) 数的拓展与应用有理数1.整数–正整数–负整数2.分数–真分数–假分数–整数部分3.小数–有限小数–无限循环小数–无限不循环小数实数1.无理数–无限不循环小数2.实数定义与性质–实数表示–实数的相反数、绝对值–实数的加法、减法、乘法、除法代数式1.代数式的定义–常数项–变量项–系数2.代数式的运算–合并同类项–提取公因式–去括号–化简图形与运动平面直角坐标系1.平面直角坐标系的引入–原点–横坐标、纵坐标2.平面直角坐标系中点的坐标–坐标轴上的点–非坐标轴上的点直线与角1.直线的表示与性质–直线的表示方法–平行线与垂直线–锐角、钝角、直角2.角的定义与性质–角的概念–锐角、钝角、直角–互补角、补角、对顶角三角形与四边形1.三角形的性质–三角形边长关系–三角形角度关系2.四边形的性质–矩形的性质–正方形的性质–平行四边形的性质–菱形的性质投影与相似1.图形的投影–垂直投影–平行投影2.相似三角形–相似三角形的判定条件–相似三角形的性质数据分析与概率统计与概率1.统计图–条形统计图–折线统计图2.简单概率–试验与事件–概率的定义–两个简单事件的概率3.事件的运算–事件的并、交、差–事件的逆平均数与中位数1.平均数–平均数的概念与计算方法2.中位数–中位数的概念与计算方法解式与方程一元一次方程1.一元一次方程–方程的定义–解的概念2.解一元一次方程–加减法解方程–乘除法解方程–一元一次方程的应用简单方程与多元一次方程1.解简单方程–含绝对值的方程–分式方程2.解多元一次方程–含两个变量的方程–含三个变量的方程几何图形与方程1.图形方程–点的坐标与直线方程–圆的方程2.几何图形与方程的应用–图形方程在几何图形上的应用–方程在实际问题中的应用以上是初二数学的一些重要知识点,这些知识点对于中考来说是必备的基础内容。
掌握了这些知识,将为学生在中考中取得好成绩提供有力的支持和帮助。
在学习过程中,要注重理论与实践的结合,多做习题来加深对知识点的理解和掌握,同时也要注重应用能力的培养,灵活运用所学的知识解决实际问题。
初二的数学知识点大全
初二的数学知识点大全目录•一、代数– 1.1 代数基础– 1.2 一元一次方程与不等式– 1.3 二元一次方程组– 1.4 算式的运算规则– 1.5 几何图形与坐标系•二、几何– 2.1 几何基础– 2.2 图形的相似与相等– 2.3 角的概念与性质– 2.4 直线和平面– 2.5 三角形•三、函数– 3.1 函数基础– 3.2 函数的图像– 3.3 函数的性质与运算– 3.4 一元二次函数– 3.5 反比例函数•四、统计与概率– 4.1 统计基础– 4.2 数据的收集与整理– 4.3 数据的分析与图像– 4.4 概率基础– 4.5 事件与概率一、代数1.1 代数基础代数是数学的一个重要分支,研究数与数之间的关系。
在初二数学中,代数基础主要包括: - 数的分类和性质 - 加减乘除运算规则 - 合并同类项和分配律 - 等式与恒等式的性质1.2 一元一次方程与不等式一元一次方程是指只有一个未知数的一次方程,形如ax + b = 0。
掌握一元一次方程的求解方法是初二数学的基础,同时也包括一元一次不等式的解法。
1.3 二元一次方程组二元一次方程组是由两个未知数的一次方程组成的方程组。
初二数学要求掌握二元一次方程组的解法,包括代入法、消元法和图解法。
1.4 算式的运算规则算式的运算规则包括加法、减法、乘法和除法的运算法则。
初二数学要求熟练掌握算式的运算规则,并能够灵活运用。
1.5 几何图形与坐标系几何图形是初二数学的重要内容,包括点、线、面等几何概念。
同时,学生也需要学习坐标系的概念和使用方法,能够画出简单的几何图形并标出坐标。
二、几何2.1 几何基础几何基础包括点、线、面等几何概念,以及几何图形的分类和性质。
初二数学要求学生熟练掌握几何基础的概念和性质。
2.2 图形的相似与相等图形的相似与相等是几何学中重要的概念,涉及到图形的大小和形状变化。
初二数学要求学生理解图形的相似与相等,并能够应用相似与相等的性质解决问题。
初二数学知识点归纳
初二数学知识点归纳1. 数的运算- 有理数的加、减、乘、除运算法则- 绝对值的概念和运算- 相反数的概念和运算- 乘方和开方的运算法则2. 代数基础- 代数式的书写规则- 代数式的加减运算- 代数式的乘除运算- 分式的加减乘除运算3. 一元一次方程- 一元一次方程的定义- 一元一次方程的解法- 一元一次方程的应用4. 二元一次方程组- 二元一次方程组的定义- 二元一次方程组的解法(加减消元法和代入消元法) - 二元一次方程组的应用5. 不等式- 不等式的概念- 不等式的解法- 一元一次不等式组的解法- 不等式的应用6. 几何图形- 点、线、面的基本性质- 平面图形的分类- 几何图形的对称性7. 三角形- 三角形的分类- 三角形的内角和定理- 三角形的外角性质- 三角形的边长关系8. 四边形- 四边形的分类- 平行四边形的性质- 矩形、菱形、正方形的性质9. 圆- 圆的基本概念- 圆的周长和面积计算- 圆的切线性质- 圆与圆的位置关系10. 空间几何- 空间几何体的认识- 空间几何体的表面积和体积计算 - 空间几何体的组合与分解11. 函数初步- 函数的概念- 一次函数的图像和性质- 正比例函数和反比例函数12. 概率初步- 概率的基本概念- 简单事件的概率计算- 概率在实际问题中的应用以上是初二数学的主要知识点归纳,涵盖了数的运算、代数基础、方程与不等式、几何图形、空间几何、函数和概率等重要领域,为进一步学习数学打下坚实的基础。
八年级数学知识点归纳
八年级数学知识点归纳八年级数学是初中数学学习的重要阶段,知识点的难度和广度都有所增加。
以下是对八年级数学主要知识点的归纳:一、三角形(一)三角形的相关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
3、三角形的内角和:三角形的内角和为 180°。
(二)三角形的分类1、按角分类:锐角三角形、直角三角形、钝角三角形。
2、按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。
(三)三角形的重要线段1、三角形的中线:连接三角形的一个顶点和它所对边的中点的线段叫做三角形的中线。
三角形的三条中线交于一点,这点称为三角形的重心。
2、三角形的高线:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线。
3、三角形的角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
三角形的三条角平分线交于一点,这点称为三角形的内心。
(四)全等三角形1、全等三角形的概念:能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质:全等三角形的对应边相等,对应角相等。
3、全等三角形的判定:SSS(边边边):三边对应相等的两个三角形全等。
SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。
ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。
AAS(角角边):两角和其中一角的对边对应相等的两个三角形全等。
HL(斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。
二、勾股定理(一)勾股定理如果直角三角形的两直角边长分别为 a,b,斜边长为 c,那么 a²+b²= c²。
(二)勾股定理的逆定理如果三角形的三边长 a,b,c 满足 a²+ b²= c²,那么这个三角形是直角三角形。
(完整word版)初中数学知识点归纳总结(精华版)
第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o 。
第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式.其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数.2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
第三章一元一次方程考点一、一元一次方程的概念(6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程0≠=+bax叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。
a)x为未知数,(0第四章图形的初步认识考点一、直线、射线和线段(3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点.②点在直线外,或者说直线不经过这个点。
2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
数学初二全部重要知识点
数学初二全部重要知识点
1. 函数!函数那可真是初二数学里超重要的一块啊!就像你坐过山车,会随着轨道的变化而高低起伏,函数就是描述这种变化的呀。
比如,汽车行驶的路程和时间不就是一个函数关系嘛!你说是不是很有趣?
2. 几何图形也很关键呢!三角形、四边形,它们就像是一个个神秘的宝藏等着我们去挖掘。
把三角形想象成一个坚固的小城堡,每个角和边都有它独特的作用呢!比如,知道了三角形的三边长度,你就能判断它是不是能立得稳呀!
3. 勾股定理啊,那可是超级厉害的!简直就像是一把神奇的钥匙,能解开很多难题。
可以用它来计算直角三角形的边长呀。
就好比知道两个边的长度,就像找到了开门的密码,马上就能算出另一边,多么神奇呀!
4. 数据分析也不容忽视呀!这不就像是在统计你的宝贝有多少嘛。
比如调查班级同学喜欢的颜色,那就能很清楚地知道哪种颜色最受欢迎啦,是不是很有意思呢?
5. 整式的乘法和因式分解,就像是搭积木一样,把小块变成大块,或者把大块拆成小块。
例如计算一个大长方形的面积,你可以通过整式乘法算出来呀!
6. 分式,这也是个很特别的存在呢!想想看,有时候不能用整数表示的时候,分式就派上用场啦。
就好像分蛋糕,几分之一块蛋糕,不就是分式嘛!
7. 平行四边形的性质,那可太有用了!它就像一个灵活多变的伙伴。
比如根据平行四边形的对边相等,你就可以快速解决很多问题呀!
8. 一次函数,这可是个能描述很多实际情况的好东西呀!就像你的零花钱随着时间在变化,用一次函数就能很好地表示出来啦!
我觉得初二数学的这些重要知识点真是太有趣、太实用了,掌握了它们,数学世界就会变得更加精彩啊!。
新初二数学知识点总结
新初二数学知识点总结### 一、实数- 实数的概念:实数是数学中最基本的数系,包括有理数和无理数。
- 数轴:实数与数轴上的点一一对应,可以表示正数、负数和零。
- 绝对值:一个数的绝对值是它到数轴原点的距离,表示为 |x|。
### 二、代数基础- 代数式:由数和字母通过四则运算和乘方运算构成的式子。
- 整式:由常数、变量和它们的乘积构成的代数式。
- 分式:分母中含有变量的有理式。
### 三、方程与不等式- 一元一次方程:只含有一个未知数,且未知数的次数为1的方程。
- 一元一次不等式:含有一个未知数,且未知数的次数为1的不等式。
- 方程组:由两个或两个以上方程组成的集合。
### 四、函数- 函数的概念:函数是变量之间确定的对应关系。
- 函数的表示:可以用解析式、列表或图像表示。
- 函数的性质:包括单调性、连续性、可导性等。
### 五、几何基础- 线段、射线、直线:线段有起点和终点,射线有起点无终点,直线无起点无终点。
- 角:由两条射线组成的图形,其顶点是两条射线的交点。
- 平行线:不相交的两条直线。
### 六、三角形- 三角形的分类:按边分有等边三角形、等腰三角形和不等边三角形;按角分有锐角三角形、直角三角形和钝角三角形。
- 三角形的性质:如三角形内角和为180度,等腰三角形的底角相等等。
### 七、四边形- 平行四边形:对边平行的四边形。
- 矩形:对边相等且平行的四边形。
- 正方形:四边相等且每个角都是直角的平行四边形。
### 八、圆- 圆的概念:平面上所有与定点(圆心)距离相等的点的集合。
- 圆的性质:如圆周率π,圆的周长和面积公式。
### 九、统计与概率- 数据的收集与整理:包括数据的收集方法和数据的整理方式。
- 图表:如条形图、饼图、折线图等,用于展示数据的分布。
- 概率:事件发生的可能性,通常用0到1之间的数表示。
### 十、数学思维- 归纳推理:从特殊到一般的推理过程。
- 演绎推理:从一般到特殊的推理过程。
初二数学知识点总结(最新5篇)
初二数学知识点总结(最新5篇)初二数学知识点总结篇一在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
(1)多边形的一些要素:边:组成多边形的各条线段叫做多边形的边。
顶点:每相邻两条边的公共端点叫做多边形的顶点。
内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
(2)在定义中应注意:①一些线段(多边形的边数是大于等于3的正整数);②首尾顺次相连,二者缺一不可;③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间初二数学基础知识点篇二轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。
⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
⑷等腰三角形:有两条边相等的三角形叫做等腰三角形。
相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
⑸等边三角形:三条边都相等的三角形叫做等边三角形。
2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。
②对称的图形都全等。
⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等。
②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。
⑶关于坐标轴对称的点的坐标性质①点P(x,y)关于x轴对称的点的坐标为P'(x,y).②点P(x,y)关于y轴对称的点的坐标为P"(x,y).⑷等腰三角形的性质:①等腰三角形两腰相等。
②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合。
八年级数学全册知识点整理
数学知识点整理(八年级)一、有理数与整数运算1.有理数的定义和表示方法2.有理数的大小比较3.有理数的加法和减法运算4.有理数的乘法和除法运算5.零的特殊性质6.绝对值的概念及性质7.有理数的乘方运算8.有理数的混合运算二、方程与不等式1.一元一次方程的概念及解法2.一元一次方程的应用3.一元一次不等式的概念及解法4.一元一次不等式的应用5.一元一次方程组的概念及解法6.一元一次方程组的应用三、图形的性质与坐标系1.线段的性质及划分2.平行线和垂直线的判定3.三角形的内角和及性质4.等腰三角形的性质5.直角三角形和斜三角形的性质6.相似三角形的概念及判定7.线段比例定理和角度比例定理8.平面直角坐标系及点的坐标表示9.走迷宫的应用四、数列与函数1.等差数列的概念及通项公式2.等比数列的概念及通项公式3.等差数列和等比数列的应用4.函数的概念及表示方法5.函数的增减性及最值问题6.奇偶函数及二次函数五、几何运动1.平移、旋转和对称的概念2.图形的平移、旋转和对称的性质3.平移、旋转和对称的应用六、统计与概率1.数据的收集、整理和展示2.平均数、中位数和众数的概念及计算3.资料的分析和解读4.概率的概念及计算七、三角函数1.弧度制度量2.同角三角比值3.三角函数的概念及计算总结:八年级数学全册的知识点主要包括有理数与整数运算、方程与不等式、图形的性质与坐标系、数列与函数、几何运动、统计与概率以及三角函数等内容。
通过学习这些知识点,可以帮助学生提升数学综合素养和问题解决能力。
初二数学知识点详述[全面完整].
平面几何相关概念1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角多项式(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
初二数学知识点归纳(全)
初二数学知识点归纳(全)初二数学知识点归纳如下:一、三角形1. 三角形的定义:由三条线段首尾顺次相接所组成的图形。
2. 三角形的分类:按边长关系:等边三角形、等腰三角形、不等边三角形。
按角关系:锐角三角形、直角三角形、钝角三角形。
3. 三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边。
4. 三角形的内角和:180度。
5. 三角形的内接圆与外接圆:内接圆:圆心到三角形各顶点的距离相等。
外接圆:圆心到三角形各边的距离相等。
6. 正弦定理:在任意三角形中,任意一边的边长与其对应的角的正弦值之比是一个常数,即a/sinA = b/sinB = c/sinC。
7. 余弦定理:在任意三角形中,任意一边的平方等于其他两边的平方和减去这两边与夹角余弦的乘积的两倍,即c^2 = a^2 + b^2 - 2ab*cosC。
二、全等三角形1. 全等三角形的定义:两个三角形在形状和大小方面完全相同,即它们的对应边长相等,对应角度相等。
2. 全等三角形的判定方法:SAS(边角边):两边的长度分别相等,并且这两边夹的角也分别相等。
ASA(角边角):两角分别相等,并且其中一个角的对边也分别相等。
SSS(边边边):三边的长度分别相等。
HL(高-腰-腰):直角三角形的斜边和一条直角边分别相等。
三、轴对称与中心对称1. 轴对称:存在一条直线,图形关于这条直线对称。
2. 中心对称:存在一个点C,图形关于点C对称。
3. 轴对称的性质:如果两个图形关于某条直线对称,那么这条直线就是它们的对称轴。
对称轴上的点到两个对称图形的距离相等。
4. 中心对称的性质:如果两个图形关于某一点对称,那么这个点就是它们的对称中心。
对称中心到两个对称图形的距离相等。
四、四边形1. 四边形的定义:由四条线段首尾顺次相接所组成的图形。
2. 四边形的分类:按对角线关系:平行四边形、矩形、菱形、正方形。
按边长关系:梯形、等腰梯形。
3. 平行四边形的性质:对边平行且相等。
数学初二必背的知识点精选
数学初二必背的知识点精选一、基础知识1.1 数的分类自然数、整数、有理数、实数、复数1.2 数的比较大于、小于、等于1.3 数的运算加、减、乘、除、次幂、开方、取模、约分1.4 数的性质交换律、结合律、分配律、对称性、传递性、反对称性、德摩根定理二、代数式2.1 代数式基本概念代数式的定义、项、系数、次数、同类项2.2 代数式化简去括号、合并同类项、移项、消元、求解2.3 多项式运算加、减、乘、除、幂、根2.4 一元一次方程式代数式等于常数的形式和解法2.5 一元二次方程式求解标准型和一般型的方程,用求根公式和配方法解决平方差公式、完全平方公式、双括号公式2.6 一元二次不等式解一元二次不等式及其应用三、几何3.1 基本图形点、线、面、角等几何图形3.2 直线和角平行、垂直、倾斜、补角、对顶角、同位角、同旁内角、内错角、同旁外角3.3 三角形定义、分类、角度、边长、周长、面积、勾股定理、正弦定理、余弦定理3.4 四边形平行四边形、矩形、正方形、菱形、梯形的性质和周长、面积计算3.5 圆的基本性质圆的定义、半径、直径、周长、面积、弧、弦、切线、切点、切角、相交线的关系四、数据统计4.1 数据的收集和整理样本调查、表格、图表4.2 数据的描述中心趋势、离中趋势、数据的分布4.3 相关相关系数、回归分析五、概率5.1 基本概率随机事件、样本空间、事件的概率、互斥事件、对立事件5.2 条件概率与乘法定理条件概率的概念、计算方法和应用5.3 加法定理加法公式的概念、计算方法和应用5.4 期望与变异数期望和方差的定义、计算方法和应用六、三角函数6.1 弧度和角度弧度和角度的关系、弧度制的优越性6.2 三角函数基本定义正弦函数、余弦函数、正切函数的定义、性质和图像6.3 三角函数的基本公式和差公式、积化和差、半角公式、万能公式6.4 三角函数的应用三角函数的应用相关问题七、数列与数列求和7.1 数列和通项公式阶梯数列、等差数列、等比数列、斐波那契数列的定义和通项公式7.2 数列的和等差数列的和、等比数列的和和其它常见数列的和7.3 初等数论质数、合数、互质、素因数分解、最小公倍数、最大公因数结语以上就是数学初二必背的知识点精选,每个人的悟性和学习能力都不同,只要有一份耐心和努力,初二数学的知识也不会再难了。
(完整版)八年级数学重点知识点(全),推荐文档
经常需要先因式分解.
6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的
最后结果要求化为最简分式.
7.分式的乘除法法则: a c ac , b d bd
a c a d ad . b d b c bc
初二数学知识点
初二数学知识点初二数学是初中数学学习的关键阶段,涵盖了多个重要的知识点。
以下是初二数学的主要知识点总结:1. 有理数的混合运算:包括加法、减法、乘法、除法以及乘方和开方运算,要求掌握有理数的运算规则和运算顺序。
2. 代数式:学习代数式的基本定义,包括单项式、多项式、同类项的概念,以及合并同类项的法则。
3. 整式的加减:掌握整式的加减运算,包括去括号法则、合并同类项等。
4. 整式的乘法:学习单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的运算法则。
5. 因式分解:掌握提公因式法、公式法等因式分解的方法。
6. 分式:包括分式的定义、性质、约分和通分,以及分式的加减乘除运算。
7. 一元一次方程:学习一元一次方程的解法,包括移项、合并同类项、系数化为1等步骤。
8. 二元一次方程组:掌握代入法和加减法解二元一次方程组的方法。
9. 不等式:学习不等式的基本性质,包括不等式两边同时加减、乘除非负数等。
10. 一元一次不等式组:掌握解一元一次不等式组的方法,包括同大取大、同小取小、大小小大中间找、大大小小解不了等原则。
11. 平面直角坐标系:学习坐标系的基本概念,包括坐标轴、象限、坐标点等。
12. 函数的初步认识:了解函数的定义,包括函数的定义域、值域、函数图像等。
13. 几何图形:包括线段、角、三角形、四边形等基本几何图形的性质和计算。
14. 三角形:学习三角形的内角和定理、三角形的边长关系、三角形的面积计算等。
15. 四边形:掌握平行四边形、矩形、菱形、正方形等特殊四边形的性质和判定。
16. 圆:学习圆的基本概念,包括圆心、半径、直径、弦、弧、扇形等,以及圆的周长和面积的计算。
17. 几何图形的变换:包括平移、旋转、轴对称、中心对称等几何变换。
18. 几何证明:学习基本的几何证明方法,包括直接证明、反证法、归纳法等。
19. 数据的收集与处理:了解数据的收集方法,学习数据的整理和表示,包括条形图、折线图、扇形图等。
初二数学知识点全总结
初二数学知识点全总结一、代数1. 数字与式子- 正整数、负整数、分数、小数与百分数的相互转化与运算- 代数式的简化与加减乘除- 代数式的展开与因式分解- 一元一次方程的解法- 一元一次方程与实际问题的模型应用2. 直线与线性方程- 线性方程与可视化的关系- 解线性方程的图象解法- 两个方程联立的解法- 实际问题中的线性方程组与解法- 含有两个未知数的一元一次方程组与解法3. 平方根与二次根式- 正数的平方根与二次根式的意义- 二次根式的运算与化简- 二次根式的乘法公式与分式- 德国数学家费马定理的推广与应用4. 整式的加减与乘法- 整式的加减运算- 整式的乘法运算- 含参系数的整式乘法与因式分解- 解决实际问题中的有参系数整式5. 分式- 分子、分母互质的分式- 分式的乘法与除法- 分式的混合运算与简便法- 分式线性方程的解法与实际应用6. 一元二次方程- 一元二次方程与根的关系- 一元二次方程的因式分解与求解- 一元二次方程与实际问题的模型应用7. 平面直角坐标系- 平面直角坐标系的引入与性质- 点、线、圆在平面直角坐标系中的位置关系- 相关系数、线性回归与实际问题的应用- 平面图形的平移、旋转、翻折等变换8. 一次函数- 一次函数的基本概念与性质- 一次函数的图象与函数图象的性质- 一次函数与线性方程、函数的应用9. 指数与幂- 正数的指数、指数运算法则- 指数函数与对数函数的简单性质- 指数与幂在实际问题中的应用二、几何1. 几何基本概念- 点、线、面等基本概念与特征- 角的概念与分类- 相交、垂直、平行线段与线条角的判定2. 三角形- 三角形的分类与性质- 三角形在平面上的位置关系与判定- 三角形的内角和定理与外角性质- 等腰三角形、直角三角形的判定与性质- 三角形的相似性质与判定- 三角形应用题与实际问题解决3. 四边形- 矩形、平行四边形、菱形与正方形的性质- 梯形与平行四边形的判定与性质- 有关四边形的运算与分类4. 内接与外切- 圆内接四边形的性质与判定- 圆的内接与外接、内切与外切的判定条件5. 平面镜像与旋转- 平面镜像的性质与构造- 旋转的构造、旋转中心与旋转角度6. 三视图与投影- 物体的三视图的构造与识图- 投影的基本概念与性质- 平行投影与中心投影的区别与应用7. 圆- 圆的定义与性质- 圆上的点与圆上线段的关系- 切线定理与弦切角定理- 圆应用题与实际问题解决三、数据与统计1. 统计资料与标度- 数据的查数、统数、分组与绘图- 高度与代表数的含义- 平均值与间隔值的概念与计算2. 数据的描写- 数据的分散程度与极差、方差、标准差的计算- 数据的集中程度与四分位数、中位数的概念与计算3. 概率与事件- 实验与样本空间的概念- 事件与概率的概念- 事件的概率计算与应用。
初二数学全部知识点
初二数学全部知识点初二数学的全部知识点包括:1.整数与有理数:-整数的概念与性质,包括整数的四则运算、整数的比较、绝对值等。
-有理数的概念与性质,包括有理数的四则运算、有理数的比较、倒数等。
2.小数与分数:-小数的读法、写法与意义,包括有限小数、循环小数等。
-分数的概念与计算,包括分数的四则运算、分数的化简、分数的比较、分数的加减乘除等。
3.代数与方程式:-代数的基本概念,包括变量、常数、代数式、代数式的简化等。
-一元一次方程式的概念与解法,包括一次方程的解集、方程的应用等。
4.几何与图形:-几何图形的分类与性质,包括点、线、面的概念,几何图形的分类与特点等。
-平面图形的性质,包括三角形、四边形、多边形等的性质与分类。
-平面图形的面积与周长计算,包括矩形、正方形、三角形、圆的面积与周长等。
5.数据与统计:-数据的搜集与整理,包括调查、统计表、频数等。
-数据的分析与运算,包括平均数、中位数、众数等。
-图表的制作与分析,包括条形图、折线图等。
6.概率与统计:-概率的概念与计算,包括事件的概率、试验的计算等。
-统计的概念与应用,包括样本调查、样本容量等。
7.几何变换:-平移、旋转、翻转等基本几何变换的概念与操作。
-几何变换的性质与应用,包括变换的特点、几何变换的组合等。
8.负数与一元一次方程式:-负数的概念与性质,包括负数的加减乘除等。
-一元一次方程式的解法与应用,包括文字题的翻译与解决等。
以上是初二数学的全部知识点的一个大致概述,每个知识点的具体内容都非常广泛,需要进行详细学习和理解。
初二数学是数学学科的基础阶段,掌握这些知识点对于以后更深入的学习和应用都非常重要。
(完整word版)初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)[1](良心出品必
八年级上册知识点总结第十一章全等三角形复习一、全等三角形1. 定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“ SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“ SAS”)角边角: 两角和它们的夹边对应相等的两个三角形全等(可简写成“ ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“ AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:找第三边 (SSS ) 找夹角 (SAS ) 找这边的另一个邻角(ASA ) 找这个角的另一个边(SAS ) 找这边的对角(AAS ) 找一角(AAS ) 已知角是直角,找一边 (HL ) (ASA )(3):已知两角-千 找两角的夹边L 找夹边外的任意边(AAS )练习二、角的平分线:从一个角的顶点得出一条射线把这个角分成两个相等的角,称 这条射线为这个角的平分线。
1、 性质:角的平分线上的点到角的两边的距离相等 •2、 判定:角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义; (2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3) “有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个 三角形不一定全等;(4) 时刻注意图形中的隐含条件,女口 “公共角”、“公共边”、“对顶角(5) 截长补短法证三角形全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学知识点大全
?(一)运用公式法:
我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解
1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点
①项数:三项
②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法
我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)??(a +b).
这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.
(六)提公因式法
1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.
2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:
1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于
一次项的系数.
2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:
① 列出常数项分解成两个因数的积各种可能情况;
②尝试其中的哪两个因数的和恰好等于一次项系数.
3.将原多项式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一个分式的分子与分母的公因式约去,叫做分式的约分.
2.分式进行约分的目的是要把这个分式化为最简分式.
3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
4.分式约分中注意正确运用乘方的符号法则,如
x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.
6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.
(八)分数的加减法
1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.
4.通分的依据:分式的基本性质.
5.通分的关键:确定几个分式的公分母.
通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
6.类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母
的分式,叫做分式的通分.
7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。
8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.
9.作为最后结果,如果是分式则应该是最简分式.
(九)含有字母系数的一元一次方程
1.含有字母系数的一元一次方程
引例:一数的a倍(a≠0)等于b,求这个数。
用x表示这个数,根据题意,可得方程ax=b(a≠0)
在这个方程中,x是未知数,a和b是用字母表示的已知数。
对x来说,字母a是x的系数,b是常数项。
这个方程就是一个含有字母系数的一元一次方程。
含有字母系数的方程的解法与以前学过的只含有数字系数
的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。
10.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.
11.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.
12.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.。