2019-2020年九年级数学上学期期末试卷(含解析) 新人教版(I)
精品2019-2020人教版九年级数学上册期末考试试卷含解析
九年级数学(上)期末检测一、选择题(每小题3分,共30分)1.下列图形中,是中心对称图形的是 ()2.若x=2是关于x 的一元二次方程x 2-mx+8=0的一个解,则m 的值是 ( ) A.6B.5C.2D.-63.把抛物线y=3x 2-1向右平移2个单位,则所得抛物线的表达式为 ( ) A.y=3x 2-3B.y=3x 2+1C.y=3(x+2)2+1D.y=3(x-2)2-14.从-5,-,-,-1,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为( )A.B.C. D.5.一元二次方程3x 2+4x-2=0的根的情况是 ( ) A.有两个相等的实数根 B.只有一个实数根C.有两个不相等的实数根D.没有实数根6.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8 cm,圆柱体部分的高BC=6 cm,圆锥体部分的高CD=3 cm,则这个陀螺的表面积是( )A.68π cm 2B.74π cm 2C.84π cm 2D.100π cm 27.某校举行以“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是( )A.B.C. D.8.如图,P 是正△ABC 内的一点,若将△PBC 绕点B 旋转到△P ′BA,则∠PBP ′的度数是 ( ) A.45° B.60° C.90° D.120° 9. 如图,点E 是△ABC 的内心,AE 的延长线和△ABC 的外接圆相交于点D,连接BD,BE,CE,若∠CBD=32°,则∠BEC 的度数为( )A.128°B.126°C.122°D.120°第6题图 第8题图 第9题图10.已知二次函数y=ax 2+bx+c 的y 与x 的部分对应值如表:下列结论:随x 的增大而增大;④方程ax 2+bx+c=0有一个根大于4,其中正确的结论有 ( )A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.一元二次方程3x 2=2x 的根是__ _.12. 某路口南北方向的交通信号灯的设置时间为:绿灯30秒,红灯27秒,黄灯3秒,某出租车司机随机地由南往北开车到达该路口,他遇到黄灯的概率为 __.13.如图,邻边不等的矩形花圃ABCD,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6 m.若矩形的面积为4 m 2,则AB 的长度是__ __m(可利用的围墙长度超过6 m).14.抛物线y=x2-4x+与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是__ __.15.如图,在边长为8的菱形ABCD中,∠BAD=45°,BE⊥AD于点E,以B为圆心,BE为半径画弧,分别交AB,CB于点F,G,则图中阴影部分的面积为__ __(结果保留π).16.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转到△ACP′的位置.如果AP=3,那么PP′的长等于__ __.17.如图,AB是☉O的直径,且经过弦CD的中点H,过CD延长线上一点E作☉O的切线,切点为F.若∠ACF=65°,则∠E=___.18.已知抛物线y=ax2+bx+c(a≠0)经过点(-1,0),且顶点在第一象限.有下列三个结论:①a<0;②a+b+c>0;③->0.把正确结论的序号填在横线上__ __.第15题图第16题图第17题图第18题图三、解答题(共46分)19.(4分) 当t取什么值时,关于x的一元二次方程2x2+tx+2=0有两个相等的实数根?20.(6分)如图,已知点A,B的坐标分别为(0,0),(4,0),将△ABC绕点A按逆时针方向旋转90°得到△AB′C′.(1)画出△AB′C′.(2)写出点C′的坐标.(3)求BB′的长.21.(6分)为了节约用水,某水厂规定:某单元居民如果一个月的用水量不超过x吨,那么这个月该单元居民只交10元水费.如果超过x吨,则这个月除了仍要交10元水费外,超过那部分按每吨元交费.(1)该单元居民8月份用水80吨,超过了规定的x吨,则超过部分应交水费__元(用含x的式子表示).(2)根据上表的数据,22.(6分)某校为了解学生的课外阅读情况,随机调查了部分学生平均每天的课外阅读时间,并根据调查结果制成被调查学生人数的统计图表如下,但信息不完整.请根据所提供信息,解决下列问题:(1)求扇形统计图中,读书时间为“2小时”部分的圆心角的度数. (2)通过计算估计全校每个学生平均每天的课外阅读时间.(3)从被调查的课外读书时间最少和最多的学生中,随机抽2个学生进行访谈,求各抽到1人的概率.23.(8分)随着人们生活水平的提高,短途旅行日趋火爆.某旅行社推出“观光一日游”项目,团队人均报名费用y(元)与团队报名人数x(人)之间的函数关系如图所示,旅行社规定团队人均报名费用不能低于88元.旅行社收到的团队总报名费用为w(元).(1)求出当x ≥20时,y 与x 之间的函数解析式及自变量x 的取值范围.(2)儿童节当天旅行社收到某个团队的总报名费为 3 000元,报名旅游的人数是多少? (3)当一个团队有多少人报名时,旅行社收到的总报名费最多?总报名费最多是多少元?24.(8分)如图,△ABC 是☉O 的内接三角形,AB 是☉O 的直径,OF ⊥AB,交AC 于点F,点E 在AB 的延长线上,射线EM 经过点C,且∠ACE+∠AFO=180°. (1)求证:EM 是☉O 的切线. (2)若∠A=∠E,BC=,求阴影部分的面积.(结果保留π和根号).25.(8分) 如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过A,B 两点的抛物线交x 轴于另一点C(3,0).(1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点Q,使△ABQ 是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.九年级数学(上)期末检测答案一、选择题(每小题3分,共30分)1. D解:根据中心对称图形的特征,绕中心旋转180°能与自身重合,可知A,B,C均不符合标准.2. A解:把x=2代入方程得:4-2m+8=0,解得m=6.3. D解:因为抛物线y=3x2-1向右平移2个单位,得:y=3(x-2)2-1,故所得抛物线的表达式为y=3(x-2)2-1.4.A解:-5,-,-,-1,0,2,π这七个数中有两个负整数:-5,-1.所以,随机抽取一个数,恰好为负整数的概率是:.5. C解:∵a=3,b=4,c=-2,∴Δ=b2-4ac=16+24=40>0,∴方程有两个不相等的实数根.6. C解:∵圆锥底面圆的直径为8 cm,高为3 cm,∴圆锥母线长为5 cm,∴其表面积=π×4×5+42π+8π×6=84π(cm2).7. D解:方法一:列表法由表格得,共有12的概率是=.方法二:画树状图法.如图,由树状图得,共有12种情况,其中甲、乙同学获得前两名的有2种情况,所以甲、乙同学获得前两名的概率是=.8. B解:∠PBP′=∠ABP+∠P′BA=∠ABP+∠PBC=∠ABC=60°.9. C解:∵∠CBD=32°,∴∠CAD=32°,∵点E是△ABC的内心,∴∠BAC=64°,∴∠EBC+∠ECB=(180°-64°)÷2=58°,∴∠BEC=180°-58°=122°.10. B解:由表格可知,二次函数y=ax2+bx+c有最大值,当x==时,取得最大值,∴抛物线的开口向下,故①正确,其图象的对称轴是直线x=,故②错误,当x<时,y随x的增大而增大,故③正确,方程ax2+bx+c=0的一个根大于-1,小于0,则方程的另一个根大于2×=3,小于3+1=4,故④错误,所以正确的为①③共2个.二、填空题(每小题3分,共24分)11. __x1=0,x2=__.解:原方程变形为:3x2-2x=0, x(3x-2)=0,∴x1=0,x2=.12.__.解:因为绿灯30秒,红灯27秒,黄灯3秒, 所以他遇到黄灯的概率是:=.13. __1__m(可利用的围墙长度超过6 m).解:设AB长为x m,则BC长为(6-2x)m.依题意,得x(6-2x)=4.整理,得x2-3x+2=0.解方程,得x1=1,x2=2.所以当x=1时,6-2x=4;当x=2时,6-2x=2(不符合题意,舍去).即AB的长为1 m.14.__(3,0)__.解:把点(1,0)代入抛物线y=x2-4x+中,得m=6,所以,原方程为y=x2-4x+3,令y=0,解方程x2-4x+3=0,得x1=1,x2=3,∴抛物线与x轴的另一个交点的坐标是(3,0).15.__32-8π__(结果保留π).解:∵在边长为8的菱形ABCD中,∠BAD=45°,BE⊥AD, ∴AE=BE,∠BEA=90°,设BE=AE=x,则x2+x2=82,解得x=4,∴BE=AE=4,∴S阴影=2(S△ABE-S扇形BEF)=2×=2×(16-4π)=32-8π.16.__3 __.解:由旋转得AP=AP ′=3, ∠BAC=∠PAP ′,∵∠BAC=90°,∴∠PAP ′=90°, 即△PAP ′为等腰直角三角形,由勾股定理得PP ′=3.17.__50°__.解:连接OF,∵EF 是☉O 的切线, ∴OF ⊥EF,∵直径AB 过CD 的中点H, ∴OH ⊥EH,∴∠OHE=∠OFE=90° 在四边形OHEF 中, ∵∠AOF=2∠ACF=130°, ∴∠E=360°-∠OHE-∠OFE-∠AOF =360°-90°-90°-130°=50°. 18.__①②③__.解:由抛物线的开口方向向下可推出a<0; 因为对称轴在y 轴右侧,所以对称轴x=->0;由图象可知:当x=1时,y>0,∴a+b+c>0.∴①,②,③都正确. 三、解答题(共46分) 19.(4分)解:∵一元二次方程2x 2+tx+2=0的二次项系数a=2,一次项系数b=t,常数项c=2,∴Δ=t 2-4×2×2=t 2-16=0,解得,t=±4,∴当t=4或t=-4时,原方程有两个相等的实数根. 20.(6分)解:(1)如图:(2)根据旋转的性质,得点C ′的坐标为(-2,5).(3)BB ′===4.21.(6分)解:(1)(80-x).(2)根据表格提供的数据,可以知道x ≥50,根据9月份用水情况可以列出方程: 10+(85-x)=25,解得,x 1=60,x 2=25, 因为x ≥50,所以x=60. 该水厂规定的x 吨是60吨. 22. (6分)解:(1)∵阅读时间为2小时的人数占20%, ∴其圆心角为360°×20%=72°.(2)∵阅读时间为2小时的人数为3人,占20%,∴被调查学生人数为=15,∴阅读时间为1小时的人数为15-(2+5+3)=5,则课外平均阅读时间为:=1.3(小时).(3)设阅读时间最少的2人为A 1,A 2,阅读时间最多的3人为B 1,B 2,B 3,则从中任抽2人的抽法有:A 1A 2,A 1B 1,A 1B 2, A 1B 3,A 2B 1,A 2B 2,A 2B 3,B 1B 2,B 1B 3,B 2B 3共10种.其中各抽到1人的抽法有6种:A 1B 1,A 1B 2, A 1B 3,A 2B 1,A 2B 2,A 2B 3,则所求的概率为=.23.(8分)解:(1)设y=kx+b,把(20,120)和(32,96)代入得:解得:y 与x 之间的函数关系式为:y=-2x+160;∵旅行社规定团队人均报名费用不能低于88元, ∴-2x+160≥88,∴x ≤36,∴y 与x 之间的函数关系式为:y=-2x+160(20≤x ≤36). (2)∵20×120=2 400<3 000, ∴该团队超过20人.由题意得:w=xy=x(-2x+160)=3 000, 解得:x 1=50或x 2=30. ∵x ≤36,∴x=50不符合题意应舍去.故x=30. 答:报名旅游的人数是30人. (3)因为20×120=2 400而由(2)可知30人报名总费用为3 000元,所以要使总报名费最多,x>20.w=xy=x(-2x+160)=-2x 2+160x=-2(x 2-80x+1 600-1 600)=-2(x-40)2+3 200, ∵-2<0,∴x<40,w 随x 的增大而增大, 由(1)可知x ≤36,∴当x=36时,w 有最大值,w 最大=3 168,∴当一个团队有36人报名时,旅行社收到的总报名费最多,总报名费最多是 3 168元.24.(8分)解:(1)连接OC,∵OF ⊥AB,∴∠AOF=90°,∴∠A+∠AFO+90°=180°,∵∠ACE+∠AFO=180°, ∴∠ACE=90°+∠A, ∵OA=OC,∴∠A=∠ACO,∴∠ACE=90°+∠ACO=∠ACO+∠OCE, ∴∠OCE=90°,∴OC ⊥CE,∴EM 是☉O 的切线.(2)∵AB 是☉O 的直径,∴∠ACB=90°, ∴∠ACO+∠BCO=∠BCE+∠BCO=90°, ∴∠ACO=∠BCE, ∵∠A=∠E,∴∠A=∠ACO=∠BCE=∠E, ∴∠ABC=∠BCO+∠E=2∠A, ∴∠A=30°,∴∠BOC=60°, ∴△BOC 是等边三角形,∴OB=BC=,∴阴影部分的面积=-××=π-.25.(8分)(1)求抛物线的解析式. 解:(1)∵当x=0时,y=3, 当y=0时,x=-1,∴A(-1,0),B(0,3),∵C(3,0),设抛物线的解析式为y=a(x+1)(x-3), ∴3=a ×1×(-3),∴a=-1,∴此抛物线的解析式为y=-(x+1)(x-3)=-x 2+2x+3.(2)存在.抛物线的对称轴为x= =1, 对称轴与x 轴的交点即为Q 1, ∵OA=OQ 1,BO ⊥AQ 1, ∴AB=Q 1B,∴Q 1(1,0);当Q 2A=Q 2B 时,设Q 2的坐标为(1,m),∴22+m 2=12+(m-3)2, ∴m=1,∴Q 2(1,1);当Q 3A=AB 时,设Q 3(1,n),∴22+n 2=12+32, ∵n>0,∴n=,∴Q 3(1,).∴符合条件的Q 点坐标为Q 1(1,0),Q 2(1,1),Q 3(1,).。
2019_2020学年九年级数学上学期期末测试卷1(新版)新人教版
2020九年级上学期期末数学试卷1(总分:100分时间:90分钟)一、选择题(本题包括10小题,每小题3分,共30分。
每小题只有1个选项符合题意)1.观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个2.解方程2(5x﹣1)2=3(5x﹣1)的最适当的方法是()A.直接开平方法B.配方法C.公式法D.分解因式法3.二次函数y=(x+3)2+7的顶点坐标是()A.(﹣3,7)B.(3,7)C.(﹣3,﹣7)D.(3,﹣7)4.下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°5.如图,∠A是⊙O的圆周角,∠A=40°,则∠OBC=()A.30°B.40° C.50° D.60°6.下列语句中,正确的有()A.在同圆或等圆中,相等的圆心角所对的弧相等B.平分弦的直径垂直于弦C.长度相等的两条弧相等D.圆是轴对称图形,任何一条直径都是它的对称轴7.如图,将△ABC绕点C旋转60°得到△A′B′C,已知AC=6,BC=4,则线段AB扫过的图形的面积为()A.πB.πC.6πD.π8.若函数y=2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2 D.y1、y2、的大小不确定9.如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,则BE+CG的长等于()A.13 B.12 C.11 D.1010.已知:关于x的一元二次方程x2﹣(R+r)x+d2=0有两个相等的实数根,其中R、r 分别是⊙O1、⊙O2的半径,d为两圆的圆心距,则⊙O1与⊙O2的位置关系是()A.外离 B.外切 C.相交 D.内含二、填空题(本题包括5小题,每空2分,共10分)11.(2分)方程kx2﹣9x+8=0的一个根为1,则k= .12.(2分)甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是.13.(2分)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染给个人.14.(2分)抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.15.(2分)如图,是一个半径为6cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于cm.三、解答题(本大题共8小题,共60分)16.(7分)解方程:(1)2x2=x(2)x2+4x﹣1=0(用配方法解)17.(7分)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.18.(7分)如图,点A的坐标为(3,3),点B的坐标为(4,0).点C的坐标为(0,﹣1).(1)请在直角坐标系中画出△ABC绕着点C逆时针旋转90°后的图形△A′B′C;(2)直接写出:点A′的坐标(,),点B′的坐标(,).19.(7分)已知:如图,抛物线y=ax2+bx+c与x轴相交于两点A(1,0),B(3,0),与y 轴相交于点C(0,3).(1)求抛物线的函数关系式;(2)若点D(,m)是抛物线y=ax2+bx+c上的一点,请求出m的值,并求出此时△ABD 的面积.20.(8分)如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.21.(8分)如图,在等边△ABC中,已知AB=8cm,线段AM为BC边上的中线.点N在线段AM上,且MN=3cm,动点D在直线AM上运动,连接CD,△CBE是由△CAD旋转得到的.以点C为圆心,以CN为半径作⊙C与直线BE相交于点P,Q两点.(1)填空:∠DCE= 度,CN= cm,AM= cm;(2)如图,当点D在线段AM上运动时,求出PQ的长.22.(8分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.(8分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣.期末数学试卷1参考答案一、选择题(每小题3分,共30分)1.【解析】第一个图形不是轴对称图形,是中心对称图形,故本选项错误;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形。
人教版2019-2020学年上册期末考试九年级数学试卷(含答案)
2019-2020学年上学期期末考试九年级数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. (3分)方程x2+x=0的解为()A. x=0B. x= - 1C. x i=0, X2= - 1 D . x i=1, X2= - 12. (3分)下列图形中,既是轴对称图形又是中心对称图形的是()A .平行四边形B .菱形C.等边三角形D .等腰直角三角形3. (3分)如图,将△ AOB绕点O按逆时针方向旋转45°后得到△ A OB若/ AOB=15,则/ AOB的度数是()A. 25°B. 30°C. 35°D. 40°4. (3分)下列说法正确的是()A. 经过有交通信号的路口遇到红灯”是必然事件B. 已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C. 投掷一枚硬币正面朝上是随机事件D. 明天太阳从东方升起是随机事件5. (3分)已知一元二次方程x2- 4x+m=0有一个根为2,则另一根为()A. - 4 B . - 2 C . 4 D . 26. (3分)若点M在抛物线y(x+3)2-4的对称轴上,则点M的坐标可能是()A. (3,- 4)B. (- 3, 0)C. (3, 0)D. (0,- 4)7. (3分)如图,四边形ABCD内接于。
O,连接OB、OD,若/BOD= / BCD , 则/A的度数为()A. 60°B. 70°C. 120°D. 140°28. (3分)将二次函数y=x+2x-1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()2 2 2 2A. y= (x+3)2-2 B . y= (x+3)2+2 C. y= (x - 1)2+2D . y= (x - 1)2-29. (3分)如图,菱形ABCD中,/ B=70o, AB=3,以AD为直径的。
2019-2020学年度第一学期九年级数学期末试题附答案答案
我爱美丽靓湖2019-2020学年度第一学期九年级数学期末试题答案一、选择题(本大题10小题,共30分)1. 如图是一个小正方体的展开图,把展开图折叠成小正方体后,“爱”字一面的相对面上的字是( )A. 美B. 丽C. 靓D. 湖【答案】C【解析】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形, ∴有“爱”字一面的相对面上的字是靓.故选C .正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.当0<x <-1时,x ,1x,x 2的大小顺序是( ) A.1x <x <x 2 B .x <x 2<1x C .x 2<x <1x D.1x<x 2<x 【答案】A3.2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为( )A .1.28×1014B .1.28×10﹣14C .128×1012D .0.128×1011【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:将128 000 000 000 000用科学记数法表示为:1.28×1014. 故选:A .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.如图,直线a ,b 被直线c 所截,a ∥b ,∠1=60°,则∠2的度数是( )A .120°B .60°C .45°D .30°【分析】利用两直线平行,同位角相等就可求出.【解答】解:∵直线被直线a 、b 被直线c 所截,且a ∥b ,∠1=60°∴∠2=∠1=60°.故选:B .【点评】本题考查了平行线的性质,应用的知识为两直线平行,同位角相等.5.若a +b =1,则a 2−b 2+2b 的值为( )A. 4B. 3C. 1D. 0【答案】C【解析】解:∵a +b =1,∴a 2−b 2+2b =(a +b)(a −b)+2b =a −b +2b =a +b =1.故选:C .首先利用平方差公式,求得a 2−b 2+2b =(a +b)(a −b)+2b ,继而求得答案. 此题考查了平方差公式的应用.注意利用平方差公式将原式变形是关键.6.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为( )A. 1250条B. 1750条C. 2500条D. 5000条【答案】A【解析】解:由题意可得:50÷250=1250(条).故选:A .首先求出有记号的2条鱼在50条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.本题考查了统计中用样本估计总体,表示出带记号的鱼所占比例是解题关键.7.若不等式组{x >a x −3≤0,只有三个正整数解,则a 的取值范围为( ) A. 0≤a <1B. 0<a <1C. 0<a ≤1D. 0≤a ≤1 【答案】A【解析】解:{x >a ①x −3≤0 ②∵解不等式①得:x ≤3,又∵不等式组{x >a x −3≤0只有三个正整数解, ∴0≤a <1,故选:A .先确定不等式组的整数解,再求出a 的范围即可.本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a 的取值范围是解此题的关键.8.方程(x+1)2=9的根是( )A .x =2B .x =-4C .x 1=2 x 2=-4D .x 1=4 x 2=-2解析: 把x=2、-2、4、-4分别代入方程(x+1)2=9中发现只有x =2和x =-4能使方程左右两边相等,所以选择答案C9.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是( )A. DE =12BCB. AD AB =AE ACC. △ADE∽△ABCD. S △ADE :S △ABC =1:2【答案】D【解析】解:∵D 、E 分别是AB 、AC 的中点,∴DE//BC ,DE =12BC ,∴ADAB =AEAC =DEBC =12,△ADE∽△ABC , ∴S △ADE :S △ABC =(AD AB )2=14, ∴A ,B ,C 正确,D 错误;故选:D .根据中位线的性质定理得到DE//BC ,DE =12BC ,再根据平行线分线段成比例定理和相似三角形的性质即可判定.该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证明.10.如图,抛物线y =ax 2+bx +c(a ≠0)过点(1,0)和点(0,−2),且顶点在第三象限,设P =a −b +c ,则P 的取值范围是( )A. −4<P <0B. −4<P <−2C. −2<P <0D. −1<P <0【答案】A【解析】解:经过点(1,0)和(0,−2)的直线解析式为y =2x −2,当x =−1时,y =2x −2=−4,而x =−1时,y =ax 2+bx +c =a −b +c ,∴−4<a −b +c <0,即−4<P <0,故选:A .先利用待定系数法求出经过点(1,0)和(0,−2)的直线解析式为y =2x −2,则当x =−1时,y =2x −2=−4,再利用抛物线的顶点在第三象限,从而得到所以−4<a −b +c <0,根据顶点的纵坐标和与y 轴的交点坐标即可得出答案.本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左;当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c).抛物线与x 轴交点个数由判别式确定:△=b 2−4ac >0时,抛物线与x 轴有2个交点;△=b 2−4ac =0时,抛物线与x 轴有1个交点;△=b 2−4ac <0时,抛物线与x 轴没有交点二.填空题(本题共8小题,共计24分)11.函数y =√x+3x−1中自变量x 的取值范围是答案: x ≥−3且x ≠1【解析】【分析】本题考查了函数自变量的取值范围,要注意几点:①被开方数为非负数;②分母不为0;③a 0中a ≠0.根据被开方数为非负数和分母不为0列不等式计算.【解答】解:根据题意得:{x +3≥0x −1≠0, 解得:x ≥−3且x ≠1.12.因式分解:16a 2−16a +4= ______ .【答案】4(2a −1)2【解析】解:原式=4(4a 2−4a +1)=4(2a −1)2,故答案为:4(2a −1)2.首先提取公因式4,再利用完全平方公式进行二次分解即可.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.一组数据2,4,a ,7,7的平均数x =5,则方差S 2=________.【答案】3.6【解析】解:∵数据2,4,a ,7,7的平均数x =5,∴2+4+a +7+7=25,解得a =5,∴方差s 2=15[(2−5)2+(4−5)2+(5−5)2+(7−5)2+(7−5)2]=3.6;故答案为:3.6.根据平均数的计算公式:x=x1+x2+⋯+x nn ,先求出a的值,再代入方差公式S2=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2]进行计算即可.本题主要考查的是平均数和方差的求法,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2].14.若x1,x2是一元二次方程x2+3x−5=0的两个根,则x12x2+x1x22的值是______.【答案】15【解析】解:∵x1,x2是一元二次方程x2+3x−5=0的两个根,∴x1+x2=−3,x1x2=−5,∴x12x2+x1x22=x1x2(x1+x2)=−5×(−3)=15,故答案为:15.由根与系数的关系可求得(x1+x2)与x1x2的值,代入计算即可.本题主要考查根与系数的关系,由根与系数的关系求得(x1+x2)与x1x2的值是解题的关键.15.如图,在⊙O中,C是弦AB上一点,AC=2,CB=4.连接OC,过点C作DC⊥OC,与⊙O交于点D,DC的长为______.【答案】2√2【解析】解:延长DC交⊙O于点E.∵OC⊥DE,∴DC=CE,∵AC⋅CB=DC⋅EC(相交弦定理,可以证明△ADC∽△EBC得到),∴DC2=2×4=8,∵DC>0,∴DC=2√2,故答案为2√2.延长DC交⊙O于点E.由相交弦定理构建方程即可解决问题.本题考查垂径定理,相交弦定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.16.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为______米.(精确到1米,参考数据:√3≈1.73)【答案】208【解析】解:由题意可得:tan30°=BDAD =BD90=√33,解得:BD=30√3,tan60°=DCAD =DC90=√3,解得:DC=90√3,故该建筑物的高度为:BC=BD+DC=120√3≈208(m),故答案为:208.分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.17.如图,三角形ABC是边长为1的正三角形,与所对的圆心角均为120°,则图中阴影部分的面积为.考点:扇形面积的计算;等边三角形的性质.分析:设与相交于点O,连OA,OB,OC,线段OA将阴影的上方部分分成两个弓形,将这两个弓形分别按顺时针及逆时针方向绕点O旋转120°后,阴影部分便合并成△OBC,得到它的面积等于△ABC面积的三分之一,利用等边三角形的面积公式:×边长2,即可求得阴影部分的面积.解答:解:如图,设与相交于点O,连接OA,OB,OC,线段OA将阴影的上方部分分成两个弓形,将这两个弓形分别按顺时针及反时针绕点O旋转120°后,阴影部分便合并成△OBC,它的面积等于△ABC面积的三分之一,∴S阴影部分=××12=.故答案为:.点评:本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等边三角形的面积公式:×边长2.x2−4与x轴交于A、B两点,P是以点C(0,3)18.如图,抛物线y=14为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是【答案】72【解析】解:连接BP,如图,x2−4=0,解得x1=4,x2=−4,则A(−4,0),当y=0时,14B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,BP,∴OQ=12当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC=√32+42=5,∴BP′=5+2=7,∴线段OQ的最大值是7.2x2−4=0得A(−4,0),B(4,0),再判断OQ为△ABP的中位线连接BP,如图,先解方程14BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到得到OQ=12P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.三、解答题(本题共计10个小题,共计66分)19.(本题满分4分)计算:+(﹣3)0﹣6cos45°+()﹣1.【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+1﹣6×+2=3+1﹣3+2=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(本题满分4分)解不等式<x+1,并把它的解集在数轴上表示出来.【分析】根据解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.依次计算可得.【解答】解:去分母,得:5x﹣1<3x+3,移项,得:5x﹣3x<3+1,合并同类项,得:2x<4,系数化为1,得:x<2,将不等式的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式,解题的关键是掌握解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.21.(本题满分5分)关于x的分式方程﹣=总无解,求a的值.【分析】分式方程去分母转化为整式方程,分类讨论a的值,使分式方程无解即可.【解答】解:去分母得:3﹣x﹣a(x﹣2)=﹣2,即(a+1)x=2a+5,当a=﹣1时,显然方程无解;当a≠﹣1时,x=,当x=2时,a不存在;当x=3时,a=2,综上,a的值为﹣1,2.【点评】本题考查了分式方程无解的条件,分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.22.(本题满分8分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中两名学生性别相同的情况,再利用概率公式即可求得答案.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,平均每个班=6件,C班有10件,∴估计全校共征集作品6×30=180件.条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中两名学生性别相同的概率为:=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.23.(本题满分6分)如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)由∠BEF是120°,可得∠EBC为60°,即可得△BEC是等边三角形,求得BE=BC=CE=6,再过点E作EG⊥BC于点G,求的高EG的长,即可求得答案.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=EF,∴四边形BCFE是菱形;(2)解:∵∠BEF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴BE=BC=CE=6,过点E作EG⊥BC于点G,∴EG=BE•sin60°=6×=3,∴S菱形BCFE=BC•EG=6×3=18.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.注意证得△BEC是等边三角形是关键.24.(本题满分7分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?【答案】解:(1)设甲型机器人每台价格是x 万元,乙型机器人每台价格是y 万元,根据题意得{x +2y =142x +3y =24解这个方程组得:{x =6y =4答:甲、乙两种型号的机器人每台价格分别是6万元、4万元.(2)设该公可购买甲型机器人a 台,乙型机器人(8−a)台,根据题意得{6a +4(8−a)≤411200a +1000(8−a)≥8300解这个不等式组得32≤a ≤92∵a 为正整数∴a 的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台购买甲型机器人3台,乙型机器人5台购买甲型机器人4台,乙型机器人4台26.(本题满分7分)如图,已知一次函数与反比例函数的图象相交于点A (4,n ),与x 轴相交于点B .(1)填空:n 的值为 ,k 的值为 ; (2)以AB 为边作菱形ABCD ,使点C 在x 轴正半轴上,点D 在第一象限,求点D 的坐标;(3)考察反比函数的图象,当时,请直接写出自变量x 的取值范围.(1)3,1226.(本题满分7分)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.【解答】解:(1)由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,故正方体的棱长为10cm;故答案为:10;(2)设线段AB对应的函数解析式为:y=kx+b,∵图象过A(12,10),B(28,20),∴,解得:,∴线段AB对应的解析式为:y=x+(12≤x≤28);(3)∵28﹣12=16(s),∴没有立方体时,水面上升10cm,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.27.(本题满分9分)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ//AB 分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC⋅BQ;(3)若AC、BQ的长是关于x的方程x+4x =m的两实根,且tan∠PCD=13,求⊙O的半径.(x−ℎ)2−2与x轴交于A,B两点(点A在点28.(本题满分9分)如图,抛物线l:y=12B的左侧),将抛物线l在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数f的图象.(1)若点A的坐标为(1,0).①求抛物线l的表达式,并直接写出当x为何值时,函数f的值y随x的增大而增大;②如图2,若过A点的直线交函数f的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P 的坐标;(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.4.【答案】解:(1)①把A(1,0)代入抛物线y=12(x−ℎ)2−2中得:12(x−ℎ)2−2=0,解得:ℎ=3或ℎ=−1,∵点A在点B的左侧,∴ℎ>0,∴ℎ=3,∴抛物线l的表达式为:y=12(x−3)2−2,∴抛物线的对称轴是:直线x=3,由对称性得:B(5,0),由图象可知:当1<x<3或x>5时,函数f的值y随x的增大而增大;②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD//QE,由对称性得:DF=PD,∵S△ABQ=2S△ABP,∴12AB⋅QE=2×12AB⋅PD,∴QE=2PD,∵PD//QE,∴△PAD∽△QAE,∴AEAD =QEPD,∴AE=2AD,设AD=a,则OD=1+a,OE=1+2a,P(1+a,−[12(1+ a−3)2−2]),∵点F、Q在抛物线l上,∴PD=DF=−[12(1+a−3)2−2],QE =12(1+2a −3)2−2, ∴12(1+2a −3)2−2=−2[12(1+a −3)2−2], 解得:a =83或a =0(舍),∴P(113,169); (2)当y =0时,12(x −ℎ)2−2=0,解得:x =ℎ+2或ℎ−2,∵点A 在点B 的左侧,∴A(ℎ−2,0),B(ℎ+2,0),如图3,作抛物线的对称轴交抛物线于点C ,分两种情况:①由图象可知:图象f 在AC 段时,函数f 的值随x 的增大而增大,则{ℎ−2≤2ℎ≥3, ∴3≤ℎ≤4,②由图象可知:图象f 点B 的右侧时,函数f 的值随x 的增大而增大,即:ℎ+2≤2,ℎ≤0,综上所述,当3≤ℎ≤4或ℎ≤0时,函数f 的值随x 的增大而增大.【解析】(1)①利用待定系数法求抛物线的解析式,由对称性求点B 的坐标,根据图象写出函数f 的值y 随x 的增大而增大(即呈上升趋势)的x 的取值;②如图2,作辅助线,构建对称点F 和直角角三角形AQE ,根据S △ABQ =2S △ABP ,得QE =2PD ,证明△PAD∽△QAE ,则AE AD =QE PD ,得AE =2AD ,设AD =a ,根据QE =2FD 列方程可求得a的值,并计算P 的坐标;(2)先令y =0求抛物线与x 轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h 的取值.本题是二次函数的综合题,考查了利用待定系数法求二次函数的解析式、二次函数的增减性问题、三角形相似的性质和判定,与方程相结合,找等量关系,第二问还运用了数形结合的思想解决问题.。
【人教版】2019—2020学年九年级上数学期末试卷及答案解析
【人教版】2019—【人教版】2019—2020学年九年级上数学期末试卷及答案解析姓名:_______________班级:_______________考号:_______________一、选择题二、1、方程的左边配成完全平方后;得到的方程为().A. B. C.D.以上都不对2、在一幅长80cm;宽50cm的矩形风景画的四周镶一条金色纸边;制成一幅矩形挂图;如果要使整个挂图的面积是5400cm2;设金色纸边的宽为;则满足的方程是()A. B.C. D.3、如图;在Rt△ABC中;∠BAC=90°;∠B=60°;△ADE可以由△ABC绕点 A顺时针旋转900得到;点D 与点B是对应点;点E与点C是对应点);连接CE;则∠CED的度数是( )(A)45°(B)30°(C)25°(D)15°4、下列图形中;是中心对称图形的是()5、如图;A;B;C是⊙O上三个点;∠AOB=2∠BOC;则下列说法中正确的是A. ∠OBA=∠OCAB. 四边形OABC内接于⊙OC.. AB=2BCD. ∠OBA+∠BOC=90°6、在平面直角坐标系中;以点(3;2)为圆心;2为半径的圆与坐标轴的位置关系为()A.与x轴相离、与y轴相切 B.与x轴、y轴都相离C.与x轴相切、与y轴相离 D.与x轴、y轴都相切7、某口袋中有20个球;其中白球x个;绿球2x个;其余为黑球.甲从袋中任意摸出一个球;若为绿球则甲获胜;甲摸出的球放回袋中;乙从袋中摸出一个球;若为黑球则乙获胜.则当x=________时;游戏对甲、乙双方公平( )A.3 B.4 C.5 D.68、.已知二次函数y=ax2+bx+c(a≠0)的图象如图;有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论的有()A. 1个B. 2个C. 3个D. 4个9、如图;已知AB=12;点C;D在AB上;且AC=DB=2;点P从点C沿线段CD向点D运动(运动到点D停止);以AP、BP为斜边在AB的同侧画等腰Rt△APE和等腰Rt△PBF;连接EF;取EF的中点G;下列说法中正确的有()①△EFP的外接圆的圆心为点G;②四边形AEFB的面积不变;③EF的中点G移动的路径长为4;④△EFP的面积的最小值为8.A.1个 B.2个 C.3个 D.4个10、如图所示;二次函数的图像经过点(-1;2);且与轴交点的横坐标分别为;;其中;;下列结论:①;②;③;④其中正确的有( )A.1个 B.2个 C.3个 D.4个二、填空题11、方程有两个不等的实数根;则a的取值范围是________。
人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案
人教版2019—2020学年度第一学期九年级数学期末试卷及答案(满分:120分答题时间:90分钟)一、单鞋选择题(每小题3分,满分30分)1.在一个不透明的口袋中有若干个只有颜色不同的球,如果口袋中装有4个黄球,且摸出黄球的概率为,那么袋中共有球的个数为()A.6个B.7个C.9个D.12个2.如图所示为农村一古老的捣碎器,已知支撑柱AB的高为0.3米,踏板DE 长为1米,支撑点A到踏脚D的距离为0.6米,原来捣头点E着地,现在踏脚D着地,则捣头点E上升了()A.0.5米B.0.6米C.0.3米D.0.9米3.下列计算正确的是()A.B.C.D.4.已知关于x的方程2x2﹣9x+n=0的一个根是2,则n的值是()A.n=2 B.n=10 C.n=﹣10 D.n=10或n=2 5.关于x的一元二次方程kx2﹣(2k+1)x+k=0有两个实数根,则k的取值范围是()A.k>﹣B.k≥﹣C.k<﹣且k≠0D.k≥﹣且k≠06.用配方法解方程:x2+x﹣1=0,配方后所得方程是()A. B.C.D.7.如图,两条宽为1的带子,相交成α角,那么重叠部分的面积即阴影部分的面积为()A.sinαB. C.D.8.如图所示,把矩形OABC放入平面直角坐标系中,点B坐标为(10,8),点D是OC上一动点,将矩形OABC沿直线BD折叠,点C恰好落在OA上的点E处,则点D的坐标是()A.(0,4) B.(0,5) C.(0,3) D.(3,0)9.如图,在Rt△ABC中,∠C=90°,∠B=30°,点P是AC的中点,过点P的直线L截下的三角形与△ABC相似,这样的直线L的条数是()A .1B .2C .3D .410.制造一种产品,原来每件成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低的百分率是( ) A .8.5% B .9% C .9.5% D .10% 二、填空题(每小题3分,满分30分)11.在△ABC 中,D 、E 是AB 上的点,且AD=DE=EB ,DF ∥EG ∥BC ,则△ABC 被分成的三部分的面积比S △ADF :S 四边形DEGF :S 四边形EBCG 等于 .12.直角△ABC 中,斜边AB=5,直角边BC 、AC 之长是一元二次方程x 2﹣(2m ﹣1)x+4(m ﹣1)=0的两根,则m 的值为 . 13.函数的自变量的取值范围是 .14.已知,则=.15.在△ABC 中,(2sinA ﹣1)2+=0,则△ABC 的形状为 .16.现有五张外观一样的卡片,背面朝上,正面分别由一个二次根式:,,,,,从中任取一张卡片,再从剩下的卡片中又抽取一张,则两次所取卡片上的二次根式是同类二次根式的概率是 .17.关于x 的一元二次方程(k ﹣1)x+6x+8=0的解为 .18.已知关于x 的方程x 2﹣px+q=0的两个根为0和﹣3,则p= .q= .19.如图,正三角形△A 1B 1C 1的边长为1,取△A 1B 1C 1各边的中点A 2、B 2、C 2,作第二个正三角形△A 2B 2C 2,再取△A 2B 2C 2各边的中点A 3、B 3、C 3,作第三个正三角形△A 3B 3C 3,…用同样的方法作正三角形则第10个正三角形△A 10B 10C 10的面积是 .20.如图,表示△AOB 为O 为位似中心,扩大到△COD ,各点坐标分别为:A (1,2),B (3,0),D (4,0),则点C 坐标为 .三、解答下列各题(本大题共10小题,共60分)21.计算(每小题3分,共6分)(1)(﹣)+(2)|﹣|﹣+(π﹣4)0﹣sin30°.22.解方程:(每小题3分,共6分)(1)(x﹣5)2=2(x﹣5)(2)2x(x﹣1)=3x+1.23.( 5分)在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,a、b是关于x的方程x2﹣7x+c+7=0的两根,求AB边上的中线长.24.( 5分)已知关于x的方程x2﹣(k+2)x+2k=0.①小明同学说:无论k取何实数,方程总有实数根,你认为他说的有道理吗?②若等腰三角形的一边a=1,另两边b、c恰好是这个方程的两个根,求△ABC 的周长和面积.25.( 5分)完全相同的四张卡片,上面分别标有数字1,2,﹣1,﹣2,将其背面朝上,从中任意抽出两张(不放回),把第一张的数字记为a,第二张的数字记为b,以a、b分别作为一个点的横坐标与纵坐标;求点(a,b)在第四象限的概率.(用树状图或列表法求解)26.( 5分)先阅读理解下列例题,再按例题解一元二次不等式.例:解二元一次不等式6x2﹣x﹣2>0解:把6x2﹣x﹣2分解因式,得6x2﹣x﹣2=(3x﹣2)(2x+1)又6x2﹣x﹣2>0,所以(3x﹣2)(2x+1)>0由有理数的乘法法则“两数相乘,同号得正”有(1)或(2)解不等式组(1)得x>;解不等式组(2)得x<﹣,所以6x2﹣x﹣2>0 的解集为x>或x<﹣,求一元二次不等式2x2﹣14x﹣16<0的解集.27.( 6分)如图,在矩形ABCD中,DC=2,CF⊥BD于点E,交AD于点F,连接BF.(1)试找出图中与△DEC相似的三角形,并选一个进行证明.(2)当点F是AD的中点时,求BC边的长及sin∠FBD的值.28.( 6分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?29.( 8分)如图,在平面直角坐标系xoy中,四边形OABC是矩形,A(0,6),C(8,0),动点P以每秒2个单位的速度从点A出发,沿AC向点C移动,同时动点Q以每秒1个单位的速度从点C出发,沿CO向点O移动,设P、Q两点移动t秒(0<t<5)后,四边形AOQP的面积为S.(1)求面积S与时间t的关系式;(2)在P、Q两点移动的过程中,能否使以C、P、Q为顶点的三角形与A、O、C为顶点的三角形相似?若能,求出此时点P的坐标;若不能,请说明理由.30.( 8分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)2019—2020学年度九年级上学期期末数学试卷参考答案一、单鞋选择题(每小题3分,满分30分)1.D .2.A .3.B .4.B .5.D .6. C. 7.B .8. C .9.C .10.D . 二、填空题(每小题3分,满分30分)11.1:3:5.12.4 13.x≥1且x≠2.14. .15.直角三角形.16.. 17.x 1=4,x 2=﹣1.18.﹣3、0,19.•.20.(,).三、解答下列各题21.【解答】解:(1)原式=2﹣+=2;(2)原式=﹣3+1﹣ =﹣2.22.【解答】解:(1)(x ﹣5)2﹣2(x ﹣5)=0, (x ﹣5)(x ﹣5﹣2)=0, x ﹣5=0或x ﹣5﹣2=0, 所以x 1=5,x 2=7; (2)2x 2﹣5x ﹣1=0,△=(﹣5)2﹣4×2×(﹣1)=33, x=,所以x 1=,x 2=.23.【解答】解:∵a 、b 是关于x 的方程x 2﹣7x+c+7=0的两根, ∴根与系数的关系可知:a+b=7,ab=c+7;由直角三角形的三边关系可知:a 2+b 2=c 2, 则(a+b )2﹣2ab=c 2, 即49﹣2(c+7)=c 2, 解得:c=5或﹣7(舍去),再根据直角三角形斜边中线定理得:中线长为. 答:AB 边上的中线长是.24.【解答】解:(1)∵△=(k+2)2﹣4×1×2k=k 2+4k+4﹣8k=k 2﹣4k+4=(k ﹣2)2≥0,∴方程无论k 取何值,总有实数根, ∴小明同学的说法合理; (2)①当b=c 时,则△=0, 即(k ﹣2)2=0, ∴k=2,方程可化为x 2﹣4x+4=0, ∴x 1=x 2=2, 而b=c=2, ∴C △ABC =5,S △ABC =;②当b=a=1,∵x 2﹣(k+2)x+2k=0. ∴(x ﹣2)(x ﹣k )=0, ∴x=2或x=k ,∵另两边b、c恰好是这个方程的两个根,∴k=1,∴c=2,∵a+b=c,∴不满足三角形三边的关系,舍去;综上所述,△ABC的周长为5.25.【解答】解:共有12种情况在第四象限的有4种情况,所以概率是.26.【解答】解:由题意得或,解得两个不等式组的解集分别为﹣1<x<8和无解,所以,此不等式组的解集为﹣1<x<8.27.【解答】解:(1)∵∠DEC=∠FDC=90°,∠DCE=∠FCD,∴△DEC∽△FDC.所以△DEC相似的三角形是△FED,△FDC,△DCB,△CEB,△BAD;(2)∵F为AD的中点,AD∥BC,∴FE:EC=FD:BC=1:2,FB=FC,∴FE:FC=1:3,∴sin∠FBD=EF:BF=EF:FC=;设EF=x,则FC=3x,∵△DEC∽△FDC,∴,即可得:6x2=4,解得:x=,则CF=,在Rt△CFD中,DF==,∴BC=2DF=2.28.【解答】解:由题意得:(1)50+x﹣40=x+10(元)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250 当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.29.【解答】解:(1)如图,过点P作PE⊥CO,垂足为E,根据题意可知,AP=2t,CQ=t,∵A(0,6),C(8,0),∴AC==10,则CP=10﹣2t,∵PE⊥CO,AO⊥CO,∴PE∥AO,∴△CPE∽△CAO,∴=,即=,解得:PE=(10﹣2t),CE=;故四边形AOQP的面积S==;(2)若△AOC与△CPQ相似,则有以下两种情况:①如图所示,当∠QPC=∠AOC=90°时,△AOC∽△QPC,可得:,即:,解得:t=,过点P作PD⊥OC,垂足为D,由(1)可知,PD=(10﹣2t)=,OD=8﹣=,∴点P坐标为(,);②如图,当∠PQC=∠AOC=90°时,△AOC∽△PQC,可得:,即:,解得:t=,PQ=,OQ=8﹣t=,∴点P的坐标为(,);综上,存在这样的点P,其坐标为(,)或(,).30.【解答】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.Rt△ABF中,i=tan∠BAF==,∴∠BAF=30°,∴BF=AB=5,AF=5.∴BG=AF+AE=5+15.Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.。
20192020学年人教版初三上期末数学试卷含
2019-2020 学年人教版初三上期末数学试卷含答案 九年级数学(人教版)上学期期末考试一试卷一、选择题(本大题共10 小题,每题4 分,共 40 分)1.一个直角三角形的两条直角边分别为a=2 3 , b=36 ,那么这个直角三角形的面积是( C )A .8 2B. 7 21) C . 9 2D. 2,则 m 的值等 2.若对于 x 的一元二次方程 (m x 2 5 x m 2 3 m20 的常数项为于( B )A . 1B . 2C .1 或 2D . 03.三角形的两边长分别为 3 和 6,第三边的长是方程 x 26 x 8 0的一个根,则这个三角形的周长是 ( C)A. 9B. 11C. 13D 、144.过⊙ O 内一点 M 的最长弦长为 10cm,最短弦长为 8cm,那么 OM 的长为 ( A )C.41 cm5.图中∠ BOD 的度数是 ( B )A . 55° B. 110°C.125° D . 150°6.如图,⊙ O 是△ ABC 的内切圆,切点分别是D 、E 、F ,已知∠ A=100°,∠ C=30°,则∠ DFE 的度数是 ( C )A.55 °°°°( 第 5 题 ) ( 第 6 题 )7.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40 个,除颜色外其余完整相同。
小李经过多次摸球试验后发现此中摸到红色、黑色球的频次稳固在 15%和 45%,则口袋中白色球的个数很可能是 ( B )A . 6B . 16C .18D . 248.如图,四边形 ABCD 内接于⊙ O , BC 是直径, AD = DC ,∠ ADB =20o ,则∠ ACB ,∠ DBC 分 别为( B )A . 15o 与 30oB . 20o 与 35oC . 20o 与 40oD . 30o 与 35o9.以下图,小华从一个圆形场所的A 点出发,沿着与半径 OA 夹角为 α 的方向行走,走出席所边沿 B 后,再沿着与半径 OB 夹角为 α 的方向行走。
2019-2020学年度第一学期期末检测九年级数学试题(人教版 含参考答)
2019-2020学年度第一学期期末检测九年级数学试题第I 卷(选择题 共30分)一、选择题(本大题共10个,每小题3分,共30分。
在每小题给出的四个选项中只有一个符合要求)1.下列图形中,既是轴对称图形又是中心对称图形的是A. 等边三角形B. 平行四边形C. 矩形D. 正五边形2.下列事件中,必然事件是A. 某射击运动射击一次,命中靶心B. 通常情况下,水加热到100℃时沸腾C. 掷一次骰子,向上的一面是6点D. 抛一枚硬币,落地后正面朝上3.已知关于x 的一元二次方程x 2+2kx+(k-1)2=0有两个不相等的实数根,则K 的取值范围为 A. K >12 B. K >-12 C. K >18 D. K <124.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直,∠CAB=θ,则拉线BC 的长度为(A ,D ,B 在同一条直线上)A cos θ5.已知点A (1x ,1y ),B (2x ,2y )为反比例函数y=6x图象上的两点,当1x >2x >0时,下列结论正确的是A. 0 <1y <2y B. 0 <2y <1yB. C.1y<2y <0 D.2y<1y<06.将二次函数y=12x2-2x+5化成y=a(x-h)2+k的形式为A.Y=12(x-4)2+3 B. Y=12(x-4)2+1C. Y=12(x-2)2+3 D. Y=12(x-2)2+17.如图,AB是⊙O的直径,BC=1,C,D是圆周上的点,且∠CDB=30°,则图中阴影部分的面积为A.8.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是A. B. C. D.点,其横坐标为1,则一次函数的图象可能是....10.在平面直角坐标系中,正方形A1B1C1D1,D1E1F1B2,A2B2C2D2,D2E3E4B3,A3B3C3D3,…,按如图所示的方式放置,其中点B1在y轴上,点C1,E1,E2,C2,E3,E4,C3,…在x轴上,已知正方形A1B1C1D1的边长为1,∠OB1C1=30°,B1C1∥B2C2∥B3C3…,则正方形A n B n C n D n的边长是第II卷(非选择题共70分)二、填空题(本大题共5个小题,每小题3分,共15分)12.将抛物线y=2x2向上平移3个单位,得到的抛物线的解析式是___________。
人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案
人教版2019—2020学年度第一学期九年级数学期末试卷及答案(满分:120分答题时间:90分钟)一、选择题(每题4分,共32分)1.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则排水管内水的最大深度是()A.4 B.5 C.6D.62.一个半径为2cm的圆的内接正六边形的面积是()A.24cm2 B.6cm2C.12cm2D.8cm23.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个4.若关于x的方程mx2﹣4x+2=0有实数根,则m的取值范围是()A.m≤2B.m≠0C.m≤2且m≠0D.m<25.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C.D.6.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是()m.A.3 B.3C.3D.47.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°8.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定二、填空题(每题4分,共32分)9.设x 1,x 2是方程x 2﹣3x ﹣2=0的两个根,则代数式x 12+x 22的值为 . 10.点P (﹣2,3)将点P 绕点O 逆时针旋转90°,则P 的坐标为 . 11.一元二次方程x 2=3x 的解是: .12.将抛物线y=3x 2﹣2向左平移2个单位,再向下平移3个单位,则所得抛物线的解析式为 .13.抛物线y=﹣x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是 .14.如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A 运动到点A″的位置时,点A 经过的路线与直线l所围成的面积是. 15.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是 .16.一个底面直径是80cm ,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为 .三、解答题(本大题共8小题,共56分) 17.(6分)(1)化简:(﹣1)3﹣|1﹣|+()﹣2×(π﹣3.14)0﹣.(2)解方程:(2x ﹣3)2=918.(6分)如图,△ABC 三个顶点的坐标分别为A (2,4),B (1,1),C (4,3).(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标; (2)请画出△ABC 绕点B 逆时针旋转90°后的△A 2BC 2;(3)求出(2)中C 点旋转到C 2点所经过的路径长(结果保留根号和π); (4)求出(2)△A 2BC 2的面积是多少.19.(6分)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.20.(6分)已知关于x 的方程x 2+(m+2)x+2m ﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m 为何值时,方程的两根互为相反数?并求出此时方程的解.21.(6分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2017年起逐月增加据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?22.(8分)△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.23.(8分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?24.(10分)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.2019-2020学年九年级(上)期末数学试卷参考答案一、选择题1.A.2.B.3.B.4.A.5.B.6.C.7.A.8.A.二、填空题9.13.10.(﹣3,2).11.x1=0,x2=3.12.y=3(x+2)2﹣5.13.﹣3<x<1.14.π+2.15.0或1.16.160°.三、解答题17.解:(1)原式=﹣1﹣+1+4﹣2=4﹣3;(2)开方得:2x﹣3=3或2x﹣3=﹣3,解得:x1=3,x2=0.18.解:(1)如图,△A1B1C1为所作,点A1的坐标为(2,﹣4);(2)如图,△A2BC2为所作;(3)BC==,所以C点旋转到C2点所经过的路径长==π;(4)△A2BC2的面积=3×3﹣×1×2﹣×1×3﹣×2×3=.19.解:(1)设蓝球个数为x个,则由题意得=,解得:x=1,答:蓝球有1个;(2)故两次摸到都是白球的概率==.20.(1)证明:△=(m+2)2﹣4(2m﹣1)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,所以方程有两个不相等的实数根;(2)设方程的两个根为x1,x2,由题意得:x1+x2=0,即m+2=0,解得m=﹣2,当m=﹣2时,方程两根互为相反数,当m=﹣2时,原方程为x2﹣5=0,解得:x1=﹣,x2=.21.解:设前4个月自行车销量的月平均增长率为x,根据题意列方程:64(1+x)2=100,解得x1=﹣225%(不合题意,舍去),x2=25%,100×(1+25%)=125(辆).答:该商城4月份卖出125辆自行车.22.解:根据切线长定理,设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.根据题意,得,解得:.即AF=4cm、BD=5cm、CE=9cm.23.解:(1)由题意得:y=90﹣3(x﹣50)化简得:y=﹣3x+240;(2)由题意得:w=(x﹣40)y(x﹣40)(﹣3x+240)=﹣3x2+360x﹣9600;(3)w=﹣3x2+360x﹣9600∵a=﹣3<0,∴抛物线开口向下.当时,w有最大值.又x<60,w随x的增大而增大.∴当x=55元时,w的最大值为1125元.∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.24.解:(1)由题意对称轴为直线x=﹣1,可设抛物线解析式:y=a(x+1)2﹣4,把点A(﹣3,0)代入可得,a=1,∴y=(x+1)2﹣4=x2+2x﹣3,(2)如图1,y=x2+2x﹣3,当x=0时,y=﹣3,所以点C(0,﹣3),OC=3,令y=0,解得:x=﹣3,或x=1,∴点B(1,0),OB=1,设点P(m,m2+2m﹣3),此时S△POC=×OC×|m|=|m|,S△BOC==,由S△POC=4S△BOC得|m|=6,解得:m=4或m=﹣4,m2+2m﹣3=21,或m2+2m﹣3=5,所以点P的坐标为:(4,21),或(﹣4,5);(3)如图2,设直线AC的解析式为:y=kx+b,把A(﹣3,0),C(0,﹣3)代入得:,解得:,所以直线AC:y=﹣x﹣3,设点Q(n,﹣n﹣3),点D(n,n2+2n﹣3)所以:DQ=﹣n﹣3﹣(n2+2n﹣3)=﹣n2﹣3n=﹣(n+)2+,所以当n=﹣时,DQ有最大值.。
人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案
人教版2019—2020学年度第一学期九年级数学期末试卷及答案(满分:120分答题时间:120分钟)一、选择题(共8小题,每小题3分,满分24分)1.下列事件中,必然事件是()A.抛出一枚硬币,落地后正面向上B.打开电视,正在播放广告C.篮球队员在罚球线投篮一次,未投中D.实心铁球投入水中会沉入水底2.如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=()A.∠ACD B.∠ADB C.∠AED D.∠ACB3.已知四条线段满足,将它改写成为比例式,下面正确的是()A.B.C.D.4.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3) C.(1,﹣3) D.(﹣1,﹣3)5.已知函数y=x2+2x﹣3,当x=m时,y<0,则m的值可能是()A.﹣4 B.0 C.2 D.36.一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.20πcm2D.30πcm27.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=98.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:1二、填空题(本大题共有8小题,每小题3分,共24分)9.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.10.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.11.方程x2﹣4x+c=0有两个不相等的实数根,则c的取值范围是.12.在某一时刻,测得一根高为 1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.题号一二三总分得分13.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)14.二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).15.一元二次方程x2+px﹣2=0的一个根为2,则p的值.16.如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.三、解答题(本大题共有4小题,共24分)17.(6分)解方程:(1)x(x﹣2)+x﹣2=0.(2)x2﹣4x+1=0;18.(6分)一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同,从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号.(1)用树状图或列表法举出所有可能出现的结果;(2)求两次摸出的球都是编号为3的球的概率.19.(6分)如图,△ABC的三个顶点都在格点上,每个小方格边长均为1个单位长度.(1)请你作出△ABC关于点O成中心对称的△A1B1C1(其中A的对称点是A1,B的对称点是B1,C的对称点是C1);(2)直接写出点B1、C1的坐标.20.(6分)如图,四边形ABCD内接于⊙O,E为AB延长线上一点,若∠AOC=140°.求∠EBC的度数.四、解答题(本大题共有4小题,共28分)21.(7分)如图,AB是⊙O的直径,点C、D在⊙O上,且AC平分∠BAD,点E 为AB的延长线上一点,且∠ECB=∠CAD.(1)①填空:∠ACB= ,理由是;②求证:CE与⊙O相切;(2)若AB=6,CE=4,求AD的长.22.如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S 关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).(1)填空:m的值为;(2)求S关于x的函数关系式,并写出x的取值范围;(3)请直接写出△PCQ为等腰三角形时x的值.23.(7分)如图,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB于D.(1)求证:△ACB∽△ADE;(2)求AD的长度.24.(7分)如图,进行绿地的长、宽各增加xm.(1)写出扩充后的绿地的面积y(m2)与x(m)之间的函数关系式;(2)若扩充后的绿地面积y是原矩形面积的2倍,求x的值.五、解答题(本大题共有2小题,共20分)25.如图,抛物线y=a(x﹣m)2﹣m(其中m>1)与其对称轴l相交于点P,与y轴相交于点A(0,m).点A关于直线l的对称点为B,作BC⊥x轴于点C,连接PC、PB,与抛物线、x轴分别相交于点D、E,连接DE.将△PBC沿直线PB 翻折,得到△PBC′.(1)该抛物线的解析式为(用含m的式子表示);(2)探究线段DE、BC的关系,并证明你的结论;(3)直接写出C′点的坐标(用含m的式子表示).26.如图(1),将线段AB绕点A逆时针旋转2α(0°<α<90°)至AC,P 是过A,B,C的三点圆上任意一点.(1)当α=30°时,如图(1),求证:PC=PA+PB;(2)当α=45°时,如图(2),PA,PB,PC三条线段间是否还具有上述数量关系?若有,请说明理由;若不具有,请探索它们的数量关系.2019-2020学年九年级(上)期末数学试卷参考答案一、选择题(共8小题,每小题3分,满分24分)1.D.2. A.3.C.4. A.5.B.6.B.7.D.8.C.二、填空题(本大题共有8小题,每小题3分,共24分)9.70.10..11.c<4.12.15.13.∠C=∠BAD.14.y3<y2<y.15.﹣1.16.3 三、解答题(本大题共有4小题,共24分)17.解:(1)(x+1)(x﹣2)=0,(x+1)(x﹣2)=0,解得x1=﹣1,x2=2;(2)方程变形得:x2﹣4x=﹣1,配方得:x2﹣4x+4=3,即(x﹣2)2=3,开方得:x﹣2=±,则x1=2+,x2=2﹣.18.解:(1)画树状图如下:由树状图可知所有可能出现的结果共9种;(2)由(1)中考共有9种等可能的结果,两次摸出的球都是编号为3的球的情况数是1种,所以其概率为.19.解:(1)如图所示:.(2)根据上图可知,B1(2,2),C1(5,﹣1).20.解:由圆周角定理得,∠D=∠AOC=70°,由圆内接四边形的性质得,∠EBC=∠D=70°.四、解答题(本大题共有4小题,共28分)21.解:①∵AB为⊙O的直径,∴∠ACB=90°,故答案为90°,直径所对的圆周角是直角;②连接OC,则∠CAO=∠ACO,∵AC平分∠BAB,∴∠BAC=∠CAD,∵∠ECB=∠CAD.∴∠BAC=∠ECB.∴∠ECB=∠ACO,∵∠ACO+∠OCB=90°,∴∠ECB+∠OCB=90°,即CE⊥OC.∴CE与⊙O相切;(2)∵CE与⊙O相切,∴CE2=BE?AE,∵AB=6,CE=4,∴42=BE(BE+6),∴BE=2,∴AE=6+2=8,∵△ACE∽△CBE,∴=,即=,∴AC=4,∴AC=CE=4,∴∠CAB=∠E,∴∠ECB=∠E,∴∠ABC=2∠ECB=2∠BAC,BC=BE=2,∴∠DAB=∠ABC,∴AD=BC=2.22.解:(1)如图1中,作AM⊥BC,PN⊥BC,垂足分别为M,N.由题意AB=AC=8,∠A=120°,∴∠BAM=∠CAM=60°,∠B=∠C=30°,∴AM=AB=4,BM=CM=4,∴BC=8,∴m=BC=8,故答案为8.(2)①当0≤m≤8时,如图1中,在RT△PBN中,∵∠PNB=90°,∠B=30°,PB=x,∴PN=x.s=?BQ?PN=?x??x=x2.②当8<x≤16,如图2中,在RT△PBN中,∵PC=16﹣x,∠PNC=90°,∠C=30°,∴PN=PC=8﹣x,∴s=?BQ?PN=?x?(8﹣x)=﹣x2+4x.③当8<x≤16时,s=?8?(8﹣?x)=﹣2x+32.(3)①当点P在AB上,点Q在BC上时,△PQC不可能是等腰三角形.②当点P在AC上,点Q在BC上时,PQ=QC,∵PC=QC,∴16﹣x=(8﹣x),∴x=4+4.③当点P在AC上,点Q在BC的延长线时,PC=CQ,即16﹣x=x﹣8,∴x=8+4.∴△PCQ为等腰三角形时x的值为4+4或8+4.23.(1)证明:∵DE⊥AB,∠C=90°,∴∠EDA=∠C=90°,∵∠A=∠A,∴△ACB∽△ADE;(2)解:∵△ACB∽△ADE,∴=,∴=,∴AD=4.24. 解:(1)由图可得,扩充后的绿地的面积y(m2)与x(m)之间的函数关系式是:y=(30xm+m)(20xm+m)=600x2m2+50xm2+m2,即扩充后的绿地的面积y(m2)与x(m)之间的函数关系式是:y=600x2m2+50xm2+m2;(2)∵扩充后的绿地面积y是原矩形面积的2倍,∴600x2m2+50xm2+m2=2×30xm×20xm,解得(舍去),即扩充后的绿地面积y是原矩形面积的2倍,x的值是.五、解答题(本大题共有2小题,共20分)25.解:(1)把点A(0,m)代入y=,得:2am2﹣m=m,am﹣1=0,∵am>1,∴a=,∴y=,故答案为:y=;(2)DE=BC.理由:又抛物线y=,可得抛物线的顶点坐标P(m,﹣m),由l:x=m,可得:点B(2m,m),∴点C(2m,0).设直线BP的解析式为y=kx+b,点P(m,﹣m)和点B(2m,m)在这条直线上,得:,解得:,∴直线BP的解析式为:y=x﹣3m,令y=0, x﹣3m=0,解得:x=,∴点D(,0);设直线CP的解析式为y=k1x+b1,点P(m,﹣m)和点C(2m,0)在这条直线上,得:,解得:,∴直线CP的解析式为:y=x﹣2m;抛物线与直线CP相交于点E,可得:,解得:,(舍去),∴点E(,﹣);∵x D=x E,∴DE⊥x轴,∴DE=y D﹣y E=,BC=y B﹣y C=m=2DE,即DE=BC;(3)C′(,).连接CC′,交直线BP于点F,∵BC′=BC,∠C′BF=∠CBF,∴CC′⊥BP,CF=C′F,设直线BP的解析式为y=kx+b,点B(2m,m),P(m,﹣m)在直线上,∴,解得:,∴直线BP的解析式为:y=x﹣3m,∵CC′⊥BP,∴设直线CC′的解析式为:y=x+b1,∴,解得:b1=2m,联立①②,得:,解得:,∴点F(,),∴CF==,设点C′的坐标为(a,),∴C′F==,解得:a=,∴,∴C′(,).26.证明:(1)如图(1),在PA上截取PD=PA,∵AB=AC,∠CAB=60°,∴△ABC为等边三角形,∴∠APC=∠CPB=60°,∴△APD为等边三角形,∴AP=AD=PD,∴∠ADC=∠APB=120°,在△ACD和△ABP中,,∴△ACD≌△ABP(AAS),∴CD=PB,∵PC=PD+DC,∴PC=PA+PB;(2)PC=PA+PB,如图(2),作AD⊥AP与PC交于一点D,∵∠BAC=90°,∴∠CAD=∠BAP,在△ACD和△ABP中,,∴△ACD≌△ABP,∴CD=PB,AD=AP,根据勾股定理PD=PA,∴PC=PD+CD=PA+PB.。
2019—2020年最新人教版九年级第一学期期末数学上册试卷及答案解析(试卷).docx
九年级(上)摸底数学试卷一、选择题(每小题3分,共45分)1.下列关于x的方程中,一定是一元二次方程的为()A.ax2+bx+c=0 B.x2=x(x+3)C.x2+3x﹣5=0 D.x2﹣y=02.将一元二次方程5x2﹣1=4x化成一般形式后,一次项系数和二次项系数分别为()A.5,﹣1 B.5,4 C.﹣4,5 D.5x2,﹣4x3.抛物线y=(x+2)2+1的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)4.已知x=1是关于x的一元二次方程x2+mx﹣2=0的一个根,则m的值是()A.﹣1 B.0 C.1 D.0或15.二次函数y=x2的图象向右平移3个单位,得到新的图象的函数表达式是()A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2 D.y=(x﹣3)26.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0 B.x2﹣3x+2=0 C.x2﹣2x+3=0 D.x2+3x+2=07.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x的方程为()A.x(5+x)=6 B.x(5﹣x)=6 C.x(10﹣x)=6 D.x(10﹣2x)=68.下列方程中,一定有实数解的是()A.x2+1=0 B.(2x+1)2=0 C.(2x+1)2+3=0 D.(x﹣a)2=a9.配方法解方程2x2﹣x﹣2=0应把它先变形为()A.(x﹣)2=B.(x﹣)2=0 C.(x﹣)2=D.(x﹣)2=10.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()A.400cm2 B.500cm2 C.600cm2 D.4000cm211.已知二次函数y=mx2+x+m(m﹣2)的图象经过原点,则m的值为()A.0或2 B.0 C.2 D.无法确定12.下列说法错误的是()A.二次函数y=3x2中,当x>0时,y随x的增大而增大B.二次函数y=﹣6x2中,当x=0时,y有最大值0C.a越大图象开口越小,a越小图象开口越大D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点13.二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位14.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①a,b异号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=4时,x的取值只能为0,结论正确的个数有()个.A.1 B.2 C.3 D.415.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方程ax2+bx+c=0有两个不等的实数根(c≠0),则方程cx2+bx+a=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立.其中正确地只有()A.①②B.②③C.③④D.①④二、解答题(共9小题,75分)16.解方程(1)x2+2x﹣3=0(2)3x(x﹣2)=2(2﹣x)17.已知一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,求x12x2+x1x22的値.18.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.19.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,求k的取值范围.20.拱桥的形状是抛物线,其函数关系式为y=﹣x2(1)当水面宽度为6米时,求水面离桥顶的高度是多少?(2)当水面离桥顶的高度为m时,求水面的宽度为多少米?21.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?22.如表是2008,2009,2010三年的全国研究生报考和录取情况:年份报考人数/万人报考人数比上一年相比增加的百分数录取人数/万人考录比2008 120 40 3:12009 k m q 3:12010 140 3m 46.7 3:1备注:考录比=报考人数:录取人数(1)求2009年的报考人数;(2)2010,2011,2012三年的就业形势依然严峻,预计报考人数依然递增.从2010年起,若报考人数按一个相同的百分数x增加,则2012年的录取人数将达50.4万人,当2011,2012年的考录比为4:1时,求2011年的报考人数.(人数精确到0.1万人,百分数精确到1%,参考数据:≈1.41,≈1.73)23.如图,△ABC三边分别为a、b、c,且关于x的方程(a+c)x2+2bx+c=a有两个相等的实数根.(1)判断△ABC的形状;(2)CD平分∠ACB,且AD⊥BD,AD、BD为方程x2﹣2mx+n2=0两根,试确定m与n的数量关系,并证明.24.已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x …﹣1 0 1 2 3 4 …y …10 5 2 1 2 5 …(1)求该二次函数的关系式;(2)当x为何值时,y有最小值,最小值是多少?(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,试比较y1与y2的大小.摸底数学试卷参考答案与试题解析一、选择题(每小题3分,共45分)1.下列关于x的方程中,一定是一元二次方程的为()A.ax2+bx+c=0 B.x2=x(x+3)C.x2+3x﹣5=0 D.x2﹣y=0考点:一元二次方程的定义.分析:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.解答:A、ax2+bx+c=0中缺少二次项系数a≠0这一条件,故此选项错误;B、x2=x(x+3)中未知数的最高次数不是2,故此选项错误;C、x2+3x﹣5=0符合一元二次方程的条件,故此选项正确;D、x2﹣y=0含有两个未知数,故此选项错误.故选C.点评:本题考查一元二次方程的定义.判断一个方程是否是一元二次方程必须具备以下3个条件:(1)是整式方程;(2)只含有一个未知数;(3)方程中未知数的最高次数是2.2.将一元二次方程5x2﹣1=4x化成一般形式后,一次项系数和二次项系数分别为()A.5,﹣1 B.5,4 C.﹣4,5 D.5x2,﹣4x考点:一元二次方程的一般形式.分析:要确定一次项系数和二次项系数,首先要把方程化成一般形式.解答:解:∵一元二次方程5x2﹣1=4x化成一般形式为5x2﹣1﹣4x=0,∴一次项系数和二次项系数分别为﹣4、5.故选:C.点评:本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.抛物线y=(x+2)2+1的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)考点:二次函数的性质.分析:已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:因为y=(x+2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1).故选B.点评:考查顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.要掌握顶点式的性质.4.已知x=1是关于x的一元二次方程x2+mx﹣2=0的一个根,则m的值是()A.﹣1 B.0 C.1 D.0或1考点:一元二次方程的解.分析:把x=1代入已知方程,列出关于m的新方程,通过解该方程来求m的值.解答:解:∵x=1是关于x的一元二次方程x2+mx﹣2=0的一个根,∴12+m﹣2=0,即m﹣1=0,解得m=1.故乡:C.点评:本题考查了一元二次方程的解的定义.此题实际上是解关于系数m的一元一次方程.5.二次函数y=x2的图象向右平移3个单位,得到新的图象的函数表达式是()A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2 D.y=(x﹣3)2考点:二次函数图象与几何变换.分析:抛物线平移不改变a的值.解答:解:原抛物线的顶点为(0,0),向右平移3个单位,那么新抛物线的顶点为(3,0).可设新抛物线的解析式为:y=(x﹣h)2+k,代入得:y=(x﹣3)2.故选:D.点评:解决本题的关键是得到新抛物线的顶点坐标,从而得解.6.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0 B.x2﹣3x+2=0 C.x2﹣2x+3=0 D.x2+3x+2=0考点:根与系数的关系.分析:解决此题可用验算法,因为两实数根的和是1+2=3,两实数根的积是1×2=2.解题时检验两根之和是否为3及两根之积是否为2即可.解答:解:两个根为x1=1,x2=2则两根的和是3,积是2.A、两根之和等于﹣3,两根之积等于﹣2,所以此选项不正确;B、两根之和等于3,两根之积等于2,所以此选项正确;C、两根之和等于2,两根之积等于3,所以此选项不正确;D、两根之和等于﹣3,两根之积等于2,所以此选项不正确,故选:B.点评:验算时要注意方程中各项系数的正负.7.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x的方程为()A.x(5+x)=6 B.x(5﹣x)=6 C.x(10﹣x)=6 D.x(10﹣2x)=6考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:一边长为x米,则另外一边长为:5﹣x,根据它的面积为6平方米,即可列出方程式.解答:解:一边长为x米,则另外一边长为:5﹣x,由题意得:x(5﹣x)=6,故选:B.点评:本题考查了由实际问题抽相出一元二次方程,难度适中,解答本题的关键读懂题意列出方程式.8.下列方程中,一定有实数解的是()A.x2+1=0 B.(2x+1)2=0 C.(2x+1)2+3=0 D.(x﹣a)2=a考点:解一元二次方程-直接开平方法.分析:根据非负数的性质和直接开平方法解方程进行判断.解答:解:A、由原方程得到:x2=﹣1<0,故本方程无解;B、直接开平方得到:2x+1=0,由此可以求得x的值,故本方程有实数解;C、由原方程得到:(2x+1)2=﹣3<0,故本方程无解;D、当a<0时,本方程无解.故选:B.点评:本题考查了解一元二次方程﹣﹣直接开平方法.形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.9.配方法解方程2x2﹣x﹣2=0应把它先变形为()A.(x﹣)2=B.(x﹣)2=0 C.(x﹣)2=D.(x﹣)2=考点:解一元二次方程-配方法.专题:计算题.分析:方程常数项移到右边,二次项系数化为1,两边加上一次项系数一半的平方,计算得到结果,即可做出判断.解答:解:方程2x2﹣x﹣2=0变形得:x2﹣x=1,配方得:x2﹣x+=,即(x﹣)2=.故选D.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.10.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()A.400cm2 B.500cm2 C.600cm2 D.4000cm2考点:二元一次方程组的应用.专题:几何图形问题.分析:根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽=50,小长方形的长×2=小长方形的长+小长方形的宽×4,根据这两个等量关系,可列出方程组,再求解.解答:解:设一个小长方形的长为x(cm),宽为y(cm),由图形可知,,解之,得,∴一个小长方形的面积为40×10=400(cm2).故选:A.点评:此题考查了二元一次方程的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小正方形的长与宽的关系.11.已知二次函数y=mx2+x+m(m﹣2)的图象经过原点,则m的值为()A.0或2 B.0 C.2 D.无法确定考点:二次函数图象上点的坐标特征.分析:本题中已知了二次函数经过原点(0,0),因此二次函数与y轴交点的纵坐标为0,即m(m﹣2)=0,由此可求出m的值,要注意二次项系数m不能为0.解答:解:根据题意得:m(m﹣2)=0,∴m=0或m=2,∵二次函数的二次项系数不为零,所以m=2.故选C.点评:此题考查了点与函数的关系,解题时注意分析,理解题意.12.下列说法错误的是()A.二次函数y=3x2中,当x>0时,y随x的增大而增大B.二次函数y=﹣6x2中,当x=0时,y有最大值0C.a越大图象开口越小,a越小图象开口越大D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点考点:二次函数的性质.分析:抛物线y=ax2(a≠0)是最简单二次函数形式.顶点是原点,对称轴是y轴,a>0时,开口向上,a<0时,开口向下;开口大小与|a|有关.解答:解:A、二次函数y=3x2图象开口向上,对称轴是y轴,当x>0时,y随x的增大而增大,正确;B、二次函数y=﹣6x2中开口向下,顶点(0,0),故当x=0时,y有最大值0,正确;C、|a|越大,图象开口越小,|a|越小图象开口越大,错误;D、抛物线y=ax2的顶点就是坐标原点,正确.故选C.点评:此题考查了二次函数的性质:增减性(单调性),最值,开口大小以及顶点坐标.13.二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位考点:二次函数图象与几何变换.分析:把二次函数y=x2+4x+3化为顶点坐标式,再观察它是怎样通过二次函数y=x2的图象平移而得到.解答:解:根据题意y=x2+4x+3=(x+2)2﹣1,按照“左加右减,上加下减”的规律,它可以由二次函数y=x2先向左平移2个单位,再向下平移1个单位得到.故选B.点评:此题不仅考查了对平移的理解,同时考查了学生将一般式转化顶点式的能力.14.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①a,b异号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=4时,x的取值只能为0,结论正确的个数有()个.A.1 B.2 C.3 D.4考点:二次函数图象与系数的关系.专题:压轴题.分析:根据抛物线的对称轴判断①③,由x=1和x=3是否关于对称轴对称可判断②,由抛物线的轴对称性可判断④.解答:解:①∵图象开口向下,∴a<0,又对称轴在y轴右侧,∴﹣>0,b>0,∴a,b异号.故正确;②∵抛物线与x轴交于点(﹣2,0),(6,0),∴对称轴为x=,又x=1和x=3到对称轴的距离相等,∴当x=1和x=3时,函数值相等.故正确;③∵对称轴为x=﹣=2,∴4a+b=0.故正确;④由抛物线的轴对称性可知,x=0或4时,y=4,故错误.∴结论正确的有3个.故选C.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,会利用抛物线的轴对称性判断函数值相等时,对应的x的值有两个,它们关于对称轴对称.15.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方程ax2+bx+c=0有两个不等的实数根(c≠0),则方程cx2+bx+a=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立.其中正确地只有()A.①②B.②③C.③④D.①④考点:根的判别式;一元二次方程的解.专题:计算题.分析:①根据根的判别式即可作出判断;②方程ax2+bx+c=0有两个不等的实数根,则△=b2﹣4ac>0,判断方程cx2+bx+a=0也一定有两个不等的实数根,只要证明方程的判别式的值大于0即可;③若c是方程ax2+bx+c=0的一个根,则代入即可作出判断;④若m是方程ax2+bx+c=0的一个根,即方程有实根,判别式△≥0,结合m是方程的根,代入一定成立,即可作出判断.解答:解:①因为a+c=0,a≠0,所以①a、c异号,所以△=b2﹣4ac>0,所以方程有两个实数根;②若方程ax2+bx+c=0有两个不等的实数根,则△=b2﹣4ac>0,所以方程cx2+bx+a=0也一定有两个不等的实数根;若c=0,则方程cx2+bx+a=0为一次,没有两个不等实数根;③若c是方程ax2+bx+c=0的一个根,当c=0时,ac+b+1=0不一定成立;④若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=﹣(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[﹣(bm+c)]+4abm+b2=﹣4abm﹣4ac+4abm+b2=b2﹣4ac.所以①④成立.故选D.点评:本题考查了一元二次方程根的判别式的应用,此考点一直是中考中的一个经久不衰的老考点.二、解答题(共9小题,75分)16.解方程(1)x2+2x﹣3=0(2)3x(x﹣2)=2(2﹣x)考点:解一元二次方程-因式分解法.专题:计算题.分析:(1)方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程变形后,利用因式分解法求出解即可.解答:解:(1)分解因式得:(x﹣1)(x+3)=0,可得x﹣1=0或x+3=0,解得:x1=1,x2=﹣3;(2)方程变形得:3x(x﹣2)+2(x﹣2)=0,分解因式得:(3x+2)(x﹣2)=0,可得3x+2=0或x﹣2=0,解得:x1=﹣,x2=2.点评:此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.17.已知一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,求x12x2+x1x22的値.考点:根与系数的关系.专题:计算题.分析:先利用根与系数的关系得到x1+x2=3,x1 x2=﹣1,再利用因式分解的方法得到x12x2+x1x22=x1 x2(x1+x2),然后利用整体代入的方法计算.解答:解:由题意得x1+x2=3,x1 x2=﹣1,所以x12x2+x1x22=x1 x2(x1+x2)=3×(﹣1)=﹣3.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.18.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.考点:待定系数法求二次函数解析式;二次函数的性质.分析:(1)根据抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0),直接得出抛物线的解析式为;y=﹣(x﹣3)(x+1),再整理即可,(2)根据抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,即可得出答案.解答:解:(1)∵抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).∴抛物线的解析式为;y=﹣(x﹣3)(x+1),即y=﹣x2+2x+3,(2)∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为:(1,4).点评:此题考查了用待定系数法求函数的解析式,用到的知识点是二次函数的解析式的形式,关键是根据题意选择合适的解析式.19.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,求k的取值范围.考点:根的判别式;一元二次方程的定义.分析:根据一元二次方程的定义和△的意义得到k﹣1≠0且△=4﹣4(k﹣1)×(﹣2)>0,然后求出两个不等式的公共部分即可.解答:解:根据题意得k﹣1≠0且△=4﹣4(k﹣1)×(﹣2)>0,解得k>,所以k的范围为k>且k≠1.故答案为k>且k≠1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.20.拱桥的形状是抛物线,其函数关系式为y=﹣x2(1)当水面宽度为6米时,求水面离桥顶的高度是多少?(2)当水面离桥顶的高度为m时,求水面的宽度为多少米?考点:二次函数的应用.分析:(1)当水面宽度为6米时,求水面离桥顶的高度,可把x=3代入y=﹣x2,求出y 的值即可;(2)根据题意,把y=直接代入求解即可;解答:解:(1)在y=﹣x2中,当x=3时,y=﹣3,故当水面宽度为6米时,水面离桥顶的高度是3米.答:水面离桥顶的高度是3米;(2)在y=﹣x2中,当y=﹣时,x=±5,故水面的宽度为2×5=10米.答:水面的宽度为10米.点评:本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.21.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?考点:一元二次方程的应用.专题:几何图形问题.分析:本题有多种解法.设的对象不同则列的一元二次方程不同.设矩形温室的宽为xm,则长为2xm,根据矩形的面积计算公式即可列出方程求解.解答:解:解法一:设矩形温室的宽为xm,则长为2xm,根据题意,得(x﹣2)•(2x﹣4)=288,∴2(x﹣2)2=288,∴(x﹣2)2=144,∴x﹣2=±12,解得:x1=﹣10(不合题意,舍去),x2=14,所以x=14,2x=2×14=28.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.解法二:设矩形温室的长为xm,则宽为xm.根据题意,得(x﹣2)•(x﹣4)=288.解这个方程,得x1=﹣20(不合题意,舍去),x2=28.所以x=28,x=×28=14.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.点评:解答此题,要运用含x的代数式表示蔬菜种植矩形长与宽,再由面积关系列方程.22.如表是2008,2009,2010三年的全国研究生报考和录取情况:年份报考人数/万人报考人数比上一年相比增加的百分数录取人数/万人考录比2008 120 40 3:12009 k m q 3:12010 140 3m 46.7 3:1备注:考录比=报考人数:录取人数(1)求2009年的报考人数;(2)2010,2011,2012三年的就业形势依然严峻,预计报考人数依然递增.从2010年起,若报考人数按一个相同的百分数x增加,则2012年的录取人数将达50.4万人,当2011,2012年的考录比为4:1时,求2011年的报考人数.(人数精确到0.1万人,百分数精确到1%,参考数据:≈1.41,≈1.73)考点:一元二次方程的应用.分析:(1)根据等量关系:2010年的全国研究生报考人数是140万人,列出方程求得m 的值,进一步得到2009年的报考人数;(2)先根据题意得到2014年报考人数为50.4×4=201.6万人,再根据等量关系:2014年的全国研究生报考人数是201.6万人,列出方程求解即可.解答:解:(1)根据题意120(1+m)(1+3m)=140,解得m1=,m2=(不合题意,舍),∴m≈4%,120×(1+4%)=124.8(万人).答:2009年的报考人数是124.8万人.(2)根据题意2014年报考人数为50.4×4=201.6(万人),140(1+x)2=201.6,解得x1=20% x2=﹣220% (不合题意,舍),∴x1=20%,∴2011年的报考人数为:140(1+0.2)=168(万人).答:2011年的报考人数是168万人.点评:考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.如图,△ABC三边分别为a、b、c,且关于x的方程(a+c)x2+2bx+c=a有两个相等的实数根.(1)判断△ABC的形状;(2)CD平分∠ACB,且AD⊥BD,AD、BD为方程x2﹣2mx+n2=0两根,试确定m与n的数量关系,并证明.考点:全等三角形的判定与性质;根的判别式;勾股定理的逆定理.分析:(1)先求出△的表达式,再由△=0即可得出结论;(2)过D作CA的垂线DE,作CB的垂线DF,由AAS定理得出△ADE≌△BDF,再由根与系数的关系即可得出结论.解答:解:(1)∵△=4b2+4(a+c)(a﹣c)=4(a2+b2﹣c2),方程有两个相等实根,∴△=0,∴a2+b2﹣c2=0,a2+b2=c2,∴△ABC是直角三角形;(2)如图,过D作CA的垂线DE,作CB的垂线DF.∵CD平分∠ACB,∴DE=DF.在△ADE与△BDF中,∵,∴△ADE≌△BDF(AAS),∴AD=BD,∴方程x2﹣2mx+n2=0有两个相等的实数根,∴4m2﹣4n2=0,∴m2=n2,又∵AD+BD=2m,∴m>0∴m=|n|.点评:本题考查的是全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.24.已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x …﹣1 0 1 2 3 4 …y …10 5 2 1 2 5 …(1)求该二次函数的关系式;(2)当x为何值时,y有最小值,最小值是多少?(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,试比较y1与y2的大小.考点:待定系数法求二次函数解析式;二次函数图象上点的坐标特征;二次函数的最值.专题:图表型.分析:(1)从表格中取出2组解,利用待定系数法求解析式;(2)利用顶点坐标求最值;(3)利用二次函数的单调性比较大小.解答:解:(1)根据题意,当x=0时,y=5;当x=1时,y=2;∴,解得,∴该二次函数关系式为y=x2﹣4x+5;(2)∵y=x2﹣4x+5=(x﹣2)2+1,∴当x=2时,y有最小值,最小值是1,(3)∵A(m,y1),B(m+1,y2)两点都在函数y=x2﹣4x+5的图象上,所以,y1=m2﹣4m+5,y2=(m+1)2﹣4(m+1)+5=m2﹣2m+2,y2﹣y1=(m2﹣2m+2)﹣(m2﹣4m+5)=2m﹣3,∴①当2m﹣3<0,即m<时,y1>y2;②当2m﹣3=0,即m=时,y1=y2;③当2m﹣3>0,即m>时,y1<y2.点评:主要考查了用待定系数法求二次函数的解析式和二次函数的最值的求法即其性质.渗透分类讨论思想.。
人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案
人教版2019—2020学年度第一学期九年级数学期末试卷及答案(满分:150分答题时间:120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4 B.x﹣6=4 C.x+6=4 D.x+6=﹣42.设a=2﹣1,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和53.在﹣2,0,2,﹣3这四个数中,最小的数是()A.2 B.0 C.﹣2 D.﹣34.如果我们都能改掉餐桌上的陋习,珍惜每一粒粮食,合肥市每年就能避免浪费30.1亿元,将30.1亿用科学记数法表示为()A.30.1×108B.3.01×108C.3.01×109D.0.301×10105.如图为抛物线y=ax2+bx+c的图象,A、B、C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是()A.ac<0 B.a﹣b=1 C.a+b=﹣1 D.b>2a6.如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.2S1=S27.直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与∠1互余的角有几个()A.2个B.3个C.4个D.6个8.某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是()A.99.60,99.70 B.99.60,99.60 C.99.60,98.80 D.99.70,99.60 9.如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连接DP,过点A 作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是()A. B. C.D.10.如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的()A.6 B.8 C.10 D.12二、填空题(本大题共4小题,每小题5分,满分20分.)11.如图,在直角三角形ABC中,∠ACB=90°,AC=1,BC=2,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为.12.如图,等腰直角△ABC腰长为a,现分别按图1,图2方式在△ABC内内接一个正方形ADFE和正方形PMNQ.设△ABC的面积为S,正方形ADFE的面积为S1,正方形PMNQ的面积为S2.①AD:AB=1:2;②AP:AB=1:3;③S1+S2>S;④设在△ABC内任意截取一个正方形的面积为S3,则S3≤S1.上述结论中正确的是.13.的平方根是.14.因式分解:a2b+2ab+b= .三、(本大题共2小题,每小题8分,满分16分)15.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.16.请从下列三个代数式中任选两个(一个作为分子,一个作为分母)构造一个分式,并化简该分式.a2﹣1,a2﹣1,a2﹣2a+1,然后请你自选一个合理的数代入求值.四、(本大题共2小题,每小题8分,满分16分)17.如图,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,第n次平移将矩形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到矩形A n B n C n D n(n>2).(1)求AB1和AB2的长.(2)若AB n的长为56,求n.18.2014年3月8日凌晨,马来西亚航空公司一架航班号为MH370的波音777客机于凌晨零点左右从吉隆坡飞往北京,计划6:30抵达北京首都国际机场,却在凌晨1:30分失去联系.已知该飞机起飞时油箱内存有15000升油,起飞后一直保持速度为400km/h匀速直线运动,且每千米的耗油量为5升,请用不等式的知识求出该飞机在失去联系后能最多航行多少千米?五、(本大题共2小题,每小题10分,满分20分)19.一透明的敞口正方体容器ABCD﹣A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α (∠CBE=α,如图所示).探究如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ与BE的位置关系是,BQ的长是dm;(2)求液体的体积;(参考算法:直棱柱体积V液=底面积S△BCQ×高AB);(3)求液面到桌面的高度和倾斜角α的度数.(注:sin37°=,tan37°=).20.面对即将到来的五一小长假,胡老师一家计划用两天时间参观岱山湖、紫蓬山森林公园、滨湖湿地公园、三国遗址公园四个景区中的两个;第一天从4个景区中随机选择一个,第二天从余下3个景区中再随机选择一个,如果每个景区被选中的机会均等.(1)请画树状图或表格的方法表示出所有可能出现的结果;(2)求滨湖湿地公园被选中的概率.六、(本题共2小题,满分24分)21.某省实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提供,其中三种家电的补贴方式如下表:为此,某商场家电部准备购进电视、洗衣机、冰箱共100台,这批家电的进价和售价如下表:设购进的电视机和洗衣机数量均为x台,这100台家电政府需要补贴y元,商场所获利润w元(利润=售价﹣进价)(1)请分别求出y与x和w与x的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?22.已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC=时,求⊙O的半径.七、(本题满分14分)23.如图,在菱形ABCD中,AB=6,∠ABC=60°,动点E、F同时从顶点B出发,其中点E从点B向点A以每秒1个单位的速度运动,点F从点B出发沿B﹣C﹣A的路线向终点A以每秒2个单位的速度运动,以EF为边向上(或向右)作等边三角形EFG,AH是△ABC中BC边上的高,两点运动时间为t秒,△EFG和△AHC 的重合部分面积为S.(1)用含t的代数式表示线段CF的长;(2)求点G落在AC上时t的值;(3)求S关于t的函数关系式;(4)动点P在点E、F出发的同时从点A出发沿A﹣H﹣A以每秒2单位的速度作循环往复运动,当点E、F到达终点时,点P随之运动,直接写出点P在△EFG 内部时t的取值范围.2019-2020学年九年级(上)期末数学试卷参考答案一、选择题(本大题共10小题,每小题4分,满分40分)1. D.2.B.3. D.4.C.5.D.6.C.7.B.8.B.9.C.10.B.二、填空题(本大题共4小题,每小题5分,满分20分.11..12.①②④.13.±.14.b(a+1)2.三、(本大题共2小题,每小题8分,满分16分)15.解:(1)如图所示:点A1的坐标(2,﹣4);(2)如图所示,点A2的坐标(﹣2,4).16.解: ==,当a=2时,原式==3.或=,当a=2时,原式==.四、(本大题共2小题,每小题8分,满分16分)17.解:(1)∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,∴AB1=AA1+A1A2+A2B1=5+5+1=11,∴AB2的长为:5+5+6=16;(2)∵AB1=2×5+1=11,AB2=3×5+1=16,∴AB n=(n+1)×5+1=56,解得:n=10.18.解:设该飞机在失去联系后能航行x千米,1:30﹣0:00=1.5(小时),由题意得:1.5×400×5+5x≤15000解得:x≤2400.答:该飞机在失去联系后最多能航行2400千米.五、(本大题共2小题,每小题10分,满分20分)19.解:(1)用A、B、C、D分别表示岱山湖、紫蓬山森林公园、滨湖湿地公园、三国遗址公园四个景区,画树状图为:共有12种等可能的结果数;(2)滨湖湿地公园被选中的结果数为6,所以滨湖湿地公园被选中的概率==.20.解:(1)CQ∥BE,BQ==3dm;故答案为:平行,3;(2)V液=×3×4×4=24(dm3);(3)过点B作BF⊥CQ,垂足为F,∵×3×4=×5×BF,∴BF=,∴液面到桌面的高度;∵在Rt△BCQ中,tan∠BCQ=,∴α=∠BCQ=37°.六、(本题共2小题,满分24分)21.解:(1)y=400x+1800×10%x+2400×10%(100﹣2x)=100x+24000商场所获利润:W=400x+300x+400(100﹣2x)=﹣100x+40000.(2)根据题意得,解得30≤x≤35,因为x为整数,所以x=30,31,32,33,34,35,因此共有6种进货方案.对于W=﹣100x+40000,∵k=﹣100<0,30≤x≤35,∴当x=30时,W有最大值,所以当购进30台电视,30台洗衣机,40台电冰箱时商场将获得最大的利润.因此政府的补贴为y=100×30+24000=27000元.22.(1)证明:连接OM,则OM=OB∴∠1=∠2∵BM平分∠ABC∴∠1=∠3∴∠2=∠3∴OM∥BC∴∠AMO=∠AEB在△ABC中,AB=AC,AE是角平分线∴AE⊥BC ∴∠AEB=90°∴∠AMO=90°∴OM⊥AE∵点M在圆O上,∴AE与⊙O相切;(2)解:在△ABC中,AB=AC,AE是角平分线∴BE=BC,∠ABC=∠C∵BC=4,cosC=∴BE=2,cos∠ABC=在△ABE中,∠AEB=90°∴AB==6设⊙O的半径为r,则AO=6﹣r∵OM∥BC∴△AOM∽△ABE∴∴解得∴⊙O的半径为.七、(本题满分14分)23.解:(1)根据题意得:BF=2t,∵四边形ABCD是菱形,∴BC=AB=6,∴CF=BC﹣BF=6﹣2t;(2)点G落在线段AC上时,如图1所示:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵△EFG是等边三角形,∴∠GFE=60°,GE=EF=BF•sin60°=t,∵EF⊥AB,∴∠BFE=90°﹣60°=30°,∴∠GFB=90°,∴∠GFC=90°,∴CF==t,∵BF+CF=BC,∴2t+t=6,解得:t=2;(3)分三种情况:①当0<t≤时,S=0;②当<t≤2时,如图2所示,S=S△EFG﹣S△MEN=×(t)2﹣××(﹣+2)2=t2+t﹣3,即S=t2+t﹣3;③当2<t≤3时,如图3所示:S=t2+t﹣3﹣(3t﹣6)2,即S=﹣t2+t﹣;(4)∵AH=AB•sin60°=6×=3,∴3÷2=,∴3÷2=,∴t=时,点P与H重合,E与H重合,∴点P在△EFG内部时,﹣<(t﹣)×2<t﹣(2t﹣3)+(2t﹣3),解得:<t<;即:点P在△EFG内部时t的取值范围为:<t<.。
2019-2020年九年级数学上学期期末试卷(含解析)新人教版(VI).docx
2019-2020年九年级数学上学期期末试卷(含解析)新人教版(7)一、选择题:每小题 3 分,共30 分1.方程x2=3x 的解为()A.0B.﹣ 3 C.0,3 D.32.下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B.C.D.3.做重复试验:抛掷一枚啤酒瓶盖1000 次.经过统计得“凸面向上”的次数为420 次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为()A. 0.22 B . 0.42 C . 0.50 D . 0.584.如图,以点 O为位似中心,将△ ABC缩小后得△ A′B′C′,已知 OB=3OB′,则△ A′B′C′与△ ABC的面积比为()A.1:3 B. 3:1 C.9:1 D.1: 95.一个公共房门前的台阶高出地面 2 米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡 AB的坡度是C.AC=2tan18°米18°B.斜坡D. AB=AB的坡度是米tan18 °6.设抛物线C1: y=x2向右平移 2 个单位长度,再向下平移 3 个单位长度得到抛物线C2,则抛物线 C2对应的函数解析式是()A. y=( x﹣2)2﹣ 3B. y=( x+2)2﹣ 3 C. y=( x﹣ 2)2+3 D. y=(x+2)2+37.如图, l 1∥ l 2∥l 3,直线 a,b 与 l 1,l 2,l 3分别相交于 A, B,C 和点 D,E,F,若=,DE=6,则 EF 的长是()A.B.C.10D.68.如图,已知⊙O的直径 AB⊥ CD于点 E,则下列结论一定错误的是()A. CE=DE B. AE=OE C.=D.△ OCE≌△ ODE9.二次函数y=2x 2﹣ 3 的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2, 3)C.抛物线的对称轴是直线x=1 D.抛物线与x 轴有两个交点10.如图,点 A 和点 B 都在反比例函数y=的图象上,且线段AB过原点,过点 A 作 x 轴的垂线段,垂足为C,P 是线段 OB上的动点,连接CP.设△ ACP的面积为S,则下列说法正确的是()A.S>3 B. S>6 C.3≤S≤6D.3<S≤ 6二、填空题:每小题 3 分,共15 分11.小新的身高是1m,他的影子长为2m,同一时刻水塔的影长是32m,则水塔的高度是m.12.如图,已知∠A=∠ D,要使△ABC∽△ DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)13.小颖在二次函数21,y ),( 2,y ),(﹣ 3,y=2x +4x+5 的图象上,依横坐标找到三点(﹣12y3),则你认为 y1, y2, y3的大小关系应为.14.如图,在一次数学课外实践活动中,小聪在距离旗杆 10m的 A 处测得旗杆顶端 B 的仰角为 60°,测角仪高AD为 1m,则旗杆高BC为m(结果保留根号).15.如图, AB是⊙ O的直径, C, D 是⊙ O上的两点,若∠ BCD=28°,则∠ABD=°.三、解答题:每小题 12 分,共24分16.( 1)计算: 2﹣1+( 2π﹣ 1)0﹣﹣sin45 °﹣tan30 °(2)解方程: x2+4x﹣1=0.17.甲、乙两个不透明的口袋,甲口袋中装有 3 个分别标有数字1、2、3 的小球,乙口袋中装有分别标有数字4、 5 的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.请用列表或树状图的方法(只选其中一种)求出两个数字之和能被 3 整除的概率.18.如图,直线y= x+2 与双曲线相交于点A( m, 3),与 x 轴交于点C.(1)求双曲线解析式;(2)点 P在 x 轴上,如果△ ACP的面积为 3,求点 P 的坐标.四、解答题:每小题7分,共 14分19.如图,在△ABC中, AD⊥BC, BE⊥AC,垂足分别为(1)求证:△ ACD∽△ BFD;(2)若∠ ABD=45°, AC=3时,求 BF 的长.D、 E, AD与 BE 相交于点F.20.某网店销售某款童装,每件售价60 元,每星期可卖300 件,为了促销,该网店决定降价销售.市场调查反映:每降价 1 元,每星期可多卖30 件.已知该款童装每件成本价元,设该款童装每件售价x 元,每星期的销售量为y 件.40(1)求 y 与 x 之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?五、解答题:(19 小题 8 分, 20 小题 9 分,共 17 分)21.为进一步发展基础教育,自2014 年以来,某县加大了教育经费的投入,2014 年该县投入教育经费6000 万元. 2016 年投入教育经费8640 万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017 年该县投入教育经费多少万元.22.如图,在△A BC, AB=AC,以 AB为直径的⊙ O分别交 AC、BC于点 D、E,点 F 在 AC的延长线上,且∠ CBF= ∠ CAB.(1)求证:直线BF 是⊙ O的切线;(2)若 AB=5, sin ∠ CBF=,求BC和BF的长.六、填空题:每小题4分,共 20分23.如图,一次函数y=kx+b( k、b 为常数,且k≠ 0)和反比例函数y=(x>0)的图象交于 A、 B 两点,利用函数图象直接写出不等式<kx+b的解集是.24.现有三张分别标有数字1、2、 6 的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回),再从中任意抽取一张,将上面的数字记为b,这样的数字a, b 能使关于x 的一元二次方程x2﹣ 2( a﹣ 3) x﹣b2+9=0 有两个正根的概率为.25.如图,△ ABC中, AC=6,AB=4,点 D 与点 A 在直线 BC的同侧,且∠ACD=∠ ABC, CD=2,点 E 是线段 BC延长线上的动点,当△DCE和△ ABC相似时,线段CE的长为.26.如图,在直角坐标系中,点 A,B 分别在 x 轴,y 轴上,点 A 的坐标为(﹣ 1,0),∠ABO=30°,线段在 x PQ的端点 P 从点 O出发,沿△ OBA的边按 O→B→A→O运动一周,同时另一端点轴的非负半轴上运动,如果PQ=,那么当点P 运动一周时,点 Q运动的总路程为Q随之.27.如图,边长为 4 的正方形ABCD内接于点O,点E 是上的一动点(不与A、B 重合),点 F 是上的一点,连接论:OE、 OF,分别与AB、 BC交于点G, H,且∠ EOF=90°,有以下结①= ;②△ OGH是等腰三角形;③四边形OGBH的面积随着点E 位置的变化而变化;④△ GBH周长的最小值为4+.其中正确的是(把你认为正确结论的序号都填上).七、解答题28.如图所示,港口 B 位于港口O 正西方向120km 处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿一艘快艇从港口 B 出发,沿北偏东OA方向(北偏西30°的方向以30°)以 vkm/h 的速度驶离港口60km/h 的速度驶向小岛C,在小岛O,同时C 用 1h加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口 B 到小岛 C 需要多长时间?(2)若快艇从小岛 C 到与游船相遇恰好用时 1h,求 v 的值及相遇处与港口 O的距离.八、解答题29.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图 1,矩形 ABCD中,EF⊥ GH,EF 分别交 AB,CD于点 E,F,GH分别交 AD,BC于点 G,H.求证:=;【结论应用】(2)如图 2,在满足( 1)的条件下,又AM⊥ BN,点 M,N 分别在边BC,CD上,若=,则的值为;【联系拓展】(3)如图 3,四边形 ABCD中,∠ ABC=90°, AB=AD=10, BC=CD=5,AM⊥ DN,点 M, N分别在边 BC, AB上,求的值.九、解答题30.如图 1,在平面直角坐标系中,抛物线y=﹣x2+bx+c 与 x 轴交与点A(﹣ 3, 0),点 B(9, 0),与 y 轴交与点C,顶点为D,连接 AD、DB,点 P 为线段 AD上一动点.(1)求抛物线的解析式;(2)过点 P 作 BD的平行线,交 AB于点 Q,连接 DQ,设 AQ=m,△ PDQ的面积为 S,求 S 关于m的函数解析式,以及 S 的最大值;(3)如图 2,抛物线对称轴与 x 轴交与点 G, E 为 OG的中点, F 为点 C 关于 DG对称的对称点,过点 P 分别作直线 EF、 DG的垂线,垂足为 M、 N,连接 MN,当△ PMN为等腰三角形时,求此时 EM的长.2016-2017 学年四川省成都市温江区九年级(上)期末数学试卷参考答案与试题解析一、选择题:每小题 3分,共30 分1.方程 x2=3x 的解为()A.0B.﹣ 3 C.0,3 D.3【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵ x2﹣ 3x=0,∴x( x﹣ 3) =0,则 x=0 或 x﹣ 3=0,解得: x=0 或 x=3,故选: C.2.下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B.C.D.【考点】简单几何体的三视图.【分析】首先判断几何体的三视图,然后找到答案即可.【解答】解:几何体的主视图为选项D,俯视图为选项B,左视图为选项C.故选 A.3.做重复试验:抛掷一枚啤酒瓶盖1000 次.经过统计得“凸面向上”的次数为420 次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为()A. 0.22 B . 0.42 C . 0.50 D . 0.58【考点】利用频率估计概率.【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【解答】解:∵抛掷同一枚啤酒瓶盖1000 次.经过统计得“凸面向上”的次数约为420 次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为=0.42 ,故选: B.4.如图,以点 O为位似中心,将△ ABC缩小后得△ A′B′C′,已知 OB=3OB′,则△ A′B′C′与△ ABC的面积比为()A.1:3 B. 3:1 C.9:1 D.1: 9【考点】位似变换.【分析】根据位似变换的性质得到A′B′∥ AB,A′C′∥ AC,求出△ A'B'C'与△ ABC的相似比,根据相似三角形的性质得到面积比.【解答】解:由位似变换的性质可知, A′B′∥AB,A′C′∥ AC,∴==,∴== ,∴△ A'B'C'与△ ABC的相似比为1: 3,∴△ A'B'C'与△ ABC的面积的比1: 9,故选: D.5.一个公共房门前的台阶高出地面 2 米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡 AB的坡度是18°B.斜坡 AB的坡度是tan18 °C.AC=2tan18°米D. AB=米【考点】解直角三角形的应用﹣坡度坡角问题.【分析】构建坡度,锐角三角函数的定义一一判断即可.【解答】解: A、错误.斜坡AB的坡度 ==tan18 °.B、正确.斜坡AB 的坡度 ==tan18 °.C、错误. AC=1.2÷tan18 °.D、错误. AB=.故选 B.6.设抛物线C1: y=x2向右平移 2 个单位长度,再向下平移3 个单位长度得到抛物线C2,则抛物线 C2对应的函数解析式是()A. y=( x﹣2)2﹣ 3B. y=( x+2)2﹣ 3 C. y=( x﹣ 2)2+3 D. y=(x+2)2+3【考点】二次函数图象与几何变换.【分析】根据“左加右减,上加下减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,向右平移 2 个单位长度所得抛物线的解析式为:y=( x﹣ 2)2;由“上加下减”的原则可知,将抛物线y=( x﹣ 2)2向下平移3 个单位长度所得的抛物线的2解析式为: y=( x﹣ 2)﹣ 3.7.如图, l ∥ l ∥l,直线 a,b 与 l,l,l3分别相交于 A, B,C 和点 D,E,F,若= ,12312 DE=6,则 EF 的长是()A.B.C.10D.6【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得出比例式,代入求出即可.【解答】解:∵ l 1∥ l 2∥ l 3,∴=,∵= ,DE=6,∴= ,∴E F=10,故选 C.8.如图,已知⊙O的直径 AB⊥ CD于点 E,则下列结论一定错误的是()A. CE=DE B. AE=OE C.=D.△ OCE≌△ ODE【考点】垂径定理.【分析】根据垂径定理得出CE=DE,弧CB=弧BD,再根据全等三角形的判定方法“AAS”即可证明△ OCE≌△ ODE.【解答】解:∵⊙ O的直径 AB⊥ CD于点 E,∴CE=DE,弧 CB=弧 BD,在△ OCE和△ ODE中,,∴△ OCE≌△ ODE,故选 B9.二次函数y=2x 2﹣ 3 的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2, 3)C.抛物线的对称轴是直线x=1 D.抛物线与x 轴有两个交点【考点】二次函数的性质.【分析】根据二次函数的性质对A、 C 进行判断;根据二次函数图象上点的坐标特征对 B 进行判断;利用方程2x2﹣3=0 解的情况对D进行判断.【解答】解: A、 a=2,则抛物线y=2x 2﹣ 3 的开口向上,所以 A 选项错误;B、当 x=2 时, y=2×4﹣ 3=5,则抛物线不经过点(2, 3),所以 B 选项错误;C、抛物线的对称轴为直线x=0,所以 C选项错误;D、当 y=0 时, 2x2﹣ 3=0,此方程有两个不相等的实数解,所以 D 选项正确.故选 D.10.如图,点 A 和点 B 都在反比例函数y=的图象上,且线段AB过原点,过点 A 作 x 轴的垂线段,垂足为C,P 是线段 OB上的动点,连接CP.设△ ACP的面积为S,则下列说法正确的是()A.S>3 B. S>6 C.3≤S≤6D.3<S≤ 6【考点】反比例函数系数k 的几何意义.【分析】先作出△ APC的高线 PD,发现动点 P 组成的△ APC中边 AC为定值,因此 S 的确定取决于高线 PD的长,设 A( x, y),则 B 与 A 关于原点对称,根据面积求取值即可.【解答】解:过 P 作 PD⊥ AC于 D,连接 CB,设 A( x, y),则 B(﹣ x,﹣ y),∵点 A 在反比例函数 y= 的图象上,∴x y=6 ,∵P 是线段 OB上的动点,∴x≤ PD≤ 2x,∵S=S△APC=AC?PD,当 PD最小时,此时P 与 O重合, PD=x,∴S=S△APC= xy= × 6=3,当 PD最大时,此时 P 与 B 重合, PD=2x,∴S=S△APC= AC?PD= ?y?2x=xy=6,∴3≤ S≤ 6,故选 C.二、填空题:每小题3分,共 15分11.小新的身高是1m,他的影子长为2m,同一时刻水塔的影长是32m,则水塔的高度是16 m.【考点】相似三角形的应用.【分析】设水塔的高为xm,根据同一时刻,平行投影中物体与影长成正比得到32:x=1:2,然后利用比例性质求x 即可.【解答】解:设水塔的高为xm,根据题意得x: 32=1: 2,解得 x=16,即水塔的高为16m.故答案为16.12.如图,已知∠A=∠D,要使△ ABC∽△ DEF,还需添加一个条件,你添加的条件是AB∥DE.(只需写一个条件,不添加辅助线和字母)【考点】相似三角形的判定.【分析】根据有两组角对应相等的两个三角形相似进行添加条件.【解答】解:∵∠ A=∠ D,∴当∠ B=∠DEF时,△ ABC∽△ DEF,∵AB∥ DE时,∠ B=∠ DEF,∴添加 AB∥ DE时,使△ ABC∽△ DEF.故答案为AB∥ DE.13.小颖在二次函数2的图象上,依横坐标找到三点(﹣1,y ),( 2,y ),(﹣ 3,y=2x +4x+512y3),则你认为 y1, y2, y3的大小关系应为y2> y3> y1.【考点】二次函数图象上点的坐标特征.【分析】将三个点的横坐标分别代入解析式,求出相应的函数值,再进行比较即可.【解答】解:将点(﹣ 1, y1),(2, y2),(﹣ 3, y3)分别代入y=2x 2+4x+5 得,y1=2﹣ 4+5=3,y2=21,y3=18﹣ 12+5=11.可见, y2> y3>y1.故答案是: y2> y3> y1.14.如图,在一次数学课外实践活动中,为 60°,测角仪高 AD为 1m,则旗杆高小聪在距离旗杆BC为10+110m的 A 处测得旗杆顶端m(结果保留根号).B 的仰角【考点】解直角三角形的应用﹣仰角俯角问题.【分析】首先过点 A 作 AE∥ DC,交 BC 于点 E,则 AE=CD=10m, CE=AD=1m,然后在Rt △BAE 中,∠ BAE=60°,然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点 A 作 AE∥ DC,交 BC于点 E,则 AE=CD=10m, CE=AD=1m,∵在 Rt △ BAE中,∠ BAE=60°,∴B E=AE?tan60°=10(m),∴B C=CE+BE=10 +1( m).∴旗杆高BC为 10+1m.故答案为: 10+1.15.如图, AB是⊙ O的直径, C, D 是⊙ O上的两点,若∠ BCD=28°,则∠ABD= 62°.【考点】圆周角定理.【分析】根据直径所对的圆周角是直角得到∠ ACB=90°,求出∠ BCD,根据圆周角定理解答即可.【解答】解:∵ AB是⊙ O的直径,∴∠ ACB=90°,∵∠ BCD=28°,∴∠ ACD=62°,由圆周角定理得,∠ABD=∠ACD=62°,故答案为: 62.三、解答题:每小题 12 分,共24分16.( 1)计算: 2﹣1+( 2π﹣ 1)0﹣﹣sin45 °﹣tan30 °(2)解方程: x2+4x﹣1=0.【考点】解一元二次方程﹣配方法;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】( 1)根据实数的混合运算顺序和法则计算即可得;(2)公式法求解可得.【解答】解:( 1)原式 = +1﹣﹣﹣×=+1﹣﹣1=﹣;(2)∵ a=1, b=4, c=﹣ 1,∴△ =16﹣ 4× 1×(﹣ 1) =20> 0,则 x==﹣2.17.甲、乙两个不透明的口袋,甲口袋中装有 3 个分别标有数字 1、2、3 的小球,乙口袋中装有分别标有数字 4、 5 的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.请用列表或树状图的方法(只选其中一种)求出两个数字之和能被 3 整除的概率.【考点】列表法与树状图法.【分析】画树状图展示所有 6 种等可能的结果数,再找出数字之和能被 3 整除的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有 6 种等可能的结果数,其中两个数字之和能被 3 整除的结果数为2,所以两个数字之和能被3整除的概率 = = .18.如图,直线y= x+2 与双曲线相交于点A( m, 3),与 x 轴交于点C.(1)求双曲线解析式;(2)点 P在 x 轴上,如果△ ACP的面积为 3,求点 P 的坐标.【考点】反比例函数与一次函数的交点问题.【分析】( 1)把 A 坐标代入直线解析式求出 m的值,确定出 A 坐标,即可确定出双曲线解析式;(2)设 P( x,0),表示出 PC的长,高为 A 纵坐标,根据三角形 ACP面积求出 x 的值,确定出P 坐标即可.【解答】解:( 1)把 A( m, 3)代入直线解析式得: 3=m+2,即 m=2,∴A( 2, 3),把 A 坐标代入 y= ,得 k=6,则双曲线解析式为 y= ;(2)对于直线y= x+2,令 y=0,得到 x=﹣4,即 C(﹣ 4, 0),设 P( x, 0),可得 PC=|x+4| ,∵△ ACP面积为 3,∴ |x+4| ?3=3,即 |x+4|=2 ,解得: x=﹣2 或 x= ﹣6,则 P 坐标为(﹣ 2, 0)或(﹣ 6, 0).四、解答题:每小题7分,共 14分19.如图,在△ABC中, AD⊥BC, BE⊥AC,垂足分别为(1)求证:△ ACD∽△ BFD;(2)若∠ ABD=45°, AC=3时,求 BF 的长.D、 E, AD与 BE 相交于点F.【考点】相似三角形的判定与性质.【分析】( 1)只要证明∠DBF=∠ DAC,即可判断.(2)利用相似三角形的性质即可解决问题.【解答】( 1)证明:如图,∵ AD⊥ BC, BE⊥ AC∴∠ BDF=∠ADC=∠BEC=90°∴∠ C+∠DBF=90°,∠ C+∠DAC=90°∴∠ DBF=∠DAC∴△ ACD∽△ BFD;(2)解:如图,∵∠ ABD=45°,∠ ADB=90°,∴AD=BD,∴=1,∵△ ACD∽△ BFD, AC=3,∴=1,∴B F=AC=3.20.某网店销售某款童装,每件售价60 元,每星期可卖300 件,为了促销,该网店决定降价销售.市场调查反映:每降价 1 元,每星期可多卖30 件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y 件.(1)求 y 与 x 之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?【考点】二次函数的应用.【分析】( 1)根据售量y(件)与售价x(元 / 件)之间的函数关系即可得到结论;(2))设每星期利润为 y 元,构建二次函数利用二次函数性质解决问题.【解答】解:( 1)根据题意可得:y=300+30(60﹣ x)=﹣ 30x+2100 ;(2)设每星期利润为W元,根据题意可得:W=( x﹣ 40)(﹣ 30x+2100 )=﹣ 30( x﹣55)2+6750.则 x=55 时, W最大值 =6750.故每件售价定为55 元时,每星期的销售利润最大,最大利润6750 元.五、解答题:(19 小题 8 分, 20 小题 9 分,共 17 分)21.为进一步发展基础教育,自2014 年以来,某县加大了教育经费的投入,2014 年该县投入教育经费6000 万元. 2016 年投入教育经费8640 万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017 年该县投入教育经费多少万元.【考点】一元二次方程的应用.【分析】( 1)设该县投入教育经费的年平均增长率为x,根据 2014 年该县投入教育经费6000万元和 2016 年投入教育经费8640 万元列出方程,再求解即可;(2)根据 2016 年该县投入教育经费和每年的增长率,直接得出2017 年该县投入教育经费为 8640×( 1+0.2 ),再进行计算即可.【解答】解:( 1)设该县投入教育经费的年平均增长率为x,根据题意得:6000( 1+x)2=8640解得: x1=0.2=20%, x2=﹣2.2 (不合题意,舍去),答:该县投入教育经费的年平均增长率为20%;(2)因为 2016 年该县投入教育经费为8640 万元,且增长率为20%,所以 2017 年该县投入教育经费为:y=8640×( 1+0.2 ) =10368(万元),答:预算 2017 年该县投入教育经费10368万元.22.如图,在△A BC, AB=AC,以 AB为直径的⊙ O分别交 AC、BC于点 D、E,点 F 在 AC的延长线上,且∠ CBF= ∠ CAB.(1)求证:直线BF 是⊙ O的切线;(2)若 AB=5, sin ∠ CBF=,求BC和BF的长.【考点】切线的判定与性质;勾股定理;圆周角定理;相似三角形的判定与性质;解直角三角形.【分析】( 1)连接 AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ ABF=90°.(2)利用已知条件证得△ AGC∽△ ABF,利用比例式求得线段的长即可.【解答】( 1)证明:连接 AE,∵AB 是⊙ O的直径,∴∠ AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠ 1= ∠ CAB.∵∠ CBF= ∠ CAB,∴∠ 1=∠ CBF∴∠ CBF+∠2=90°即∠ ABF=90°∵AB 是⊙ O的直径,∴直线 BF是⊙ O的切线.(2)解:过点 C 作 CG⊥ AB于 G.∵s in ∠ CBF= ,∠ 1=∠ CBF,∴sin ∠ 1=,∵在 Rt △ AEB中,∠ AEB=90°, AB=5,∴BE=AB?sin∠1= ,∵AB=AC,∠ AEB=90°,∴B C=2BE=2 ,在 Rt △ ABE中,由勾股定理得AE=∴sin ∠ 2===,cos∠ 2=在 Rt △ CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥ BF,∴△ AGC∽△ ABF,∴∴BF====2=,,六、填空题:每小题4分,共 20分23.如图,一次函数 y=kx+b( k、b 为常数,且于A、 B 两点,利用函数图象直接写出不等式k≠ 0)和反比例函数y=(x>0)的图象交< kx+b 的解集是1< x< 4.【考点】反比例函数与一次函数的交点问题.【分析】先根据图形得出A、B 的坐标,根据两点的坐标和图形得出不等式的解集即可.【解答】解:∵由图象可知:A( 1, 4),B( 4, 1), x> 0,∴不等式< kx+b 的解集为1< x<4,故答案为: 1< x< 4.24.现有三张分别标有数字1、2、 6 的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回),再从中任意抽取一张,将上面的数字记为b,这样的数字a, b 能使关于x 的一元二次方程x2﹣ 2( a﹣ 3) x﹣b2+9=0 有两个正根的概率为.【考点】列表法与树状图法.在整理时【分析】首先用列表法或树状图得到所有可能的结果,在根据满足条件的事件数,要借助于根与系数之间的关系,根的判别式,要进行讨论得到结果.【解答】解:画树形图得:∵方程有两个正根,2∴由韦达定理得 2 (a﹣ 3)> 0,﹣ b +9>0,若 b=2, 9﹣ b2=5 要使方程有两个正根,判别式=4( a﹣ 3)2﹣ 4× 5>0 ( a﹣3)2> 5,解得,a=6;若 b=1, 9﹣ b2=8 判别式 =4( a﹣3)2﹣ 4×8> 0 ( a﹣ 3)2> 8,解得, a=6,∴a, b 只有两种情况满足要求: a=6,b=1,∴能使关于 x 的一元二次方程 x2﹣ 2( a﹣3) x﹣ b2+9=0 有两个正根的概率 = ,故答案为:.25.如图,△ ABC中, AC=6,AB=4,点 D 与点 A 在直线 BC的同侧,且∠ACD=∠ ABC, CD=2,点 E 是线段 BC延长线上的动点,当△ DCE和△ ABC相似时,线段 CE的长为 3 或.【考点】相似三角形的性质.【分析】根据题目中的条件和三角形的相似,可以求得CE的长,本题得以解决.【解答】解:∵△ DCE∽△ ABC,∠ ACD=∠ ABC,AC=6, AB=4, CD=2,∴∠ A=∠ DCE,∴或即或解得, CE=3或 CE=故答案为: 3 或.26.如图,在直角坐标系中,点 A,B 分别在 x 轴,y 轴上,点 A 的坐标为(﹣ 1,0),∠ABO=30°,线段 PQ的端点 P 从点 O出发,沿△ OBA的边按 O→B→A→O运动一周,同时另一端点 Q随之在 x 轴的非负半轴上运动,如果 PQ= ,那么当点 P 运动一周时,点 Q运动的总路程为 4 .【考点】解直角三角形.【分析】首先根据题意正确画出从 O→B→A运动一周的图形,分四种情况进行计算:①点 P 从O→B时,路程是线段 PQ的长;②当点 P 从 B→C时( QC⊥ AB,C 为垂足),点 Q从 O运动到 Q,计算 OQ的长就是运动的路程;③点P 从 C→A时,点 Q由 Q向左运动,路程为QQ′;④点 P 从 A→O时,点 Q运动的路程就是点P 运动的路程;最后相加即可.【解答】解:在 Rt△ AOB中,∵∠ ABO=30°, AO=1,∴AB=2, BO==,①当点 P 从 O→B时,如图1、图 2 所示,点 Q运动的路程为,②如图 3 所示, QC⊥AB,则∠ ACQ=90°,即PQ运动到与 AB垂直时,垂足为P,当点 P 从 B→C时,∵∠ ABO=30°∴∠ BAO=60°∴∠ OQD=90°﹣ 60°=30°∴cos30°=∴AQ==2∴OQ=2﹣ 1=1则点 Q运动的路程为QO=1,③当点 P 从 C→A时,如图3 所示,点 Q运动的路程为 QQ′=2﹣,④当点 P 从 A→O时,点 Q运动的路程为 AO=1,∴点 Q运动的总路程为:+1+2 ﹣ +1=4故答案为: 427.如图,边长为 4 的正方形ABCD内接于点O,点E 是上的一动点(不与A、B 重合),点 F 是上的一点,连接论:OE、 OF,分别与AB、 BC交于点G, H,且∠ EOF=90°,有以下结①= ;②△ OGH是等腰三角形;③四边形OGBH的面积随着点E 位置的变化而变化;④△ GBH周长的最小值为4+.其中正确的是①②(把你认为正确结论的序号都填上).【考点】圆的综合题.【分析】①根据 ASA可证△ BOE≌△ COF,根据全等三角形的性质得到弧得到=,可以判断①;BE=CF,根据等弦对等②根据 SAS可证△ BOG≌△ COH,根据全等三角形的性质得到∠GOH=90°,OG=OH,根据等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判断②;③通过证明△ HOM≌△ GON,可得四边形OGBH的面积始终等于正方形ONBM的面积,可以判断③;④根据△ BOG≌△ COH可知 BG=CH,则 BG+BH=BC=4,设 BG=x,则 BH=4﹣ x,根据勾股定理得到 GH==,可以求得其最小值,可以判断④.【解答】解:①如图所示,∵∠ BOE+∠BOF=90°,∠ COF+∠BOF=90°,∴∠ BOE=∠COF,在△ BOE与△ COF中,,∴△ BOE≌△ COF,∴B E=CF,∴= ,①正确;②∵ BE=CF,∴△ BOG≌△ COH;∵∠ BOG=∠COH,∠ COH+∠OBF=90°,∴∠ GOH=90°, OG=OH,∴△ OGH是等腰直角三角形,②正确.③如图所示,∵△ HOM≌△ GON,∴四边形OGBH的面积始终等于正方形ONBM的面积,③错误;④∵△ BOG≌△ COH,∴BG=CH,∴B G+BH=BC=4,设 BG=x,则 BH=4﹣ x,则GH==∴其最小值为4+2,D错误.故答案为:①②.,七、解答题28.如图所示,港口 B 位于港口O 正西方向120km 处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以 vkm/h 的速度驶离港口O,同时一艘快艇从港口 B 出发,沿北偏东30°的方向以60km/h 的速度驶向小岛C,在小岛 C 用 1h 加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口 B 到小岛 C 需要多长时间?(2)若快艇从小岛 C 到与游船相遇恰好用时1h,求 v 的值及相遇处与港口O的距离.【考点】解直角三角形的应用﹣方向角问题.【分析】( 1)要求 B 到 C的时间,已知其速度,则只要求得 BC的路程,再利用路程公式即可求得所需的时间;(2)过 C 作 CD⊥ OA,垂足为D,设相会处为点E.求出OC=OB?cos30°=60,CD=OC=30,OD=OC?cos30°=90,则DE=90﹣ 3v.在直角△CDE中利用勾股定理得出CD2+DE2=CE2,即( 30)2+(90﹣3v)2=602,解方程求出v=20 或40,进而求出相遇处与港口O的距离.【解答】解:( 1)∵∠ CBO=60°,∠ COB=30°,∴∠ BCO=90°.在 Rt △ BCO中,∵ OB=120,∴BC= OB=60,∴快艇从港口 B 到小岛 C 的时间为: 60÷60=1(小时);(2)过 C作 CD⊥ OA,垂足为 D,设相会处为点E.则 OC=OB?cos30°=60,CD= OC=30,OD=OC?cos30°=90,∴D E=90﹣ 3v.222∵CE=60, CD+DE=CE,∴( 30)2+(90﹣3v)2=602,∴v=20 或 40,∴当 v=20km/h 时, OE=3× 20=60km,当 v=40km/h 时, OE=3× 40=120km.八、解答题29.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图 1,矩形 ABCD中,EF⊥ GH,EF 分别交 AB,CD于点 E,F,GH分别交 AD,BC于点 G,H.求证:=;【结论应用】(2)如图 2,在满足( 1)的条件下,又AM⊥ BN,点 M,N 分别在边BC,CD上,若=,则的值为;【联系拓展】(3)如图 3,四边形 ABCD中,∠ ABC=90°, AB=AD=10, BC=CD=5,AM⊥ DN,点 M, N分别在边 BC, AB上,求的值.【考点】相似形综合题.【分析】( 1)过点 A 作 AP∥ EF,交 CD于 P,过点 B 作 BQ∥GH,交 AD于 Q,如图 1,易证AP=EF,GH=BQ,△ PDA∽△ QAB,然后运用相似三角形的性质就可解决问题;(2)只需运用(1)中的结论,就可得到==,就可解决问题;(3)过点 D作平行于 AB 的直线,交过点 A 平行于 BC的直线于R,交 BC的延长线于S,如图 3,易证四边形ABSR是矩形,由( 1)中的结论可得=.设SC=x,DS=y,则AR=BS=5+x,RD=10﹣ y,在Rt△ CSD中根据勾股定理可得x2+y2=25①,在Rt△ ARD中根据勾股定理可得(5+x)2+( 10﹣ y)2=100②,解①②就可求出x,即可得到AR,问题得以解决.【解答】解:( 1)过点 A 作 AP∥ EF,交 CD于 P,过点 B 作 BQ∥ GH,交 AD于 Q,如图 1,∵四边形ABCD是矩形,∴ AB∥ DC, AD∥ BC.∴四边形AEFP、四边形BHGQ都是平行四边形,∴A P=EF, GH=BQ.又∵ GH⊥ EF,∴ AP⊥BQ,∴∠ QAT+∠AQT=90°.∵四边形ABCD是矩形,∴∠ DAB=∠D=90°,∴∠ DAP+∠DPA=90°,∴∠ AQT=∠DPA.∴△ PDA∽△ QAB,∴=,∴=;(2)如图 2,∵E F⊥ GH,AM⊥ BN,∴由( 1)中的结论可得=,=,∴==.故答案为;(3)过点 D作平行于 AB 的直线,交过点 A 平行于 BC的直线于 R,交 BC的延长线于 S,如图 3,则四边形 ABSR是平行四边形.∵∠ABC=90°,∴ ?ABSR是矩形,∴∠ R=∠S=90°, RS=AB=10,AR=BS.∵AM⊥ DN,∴由( 1)中的结论可得=.设 SC=x, DS=y,则 AR=BS=5+x, RD=10﹣y,∴在 Rt △ CSD中, x2+y2 =25①,在 Rt △ ARD中,( 5+x)2+( 10﹣y)2=100②,由②﹣①得 x=2y ﹣ 5③,解方程组,得(舍去),或,∴AR=5+x=8,∴===.九、解答题30.如图 1,在平面直角坐标系中,抛物线y=﹣x2+bx+c 与 x 轴交与点A(﹣ 3, 0),点 B(9, 0),与 y 轴交与点 C,顶点为 D,连接 AD、DB,点 P 为线段 AD上一动点.(1)求抛物线的解析式;(2)过点 P 作 BD的平行线,交 AB于点 Q,连接 DQ,设 AQ=m,△ PDQ的面积为 S,求 S 关于m的函数解析式,以及 S 的最大值;(3)如图 2,抛物线对称轴与 x 轴交与点 G, E 为 OG的中点, F 为点 C 关于 DG对称的对称点,过点 P 分别作直线 EF、 DG的垂线,垂足为 M、 N,连接 MN,当△ PMN为等腰三角形时,求此时 EM的长.【考点】二次函数综合题.【分析】( 1)可以假设抛物线解析式为y=﹣(x+3)(x﹣9),展开化简即可.(2)作 PH⊥ AQ于 H,则 AH=HQ= (如图 1 中),根据 S=S△ADQ﹣ S△APQ构建二次函数,利用二次函数的性质即可解决问题.(3)分三种情形讨论① PM=PN,② NP=NM,③ MN=MP,分别求出直线 PM的解析式,利用方程组求出点 M坐标即可解决问题.【解答】解:( 1)∵ a=﹣,抛物线与 x 轴交与点 A(﹣ 3, 0),点 B( 9, 0),∴可以假设抛物线解析式为y=﹣(x+3)(x﹣9)=﹣x2+ x+6,∴抛物线解析式为y=﹣x2+ x+6,(2)∵ y=﹣ x2+ x+6=﹣( x﹣3)2+8,∴顶点 D 坐标( 3, 8),∵A D=DB=10,∴∠ DAB=∠DBA,∵PQ∥ BD,∴∠ PQA=∠DBA,∴∠ PAQ=∠PQA,∴PA=PQ,∴△ PAQ为等腰三角形,作PH⊥AQ于H,则AH=HQ= (如图1 中),∴tan ∠ DAB= = ,∴P H= m,∴S=S△ADQ﹣S△APQ= ?m?8﹣ ?m? m=﹣ m2+4m=﹣( m﹣ 6)2+12,∴当 m=6时, S 最大值 =12.(3)∵ E(,0),F(6,6),。
2019-2020学年人教版九年级上期末数学试卷及答案解析
2019-2020学年人教版九年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同.现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A.B.1C.D.2.已知扇形的弧长为3πcm,半径为6cm,则此扇形的圆心角为()A.30°B.45°C.60°D.90°3.方程x2=4x的根是()A.x=4B.x=0C.x1=0,x2=4D.x1=0,x2=﹣4 4.有n支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是()A.n(n﹣1)=15B.n(n+1)=15C.n(n﹣1)=30D.n(n+1)=30 5.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6D.y=﹣2(x+1)2﹣66.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()实验次数10020030050080010002000频率0.3650.3280.3300.3340.3360.3320.333 A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率7.如图,过圆外一点P作⊙O的两条切线,切点分别为A、B,连接AB,在AB、PB、P A 上分别取一点D、E、F,使AD=BE,BD=AF,连接DE、DF、EF,则∠EDF等于()A.90°﹣∠P B.90°﹣∠P C.180°﹣∠P D.45°﹣∠P 8.如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O 的半径为,AB=4,则BC的长是()A.B.C.D.9.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B,点M和点N分别是l1和l2上的动点,MN沿l1和l2平移,若⊙O的半径为1,∠1=60°,下列结论错误的是()A.MN=B.若MN与⊙O相切,则AM=C.l1和l2的距离为2D.若∠MON=90°,则MN与⊙O相切10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有()个.。
人教版 2019--2020学年九年级(上)期末数学试题及答案
密九年级数学试卷 第 1 页 (共14页) 九年级数学试卷 第 2 页 (共14页)九年级(上)数学期末试卷2分,共12分)1),那么下列比例式成立的是 ( )2.判断下列哪一组的a 、b 、c 可使二次函数y =ax 2+bx +c -5x 2-3x +7在坐标平面上的图像有最低点。
( )A .a =0、b =4、c =8B .a =2、b =4、c =-8C .a =4、b =-4、c =8D .a =6、b =-4、c =-84.如图2,在△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA ,则下列结论一定正确的是( )A . AB 2=BC ·BD B . AB 2=AC ·BD C . AB ·AD =BC ·BD D . AB ·AD =AC ·BC5.如图3,△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为1:2,∠OCD =90°,CO =CD 。
若B (1,0),则点C 的坐标为 ( ) A .(1,2) B .(1,1) C . D .(2,1)6.如图4,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…….按这样的规律进行下去,正六边形A 10B 10C 10D 10E 10F 10的边长为 ( )二、填空题:(本大题8个小题,每小题3分,共24分)7.方程3(x -1)=2(x -1)的根是______________。
8.抛物线y =x 2+bx +c 经过A (-1,0),B (3,0)两点,则这条抛物线的函数表达式为_______________________ 。
2019-2020学年九年级数学上学期期末试卷(解析版)新人教版
2019-2020 学年九年级数学上学期期末试卷(解析版)新人教版一、选择题(本部分共 12 小题,每题 3 分,共 36 分.每题给出 4 个选项,其中只有一个正确)1.( 3 分)如图,是空心圆柱的两种视图,正确的选项是()A.B.C.D.考点:简单组合体的三视图..专题:几何图形问题.解析:分别找到从正面,从上面看所获取的图形即可,注意所有的棱都应表现在主视图和俯视图中.解答:解:以下列图,空心圆柱体的主视图是圆环;俯视图是矩形,且有两条竖着的虚线.应选 B.议论:此题观察实物体的三视图.在画图时必然要将物体的边缘、棱、极点都表现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能够遗漏.2.( 3 分)(2011?张家界)已知1 是关于 x 的一元二次方程(m﹣ 1) x2+x+1=0 的一个根,则m的值是()A. 1B.﹣ 1C. 0D.无法确定考点:一元二次方程的解;一元二次方程的定义..解析:把 x=1 代入方程,即可获取一个关于m的方程,即可求解.解答:解:依照题意得:(m﹣ 1)+1+1=0,解得: m=﹣ 1.应选 B.议论:此题主要观察了方程的解的定义,正确理解定义是重点.3.(3 分)(2010?义乌)小明打算暑期里的某天到上海世博会一日游,上午能够先从台湾馆、香港馆、韩国馆中随机选择一个馆,下午再从加拿大馆、法国馆、俄罗斯馆中随机选择一个馆游玩.则小明恰好上午选中台湾馆,下午选中法国馆这两个场馆的概率是()A.B.C.D.考点:概率公式. .专题:压轴题.解析:列举出所有情况,看上午选中台湾馆,下午选中法国馆的情况占总情况的多少即可.解答:解:上午可选择 3 个馆,下午可选择 3 个馆,那么一共有3×3=9 种可能,小明恰好上午选中台湾馆,下午选中法国馆这两个场馆的概率是,应选A.议论:若是一个事件有n 种可能,而且这些事件的可能性相同,其中事件 A 出现m种结果,那么事件 A 的概率P( A)=.4.( 3 分)(2012?德州)不用然在三角形内部的线段是()A.三角形的角均分线B.三角形的中线C.三角形的高D.三角形的中位线考点:三角形的角均分线、中线和高;三角形中位线定理..专题:计算题.解析:依照三角形的高、中线、角均分线的性质解答.解答:解:由于在三角形中,它的中线、角均分线必然在三角形的内部,而钝角三角形的高在三角形的外面.应选 C.议论:此题观察了三角形的高、中线和角均分线,要熟悉它们的性质方可解答.5.( 3 分)用配方法解方程x2﹣4x+3=0 ,配方后的结果为()A.( x﹣1)( x﹣3) =0B.( x﹣ 4)2=13C.( x﹣ 2)2 =1D.( x﹣2)2=7考点:解一元二次方程- 配方法. .解析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为 1;(3)等式两边同时加前一次项系数一半的平方.解答:解:∵x2﹣4x+3=02∴x﹣ 4x=﹣ 32∴x﹣ 4x+4=﹣ 3+42∴( x﹣ 2) =1议论:此题观察了配方法解一元二次方程,解题时要注意解题步骤的正确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是 2 的倍数.6.( 3 分)(2012?济宁)用直尺和圆规作一个角的均分线的表示图以下列图,则能说明∠AOC=∠BOC的依照是()A. SSS B. ASAC. AAS D.角均分线上的点到角两边距离相等考点:全等三角形的判断与性质;作图—基本作图..专题:证明题.解析:连接 NC,MC,依照 SSS证△ ONC≌△ OMC,即可推出答案.解答:解:连接NC, MC,在△ ONC和△ OMC中,∴△ ONC≌△ OMC( SSS),∴∠ AOC=∠BOC,应选 A.议论:此题观察了全等三角形的性质和判断的应,主要观察学生运用性质进行推理的能力,题型较好,难度适中.7.( 3 分)某商品原价为200 元,为了吸引更多顾客,商场连续两次降价后售价为162 元,求平均每次降价的百分率是多少?设平均每次降价的百分率为x,依照题意可列方程为()A. 162(1+x)2=200B. 200( 1﹣x)2=1622C. 200(1﹣ 2x) =162D. 162+162 (1+x) +162( 1+x) =200考点:由实责问题抽象出一元二次方程. . 专题:增加率问题.解析:第一次降价后的价格 =原价×( 1﹣降低的百分率),第二次降价后的价格 =第一次降价后的价格×( 1﹣降低的百分率),把相关数值代入即可.解答:解:∵原价为 200 元,平均每次降价的百分率为 x,∴第一次降价后的价格 =200×( 1﹣ x),22应选 B.议论:此题观察求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率2为 x,则经过两次变化后的数量关系为a(1±x) =b.8.( 3 分)已知点(﹣ 1,y ),( 2, y ),( 3,y)在反比率函数y=的图象上.以下结论123中正确的选项是()A. y1> y2>y3B. y1>y3> y2C. y3> y1> y2D. y2> y3>y1考点:反比率函数图象上点的坐标特色..解析:先把点(﹣ 1, y ),( 2, y),(3, y)分别代入反比率函数解析式求出y , y , y ,123123分别比较大小即可.解答:解:把点(﹣1),(23)分别代入反比率函数y=,1, y2, y ),( 3, y得 y1=1, y2=﹣, y3=﹣,即 y1> y3> y2.应选 B.议论:此题观察了反比率函数图象上点的坐标特色:反比率函数y=(k≠0)的图象上的点的横纵坐标之积为k.9.( 3 分)(2006?曲靖)如图,CD是 Rt△ABC斜边 AB上的高,将△ BCD 沿 CD折叠, B 点恰好落在 AB的中点 E 处,则∠A 等于()A. 25°B. 30°C. 45°D. 60°考点:等边三角形的判断与性质..专题:压轴题.解析:先依照图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC 是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.解答:解:△ ABC沿 CD折叠 B 与 E 重合,则BC=CE,∵E为 AB中点,△ ABC 是直角三角形,∴C E=BE=AE,∴△ BEC是等边三角形.∴∠ B=60°,∴∠ A=30°,应选 B.议论:观察直角三角形的性质,等边三角形的判断及图形折叠等知识的综合应用能力及推理能力.10.( 3 分)以下命题:2①方程 x =x 的解是 x=1;②有两边和一角相等的两个三角形全等;③按次连接等腰梯形各边中点所得的四边形是菱形;其中真命题有()A. 4 个B. 3 个C. 2 个D. 1 个考点:命题与定理. .解析:利用因式分解法解方程x2=x 可对①进行判断;依照三角形全等的判断方法可对②进行判断;由于等腰梯形的性质和菱形的判断方法可对③进行判断;依照平方根的定义对④进行判断.解答:解:方程 x2=x 的解是 x1=1,x2=0,所以①为假命题;有两边和它们的夹角对应相等的两个三角形全等,所以②为假命题;按次连接等腰梯形各边中点所得的四边形是菱形,所以③为真命题; 4 的平方根是± 2,所以④为假命题.应选 D.议论:此题观察了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.11.( 3 分)(2011?鞍山)在同一个直角坐标系中,函数y=kx和的图象的大致地址是()A.B.C.D.考点:反比率函数的图象;正比率函数的图象..专题:压轴题.解析:依照正比率函数和反比率函数的图象性质并结合其系数作答.解答:解:由于正比率函数和反比率函数的比率系数相同,所以它们经过相同的象限,所以必然有交点,消除 A, C;又由于正比率函数必然经过原点,所以消除D.应选 B.议论:此题主要观察了反比率函数的图象性质和正比率函数的图象性质,重点是由k的取值确定函数所在的象限.12.( 3 分)(2013?宜城市模拟)如图,在△ABC 中,点 E, D, F 分别在边AB、 BC、 CA上,且 DE∥CA,DF∥BA.以下四个判断中,不正确的选项是()A.四边形 AEDF是平行四边形B.若是∠ BAC=90°,那么四边形AEDF是矩形C.若是 AD均分∠ BAC,那么四边形AEDF是菱形D.若是 AD⊥BC且 AB=AC,那么四边形AEDF是正方形考点:正方形的判断;平行四边形的判断;菱形的判断;矩形的判断..解析:两组对边分别平行的四边形是平行四边形,有一个角是90°的平行四边形是矩形,有一组邻边相等的平行四边形是菱形,四个角都是直角,且四个边都相等的是正方形.解答:解: A、由于 DE∥CA,DF∥BA 所以四边形AEDF是平行四边形.故本选项正确.B、∠ BAC=90°,四边形AEDF是平行四边形,所以四边形AEDF是矩形.故本选项正确.AE=DE,又由于四边形AEDF是平行四边形,所以是菱形.故C、由于AD均分∠ BAC,所以本选项正确.AEDF是正方形,故本选项错误.D、若是 AD⊥BC 且 AB=BC不能够判断四边形应选 D.议论:此题观察了平行四边形的判判定理,矩形的判判定理,菱形的判判定理,和正方形的判判定理等知识点.二、填空题(此题共 4 小题,每题 3 分,共12 分.)13.( 3 分)双曲线y=的图象经过点(2, 4),则双曲线的表达式是.考点:待定系数法求反比率函数解析式..解析:利用待定系数法把(2, 4)代入反比率函数y= 中,即可算出k 的值,进而获取反比例函数解析式.解答:解:∵双曲线 y=的图象经过点( 2, 4),∴k=2×4=8,∴双曲线的表达式是 y= ,故答案为: y=.议论:此题主要观察了用待定系数法求反比率函数的解析式,重点是正确把点的坐标代入函数解析式.14.( 3 分)(2010?山区模)如,将正方形片ABCD分沿 AE、 BF 折叠(点 E、F 是CD上两点),使点 C 与 D 在形内重合于点P ,∠ EPF= 120度.考点:翻折(折叠);等三角形的性;正方形的性..解析:依照称的性,折叠前后形的形状和大小不,如本中折叠前后角相等.解答:解:∵正方形片ABCD分沿 AE、BF 折叠,∴AP=PB=AB,∠APB=60°.∴∠ EPF=120°.故答案: 120.点:本考形的翻折,解程中注意折叠是一种称,它属于称.15.( 3 分)用同大小的黑色棋子按如所示的律放,第2012 个共有6037枚棋子.考点:律型:形的化..解析:依照形中点的个数获取相关棋子个数的通公式,尔后代入数算即可.解答:解:察形知:第1 个形有 3+1=4 个棋子,第2 个形有 3×2+1=7 个棋子,第3 个形有 3×3+1=10 个棋子,第4 个形有 3×4+1=13 个棋子,⋯第n 个形有 3n+1 个棋子,当n=2012 , 3×2012+1=6037 个,故答案: 6037点:本考了形的化,能依照形获取通公式是解决本的关.16.( 3 分)(2007?南通)如,已知矩形OABC的面,它的角OB与双曲订交于点D,且 OB:OD=5: 3, k= 12.考点:反比率函数系数k 的几何意义..专题:压轴题.k 的值.解析:先找到点的坐标,尔后再利用矩形面积公式计算,确定解答:解:由题意,设点 D 的坐标为( x D, y D),则点 B 的坐标为(x D,y D),=|x D×y D|=,矩形OABC的面积∵图象在第一象限,∴k=x D?y D=12.议论:此题观察了反比率函数与几何图形的结合,综合性较强,同学们应重点掌握.三、解答题(此题共 7 小题,其中第17 题 5 分,第 18题 6 分,第 19 题 8 分,第 20 题 7分,第21 题 8 分,第 22 题 9 分,第23 题 9 分,共 52分)17.( 5分)(2012?安徽)解方程: x2﹣ 2x=2x+1.考点:解一元二次方程- 配方法. .专题:压轴题.解析:先移项,把2x 移到等号的左边,再合并同类项,最后配方,方程的左右两边同时加前一次项系数一半的平方,左边就是完好平方式,右边就是常数,尔后利用平方根的定义即可求解.解答:解:∵x2﹣2x=2x+1,2∴x﹣ 4x=1,2∴x﹣ 4x+4=1+4,(x﹣ 2)2=5,∴x﹣2=±,∴x1=2+,x2=2﹣.议论:此题观察了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;( 3)等式两边同时加前一次项系数一半的平方;(4)选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18.( 6 分)小江计划将鱼在年终打捞出来运往某地销售,为了预约车辆运输,必定知道鱼塘内共有多少千克的鱼,他第一次从鱼塘中打捞出 100 条鱼,共 240kg,作上记号后,又放回鱼塘.过了两天,又捞出 200 条鱼,共 510kg ,且发现其中有记号的鱼只有 4 条.(1)预计鱼塘中总合有多少条鱼?(2)若平均每千克鱼可获利润 5 元,预计小江今年卖鱼总利润约多少钱?考点:用样本预计整体;分式方程的应用..专题:应用题.解析:( 1)等量关系为: 4÷200=100÷鱼的总数,把相关数值代入计算即可;(2)求得捞出鱼的总重量,除以捞出鱼的总条数即为一条鱼的重量,乘以鱼的总条数,再乘以每千克鱼的利润可得总利润.解答:解:( 1)设鱼塘中总合有x 条鱼,由题意,解得 x=5000,经检验, x=5000 是原方程的根.答:鱼塘中总合有大体5000 条鱼.(2)解:塘中平均每条鱼约重( 240+510)÷(( 100+200) =2.5 ( kg);塘中鱼的总质量约为 2.5 ×5000=12500( kg);小江可获利润总数为 12500×5=62500(元)答:预计小江今年卖鱼总利润约62500 元.求得塘中议论:观察用样本预计整体的相关计算;用样本概率预计整体是解决此题的思想;平均每条鱼的重量是解决此题的易错点;用到的知识点为:样本容量越大,获取的数值越精确.19.( 8 分)(2008?恩施州)如图,在平行四边形 ABCD中,∠ABC的均分线交 CD于点 E,∠ADC的均分线交 AB 于点 F.试判断 AF 与 CE可否相等,并说明原由.考点:全等三角形的判断与性质;平行四边形的性质..专题:研究型.解析:AF 应该和 CE相等,可经过证明三角形ADF和三角形BEC全等来实现.依照平行四边形的性质我们可得出: AD=BC,∠A=∠C,∠ADC=∠ABC,由于 DF和 BE 是∠ ADC,∠CBA 的均分线,那么不难得出∠ ADF=∠CBE,这样就有了两角夹一边,就能得出两三角形全等了.解答:解: AF=CE.原由以下:∵四边形ABCD是平行四边形,∴AD=CB,∠ A=∠C,∠ ADC=∠ABC,又∵∠ ADF= ∠ADC,∠ CBE= ∠ABC,∴∠ ADF=∠CBE,在△ ADF 和△ CBE中,∴△ ADF≌△ CBE( AAS),∴AF=CE.议论:求某两条条线段相等,可经过证明他们所在的三角形全等来实现,判断两个三角形全等,先依照已知条件或求证的结论确定三角形,尔后再依照三角形全等的判断方法,看缺什么条件,再去证什么条件.20.( 7 分)在一次测量旗杆高度的活动中,某小组使用的方案以下:AB表示某同学从眼睛到脚底的距离, CD表示一根标杆, EF表示旗杆, AB、 CD、 EF 都垂直于地面,若,CD=2m,人与标杆之间的距离 BD=1m,标杆与旗杆之间的距离 DF=30m,求旗杆 EF 的高度.考点:相似三角形的应用..专题:应用题.解析:过点 A 作 AH⊥EF 于 H点, AH交 CD于 G,依照 EF∥AB∥CD 可求出 EF、 HB、 GD,再根据相似三角形的判判定理可得△ACG∽△ AEH,再依照三角形的相似比解答即可.解答:解:过点 A 作 AH⊥EF 于 H点, AH交 CD于 G,∵CD∥EF,∴△ ACG∽△ AEH,∴,即:,∴.∴E F=EH+HF=12.4+1.6=14,∴旗杆的高度为 14 米.议论:此题难度不大,解答此题的重点是作出辅助线.构造出相似三角形,利用平行线的性质及相似三角形的相似比解答.21.( 8 分)(2012?山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克 60元销售,平均每天可售出100 千克,此后经过市场检查发现,单价每降低 2 元,则平均每天的销售可增加 20 千克,若该专卖店销售这种核桃要想平均每天盈利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天利不的情况下,尽可能利于客,得市,店按原售价的几折销售?考点:一元二次方程的用. .:增率.解析:( 1)每千克核桃降价x 元,利用售量×每件利=2240 元列出方程求解即可;( 2)了利于客所以下降 6 元,求出此的售价即可确定几折.解答:( 1)解:每千克核桃降价x 元.⋯1分依照意,得( 60 x 40)( 100+ ×20) =2240.⋯4分化,得 x21210x+24=0解得 x=4,x =6.⋯6分答:每千克核桃降价 4 元或 6 元.⋯7分( 2)解:由( 1)可知每千克核桃可降价 4 元或 6 元.因要尽可能利于客,所以每千克核桃降价 6 元.此,售价: 60 6=54(元),.⋯9分答:店按原售价的九折销售.⋯10 分点:本考了一元二次方程的用,解的关是依照目中的等量关系列出方程.22.( 9 分)(2010?达州)近来几年来,我国煤安全事故生,其中危害最大的是瓦斯,其主要成分是 CO.在一次事件的中:从零起,井内空气中 CO的度达到4mg/L,此后度呈直型增加,在第 7 小达到最高 46mg/L,生爆炸;爆炸后,空气中的 CO度成反比率下降.如所示,依照中相关信息回答以下:(1)求爆炸前后空气中 CO度 y 与 x 的函数关系式,并写出相的自量取范;(2)当空气中的 CO度达到 34mg/L ,井下 3km的工接到自警信号,他最少要以多少 km/h的速度撤离才能在爆炸前逃生?(3)工只有在空气中的CO度降到4mg/L 及以下,才能回到井睁开生自救,求工最少在爆炸后多少小才能下井?考点:反比率函数的用;一次函数的用..:用;.解析:( 1)依照象能够获取函数关系式,y=k1x+b(k1≠0),再由象所点的坐(0,4),( 7,46)求出 k1与 b 的,尔后得出函数式y=6x+4 ,进而求出自量x 的取范围.再由图象知( k2≠0)过点( 7, 46),求出 k2的值,再由函数式求出自变量 x 的取值范围.(2)结合以上关系式,当 y=34 时,由 y=6x+4 得 x=5,进而求出撤离的最长时间,再由v= 速度.( 3)由关系式y=知,y=4时,,矿工最少在爆炸后80.5 ﹣ 7=73.5 (小时)才能下井.解答:解:( 1)由于爆炸前浓度呈直线型增加,所以可设y 与 x 的函数关系式为y=k 1x+b( k1≠0),由图象知y=k 1x+b 过点( 0, 4)与( 7, 46),则,解得,则y=6x+4,此时自变量 x 的取值范围是0≤x≤7.(不取 x=0 不扣分, x=7 可放在第二段函数中)∵爆炸后浓度成反比率下降,∴可设 y 与 x 的函数关系式为( k2≠0).由图象知过点( 7, 46),∴,2∴k=322,∴,此时自变量x 的取值范围是x> 7.(2)当 y=34 时,由 y=6x+4 得, 6x+4=34, x=5.∴撤离的最长时间为 7﹣ 5=2(小时).∴撤离的最小速度为 3÷2=1.5 ( km/h).( 3)当y=4时,由y=得,,80.5 ﹣ 7=73.5 (小时).∴矿工最少在爆炸后73.5 小时才能下井.议论:现实生活中存在大量成反比率函数的两个变量,解答该类问题的重点是确定两个变量之间的函数关系,尔后利用待定系数法求出它们的关系式.23.( 9 分)如图,在△ ABC 中, AB=AC=5, BC=6, D、 E 分别是边 AB、 AC上的两个动点( D 不与 A、 B重合),且保持 DE∥BC,以 ED为边,在点 A 的异侧作正方形 DEFG.(1)试求△ ABC 的面积;(2)当边 FG与 BC重合时,求正方形 DEFG的边长;(3)设 AD=x,当△ BDG是等腰三角形时,求出 AD的长.考点:相似三角形的判断与性质;等腰三角形的性质;勾股定理;正方形的性质..专题:计算题.解析:( 1)作底边上的高,利用勾股定理求出高就可以求出头积.(2)依照 DE∥BC,获取△ ADE∽△ ABC,再依照相似三角形对应高的比等于相似比即可求出边 DE的长度.( 3)依照△ ADE∽△ ABC 得=,求出AD的长.解答:解:( 1)过 A 作 AH⊥BC 于 H,∵AB=AC=5, BC=6,∴BH= BC=3,∴AH===4,∴S△ABC=BC?AH= ×6×4=12.(2)令此时正方形的边长为 a,∵DE∥BC,∴,∴a=.( 3)当 AD=x时,由△ ADE∽△ ABC 得=,即= ,解得 DE= x,当 BD=DG时, 5﹣ x= x, x=,当 BD=BG时,=,解得x=,当 BG=DG时,=,解得x=,∴当△ BDG是等腰三角形时,AD=或或.议论:此题观察了正方形、等腰三角形的性质,相似比等相关知识.综合性较强,解题时要仔细.。
人教版2019-2020学年九年级数学上册期末练习卷(含解析)
人教版2019-2020学年九年级上册期末练习卷一、选择题(共10题;共30分)1. ( 3分) “最美司机”吴斌用生命保护乘客,他的感人事迹在神州大地广为传颂。
就一般情况而言,“车辆破裂的刹车鼓铁块飞入另一车中致人死亡”是()A. 必然事件B. 不可能事件C. 随机事件D. 以上都不对2. ( 3分) “瓦当”是中国古建筑中覆盖檐头筒瓦前端的遮挡,主要有防水、排水、保护木制飞檐和美化屋面轮廓的作用.下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A. B. C. D.3. ( 3分) 一元二次方程4x2-45=31x的二次项系数、一次项系数、常数项分别为()A. 4、-45、31B. 4、31、-45C. 4、-31、-45D. 4、-45、-314. ( 3分) 二次函数y=x2﹣2的图象的顶点是()A. (2,﹣2)B. (﹣1,0)C. (1,9)D. (0,﹣2)5. ( 3分) 关于抛物线y=x2−2x+1,下列说法错误的是()A. 开口向上B. 与x轴有且只有一个公共点C. 对称轴是直线D. 当x>0时,y随x的增大而增大6. ( 3分) 如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB,OC.若∠BAC与∠BOC互补,则弦BC的长为()A. 4B. 3C. 2D.7. ( 3分) 如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A. 80°B. 50°C. 40°D. 20°8. ( 3分) 已知抛物线y=x2﹣x﹣3经过点A(2,y1)、B(3,y2),则y1与y2的大小关系是()A. y1>y2B. y1=y2C. y1<y2D. 无法确定9. ( 3分) 如图,BO平分∠ABC,CO平分∠ACB,BO=CO,若∠BOC=100°,那么∠BAO 等于()A. 10°B. 20°C. 30°D. 40°10. ( 3分) 二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线X=2,下,y2)、列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(-3,y1)、点B(-12点C(7,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x-5)=-3的两根为x1和x2,且2x1<x2,则x1<-1<5<x2.其中正确的结论有()个.A. 2个B. 3个C. 4个D. 5个二、填空题(共6题;共24分)11. ( 4分) 已知点A(2,4)与点B(b–1,2a)关于原点对称,则a=________,b=________.12. ( 4分) 如果抛物线y=(a+3)x2﹣5不经过第一象限,那么a的取值范围是________.13. ( 4分) 一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为________.14. ( 4分) 二次函数y=x2﹣4x﹣3 的最小值是________.15. ( 4分) 如图,已知△ABC中,∠C=90°,BA=15,AC=12,以直角边BC为直径作半圆,则这个半圆的面积是________.16. ( 4分) 如图,在⊙O中,AB=CD,∠AOB与∠COD的关系是________.三、解答题(一)(共3题;共20分)17. ( 8分) 解方程:(1)x2﹣6x﹣7=0;(2)x2﹣5(x﹣2)=5.18. ( 6分) 已知函数y=2x2-(3-k)x+k2-3k-10的图象经过原点,试确定k的值。
2019-2020人教版九年级(上)期末数学试卷(含解析)
九年级(上)期末数学试卷一、选择题1.用配方法解方程x 2﹣2x ﹣5=0时,原方程应变形为( )A . (x +1)2=6 B . (x ﹣1)2=6 C . (x +2)2=9 D . (x ﹣2)2=9 2.下列图形中,是中心对称图形的是( )A .B .C .D .3.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 等于( )A . 116°B . 32°C . 58°D . 64°4、有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为 ( )A 、8人B 、9人C 、10人D 、11人5、将抛物线2(1)4y x =--的图像先向左平移2个单位,再向上平移3个单位,所得图像的函数解析式为2y x bx c =++,则b 、c 的值为()A 、2,6b c ==-B 、2,0b c ==C 、6,8b c =-=D 、6,2b c =-=6、如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若065,70CAE E ∠=∠=且AD ⊥BC ,BAC ∠的度数为 ( ) A 、600B 、750C 、850D 、900 7.已知抛一枚均匀硬币正面朝上的概率为12,下列说法错误的是. A .连续抛一枚均匀硬币10次都可能正面朝上B .大量反复抛一枚均匀硬币,平均每100次出现下面朝上50次C .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的D .连续抛一枚均匀硬币2次必有1次正面朝上8、已知关于x 的一元二次方程05222=-+-a x x 有两个相等的实数根,则a 的值是.( ) A.4 B.3 C.2 D.19.在平面直角坐标系xOy 中,已知点A (2,3),若将OA 绕原点O 逆时针旋转180°得到0A ′, 则点A ′的坐标是.( )A .(-2,-3) B .(2,3) C .(-3,-2) D (-3,-2) 10.如图,点O 为优弧ACB 所在圆的圆心,∠AOC =104°,点D 在AB 的延长线上, BD =BC , 则∠D 的度数为.( )A .26° B .27° C .30° D .52°二、填空题11、若方程2540x x -+=的两根是等腰三角形ABC 的两边,则△ABC 的周长为 .12.已知一元二次方程ax2+x ﹣b=0的一根为1,则a ﹣b 的值是 .13.若点A (a ,3)和点B (﹣4,b )关于原点对称,则A 、B 两点之间的距离为 . 14.如图,把Rt △ABC 绕点A 逆时针旋转40°,得到Rt △AB′C′,点C′恰好落在边AB 上,连接BB′,则∠BB′C′= 度.15.如图,AB 是⊙O 的弦,OC ⊥AB 于点C ,连接OA 、OB .点P 是半径OB 上任意一点,连接AP .若OA=5cm ,OC=3cm ,则AP 的长度可能是 cm (写出一个符合条件的数值即可) 16.如图,在平面直角坐标系中,抛物线y=经过平移得到抛物线y=,其对称轴与两段抛物线所围成的阴影部分的面积为 .三、解答题、17.解方程:(1)x 2﹣6x ﹣6=0 (2)(x ﹣3)2+3x (x ﹣3)=0.E DCBA(第2题)18.已知,一抛物线经过点(0,﹣1),(1,﹣2),(﹣2,7),求其解析式及其顶点坐标.19.如图,在平面直角坐标系xOy 中,点A 的坐标为(﹣2,0),等边三角形AOC 经过平移或轴对称或旋转都可以得到△OBD .(1)△AOC 沿x 轴向右平移得到△OBD ,则平移的距离是 个单位长度;△AOC 与△BOD 关于直线对称,则对称轴是 ;△AOC 绕原点O 顺时针旋转得到△DOB ,则旋转角度可以是 度; (2)连结AD ,交OC 于点E ,求∠AEO 的度数.20.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的直线互相垂直,垂足为D ,且AC 平分∠DA B .(1)求证:DC 为⊙O 的切线;(2)若⊙O 的半径为3,AD =4,求AC 的长.21.如图所示,△ABC 内接于⊙O ,AB 是⊙O 的直径,D 是AB 延长线上一点,连接DC ,且AC =DC ,BC =B D . (1)求证:DC 是⊙O 的切线;(2)作CD 的平行线AE 交⊙O 于点E ,已知DC =10,求圆心O 到AE 的距离.22.如图,在扇形OAB 中,∠AOB =90°,半径OA =6.将扇形OAB 沿过点B 的直线折叠,点O恰好落在上点D 处,折痕交OA 于点C ,求整个阴影部分的周长和面积.23.如图,在平面直角坐标系xOy 中,顶点为M 的抛物线y=ax2+bx (a >0),经过点A 和x 轴正半轴上的点B ,AO=OB=2,∠AOB=120°. (1)求这条抛物线的表达式;(2)连接OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.2017-2018学年度(上)九年级期末数学试卷期末数学试卷参考答案与试题解析一、选择题(每小题2分,共12分)1.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9考点一元二次方程-配方法.专题:计算题.分析:方程常数项移到右边,两边加上1变形即可得到结果.解答:解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.2.下列图形中,是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念求解.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解答:解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.故选D.点评:掌握好中心对称图形的概念.要注意,中心对称图形关键是要寻找对称中心,旋转180度后两部分重合.3.下列四个三角形中,与图中的三角形相似的是()A.B.C.D.考点:相似三角形的判定.专题:网格型.分析:本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.解答:解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A、三角形三边2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D 、三角形三边,4,,与给出的三角形的各边不成比例,故D选项错误.故选:B.点评:此题考查三边对应成比例,两三角形相似判定定理的应用.4.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.116°B.32°C.58°D.64°考点:圆周角定理.分析:由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠ADB=90°,继而求得∠A的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得答案.解答:解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=90°﹣∠ABD=32°,∴∠BCD=∠A=32°.故选B.点评:此题考查了圆周角定理与直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.5.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),若反比例函数y =(x>0)的图象经过点A,则k的值为()A.﹣6 B.﹣3 C. 3 D. 6考点:菱形的性质;反比例函数图象上点的坐标特征.分析:根据菱形的对称性求出点A的坐标,再根据反比例函数图象上点的坐标特征代入函数解析式进行计算即可得解.解答:解:∵菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),∴点A的坐标为(3,2),∵反比例函数y =(x>0)的图象经过点A,∴=2,解得k=6.故选D.点评:本题考查了菱形的性质,反比例函数图象上点的坐标特征,熟记菱形的对称性求出点A的坐标是解题的关键.6.若某人沿坡角为α的斜坡前进100m,则他上升的最大高度是()A.100sinαm B.m C.m D.100cosαm考点:解直角三角形的应用-坡度坡角问题.分析:在三角函数中,根据坡度角的正弦值=垂直高度:坡面距离即可解答.解答:解:如图,∠A=α,∠C=90°,则他上升的高度BC=ABsinα=100•sinα(米).故选A.点评:此题主要考查了解直角三角形的应用﹣坡度坡角问题,通过构造直角三角形,利用锐角三角函数求解是解题关键.二、填空题(每小题3分,共24分)7.已知一元二次方程ax2+x﹣b=0的一根为1,则a﹣b的值是﹣1.考点:一元二次方程的解.分析:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.解答:解:把x=1代入方程ax2+x﹣b=0,可得a+1﹣b=0,解得a﹣b=﹣1.点评:本题考查的是一元二次方程的根即方程的解的定义.8.若点A(a,3)和点B(﹣4,b)关于原点对称,则A、B两点之间的距离为10.考点:关于原点对称的点的坐标;勾股定理.分析:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).根据条件就可以求出a,b的值.然后再根据勾股定理就可以求出两点之间的距离.解答:解:点A(a,3)和点B(﹣4,b)关于原点对称,则a=4 b=﹣3.则点A和点B的坐标分别是(4,3)和(﹣4,﹣3),则A、B 两点之间的距离是.点评:关于原点对称的点坐标的关系,是需要识记的基本问题,记忆方法是结合平面直角坐标系的图形记忆.同时本题考查了求两点之间的距离的计算方法:勾股定理.9.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′= 20度.考点:旋转的性质.分析:根据旋转的性质可得AB=AB′,∠BAB′=40°,然后根据等腰三角形两底角相等求出∠ABB′,再利用直角三角形两锐角互余列式计算即可得解.解答:解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=40°,在△ABB′中,∠ABB ′=(180°﹣∠BAB′)=(180°﹣40°)=70°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°﹣∠ABB′=90°﹣70°=20°.故答案为:20.点评:本题考查了旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,比较简单,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.10.如图,AB是⊙O的弦,OC⊥AB于点C,连接OA、O B.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是6cm(写出一个符合条件的数值即可)考点:垂径定理;勾股定理.专题:开放型.分析:根据勾股定理求出AC,根据垂径定理求出AB,即可得出AP的范围是大于等于5cm且小于等于8cm,举出即可.解答:解:∵OC⊥AB,∴∠ACO=90°,∵OA=5cm,OC=3cm,∴由勾股定理得:AC ==4cm,∴由垂径定理得:AB=2AC=8cm,只要举出的数大于等于5且小于等于8cm即可,如6cm,故答案为:6.点评:本题考查了勾股定理和垂径定理的应用,关键是求出AP的范围.11.如图,在平面直角坐标系中,抛物线y =经过平移得到抛物线y =,其对称轴与两段抛物线所围成的阴影部分的面积为4.考点:二次函数图象与几何变换.分析:确定出抛物线y =x2﹣2x的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.解答:解:如图,∵y =x2﹣2x =(x﹣2)2﹣2,∴平移后抛物线的顶点坐标为(2,﹣2),对称轴为直线x=2,当x=2时,y =×22=2,∴平移后阴影部分的面积等于如图三角形的面积,×(2+2)×2=4.故答案为:4.点评:本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.12.袋中装有2个红球,3个白球,它们除了颜色不同以外其他都相同,随机从中摸出一球,记下颜色后放回袋中,充分摇匀后再随机摸出一球,两次都摸到红球的概率是.考点:列表法与树状图法.分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.解答:解:由树状图可知共有5×5=25种可能,两次都摸到红球的有4种,所以概率是.故答案为.点评:本题考查概率的概念和求法,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.13.如图,△ABC中,点D、E分别为AB、AC的中点,连接DE,线段BE、CD相交于点O,则=.考点:三角形的重心.分析:解法一:由题意,知O点为△ABC 的重心,根据重心的性质可得出=;解法二:由题意,知DE为△ABC的中位线,则DE∥BC,DE =BC,再证明△ODE∽△OCB,由相似三角形对应边成比例即可得出=.解答:解:解法一:∵点D、E分别为AB、AC的中点,线段BE、CD相交于点O,∴O点为△ABC的重心,∴=;解法二:∵点D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE =BC,∴∠ODE=∠OCB,∠OED=∠OBC,∴△ODE∽△OCB,∴==.故答案为.点评:本题考查了相似三角形的判定与性质,三角形中位线定理,三角形重心的定义与性质,难度中等.14.△ABC的顶点都在方格纸的格点上,则sinA=.考点:锐角三角函数的定义;勾股定理.专题:网格型.分析:设小方格的长度为1,过C作CD⊥AB,垂足为D,在Rt△ACD中,利用勾股定理求出AC的长,然后根据锐角三角函数的定义求出sin A.解答:解:过C作CD⊥AB,垂足为D,设小方格的长度为1,在Rt△ACD中,AC ==2,∴sinA ==,故答案为.点评:本题主要考查锐角三角函数的定义和勾股定理的知识点,此题比较简单,构造一个直角三角形是解答本题的关键.三、解答题(每小题5分,共20分)15.解方程:(1)x2﹣6x﹣6=0(2)(x﹣3)2+3x(x﹣3)=0.考点:解一元二次方程-因式分解法;解一元二次方程-配方法.分析:(1)直接利用配方法解方程得出即可;(2)直接提取公因式(x﹣3),进而分解因式得出答案.解答:解:(1)x2﹣6x﹣6=0(x﹣3)2=15,解得:x1=3+,x2=3﹣;(2)(x﹣3)2+3x(x﹣3)=0(x﹣3)[(x﹣3)+3x]=0解得:x1=3,x2=.点评:此题主要考查了配方法以及因式分解法解一元二次方程,正确分解因式是解题关键.16.为了陶冶情操开发智力丰富课余生活,市实验校成立了课外“象棋特长班”.开班仪式上,班内同学一一握手自我介绍(即每位同学都和班内其他同学握手).老师对握手次数做了统计,全班共握手105次,问:该象棋班共有多少名学生?考点:一元二次方程的应用.分析:已知与会的每名同学都与其他同学握一次手,那么每人应握(x﹣1)次手,所以x 人共握手x (x﹣1)次,又知共握手105次,以握手总次数作为等量关系,列出方程求解.解答:解:设这次参加开班仪式的同学有x人,则每人应握(x﹣1)次手,由题意得:x(x﹣1)=105,即:x2﹣x﹣210=0,解得:x1=15,x2=﹣14(不符合题意舍去).答:这次参加开班仪式的有15人.点评:本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系,列出方程求解.17.如图(图略),从一副扑克牌中选取红桃10,方块10,梅花5,黑桃8四张扑克牌,洗匀后正面朝下放在桌子上,甲先从中任意抽取一张后,乙再从剩余的三张扑克牌中任意抽取一张,用画树形图或列表的方法,求甲乙两人抽取的扑克牌的点数都是10的概率.考点:列表法与树状图法.专题:常规题型.分析:列出树状图后利用概率公式求解即可.解答:解:列树状图为:∵共12种情况,其中两个都是10的情况共有2种,∴P(点数都是10)==.点评:本题考查了列表法语树状图的知识,解题的关键是根据题意列出树状图,这也是解决本题的难点.18.已知,一抛物线经过点(0,﹣1),(1,﹣2),(﹣2,7),求其解析式及其顶点坐标.考点:待定系数法求二次函数解析式.专题:计算题.分析:先设一般式y=ax2+bx+c,再把三个点的坐标代入得到关于a、b、c的方程组,解方程组求出a、b、c的值即可得到抛物线解析式,然后配成顶点式得到顶点坐标.解答:解:设抛物线解析式为y=ax2+bx+c,根据题意得,解得,所以抛物线解析式为y=x2﹣2x﹣1,因为y=x2﹣2x﹣1=(x﹣1)2﹣2,所以抛物线顶点坐标为(1,﹣2).点评:本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.四、解答题(每小题7分,共28分)19.如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OB D.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是2个单位长度;△AOC与△BOD关于直线对称,则对称轴是y轴;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是120度;(2)连结AD,交OC于点E,求∠AEO的度数.考点:旋转的性质;等边三角形的性质;轴对称的性质;平移的性质.专题:计算题.分析:(1)由点A的坐标为(﹣2,0),根据平移的性质得到△AOC沿x轴向右平移2个单位得到△OBD,则△AOC与△BOD关于y轴对称;根据等边三角形的性质得∠AOC=∠BOD=60°,则∠AOD=120°,根据旋转的定义得△AOC绕原点O顺时针旋转120°得到△DOB;(2)根据旋转的性质得到OA=OD,而∠AOC=∠BOD=60°,得到∠DOC=60°,所以OE为等腰△AOD的顶角的平分线,根据等腰三角形的性质得到OE垂直平分AD,则∠AEO=90°.解答:解:(1)∵点A的坐标为(﹣2,0),∴△AOC沿x轴向右平移2个单位得到△OBD;∴△AOC与△BOD关于y轴对称;∵△AOC为等边三角形,∴∠AOC=∠BOD=60°,∴∠AOD=120°,∴△AOC绕原点O顺时针旋转120°得到△DO B.(2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB,∴OA=OD,∵∠AOC=∠BOD=60°,∴∠DOC=60°,即OE为等腰△AOD的顶角的平分线,∴OE垂直平分AD,∴∠AEO=90°.故答案为2;y轴;120.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的性质、轴对称的性质以及平移的性质.20.某校九年级四个数学活动小组参加测量操场旗杆高度的综合实践活动,如图是四个小组在不同位置测量后绘制的示意图,用测角仪测得旗杆顶端A的仰角记为α,CD为测角仪的高,测角仪CD的底部C 处与旗杆的底部B处之间的距离记为CB,四个小组测量和计算数据如下表所示:数据组别CD的长(m)BC的长(m)仰角αAB的长(m)第一组 1.59 13.2 32°9.8第二组 1.58 13.4 31°9.6第三组 1.57 14.1 30°9.7第四组 1.56 15.2 28°(1)利用第四组学生测量的数据,求旗杆AB的高度(精确到0.1m);(2)四组学生测量旗杆高度的平均值约为9.7m(精确到0.1m).(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.分析:(1)首先在直角三角形ADE中利用∠α和BE的长求得线段AE的长,然后与线段BE相加即可求得旗杆的高度;(2)利用算术平均数求得旗杆的平均值即可.解答:解:(1)∵由已知得:在Rt△ADE中,∠α=28°,DE=BC=15.2米,∴AE=DE×tanα=15.2×tan28°≈8.04米,∴AB=AE+EB=1.56+8.04≈9.6米,答:旗杆的高约为9.6米;(2)四组学生测量旗杆高度的平均值为(9.8+9.6+9.7+9.6)÷4≈9.7米.点评:本题考查了解直角三角形的知识,了解仰角及俯角的定义是解答本题的关键,难度不大.21.一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高BE =,斜面坡角为30°,求木箱端点E距地面AC的高度EF.考点:解直角三角形的应用-坡度坡角问题.分析:连接AE,在Rt△ABE中求出AE,根据∠EAB的正切值求出∠EAB的度数,继而得到∠EAF的度数,在Rt△EAF中,解出EF即可得出答案.解答:解:连接AE,在Rt△ABE中,AB=3m,BE =m,则AE ==2m,又∵tan∠EAB ==,∴∠EAB=30°,在Rt△AEF中,∠EAF=∠EAB+∠BAC=60°,∴EF=AE×sin∠EAF =2×=3m.答:木箱端点E距地面AC的高度为3m.点评:本题考查了坡度、坡角的知识,解答本题的关键是构造直角三角形,熟练运用三角函数求线段的长度.22.如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DA B.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.考点:切线的判定;相似三角形的判定与性质.分析:(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OCA,接着利用平行线的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可证明直线CD与⊙O相切于C点;(2)连接BC,根据圆周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性质即可解决问题.解答:(1)证明:连接OC ∵OA=OC∴∠OAC=∠OCA∵AC平分∠DAB∴∠DAC=∠OAC∴∠DAC=∠OCA∴OC∥AD∵AD⊥CD∴OC⊥CD∴直线CD与⊙O相切于点C;(2)解:连接BC,则∠ACB=90°.∵∠DAC=∠OAC,∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB,∵⊙O的半径为3,AD=4,∴AB=6,∴AC =2.点评:此题主要考查了切线的性质与判定,解题时首先利用切线的判定证明切线,然后利用切线的想这已知条件证明三角形相似即可解决问题.五、解答题(每小题8分,共16分)23.如图,在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠,点O恰好落在上点D处,折痕交OA于点C,求整个阴影部分的周长和面积.考点:翻折变换(折叠问题);等边三角形的判定与性质;弧长的计算;扇形面积的计算;解直角三角形.专题:几何综合题.分析:首先连接OD,由折叠的性质,可得CD=CO,BD=BO,∠DBC=∠OBC,则可得△OBD是等边三角形,继而求得OC的长,即可求得△OBC与△BCD的面积,又由在扇形OAB中,∠AOB=90°,半径OA=6,即可求得扇形OAB 的面积与的长,继而求得整个阴影部分的周长和面积.解答:解:连接O D.根据折叠的性质,CD=CO,BD=BO,∠DBC=∠OBC,∴OB=OD=BD,即△OBD是等边三角形,∴∠DBO=60°,∴∠CBO =∠DBO=30°,∵∠AOB=90°,∴OC=OB•tan∠CBO =6×=2,∴S△BDC=S△OBC =×OB×OC =×6×2=6,S扇形AOB =π×62=9π,=π×6=3π,∴整个阴影部分的周长为:AC+CD+BD +=AC+OC+OB +=OA+OB +=6+6+3π=12+3π;整个阴影部分的面积为:S扇形AOB﹣S△BDC﹣S△OBC=9π﹣6﹣6=9π﹣12.点评:此题考查了折叠的性质、扇形面积公式、弧长公式以及直角三角形的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.24.如图①,直角三角形AOB中,∠AOB=90°,AB平行于x轴,OA=2OB,AB=5,反比例函数(x >0)的图象经过点A.(1)直接写出反比例函数的解析式;(2)如图②,P(x,y)在(1)中的反比例函数图象上,其中1<x<8,连接OP,过点O作OQ⊥OP,且OP=2OQ,连接PQ.设点Q坐标为(m,n),其中m<0,n>0,求n与m的函数解析式,并直接写出自变量m的取值范围;(3)在(2)的条件下,若Q坐标为(m,1),求△POQ的面积.考点:反比例函数综合题.专题:综合题.分析:(1)如图①,在Rt△OAB中利用勾股定理计算出OB =,OA =2,由于AB平行于x轴,则OC⊥AB,则可利用面积法计算出OC=2,在Rt△AOC中,根据勾股定理可计算出AC=4,得到A点坐标为(4,2),然后利用待定系数法确定反比例函数解析式为y =;(2)分别过P、Q做x轴垂线,垂足分别为H、D,如图②,先证明Rt△POH∽Rt△OQD,根据相似的性质得==,由于OP=2OQ,PH=y,OH=x,OD=﹣m,QD=n,则==2,即有x=2n,y=﹣2m,而x、y满足y =,则2n•(﹣2m)=8,即mn=﹣2,当1<x<8时,1<y<8,所以1<﹣2m<8,解得﹣4<m <﹣;(3)由于n=1时,m=﹣2,即Q点坐标为(﹣2,1),利用两点的距离公式计算出OQ =,则OP=2OQ =2,然后根据三角形面积公式求解.解答:解:(1)如图①,∵∠AOB=90°,∴OA2+OB2=AB2,∵OA=2OB,AB=5,∴4OB2+OB2=25,解得OB =,∴OA =2,∵AB平行于x轴,∴OC⊥AB,∴OC•AB =OB•OA,即OC ==2,在Rt△AOC中,AC ==4,∴A点坐标为(4,2),设过A点的反比例函数解析式为y =,∴k=4×2=8,∴反比例函数解析式为y =;(2)分别过P、Q作x轴垂线,垂足分别为H、D,如图②,∵OQ⊥OP,∴∠POH+∠QOD=90°,∵∠POH+∠OPH=90°,∴∠QOD=∠OPH,∴Rt△POH∽Rt△OQD,∴==,∵P(x,y)在(1)中的反比例函数图象上,其中1<x<8,Q点坐标为(m,n),其中m<0,n>0,OP=2OQ,∴PH=y,OH=x,OD=﹣m,QD=n,∴==2,解得x=2n,y=﹣2m,∵y =,∴2n•(﹣2m)=8,∴n =(﹣4<m <﹣);(3)∵n=1时,m=﹣2,即Q点坐标为(﹣2,1),∴OQ ==,∴OP=2OQ =2,∴S△POQ =××2=5.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征和待定系数法求反比例函数解析式;理解坐标与图形的性质;会利用相似比和勾股定理进行几何计算.六、选择题(每小题10分,共20分)25.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.考点:二次函数综合题.专题:压轴题.分析:(1)根据AO=OB=2,∠AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)根据(1)中解析式求出M点坐标,再利用锐角三角函数关系求出∠FOM=30°,进而得出答案;(3)分别根据当△ABC1∽△AOM以及当△C2BA∽△AOM时,利用相似三角形的性质求出C点坐标即可.解答:解:(1)过点A作AE⊥y轴于点E,∵AO=OB=2,∠AOB=120°,∴∠AOE=30°,∴OE =,AE=1,∴A点坐标为:(﹣1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,∴抛物线的表达式为:y =x2﹣x;(2)过点M作MF⊥OB于点F,∵y =x2﹣x =(x2﹣2x)=(x2﹣2x+1﹣1)=(x﹣1)2﹣,∴M点坐标为:(1,﹣),∴tan∠FOM ==,∴∠FOM=30°,∴∠AOM=30°+120°=150°;(3)当点C在x轴负半轴上时,则∠BAC=150°,而∠ABC=30°,此时∠C=0°,故此种情况不存在;当点C在x轴正半轴上时,∵AO=OB=2,∠AOB=120°,∴∠ABO=∠OAB=30°,∴AB=2EO =2,当△ABC1∽△AOM,∴=,∵MO ==,∴=,解得:BC1=2,∴OC1=4,∴C1的坐标为:(4,0);当△C2BA∽△AOM,∴=,∴=,解得:BC2=6,∴OC2=8,∴C2的坐标为:(8,0).综上所述,△ABC与△AOM相似时,点C的坐标为:(4,0)或(8,0).点评:此题主要考查了锐角三角函数的应用以及待定系数法求二次函数解析式和相似三角形的性质等知识,利用分类讨论思想以及数形结合得出是解题关键.26.如图,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一边QP在BC边上,E、F分别在AB、AC上,AD交EF于点H.(1)求证:;(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求出最大面积;(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线DA匀速向上运动(当矩形的边PQ到达A点时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S 与t的函数关系式,并写出t的取值范围.考点:相似形综合题.专题:压轴题.分析:(1)由相似三角形,列出比例关系式,即可证明;(2)首先求出矩形EFPQ面积的表达式,然后利用二次函数求其最大面积;(3)本问是运动型问题,要点是弄清矩形EFPQ的运动过程:(I)当0≤t≤2时,如答图①所示,此时重叠部分是一个矩形和一个梯形;(II)当2<t≤4时,如答图②所示,此时重叠部分是一个三角形.解答:(1)证明:∵四边形EFPQ是矩形,AH是△AEF的高,∴EF∥BC,∴△AHF∽△ADC,∴,∵EF∥BC,∴△AEF∽△ABC,∴,∴.(2)解:∵∠B=45°,∴BD=AD=4,∴CD=BC﹣BD=5﹣4=1.∵EF∥BC,∴△AEH∽△ABD,∴,∵EF∥BC,∴△AFH∽△ACD,∴,∴,即,∴EH=4HF,已知EF=x,则EH =x.∵∠B=45°,∴EQ=BQ=BD﹣QD=BD﹣EH=4﹣x.S矩形EFPQ=EF•EQ=x•(4﹣x)=﹣x2+4x=﹣(x ﹣)2+5,∴当x =时,矩形EFPQ的面积最大,最大面积为5.(3)解:由(2)可知,当矩形EFPQ 的面积最大时,矩形的长为,宽为4﹣×=2.在矩形EFPQ沿射线AD的运动过程中:(I)当0≤t≤2时,如答图①所示.设矩形与AB、AC分别交于点K、N,与AD分别交于点H1,D1.此时DD1=t,H1D1=2,∴HD1=HD﹣DD1=2﹣t,HH1=H1D1﹣HD1=t,AH1=AH﹣HH1=2﹣t,.∵KN∥EF,∴,即,得KN =(2﹣t).S=S梯形KNFE+S矩形EFP1Q1=(KN+EF)•HH1+EF•EQ1=[(2﹣t)+]×t +(2﹣t)=t2+5;(II)当2<t≤4时,如答图②所示.设矩形与AB、AC分别交于点K、N,与AD交于点D2.此时DD2=t,AD2=AD﹣DD2=4﹣t,∵KN∥EF,∴,即,得KN=5﹣t.S=S△AKN=KN•AD2=(5﹣t)(4﹣t)=t2﹣5t+10.综上所述,S与t的函数关系式为:S=.点评:本题是运动型相似三角形压轴题,考查了相似三角形的判定与性质、二次函数的表达式与最值、矩形、等腰直角三角形等多个知识点,涉及考点较多,有一定的难度.难点在于第(3)问,弄清矩形的运动过程是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年九年级数学上学期期末试卷(含解析)新人教版(I) 一、选择题(本题满分24分,共有8道小题,每小题3分)1.下面四个几何体中,其主视图为圆形的是()A.B.C.D.2.在△ABC中,∠C=90°,AB=5,BC=3,则sinB的值是()A. B. C. D.3.抛物线y=x2﹣2x+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,2)D.(﹣1,2)4.甲、乙两名同学在一次用频率去估计概率的实验中,统一了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.从一个装有2个白球和1个红球的袋子中任取两球,取到两个白球的概率B.任意写一个正整数,它能被2整除的概率C.抛一枚硬币,连续两次出现正面的概率D.掷一枚正六面体的骰子,出现1点的概率5.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在反比例函数y=(k<0)的图象上,那么y1,y2与y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y1<y3<y26.如图,已知小鱼与大鱼是位似图形,则小鱼的点(a,b)对应大鱼的点()A.(﹣a,﹣2b) B.(﹣2a,﹣b) C.(﹣2b,﹣2a)D.(﹣2a,﹣2b)7.如图,已知四边形ABCD是平行四边形,从下列条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中,再选两个做为补充,使▱ABCD变为正方形.下面四种组合,错误的是()A.①② B.①③ C.②③ D.②④8.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.二、填空题(本题满分18分,共有6道小题,每小题3分)9.cos45°﹣sin30°tan60°=.10.把抛物线y=﹣2x2的图象先向上平移3个单位,再向右平移1个单位,则平移后抛物线的解析式为.11.某企业前年缴税30万元,今年缴税36.3万元.那么该企业缴税的平均增长率为.12.如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A,B,C和D,E,F.若AB=4,BC=3,DE=6,则DF= .13.如图,在▱ABCD中,AM=AD,BD与MC相交于点O,则S△MOD:S△COD= .14.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,则关于x的一元一次方程ax2+bx+c=2(a≠0)的解为.三、作图题(本题满分12分)15.已知某四棱柱的俯视图如图所示,画出它的主视图和左视图.16.(1)解方程:x2﹣2x﹣3=0(2)若关于x的方程2x2﹣5x+c=0没有实数根,求c的取值范围.四.解答题(本题满分66分)17.小明和小亮用如图所示的两个转盘(每个转盘被分成三个面积相等的扇形)做游戏,转动两个转盘各一次,若两次数字之和为奇数,则小明胜;若两次数字之和为偶数,则小亮胜,这个游戏对双方公平吗?说说你的理由.18.我们知道,蓄电池的电压为定值,使用此电源时,用电器的电流I(A)与电阻R(Ω)成反比例.已知电阻R=7.5Ω时,电流I=2A.(1)求确定I与R之间的函数关系式并说明此蓄电池的电压是多少;(2)若以此蓄电池为电源的用电器额定电流不能超过5A,则该电路中电阻的电阻值应满足什么条件?19.小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(计算结果精确到1m)(参考数据:sin15°=,cos15°=,tan15°=)20.如图,隧道的截面由抛物线和长方形构成.长方形的长为12m,宽为5m,抛物线的最高点C离路面AA1的距离为8m,建立如图所示的直角坐标系.(1)求该抛物线的函数表达式,并求出自变量x的取值范围;(2)一大型货运汽车装载大型设备后高为6m,宽为4m.如果该隧道内设双向行车道,那么这辆货车能否安全通过?21.已知:如图,▱ABCD的两条对角线相交于点O,E是BO的中点.过点B作AC的平行线BF,交CE的延长线于点F,连接AF.(1)求证:△FBE≌△COE;(2)将▱ABCD添加一个条件,使四边形AFBO是菱形,并说明理由.22.服装厂生产某品牌的T恤衫,每件成本是10元,根据调查,服装厂以批发单价13元给经销商,经销商愿意经销1000件,并且表示每件降价0.1元,愿意多经销100件,所以服装厂打算即不亏本,又要低于13元的单价批发给经销商.(1)求服装厂获得利润y(元)与批发单价x(元)之间的函数关系式,并写出自变量x的取值范围;(2)服装厂批发单价是多少时可以获得最大利润?最大利润是多少?23.问题提出:如图(1),在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求S正方形MNPQ.问题探究:分别延长QE,MF,NG,PH,交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图(2)).若将上述四个等腰三角形拼成一个新的正方形(无缝隙,不重叠),则新正方形的边长为;这个新正方形与原正方形ABCD的面积有何关系;(填“>”,“=”“或<”);通过上述的分析,可以发现S正方形MNPQ与S△FSB之间的关系是.问题解决:求S正方形MNPQ.拓展应用:如图(3),在等边△ABC各边上分别截取AD=BE=CF=1,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△PQR,求S△PQR.(请仿照上述探究的方法,在图3的基础上,先画出图形,再解决问题).24.如图,在△ABC中,AB=AC=10cm,BC=12cm,点P从点C出发,在线段CB上以每秒1cm 的速度向点B匀速运动.与此同时,点M从点B出发,在线段BA上以每秒lcm的速度向点A匀速运动.过点P作PN⊥BC,交AC点N,连接MP,MN.当点P到达BC中点时,点P与M 同时停止运动.设运动时间为t秒(t>0).(1)当t为何值时,PM⊥AB.(2)设△PMN的面积为y(cm2),求出y与x之间的函致关系式.(3)是否存在某一时刻t,使S△PMN:S△ABC=1:5?若存在,求出t的值;若不存在,说明理由.xx学年山东省青岛市黄岛区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.下面四个几何体中,其主视图为圆形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看球得到的图形是圆,故选:B.2.在△ABC中,∠C=90°,AB=5,BC=3,则sinB的值是()A. B. C. D.【考点】锐角三角函数的定义.【分析】根据勾股定理,可得AC的长,根据正弦函数是对边比斜边,可得答案.【解答】解:由勾股定理,得AC==4,sinB==,故选:D.3.抛物线y=x2﹣2x+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,2)D.(﹣1,2)【考点】二次函数的性质.【分析】把抛物线解析式化为顶点式可求得答案.【解答】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴顶点坐标为(1,2),故选C.4.甲、乙两名同学在一次用频率去估计概率的实验中,统一了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.从一个装有2个白球和1个红球的袋子中任取两球,取到两个白球的概率B.任意写一个正整数,它能被2整除的概率C.抛一枚硬币,连续两次出现正面的概率D.掷一枚正六面体的骰子,出现1点的概率【考点】模拟实验.【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、画树形图得:所以从一个装有2个白球和1个红球的袋子中任取两球,取到两个白球的概率;故此选项正确;B、任意写一个整数,它能2被整除的概率为;故此选项错误;C、列表如下:正反正(正,正)(反,正)反(正,反)(反,反)所以抛一枚硬币,连续两次出现正面的概率,故此选项错误;D、掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;故选:A.5.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在反比例函数y=(k<0)的图象上,那么y1,y2与y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y1<y3<y2【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数中k<0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【解答】解:∵反比例函数y=(k<0)中k<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y随x的增大而增大,∵﹣2<0,﹣1<0,∴点(﹣2,y1),(﹣1,y2)位于第二象限,∴y1>0,y2>0,∵﹣2<﹣1,∴0<y1<y2.∵1>0,∴(1,y3)在第四象限,∴y3<0,∴y3<y1<y2.故选A.6.如图,已知小鱼与大鱼是位似图形,则小鱼的点(a,b)对应大鱼的点()A.(﹣a,﹣2b) B.(﹣2a,﹣b) C.(﹣2b,﹣2a)D.(﹣2a,﹣2b)【考点】位似变换;坐标与图形性质.【分析】直接利用位似图形的性质得出位似比,进而得出答案.【解答】解:由图形可得,小鱼与大鱼的位似比为:1:2,则小鱼的点(a,b)对应大鱼的点为:(﹣a,﹣2b).故选:A.7.如图,已知四边形ABCD是平行四边形,从下列条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中,再选两个做为补充,使▱ABCD变为正方形.下面四种组合,错误的是()A.①② B.①③ C.②③ D.②④【考点】正方形的判定.【分析】根据要判定四边形是正方形,则需能判定它既是菱形又是矩形进而分别分析得出即可.【解答】解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;C、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;故选:C.8.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;反比例函数的图象.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.二、填空题(本题满分18分,共有6道小题,每小题3分)9.cos45°﹣sin30°tan60°=.【考点】实数的运算;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣×=,故答案为:10.把抛物线y=﹣2x2的图象先向上平移3个单位,再向右平移1个单位,则平移后抛物线的解析式为y=﹣2(x﹣1)2+3 .【考点】二次函数图象与几何变换.【分析】根据二次函数的平移原则写出解析式即可,平移原则是:上→加,上→减,左→加,右→减.【解答】解:平移后抛物线的解析式为:y=﹣2(x﹣1)2+3,故答案为:y=﹣2(x﹣1)2+3.11.某企业前年缴税30万元,今年缴税36.3万元.那么该企业缴税的平均增长率为10% .【考点】一元二次方程的应用.【分析】设该企业缴税的年平均增长率为x,根据增长后的缴税额=增长前的缴税额×(1+增长率),即可得到去年的缴税额是30(1+x)万元,今年的缴税额是30(1+x)2万元,据此即可列出方程求解.【解答】解:设该企业缴税的年平均增长率为x,依题意得30(1+x)2=36.3,解得x1=0.1=10%,x2=﹣2.1(舍去).故该企业缴税的平均增长率为10%.故答案为:10%.12.如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A,B,C和D,E,F.若AB=4,BC=3,DE=6,则DF= .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得到比例式,代入计算即可.【解答】解:∵l1∥l2∥l3,∴=,即=,解得,EF=,则DF=DE+EF=,故答案为:13.如图,在▱ABCD中,AM=AD,BD与MC相交于点O,则S△MOD:S△COD= 2:3 .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】首先证明DM:BC=2;3,由DM∥BC,推出DM:BC=OM:OC=2:3,由此即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AM=AD,∴DM:AD=2:3,∴DM:BC=2;3,∴DM:BC=OM:OC=2:3,∴S△MOD:S△COD=2:3,故答案为2:3.14.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,则关于x的一元一次方程ax2+bx+c=2(a≠0)的解为0或2 .【考点】抛物线与x轴的交点.【分析】求出抛物线y=ax2+bx+c与直线y=2的交点坐标即可解决问题.【解答】解:由题意抛物线y=ax2+bx+c与直线y=2的交点坐标为(0,2)或(2,2),∴一元一次方程ax2+bx+c=2(a≠0)的解为0或2,故答案为0或2.三、作图题(本题满分12分)15.已知某四棱柱的俯视图如图所示,画出它的主视图和左视图.【考点】作图-三视图;由三视图判断几何体.【分析】根据四棱柱的俯视图,即可得出主视图与左视图.【解答】解:如图所示,.16.(1)解方程:x2﹣2x﹣3=0(2)若关于x的方程2x2﹣5x+c=0没有实数根,求c的取值范围.【考点】根的判别式;解一元二次方程-因式分解法.【分析】(1)用因式分解法解方程即可.(2)由题意△<0,解不等式即可.【解答】解:(1)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,∴x﹣3=0或x+1=0,∴x1=2,x2=﹣1.(2)∵方程2x2﹣5x+c=0没有实数根,∴△<0,∴25﹣8c<0,∴c>.四.解答题(本题满分66分)17.小明和小亮用如图所示的两个转盘(每个转盘被分成三个面积相等的扇形)做游戏,转动两个转盘各一次,若两次数字之和为奇数,则小明胜;若两次数字之和为偶数,则小亮胜,这个游戏对双方公平吗?说说你的理由.【考点】游戏公平性.【分析】先画树状图展示所有9种等可能的结果数,再找出两次数字之和为奇数的结果数和两次数字之和为偶数的结果数,再利用概率公式计算出小明胜的概率和小亮胜的概率,然后通过比较概率大小判断这个游戏对双方是否公平.【解答】解:这个游戏对双方不公平.理由如下:画树状图为:共有9种等可能的结果数,其中两次数字之和为奇数的结果数5,两次数字之和为偶数的结果数为4,所以小明胜的概率=,小亮胜的概率=,而>,所以这个游戏对双方不公平.18.我们知道,蓄电池的电压为定值,使用此电源时,用电器的电流I(A)与电阻R(Ω)成反比例.已知电阻R=7.5Ω时,电流I=2A.(1)求确定I与R之间的函数关系式并说明此蓄电池的电压是多少;(2)若以此蓄电池为电源的用电器额定电流不能超过5A,则该电路中电阻的电阻值应满足什么条件?【考点】反比例函数的应用.【分析】(1)根据题意设函数表达式,将电阻R=7.5Ω、电流I=2A代入可求得;(2)根据反比例函数性质可知,在第一象限内,I随R的增大而减小可知电阻值R的范围.【解答】解:(1)根据题意,设I=,将R=7.5,I=2代入,得:U=15,故I=,此蓄电池的电压是15V;(2)在I=中,当I=5A时,R=3Ω,∵15>0,∴在第一象限内,I随R的增大而减小,∴如果要求以此蓄电池为电源的用电器额定电流不能超过5A时,则该电路中电阻的电阻值应不低于3Ω.19.小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(计算结果精确到1m)(参考数据:sin15°=,cos15°=,tan15°=)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】作DH⊥AB于H,根据余弦的定义求出BC,根据正弦的定义求出CD,结合题意计算即可.【解答】解:作DH⊥AB于H,∵∠DBC=15°,BD=20,∴BC=BD•cos∠DBC=20×=19.2,CD=BD•sin∠DBC=20×=5,由题意得,四边形ECBF和四边形CDHB是矩形,∴EF=BC=19.2,BH=CD=5,∵∠AEF=45°,∴AF=EF=19.2,∴AB=AF+FH+HB=19.2+1.6+5=25.8≈26m,答:楼房AB的高度约为26m.20.如图,隧道的截面由抛物线和长方形构成.长方形的长为12m,宽为5m,抛物线的最高点C离路面AA1的距离为8m,建立如图所示的直角坐标系.(1)求该抛物线的函数表达式,并求出自变量x的取值范围;(2)一大型货运汽车装载大型设备后高为6m,宽为4m.如果该隧道内设双向行车道,那么这辆货车能否安全通过?【考点】二次函数的应用.【分析】(1)根据函数图象经过顶点(0,8)和点(6,5)可以求得该函数的解析式以及确定自变量x的取值范围;(2)根据题意将x=4代入(1)中求得函数值,然后与6比较,即可解答本题.【解答】解:(1)设抛物线的解析式为y=ax2+8,∵函数经过点(6,5),∴5=a×62+8,得a=,即该抛物线的解析式为y=(﹣6≤x≤6);(2)∵该隧道内设双向行车道,∴该货车只能走一个车道,∴将x=4代入y=,得y=,∵>6,∴这辆货车能安全通过.21.已知:如图,▱ABCD的两条对角线相交于点O,E是BO的中点.过点B作AC的平行线BF,交CE的延长线于点F,连接AF.(1)求证:△FBE≌△COE;(2)将▱ABCD添加一个条件,使四边形AFBO是菱形,并说明理由.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质.【分析】(1)由AAS证得两个三角形全等即可.(2)当平行四边形ABCD的对角线相等,即平行四边形ABCD是矩形时,四边形AFBO是菱形.【解答】(1)证明:如图,取BC的中点G,连接EG.∵E是BO的中点,∴EG是△BFC的中位线,∴EG=BF.同理,EG=OC,∴BF=OC.又∵四边形ABCD是平行四边形,∴AO=CO,∴BF=OC.又∵BF∥AC,∴∠FBE=∠COE.在△FBE△COE中,,∴△FBE≌△COE(AAS);(2)解:当AC=BD时,四边形AFBO是菱形.理由如下:∵AC=BD,∴平行四边形ABCD是矩形,∴OA=OC=OB=OD,∴平行四边形AFBO是菱形.22.服装厂生产某品牌的T恤衫,每件成本是10元,根据调查,服装厂以批发单价13元给经销商,经销商愿意经销1000件,并且表示每件降价0.1元,愿意多经销100件,所以服装厂打算即不亏本,又要低于13元的单价批发给经销商.(1)求服装厂获得利润y(元)与批发单价x(元)之间的函数关系式,并写出自变量x 的取值范围;(2)服装厂批发单价是多少时可以获得最大利润?最大利润是多少?【考点】二次函数的应用.【分析】(1)根据题意表示销量和每件T恤衫的利润进而得出总利润;(2)利用配方法求出二次函数最值求出答案.【解答】解:(1)由题意可得:y=[1000+1000×(13﹣x)](x﹣10)=﹣1000x2+24000x﹣140000(10≤x<13);(2)由(1)得:y=﹣1000x2+24000x﹣140000=﹣1000(x﹣12)2+4000,∵a=﹣1000<0,且对称轴为:x=12,(10≤x<13),∴当x=12时,y取最大值为:4000元,故服装厂批发单价是12元时,可以获得最大利润,最大利润是4000元.23.问题提出:如图(1),在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求S正方形MNPQ.问题探究:分别延长QE,MF,NG,PH,交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图(2)).若将上述四个等腰三角形拼成一个新的正方形(无缝隙,不重叠),则新正方形的边长为a ;这个新正方形与原正方形ABCD的面积有何关系= ;(填“>”,“=”“或<”);通过上述的分析,可以发现S正方形MNPQ与S△FSB之间的关系是S正方形MNPQ=4S△FSB.问题解决:求S正方形MNPQ.拓展应用:如图(3),在等边△ABC各边上分别截取AD=BE=CF=1,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△PQR,求S△PQR.(请仿照上述探究的方法,在图3的基础上,先画出图形,再解决问题).【考点】四边形综合题;等边三角形的性质;等腰直角三角形;正方形的性质.【分析】(1)问题探究:根据AE=BF=CG=DH=1,∠AFO=∠BGM=∠CHN=∠DEP=45°,可得△AER,△BFS,△CGT,△DHW是四个全等的等腰直角三角形,进而得出AD=WE=a;根据所得的四个等腰直角三角形的斜边长为a,可得新正方形与原正方形ABCD的面积相等;根据图形可得4×(S△FSB+S四边形MFBG)=S正方形MNPQ+4×S四边形MFBG,即S正方形MNPQ=4S△FSB;(2)问题解决:根据S△FSB=×1×1=,即可求得S正方形MNPQ=4S△FSB=4×=2;(3)拓展应用:根据图形,△PDH,△QWEI,△RFG是三个全等的三角形,可以拼成一个和△ABC一样的等边三角形(无缝隙,不重叠),进而得出S△PRQ=S△ADG+S△BHE+S△CFI=3S△ADG,再过点G作GJ⊥BA于J,根据GJ=AG=,可得S△ADG,最后根据S△PQR=3S△ADG进行计算即可.【解答】解:(1)问题探究:∵AE=BF=CG=DH=1,∠AFO=∠BGM=∠CHN=∠DEP=45°,∴△AER,△BFS,△CGT,△DHW是四个全等的等腰直角三角形,∴AE=DW,∴AE+DE=DW+DE=a,即AD=WE=a,∵拼成一个新的正方形无缝隙,不重叠,∴这个新正方形的边长为a;∵所得的四个等腰直角三角形的斜边长为a,则斜边上的高为a,每个等腰直角三角形的面积为:a•a=a2,∴拼成的新正方形面积为:4×a2=a2,即新正方形与原正方形ABCD的面积相等;∵新正方形的面积=4×S△MSG=4×(S△FSB+S四边形MFBG),原正方形ABCD的面积=S正方形MNPQ+4×S四边形MFBG,∴4×(S△FSB+S四边形MFBG)=S正方形MNPQ+4×S四边形MFBG,即S正方形MNPQ=4S△FSB;故答案为:a,=,S正方形MNPQ=4S△FSB;(2)问题解决:∵S△FSB=×1×1=,∴S正方形MNPQ=4S△FSB=4×=2;(3)拓展应用:如图所示,△PDH,△QWEI,△RFG是三个全等的三角形,可以拼成一个和△ABC一样的等边三角形(无缝隙,不重叠),∴S△PRQ=S△ADG+S△BHE+S△CFI=3S△ADG,如图,过点G作GJ⊥BA于J,根据∠ADG=∠BDP=30°,∠DAF=60°=∠GAJ可得,∠ADG=∠AGD=30°,∴AD=AG=1,∴GJ=AG=,∴S△ADG=AD×GJ=×1×=,∴S△PQR=3S△ADG=3×=.24.如图,在△ABC中,AB=AC=10cm,BC=12cm,点P从点C出发,在线段CB上以每秒1cm 的速度向点B匀速运动.与此同时,点M从点B出发,在线段BA上以每秒lcm的速度向点A匀速运动.过点P作PN⊥BC,交AC点N,连接MP,MN.当点P到达BC中点时,点P与M 同时停止运动.设运动时间为t秒(t>0).(1)当t为何值时,PM⊥AB.(2)设△PMN的面积为y(cm2),求出y与x之间的函致关系式.(3)是否存在某一时刻t,使S△PMN:S△ABC=1:5?若存在,求出t的值;若不存在,说明理由.【考点】相似形综合题.【分析】(1)根据△BMP∽△BDA得即可列出方程解决.(2)根据△BMP∽△BDA得求出PN,MF,在证明四边形DPEF是矩形得到ME即可.(3)代入(2)即可用方程解决.【解答】解:(1)过点A作AD⊥BC于D,∵AB=AC,∠ADB=90°,∴BD=CD=6,∴=8,∵MP⊥AB,∴∠BMP=∠ADB=90°,∵∠B=∠B,∴△BMP∽△BDA,∴,∴解得t=,∴当t为时,PM⊥AB(2)过点M作ME⊥NP于E,交AD于F.∵BC⊥NP,∴NP∥AD,∴∠ADP=∠C,∵∠C=∠NPC,∴△BMP∽△BDA,∴,∴,∴PN=,同理MF=,∵∠BPN=∠ADP=∠MEP=90°,∴四边形DPEF是矩形,∴EF=DP=6﹣t,∴ME=MF+EF=(10﹣t)+6﹣t=12﹣,∴S△MPN=PN•ME==﹣+8t,(0<t≤6),(3)存在.由题意:﹣+8t=××12×8,解得到t=或6.所以t=秒或6秒时,S△PMN:S△ABC=1:5.。