最新九年级数学上学期期末考试试卷
人教版九年级上学期期末考试数学试卷(解析版)
![人教版九年级上学期期末考试数学试卷(解析版)](https://img.taocdn.com/s3/m/b439dec09a89680203d8ce2f0066f5335a816796.png)
人教版九年级上学期期末数学试卷(含答案)一、选择题(在下列四个选项中,只有-项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共10个小题,每小题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.22.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品3.电影《长津湖》票房突破58亿元,5800000000用科学记数法表示为()A.5.8×108B.5.8×109C.0.58×109D.58×1084.下列运算结果正确的是()A.3a﹣a=2B.a2•a4=a8C.(a+2)(a﹣2)=a2﹣4D.(﹣a)2=﹣a25.在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.6.sin60°=()A.B.C.D.7.某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000B.3000(1+x)2=5000C.3000(1+x%)2=5000D.3000(1+x)+3000(1+x)2=50008.如图,在△ABC中,D、E两点分别在AB、AC边上,DE∥BC.若DE:BC=2:3,则S△ADE:S△ABC为()A.4:9B.9:4C.2:3D.3:29.今年“五一”节,小雨骑自行车从家出发去图书馆学习,她从家到图书馆过程中,中途休息了一段时间,设她从家出发后所用的时间为t(分钟),所走的路程为S(米),S与t之间的函数关系如图所示,下列说法错误的是()A.小雨中途休息用了4分钟B.小雨休息前骑车的速度为每分钟400米C.小雨在上述过程中所走的路程为6600米D.小雨休息前骑车的平均速度大于休息后骑车的平均速度10.如图,有一斜坡AB,坡顶B离地面的高度BC为30cm,斜坡的倾角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75cm B.50cm C.30cm D.45cm二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:2a2﹣8a=.12.在函数y=﹣中,自变量x的取值范围是.13.某市在一次空气污染指数抽查中,收集到6天的数据如下:61,74,70,56,80,91.该组数据的中位数是.14.关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则m的值为.15.扇形的半径为5,圆心角等于120°,则扇形的面积等于.16.如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C 恰好落在AD边上的点P处,则∠EFC=,FP=.三、解答题(本大题共9个题,第17,18,19每题6分,第20,21题每题8分,第22,23题每题9分,第24,25题每题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.18.(6分)计算: 19.(6分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC 沿x 轴翻折得到△AB 1C 1,在图中画出△AB 1C 1.(2)将△ABC 以点A 为位似中心放大2倍.(3)求△ABC 的面积.20.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类社团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称 A .酵素制作社团B .回收材料小制作社团C .垃圾分类社团D .环保义工社团E .绿植养护社团 人数 10 15 5 10 5(1)填空:在统计表中,这5个数的中位数是 ;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.21.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?22.(9分)在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于杉树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.①求w与x之间的函数表达式,并写出x的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?23.(9分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,与CA的延长线交于点E,⊙O的切线DF与AC垂直,垂足为F.(1)求证:AB=AC.(2)若CF=2AF,AE=4,求⊙O的半径.24.(10分)定义:(一)如果两个函数y1,y2,存在x取同一个值,使得y1=y2,那么称y1,y2为“合作函数”,称对应x的值为y1,y2的“合作点”;(二)如果两个函数为y1,y2为“合作函数”,那么y1+y2的最大值称为y1,y2的“共赢值”.(1)判断函数y=x+2m与y=是否为“合作函数”,如果是,请求出m=1时它们的合作点;如果不是,请说明理由;(2)判断函数y=x+2m与y=3x﹣1(|x|≤2)是否为“合作函数”,如果是,请求出合作点;如果不是,请说明理由;(3)已知函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,且有唯一合作点.①求出m的取值范围;②若它们的“共赢值”为24,试求出m的值.25.(10分)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A(3,0),D两点,与y轴交于点B,抛物线的对称轴与x轴交于点C(1,0),点E,P为抛物线的对称轴上的动点.(1)求该抛物线的解析式;(2)当BE+DE最小时,求此时点E的坐标;(3)若点M为对称轴右侧抛物线上一点,且M在x轴上方,N为平面内一动点,是否存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(在下列四个选项中,只有-项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共10个小题,每小题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.2【分析】根据绝对值的定义直接计算即可解答.【解答】解:﹣的绝对值为.故选:C.【点评】本题主要考查绝对值的性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、既是轴对称图形,又是中心对称图形,故本选项符合题意;故选:D.【点评】本题考查了轴对称图形及中心对称图形的知识,轴对称图形的关键是寻找对称轴,图形沿对称轴叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.3.电影《长津湖》票房突破58亿元,5800000000用科学记数法表示为()A.5.8×108B.5.8×109C.0.58×109D.58×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:5800000000=5.8×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.4.下列运算结果正确的是()A.3a﹣a=2B.a2•a4=a8C.(a+2)(a﹣2)=a2﹣4D.(﹣a)2=﹣a2【分析】根据合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则正确计算即可求出正确答案.【解答】解:3a和a属于同类项,所以3a﹣a=2a,故A项不符合题意,根据同底数幂的乘法运算法则可得a2•a4=a6,故B项不符合题意,根据平方差公式(a+2)(a﹣2)=a2﹣4,故C项符合题意,(﹣a)2=a2,故D项不符合题意,故选:C.【点评】本题主要考查合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则,熟练运用运算法则是解题的关键.5.在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.【分析】直接利用概率公式计算可得.【解答】解:在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为=.故选:C.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.6.sin60°=()A.B.C.D.【分析】利用特殊角的三角函数值解答即可.【解答】解:sin60°=.故选:B.【点评】本题考查了特殊角的三角函数值.特指30°、45°、60°角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=.7.某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000B.3000(1+x)2=5000C.3000(1+x%)2=5000D.3000(1+x)+3000(1+x)2=5000【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设教育经费的年平均增长率为x,根据“2012年投入3000万元,预计2014年投入5000万元”,可以分别用x表示2012以后两年的投入,然后根据已知条件可得出方程.【解答】解:设教育经费的年平均增长率为x,则2013的教育经费为:3000×(1+x)万元,2014的教育经费为:3000×(1+x)2万元,那么可得方程:3000×(1+x)2=5000.故选:B.【点评】本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.8.如图,在△ABC中,D、E两点分别在AB、AC边上,DE∥BC.若DE:BC=2:3,则S△ADE:S△ABC为()A.4:9B.9:4C.2:3D.3:2【分析】根据相似三角形的面积比等于对应边长的平方比.【解答】解:∵△ADE∽△ABC,DE:BC=2:3∴S△ADE:S△ABC=4:9故选:A.【点评】熟练掌握三角形的性质.9.今年“五一”节,小雨骑自行车从家出发去图书馆学习,她从家到图书馆过程中,中途休息了一段时间,设她从家出发后所用的时间为t(分钟),所走的路程为S(米),S与t之间的函数关系如图所示,下列说法错误的是()A.小雨中途休息用了4分钟B.小雨休息前骑车的速度为每分钟400米C.小雨在上述过程中所走的路程为6600米D.小雨休息前骑车的平均速度大于休息后骑车的平均速度【分析】根据函数图象可知,小雨6分钟所走的路程为2400米,6~10分钟休息,10~16分钟所走的路程为(4200﹣2400)米,所走的总路程为4200米,根据路程、速度、时间之间的关系进行解答即可.【解答】解:A、小雨中途休息用了10﹣6=4(分钟),正确,不符合题意;B、小雨休息前骑车的速度为每分钟=400(米),正确,不符合题意;C、小雨在上述过程中所走的路程为4200米,错误,符合题意;D、小雨休息后骑车的速度为每分钟=300(米)<400米,∴小雨休息前骑车的平均速度大于休息后骑车的平均速度,正确,不符合题意;故选:C.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.10.如图,有一斜坡AB,坡顶B离地面的高度BC为30cm,斜坡的倾角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75cm B.50cm C.30cm D.45cm【分析】根据正切的定义计算即可.【解答】解:在Rt△ABC中,∠C=90°,BC=30cm,tan A=,则=,解得:AC=75,则斜坡的水平距离AC为75cm,故选:A.【点评】本题考查的是解直角三角形的应用坡度坡角问题,掌握正切的定义是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:2a2﹣8a=2a(a﹣4).【分析】原式提取2a即可得到结果.【解答】解:原式=2a(a﹣4),故答案为:2a(a﹣4)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.在函数y=﹣中,自变量x的取值范围是x≥5.【分析】根据二次根式的性质被开方数大于等于0,列不等式求解.【解答】解:依题意,得x﹣5≥0,解得x≥5.【点评】本题考查的知识点为:二次根式的被开方数是非负数.13.某市在一次空气污染指数抽查中,收集到6天的数据如下:61,74,70,56,80,91.该组数据的中位数是72.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:56,61,70,74,80,91,处在第3和第4位两个数的平均数为中位数,故中位数是(70+74)÷2=72.故答案为:72.【点评】本题考查了中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).14.关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则m的值为1.【分析】根据一元二次方程根的判别式的意义,方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则有Δ=0,得到关于m的方程,解方程即可.【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,∴Δ=0,即22﹣4×1×[﹣(m﹣2)]=0,解得m=1.故答案为:1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.15.扇形的半径为5,圆心角等于120°,则扇形的面积等于π.【分析】根据扇形面积公式S=进行计算即可.【解答】解:S扇形==π.故答案为π.【点评】本题考查了扇形的面积的计算.解答该题的关键是熟记扇形的面积公式.16.如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C 恰好落在AD边上的点P处,则∠EFC=30°,FP=2.【分析】先求出DE=a,CE=2a,再根据翻折变换的性质可得PE=CE,FP=FC,∠EPF=∠C=90°,∠CFE =∠PFE,然后根据直角三角形30°角所对的直角边等于斜边的一半求出∠DPE=30°,从而得到∠DPF,根据两直线平行,同旁内角互补求出∠CFP,再求出∠CFE=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出EF,利用勾股定理列式求出FC,从而得解.【解答】解:∵DC=3DE=3a,∴DE=a,CE=2a,由翻折变换得,PE=CE,FP=FC,∠EPF=∠C=90°,∠CFE=∠PFE,∴在Rt△DPE中,∠DPE=30°,∴∠DPF=∠EPF+∠DPE=90°+30°=120°,∵矩形对边AD∥BC,∴∠CFP=180°﹣∠DPF=180°﹣120°=60°,∴∠CFE=∠CFP=×60°=30°,∴EF=2CE=2×2a=4a,在Rt△CEF中,根据勾股定理得,FP=FC===2a,故答案为:30°,2a.【点评】本题考查了翻折变换的性质,矩形的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并确定出直角三角形中30°的角是解题的关键.三、解答题(本大题共9个题,第17,18,19每题6分,第20,21题每题8分,第22,23题每题9分,第24,25题每题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.【分析】按照实数的运算法则依次展开计算即可得出答案.【解答】解:原式=﹣1+2+4×﹣1=﹣1+2+2﹣1=2.【点评】本题考查实数的混合运算,涉及绝对值、零指数幂、正整数幂,特殊角的三角函数值等知识,熟练掌握其运算法则,细心运算是解题的关键.18.(6分)计算:【分析】根据分式的运算法则即可求出答案.【解答】解:原式=×﹣=﹣==﹣1【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(6分)如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折得到△AB1C1,在图中画出△AB1C1.(2)将△ABC以点A为位似中心放大2倍.(3)求△ABC的面积.【分析】(1)利用轴对称变换的性质分别作出B ,C 的对应点B 1,C 1即可;(2)利用位似变换的性质分别作出B ,C 的对应点E ,F 即可;(3)把三角形的面积看成矩形的面积减去周围的三个三角形面积即可.【解答】解:(1)如图,△AB 1C 1即为所求;(2)如图,△AEF 即为所求;(3)△ABC 的面积=2×3﹣×1×2﹣×1×2﹣×1×3=2.5.【点评】本题考查作图﹣位似变换,轴对称变换等知识,解题的关键是掌握位似变换,轴对称变换的性质,属于中考常考题型.20.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类社团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称 A .酵素制作社团B .回收材料小制作社团C .垃圾分类社团D .环保义工社团E .绿植养护社团 人数 10 15 5 10 5(1)填空:在统计表中,这5个数的中位数是 10 ;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.【分析】(1)根据中位数的定义即可判断;(2)求出没有选择的百分比,高度和E相同,即可画出图形;(3)利用样本估计总体的思想解决问题即可;(4)画出树状图即可解决问题;【解答】解:(1)这5个数从小到大排列:5,5,10,10,15,故中位数为10,故答案为10.(2)没有选择的占1﹣10%﹣30%﹣20%﹣10%﹣20%=10%,条形图的高度和E相同;如图所示:(3)1400×20%=280(名)答:估计全校有多少学生愿意参加环保义工社团有280名;(4)酵素制作社团、绿植养护社团分别用A、B表示:树状图如图所示,共有4种可能,两人同时选择绿植养护社团只有一种情形,∴这两名同学同时选择绿植养护社团的概率=.【点评】此题考查了扇形统计图,条形统计图,列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【分析】(1)在△ABP中,求出∠P AB、∠PBA的度数即可解决问题;(2)作PH⊥AB于H.求出PH的值即可判定;【解答】解:(1)∵∠P AB=30°,∠ABP=120°,∴∠APB=180°﹣∠P AB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BP A=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.22.(9分)在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于杉树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.①求w与x之间的函数表达式,并写出x的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?【分析】(1)设柏树每棵m元,杉树每棵n元,可得:,即可解得柏树每棵100元,杉树每棵80元;(2)①由柏树的棵数不少于杉树的3倍,有x≥3(150﹣x),而w=100x+80(150﹣x)=20x+12000,即知w =20x+12000(x≥112.5且x是整数);②由一次函数性质可得柏树购买113棵,杉树购买37棵,最少费用为14260元.【解答】解:(1)设柏树每棵m元,杉树每棵n元,根据题意得:,解得,∴柏树每棵100元,杉树每棵80元;(2)①∵柏树的棵数不少于杉树的3倍,∴x≥3(150﹣x),解得x≥112.5,根据题意得:w=100x+80(150﹣x)=20x+12000,∴w=20x+12000(x≥112.5且x是整数);②∵20>0,∴w随x的增大而增大,∵x是整数,∴x最小取113,∴当x=113时,w取最小值20×113+12000=14260,此时150﹣x=150﹣113=37,答:要使此次购树费用最少,柏树购买113棵,杉树购买37棵,最少费用为14260元.【点评】本题考查二元一次方程组和一次函数的应用,解题的关键是读懂题意,列出方程组和函数关系式.23.(9分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,与CA的延长线交于点E,⊙O的切线DF与AC垂直,垂足为F.(1)求证:AB=AC.(2)若CF=2AF,AE=4,求⊙O的半径.【分析】(1)连接OD,根据切线的性质得到OD⊥DF,进而得出OD∥AC,根据平行线的性质、等腰三角形的判定和性质定理证明结论;(2)连接BE、AD,根据圆周角定理得到AD⊥BC,BE⊥EC,根据等腰三角形的性质得到BD=DC,进而得到AC=12,得到答案.【解答】(1)证明:如图,连接OD,∵DF是⊙O的切线,∴OD⊥DF,∵DF⊥AC,∴OD∥AC,∴∠ODB=∠ACB,∵OB=OD,∴∠ODB=∠OBD,∴∠OBD=∠ACB,∴AB=AC;(2)解:如图,连接BE、AD,∵AB是⊙O的直径,∴AD⊥BC,BE⊥EC,∵AB=AC,∴BD=DC,∵DF⊥AC,BE⊥EC,∴DF∥BE,∵BD=DC,∴CF=FE,∵CF=2AF,AE=4,∴AC=12,∴AB=AC=12,∴⊙O的半径为6.【点评】本题考查的是切线的性质、圆周角定理、等腰三角形的判定,掌握圆的切线垂直于经过切点的半径是解题的关键.24.(10分)定义:(一)如果两个函数y1,y2,存在x取同一个值,使得y1=y2,那么称y1,y2为“合作函数”,称对应x的值为y1,y2的“合作点”;(二)如果两个函数为y1,y2为“合作函数”,那么y1+y2的最大值称为y1,y2的“共赢值”.(1)判断函数y=x+2m与y=是否为“合作函数”,如果是,请求出m=1时它们的合作点;如果不是,请说明理由;(2)判断函数y=x+2m与y=3x﹣1(|x|≤2)是否为“合作函数”,如果是,请求出合作点;如果不是,请说明理由;(3)已知函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,且有唯一合作点.①求出m的取值范围;②若它们的“共赢值”为24,试求出m的值.【分析】(1)由于y=x+2m与y=都经过第一、第三象限,所以两个函数有公共点,可以判断两个函数是“合作函数”,再联立x+2=,解得x=﹣4或x=2,即可求“合作点”;(2)假设是“合作函数”,可求“合作点”为x=m+,再由|x|≤2,可得当﹣≤m≤时,是“合作函数”;当m>或m<﹣时,不是“合作函数”;(3)①由已知可得:x+2m=x2﹣(2m+1)x+(m2+4m﹣3),解得x=m+3或x=m﹣1,再由已知可得当0≤m+3≤5时,﹣3≤m≤2,当0≤m﹣1≤5时,1≤m≤6,因为只有一个“合作点”则﹣3≤m<1或2<m≤6;②y1+y2=(x﹣m)2+6m﹣3,由①可分两种情况求m的值:当﹣3≤m<1时,x=5时,y1+y2在0≤x≤5的有最大值为m2﹣4m+22=24,当2<m≤6时,x=0时,y1+y2在0≤x≤5的有最大值为m2+6m﹣3=24,分别求出符合条件的m值即可.【解答】解:(1)∵y=x+2m是经过第一、第三象限的直线,y=是经过第一、第三象限的双曲线,∴两函数有公共点,∴存在x取同一个值,使得y1=y2,∴函数y=x+2m与y=是“合作函数”;当m=1时,y=x+2,∴x+2=,解得x=﹣4或x=2,∴“合作点”为x=2或x=﹣4;(2)假设函数y=x+2m与y=3x﹣1是“合作函数”,∴x+2m=3x﹣1,∴x=m+,∵|x|≤2,∴﹣2≤m+≤2,∴﹣≤m≤,∴当﹣≤m≤时,函数y=x+2m与y=3x﹣1(|x|≤2)是“合作函数”;当m>或m<﹣时,函数y=x+2m 与y=3x﹣1(|x|≤2)不是“合作函数”;(3)①∵函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,∴x+2m=x2﹣(2m+1)x+(m2+4m﹣3),∴x2﹣(2m+2)x+(m2+2m﹣3)=0,∴x=m+3或x=m﹣1,∵0≤x≤5时有唯一合作点,当0≤m+3≤5时,﹣3≤m≤2,当0≤m﹣1≤5时,1≤m≤6,∴﹣3≤m<1或2<m≤6时,满足题意;②∵y1+y2=x2﹣(2m+1)x+(m2+4m﹣3)+x+2m=x2﹣2mx+m2+6m﹣3=(x﹣m)2+6m﹣3,∴对称轴为x=m,∵﹣3≤m<1或2<m≤6,当﹣3≤m<1时,x=5时,y1+y2在0≤x≤5的有最大值为m2﹣4m+22,∴m2﹣4m+22=24,∴m=2+或m=2﹣,∴m=2﹣;当2<m≤6时,x=0时,y1+y2在0≤x≤5的有最大值为m2+6m﹣3,∴m2+6m﹣3=24,∴m=3或m=﹣9,∴m=3;综上所述:m=2﹣或m=3.【点评】本题考查二次函数的图象及性质;理解题意,熟练掌握一次函数、二次函数的图象及性质是解题的关键.25.(10分)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A(3,0),D两点,与y轴交于点B,抛物线的对称轴与x轴交于点C(1,0),点E,P为抛物线的对称轴上的动点.(1)求该抛物线的解析式;(2)当BE+DE最小时,求此时点E的坐标;(3)若点M为对称轴右侧抛物线上一点,且M在x轴上方,N为平面内一动点,是否存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)由对称轴﹣=1,可知b=﹣2a,再将A(3,0)代入y=ax2﹣2ax+3,即可求函数的解析式;(2)连接BA交对称轴于点E,连接DE,当A、B、E三点共线时,BE+DE的值最小,又由∠OAB=45°,可求CE=2,则E(1,2);(3)设P(1,t),当AM为正方形的对角线时,PM=P A,过M点作MG⊥PC交于G,证明△PGM≌△ACP(AAS),可求M(1+t,t+2),再将M代入函数解析式即可求M(2,3);当∠P AM=90°时,AM=AP,过A点作AH⊥x 轴,过M点作MH⊥AH交于点H,同理可证△MAH≌△P AC(AAS),求出M(3+t,2),再将M代入函数解析式即可求M(2+,2);当∠PMA=90°时,PM=AM,过点M作TS∥x轴交对称轴于点T,过点A作AS⊥ST交于点S,同理可得△MPT≌△AMS(AAS),求出M(2+t,1+t),再将M代入函数解析式即可求M(,).【解答】解:(1)∵抛物线的对称轴与x轴交于点C(1,0),∴﹣=1,∴b=﹣2a,∴y=ax2﹣2ax+3,将A(3,0)代入y=ax2﹣2ax+3,∴9a﹣6a+3=0,解得a=﹣1,∴y=﹣x2+2x+3;(2)令y=0,则﹣x2+2x+3=0,解得x=﹣1或x=3,∴D(﹣1,0),令x=0,则y=3,∴B(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,连接BA交对称轴于点E,连接DE,∵A、D关于直线x=1对称,∴DE=AE,∴BE+DE=AE+BE≥AB,当A、B、E三点共线时,BE+DE的值最小,∵OA=OB=3,∴∠OAB=45°,∴AC=CE,∵AC=2,∴CE=2,∴E(1,2);(3)存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形,理由如下:设P(1,t),当AM为正方形的对角线时,如图2,PM=P A,过M点作MG⊥PC交于G,∵∠MP A=90°,∴∠GPM+∠CP A=90°,∵∠GPM+∠GMP=90°,∴∠CP A=∠GMP,∵PM=AP,∴△PGM≌△ACP(AAS),∴GM=CP=t,PG=AC=2,∴M(1+t,t+2),∴t+2=﹣(t+1)2+2(t+1)+3,解得t=﹣2或t=1,∵M点在x轴上方,∴t=1,∴M(2,3);当∠P AM=90°时,AM=AP,如图3,过A点作AH⊥x轴,过M点作MH⊥AH交于点H,同理可证△MAH≌△P AC(AAS),∴AH=AC=2,CP=MH=﹣t,∴M(3+t,2),∴2=﹣(t+3)2+2(t+3)+3,解得t=﹣2+或t=﹣2﹣,∴M(2+,2)或(2﹣,2)(舍去);当∠PMA=90°时,PM=AM,如图4,过点M作TS∥x轴交对称轴于点T,过点A作AS⊥ST交于点S,同理可得△MPT≌△AMS(AAS),∴TP=SM,SA=MT,∴M(2+t,1+t),∴1+t=﹣(2+t)2+2(2+t)+3,解得t=﹣3+或t=﹣3﹣(舍去),∴M(,);综上所述:M点坐标为(2,3)或(2+,2)或(,).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,正方形的性质,三角形全等的判定及性质,分类讨论,数形结合是解题的关键.。
九年级数学上册期末考试试卷附答案
![九年级数学上册期末考试试卷附答案](https://img.taocdn.com/s3/m/5b88513cbfd5b9f3f90f76c66137ee06eff94e9f.png)
九年级数学上册期末考试试卷附答案一、选择题(每小题3分,共36分)1.(3分)一元二次方程:x²-6x-6-0| 配方后化为( )A. (x-3)²-15B. (x-3)²-3C. (x+3)²-15D. (x+3)²-32.(3分) 抛物线y=2(x-3)²+4 顶点坐标是( )A.(3,4)B. (-3, 4)C. (3, -4)D. (2, 4)3.(3分) 如图,⊙O的直径AB=8,点C 在⊙O上, ∠ABC=30°,则 AC 的长是( )A. 2B.2√2C,2√3D.44.(3分) 在 Rt△ABC中,∠C -90°, AB -4, AC-1,则cosB 的值为( )A.√154B.14C.√1515D.4√1717 5.(3分) 下列命题为真命题的是( )A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相等6.(3分)如图所示,为测量出一垂直水平地面的某建筑物AB 的高度, 一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了 100米后到达 D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为( )米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: √2≈1.41,√3≈1.73)A. 136B. 137C. 138D. 1397.(3分) 反比例函数 y −图象上三个点的坐标为(x ₁,y ₁).(x ₂,y ₂).(x ₂,y ₃).若 x ₁<0<x ₂<x ₃.则 y ₁,y ₂,y ₂的大小关系是( )A. y ₁<y ₂<y ₂B. y ₂<y ₁<y ₂C. y ₂<y ₂<y ₁D. y ₁<y ₂<y ₂8. (3分) 函数 y=ax²+bx+c 的图象如图所示, 那么关于x 的方程ax²+bx+c -3-0| 的根的情况是( )A.有两个不相等的实数根B. 有两个异号实数根C.有两个相等实数根D.无实数根9.(3分) 过三点A (2,2), B(6,2), C (4,5)的圆的圆心坐标为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形A.y −3xB.y −4xC.y −5xD.y −6x 12.(3分) 如图所示, 抛物线 y=ax²+bx+c|的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间, 以下结论:①b²-4ac-0: ②a+b+c>0: ③2a -b-0: ④c -a-3A.(4,176)B. (4. 3)C.(5,176)D. (5. 3) 10.(3分)在△ABC中,若 cosA =√22,tanB =√3,则这个三角形一定是( )11.(3分)如图,正方形ABCD 的边长为5.点A 的坐标为(-4.0),点B 在y 轴上,若反比例函数y= k x(k ≠0)的图象过点C ,则该反比例函数的表达式为( )其中正确的有( )个.A. 1B. 2C. 3D. 4二、填空题(每小题4分,共24分)13.(4分)若抛物线y=x²-6x+m 与x轴没有交点,则m的取值范围是 .14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为 m.15.(4分)如图,O 是坐标原点,菱形OABC的顶点A 的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=k(x<x0)的图象经过顶点B,则k的值为 .16.(4分) 将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 .17.(4分)如图,点A、B、C是圆 O上的三点,且四边形ABCO 是平行四边形,OF⊥OC 交圆O于点F.则∠BAF= .(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,间该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A (1,4),抛物线与y轴交于点B(0,3),与x轴交于C、 D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式:(2)求C、D两点坐标及△BCD的面积:(3)若点P在x轴上方的抛物线上,满足求点P的坐标。
人教版九年级上册数学期末考试试卷含答案
![人教版九年级上册数学期末考试试卷含答案](https://img.taocdn.com/s3/m/fe96594fa31614791711cc7931b765ce04087a54.png)
人教版九年级上册数学期末考试试题一、单选题1.下列图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .2.下列一元二次方程中没有实数根是()A .2540x x ++=B .2440x x -+=C .2320x x --=D .2230x x ++=3.从2,5,3,6,4这5个数中随机抽取一个,恰好为2的倍数的概率为()A .15B .25C .35D .454.某商品原价为225元,连续两次平均降价的百分率为a ,连续两次降价后售价为144元,下面所列方程正确的是()A .()22251144a +=B .()22251144a -=C .()222512144a -=D .()21441225a +=5.在同一平面直角坐标系内,将函数22y x -=的图象向右平移3个单位,再向下平移2个单位得到图象的顶点坐标是()A .()32-,-B .()32-,C .(3,-2)D .(3,2)6.如图,将△ABC 绕着点C 按顺时针方向旋转25°,B 点落在B′位置,点A 落在A'位置,若AC ⊥A'B',则∠BAC 的度数是()A .55°B .65°C .75°D .85°7.如图,点,,,,A B C D E 都在⊙O 上,,24BC DE BAC =∠=︒,则∠DOE=()A .24°B .42°C .48°D .72°8.一个圆锥的母线长为6,侧面展开图是半圆,则圆锥的侧面积是()A .6πB .12πC .18πD .24π9.在同一直角坐标系中,函数y ax a =+和函数22y ax x =++(a 是常数,且a≠0)的图象可能是()A .B .C .D .10.抛物线2y ax bx c =++的顶点为D(-1,3),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图所示,则以下结论:①240ac b -<;②0a b c ++<;③3c a -=;④方程220ax bx c ++-=有两个不相等的实数根;⑤若点()()1122,,,x y x y 都在该函数图象上,且1230.5x x --<<<,则123y y <<.其中正确结论的个数为()A .2个B .3个C .4个D .5个二、填空题11.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是____12.若一元二次方程220x x -=的两个根分别为12,x x ,则1212x x x x +-的值是____.13.如图,D 、E 分别是ΔABC 的边AB 、AC 上的动点,若3,8,6AE AC AB ===,且ΔADE 与ΔABC 相似,则AD 的长度是_______.14.如图,已知四边形ABCD 内接于⊙O ,E 在AD 的延长线上,∠CDE=82°,则∠ABC的度数是_____.15.已知CD 是⊙O 的一条弦,作直径AB ,使AB CD ⊥,垂足为E ,若1,6AE CD ==,则AB 的长为______.16.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,先向盒中放入5个黑球,摇匀后从中随机摸出1个球记下颜色,再把它放回盒中,不断重复,共摸球500次,其中25次摸到黑球,则估计盒中有__________个白球.17.如图所示,抛物线23y x bx =-++与x 轴交于点A 和点B ,与y 轴交于点C ,且OA=OC ,点M 、N 是直线x=-1上的两个动点,且MN=2(点N 在点M 的上方),则四边形BCNM 的周长的最小值是______.三、解答题18.解方程:(1)2450x x --=(2)()()22320x x x +-+=19.某商品的进价为每件33元,现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.(1)商场要想平均每星期盈利8500元,每件商品的售价应为多少元?(2)商场要想平均每星期获得最大利润,每件商品的售价应为多少元?20.如图所示,AB 是⊙O 直径,OD AC ⊥弦于点F ,且交⊙O 于点E ,若BEC ADO ∠=∠.(1)判断直线AD 和⊙O 的位置关系,并说明理由;(2)当54AB AC ==,时,求AD 的长.21.如图,抛物线()20y ax bx c a =++≠经过点A(2,0),B(-2,4),(-4,0),直线AB 与抛物线的对称轴交于点E .(1)求抛物线的表达式;(2)点M 在直线AB 上方的抛物线上运动,当ΔABM 的面积最大时,求点M 的坐标;(3)若点F 为平面内的一点,且以点,,,B E C F 为顶点的四边形是平行四边形,请写出符合条件的点F 的坐标.22.如图,⊙O 与△ABC 的边BC 相切于点D ,与AB 、AC 的延长线分别相切于点E 、F ,连接OB ,OC .(1)若∠ABC=80°,∠ACB=40°,求∠BOC 的度数.(2)∠BOC 与∠A 有怎样的数量关系,并说明理由.23.如图,正比例函数2y x =的图象与反比例函数k y x=的图象交于点A(m ,2)(1)求反比例函数的解析式和A 点的坐标;(2)点C 在y 轴的正半轴上,点D 在x 轴的正半轴上,直线CD 经过点A ,直线CD 交反比例函数图象于另一点B ,若OD =2OC ,求点B 的坐标.24.如图,在⊙O中,AB为弦,CD为直径,且AB⊥CD,垂足为E,P为 AC上的动点(不与端点重合),连接PD.(1)求证:∠APD=∠BPD;(2)利用尺规在PD上找到点I,使得I到AB、AP的距离相等,连接AD(保留作图痕迹,不写作法).求证:∠AIP+∠DAI=180°;(3)在(2)的条件下,连接IC、IE,若∠APB=60°,试问:在P点的移动过程中,ICIE是否为定值?若是,请求出这个值;若不是,请说明理由.25.已知抛物线G:y1=mx2﹣(3m﹣3)x+2m﹣3,直线h:y2=mx+3﹣2m,其中m≠0.(1)当m=1时,求抛物线G与直线h交点的坐标;(2)求证:抛物线G与直线h必有一个交点A在坐标轴上;(3)在(2)的结论下,解决下列问题:①无论m怎样变化,求抛物线G一定经过的点坐标;②将抛物线G关于原点对称得到的图象记为抛物线'G,试结合图象探究:若在抛物线G与直线h,抛物线'G与直线h均相交,在所有交点的横坐标中,点A横坐标既不是最大值,也不是最小值,求此时抛物线G的对称轴的取值范围.26.如图,已知直线y=﹣2x+m与抛物线相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)若点P是y轴上一点,当∠APB=90°时,求点P的坐标.参考答案1.B2.D3.C4.B5.C6.B7.C8.C9.D10.C11.-112.213.4或9414.82°15.1016.9517.218.(1)15=x ,21x =-.(2)12x =-,21x =.【分析】(1)利用公式法解一元二次方程即可.(2)利用因式分解法解一元二次方程即可.(1)2450x x --=由题意得,a =1,b =﹣4,c =﹣5,∵∆=24b ac -=()()24415--⨯⨯-=36,∴46232x ±===±,∴15=x ,21x =-.(2)()()22320x x x +-+=原方程整理得,()()210x x +-=,∴20x +=或10x -=,∴12x =-,21x =.19.(1)50元或58元(2)54元【分析】(1)设每件商品的售价应为x 元,根据总利润和每件利润与件数的关系列出总利润的代数式,建立方程(x-33)[300+20(60-x)]=8500解答;(2)设每件商品的售价为x 元,商场平均每周的利润为w 元,根据w 和每件利润与件数的关系列出函数表达式,配方成顶点式,得到当每件商品的售价为54元时,商场平均每周的利润最大,其最大值为8820元.(1)解:设每件商品的售价应为x 元,根据题意,得(x-33)[300+20(60-x)]=8500解得150x =,258x =,∴售价应为50元或58元;(2)设每件商品的售价为x 元,商场平均每周的利润为w 元,根据题意,得()333002060w x x =-+⎦-⎡⎤⎣()220216049500x x =-+-()220548820x =--+,当每件商品的售价为54元时,商场平均每周的利润最大,其最大值为8820元.20.(1)相切,理由见解析(2)103【分析】(1)先证明∠FAO+∠AOF=90°,再根据圆周角定理证明∠BAC=∠ADO ,即可推出∠ADO+∠AOF=90°,由此得到∠DAO=90°,即可证明结论;(2)先利用垂径定理和勾股定理求出OE 的长,再证明△AOF ∽DOA ,利用相似三角形的性质求解即可.(1)解:直线AD 和⊙O 相切.理由如下:∵OD ⊥AC 于点F ,∴∠AFO=90°,在Rt △AOF 中,∠FAO+∠AOF=90°,又∵∠BEC=∠ADO ,∠BEC=∠BAC ,∴∠BAC=∠ADO ,∴∠ADO+∠AOF=90°,∴∠DAO=180°-(∠ADO+∠AOF )=180°-90°=90°,∵OA 为圆O 半径,∴直线AD 和⊙O 相切.(2)解:由垂径定理可知,122AF AC ==,又∵OA=12AB=2.5,由勾股定理可知 1.5OF ==,∵直线AD 和⊙O 相切,∴∠DAB=90°=∠AFO ,又∵∠AOD=∠AOF ,∴△AOF ∽△DOA ,∴OF AF OA AD =即15225AD =..,∴AD=103.【点睛】本题主要考查了圆周角定理,切线的判定,相似三角形的性质与判定,垂径定理,勾股定理等等,熟知切线的判定以及相似三角形的性质与判定条件是解题的关键.21.(1)2142y x x =--+(2)(0,4)(3)(-5,1)或(1,7)或(-3,-1)【分析】(1)已知抛物线上的三点用待定系数法求解析式;(2)根据抛物线的解析式,设出点M 的坐标,作一条竖线交AB 于N ,利用公式()12ABM A B S MN x x =-△求△ABM 的面积;(3)求出点E 坐标,利用平行四边形的性质和平移求点F 的坐标,注意分类讨论.(1)解:将点A(2,0),B(-2,4),C(-4,0)分别代入2y ax bx c =++得:4201640424a b c a b c a b c ++=⎧⎪-+=⎨⎪-+=⎩,解得1214a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩.∴抛物线的表达式为y=2142x x --+.(2)如图,作MN ∥y 轴交直线AB 于点N,设点M(m ,2142m m --+).设直线AB 的方程为y kx n =+,将20()2)4(A B -,,,代入解析式得:2024k n k n +=⎧⎨-+=⎩,解得12k n =-⎧⎨=⎩,∴直线AB 的解析式为:2y x =-+,∴2()N m m -+,,()221142222MN m m m m =--+--+=-+,∴()()2211122242222(2)ABM A B S MN x x m m m ∆=-=⨯-++=-+-⨯(<<),∵-1<0,且-2<0<2,∴当m=0时,ΔABM 的面积最大,此时21442m m --+=,所以M 的坐标为(0,4).(3)∵抛物线的对称轴为直线,将1x =-代入2y x =-+得y=3,∴E (-1,3),当BC 为对角线时,构成BECF .∵B(-2,4),E(-1,3),∴点E到点B向左一个单位长度,向上1个单位长度,∴点C到点F也向左一个单位长度,向上1个单位长度,∵C(-4,0),∴F(-5,1).同理,当BE为对角线时,构成BCEF,可得F(1,7);当BF为对角线时,构成BCFE,可得F(-3,-1).综上所述点F得坐标为(-5,1)或(1,7)或(-3,-1).22.(1)60°(2)∠BOC=90°-12∠A,见解析【分析】(1)方法一:先根据平角的定义求出∠EBC和∠DCF的度数,再根据切线长定理得到∠EBO=∠DBO=12∠EBC=50°,∠DCO=∠FCO=12∠DCF=70°,据此理由三角形内角和定理求解即可;方法二:如图,连接OD,OE,OF,则由切线的性质可知,证明Rt△ODB≌Rt△OEB(HL),Rt△ODC≌Rt△OFC(HL),得到∠EOB=∠DOB,∠COD=∠COF,先求出∠A的度数,再利用四边形内角和定理求出∠EOF=120°,则∠BOC=∠BOD+∠COD=12∠EOF=60°.(2)同(1)方法二求解即可.(1)解:方法一:由题意得∠EBC=180°-∠ABC=180°-80°=100°,∠DCF=180°-∠ACB=180°-40°=140°,由切线长定理可知,∠EBO=∠DBO=12∠EBC=50°,∠DCO=∠FCO=12∠DCF=70°,∴在△OBC中,∠BOC=180°-∠OBC-∠BCO=180°-70°-50°=60°;方法二:如图,连接OD,OE,OF,则由切线的性质可知,∠BEO=∠BDO=∠CDO=∠CFO=90°,又∵OD=OE=OF,OB=OB,OC=OC,∴Rt△ODB≌Rt△OEB(HL),Rt△ODC≌Rt△OFC(HL),∴∠EOB=∠DOB,∠COD=∠COF,在△ABC中,∠A=180°-∠ABC-∠ACB=60°,在四边形AEOF 中,∠A+∠EOF=180°,∴∠EOF=120°,∴∠BOC=∠BOD+∠COD=12∠EOF=60°.(2)解:同(1)方法二可得180EOF A =︒-∠∠,∠EOB=∠DOB ,∠COD=∠COF ,∴∠BOC=∠BOD+∠COD=12∠EOF=1902A ︒-∠.【点睛】本题主要考查了切线的性质,切线长定理,三角形内角和定理,四边形内角和定理,全等三角形的性质与判定等等,熟知切线的性质和切线长定理是解题的关键.23.(1)反比例函数解析式为2y x=,点A 的坐标为(1,2),(2)(4,12)【分析】(1)先把点A 的坐标代入正比例函数解析式求出点A 的坐标,然后把点A 的坐标代入反比例函数解析式求出反比例函数解析式即可;(2)设直线CD 的解析式为1=y k x b +,求出点C 的坐标为(0,b )点D 的坐标为10b k ⎛⎫- ⎪⎝⎭,得到1b OC b OD k ==-,,再根据OD=2OC ,求出112k =-,得到直线CD 的解析式为12y x b =-+,然后代入A 点坐标求出直线CD 的解析式即可求出点B 的坐标.(1)解:∵点A (m ,2)在正比例函数y=2x 的图象上,∴2m=2,∴m=1,∴点A 的坐标为(1,2),把点A 的坐标代入反比例函数解析式得2=1k,∴k=2,∴反比例函数解析式为2y x=(2)解:设直线CD 的解析式为1=y k x b +,令0x =,y b =,令0y =,10k x b +=,即1bx k =-,∴点C 的坐标为(0,b )点D 的坐标为10b k ⎛⎫- ⎪⎝⎭,∴1bOC b OD k ==-,,∵OD=2OC ,∴12bb k -=,∴112k =-,∴直线CD 的解析式为12y x b =-+,把点A 的坐标代入直线CD 解析式得1122b -⨯+=,∴52b =,∴直线CD 的解析式为1522y x =-+,联立15222y x y x⎧=-+⎪⎪⎨⎪=⎪⎩,解得412x y =⎧⎪⎨=⎪⎩或12x y =⎧⎨=⎩(舍去),∴点B 的坐标为(4,12).24.(1)见解析(2)见解析(3)2【分析】(1)根据垂径定理和圆周角定理可证明;(2)作∠BAP的平分线交BP于I,证明∠DAI=∠AID,进而命题可证;(3)连接BI,AC,先计算得∠AIB=120°,从而确定I在以D为圆心,AD为半径的圆上运动,根据“射影定理”得AD2=DE•CD,进而证明△DI′E∽△DCI′,从而求得结果.(1)解:证明:∵直径CD⊥弦AB,∴=,AD BD∴∠APD=∠BPD;(2)如图,作∠BAP的平分线,交PD于I,证:∵AI平分∠BAP,∴∠PAI=∠BAI,∴∠AID=∠APD+∠PAI=∠APD+BAI,∵=,AD BD∴∠DAB=∠APD,∴∠DAI=∠DAB+∠BAI=∠APD+∠BAI,∴∠AID=∠DAI,∵∠AIP+∠DAI=180°,∴∠AIP+∠DAI=180°;(3)如图2,连接BI,AC,OA,OB,∵AI平分∠BAP,PD平分∠APB,∴BI平分∠ABP,∠BAI=12∠BAP,∴∠ABI=12∠ABP,∵∠APB=60°,∴∠PAB+∠PBA=120°,∴∠BAI+∠ABI=12(∠BAP+∠ABP)=60°,∴∠AIB=120°,∴点I的运动轨迹是 AB,∴DI=DA,∵∠AOB=2∠APB=120°,∵AD⊥AB,∴AD BD,∴∠AOB=∠BOD=60°,∵OA=OD,∴△AOD是等边三角形,∴AD=AO,∵CD是⊙O的直径,∴∠DAC=90°,∵CD ⊥AB ,∴∠AED=90°,∴∠AED=∠CAD ,∵∠ADC=∠ADE ,∴△ADE ∽△CDA ,∴AD DE CD AD=,∴AD 2=DE•CD ,∵DI′=DI=AD ,∴DI 2=DE•CD ,∵∠I′DE 是公共角,∴△DIE ∽△DCI ,∴2IC CD IE DI==.25.(1)(1,0)-或(2,3)(2)见解析(3)①(2,3);②333022m m -<<【分析】(1)把1m =代入抛物线及直线解析式,并联立即可求解;(2)联立方程组求解即可求证;(3)①由(2)可直接得到;②先求出抛物线G ',再联立抛物线G '和直线h ,求出交点,再进行分类讨论即可.(1)解:当1m =时,抛物线21:1G y x =-,直线2:1h y x =+,令211x x -=+,解得1x =-或2x =,∴抛物线G 与直线h 交点的坐标为(1,0)-或(2,3);(2)证明:令2(33)2332mx m x m mx m --+-=+-,整理得2(43)460mx m x m --+-=,即(2)(23)0x mx m --+=,解得2x =或23m x m -=,当2x =时,3y =;当23m x m-=时,0y =;∴抛物线G 与直线h 的交点分别为(2,3)和23(m m-,0),∴必有一个交点在x 轴上;(3)①证明:由(2)可知,抛物线一定过点(2,3);②解:抛物线21:(33)23(23)(1)G y mx m x m mx m x =--+-=-+-,则抛物线G 与x 轴的交点为(1,0),23(m m-,0), 抛物线G 与抛物线G '关于原点对称,∴抛物线G '过点(1,0)-,23(m m--,0),∴抛物线G '的解析式为:223(1)((33)23m y m x x mx m x m m-'=-++=----+,令2(33)2332mx m x m mx m ----+=+-,整理得2(43)0mx m x +-=,0x ∴=或34m x m-=,即四个交点分别为:(0,32)m -,(2,3),23(m A m -,0),34(m m -,66)m -,2302(0)m m m-∴<<>,不等式无解,这种情况不成立;当340m m -<时,则304m <<,则34232m m m m --<<,解得1m >,不成立;当342m m->时,得102m <<,此时23340m m m m --<<,解得得102m <<,333022m m -∴<<.即抛物线G 对称轴的取值范围为:333022m m -<<.【点睛】本题主要考查二次函数与一次函数交点问题,第(3)关键是求出四个交点,由“点A 的横坐标既不是最大值又不是最小值”,对四个点进行分类讨论.26.(1)y=-x 2+2x+3(2)(0,1)或(0,3)【分析】(1)将点A (1,4)代入y=-2x+m ,确定直线解析式即可求出B 点坐标,再设抛物线解析式为y=a(x-1)2+4,将所求的B点坐标代入即可求a的值;(2)(2)设P(0,t),则可求AB=AB的中点M(2,2),再由直角三角形斜边的中线等于斜边的一半可得4+(t-2)2=5,即可求P点坐标为(0,1)或(0,3).【小题1】解:将点A(1,4)代入y=-2x+m,∴-2+m=4,∴m=6,∴y=-2x+6,令y=0,则x=3,∴B(3,0),设抛物线解析式为y=a(x-1)2+4,将B(3,0)代入y=a(x-1)2+4,∴4a+4=0,∴a=-1,∴y=-x2+2x+3;【小题2】设P(0,t),∵A(1,4),B(3,0),∴AB=AB的中点M(2,2),∵∠APB=90°,∴∴4+(t-2)2=5,∴t=1或t=3,∴P点坐标为(0,1)或(0,3).。
2023-2024学年九年级上学期期末数学考试试卷含答案
![2023-2024学年九年级上学期期末数学考试试卷含答案](https://img.taocdn.com/s3/m/057a6e9232d4b14e852458fb770bf78a64293a62.png)
2023-2024学年九年级上期末数学试卷
一、选择题(每小题3分,共30分)
1.下列方程是一元二次方程的是()
A.2x2+3x=0B.x+y=5C. th tౙ D.ax2+bx+c=0 2.cos60°的值是()
A. B. C. D. 3.对于反比例函数 t,下列说法错误的是()
A.它的图象在第一、三象限B.它的函数值y随x的增大而减小C.点P为图象上的任意一点,过点P作PA⊥x轴于点A.△POA的面积是 D.若点A(﹣1,y1)和点B(h ,y2)在这个函数图象上,则y1<y2
4.关于抛物线:y=﹣3(x+1)2+2,下列说法正确的是()
A.它的开口方向向上B.它的顶点坐标是(1,2)
C.当x<﹣1时,y随x的增大而增大D.对称轴是直线x=1
5.如图,点P是△ABC的边AB上的一点,若添加一个条件,使△ABC与△CBP
相似,则
下列所添加的条件错误的是()
A.∠BPC=∠ACB B.∠A=∠BCP
C.AB:BC=BC:PB D.AC:CP=AB:BC
6.如图,菱形ABCD中,∠ABC=60°,CE⊥AD,且CB=CE,连接BE交对角线AC于F.则∠
AFB的度数是()
A.100°B.105°C.120°D.135°
第1页(共22页)。
北师大版九年级上册数学期末考试试卷含答案解析
![北师大版九年级上册数学期末考试试卷含答案解析](https://img.taocdn.com/s3/m/572ee97653d380eb6294dd88d0d233d4b14e3ff8.png)
北师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.在一个四边形ABCD 中,依次连结各边中点的四边形是菱形,则对角线AC 与BD 需要满足条件()A .垂直B .相等C .垂直且相等D .不再需要条件2.如图,在矩形ABCD 中,AB=3,BC=4,将其折叠,使AB 边落在对角线AC 上,得到折痕AE ,则点E 到点B 的距离为()A .32B .2C .52D .33.下列方程中,是关于x 的一元二次方程的是A .()()12132+=+x x B .02112=-+x x C .02=++c bx ax D .1222-=+x x x 4.已知点()12,A y -、B (-1,y 2)、C (3,y 3)都在反比例函数4y x=的图象上,则y 1、y 2、y 3的大小关系是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 35.学生冬季运动装原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是A .9%B ..5%C .9.5%D .10%6.二次三项式243x x -+配方的结果是()A .2(2)7x -+B .2(2)1x --C .2(2)7x ++D .2(2)1x +-7.函数x ky =的图象经过(1,-1),则函数2-=kx y 的图象是2222-2-2-2-2O OOOy y y y xxxxA .B .C .D.8.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E 、F 分别是AM 、MR 的中点,则EF 的长随着M 点的运动A .变短B .变长C .不变D.无法确定9.如图,点A 在双曲线=6上,且OA =4,过A 作AC ⊥轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为()A .47B .5C .27D .2210.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD=4,DB=2,则的值为.二、填空题11.反比例函数2k y x+=的图象在一、三象限,则k 应满足_________.12.把一个三角形改做成和它相似的三角形,如果面积缩小到原来的12倍,边长应缩小到原来的____倍.13.已知一元二次方程22(1)7340a x ax a a -+++-=有一个根为0,则a 的值为_______.14.已知534a b c ==,则232a b c a b c++=++_______15.如图,已知点A 在反比例函数(0)ky x x=<的图象上,AC y ⊥轴于点C ,点B 在x 轴的负半轴上,若2ABC S = ,则k 的值为_________.16.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,若AD=1,BD=4,则CD=_____.17.若关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,则k 的取值范围是______.三、解答题18.解方程(1);(2).19.(8分)已知,如图,AB 和DE 是直立在地面上的两根立柱.AB=5m ,某一时刻AB 在阳光下的投影BC=3m .B(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.20.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.21.已知甲同学手中藏有三张分别标有数字11,,124的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为,a b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的能使得有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释22.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.23.某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?24.如图,已知A (−4,n ),B (2,−4)是一次函数y =kx +b 的图象和反比例函数my x=的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求不等式kx +b −mx<0的解集(请直接写出答案).25.在平面直角坐标系中,直线l 1:y =x +5与反比例函数y =kx(k ≠0,x >0)图象交于点A(1,n );另一条直线l 2:y =﹣2x +b 与x 轴交于点E ,与y 轴交于点B ,与反比例函数y =k x(k ≠0,x >0)图象交于点C 和点D (12,m ),连接OC 、OD .(1)求反比例函数解析式和点C 的坐标;(2)求△OCD 的面积.26.(12分)如图,在ABC △中,5AB =,3BC =,4AC =,动点E (与点A C ,不重合)在AC 边上,EF AB ∥交BC 于F 点.CE FA B(1)当ECF△的面积与四边形EABF的面积相等时,求CE的长;(2)当ECF△的周长与四边形EABF的周长相等时,求CE的长;(3)试问在AB上是否存在点P,使得EFP△为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.参考答案1.B【解析】试题分析:如图:∵四边形EFGH是菱形,∴EH=FG=EF=HG=12BD=12AC,故AC=BD.故选B.考点:中点四边形.2.A【解析】试题分析:由于AE是折痕,可得到AB=AF,BE=EF,设出未知数,在Rt△EFC中利用勾股定理列出方程,通过解方程即可得到答案.设BE=x,∵AE为折痕,∴AB=AF,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,,∴Rt△EFC中,FC=5-3=2,EC=4-X,∴,解得,故选A.考点:本题考查的是图形折叠的性质及勾股定理点评:熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.3.A【解析】试题分析:A、由原方程得到3x2+4x+1=0,符合一元二次方程的定义,故本选项正确;B、该方程中分母中含有未知数.不属于整式方程,故本选项错误;C、当a=0时.该方程不是一元二次方程.故本选项错误;D、由原方程得到2x+1=0,即未知数的最高次数是1.故本选项错误;故选A.考点:一元二次方程定义4.D【分析】分别把各点坐标代入反比例函数y=4x,求出y1,y2,y3的值,再比较大小即可.【详解】∵点A(-2,y1)、B(-1,y2)、C(3,y3)都在反比例函数y=4x的图象上,∴y1=-2,y2=-4,y3=4 3,∵-4<-2<4 3,∴y2<y1<y3.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.D【解析】试题分析:设平均每次降价的百分数是x,依题意得100(1-x)2=81,解方程得x1=0.1,x2=1.9(舍去)所以平均每次降价的百分数是10%.故选D.考点:一元二次方程的应用6.B【解析】试题分析:在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数-4的一半的平方;可将常数项3拆分为4和-1,然后再按完全平方公式进行计算.解:x2-4x+3=x2-4x+4-1=(x-2)2-1.故选B.考点:配方法的应用.7.A【解析】试题分析:∵函数xky=的图象经过(1,-1),∴k=-1,∴函数2-=kxy的解析式为:y=-x-2,函数y=-x-2的图像过二、四象限过(0,-2),(-2,0)点,故选A考点:1.反比例函数图像2.一次函数8.C【解析】试题分析:∵E,F分别是AM,MR的中点,∴EF=12AR.∵R是定点,∴AR的定长.∴无论M运动到哪个位置EF的长不变.故选C.考点:1.动点问题;2.三角形中位线定理.9.C【解析】试题分析:∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=OC+AC,设OC=a,AC=b,则:ab=6,a2+b2=16,解得a+b=27,即△ABC的周长=OC+AC=27.故选C考点:反比例函数图象上点的坐标特征10.2 3【解析】试题分析::∵DE∥BC,∴△ADE∽△ABC,∴AD:AB=DE:BC,∵AD=4,DB=2,∴AD:AB=DE:BC=2:3.则的值为2 3.考点:相似三角形的判定与性质.11.k>-2【解析】试题分析:反比例函数:当时,图象在第一、三象限;当时,图象在第二、四象限.由题意得,考点:本题主要考查了反比例函数的性质点评:本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.12.2【解析】试题分析::∵改做的三角形与原三角形相似,且面积缩小到原来的倍,∴边长应缩小到原来的2倍.考点:相似三角形的性质13.-4【解析】【分析】将x=0代入原方程可得关于a的方程,解之可求得a的值,结合一元二次方程的定义即可确定出a的值.【详解】把x=0代入一元二次方程(a-1)x2+7ax+a2+3a-4=0,可得a2+3a-4=0,解得a=-4或a=1,∵二次项系数a-1≠0,∴a≠1,∴a=-4,故答案为-4.【点睛】本题考查了一元二次方程的一般式以及一元二次方程的解,熟知一元二次方程二次项系数不为0是解本题的关键.14.15 26【解析】试题分析:设=k ,则a=5k ,b=3k ,c=4k ,25641532153826a b c k k k a b c k k k ++++==++++考点:比例的性质15.-4【分析】连结OA ,由AC ⊥y 轴,可得AC ∥x 轴,可知S △ACB =S △ACO =2,可得=4k ,由反比例函数图像在第二象限(x<0),可知k<0,可求k=-4.【详解】解:连结OA ,∵AC ⊥y 轴,∴AC ∥x 轴,∴S △ACB =S △ACO =2,∴1=22k ,∴=4k ,∵反比例函数图像在第二象限(x<0),∴k<0,∴k=-4.故答案为:-4.【点睛】本题考查反比例函数解析式,掌握反比例函数的性质,关键是反比例函数中k 的几何意义.16.2.【分析】首先证△ACD ∽△CBD ,然后根据相似三角形的对应边成比例求出CD 的长.【详解】解:Rt △ACB 中,∠ACB=90°,CD ⊥AB ;∴∠ACD=∠B=90°﹣∠A ;又∵∠ADC=∠CDB=90°,∴△ACD ∽△CBD ;∴CD 2=AD•BD=4,即CD=2.故答案为:2【点睛】本题考查相似三角形的判定与性质.17.0k >且1k ≠【分析】根据题意,结合一元二次方程的定义和根的判别式可得关于k 的不等式,然后解不等式即可求解.【详解】解:∵关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,∴21024(1)(1)0k k -≠⎧⎨∆=--⨯->⎩,10k k ≠⎧⎨>⎩,∴k 的取值范围是0k >且1k ≠,故答案为:0k >且1k ≠.【点睛】本题考查了一元二次方程的定义、根的判别式、解一元一次不等式,熟练掌握一元二次方程的根的判别式与根的关系是解答的关键.18.(1)1x =2x =.(2)【详解】试题分析:(1)用公式法(2)用分解因式法试题解析:(1)因为(()245248∆=--⨯-⨯=,所以x =即1x =2x =.(2)移项得,分解因式得,解得考点:解一元二次方程19.(1)见解析;(2)DE=10m【解析】试题分析:(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系AB BC DE EF =.计算可得DE试题解析:(1)如图:连接AC ,过点D 作DE//AC ,交直线BC 于点F ,线段EF 即为DE 的投影(2)∵AC//DF ,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC ∽△DEF.53,.6AB BC DE EF DE ∴=∴= ∴DE=10(m )考点:平行投影20.(1)BD=CD .(2)当△ABC 满足:AB=AC 时,四边形AFBD 是矩形.【解析】试题分析:(1)根据两直线平行,内错角相等求出∠AFE=∠DCE ,然后利用“角角边”证明△AEF 和△DEC 全等,根据全等三角形对应边相等可得AF=CD ,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD 是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.试题解析:(1)BD=CD.理由如下:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴▱AFBD是矩形.考点:1.矩形的判定2.全等三角形的判定与性质.21.(1)列表见解析;(2)不公平,理由见解析.【分析】(1)首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果;(2)利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平.【详解】(1)列表如下:a b12312(12,1)(12,2)(12,3)14(14,1)(14,2)(14,3)1(1,1)(1,2)(1,3)(2)要使方程210ax bx ++=有两个不相等的实根,即△=240b a ->,满足条件的有5种可能:1111,2,,2,,3,,3,(1,3)2424⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴甲获胜的概率为()59P =甲,乙获胜的概率为()49P =乙,5499> 即此游戏不公平.22.证明见解析.【分析】(1)一方面Rt △ABC 中,由∠BAC=30°可以得到AB=2BC ,另一方面△ABE 是等边三角形,EF ⊥AB ,由此得到AE=2AF ,并且AB=2AF ,从而可证明△AFE ≌△BCA ,再根据全等三角形的性质即可证明AC=EF .(2)根据(1)知道EF=AC ,而△ACD 是等边三角形,所以EF=AC=AD ,并且AD ⊥AB ,而EF ⊥AB ,由此得到EF ∥AD ,再根据平行四边形的判定定理即可证明四边形ADFE 是平行四边形.【详解】证明:(1)∵Rt △ABC 中,∠BAC=30°,∴AB=2BC .又∵△ABE 是等边三角形,EF ⊥AB ,∴AB=2AF .∴AF=BC .∵在Rt △AFE 和Rt △BCA 中,AF=BC ,AE=BA ,∴△AFE ≌△BCA (HL ).∴AC=EF .(2)∵△ACD 是等边三角形,∴∠DAC=60°,AC=AD .∴∠DAB=∠DAC+∠BAC=90°.∴EF ∥AD .∵AC=EF ,AC=AD ,∴EF=AD .∴四边形ADFE 是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.23.每张贺年卡应降价0.1元.【分析】设每张贺年卡应降价x 元,等量关系为:(原来每张贺年卡盈利-降价的价格)×(原来售出的张数+增加的张数)=120,把相关数值代入求得正数解即可.【详解】设每张贺年卡应降价x 元,根据题意得:(0.3-x )(500+1000.1x )=120,整理,得:21002030x x +-=,解得:120.1,0.3x x ==-(不合题意,舍去),∴0.1x =,答:每张贺年卡应降价0.1元.24.(1)8y x=-,2y x =--;(2)C 点坐标为(2,0)-,6;(3)40x -<<或2x >.【分析】(1)先把B 点坐标代入代入m y x =求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;(2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和AOB 的面积AOC BOC S S ∆∆=+进行计算;(3)观察函数图象得到当4x <-或02x <<时,一次函数图象都在反比例函数图象下方.【详解】解:(1)把(2,4)-B 代入m y x=得2(4)8m =⨯-=-,所以反比例函数解析式为8y x =-,把(4,)A n -代入8y x=-得48n -=-,解得2n =,则A 点坐标为(4,2)-,把(4,2)A -,(2,4)-B 分别代入y kx b =+得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩,所以一次函数的解析式为2y x =--;(2)当0y =时,20x --=,解得2x =-,则C 点坐标为(2,0)-,∴AOC BOCAOB S S S ∆∆∆=+11222422=⨯⨯+⨯⨯6=;(3)由kx +b −m x <0可得kx +b <m x故该不等式的解为40x -<<或2x >.【点睛】本题考查了反比例函数与一次函数综合.(1)中理解函数图象上的点都满足函数关系式是解题关键;(2)中掌握“割补法”求图形面积是解题关键;(3)中掌握数形结合思想是解题关键.25.(1)y =6x ,点C (6,1);(2)1434.【分析】(1)点A (1,n )在直线l 1:y =x +5的图象上,可求点A 的坐标,进而求出反比例函数关系式,点D 在反比例函数的图象上,求出点D 的坐标,从而确定直线l 2:y =﹣2x +b 的关系式,联立求出直线l 2与反比例函数的图象的交点坐标,确定点C 的坐标,(2)求出直线l 2与x 轴、y 轴的交点B 、E 的坐标,利用面积差可求出△OCD 的面积.【详解】解:(1)∵点A (1,n )在直线l 1:y =x +5的图象上,∴n =6,∴点A (1,6)代入y =k x 得,k =6,∴反比例函数y =6x ,当x =12时,y =12,∴点D (12,12)代入直线l 2:y =﹣2x +b 得,b =13,∴直线l 2:y =﹣2x +13,由题意得:6213y x y x ⎧=⎪⎨⎪=-+⎩解得:111212x y ⎧=⎪⎨⎪=⎩,2261x y =⎧⎨=⎩,∴点C (6,1)答:反比例函数解析式y =6x,点C 的坐标为(6,1).(2)直线l 2:y =﹣2x +13,与x 轴的交点E (132,0)与y 轴的交点B (0,13)∴S △OCD =S △BOE ﹣S △BOD ﹣S △OCE11311113143131312222224=⨯⨯-⨯⨯⨯=答:△OCD 的面积为1434.【点睛】本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.26.(1)CE =22;(2)CE 的长为724;(3)在AB 上存在点P ,使△EFP 为等腰直角三角形,此时EF =3760或EF =49120【解析】试题分析:(1)因为EF ∥AB ,所以容易想到用相似三角形的面积比等于相似比的平方解题;(2)根据周长相等,建立等量关系,列方程解答;(3)先画出图形,根据图形猜想P 点可能的位置,再找到相似三角形,依据相似三角形的性质解答.试题解析:(1)∵△ECF 的面积与四边形EABF 的面积相等∴S △ECF :S △ACB =1:2又∵EF ∥AB ∴△ECF ∽△ACB.,21)(2==∆∆CA CE S S ACB ECF 且AC =4∴CE =22;(2)设CE 的长为x∵△ECF ∽△ACB ∴CB CF CA CE =∴CF=x 43.由△ECF 的周长与四边形EABF 的周长相等,得EFx x x EF x +-++-=++)433(5)4(43解得724=x ∴CE 的长为724;(3)△EFP 为等腰直角三角形,有两种情况:①如图1,假设∠PEF =90°,EP =EF图1A B由AB =5,BC =3,AC =4,得∠C =90°∴Rt △ACB 斜边AB 上高CD =512设EP =EF =x ,由△ECF ∽△ACB ,得CD EP CD AB EF -=,即5125125xx -=,解得3760=x ,即EF =3760,当∠EFP´=90°,EF =FP´时,同理可得EF =3760.②如图2,假设∠EPF =90°,PE =PF 时,点P 到EF 的距离为EF 21。
人教版数学九年级上册期末考试数学试卷含答案解析
![人教版数学九年级上册期末考试数学试卷含答案解析](https://img.taocdn.com/s3/m/3345bf2af56527d3240c844769eae009591ba258.png)
人教版数学九年级上册期末考试试卷一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣12.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0B.x<﹣1或0<x<1C.x≤1或0<x≤1D.﹣1<x<0或x≥17.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为cm.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.参考答案与试题解析一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣1【考点】反比例函数的性质.【分析】如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()【解答】解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.2.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.【考点】概率公式;轴对称图形.【分析】由圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;直接利用概率公式求解即可求得答案.【解答】解:∵圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;∴一次过关的概率是:.故选D.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π【考点】扇形面积的计算.【分析】计算阴影部分圆心角的度数,运用扇形面积公式求解.【解答】解:根据扇形面积公式,阴影部分面积==27π.故选B.【点评】考查了扇形面积公式的运用,扇形的旋转.4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π【考点】圆锥的计算.【专题】压轴题.【分析】圆锥的侧面积为半径为10的半圆的面积.【解答】解:圆锥的侧面积=半圆的面积=π×102÷2=50π,故选C.【点评】解决本题的关键是把圆锥的侧面积转换为规则图形的面积.5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】首先根据mn>0确定反比例函数的图象的位置,然后根据m、n异号确定答案即可.【解答】解:∵mn>0,∴m、n异号,且反比例函数y=的图象位于第一、三象限,∴排除C、D;∵当m>0时则n<0,∴排除A,∵m<0时则n>0,∴B正确,故选B.【点评】本题考查了反比例函数的性质及一次函数的性质,解题的关键是了解两种函数的性质.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0B.x<﹣1或0<x<1C.x≤1或0<x≤1D.﹣1<x<0或x≥1【考点】反比例函数与一次函数的交点问题.【分析】求出≥nx,求出B的坐标,根据A、B的坐标结合图象得出即可.【解答】解:∵﹣nx≥0,∴≥nx,∵反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,∴B点的坐标是(1,3),∴﹣nx≥0的解集是x<﹣1或0<x>1,故选B.【点评】本题考查了一次函数与反比例函数的交点问题,函数的图象的应用,主要考查学生的理解能力和观察图象的能力.7.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm【考点】正多边形和圆.【专题】压轴题.【分析】已知小正方形的面积即可求得边长,在直角△ACE中,利用勾股定理即可求解.【解答】解:如图,圆心为A,设大正方形的边长为2x,圆的半径为R,∵正方形有两个顶点在半圆上,另外两个顶点在圆心两侧,∴AE=BC=x,CE=2x;∵小正方形的面积为16cm2,∴小正方形的边长EF=DF=4,由勾股定理得,R2=AE2+CE2=AF2+DF2,即x2+4x2=(x+4)2+42,解得,x=4,∴R=cm.故选C.【点评】本题利用了勾股定理,正方形的性质求解.8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)【考点】规律型:点的坐标.【专题】压轴题;规律型.【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P1秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2015÷4=503 (3)∴A2015的坐标是(2015,﹣1),故选:B.【点评】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于﹣3.【考点】反比例函数图象上点的坐标特征.【分析】直接把点(﹣1,2)代入双曲线y=,求出k的值即可.【解答】解:∵双曲线y=经过点(﹣1,2),∴2=,解得k=﹣3.故答案为:﹣3.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为10πcm2.【考点】圆锥的计算.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.【点评】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.【考点】概率公式.【分析】设袋中有蓝球m个,根据蓝球概率公式列出关于m的方程,求出m的值即可.【解答】解:设袋中有蓝球m个,则袋中共有球(6+5+m)个,若任意摸出一个绿球的概率是,有=,解得m=9,任意摸出一个蓝球的概率是=0.45.故答案为:0.45【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为3cm.【考点】圆周角定理;垂径定理;解直角三角形.【分析】根据∠CDB=30°,求出∠COB的度数,再利用三角函数求出CE的长.根据垂径定理即可求出CD的长.【解答】解:∵∠CDB=30°,∴∠COB=30°×2=60°.又∵⊙O的半径为cm,∴CE=sin60°=×=,∴CD=×2=3(cm).【点评】此题考查了垂径定理和圆周角定理,利用特殊角的三角函数很容易解答.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是x3<x2<x1.【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】把三个点的坐标代入解析式,分别计算出x1、x2、x3的值,然后比较大小即可.【解答】解:把点P(x1,﹣2)、Q(x2,3)、H(x3,1)代入得x1=,x2=﹣,x3=﹣(a2+1),所以x3<x2<x1.故答案为x3<x2<x1.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为30°或150°.【考点】圆周角定理;等边三角形的判定与性质.【专题】分类讨论.【分析】首先根据题意画出图形,然后在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,易得△AOB是等边三角形,再利用圆周角定理,即可求得答案.【解答】解:如图,首先在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,∵OA=OB=6cm,AB=6cm,∴OA=AB=OB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=30°,∴∠D=180°﹣∠C=150°,∴所对的圆周角的度数为:30°或150°.【点评】此题考查了圆周角定理以及等边三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为+.【考点】扇形面积的计算.【专题】压轴题.【分析】连接OE、AE,根据点C为OC的中点可得∠CEO=30°,继而可得△AEO为等边三角形,求出扇形AOE的面积,最后用扇形AOB的面积减去扇形COD的面积,再减去S空白AEC 即可求出阴影部分的面积.【解答】解:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故答案为:+.【点评】本题考查了扇形的面积计算,解答本题的关键是掌握扇形的面积公式:S=.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)在y=2x+2中令y=0,求得B的坐标,然后求得A的坐标,利用待定系数法求得反比例函数的解析式;(2)根据平行线的性质即可直接求得D的坐标,然后代入反比例函数的解析式判断即可.【解答】解:(1)在y=2x+2中令y=0,则x=﹣1,∴B的坐标是(﹣1,0),∵A在直线y=2x+2上,∴A的坐标是(1,4).∵A(1,4)在反比例函数y=图象上∴k=4.∴反比例函数的解析式为:y=;(2)∵四边形ABCD是平行四边形,∴D的坐标是(2,2),∴D(2,2)在反比例函数y=的图象上.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式,用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【专题】图表型.【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线上y=上的情况数,然后根据概率公式列式计算即可得解.【解答】解:(1)根据题意画出树状图如下:;(2)当x=﹣1时,y==﹣2,当x=1时,y==2,当x=2时,y==1,一共有9种等可能的情况,点(x,y)落在双曲线上y=上的有2种情况,所以,P=.【点评】本题考查了列表法与树状图法,反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)【考点】列表法与树状图法.【专题】计算题.【分析】(1)三个选手机会均等,得到邓紫棋获第一名的概率;(2)假设张杰为第一名,列表得出所有等可能的情况数,找出两人中一个人猜中另一个人却没猜中的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:邓紫棋获第一名的概率为;(2)假设张杰为第一名,列表如下:张韩邓张(张,张)(韩,张)(邓,张)韩(张,韩)(韩,韩)(邓,韩)邓(张,邓)(韩,邓)(邓,邓)所有等可能的情况有9种,两人中一个人猜中另一个人却没猜中的情况有4种,则P=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).【考点】圆周角定理;角平分线的定义;三角形的面积;含30度角的直角三角形;勾股定理;扇形面积的计算.【分析】(1)根据直径所对的圆周角是直角推知∠ACB=90°,然后在直角三角形ABC中利用边角关系、勾股定理来求直径AB的长度;(2)连接OD.利用(1)中求得AB=4可以推知OA=OD=2;然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得阴影部分的面积=S扇形△AOD ﹣S△AOD.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,…(1分)∵∠B=30°,∴AB=2AC,…(3分)∵AB2=AC2+BC2,∴AB2=AB2+62,…(5分)∴AB=4.…(6分)(2)连接OD.∵AB=4,∴OA=OD=2,…(8分)∵CD平分∠ACB,∠ACB=90°,∴∠ACD=45°,∴∠AOD=2∠ACD=90°,…(9分)=OA•OD=•2•2=6,…(10分)∴S△AOD=•π•OD2=•π•(2)2=3π,…(11分)∴S扇形△AOD﹣S△AOD=3π﹣6.…(12分)∴阴影部分的面积=S扇形△AOD【点评】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.解答(2)题时,采用了“数形结合”的数学思想.20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.【考点】反比例函数与一次函数的交点问题;三角形的面积.【专题】计算题.【分析】(1)先将点A(2,3)代入反比例函数和一次函数y=kx+2,求得m、k的值,=18,即可求得x,y的值.(2)可求得点B的坐标,设P(x,y),由S△PBC【解答】解:(1)把A(2,3)代入,∴m=6.∴.(1分)把A(2,3)代入y=kx+2,∴2k+2=3.∴.∴.(2分)(2)令,解得x=﹣4,即B(﹣4,0).∵AC⊥x轴,∴C(2,0).∴BC=6.(3分)设P(x,y),==18,∵S△PBC∴y1=6或y2=﹣6.分别代入中,得x1=1或x2=﹣1.∴P1(1,6)或P2(﹣1,﹣6).(5分)【点评】本题考查了一次函数和反比例函数的交点问题,利用待定系数法求解析式是解此题的关键.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)【考点】扇形面积的计算;全等三角形的判定与性质;圆周角定理;切线的性质;解直角三角形.【专题】几何综合题.【分析】(1)根据切线的性质定理和平行线的性质定理得到OC⊥BD,根据垂径定理得到BE的长,再根据圆周角定理发现∠BOE=60°,从而根据锐角三角函数求得圆的半径;(2)结合(1)中的有关结论证明△DCE≌△BOE,则它们的面积相等,故阴影部分的面积就是扇形OBC的面积.【解答】解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°∵BD∥AC∴∠BEO=∠ACO=90°,∴DE=EB=BD=(cm)∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=∴OB=5,即⊙O的半径长为5cm.(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°又∵∠CED=∠BEO,BE=ED,∴△CDE≌△OBE∴,答:阴影部分的面积为.【点评】本题主要考查切线的性质定理、平行线的性质定理、垂径定理以及全等三角形的判定方法.能够熟练解直角三角形.22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.【考点】切线的判定.【专题】计算题;证明题.【分析】(1)根据切线的判定方法,只需证CD⊥OC.所以连接OC,证∠OCD=90°.(2)易求半径OC的长.在Rt△OCD中,运用三角函数求CD.【解答】(1)证明:连接OC.∵OB=OC,∠B=30°,∴∠OCB=∠B=30°.∴∠COD=∠B+∠OCB=60°.(1分)∵∠BDC=30°,∴∠BDC+∠COD=90°,DC⊥OC.(2分)∵BC是弦,∴点C在⊙O上,∴DC是⊙O的切线,点C是⊙O的切点.(3分)(2)解:∵AB=2,∴OC=OB==1.(4分)∵在Rt△COD中,∠OCD=90°,∠D=30°,∴DC=OC=.(5分)【点评】本题考查了切线的判定,证明经过圆上一点的直线是圆的切线,常作的辅助线是连接圆心和该点,证明直线和该半径垂直.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)将A(3,2)分别代入y=,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;(2)观察图象,得在第一象限内,当0<x<3时,反比例函数的图象在正比例函数的上方;故反比例函数的值大于正比例函数的值;=S△OAC=×|k|=3,可得S矩形OBDC=12,即OC•OB=12,进而可得m、n的值,(3)由S△OMB故可得BM与DM的大小;比较可得其大小关系;(4)先求出A点坐标,再分OA=OP,OA=AP及OP=AP三种情况进行讨论.【解答】解:(1)∵将A(3,2)分别代入y=,y=ax中,得:2=,3a=2,∴k=6,a=,∴反比例函数的表达式为:y=,正比例函数的表达式为y=x.(2)∵,解得,∴C(3,2)观察图象,得在第一象限内,当0<x<3时,反比例函数的值大于正比例函数的值;(3)BM=DM理由:∵MN ∥x 轴,AC ∥y 轴,∴四边形OCDB 是平行四边形,∵x 轴⊥y 轴,∴▱OCDB 是矩形.∵M 和A 都在双曲线y=上,∴BM ×OB=6,OC ×AC=6,∴S △OMB =S △OAC =×|k|=3,又∵S 四边形OADM =6,∴S 矩形OBDC =S 四边形OADM +S △OMB +S △OAC =3+3+6=12,即OC •OB=12,∵OC=3,∴OB=4,即n=4∴m==,∴MB=,MD=3﹣=,∴MB=MD ;(4)如图,∵S △OAC =OC •AC=3,OC=3,∴AC=2,∴A (3,2),∴OA==,∴当OA=OP 时,P 1(,0);当OA=AP 时,∵AC ⊥x 轴,OC=3,∴OC=CP 2=3,∴P 2(6,0);当OP=AP 时,设P 3(x ,0),∵O (0,0),A (3,2),∴x=,解得x=,∴P 3(,0).综上所述,P 点坐标为P 1(,0),P 2(6,0),P 3(,0).【点评】此题考查的是反比例函数综合题及正比例函数等多个知识点,此题难度稍大,综合性比较强,在解答(3)时要注意进行分类讨论,不要漏解.第21页共21页。
四川省成都市武侯区2024届九年级上学期期末考试数学试卷(含答案)
![四川省成都市武侯区2024届九年级上学期期末考试数学试卷(含答案)](https://img.taocdn.com/s3/m/dc3bce3226d3240c844769eae009581b6bd9bdf7.png)
2023~2024学年度上期期末考试试题九年级数学注意事项:1.全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。
2.考生使用答题卡作答。
3.在作答前,考生务必将自己的姓名、考生号和座位号填写在答题卡规定的地方。
考试结束,监考人员只将答题卡收回。
4.选择题部分请使用2B铅笔填涂;非选择题部分请使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚。
5.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
6.保持答题卡清洁,不得折叠、污染、破损等。
A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分)1.某几何体的三视图如图所示,则这个几何体是()A.圆锥B.正方体C.圆柱D.球2.若方程是关于的一元二次方程,则“□”中可以是()A.B.C.D.3.已知四条线段成比例,则下列结论正确的是()A.B.C.D.4.若表示平行四边形,表示矩形,表示菱形,表示正方形,它们之间的关系用下列图形来表示,正确的是()A.B.C.D.5.若关于的方程有实数根,则的取值范围是()A.B.C.D.6.如图,在平面直角坐标系中,矩形的顶点坐标分别是,.已知矩形与矩形位似,位似中心是原点,且矩形的面积等于矩形的面积的,则点的坐标是()A.B.C.或D.或7.王丽同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,绘出的统计图如图所示,则该试验可能是()A.关于“从装有2张红桃和1张黑桃的扑克牌盒子中,随机摸出一张(这些扑克牌除花色外都相同),这张扑克牌是黑桃”的试验B.关于“50个同学中,有2个同学生日相同”的试验C.关于“抛一枚质地均匀的硬币,正面朝上”的试验D.关于“掷一枚质地均匀的正方体骰子,出现的点数是1”的试验8.已知反比例函数的图象如图所示,关于下列说法:①常数;②的值随值的增大而减小;③若点为轴上一点,点为反比例函数图象上一点,则;④若点在反比例函数的图象上,则点也在该反比例函数的图象上.其中说法正确的是()A.①②③B.③④C.①④D.②③④第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.将方程化成一元二次方程的一般形式为_________.10.一个口袋中装有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有69次摸到红球,则可估计这个口袋中红球的数量是_________.11.如图,小强自制了一个小孔成像的纸筒装置,其中纸筒的长度为,他准备了一支长为的蜡烛,想要得到高度为的像,蜡烛应放在水平距离纸筒点处_________的地方.12.在平面直角坐标系中,一次函数的图象与反比例函数的图象如图所示,则当时,自变量的取值范围是_________.13.如图,先将一张正方形纸向上对折、再向左对折,然后沿着图中的虚线剪开,得到①②两部分,将①展开后得到的平面图形是_________.三、解答题(本大题共5个小题,共48分)14.解方程(本小题满分12分,每题6分)(1);(2).15.(本小题满分8分)如图,在正方形中,延长至点,使得,连接交于点.(1)试探究的形状;(2)求的度数.16.(本小题满分8分)2023年9月21日,“天宫课堂”第四课在中国空间站开讲,“太空教师”景海鹏、朱杨柱、桂海潮为广大青少年带来一场精彩的太空科普课,航天员们演示了“球形火焰”“奇妙乒乓球”“动量守恒”和“又见陀螺”四个实验.本次授课活动分别在北京、内蒙古阿拉善盟、陕西延安、安徽桐城及浙江宁波设置了5个地面课堂。
人教版九年级上册数学期末考试试卷含答案
![人教版九年级上册数学期末考试试卷含答案](https://img.taocdn.com/s3/m/0c75a35130126edb6f1aff00bed5b9f3f90f72b1.png)
人教版九年级上册数学期末考试试题一、单选题1.下列图形,可以看作中心对称图形的是()A .B .C .D .2.已知点P (-3,2)是反比例函数图象上的一点,则该反比例函数的表达式为()A .3y x=B .5y x=-C .6y x=D .6y x=-3.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A .12B .13C .310D .154.抛物线y =(x -2)2+1的顶点坐标是()A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)5.如图,△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于()A .30°B .40°C .50°D .60°6.在平面直角坐标系xOy 中,A 为双曲线6y x=上一点,点B 的坐标为(4,0).若 AOB 的面积为6,则点A 的坐标为()A .(﹣4,32)B .(4,32-)C .(﹣2,3)或(2,﹣3)D .(﹣3,2)或(3,﹣2)7.如图,⊙O 的半径为3,点P 是弦AB 延长线上的一点,连接OP ,若4OP =,30P ∠=︒,则弦AB 的长为().A 5B .23C .25D .28.已知二次函数()20y ax bx c a =++≠的图像如图所示,有下列5个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b >;⑤()()1a b m am b m +>+≠,其中正确的结论有()A .2个B .3个C .4个D .5个9.如图,二次函数y =ax 2+bx+c 与反比例函数y =kx的图象相交于点A(﹣1,y 1)、B(1,y 2)、C(3,y 3)三个点,则不等式ax 2+bx+c >kx的解集是()A .﹣1<x <0或1<x <3B .x <﹣1或1<x <3C .﹣1<x <0或x >3D .﹣1<x <0或0<x <110.如图,直角三角形的直角顶点在坐标原点,∠OAB =30°,若点A 在反比例函数6(0)y x x =>的图象上,则经过点B 的反比例函数ky x=中k 的值是()A .﹣2B .﹣4C .﹣3D .﹣1二、填空题11.若点(),1a 与()2b -,关于原点对称,则b a =_______.12.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.13.正比例函数11y k x =和反比例函数22y k x=交于A 、B 两点.若A 点的坐标为(1,2)则B 点的坐标为_______________.14.如图,弦AB 的长等于⊙O 的半径,那么弦AB 所对的圆周角的度数________.15.如图, ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为⊙O 的直径,CD =6,OA 交BC 于点E ,则AD 的长度是___.16.如图所示,△ABC 是⊙O 的内接三角形,若∠BAC 与∠BOC 互补,则∠BOC 的度数为_____.17.如图所示,在平面直角坐标系中,A (4,0),B (0,2),AC 由AB 绕点A 顺时针旋转90°而得,则AC 所在直线的解析式是_____.三、解答题18.为了提高足球基本功,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次.(1)请用树状图列举出三次传球的所有可能情况;(2)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?19.如图,在平面直角坐标系xOy 中,正比例函数2y x =与反比例函数ky x=的图象交于A ,B 两点,A 点的横坐标为2,AC ⊥x 轴于点C ,连接BC(1)求反比例函数的解析式;(2)若点P 是反比例函数ky x=图象上的一点,且满足△OPC 与△ABC 的面积相等,请直接写出点P 的坐标.20.如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.21.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个,设每个定价增加x元.(1)商店若想获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(2)用含x的代数式表示商店获得的利润W元,并计算商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少元?22.如图,一次函数y=﹣x+4的图象与反比例kyx(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)①在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;②在x轴上找一点M,使|MA﹣MB|的值为最大,直接写出M点的坐标.23.如图,抛物线L:y=12x2﹣54x﹣3与x轴正半轴交于点A,与y轴交于点B.(1)求直线AB的解析式及抛物线顶点坐标;(2)如图1,点P为第四象限抛物线上一动点,过点P作PC⊥x轴,垂足为C,PC交AB于点D ,求PD+35AD 的最大值,并求出此时点P 的坐标;(3)如图2,将抛物线L :y =12x 2﹣54x ﹣3向右平移得到抛物线L′,直线AB 与抛物线L′交于M ,N 两点,若点A 是线段MN 的中点,求抛物线L′的解析式.24.如图,在Rt ABC 中,∠ABC =90°,P 是斜边AC 上一个动点,以BP 为直径作⊙O 交BC 于点D ,与AC 的另一个交点E ,连接DE 、DP .点F 为线段CP 上一点,连接DF ,∠FDP =∠DEP .(1)求证:DF 是⊙O 的切线;(2)当 DP EP =时,求证AB =AP ;(3)当AB =15,BC =20时,是否存在点P ,使得 BDE 是以BD 为腰的等腰三角形,若存在,求出所有符合条件的CP 的长;若不存在,请说明理由.25.解方程:2320x x --=.26.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,//OC BD ,交AD 于点E ,连结BC .(1)求证:AE =ED ;(2)若AB =6,∠CBD =30°,求图中阴影部分的面积.参考答案1.B 2.D 3.A 4.A 5.C 6.C 7.C 8.A 9.A 10.A 11.1212.22()1y x =-+13.(1,2)--14.30°或150°15.16.120°17.y =2x ﹣818.(1)见解析;(2)球回到乙脚下的概率大【详解】(1)根据题意画出树状图如下:由树形图可知三次传球有8种等可能结果;(2)由(1)可知三次传球后,球回到甲脚下的概率=28=14;传到乙脚下的概率=38,所以球回到乙脚下的概率大.【点睛】考点:列表法与树状图法.19.(1)8y x=;(2)(2)()1,8P 或()1,8P --.【分析】(1).首先求出点A 的坐标,然后将点A 的坐标代入反比例函数解析式求出解析式;(2).首先求出△ABC 的面积,然后根据面积相等求出点P 的坐标.【详解】解(1).将x=2代入y=2x 中,得y=4.∴点A 坐标为(2,4)∵点A 在反比例函数y=kx的图象上,∴k=2×4=8∴反比例函数的解析式为y=8x (2).()2,4,A B 关于原点对称,()2,4,B ∴--()()114228,22ABC A B S AC x x ∴=-=⨯⨯+= 设8,,P x x ⎛⎫⎪⎝⎭188,2OPC P S OC y x∴=== 1,x ∴=±经检验:1x =±是原方程的解且符合题意,∴P(1,8)或P(-1,-8)20.(1)证明详见解析;(2)163.【分析】(1)过点D 作DF ⊥BC 于点F ,根据角平分线的性质得到AD=DF .根据切线的判定定理即可得到结论;(2)根据切线的性质得到AB=FB .根据和勾股定理列方程即可得到结论.【详解】(1)证明:过点D 作DF ⊥BC 于点F ,∵∠BAD=90°,BD 平分∠ABC ,∴AD=DF .∵AD 是⊙D 的半径,DF ⊥BC ,∴BC 是⊙D 的切线;(2)解:∵∠BAC=90°.∴AB 与⊙D 相切,∵BC 是⊙D 的切线,∴AB=FB .∵AB=5,BC=13,∴CF=13-5=8,AC=12.在Rt △DFC 中,设DF=DE=r ,则()226412r r +=-,解得:r=103.∴CE=163.【点睛】题目主要考查切线的判定、圆周角定理、角平分线的性质定理,勾股定理解三角形,一元二次方程的应用等,理解题意,综合运用这些知识点是解题关键.21.(1)每个定价为70元,应进货200个;(2)W =﹣10(x ﹣15)2+6250,每个定价为65元时获得最大利润,可获得的最大利润是6250元【分析】(1)总利润=每个的利润×销售量,销售量为(400﹣10x )个,列方程求解,根据题意取舍;(2)利用函数的性质求最值.【详解】解:(1)根据题意得:(50﹣40+x )(400﹣10x )=6000,解得:x 1=10,x 2=20,当x =10时,400﹣10x =400﹣100=300,当x =20时,400﹣10x =400﹣200=200,要使进货量较少,则每个定价为50+20=70元,应进货200个.答:每个定价为70元,应进货200个.(2)根据题意得:W =(50﹣40+x )(400﹣10x )=﹣10x 2+300x+4000=﹣10(x ﹣15)2+6250,当x =15时,y 有最大值为6250.所以每个定价为65元时获得最大利润,可获得的最大利润是6250元.【点睛】一元二次方程和二次函数在实际生活中的应用是本题的考点,根据每个小家电利润×销售的个数=总利润列出方程是解题的关键.22.(1)3y x=,B(3,1);(2)①P(52,0);②M(4,0)【分析】(1)利用待定系数法即可解决问题;(2)作点B 关于x 轴的对称点D ,连接AD ,交x 轴于点P ,此时PA+PB 的值最小;(3)直线y =﹣x+4与x 轴的交点即为M 点,此时|MA ﹣MB|的值为最大,令y =0,求得x 的值,即可求得M 的坐标.【详解】解:(1)把点A (1,a )代入一次函数y =﹣x+4,得a =3,∴A (1,3),把点A (1,3)代入反比例y =kx,得k =3,∴反比例函数的表达式y =3x,联立43y x y x =-+⎧⎪⎨=⎪⎩,解得:13x y =⎧⎨=⎩或31x y =⎧⎨=⎩,故B (3,1).(2)①作点B 关于x 轴的对称点D ,连接AD ,交x 轴于点P ,此时PA+PB 的值最小∴D (3,﹣1)设直线AD 的解析式为y =mx+n ,则331m n m n +=⎧⎨+=-⎩,解得25m n =-⎧⎨=⎩,∴直线AD 的解析式为y =﹣2x+5,令y =0,则x =52,∴P 点坐标为(52,0);②直线y =﹣x+4与x 轴的交点即为M 点,此时|MA ﹣MB|的值为最大,令y =0,则x =4,∴M 点的坐标为(4,0).【点睛】本题考查反比例函数的性质、一次函数的性质等知识,解题的关键是熟练掌握待定系数法解决问题,学会利用轴对称解决最短问题.23.(1)AB 解析式为y=34x-3,抛物线顶点坐标为125)2(413-,;(2)点P 的坐标为125)2(413-,,PD+35AD 的最大值为12132;(3)21133242y x x =-+.【分析】(1)先求出点A ,点B 坐标,利用待定系数法可求解析式,通过配方法可求顶点坐标;(2)CD=ADsin ∠BAO=35AD ,则PD+35AD=PD+DC=PC 为最大,即可求解;(3)设点M (x 1,y 1),点N (x 2,y 2),则x 1+x 2=2(m+34),而点A 是MN 的中点,故x 1+x 2=8,进而求解.【详解】解:(1)∵抛物线L :y =12x 2﹣54x ﹣3与x 轴正半轴交于点A ,与y 轴交于点B ,令0y =,则21530,24x x --=解得:123,4,2x x =-=令0,x =则3,y =-∴点A (4,0),点B (0,-3),设直线AB 解析式为:y=kx-3,∴0=4k-3,∴k=34,∴直线AB 解析式为:y=34x-3①,∵y =12x 2﹣54x ﹣3=2152412132x --)(,∴抛物线顶点坐标为125)2(413-;(2)∵点A (4,0),点B (0,-3),∴OA=4,OB=3,∴5==,则sin ∠BAO=35OBAB =,则CD=ADsin ∠BAO=35AD ,则PD+35AD=PD+DC=PC 为最大,当点P 为抛物线顶点时,PC 最大,故点P 的坐标为125)2(413-,则PD+35AD 的最大值=PC 为最大,最大值为12132;(3)设平移后的抛物线L'解析式为21121()232y x m =--②,联立①②并整理得:223252()0416x m x m -++-=,设点M (x 1,y 1),点N (x 2,y 2),∵直线AB 与抛物线L'交于M ,N 两点,∴x 1,x 2是方程223252(0416x m x m -++-=的两根,∴x 1+x 2=2(3)4m +,∵点A 是MN 的中点,∴x 1+x 2=8,∴32()84m +=,∴m=134,∴平移后的抛物线L'解析式为221131211133()2432242y x x =--=-+.24.(1)见解析(2)见解析(3)存在,252或10【分析】(1)利用圆周角定理证明∠FDP=∠DBP ,∠DBP+∠OPD=90°,再证明OD ⊥DF ,即可证明结论;(2)先证明∠CBP=∠EBP ,易证∠C=∠ABE ,由∠APB=∠CBP+∠C ,∠ABP=∠EBP+∠ABE ,得出∠APB=∠ABP ,即可得出结论;(3)先证明△DCP ∽△BCA ,利用相似三角形的性质得到CP =54CD ,再分当BD =BE ,BD =ED 两种情况讨论,即可求解.(1)证明:连接OD ,∵ DPDP =,∴∠DBP =∠DEP ,∵∠FDP =∠DEP ,∴∠FDP=∠DBP ,∵BP 是⊙O 的直径,∴∠BDP=90°,∴∠DBP+∠OPD=90°,∵OD=OP ,∴∠OPD=∠ODP ,∴∠FDP+∠ODP=90°,∴OD ⊥DF ,∴DF是⊙O的切线;(2)证明:连接BE,如图所示:∵DP EP=,∴∠CBP=∠EBP,∵∠ABE+∠A=90°,∠C+∠A=90°,∴∠C=∠ABE,∵∠APB=∠CBP+∠C,∠ABP=∠EBP+∠ABE,∴∠APB=∠ABP,∴AP=AB;(3)解:由AB=15,BC=20,由勾股定理得:AC25,∵12AB•BC=12AC•BE,即12×15×20=12×25×BE,∴BE=12,∵BP是直径,∴∠PDB=90°,∵∠ABC=90°,∴PD∥AB,∴△DCP∽△BCA,∴CPAC=CDBC,∴CP=AC CDBC⋅=2520CD=54CD,△BDE是等腰三角形,分两种情况:①当BD =BE 时,BD =BE =12,∴CD =BC ﹣BD =20﹣12=8,∴CP =54CD =54×8=10;②当BD =ED 时,可知点D 是Rt △CBE 斜边的中线,∴CD =12BC =10,∴CP =54CD =54×10=252;综上所述,△BDE 是等腰三角形,符合条件的CP 的长为252或10.25.123x =-,21x =【分析】选用因式分解法求解.【详解】(32)(1)0x x +-= ,123x ∴=-,21x =.26.(1)证明见解析;(2)3π.【分析】(1)先根据圆的性质可得OA OB =,再根据三角形的中位线定理即可得证;(2)如图(见解析),先根据垂径定理、圆周角定理可得90,30ADB ABC CBD ∠=︒∠=∠=︒,从而可得60,30ABD BAD ∠=︒∠=︒,再根据直角三角形的性质、三角形的面积公式可得AOD S = 120AOD ∠=︒,最后根据图中阴影部分的面积等于扇形OAD 面积减去AOD △面积即可得.【详解】(1)∵AB 是O 的直径,∴OA OB =,即点O 是AB 的中点,∵//OC BD ,∴OE 是ABD △的中位线,∴点E 是AD 的中点,∴AE ED =;(2)如图,连接OD ,∵AB 是O 的直径,6AB =,90ADB ∴∠=︒,132OA OD AB ===,∵//OC BD ,90AEO ADB ∴∠=∠=︒,即OC AD ⊥,又OC 是O 的半径,AC CD ∴=,30ABC CBD ∴∠=∠=︒,60ABD ABC CBD ∴∠=∠+∠=︒,9030BAD ABD ∠=︒-∠=︒,在Rt ABD △中,13,2BD AB AD ====,OD 是Rt ABD △的斜边AB 上的中线,111222AOD Rt ABD S S BD AD ∴==⨯⋅= ,又60ABD ∠=︒ ,2120AOD ABD ∴∠=∠=︒,则图中阴影部分的面积为212033360AOD OAD S S ππ⨯-== 扇形.。
河南省南阳市邓州市2024届九年级上学期1月期末考试数学试卷(含解析)
![河南省南阳市邓州市2024届九年级上学期1月期末考试数学试卷(含解析)](https://img.taocdn.com/s3/m/0d2b4755df80d4d8d15abe23482fb4daa58d1d82.png)
邓州市2023~2024学年第一学期期末考试九年级数学试卷注意事项:1.本试卷共6页,三个大题,满分120分,答题时间100分钟;2.请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上.1.下列二次根式是最简二次根式的是()A.B.C.D.2.下列计算正确的是()A.B.C.D.3.在一个不透明的盒子里装有m个球,其中红球6个,这些球除颜色外都相同,每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,大量重复试验后发现,摸到红球的频率稳定到0.2附近,那么可以估算出m的值为( )A.16B.20C.24D.304.关于方程的描述,下列说法错误的是()A.它是一元二次方程B.解方程时,方程两边先同时除以C.它有两个不相等的实数根D.用因式分解法解此方程最适宜5.如图,比例规是伽利略发明的一种画图工具,使用它可以把线段按一定的比例伸长或缩短.它是由长度相等的两脚和交叉构成的.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使),然后张开两脚,使A,B两个尖端分别在线段l的两个端点上,若量得的长度,便可知的长度.本题依据的主要数学原理是( )A.三边成比例的两个三角形相似B.两边及其夹角分别对应相等的两个三角形全等C.两边成比例且夹角相等的两个三角形相似D.平行线分线段成比例6.在中,,,,则的度数( )A.B.C.D.无法确定7.下列关于二次函数的说法正确的是( )A.图象是一条开口向下的抛物线B.图象与轴没有交点C.当时,y随x增大而增大D.图象的顶点坐标是8.如图,在长为32米、宽为20米的矩形地面上修筑同样宽的道路,余下部分种植草坪,要使小路的面积为100平方米,设道路的宽为x米,则可列方程为()A.B.C.D.9.如图,小明家的客厅有一张高米的圆桌,直径为1米,在距地面2米的A处有一盏灯,圆桌的影子最外侧两点分别为D、E,依据题意建立如图所示的平面直角坐标系,其中点D的坐标为,则点E 的坐标是( )A.B.C.D.10.如图①,在中,,,动点D从点A出发,沿以的速度匀速运动到点B,过点D作于点E,图②是点D运动时,的面积随时间x(s)变化的关系图象,其中图象最高点的纵坐标是,则的长为( )A.4cm B.C.8cm D.二、填空题(每小题3分,共15分)11.已知,则的值为.12.请在横线上填写一个恰当的整数,使方程有两个不相等的实数根.13.新高考“”选科模式是指除“语文、数学、外语”3门科目以外,学生应在2门首选科目“历史和物理”中选择1科,然后在4门再选科目“思想政治、地理、化学、生物”中选择2科.小刚同学从4门再选科目中随机选择2科,则恰好选中“思想政治和生物”的概率为.14.在平面直角坐标系中,将抛物线向右平移2个单位,再向上平移3个单位,所得平移后的抛物线(如图),点A在平移后的抛物线上运动,过点A作轴于点C,以为对角线作矩形,连接,则对角线的最小值为.15.在菱形中,,点是对角线的中点,点从点出发沿着边按由的路径运动,到达终点停止,当以点、、为顶点的三角形与相似时,则线段的长为.三、解答题(共8小题,满分75分)16.(1)计算:;(2)解方程:.17.如图,为菱形的对角线,点在的延长线上,且.(1)求证:;(2)若点C是的中点,,求菱形的边长.18.如图,在平面直角坐标系中,的顶点都在网格的格点上,按要求解决下列问题.(1)画出关于轴的轴对称图形;(2)以原点为位似中心,在第一象限内出画出,使得与位似,且相似比为.并写出与的面积之比为;(3)在(1)、(2)的条件下,设内一点的坐标为,则内与点的对应点的坐标为.19.某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P点观察所测物体最高点C,当量角器零刻度线上A,B两点均在视线上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式表示β.(2)如图3,为了测量广场上空气球A离地面的高度,该小组利用自制简易测角仪在点B,C分别测得气球A 的仰角为,为,地面上点B,C,D在同一水平直线上,,求气球A离地面的高度.(参考数据:,,)20.某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,在柱子的顶端A处安装一个喷头向外喷水.柱子在水面以上部分的高度为3m.水流在各个方向上沿形状相同的抛物线路径落下,喷出的抛物线形水柱在与池中心的水平距离为1m处达到最大高度为4m,如图所示.(1)建立如图所示的平面直角坐标系,求在第一象限部分的抛物线解析式(不必写出自变量取值范围);(2)张师傅在喷水池维修设备期间,喷水池意外喷水,如果他站在与池中心水平距离为处,通过计算说明身高的张师傅是否被淋湿?(3)如果不计其他因素,为使水不溅落在水池外,那么水池的直径至少为多少时,才能使喷出的水流都落在水池内?21.“直播带货”已经成为信息社会中商家的一种新型促销手段.某主播小红在直播间销售一种进价为每件20元的日用商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)满足一次函数关系(注:在计算利润时,不考虑快递费用等其他因素).(1)设小红每天的销售利润为w元,求w与x之间的函数关系式(要求函数关系式化为一般式,并写出自变量x的取值范围);(2)若小红每天想获得的销售利润w为750元,又要尽可能地减少库存,应将销售单价定为多少元?(3)当销售单价定为多少元时,每天销售该商品获得利润最大,并求出最大销售利润.22.请仔细阅读下面的材料,并完成相应的任务.利用图象法解一元二次方程 数学活动课上,王老师提出这样一个问题:我们曾经利用一次函数的图象解一元一次方程,类比前面的学习经验,我们能否利用二次函数的图象解一元二次方程呢?例如,解方程:. 王老师倡导同学们以小组为单位进行合作探究,同学们经过几分钟热烈的讨论交流,智慧小组率先展示了他们的方法:将方程进一步变形为,如图1,画出二次函数的图象,发现抛物线与x轴的相交于和两点,当或时,此时,所以,即,所以此方程的解为,. 善思小组受智慧小组的启发,展示了他们的方法:画出二次函数的图象和直线.如图2所示,它们相交于和两点,当或时,此时,即,所以此方程的解为,.任务:(1)利用图象法解上述材料中的方程,下列叙述错误的是()A.利用图象法解方程体现了数形结合思想B.画出抛物线和直线,观察图象交点的横坐标,也可得出该方程的根C.画出抛物线和直线,观察图象交点的横坐标,也可得出该方程的根D.画出抛物线和直线,观察图象交点的横坐标,也可得出该方程的根(2)请你利用图象法解方程,把函数图象画在图3的平面直角坐标系中,并写出解方程的分析过程.(3)若方程无实数根,从图形的角度看就是抛物线与直线无交点,此时a的取值范围是;(4)拓展迁移:方程的根的情况是.23.综合与实践:(1)问题发现:如图,在中,,是外角的平分线,则与的位置关系如何,并加以证明.(2)问题解决:如图,在矩形中,,,点是的中点,将沿直线翻折,点落在点处,连结,求和线段的值.(3)拓展迁移:如图,正方形的边长为10,是边上一动点,将正方形沿翻折,点的对应点为,过点作折痕的平行线,分别交正方形的边于点、(点在点上方),若,请直接写出的长为.参考答案与解析1.A解析:解:A、是最简二次根式,本选项符合题意;B、,不是最简二次根式,本选项不符合题意;C、,不是最简二次根式,本选项不符合题意;D、,不是最简二次根式,本选项不符合题意.故选:A.2.C解析:解:A、与不是同类二次根式,不能合并,本选项不符合题意;B、,本选项不符合题意;C、,本选项符合题意;D、,本选项不符合题意;故选:C.3.D解析:∵大量重复试验后发现,摸到红球的频率稳定到0.2附近,∴任意摸出一个球,摸到红球的概率为0.2,∴,解得,经检验:是原方程的解,故选:D.4.B解析:解:、方程整理得为,故方程是一元二次方程,该说法正确,不合题意;、解方程时,方程两边先同时除以,会漏解,故该说法错误,符合题意;、由得:,故方程有两个不相等的实数根,该说法正确,不合题意;、用因式分解法解此方程最适宜,该说法正确,不合题意;故选:.5.C解析:解:∵,∴,∵,∴(两边成比例且夹角相等的两个三角形相似).∴,,∴若量得的长度,便可知的长度.故选:C6.B解析:解:∵,,,∴,∴.故选:B.7.D解析:解:已知二次函数,∴图象的开口向上,故选项错误,不符合题意;图象的顶点坐标为,故选项正确,符合题意;∵图象开口向上,顶点坐标在第三象限,∴图象与轴有交点,故选项错误,不符合题意;∵图象的对称轴为,开口向上,∴当时,先随的增大而减少,再随的增大而增大,故选项错误,不符合题意;故选:.8.C解析:解:根据题意,小路的长为米、宽为米,故所列方程为,即,故选:C.9.A解析:解:如图所示:由题意得:轴,∴∵∴∴∴∵∴∵∴即:故选:A10.B解析:解:根据题意,设,,∵,,∴,,∴,根据图示,当点与点重合时,的值最大,最大值为,∴,解得,,∴,∵,,,∴在中,,∴,故选:.11.####解析:解:,,则,.故答案为:12.0(答案不唯一,小于的整数均可)解析:解:设常数项为c,关于x的方程有两个不相等的实数根,,解得,c为整数,c可取0.故答案为:0(答案不唯一,小于的整数均可).13.解析:解:在4门科目“思想政治、地理、化学、生物”中选择2科的所有等可能结果有:“思想政治和地理、思想政治和化学、思想政治和生物、地理和化学、地理和生物、化学和生物”共6种结果,其中选中思想政治和生物的结果数为1,∴则恰好选中“思想政治和生物”的概率为,故答案为:.14.8解析:∵,∴将抛物线向右平移2个单位,再向上平移3个单位,所得平移后的抛物线,∴抛物线的顶点坐标为,∵四边形为矩形,∴,而轴,∴的长等于点A的纵坐标,当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为8,∴对角线的最小值为8.故答案为:8.15.或解析:解:根据题意,作图如下,连接,∵四边形是菱形,,∴,,∴,∵点是的中点,∴,即,在中,,,则,①如图所示,当点在上时,当时,∴,则,∴;②如图所示,当点在上时,当时,连接,根据菱形的性质,,可得是等边三角形,∴根据上述证明可得,点是的中点,且,∴当时,点关于点对称,∴,∴点为的中点,且,∴,即,∴,∴;综上所述,的长为或,故答案为:或.16.(1);(2)解析:解:(1)原式;(2)解:移项得:配方得:即:直接开平方得∴.17.(1)证明详见解析;(2).解析:(1)本题主要考查了菱形的性质,平行线的性质,等腰三角形的性质,三角形相似的判定和性质,(1)根据四边形是菱形,得出,结合,得出,即可证明结论;(2)根据,得出,代入数据进行计算,即可得出的值.解:∵四边形是菱形,∴,又,∴,∵为菱形的对角线,∴,∴(2)∵C是的中点,∴,∵四边形是菱形,∴,∵.∴∴∴∴,即菱形的边长为18.(1)作图见解析;(2)作图见解析,(3)解析:(1)解:关于轴的轴对称图形,作图如下,∴即为所求图形;(2)解:以原点为位似中心,在第一象限内出画出,使得与位似,且相似比为,作图如下,∴即为所求图形,∵与位似,且相似比为,∴,∵与关于轴对称,∴,∴,故答案为:;(3)解:根据题意,与的相似比为,∵内一点的坐标为在第二象限,∴,,∵在第一象限,∴,故答案为:.19.(1);(2).解析:(1)解:如图所示:由题意知在中,,则,即.故答案为.(2)解:设,∵,∴,∵,∴,在中,,∴,即,解得:,∴.答:气球A离地面的高度是.20.(1);(2);(3)6米.解析:(1)解:由题意可知,抛物线的顶点坐标为,∴设抛物线的解析式为:,将代入得,,解得,∴抛物线的解析式为:;(2)当时,所以,张师傅站在与池中心水平距离为处,能被淋湿.(3)令,得,,解得,(舍),∴,答:水池的直径至少要6米,才能使喷出的水流都落在水池内.21.(1)(2)25;(3)销售单价定为30元时,每天销售该商品获得利润最大,最大销售利润为1000元.解析:(1)由题意得:.当时,,∴,∴;(2)由题意,令,∴,解得:.又∵尽可能地减少库存,∴.答:应将销售单价定为25元;(3),∵,∴当时,w有最大值,最大值为1000,∴当销售单价定为30元时,每天销售该商品获得利润最大,最大销售利润为1000元.22.(1)C;(2)图见解析,分析过程详见解析;(3),;(4)有两个不相等的实数根.解析:解:(1)A选项,图象法是画出函数图象,通过交点的情况研究方程的解的情况,满足数形结合思想,因此A正确;B选项,联立抛物线和直线,可得方程,整理得,符合题目的方程,因此B 正确;C选项,联立抛物线和直线,可得方程,整理得,不符合题目的方程,因此C错误;D选项,联立抛物线和直线,可得方程,整理得,符合题目得方程,因此D正确;故答案为:C;(2)将方程变形为,如图,画出二次函数的图象,发现抛物线与轴交于和两点,则当或时,,所以,即,所以方程的解是,;(3)如图,画出二次函数的图象,通过图象可得若方程无实数根,得抛物线与直线无交点,由图象可知直线与抛物线有一个交点,得若方程无实数根,即直线在直线的下方,此时的范围是;故答案为:,;(4)当时,,当时,,则,即当时,,当,时,,如图,画出和得图象,由图象可得和有两个交点,即有两个不相等的实数根.故答案为:有两个不相等的实数根.23.(1)AD BC,证明详见解析;(2),;(3)4或.解析:解:(1),理由如下:,,是的外角,,是外角的平分线,,;(2)点是的中点,,四边形是矩形,,,将沿直线翻折,点落在点处,,,,,,,,;如图,过点作于点,则,在中,,,;(3)当点在边上时,如图,四边形是边长为10的正方形,,,,四边形为平行四边形,,,,,设,则,,根据折叠的性质可得,,,,,,,,,,解得:,;当点在边上时,如图,延长交于点,四边形是边长为10的正方形,,,,设,则,,,,,,四边形是平行四边形,,,,,,,即,,,,根据折叠的性质可得,,,,,,,,,解得:,(不符合题意,舍去),,故答案为:4或.。
九年级数学(上)期末考试试卷含答案
![九年级数学(上)期末考试试卷含答案](https://img.taocdn.com/s3/m/d8db8230a9114431b90d6c85ec3a87c241288a53.png)
九年级数学(上)期末考试试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣37.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是米.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.14.写出一个图象位于二、四象限的反比例函数的表达式,y=.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:,你的理由是:.三、解答题(本题共30分,每小题5分)17.计算:|.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.28.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”为点(﹣5,﹣6).(1)①点(2,1)的“关联点”为;②如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数的图象上,那么这个点是(填“点A”或“点B”).(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”,那么点M的坐标为;②如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标.(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的取值范围是.29.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠PAB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.【考点】比例的性质.【分析】根据等式的性质:两边都除以同一个不为零的数(或整式),结果不变,可得答案.【解答】解:两边都除以ab,得=,故A正确;B、两边都除以20,得=,故B错误;C、两边都除以4b,得=,故C错误;D、两边都除以5a,得=,故D错误.故选:A.【点评】本题考查了比例的性质,利用两边都除以同一个不为零的数(或整式),结果不变是解题关键.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的余弦为邻边比斜边,可得答案.【解答】解:cosB===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定【考点】点与圆的位置关系.【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.【点评】此题主要考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.【考点】概率公式;条形统计图.【专题】计算题.【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,然后根据概率公式求解.【解答】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,所以小明抽到红色糖果的概率==.故选B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了条形统计图.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象的增减性来比较m与n的大小.【解答】解:∵反比例函数中系数2>0,∴反比例函数的图象位于第一、三象限,且在每一象限内y随x的增大而减小.又∵点A(1,m)与点B(3,n)都位于第一象限,且1<3,∴m>n.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,解答该题时,也可以把点A、B的坐标分别代入函数解析式求得相应的m、n的值,然后比较它们的大小即可.8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】根据得A、B的坐标求出OB、AB的长,根据位似的概念得到比例式,计算求出OD、CD 的长,得到点C的坐标.【解答】解:∵A(6,3)、B(6,0),∴OB=6,AB=3,由题意得,△ODC∽△OBA,相似比为,∴==,∴OD=2,CD=1,∴点C的坐标为(2,1),故选:D.【点评】本题考查的是位似变换的概念和性质以及坐标与图形的性质,掌握位似的两个图形一定是相似形和相似三角形的性质是解题的关键.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】计算题.【分析】连结BC,如图,根据圆周角定理得到∠ACB=90°,则利用勾股定理得到BC=,再利用面积法可得到y=,CD为半径时最大,即y的最大值为2,此时x=2,由于y与x函数关系的图象不是抛物线,也不是一次函数图象,则可判断A、C错误;利用y最大时,x=2可对B、D进行判断.【解答】解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∴BC==,∵CD•AB=AC•BC,∴y=,∵y的最大值为2,此时x=2.故选B.【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用圆周角定理得到∠ACB=90°.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是1:9.【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】解:∵两个相似三角形的相似比是1:3,又∵相似三角形的面积比等于相似比的平方,∴这两个三角形面积的比是1:9.故答案为:1:9.【点评】本题考查了相似三角形的性质,注意:相似三角形的面积比等于相似比的平方.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是12米.【考点】正多边形和圆.【分析】由正六边形的半径为2,则OA=OB=2米;由∠AOB=60°,得出△AOB是等边三角形,则AB=OA=OB=2米,即可得出结果.【解答】解:如图所示:∵正六边形的半径为2米,∴OA=0B=2米,∴正六边形的中心角∠AOB==60°,∴△AOB是等边三角形,∴AB=OA=OB,∴AB=2米,∴正六边形的周长为6×2=12(米);故答案为:12.【点评】本题考查了正六边形的性质、等边三角形的判定与性质;解决正多边形的问题,常常把多边形问题转化为等腰三角形或直角三角形来解决.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.【考点】弧长的计算.【专题】应用题.【分析】首先根据题意,可得,然后根据圆的周长公式,求出直径是2m的圆的周长是多少;最后用直径是2m的圆的周长除以3,求出的长是多少即可.【解答】解:根据题意,可得,∴(m),即的长是m.故答案为:.【点评】此题主要考查了弧长的计算,以及圆的周长的计算方法,要熟练掌握,解答此题的关键是判断出,并求出直径是2m的圆的周长是多少.14.写出一个图象位于二、四象限的反比例函数的表达式,y=答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【考点】垂径定理的应用.【专题】压轴题.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:否,你的理由是:y<﹣2.【考点】反比例函数的性质.【分析】根据反比例函数图象所经过的象限和函数的增加性解答.【解答】解:否,理由如下:∵反比例函数,且x>1,∴反比例函数的图象位于第四象限,∴y<﹣2.故答案是:否;y<﹣2.【点评】本题考查了反比例函数的性质.注意在本题中,当x>0时,y<0.三、解答题(本题共30分,每小题5分)17.计算:|.【考点】实数的运算;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=×﹣+﹣1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定,由已知可证∠A=∠DCB,又因为∠ACB=∠BDC=90°,即证△ABC∽△CBD,(2)根据勾股定理得到AB=5,根据三角形的面积公式得到CD=,然后根据勾股定理即可得到结论.【解答】(1)证明:∵CD⊥AB,∴∠BDC=90°.∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠DCB+∠ACD=90°.∴∠A=∠DCB.又∵∠ACB=∠BDC=90°,∴△ABC∽△CBD;(2)解:∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴CD=,∵CD⊥AB,∴BD===.【点评】本题考查了相似三角形的判定,解直角三角形,熟练掌握相似三角形的判定定理是解题的关键.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.【考点】二次函数的三种形式;二次函数的性质.【分析】(1)运用配方法把一般式化为顶点式;(2)根据二次函数的性质解答即可;(3)根据二次函数的开口方向和对称轴解答即可.【解答】解:(1)y=x2﹣6x+5=(x﹣3)2﹣4;(2)二次函数的图象的对称轴是x=3,顶点坐标是(3,﹣4);(3)∵抛物线的开口向上,对称轴是x=3,∴当x≤3时,y随x的增大而减小.【点评】本题考查的是二次函数的三种形式和二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键,注意二次函数的性质的应用.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.【考点】作图-旋转变换.【专题】作图题.【分析】(1)在BA上截取BC′=BC,延长CB到A′使BA′=BA,然后连结A′C′,则△A′BC′满足条件;(2)先利用勾股定理计算出AB=2,再利用旋转的性质得BA=BA′,∠ABA′=90°,然后根据等腰直角三角形的性质计算AA′的长即可.【解答】解:(1)如图,△A′BC′为所作;(2)∵∠ABC=90°,B C=1,AC=,∴AB==2,∵△ABC沿逆时针方向旋转90°得到△A′BC′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=AB=2.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先把A(﹣1,n)代入y=﹣2x求出n的值,确定A点坐标为(﹣1,2),然后把A(﹣1,2)代入y=可求出k的值,从而可确定反比例函数的解析式;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,则B点坐标为(﹣1,0),C点坐标为(0,2),由于PA=OA,然后利用等腰三角形的性质易确定满足条件的P点坐标.【解答】解:(1)把A(﹣1,n)代入y=﹣2x得n=﹣2×(﹣1)=2,∴A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,∴反比例函数的解析式为y=﹣;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,如图,∵点A的坐标为(﹣1,2),∴B点坐标为(﹣1,0),C点坐标为(0,2)∴当P在x轴上,其坐标为(﹣2,0);当P点在y轴上,其坐标为(0,4);∴点P的坐标为(﹣2,0)或(0,4).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了等腰三角形的性质.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意得出DC=BC,进而利用tan30°=求出答案.【解答】解:由题意可得:AB=46m,∠DBC=45°,则DC=BC,故tan30°===,解得:DC=23(+1).答:永定楼的高度CD为23(+1)m.【点评】此题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.【考点】抛物线与x轴的交点.【专题】证明题.【分析】(1)令y=0,使得二次函数变为一元二次方程,然后求出方程中△的值,即可证明结论;(2)令y=0,使得二次函数变为一元二次方程,然后对方程分解因式,又因此二次函数的图象与x 轴两个交点的横坐标都是整数,从而可以求得符合要求的正整数m的值.【解答】解:(1)证明:∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2(m≠0),△=[﹣(m+2)]2﹣4×m×2=m2+4m+4﹣8m=m2﹣4m+4=(m﹣2)2≥0∴0=mx2﹣(m+2)x+2(m≠0)有两个实数根,即二次函数y=mx2﹣(m+2)x+2(m≠0)的图象与x轴总有交点;(2)∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2=(mx﹣2)(x﹣1),∴,又∵此二次函数的图象与x轴两个交点的横坐标都是整数,∴正整数m的值是:1或2,即正整数m的值是1或2.【点评】本题考查抛物线与x轴的交点,解题的关键是建立二次函数与一元二次方程之间的关系,然后找出所求问题需要的条件.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.【考点】平行四边形的判定与性质.【分析】(1)由平行四边形的定义即可得出四边形AECD为平行四边形;(2)作FM⊥CD于M,由平行四边形的性质得出DF=EF=2,由已知条件得出△DFM是等腰直角三角形,DM=FM=DF=2,由含30°角的直角三角形的性质和勾股定理得出CF=2FM=4,CM=2,得出DC=DM+CM=2+2即可.【解答】(1)证明:∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形;(2)解:作FM⊥CD于M,如图所示:则∠FND=∠FMC=90°,∵四边形AECD为平行四边形,∴D F=EF=2,∵∠FCD=30°,∠FDC=45°,∴△DFM是等腰直角三角形,∴DM=FM=DF=2,CF=2FM=4,∴CM=2,∴DC=DM+CM=2+2.【点评】本题考查了平行四边形的判定与性质、等腰直角三角形的判定与性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的判定与性质,通过作辅助线构造直角三角形是解决问题(2)的关键.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.【考点】抛物线与x轴的交点;二次函数与不等式(组).【分析】(1)由二次函数的图象与x轴有两个交点得出判别式△>0,得出不等式,解不等式即可;(2)二次函数y1=x2+2x+m﹣5的图象经过把点B坐标代入二次函数解析式求出m的值,即可得出结果;点B(1,0);(3)由图象可知:当y2<y1时,比较两个函数图象的位置,即可得出结果.【解答】解:(1)∵二次函数y1=x2+2x+m﹣5的图象与x轴有两个交点,∴△>0,∴22﹣4(m﹣5)>0,解得:m<6;(2)∵二次函数y1=x2+2x+m﹣5的图象经过点(1,0),∴1+2+m﹣5=0,解得:m=2,∴它的表达式是y1=x2+2x﹣3,∵当x=0时,y=﹣3,∴C(0,﹣3);(3)由图象可知:当y2<y1时,x的取值范围是x<﹣3或x>0.【点评】本题考查了二次函数图象上点的坐标特征、抛物线与x轴的交点;由题意求出二次函数的解析式是解决问题的关键.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.【考点】切线的判定.【分析】(1)要证AD是⊙O的切线,连接OA,只证∠DAO=90°即可.(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的直径.【解答】(1)证明:连接OA;∵BC为⊙O的直径,BA平分∠CBF,AD⊥BF,∴∠ADB=∠BAC=90°,∠DBA=∠CBA;∵∠OAC=∠OCA,∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,∴DA为⊙O的切线.(2)解:∵BD=1,tan∠BAD=,∴AD=2,∴AB==,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC===5.∴⊙O的直径为5.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了三角函数的知识.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)把A点和B点坐标代入得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)利用配方法得到y=(x﹣1)2+,则抛物线的对称轴为直线x=1,利用点C与点A关于直线x=1对称得到C点坐标为(2,2);然后利用二次函数图象上点的坐标特征求D点坐标;(3)画出抛物线,如图,先利用待定系数法求出直线BC的解析式为y=x+1,再利用平移的性质得到图象G向下平移1个单位时,点A在直线BC上;图象G向下平移3个单位时,点D在直线BC上,由于图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,所以1<t≤3.【解答】解:(1)把A(0,2)和B(1,)代入得,解得,所以抛物线解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴抛物线的对称轴为直线x=1,∵点C与点A关于此抛物线的对称轴对称,∴C点坐标为(2,2);当x=4时,y=x2﹣x+2=8﹣4+2=6,∴D点坐标为(4,6);(3)如图,。
2024年北京石景山初三九年级上学期期末数学试题和答案
![2024年北京石景山初三九年级上学期期末数学试题和答案](https://img.taocdn.com/s3/m/6530d276cec789eb172ded630b1c59eef8c79adc.png)
石景山区2023-2024学年第一学期初三期末试卷数 学第一部分 选择题一、选择题(共16分,每题2分)第1- 8题均有四个选项,符合题意的选项只有一个. 1.若34(0)x y y ,则xy的值是(A)34 (B)43(C)74(D)732.如图,在Rt ACB △中,90C °,3AC BC ,则sin A 为(A) 13 (B)4 (C)10(D) 103.如图,四边形ABCD 内接于⊙O ,AB 是直径,D 是 AC的 中点.若40B °,则A 的大小为 (A) 50° (B) 60° (C) 70°(D) 80°4.将抛物线23y x 向左平移1个单位长度,平移后抛物线 的解析式为 (A) 23(1)y x(B) 23(1)y x(C) 231y x(D) 231y x5.若抛物线229y xmx 与x 轴只有一个交点,则m 的值为(A) 3(B) 3(C)(D) 3AB C6.如图1,“矩”在古代指两条边成直角的曲尺,它的两边长分别为a ,b .中国古老的天文和数学著作《周髀算经》中简明扼要地阐述了“矩”的功能:“平距以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方”.其中“偃矩以望高”的意思就是把“矩”仰立放可测物体的高度.如图2,从“矩”AFE 的一端A 望向树顶端的点C ,使视线通过“矩”的另一端E ,测得8m BD , 1.6m AB . 若“矩”的边30cm EF a ,边60cm AF b ,则树高CD 为 (A) 4m (B) 5.3m (C) 5.6m (D) 16m7.在平面直角坐标系xOy 中,若点1(4)y ,,2(6)y ,在抛物线2(3)1(0)y a x a 上,则下列结论正确的是 (A) 121y y(B) 211y y(C) 211y y(D) 121y y8.如图,在ABC △中,CD AB 于点D ,给出下面三个条件: ①A BCD ; ②A BCD ADC ; ③AD CD CD BD. 添加上述条件中的一个,即可证明ABC △是直角三角形的条件序号是 (A) ①②(B) ①③(C) ②③(D) ①②③第二部分 非选择题二、填空题(共16分,每题2分)9.如图,在矩形ABCD 中,E 是边AD 的中点,连接BE 交 对角线AC 于点F .若6AC ,则AF 的长为 . 10.在平面直角坐标系xOy 中,若点1(3)y ,,2(7)y ,在反比例函数(0)ky k x的图象上,则1y 2y (填“>”“=”或“<”). DABCE F DCBA第6题 图1 第6题 图2DCH11.如图,正六边形ABCDEF 内接于⊙O ,12AB ,则 AB 的长为 .12.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,60P °,6PA ,则⊙O 的半径为 .13.如图,线段AB ,CD 分别表示甲、乙建筑物的高,两座建筑物间的距离BD 为30m .若在点A 处测得点D 的俯角 为30°,点C 的仰角 为45°,则乙建筑物的高CD 约为 m (结果精确到0.1m1.4141.732 ).14.如图,点A ,B 在⊙O 上,140AOB °.若C 为⊙O 上任一点(不与点A ,B 重合),则ACB 的大小为 .15.如图,E 是正方形ABCD 内一点,满足90AEB °,连接CE .若2AB ,则CE 长的最小值为 .16.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a的顶点为(1)P k ,,且经过点(30)A ,,其部分图象如图 所示,下面四个结论中, ①0a ; ②2b a ;③若点(2)M m ,在此抛物线上,则0m ; ④若点()N t n ,在此抛物线上且n c ,则0t . 所有正确结论的序号是 .A BCDENBDM第11题 第12题 第13题三、解答题(共68分,第17-21题,每题5分,第22题6分,第23题5分,第24-26题,每题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程. 17.计算:20248sin 60(1)tan 45 °°.18.如图,在四边形ABCD 中,AC 平分BAD ,90ACD B °.(1)求证:ACD △∽ABC △; (2)若3AB ,4AD ,求AC 的长.19.已知二次函数223y x x .(1)将223y x x 化成2()(0)y a x h k a 的形式,并写出其图象的顶点坐标;(2)求此函数图象与x 轴交点的坐标;(3)在平面直角坐标系xOy 中,画出此函数的图象.20.如图,AB 是⊙O 的直径,弦CD AB 于点E ,6CD ,1BE .求⊙O 的半径.21.已知二次函数2y x bx c 的图象过点(10)A ,和(03)B ,. (1)求这个二次函数的解析式;(2)当14x 时,结合图象,直接写出函数值y 的取值范围.DABC22.如图,在四边形ABCD 中,AD ∥BC ,90B °,3cos 5C,10CD . 求AB 的长.23.已知某蓄电池的电压为定值,使用此电源时,用电器的电流I (单位:A )与电阻R (单位: )成反比例函数关系,即(0)kI k R ,其图象如图所示.(1)求k 的值;(2)若用电器的电阻R 为6 ,则电流I为 A ;(3)如果以此蓄电池为电源的用电器的电流I 不得超过10A ,那么用电器的电阻R应控制的范围是 .24.如图,在ABC △中,AB AC ,以AB 为直径的O 交BC 于点D ,交AC 于点E ,点F 在AC 的延长线上,12CBF BAC . (1)求证:BF 是O 的切线; (2)若5AB ,1tan 2CBF ,求CE 的长.I /AB CD25.投掷实心球是北京市初中学业水平考试体育现场考试的选考项目之一.实心球被投掷后的运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系, 实心球从出手(点A 处)到落地的过程中,其竖直高度y (单位:m )与水平距离x (单位:m )近似满足二次函数关系.小石进行了三次训练,每次实心球的出手点A 的竖直高度为2m .记实心球运动路线的最高点为P ,训练成绩(实心球落地点的水平距离)为d (单位:m ).训练情况如下:根据以上信息,(1)求第二次训练时满足的函数关系式; (2)小石第二次训练的成绩2d 为 m ; (3)直接写出训练成绩1d ,2d ,3d 的大小关系.2OA26.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a 经过点(33)A a c ,. (1)求该抛物线的对称轴;(2)点1(12)M a y ,,2(2)N a y ,在抛物线上.若12c y y ,求a 的取值范围.27.如图,在Rt ACB △中,90ACB °,60BAC °.D 是边BA 上一点(不与点B重合且12BD BA),将线段CD 绕点C 逆时针旋转60°得到线段CE ,连接DE ,AE . (1)求CAE 的度数;(2)F 是DE 的中点,连接AF 并延长,交CD 的延长线于点G ,依题意补全图形.若G ACE ,用等式表示线段FG ,AF ,AE 之间的数量关系,并证明.DABCE28.在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和点C 给出如下定义:若点C 在弦AB 的垂直平分线上,且点C 关于直线AB 的对称点在⊙O 上,则称点C 是弦AB 的“关联点”. (1)如图,点1(22A ,,1(22B ,. 在点1(00)C ,,2(10)C ,,3(11)C ,,4(20)C ,中,弦AB 的“关联点”是 ;(2)若点1(0)2C ,是弦AB 的“关联点”,直接写出AB 的长; (3)已知点(02)M ,,(0)15N ,.对于线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”.记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.石景山区2023-2024学年第一学期初三期末数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
2023-2024学年九年级上学期期末考试数学试卷及答案解析
![2023-2024学年九年级上学期期末考试数学试卷及答案解析](https://img.taocdn.com/s3/m/901e06b67d1cfad6195f312b3169a4517623e566.png)
2023-2024学年九年级上期末数学试卷
一、填空题。
(本大题共6小题,每小题3分,共18分)
1.已知2是一元二次方程x2﹣3kx+2=0的根,则k的值是.
2.不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.
3.反比例函数 剜 剜媵 的图象在第二、四象限内,那么m的取值范围是.4.在平面直角坐标系中,把点P(3,﹣2)绕原点O顺时针旋转90°,所得到的对应点Q 的坐标为.
5.已知圆锥的底面半径为3,侧面积为15π,则这个圆锥的高为.
6.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,
给出下列命题:
①abc<0;②b>2a;③a+b+c=0
④ax2+bx+c=0的两根分别为﹣3和1;
.
⑤8a+c>0.其中正确的命题是
二、选择题。
(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.下列图形中不是中心对称图形的是()
A .
B .
C .
D .
8.下列说法正确的是()
A.必然事件发生的概率为1B.随机事件发生的概率为0.5
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次
9.五个大小相同的正方体搭成的几何体如图所示,其左视图是()
第1页(共27页)。
江苏省泰州市海陵区2024届九年级上学期期末考试数学试卷(含解析)
![江苏省泰州市海陵区2024届九年级上学期期末考试数学试卷(含解析)](https://img.taocdn.com/s3/m/124560cadc88d0d233d4b14e852458fb760b385d.png)
海陵区2023~2024学年度第一学期期末学业质量监测试卷九年级数学(考试时间:120分钟,满分150分)请注意:1.本试卷分为选择题和非选择题两部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.3.作图必须用2B铅笔,并请加黑加粗.第一部分选择题(共18分)一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.方程的解是()A.B.C.,D.,2.已知的半径为3,点到圆心的距离为4,则点在()A.的内部B.的外部C.上D.的内部或上3.一组数据:1、2、2、5,若添加一个数据2,则下列统计量中发生变化的是()A.平均数B.中位数C.众数D.极差4.抛物线与轴的交点个数为()A.0个B.1个C.2个D.3个5.在中,,,,则的面积等于()A.12B.30C.37.5D.246.如图,在中,,Ⅰ是的内心,连接并延长至点,使.则的度数是()A.B.C.D.第二部分非选择题(共132分)二、填空题(本大题共有10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上)7.根据气象局统计,年全年泰州地区最高气温,最低气温,则年全年泰州地区气温的极差为.8.若,则锐角9.已知扇形的圆心角为,半径为,则该扇形的面积为.(结果保留)10.黄金分割能让人产生视觉上的美感.某本书的宽与长的比为黄金比(长宽),若该书长为,则宽为cm.(结果精确到)11.江豚素有“水中大熊猫”之称,为了解洞庭湖现有江豚数量,考察队先从湖中捕捞10头江豚并做上标记,然后放归湖内.经过一段时间与群体充分混合后,再从中多次捕捞,并算得平均每32头江豚中有2头有标记,则估计洞庭湖现有江豚数量约为头.12.若关于的一元二次方程有两个不相等的实数根,则的取值范围是.13.如图,已知抛物线与轴交于两点,且与轴交于点,若抛物线上存在点,使得的面积为1,则点的坐标是.14.如图,点是的重心,连接并延长交于点,易得,过点作,分别交于点,则与面积的比值为.15.和均为等腰直角三角形,按如图所示的方式放置,的顶点与斜边的中点重合,边与边相交于点,若,,,则的面积为.16.如图,在矩形中,,,在平面内有一动点,,作,且,连接,为线段上一点,且,连接,则最小值为.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(1)解方程:;(2)计算:.18.为庆祝“改革开放45周年”,某校九(1)、九(2)两个班联合开展了一次关于改革开放以来国家伟大成就的知识竞赛.并从两个班分别随机抽取了10名学生的竞赛成绩进行了整理、描述和分析.抽取的10名学生成绩的部分数据如下:九(1)班抽取的10名学生成绩从低到高排序后,中间6人成绩为:75,78,81,85,85,85,(其他4人成绩均不相同);九(2)班抽取的10名学生的成绩,其中5人成绩为:73,81,83,85,88;另外5人成绩的方差为46.九(1)、九(2)班分别抽取的10名学生竞赛成绩统计表班级平均数(分)中位数(分)众数(分)方差(分)九(1)8251.8九(2)828485(1)填空:______,______,______;(2)根据以上随机抽取的数据,你认为本次知识竞赛中,哪个班级学生对改革开放以来国家伟大成就的了解情况更好?请说明理由.19.“泰州太美,顺风顺水”是泰州的文旅宣传标语.小明、小亮准备采用抽签的方式,各自随机选取泰州的3个景点(A:溱湖湿地公园,B:望海楼,C:老街)中1个景点游玩,3支签分别标有A、B、C.(1)小明恰好选取A景点的概率为______;(2)若规定其中一人抽完签后,放回,下一个人再抽,请用列表或树状图的方法,求小明、小亮选取同一景点的概率.20.某校九年级数学兴趣小组开展“测量建筑物高度”的数学活动,他们设计了一种采用无人机测量教学楼高度的方案:如图,将无人机悬停在距离水平地面28米高的点处,无人机测得楼顶处的俯角为,同时测得地面标记点的俯角为,点在同一平面内,且标记点与教学楼的距离为35米,求教学楼的高度.(结果精确到米,参考数据:,)21.已知:如图,在四边形中,,对角线与相交于点,过点作,交于点.求证:(1);(2).22.如图,二次函数的图象与轴交于点,且经过点.(1)求此二次函数的表达式,并求出顶点坐标;(2)若将该二次函数图象先向右平移个单位、再向下平移个单位,平移后的抛物线仍然经过点,求的值.23.某商场销售一种成本为20元/件的商品,根据市场调查发现:一年内该商品在不同月份的销售单价(元/件)关于月份的函数关系为时,对应各月的销量(件)关于月份的函数关系为.(,且为整数)(1)2月份该商品销售单价为______元/件,销量为______件;(2)该商场几月份销售该产品恰好盈利7200元?(3)请直接写出该商场哪些月份销售该产品当月盈利超过6400元.24.如图,中,,是的外接圆,的平分线交于点.图1图2图3(1)在图1中,仅使用无刻度的直尺作的外角的平分线,与的交点为;(不写作法,保留作图痕迹)(2)如图2,的外角的平分线交于点,过点作的切线交于点,若,的半径为3,求线段的长;(3)如图3,的外角的平分线交于点,在图3中仅使用无刻度的直尺作的平分线.(不写作法,保留作图痕迹)25.在平面直角坐标系中,点是抛物线上的一个动点,点是轴上的一点,作直线交轴正半轴于点.过点的直线交轴于点,交轴于点.作轴于点.(1)当时,求点的坐标;(2)当时,请结合图像,直接写出的取值范围;(3)求证:平分.26.已知:中弦相交于点,连接,作直径,点与点不重合.初步探索(1)如图1,当时,解决下列问题:①与是否相等?请说明理由;②若,,,求的长;进一步思考(2)如图2,若是的2倍,求证:点在线段的垂直平分线上;拓展应用(3)如图3,若,上存在一个点,满足是的倍(说明:所对圆周角也是所对圆周角的倍),并且,求的值.参考答案与解析1.C【详解】解:,,.故选C.2.B【详解】解:∵的半径为3,点到圆心的距离为4,∴点到圆心的距离大于半径,∴点在的外部,故选:B.3.A【详解】解:∵1、2、2、5,若添加一个数据2,∵1、2、2、5平均数为:,1、2、2、5,2平均数为:,∴平均数发生变化,∵原数据中位数为:,现数据中位数也是,并未变化,∵原数据众数为:,现数据中位数也是,并未变化,∵原数据极差数为:,现数据极差也是,并未变化,故选:A.4.C【详解】由抛物线与轴的交点个数,可得:,所以抛物线与x轴的交点个数为2个;故选C.5.D【详解】解:过点作,,∵,,∴,即:,∵,∴的面积为:,故选:D.6.B【详解】解:连接,,∵在中,,Ⅰ是的内心,∴,,∵,∴,∴,∵,∴,故选:B.7.【详解】解:极差等于最高气温减去最低气温故答案为:.8.【详解】解:∵,∴,∴,故答案为:.9.##【详解】解:扇形的面积为故答案为:.10.12.4【详解】解∶设宽为,∵长为,∴,解得:故答案为:12.4.11.160【详解】解:依题意可得洞庭湖现有江豚数量约为.故答案为:.12.且【详解】解:∵关于的一元二次方程有两个不相等的实数根,∴,即:,,解得:,故答案为:且.13.,【详解】解:过点作轴,设点的坐标为,,∴,∵抛物线与轴交于两点,∴令,,∴,∴,∴,∵的面积为1,∴,解得:,∴点的坐标为:,,故答案为:,.14.##【详解】解:∵,,∴,∵,∴,即:,∴,即:,∴与面积的比值为,故答案为:.15.【详解】解:∵,∴,∴设,∵是等腰直角三角形,∴,是直角三角形,∴,则:,∵,∵为等腰直角三角形,∴,,∵的顶点与斜边的中点重合,∴,∵是的外角,∴,,∴,∴,∴,∴,即:,解得:,当时,(舍),当时,,且,故符合题意,则:,,∴,∴,∴的高,∴,∴的高,∴,∴,故答案为:.16.【详解】解:连接,∵,,,∴,由勾股定理得:,∵,∴点在以为圆心,为半径的圆上运动,由勾股定理得:,在上截取,∵,∴点在以为圆心,为半径的圆上运动,如图,连接,∴当、、三点共线时,有最小值,∴最小值为,故答案为:.17.(1),;(2)1.【详解】(1)解:,,解得,;(2)解:原式.18.(1)83;85;(2)在平均数、众数相同的情况下,九(2)班中位数更高,所以九(2)班了解情况更好;或:在平均数、众数相同的情况下,九(2)班方差更小,成绩更加稳定,所以九(2)班了解情况更好.(回答一条理由即可)【详解】(1)解:由题意得:,,前名同学的成绩的方差,.(2)解:在平均数、众数相同的情况下,九(2)班中位数更高,所以九(2)班了解情况更好;或:在平均数、众数相同的情况下,九(2)班方差更小,成绩更加稳定,所以九(2)班了解情况更好.19.(1)(2)【详解】(1)解:设小明恰好选取A景点为事件E,根据题意知:;(2)解:根据题意列表如下:通过列表得知共有9种可能性,其中符合题意的可能性有3种,∴设小明、小亮选取同一景点为事件D,∴小明、小亮选取同一景点的概率.20.教学楼的高度约米【分析】本题主要考查解直角三角形的实际应用,根据题意构造直角三角形是解题的关键.过点作,垂足为点,过点作,垂足为点,根据三角函数进行求解.【详解】解:如图,过点作,垂足为点,过点作,垂足为点.在中,,,,即,在中,,,即,答:教学楼的高度约米.21.(1)详见解析(2)详见解析【详解】(1),,,,;(2),,,且,,,.22.(1);顶点(2)【详解】(1)解:将点,代入,得,,,顶点;(2)解:根据题意,得平移后的抛物线关系式为:,将代入上式,得,,,,.23.(1)36;400;(2)4(3)3月,4月,5月【详解】(1)解:根据题意:将分别代入和中得:,;(2)解:根据题意列方程为:,即:,整理得:,∴,答:该商场4月份销售该产品恰好盈利7200元;(3)解:该商场盈利元,根据题意得:,根据题意令,即,∴解得:,∵当月盈利超过6400元,抛物线,∴当时,当月盈利超过6400元,综上所述:该商场3,4,5月份销售该产品当月盈利超过6400元.24.(1)详见解析(2)(3)详见解析【详解】(1)解:利用平行及等腰三角形性质,将平移至点作交于点,连接,∵,∴是等腰三角形,∴,∵,∴,∴作图如下所示;;(2)解:平分,平分,,是的直径,是的切线,,,,平分,,,,,,,即,;(3)解:连接交于点,连接并延长交于点,作射线即为所求;作图如下所示;25.(1)(2)(3)见解析【详解】(1)解:∵,点是抛物线上的一个动点,∴,即:,∴,∵过点的直线交轴于点,交轴于点,∴,∴将点代入中,得:,即:,∴,令,即:,∴点的坐标为:;(2)解:∵作直线交轴正半轴于点,①当时,∵轴,,∴,即:,∴,解得:(舍)或,②当轴时,此时直线与轴无交点,即:,∴,解得:(舍)或,综上所述:当时,;(3)解:∵点是抛物线上的一个动点,∴,∴点,∵过点的直线交轴于点,交轴于点,∴将点代入中得:,解得:,∴直线解析式为:,令,则,即:,∵,∴,过点作,,∴,∴,∴,∴,∵轴,∴轴,∴,∴,∴平分.26.(1)①与相等;理由见解析;②;(2)详见解析;(3)【详解】解:(1)①与相等.理由是:如图,连接,∵是直径,∴,∵,∴,∵∴,∵,∴,∴.②如图,连接,∵,,,∴根据勾股定理得:,∵,∴,∵,,∴,∴,即,解得:,根据勾股定理得:;(2)取的中点,连接交于,再连接,如图所示:∵是的2倍,∴,∴,又∵,∴,∴,∵,,∴,∴,∴点在线段的垂直平分线上;(3)在上取点,使,连接交于,如图所示:∵,∴,又∵,∴,∵,∴,∴,∴,∴,∴.。
人教版九年级上册数学期末考试试卷附答案
![人教版九年级上册数学期末考试试卷附答案](https://img.taocdn.com/s3/m/7d6de5716fdb6f1aff00bed5b9f3f90f76c64d93.png)
人教版九年级上册数学期末考试试题一、单选题1.下列图形中,是中心对称图形的是()A .B .C .D .2.函数y =x 2+x ﹣2的图象与y 轴的交点坐标是()A .(﹣2,0)B .(1,0)C .(0,﹣2)D .(0,2)3.平面内有两点P ,O ,⊙O 的半径为5,若PO =4,则点P 与⊙O 的位置关系是()A .圆内B .圆上C .圆外D .圆上或圆外4.下列函数中,y 是关于x 的反比例函数的是()A .y =﹣3x+6B .y=x 2C .y =25x D .y =6x5.下列式子为一元二次方程的是()A .5x 2﹣1B .4a 2=81C .14(2)25x x+=D .(3x ﹣2)(x+1)=8y ﹣36.下列各点中,关于原点对称的两个点是()A .(﹣5,0)与(0,5)B .(0,2)与(2,0)C .(﹣2,﹣1)与(﹣2,1)D .(2,﹣1)与(﹣2,1)7.下列是对方程2x 2﹣x+1=0实根情况的判断,正确的是()A .有两个不相等的实数根B .有一个实数根C .有两个相等的实数根D .没有实数根8.如图,四边形ABCD 内接于⊙O ,AC 平分∠BAD ,则下列结论正确的是()A .AB=ADB .BC=CDC . AB AD=D .∠BCA=∠DCA9.正比例函数y=x 与反比例函数y=1x的图象相交于A 、C 两点,AB ⊥x 轴于点B ,CD ⊥x 轴于点D (如图),则四边形ABCD 的面积为()A.1B.32C.2D.5210.如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=35°,则∠BDC=()A.85°B.75°C.70°D.55°11.如图,将矩形ABCD绕点A顺时针旋转到矩形AB'C'D'的位置,旋转角为α(0°<α<90°).若∠1=68°,则∠α的大小是()A.68°B.20°C.28°D.22°12.如图所示是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0;②3a+c>0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n+1没有实数根.其中正确的结论个数是()A.1个B.2个C.3个D.4个二、填空题13.方程x2﹣3x+2=0两个根的和为_____,积为_____.14.在一个暗箱里放入除颜色外其它都相同的1个红球和11个黄球,搅拌均匀后随机任取一球,取到红球的概率是_____.15.直线y=x+2关于原点中心对称的直线的方程为_____.16.把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌子上,从中随机抽取一张,则抽出的牌上的数小于5的概率为_____.17.在⊙O中,圆心角∠AOC=120°,则⊙O内接四边形ABCD的内角∠ABC=_____.18.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半径为1,点P是斜边AB 上的点,过点P作⊙C的一条切线PQ(点Q是切点),则线段PQ的最小值为_____.三、解答题19.解方程:x2+1=4﹣2x.20.如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△A'B'C'.(需写出△A'B'C'各顶点的坐标).21.已知二次函数y=ax2+bx+c的图象与y轴相交于点A,y与x的部分对应值如表:x﹣10123y0■﹣4﹣30(1)直接写出抛物线的开口方向,对称轴,顶点坐标及点A的坐标;(2)在给出的坐标系中画出该函数图象的草图.22.如图,AB、CD是⊙O的两条弦, AB= CD,OE⊥AB,OF⊥CD,垂足分别为E、F.求证:OE=OF.23.一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4随机摸取一个小球后,不放回,再随机摸出一个小球,分别求下列事件的概率:(1)两次取出的小球标号和为奇数;(2)两次取出的小球标号和为偶数.24.如图所示,已划A (﹣1,0),B (0,1),直线AB 与反比例函数y =mx(m≠0)的图象在第一象限交于C 点,CD 垂置于x 轴,垂足为D ,且OD =1.(1)当y =1时,求反比例函数y =mx 对应x 的值;(2)当1<y <4时,求反比例函数y =mx对应x 的取值范围.25.如图,AB 、CD 是⊙O 中两条互相垂直的弦,垂足为点E ,且AE =CE ,点F 是BC 的中点,延长FE 交AD 于点G ,已知AE =1,BE =3,OE 2(1)求证:△AED ≌△CEB ;(2)求证:FG ⊥AD ;(3)若一条直线l 到圆心O 的距离d 5试判断直线l 是否是圆O 的切线,并说明理由.26.如图,抛物线y=mx2﹣4mx﹣5m(m>0)与x轴交于A,B两点,与y轴交于C点.(1)求抛物线顶点M的坐标(用含m的代数式表示),A,B两点的坐标;(2)证明△BCM与△ABC的面积相等;(3)是否存在使△BCM为直角三角形的抛物线?若存在,请求出;若不存在,请说明理由.27.如图,已知抛物线y=38x2﹣34x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C,顶点为B.(1)求出A、C、D三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)在对称轴上存在点Q,抛物线上是否存在点P,使得以A、Q、C、P四点为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案1.D【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C 、不是中心对称图形,故此选项错误;D 、是中心对称图形,故此选项正确;故选D .2.C【详解】解:令x=0,y =x 2+x ﹣2=-2即函数y =x 2+x ﹣2的图象与y 轴的交点坐标是(0,-2)故选:C .3.A【详解】 ⊙O 的半径为5,PO =4,∴点P 在⊙O 的内部故选A 4.D【详解】解:A 、36y x =-+是一次函数,不符合题意;B 、y=x 2,不符合题意;C 、25=y x 中,未知数的次数是2-次,不是反比例函数,不符合题意;D 、6y x=是反比例函数,符合题意.故选:D 5.B【详解】解:A 、不是方程,故本选项不符合题意;B 、是一元二次方程,故本选项符合题意;C 、分母中含有未知数,不是一元二次方程,故本选项不符合题意;D 、含有两个未知数,不是一元二次方程,故本选项不符合题意;故选:B 6.D【详解】解:A 、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A 错误;B 、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B 错误;C 、(﹣2,﹣1)与(﹣2,1)关于x 轴对称,故C 错误;D 、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D 正确;故选:D .7.C【详解】∵根的判别式224(4210b ac =-=--⨯⨯= ,∴方程有两个相等的实数根.故选C .8.B【详解】解:A 、∵∠ACB 与∠ACD 的大小关系不确定,∴AB 与AD 不一定相等,故此选项不符合题意;B 、∵AC 平分∠BAD ,∴∠BAC=∠DAC ,∴BC=CD ,,故此选项符合题意;C 、∵∠ACB 与∠ACD 的大小关系不确定,∴ AB 与 AD 不一定相等,不符合题意;D 、∠BCA 与∠DCA 的大小关系不确定,不符合题意.故答案为:B .9.C【详解】解:解方程组1y xy x =⎧⎪⎨=⎪⎩得:1111x y =⎧⎨=⎩,2211x y =-⎧⎨=-⎩,即:正比例函数y=x 与反比例函数y=1x的图象相交于两点的坐标分别为A (1,1),C (﹣1,﹣1),所以D 点的坐标为(﹣1,0),B 点的坐标为(1,0)因为,AB ⊥x 轴于点B ,CD ⊥x 轴于点D 所以,△ABD 与△BCD 均是直角三角形则:S 四边形ABCD=12BD•AB+12BD•CD=12×2×1+12×2×1=2,即:四边形ABCD 的面积是2.故选:C .10.D【详解】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠ABC =35°,∴∠CAB =55°,∴∠BDC =∠CAB =55°.故选:D .11.D【详解】解:如图:∵∠1=68°,∴∠2=180°﹣∠1=112°,∵将矩形ABCD 绕点A 顺时针旋转到矩形AB'C'D'的位置,∴∠B =∠D'=90°,∴∠3=360°﹣∠2﹣∠B ﹣∠D'=68°,∴∠α=90°﹣∠3=22°,故选:D .12.D【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y >0,即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2ba=1,即b=-2a ,∵a-b+c >0∴a-b+c=a+2a+c=3a+c >0,所以②正确;∵抛物线的顶点坐标为(1,n ),∴244ac b a-=n ,∴b 2=4ac-4an=4a (c-n ),所以③正确;∵抛物线与直线y=n 有一个公共点,∴抛物线与直线y=n+1没有公共点,∴一元二次方程ax 2+bx+c=n+1无实数根,所以④正确.故选D 13.32【详解】解:方程x 2﹣3x+2=01,3,2a b c ==-=12123,2b cx x x x a a+=-===故答案为:3,2.14.112【详解】解:P (红球)=112故答案为:11215.2y x =-【详解】解:令y=0,得x=-2,即直线与x 轴的交点为A(-2,0),令x=0,得y=2,即直线与y 轴的交点为B (0,2),点A(-2,0),B (0,2)关于原点对称的点为C (2,0),D (0,-2),设直线CD 的解析式:y kx b =+,代入C (2,0),D (0,-2)得202k b b +=⎧⎨=-⎩12k b =⎧∴⎨=-⎩2y x ∴=-直线y =x+2关于原点中心对称的直线的方程为2y x =-故答案为:2y x =-.16.413【详解】解:∵抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,∴从中任意抽取一张,抽出的牌点数小于5的概率是:413.故答案为:413.17.120°【详解】解:∵∠AOC =120°∴∠D=12∠AOC =60°∵⊙O 内接四边形ABCD ∴∠ABC =180°-∠D=120°.故答案是120°.18.【详解】连接CP 、CQ ;如图所示:∵PQ 是⊙C 的切线,∴CQ ⊥PQ ,∠CQP=90°,根据勾股定理得:PQ 2=CP 2﹣CQ 2,∴当PC ⊥AB 时,线段PQ 最短.∵在Rt △ACB 中,∠A=30°,BC=2,∴AB=2BC=4,∴CP=AC BC AB ⋅∴=PQ19.121,3x x ==-.【详解】解:原方程可化x 2+2x-3=0x 2+2x+1-1-3=02(1)4x +=12x ∴+=±121,3x x ∴==-.20.A'(-1,-3),B'(1,-1),C'(-2,0),画图见解析.【分析】先画出点A ,B 关于点C 中心对称的点A',B',再连接A',B',C 即可解题.【详解】解:A 关于点C 中心对称的点A'(-1,-3),B 关于点C 中心对称的点B'(1,-1),C 关于点C 中心对称的点C'(-2,0),如图,△A'B'C'即为所求作图形.21.(1)二次函数图象开口向上,对称轴为1x =,顶点坐标为(1,-4),点A 的坐标为(0,-3);(2)图象见解析.【分析】(1)根据表格可知因变量y 的值随自变量x 的值的增大而先减小在增大,即可知该二次函数图象开口向上;根据表格可知该二次函数图象与x 轴的交点坐标,再根据二次函数的对称性即可求出其对称轴;根据二次函数的顶点在对称轴处,即可得出答案;根据二次函数的对称轴结合表格数据即可求出A 点坐标.(2)在坐标系中描绘出各点,再用光滑的曲线顺次连接即可.(1)解:根据表格可知该二次函数自变量x 的值逐渐增大的过程中,因变量y 的值先减小后增大,∴该二次函数图象开口向上;∵该二次函数图象与x 轴的交点坐标为(-1,0)、(3,0),∴该二次函数的对称轴为1312x -+==;∴该二次函数在1x =时,有最小值,且根据表格可知当1x =时,4y =-,∴该二次函数的顶点坐标为(1,-4);∵该二次函数的对称轴为:直线1x =,∴当0x =和3x =时,y 的值相等,且根据表格可知此时y=-3,∴点A 的坐标为(0,-3).(2)该函数图象如图,22.见解析.【详解】分别连接OA 、OC ,∵ AB = CD,∴AB =CD ,∵OE ⊥AB ,OF ⊥CD ,∴AE =12AB ,CF =12CD ,∠AEO =∠CFO =90°,∴AE =CF ,又∵OA =OC ,∴Rt △OAE ≌Rt △OCF (HL ),∴OE =OF .23.(1)23;(2)13.【分析】(1)列出表格展示所有可能的结果,根据表格即可知共有12种可能的情况,再找到两次取出的小球标号和为奇数的情况数,利用概率公式,即可求解;(2)找出两次取出的小球标号和为偶数的情况数,再利用概率公式,即可求解.(1)解:根据题意列出表格,如下表:根据表格可知:共有12种可能的情况,其中两次取出的小球标号和为奇数的情况有8种,故两次取出的小球标号和为奇数的概率为82=123;(2)根据表格可知:两次取出的小球标号和为偶数的情况有4种.故两次取出的小球标号和为偶数的概率为41=123.123411+2=3,奇数1+3=4,偶数1+4=5,奇数22+1=3,奇数2+3=5,奇数2+4=6,偶数33+1=4,偶数3+2=5,奇数3+4=7,奇数44+1=5,奇数4+2=6,偶数4+3=7,奇数24.(1)2(2)12<x <2【分析】(1)利用待定系数法解得直线AB 的解析式为1y x =+,再结合OD =1,解得点C的坐标为(12)C ,,继而解得反比例函数的解析式为y =2x,据此解题;(2)根据反比例函数的增减性解题:反比例函数y =2x在第一象限内,y 随x 的增大而减小.(1)设直线AB 的解析式为:y kx b =+,代入A (﹣1,0),B (0,1),01k b b -+=⎧⎨=⎩11k b =⎧∴⎨=⎩1y x ∴=+当OD =1时,11=2=+y (12)C ∴,∴反比例函数y =2x当1y =时,2x =(2)在y =2x中当1y =时,2x =,当4y =时,12x =,反比例函数y =2x在第一象限内,y 随x 的增大而减小当1<y <4时,12<x <2.25.(1)见解析;(2)见解析;(3)直线l 是圆O 的切线,理由见解析【分析】(1)由圆周角定理得∠A =∠C ,由ASA 得出△AED ≌△CEB ;(2)由直角三角形斜边上的中线性质得EF =12BC =BF ,由等腰三角形的性质得∠FEB =∠B ,由圆周角定理和对顶角相等证出∠A +∠AEG =90°,进而得出结论;(3)作OH ⊥AB 于H ,连接OB ,由垂径定理得出AH =BH =12AB =2,则EH =AH−AE =1,由勾股定理求出OH =1,OBl 到圆心O 的距离dO 的半径,即可得出结论.【详解】(1)证明:由圆周角定理得:∠A =∠C ,在△AED 和△CEB 中,A C AE CEAED CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED ≌△CEB (ASA );(2)证明:∵AB ⊥CD ,∴∠AED =∠CEB =90°,∴∠C+∠B =90°,∵点F 是BC 的中点,∴EF =12BC =BF ,∴∠FEB =∠B ,∵∠A =∠C ,∠AEG =∠FEB =∠B ,∴∠A+∠AEG =∠C+∠B =90°,∴∠AGE =90°,∴FG ⊥AD ;(3)解:直线l 是圆O 的切线,理由如下:作OH ⊥AB 于H ,连接OB ,如图所示:∵AE =1,BE =3,∴AB =AE+BE =4,∵OH ⊥AB ,∴AH =BH =12AB =2,∴EH =AH ﹣AE =1,∴OH 1,∴OB O∵一条直线l 到圆心O 的距离d O 的半径,∴直线l 是圆O 的切线.26.(1)M (2,-9m ),(1,0),(5,0)A B -;(2)见解析;(3)存在,见解析.【分析】(1)将解析式配方成顶点式即可解题;(2)分别解出△BCM 与△ABC 的面积,再证明其相等;(3)用含m 的代数式分别表示BC 2,CM 2,BM 2,再根据△BCM 为直角三角形,分三种情况讨论:当=90BMC ∠︒时,或当=90BCM ∠︒时,或当=90CBM ∠︒时,结合勾股定理解题.(1)解:y =mx 2﹣4mx ﹣5m=m (x 2﹣4x ﹣5)=m (x 2﹣4x+4-4﹣5)=m (x-2)2﹣9m抛物线顶点M 的坐标(2,-9m ),令y=0,m (x-2)2﹣9m=0解得(x-2)2=932x ∴=±+125,1x x ∴==-(1,0),(5,0)A B ∴-(2)令x=0,y=m (0-2)2﹣9m=-5m(0,5)C m ∴-11515m 15(0)22C ABC S AB y m m =⋅=+⋅-=>V 过点M 作EF y ⊥轴于点E ,过点B 作EF ⊥于点F ,如图,MCEFB BCM ECM BF S S S S =--V V V 梯形()11222CE BF EF CE EM BF MF+⋅=-⋅-⋅()11()()222C M M B C M M M B M My y y x y y y x x x y -+⋅=--+⋅--⋅5(49)11429(52)222m m m m +=-⋅⨯-⋅⨯-6527422m m m =--15(0)m m =>BCM ABCS S ∴=V V (3)存在使△BCM 为直角三角形的抛物线,过点M 作DM x ⊥轴于点D ,过点C 作CN ⊥DM 于点N ,在t R CMN V 中,2,5CN OD DN OC m====4MN DM DN m ∴=-=2222416CM CN MN m ∴=+=+在Rt OBC 中,22222525BC OB OC m =+=+在t R BDM V 中,2222981BM BD DM m =+=+①若△BCM 为直角三角形,且=90BMC ∠︒时,222CM BM BC +=2224169812525m m m ∴+++=+解得6m =0m >6m ∴=∴存在抛物线2y x x =BCM 为直角三角形;②若△BCM 为直角三角形且=90BCM ∠︒时,222BC CM BM +=2222525416981m m m ∴+++=+2m ∴=±m >2m ∴=∴存在抛物线222y x =--使得△BCM 为直角三角形;③22222525416,981416m m m m +>++>+Q ∴以CBM ∠为直角的直角三角形不存在,综上所述,存在抛物线2y =-2y =-,使得△BCM 为直角三角形.27.(1)A (4,0),C (0,﹣3),D (﹣2,0)(2)点M 的坐标为(2,﹣3)或(0,﹣3)或(13)或()(3)存在,点P 的坐标为(3,﹣158)或(﹣3,218)或(5,218)【分析】(1)令y=0,解方程38x 2﹣34x ﹣3=0可得到点D 和点A 坐标;令x=0,求出y=-3,可确定C 点坐标;(2)根据抛物线的对称性,可知在在x 轴下方对称轴右侧也存在这样的一个点;再根据三角形的等面积法,在x 轴上方,存在两个点,这两个点分别到x 轴的距离等于点C 到x 轴的距离;(3)分别以AC 为对角线或平行四边形的一边,进行讨论,即可得出P 点坐标.(1)解:(1)y =38x 2﹣34x ﹣3,当x =0时,y =﹣3,∴C (0,﹣3);当y =0时,则38x 2﹣34x ﹣3=0,解得x 1=﹣2,x 2=4,∴D (﹣2,0),A (4,0);∵y =38x 2﹣34x ﹣3=38(x ﹣1)2﹣278,∴抛物线的顶点B 的坐标为(1,﹣278),∴A (4,0),B (1,﹣278),C (0,﹣3),D (﹣2,0).(2)(2)如图1,设M (x ,38x 2﹣34x ﹣3),∵△MAD 与△CAD 有相同的底边AD ,且△MAD 的面积与△CAD 的面积相等,∴点M 到x 轴的距离等于点C 到x 轴的距离,∴|38x 2﹣34x ﹣3|=3,解得x 1=2,x 2=0,x 3=1,x 4=∴M 1(2,﹣3),M 2(0,﹣3),M 3(13),M 4(),∴点M 的坐标为(2,﹣3)或(0,﹣3)或(1,3)或().(3)(3)存在,如图2,点P 的横坐标为3,作AF ⊥x 轴,作PF ⊥AF 于点F ,∴P (3,﹣158),F (4,﹣158),由(1)得,抛物线的对称轴为直线x=1,在OC上截取CE=AF,过点E作直线x=1的垂线,垂足为点Q,连结并延长CQ交x轴于点G,作四边形APCQ,∵∠CEQ=∠F=90°,QE=PF=1,∴△CEQ≌△AFP(SAS),∴CQ=AP,∠CQE=∠APF,∵EQ∥OA,PF∥OA,∴∠CQE=∠CGO,∠APF=∠PAO,∴∠CGO=∠PAO,∴CQ∥AP,∴四边形APCQ是平行四边形;如图3,点P的横坐标为﹣3,作AK⊥x轴,作PK⊥AK于点K,∴P(﹣3,218),K(﹣3,﹣3),设直线x=1交x轴于点L,在x轴上方的直线x=1上截取LQ=KP,作四边形ACPQ,CP 交x轴于点H,∵L(1,0),∴AL=CK=3,∵∠ALQ=∠CKP=90°,∴△ALQ≌△CKP(SAS),∴AQ=CP,∠QAL=∠PCK,∵CK∥x轴,∴∠PCK=∠AHC,∴∠QAL=∠AHC,∴AQ∥CP,∴四边形ACPQ是平行四边形;如图4,点P的横坐标为,作PN⊥x轴于点N,作PJ⊥y轴于点J,∴P(5,218),N(5,0),在OC上截取CR=PN,过点R作直线x=1的垂线,垂足为点Q,连结并延长CQ交PJ于点I,作四边形PACQ,∵∠CRQ=∠PNA=90°,QR=AN=1,∴△CQR≌△PAN(SAS),∴CQ=PA,∠CQR=∠PAN,∵PJ∥QR∥x轴,∴∠CQR=∠CIJ,∠PAN=∠APJ,∴∠CIJ=∠APJ,∴CQ∥PA,∴四边形PACQ是平行四边形,综上所述,点P的坐标为(3,﹣158)或(﹣3,218)或(5,218).。
甘肃省兰州市第五十三中学2024届九年级上学期期末考试数学试卷(含答案)
![甘肃省兰州市第五十三中学2024届九年级上学期期末考试数学试卷(含答案)](https://img.taocdn.com/s3/m/240a70685627a5e9856a561252d380eb629423cc.png)
初三数学考试时间:120分钟;一、单选题(共36分).....下列关系式中,的反比例函数的是()3x y =2y x =1y x=21y x =.....已知()230x y xy =≠,则下列比例式成立的是()8.关于x 的二次函数22y ax x c =-+和一次函数y ax c =+(a ,c 都是常数,且0a ≠)在同一平面直角坐标系中的图象可能..是()A .B .C .D .9.如图,在ABC 中,AB AC =,BD 平分ABC ∠,交AC 于点D .若36A ∠=︒,则BDC ∠=()A .36︒B .54︒C .72︒D .108︒三、解答题(共72分)跳舞,相声,以及体育活动.800名学生中抽取部分学生.根据以上信息,回答下列问题:(1)填空:选择跳舞的人数为_________,选择相声人数的百分率为(2)题干中“800”属于_________(选填“总体”“个体”“样本”(3)请你估计全校参加社团的学生中对相声、唱歌满意的总人数.是矩形,说明理由;初三数学答题卡姓名:______________班级:______________座号:准考证号第一题选择题(请用2B铅笔填涂)12345678910111222题、(共4分)25题、(共6分)26题、(共8分)28题、(共12分)参考答案:1.B【详解】解:A、圆锥的主视图是等腰三角形,不符合题意;B、圆柱体的主视图是矩形,符合题意;C、四棱锥的主视图是三角形,不符合题意;D、球的主视图是圆形,不合题意;故选:B.故选:D.【详解】如图,所有结果有4种,满足要求的结果有1种,故概率为11.C12.B∴++=,即30a a c20a c+=,故本选项错误;x=,⑤ 对称轴为直线1∴当1x=时,抛物线有最大值,∴++>++,a b c m a mb c2()(m≠,故本选项正确;∴+<+常数1)m ma b a b故选:B.13.3x(x+2)(x﹣2)【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).14x -=±,∴15=x ,23x =-.21.见解析【详解】证明:在ABE 和DCE △中AEB DEC A D AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ABE DCE ≌△△∴,AE DE BE CE==∴AE CE DE BE+=+∴AC DB =.22.证明见解析【详解】证明:90APD ∠=︒ ,90B C ∠=∠=︒,90APB CPD ∴∠+∠=︒,90BAP APB ∠+∠=︒,CPD BAP ∴∠=∠,又B C ∠=∠ ,∴ABP PCD ∽△△.23.(1)14、24%(2)样本容量(3)320人【详解】(1)(128)(128%32%)50+÷--=(人)5028%14⨯=(人)1250100%24%÷⨯=可求解.【详解】(1)解:设每件玩具的售价定为x 元时,月销售利润恰为2160元,根据题意,得()()2020010302160x x ---=⎡⎤⎣⎦,整理,得27012160x x -+=,解得123832x x ==,,∵每件玩具售价不能高于40元,答:每件玩具的售价定为38或32元时,月销售利润恰为2160元;(2)解:设每件玩具的售价定为x 元,月销售利润为y 元,根据题意,得:()()202001030y x x ⎦=--⎡⎤⎣-21070010000x x =-+-()210352250x =--+,∵100-<,∴当35x =时,y 有最大值为2250,答:每件玩具的售价定为35元时可使月销售利润最大,最大的月利润是2250元.27.(1)见解析(2)当点P 是AC 的中点时,四边形AECF 是矩形,理由见解析(3)当△ABC 是直角三角形,90ACB ∠= ,四边形AECF 是正方形【详解】(1)证明:∵//MN BD ,∴BCE PEC ∠=∠,DCF PFC ∠=∠,∵CE ,CF 分别平分∠ACB ,∠ACD ,∴BCE PCE ∠=∠,DCF PCF ∠=∠,∴PEC PCE ∠=∠,PFC PCF ∠=∠,。
2023-2024学年山东省济南市市中区九年级(上)期末数学试卷及答案解析
![2023-2024学年山东省济南市市中区九年级(上)期末数学试卷及答案解析](https://img.taocdn.com/s3/m/387bd6fe64ce0508763231126edb6f1aff00711d.png)
2023-2024学年山东省济南市市中区九年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)从正面观察如图所示的几何体,看到的形状图是()A .B .C .D .2.(4分)已知=,则的值为()A .B .C .D .3.(4分)已知反比例函数的图象经过点A (﹣2,6),则下列各点中也在该函数图象上的是()A .(2,6)B .(1,﹣12)C .(﹣3,﹣4)D .(4,3)4.(4分)抛物线y =2(x +9)2﹣3的顶点坐标是()A .(9,3)B .(9,﹣3)C .(﹣9,3)D .(﹣9,﹣3)5.(4分)在一个不透明的口袋中装有4个红球,5个白球和若干个黑球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到白球的频率稳定在25%附近,则口袋中黑球可能有()A .10个B .11个C .12个D .13个6.(4分)如图,在8×4的矩形网格中,每个小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为()A .1B .C .D .7.(4分)如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=15°,则∠BDC=()A.85°B.75°C.70°D.65°8.(4分)如图,在直角坐标系中,点P(2,2)是一个光源.木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB在x轴上的投影长为()A.3B.5C.6D.79.(4分)一次函数y=ax+b与反比例函数y=(a,b为常数且均不等于0)在同一坐标系内的图象可能是()A.B.C.D.10.(4分)已知二次函数y=ax2﹣2ax+3(其中x是自变量),当0≤x≤3时对应的函数值y 均为正数,则a的取值范围为()A.﹣1<a<0B.a>3C.a<﹣1或a>3D.﹣1<a<0或0<a<3二、填空题(共6小题,每小题4分,满分24分.填空题请直接填写答案.)11.(4分)若∠A是锐角,cos A=,则∠A=度.12.(4分)如图,△ABC与△DEF位似,点O为位似中心,已知OA:OD=1:3,△ABC 的面积为2,则△DEF的面积为.13.(4分)如图,点A是反比例函数y=(k≠0,x>0)的图象上一点,过点A作AB⊥x 轴于点B,点P是y轴上任意一点,连接PA,PB.若△ABP的面积等于3,则k的值为.14.(4分)如图抛物线y=ax2+bx+c的对称轴是直线x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为.15.(4分)如图,将半径为2cm的圆形纸片翻折,使得,恰好都经过圆心O,折痕为AB,BC,则阴影部分的面积为cm2.16.(4分)如图,AB=5,BC=10,以AC为斜边在AC的右侧作△ACD,其中,当BD长度最大时,点D到BC的距离是.三、解答题(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)计算:()﹣1+(π+1)0﹣2sin30°+.18.(6分)已知如图,D,E分别是△ABC的边AB,AC上的点,∠AED=∠B,AD=3,AB=8,AE=4.求AC的长度.19.(6分)如图,小明想要用撬棍撬动一块大石头,已知阻力为1200N,阻力臂长为0.5m.设动力为y(N),动力臂长为x(m).(杠杆平衡时,动力×动力臂=阻力×阻力臂,图中撬棍本身所受的重力忽略不计)(1)求y关于x的函数解析式.(2)当动力臂长为1.5m时,撬动石头至少需要多大的力?20.(8分)随着高铁、地铁的大量兴建以及铁路的改扩建,我国人民的出行方式越来越多,出行越来越便捷.为保障旅客快捷、安全的出入车站,每个车站都修建了如图所示的出入闸口.某车站有四个出入闸口,分别记为A、B、C、D.(1)一名乘客通过该站闸口时,求他选择A闸口通过的概率;(2)当两名乘客通过该站闸口时,请用树状图或列表法求两名乘客选择相同闸口通过的概率.21.(8分)如图大楼AB的高度为37m,小可为了测量大楼顶部旗杆AC的高度,他从大楼底部B处出发,沿水平地面前行32m到达D处,再沿着斜坡DE走20m到达E处,测得旗杆顶端C的仰角为30°.已知斜坡ED与水平面的夹角∠EDG=37°,图中点A,B,C,D,E,G在同一平面内(结果精确到0.1m)(1)求斜坡ED的铅直高度EG和水平宽度GD.(2)求旗杆的AC高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)22.(8分)如图,在Rt△ABC中,∠C=90°,点O是AB上一点,以OB为半径的⊙O与AB相交于点E,与AC相切于点D,连结BD.(1)求证:BD平分∠ABC;(2)已知,AB=6,求⊙O的半径r.23.(10分)把边长为44cm的正方形硬纸板(如图1),在四个顶点处分别剪掉一个小正方形,折成一个长方体形的无盖盒子(如图2).若剪掉的小正方形的边长为x cm,长方体形的无盖盒子的侧面积为S cm2.(1)①求S与x的函数关系式;②直接写出x的取值范围.(2)求当x取何值时,S达到最大,并求出最大值.24.(10分)在平面直角坐标系中,定义:横坐标与纵坐标均为整数的点为整点.如图,已知双曲线经过点A(2,2),在第一象限内存在一点B(m,n),满足mn >4.(1)求k的值;(2)如图1,过点B分别作平行于x轴,y轴的直线,交双曲线于点C、D,记线段BC、BD、双曲线所围成的区域为W(含边界),①当m=n=4时,区域W的整点个数为;②直线y=ax﹣5a+4(a>0)过一个定点,若点B为此定点,这条直线将W分成两部分,直线上方(不包含直线)的区域记为W1,直线下方(不包含直线)的区域记为W2,当W1与W2的整点个数之差不超过2时,请求出a的取值范围.25.(12分)(1)问题发现:如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB =∠COD=40°,连接AC,BD交于点M,填空:=;∠AMB=;(2)类比探究:如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M,请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸:如图3,在(2)的条件下,将△OCD绕点O旋转至点C与点M重合,若OD=1,OB=,填空:AC=.26.(12分)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)该抛物线的表达式为;(2)点P为抛物线上一点(不与点A重合),连接PC.当∠PCB=∠ACB时,求点P 的坐标;(3)在(2)的条件下,在对称轴上是否存在一点Q,连接PQ,将线段PQ绕点Q顺时针旋转90°,使点P恰好落在抛物线上?若存在,请求出点Q的坐标;若不存在,请说明理由.2023-2024学年山东省济南市市中区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【分析】根据观察方向即可求解.【解答】解:从正面看,下方长方体看到的是长方形,上方圆柱看到的也是长方形,且两个长方形在左侧位置对齐,故选:A.【点评】本题考查几何体的三视图,解题的关键是具有一定的空间观念.2.【分析】根据已知条件设m=2k,n=3k,再代入求出答案即可.【解答】解:设m=2k,n=3k,则===,故选:B.【点评】本题考查了比例的性质,能选择适当的方法求解是解此题的关键,注意:如果=,那么ad=bc.3.【分析】首先利用待定系数法求出k的值,再分别计算出四个选项中的点的横纵坐标的积,等于k的值的就在反比例函数图象上,反之则不在.【解答】解:∵反比例函数的图象经过点(﹣2,6),∴k=﹣2×6=﹣12,A、2×6=12≠﹣12,故此点不在此函数图象上;B、1×(﹣12)=﹣12,故此点在此函数图象上;C、﹣3×(﹣4)=12,故此点不在此函数图象上;D、4×3=12,故此点不在此函数图象上.故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特征,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.4.【分析】由抛物线解析式可得抛物线顶点坐标.【解答】解:∵y=2(x+9)2﹣3,∴抛物线顶点坐标为(﹣9,﹣3),故选:D.【点评】本题考查二次函数的性质,解题关键是掌握二次函数的顶点式.5.【分析】由摸到白球的频率稳定在25%附近得出口袋中得到白色球的概率,进而求出黑球个数即可.【解答】解:设黑球个数为:x个,∵摸到白色球的频率稳定在25%左右,∴口袋中得到白色球的概率为25%,∴=0.25,解得:x=11,故黑球的个数为11个.故选:B.【点评】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.6.【分析】在直角△ACD中利用正切函数的定义即可求解.【解答】解:在直角△ACD中,AD=2,CD=6,则tan∠ACB===.故选:B.【点评】本题考查了正切函数的定义,掌握三角函数就是直角三角形中边的比是关键.7.【分析】由AB是直径可得∠ACB=90°,由∠ABC=30°可知∠CAB=60°,再根据圆周角定理可得∠BDC的度数,即可得出答案.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=15°,∴∠CAB=75°,∴∠BDC=∠CAB=75°,故选:B.【点评】本题考查了圆周角定理,由AB是直径求出∠ACB=90°是解题的关键.8.【分析】利用中心投影,延长PA、PB分别交x轴于A′、B′,作PE⊥x轴于E,交AB 于D,如图,证明△PAB∽△PA′B′,然后利用相似比可求出A'B'的长.【解答】解:延长PA、PB分别交x轴于A′、B′,作PE⊥x轴于E,交AB于D,如图,∵P(2,2),A(0,1),B(3,1).∴PD=1,PE=2,AB=3,∵AB∥A′B′,∴△PAB∽△PA′B′,∴=,即=,∴A′B′=6,故选:C.【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.9.【分析】根据一次函数图象判定a、b的符号,根据ab的符号判定反比例函数图象所在的象限.【解答】解:A、一次函数y=ax+b的图象经过第一、二、三象限,则a>0,b>0,所以ab>0,则反比例y=应该位于第一、三象限,故本选项不可能;B、一次函数y=ax+b的图象经过第一、二、四象限,则a<0,b>0,所以ab<0,则反比例y=应该位于第二、四象限,故本选项不可能;C、一次函数y=ax+b的图象经过第一、三、四象限,则a>0,b<0,所以ab<0,则反比例y=应该位于第二、四象限,故本选项不可能;D、一次函数y=ax+b的图象经过第一、二、四象限,则a<0,b>0,所以ab<0,则反比例y=应该位于第二、四象限,故本选项有可能;故选:D.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.10.【分析】分两种情况讨论,根据题意得到关于a的不等式,计算即可.【解答】解:当a<0时,抛物线开口向下;∵当0≤x≤3时对应的函数值y均为正数,对称轴为直线x=﹣=1,x=0时,y=3>0,∴x=3时,9a﹣6a+3>0,解得a>﹣1,故﹣1<a<0,当a>0时,抛物线开口向上;∵当0≤x≤3时对应的函数值y均为正数,对称轴为直线x=﹣=1,∴x=1时,a﹣2a+3>0,∴a<3,故0<a<3,故选:D.【点评】本题考查了二次函数图象与系数的关系,二次函数的性质,抛物线与x轴的交点,熟练掌握二次函数的性质是解题的关键.二、填空题(共6小题,每小题4分,满分24分.填空题请直接填写答案.)11.【分析】根据特殊角的三角函数值直接求解.【解答】解:∵∠A是锐角,cos A=,∴∠A=30°.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要熟练掌握.12.【分析】利用位似的性质得到△ABC∽△DEF,AB∥DE,所以,然后根据相似三角形的性质求解.【解答】解:∵△ABC与△DEF位似,点O为位似中心,∴△ABC∽△DEF,AB∥DE,∴,∵△ABC∽△DEF,∴,=9S△ABC=9×2=18.∴S△DEF故答案为:18.【点评】本题考查了位似变换:位似的两图形两个图形必须是相似形;对应点的连线都经过同一点;对应边平行(或共线).13.【分析】由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=3,然后根据反比例函数y=中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.【解答】解:设反比例函数的解析式为y=,∵△AOB的面积=△ABP的面积=3,△AOB的面积=|k|,∴|k|=3,∴k=±6;又∵反比例函数的图象的一支位于第一象限,∴k>0.∴k=6.故答案为:6.【点评】本题主要考查了待定系数法求反比例函数的解析式和反比例函数y=中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.14.【分析】先根据抛物线的对称性得到A点坐标(3,0),由y=ax2+bx+c>0得函数值为正数,即抛物线在x轴上方,然后找出对应的自变量的取值范围即可得到不等式ax2+bx+c >0的解集.【解答】解:根据图示知,抛物线y=ax2+bx+c图象的对称轴是直线x=﹣1,与x轴的一个交点坐标为(﹣5,0),根据抛物线的对称性知,抛物线y=ax2+bx+c图象与x轴的两个交点关于直线x=﹣1对称,即抛物线y=ax2+bx+c图象与x轴的另一个交点与(﹣5,0)关于直线x=﹣1对称,∴另一个交点的坐标为(3,0),∵不等式ax2+bx+c>0,即y=ax2+bx+c>0,∴抛物线y=ax2+bx+c的图象在x轴上方,∴不等式ax2+bx+c>0的解集是﹣5<x<3.故答案为:﹣5<x<3.【点评】此题主要考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,本题锻炼了学生数形结合的思想方法.15.【分析】作OD⊥AB于点D,连接AO,BO,CO,求出∠OAD=30°,得到∠AOB=2得出阴影部∠AOD=120°,进而求得∠AOC=120°,再利用阴影部分的面积=S扇形AOC 分的面积是⊙O面积的,即可得出结果.【解答】解:作OD⊥AB于点D,连接AO,BO,CO,如图所示:∵OD=AO,∴∠OAD=30°,∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,=×S圆=×π×22=π(cm2),∴阴影部分的面积=S扇形AOC故答案为:π.【点评】本题主要考查了翻折变换(折叠问题)、扇形面积的计算等知识,解题的关键是确定∠AOC=120°.16.【分析】以AB为斜边构造与△ADC相似的直角三角形,然后利用三角形三边关系得出BD最大时的情况,再根据相似三角形的判定和性质进行求解即可.【解答】解:以AB为斜边构造直角三角形ABE,使AE=4,BE=3,∠AEB=90°,连接DE,如图:∵AE:BE=AD:CD=4;3,∴=,又∵∠AEB=∠ADC=90°,∴△AEB∽△ADC,∴∠BAE=∠DAC,∴∠BAE+∠CAE=∠DAC+∠CAE,即∠BAC=∠EAD,又∵==,∴△ABC∽△AED,∴=,∴DE=8,在△BDE中,DE+BE≥BD,∴当BD最大时,B,D,E共线,即AE⊥BD,此时,过D作DF⊥AC于F,如图:∵△ABE∽△ACD,∴∠ABD=∠ACD,∴A,B,C,D四点共圆,∴∠ABC=∠ADC=90°,∴AB∥DF,∴∠ABE=∠BDF,∴△ABE∽△BDF,∴=,∴DF=.故答案为:.【点评】本题主要考查了相似三角形的判定与性质,构造出与△ADC相似的三角形得出BD取最大时的情况是本题解题的关键.三、解答题(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.【分析】先化简各式,然后再进行计算即可解答.【解答】解:()﹣1+(π+1)0﹣2sin30°+=2+1﹣2×+3=2+1﹣1+3=5.【点评】本题考查了实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值,准确熟练地进行计算是解题的关键.18.【分析】由∠AED=∠B,∠A=∠A,得△ADE∽△ACB,再根据相似比列出比例式即可得出结果.【解答】解:∵∠AED=∠B,∠A=∠A,∴△ADE∽△ACB,∴,∵AD=3,AB=8,AE=4,∴,∴AC=6.【点评】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.19.【分析】(1)根据动力×动力臂=阻力×阻力臂,即可得出y关于x的函数表达式;(2)将x=1.5代入(1)中所求解析式,即可得出y的值.【解答】解:(1)由题意可得:xy=1200×0.5,则y=,即y关于x的函数表达式为y=;(2)∵y=,∴当x=1.5时,y==400,故当动力臂长为1.5m时,撬动石头至少需要400N的力.【点评】此题主要考查了反比例函数的应用,正确得出y与x之间的关系是解题关键.20.【分析】(1)直接根据概率公式求解即可;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)一名乘客通过该站闸口时,他选择A闸口通过的概率为;(2)画树状图得:由树状图可知:有16种等可能的结果,其中两名乘客选择相同闸口通过的有4种结果,∴两名乘客选择相同闸口通过的概率==.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)在Rt△DEG中,利用锐角三角函数的定义进行计算即可解答;(2)过点E作EH⊥BC,垂足为H,根据题意可得:DB=32m,则EH=GB=48m,然后在Rt△CEH中,利用锐角三角函数的定义求出CH的长,最后利用线段的和差关系进行计算即可解答.【解答】解:(1)在Rt△DEG中,∠EDG=37°,DE=20m,∴EG=DE•sin37°≈20×0.60=12.0(m),DG=DE•cos37°≈20×0.80=16.0(m),∴斜坡ED的铅直高度EG约为12.0m,水平宽度GD约为16.0m;(2)过点E作EH⊥BC,垂足为H,由题意得:DB=32m,∴EH=GB=GD+DB=16+32=48(m),在Rt△CEH中,∠CEH=30°,∴CH=EH•tan30°=48×=16(m),∴AC=CH+BH﹣AB=16+12﹣37≈2.7(m),∴旗杆的AC高度约为2.7m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22.【分析】(1)连接OD,根据切线的性质得到OD⊥AC,进而得到OD∥BC,根据平行线的性质、等腰三角形的性质证明结论;(2)根据余弦的定义求出BC,根据△AOD∽△ABC列出比例式,把已知数据代入计算即可.【解答】(1)证明:连接OD,∵AC切⊙O于点D,∴OD⊥AC,∵∠C=90°,∴OD∥BC,∴∠ODB=∠CBD,∵OB=OD,∴∠ODB=∠OBD,∴∠OBD=∠CBD,即BD平分∠ABC;(2)解:在Rt△ABC中,∠C=90°,cos∠ABC=,∵cos∠ABC=,AB=6,∴BC=,∵OD∥BC,∴△AOD∽△ABC,∴=,即=,解得:r=.【点评】本题考查的是切线的性质、圆周角定理、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.23.【分析】(1)①依据题意得,长方体形的无盖盒子的底面边长为(44﹣2x)cm,进而列式可以得解;②依据题意,列不等式,进而计算可以得解;(2)依据题意,结合(1)得S=4x(44﹣2x)=﹣8x2+176x=﹣8(x﹣11)2+968,从而根据二次函数的性质进行判断可以得解.【解答】解:(1)①由题意得,长方体形的无盖盒子的底面边长为(44﹣2x)cm,∴盒子的侧面积S=4x(44﹣2x).②由题意,,∴0<x<22.(2)由题意得,S=4x(44﹣2x),即S=﹣8x2+176x,即S=﹣8(x﹣11)2+968,=968.∴当x=11时,S最大即当剪掉的正方形的边长x为11cm时,长方形盒子的侧面积S最大为968cm2.【点评】本题主要考查了二次函数的应用,解题时要熟练掌握并能找到关键描述语从而根据等量关系准确地列出函数关系式是关键.24.【分析】(1)根据点A在y=的图象上,可求出k的值.(2)①标出区域W,再统计区域内的整数点即可.②过定点即表示与a的取值无关,则有a的系数(x﹣5)等于0,便可解决问题.利用图象,求出区域内的所有整数点,再分类讨论即可.【解答】解:(1)因为双曲线经过点A(2,2),所以k=2×2=4.即k的值为:4;(2)①当m=n=4时,由图1可知,BC上的整点有4个,BD上的整点有4个,双曲线上CD段的整点有3个,区域W内部的整点有3个,又点B,C,D都被算了2次,所以区域W的整点个数为:4+4+3+3﹣3=11.故答案为:11;②由题知,y=ax﹣5a+4=(x﹣5)a+4,则不论a为何值,x=5时,y=4,即直线过定点(5,4),所以B(5,4).如图所示,当B(5,4)时,区域W内的整点共有15个.又被分成的区域W1和W2的整点个数之差不超过2,则当直线经过点(4,3)时,W1的整点个数是7,W2的整点个数是5,满足要求.此时4a﹣5a+4=3,得a=1.当直线过点(3,3)时,W1的整点个数是5,W2的整点个数是8,不满足要求.故当点(3,3)在直线上方时,即可.此时3a﹣5a+4=3,得a=.故a的取值范围是:.【点评】本题考查反比例函数的性质,正确理解题目中所给出的新定义,结合图形合理的分析是解题的关键.25.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1;∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:1;40°;(2)如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)点C与点M重合时,如图,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.故答案为:3或2【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.26.【分析】(1)由对称轴为直线x=2,点A的坐标为(1,0),得出B(3,0),由交点式得出函数关系式;(2)方法一:作AD⊥BC于D,可知D在对称轴上,求出E的坐标,得出直线CE的关系式与抛物线求交点即可;方法二:过点B作BD垂直于x轴,交CP于D,证明△ABC≌△DBC,得AB=BD,可得D的坐标,从而求出CP解析式,得到P的坐标;(3)分P在Q上方和下方两种情况,当P在Q上方时,构造出△PKQ≌△QTP',得P'(m+2,﹣m)代入抛物线即可求得m的值,从而可得Q的坐标,当Q在P上方时,由抛物线的对称性可得出Q(2,).【解答】解:(1)∵对称轴为直线x=2,点A的坐标为(1,0),∴B(3,0),∴y=(x﹣1)(x﹣3)=x2﹣4x+3,故答案为:y=x2﹣4x+3;(2)方法一:作AD⊥BC于D,交CP于E,如图:在y=x2﹣4x+3中,令x=0得y=3,∴C(0,3),∵B(3,0),∴OB=OC,∴∠OBC=45°,∴△ABD是等腰直角三角形,∵A(1,0),B(3,0),∴D(2,1),∵∠PCB=∠ACB,∴AD=DE,∴E(3,2),∴直线CE的关系式为:y=﹣x+3,由﹣x+3=x2﹣4x+3得:x1=0(舍去),x2=,∴P(,),方法二:过点B作BD垂直于x轴,交CP于D,如图:∵OC=OB,∴△OCB为等腰直角三角形,∴∠DBC=∠ABC=45°,∵∠PCB=∠ACB,BC=BC,∴△ABC≌△DBC(ASA),∴BD=AB=2,∴D(3,2),∴直线CP的解析式为y=﹣x+3,由﹣x+3﹣=x2﹣4x+3得:x1=0(舍去),x2=,∴P(,);(3)在对称轴上存在一点Q,将线段PQ绕点Q顺时针旋转90°,使点P恰好落在抛物线上,理由如下:点P旋转后的对应点为P',当P在Q上方时,作PK⊥对称轴于K,P'T⊥对称轴于T,∵P(,),对称轴为直线x=2,∴PK=,设KQ=m,∵将线段PQ绕点Q顺时针旋转90°得线段QP',∴∠PQP'=90°,PQ=P'Q,∴∠PQK=90°﹣∠TQP'=∠QP'T,∠PKQ=90°=∠P'TQ,∴△PKQ≌△QTP'(AAS),∴P'T=KQ=m,QT=PK=,∴P'(m+2,﹣m),∵P'恰好落在抛物线上,∴(m+2)2﹣4(m+2)+3=﹣m,解得m1=,m2=﹣,∴Q(2,),当Q在P上方时,作PW⊥对称轴于W,如图:由图可得,P,P'关于直线x=2对称,∴△PQP'是等腰直角三角形,∴△P'QW,△PQW是等腰直角三角形,∴QW=PW=,∴Q(2,),综上所述:Q(2,)或Q(2,).【点评】本题是二次函数综合题,考查了待定系数法求函数关系式、等腰直角三角形的性质以及运算能力,用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系是解题的关键。
北师大版九年级上册数学期末考试试卷及答案
![北师大版九年级上册数学期末考试试卷及答案](https://img.taocdn.com/s3/m/a316ee35ae1ffc4ffe4733687e21af45b307fedc.png)
北师大版九年级上册数学期末考试试题一、单选题1.方程2x x =的解是()A .13x =,23x =-B .11x =,20x =C .11x =,21x =-D .13x =,21x =-2.四边形ABCD 的对角线AC 、BD 互相平分,要使它成为矩形,可添加条件()A .AB CD=B .AC BD=C .AB CD∥D .AC BD⊥3.若反比例函数的图象经过()2,2-,()1,a ,则=a ()A .1B .-1C .4D .-44.一个不透明的箱子里装有红色小球和白色小球共4个,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量的重复实验后,发现摸到红色小球的频率稳定于0.75左右.请估计箱子里白色小球的个数是()A .1B .2C .3D .45.如图,点C 是线段AB 的黄金分割点,(BC AC >),下列结论错误的是()A .12BC AB -=B .2BC AB AC =⋅C .32BC AC =D .0.618ACBC≈6.某超市一月份的营业额为5万元,第一季度的营业额共60万元,如果平均每月增长率为x ,则所列方程为()A .()25160x +=B .()251260x +=C .()51260x +=D .()()2511160x x ⎡⎤++++=⎣⎦7.如图,在△ABC 中,点D 为AB 边上一点,点E 为BC 边上一点,DE AC ∥,若12BD AD =,则△EDO 和△ACO 的面积比为()A .13B .14C .19D .128.如图,在矩形ABCD 中,BC AB <,折叠矩形ABCD 使点B 与点D 重合,点C 与点E 重合,折痕与AB 、CD 相交于点M 、N ,若2AM =,8CD =,则MN =()A .B .C .D9.如图,在正方形ABCD 中,点E 、F 分别是BC 、CD 的中点,DE 、AF 交于点G ,连接BG .若DAF n ∠=︒,则ABG ∠的度数为()A .2n ︒B .90n ︒-︒C .45n ︒+︒D .1353n ︒-︒10.在同一直角坐标系中,一次函数y kx k =-与反比例函数ky x=(k≠0)的图象大致是A .B .C .D .二、填空题11.关于x 的一元二次方程2620kx x +-=有两个实数根,则k 的取值范围是______.12.在菱形ABCD 中,对角线6BD =,8AC =,则菱形ABCD 的周长为______.13.将方程22490x x --=配方成()2x m n +=的形式为______.14.在平面直角坐标系中,△ABC 的顶点A 的坐标为()6,4,以原点O 为位似中心,把△ABC 缩小为原来的12,得到A B C '''V ,则点A 的对应点A '的坐标为______.15.在反比例函数21a y x +=的图像上有()14,A y -,()23,B y -,()32,C y 三个点,则1y ,2y ,3y 的大小关系为______.16.如图,在平面直角坐标系中,△ABO 边AB 平行于y 轴,反比例函数(0)k y x x=>的图像经过OA 中点C 和点B ,且△OAB 的面积为9,则k=________17.如图,在矩形ABCD 中,AB =BC =ABM ,使AM AB =,点E 、点F 分别为BC 、BM 的中点,若15ABM S =V ,则EF =______.18.如图,以▱ABCO 的顶点O 为原点,边OC 所在直线为x 轴,建立平面直角坐标系,顶点A 、C 的坐标分别是(2,4)、(3,0),过点A 的反比例函数y=kx的图象交BC 于D ,连接AD ,则四边形AOCD 的面积是_____.三、解答题19.解方程:(1)解方程:267x x -=;(2)()()22231x x -=-.20.一个不透明的箱子里装有4个小球,小球上面分别写有A 、B 、C 、D ,每个小球除标记外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球.(1)求摸到小球A 的概率是______;(2)现从该箱子里摸出1个小球,记下标记后放回箱子里,摇匀后,再摸出1个小球,请用画树状图或列表格的方法,求出两次摸出的小球都不是A 的概率.21.如图,菱形ABCD 的对角线AC 和BD 相交于点O ,DE AB ⊥于点E 交AC 于点P ,BF CD ⊥于点F .(1)判断四边形DEBF 的形状,并说明理由;(2)如果3BE =,6BF =,求出DP 的长.22.如图,身高1.5米的李强站在A 处,路灯底部O 到A 的距离为20米,此时李强的影长5AD =米,李强沿AO 所在直线行走12米到达B 处.(1)请在图中画出表示路灯高的线段和李强在B 处时影长的线段;(2)请求出路灯的高度和李强在B 处的影长.23.某商场销售一种服装,每件服装的进价为40元,当每件售价为60元时,每星期可卖出300件,为了尽快减少库存,该商场决定降价销售,经市场调查发现,当每件降价1元时,每星期可多卖出20件.设每件服装的售价为x 元,每星期销售量为y 件.(1)求y 与x 的函数关系式;(2)当每件服装售价为多少元时,每星期可获得6000元销售利润?24.如图,反比例函数11k y x=(0k ≠,0x <)的图象与直线22y k x b =+()20k ≠交于()2,6A -和()6,B n -,该函数关于x 轴对称后的图象经过点()4,C m -.(1)求1y 和2y 的解析式及m 值;(2)根据图象直接写出12k k x b x≥+时x 的取值范围;(3)点M 是x 轴上一动点,求当AM MC -取得最大值时M 的坐标.25.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,AE BC ⊥交CB 延长线于E ,CF AE ∥交AD 延长线于点F .(1)求证:四边形AECF 是矩形;(2)若4AE =,5AD =,求OB 的长.26.如图,已知点()4,2A -、(),4B n -两点是一次函数y kx b =+的图象与反比例函数图象my x=的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出不等式0kkx b x+->的解集;(3)求△AOB 的面积.27.在△ABC 中,90ACB ∠=︒,60ABC ∠=︒,点D 是直线AB 上一动点,以CD 为边,在它右侧作等边△CDE .(1)如图1,当E 在边AC 上时,直接判断线段DE ,EA 的数量关系______;(2)如图2,在点D 运动的同时,过点A 作AF CE ∥,过点C 作CF AE ∥,两线交于点F ,判断四边形AECF 形状,并说明理由;(3)若263BC =,当四边形AECF 为正方形时,直接写出AD 的值.参考答案1.B 2.B3.D 4.A 5.C 6.D 7.C 8.B 9.A 10.A 11.92k ≥-且0k ≠【分析】根据一元二次方程的定义以及根的判别式的意义可得Δ=22-4=6-4(2)0b ac k ⨯-≥且k≠0,求出k 的取值范围即可.【详解】解:∵一元二次方程2620kx x +-=有两个实数根,∴22Δ=-4=6-4(2)00b ac k k ≠⎧⨯-≥⎨⎩,∴92k ≥-且0k ≠,故答案为:92k ≥-且0k ≠.12.20【分析】菱形的对角线性质:菱形的对角线互相垂直平分且平分每一组对角.根据菱形对角线的性质和勾股定理可得边长为5,再根据菱形的性质:四边相等,可得周长为20.【详解】 菱形的对角线互相垂直平分,∴5=∴菱形ABCD 的周长=45=20⨯故答案为20.13.()21112x -=【分析】先将-9移到等号右边变成2249x x -=,然后等号左右两边同时除以2得到2922x x -=,最后等号左右两边同时加上1,再把左边变成完全平方的形式即可.【详解】解:22490x x --=2249x x -=2922x x -=292112x x -+=+()21112x -=故答案为:()21112x -=【点睛】本题考查了一元二次方程的配方,掌握如何配方是解题关键.14.()3,2或()3,2--【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -,即可求得答案.【详解】解:ABC ∆ 的顶点(6,4)A ,以原点O 为位似中心,把ABC ∆缩小为原来的12,得到△A B C ''',∴点A 的对应点A '的坐标为1(62⨯,142⨯或1[6()2⨯-,14()]2⨯-,即(3,2)或(-3,-2).故答案为:(3,2)或(-3,-2).【点睛】此题主要考查了位似变换,解题的关键是正确掌握位似图形的性质.15.312y y y >>【分析】先由21a +得到函数在第一象限和第三象限的函数值随x 的增大而减小,然后即可得到1y ,2y ,3y 的大小关系.【详解】解:21a + 210a +> ,∴反比例函数在第一象限和第三象限的函数值随x 的增大而减小,4302-<-<< ,312y y y ∴>>(或213y y y <<).故答案为:312y y y >>或213y y y <<.16.6【分析】延长AB 交x 轴于D ,根据反比例函数k y x =(x >0)的图象经过点B ,设B k m m ⎛⎫ ⎪⎝⎭,,则OD =m ,根据△OAB 的面积为9,列等式可表示AB 的长,表示点A 的坐标,根据线段中点坐标公式可得C 的坐标,从而得出结论.【详解】解:延长AB 交x 轴于D ,如图所示:∵AB y ∥轴,∴AD ⊥x 轴,∵反比例函数ky x=(x >0)的图像经过OA 中点C 和点B ,∴设B k m m ⎛⎫⎪⎝⎭,,则OD =m ,∵△OAB 的面积为9,∴192AB OD ⋅=,即12AB•m =9,∴AB =18m ,∴A (m ,18k m+),∵C 是OA 的中点,∴C 11822k m m +⎛⎫ ⎪⎝⎭,,∴11822k k m m+=⋅,∴k =6,故答案为:6.17.1或5【分析】过点M 作GH AB ∥,交直线AD 于点G ,交直线BC 于点H ,由15ABMS =V ,可求得AG 、BH 长,进而由BC =CH 长,然后由AM AB ==,求得GM 和HM 长,再用勾股定理求得CM 长,最后由点E 、点F 分别为BC 、BM 的中点利用中位线性质求得EF 长.【详解】过点M 作GH AB ∥,交直线AD 于点G ,交直线BC 于点H ,则四边形ABHG 是矩形.①如图1所示,当点M 在矩形ABCD 内部时,∵11521522ABMS AB AG AG =⋅=⨯⨯=V ∴32AG BH ==∴()()2222523242GM AM AG =-=-=∴42322CH =-=,52422MH =-=∴()()2222222CM MH CH =+=+=∵点E 、点F 分别为BC 、BM 的中点∴EF 是BCM 的中位线,∴112122EF CM ==⨯=如图2所示,当点M 在直线AD 右侧,直线AB 下方时,由①得32AG BH ==,42GM =2MH =12EF CM =∴2322CH BC BH =+==∴()()222227210CM MH CH =++=∴152EF CM ==如图3所示,当点M 在直线AD 左侧,直线AB 上方时,由①得32AG BH ==,42GM =,2CH =,12EF CM =∵425292MH MG GH =+=+=∴()()2222922241CM MH CH =+=+=∴1412EF CM ==如图4所示,当点M 在直线AD 左侧,在直线AB 下方时,由②得2CH =由③得2MH =∴()()22227292265CM MH CH ++=∴1652EF CM ==故本题答案为1或54165【点睛】本题考查了矩形的性质、等腰三角形的性质、勾股定理、三角形中位线等知识点,利用分类讨论的思想正确的作出各种情况所对应的图形是解答本题的关键.18.9【详解】试题分析:∵四边形ABCD 是平行四边形,A 、C 的坐标分别是(2,4)、(3,0),∴点B 的坐标为:(5,4),把点A (2,4)代入反比例函数ky x=得:k=8,∴反比例函数的解析式为:8y x=;设直线BC 的解析式为:y kx b =+,把点B (5,4),C (3,0)代入得:54{30k b k b +=+=,解得:k=2,b=﹣6,∴直线BC 的解析式为:26y x =-,解方程组26{8y x y x=-=得:42x y =⎧⎨=⎩,或1{8x y =-=-(不合题意,舍去),∴点D 的坐标为:(4,2),即D 为BC 的中点,∴△ABD 的面积=14平行四边形ABCD 的面积,∴四边形AOCD 的面积=平行四边形ABCO 的面积﹣△ABD 的面积=3×4﹣14×3×4=9;故答案为9.考点:1.平行四边形的性质;2.反比例函数系数k 的几何意义;3.综合题;4.压轴题.19.(1)11x =-,27x =(2)134x =,212x =-【分析】(1)用公式法求解即可;(2)按照因式分解法的步骤:等式的右边化为0,左边因式分解,写成两个一元一次方程,分别求解即可.(1)解:2670--x x =,∵1a =6b =-7c =-,∴243628640b ac -=+=>,∴46822b x a -±==,∴11x =-,27x =;(2)解:()()222310x x ---=,()()2312310x x x x -+---+=,∴()430x -=或()210x --=,∴134x =,212x =-.【点睛】本题考查了一元二次方程的解法,熟练掌握解一元二次方程的方法是解题的关键.20.(1)14(2)916【分析】(1)共有4个小球,其中A 只有1个,因此随机摸出1球,是A 的概率为14;(2)用列表法列举出所有可能出现的结果,进而求出相应的概率即可.(1)解:一共有4个小球,其中写A 的只有1个,所以随机摸出1球,摸到小球A 的概率是14,故答案为:14;(2)解:用列表法表示所有可能出现的结果如下:ABCDA ()A A ,()AB ,()AC ,()AD ,B ()B A ,()B B ,()BC ,()BD ,C ()C A ,()C B ,()C C ,()C D ,D()D A ,()D B ,()D C ,()D D ,由表可知共有16种结果,每种结果出现的可能性相同,其中两次摸出的球不是A 的结果有9种∴两次摸出的小球没有A 的概率为916【点睛】本题考查列表法或树状图法求随机事件的概率,列举出所有可能出现的结果的情况是解决问题的关键.21.(1)矩形,理由见解析(2)154【分析】(1)根据菱形的性质和矩形的判定方法即可解答;(2)根据菱形的性质得到PB PD =,根据矩形的性质得到6DE FB ==,进而利用勾股定理即可解答.(1)四边形DEBF 是矩形理由:∵DE AB ⊥于E ,BF CD ⊥于F ,∴90DEB BFD ∠=∠=︒,∵四边形ABCD 是菱形,∴AB CD ∥,∴180DEB EDF ∠+∠=︒,∴90EDF DEB BFD ∠=∠=∠=︒,∴四边形DEBF 是矩形;(2)如图,连接PB ,∵四边形ABCD 是菱形,∴AC 垂直平分BD ,∴PB PD =,由(1)知,四边形DEBF 是矩形,∴6DE FB ==,设PD BP x ==,则()6PE x =-,在Rt △PEB 中,由勾股定理得:222PE BE BP +=,即,()22263x x -+=,解得154x =,∴154PD =.22.(1)见解析(2)路灯高度为7.5米,李强影长2米【分析】(1)利用中心投影的性质画出图形即可;(2)设HO x =米,由证得AED OHD ∽△△得AD AEDO HO=求出HO 的值,再证明FBC HOC ∽△△得到BC BFCO HO=,从而求解.(1)解:如图HO ,BC 即为所求(2)解:由题意知:1.5BF AE ==米,20OA =米,12AB =米,∴20128BO OA AB =-=-=米设HO x =米∵90HOA EAD ∠=∠=︒又∵D D ∠=∠∴AED OHD ∽△△∴AD AEDO HO =即1.5525x =解得,7.5x =∵90FBC HOD ∠=∠=︒又∵FCB FCO ∠=∠∴FBC HOC ∽△△∴BC BFCO HO =即1.587.5BC BC =+解得2BC =答:路灯高度为7.5米,BC 长2米23.(1)201500y x =-+(2)55元【分析】(1)根据当每件售价为60元时,每星期可卖出300件,当每件降价1元时,每星期可多卖出20件,列出关系式即可;(2)根据利润=(售价-进价)×数量列出方程求解即可.(1)解:由题意得:()3002060y x =+-201500x =-+(2)解:由题意得,()()201500406000x x -+-=整理,得211533000x x -+=,解得155x =,260x =(不合题意舍).答:当每件售价55元时,每星期可获得6000元销售利润.24.(1)112y x-=,28y x =+,3m =-(2)20x -≤<或6x ≤-(3)()6,0-【分析】(1)根据点A 坐标可求出1y ,即可得点B 坐标,由A 、B 两点的坐标可得2y 的函数表达式;(2)根据题意,可知要求使得反比例函数1y 在直线2y 的上方,所对应的x 的范围(3)点C 关于x 轴的对称点为()4,3F -,当点A 、F 、M 共线时,可得AM MC -最大,故点M 为直线AF 与x 轴的交点坐标.(1)∵图象过点()2,6A -,∴162k =,得112k =-,∴112y x-=;把点()6,B n -代入112y x-=中得126n -=-,∴2n =,点B 为()6,2-,∵12y k x b =+过点A ,B ,∴把()2,6A -和()6,2B -代入得2662k b k b -+=⎧⎨-+=⎩,解得18k b =⎧⎨=⎩,∴28y x =+易知()4,C m -关于x 轴对称点()4,F m --在12y x-=图象上,∴124m --=-∴3m =-;(2)由图象得20x -≤<或6x ≤-;(3)由(1)得,()2,6A -,()4,3C --,点C 关于x 轴的对称点为()4,3F -,射线AF 交x 轴于点M ,设AF 的解析式为y kx b =+,把()2,6A -,()4,3F -分别代入y kx b =+中,2643k b k b -+=⎧⎨-+=⎩,解得329k b ⎧=⎪⎨⎪=⎩,∴AF 的解析式为392y x =+,令0y =,则6x =-,∴当AM MC -最大时M 的坐标为(6,0)-.25.(1)证明见详解;5【分析】(1)根据菱形的性质;矩形的判定:有一个角是直角的平行四边形是矩形便可求证;(2)根据菱形的性质,在Rt △AEB ,Rt △AEC ,Rt △AOB 中分别利用勾股定理即可求出OB 的长;(1)证明:∵四边形ABCD 是菱形,∴AD ∥BC ,∴AF ∥EC ,∵AE ∥CF ,∴四边形AECF 是平行四边形,∵AE ⊥BC∴∠AEC=90°,∴平行四边形AECF 是矩形;(2)解:四边形ABCD 是菱形,则AB=BC=AD=5,线段AC ,BD 互相垂直平分,Rt △AEB 中,由勾股定理得3==,Rt △AEC 中,CE=CB +BE=5+3=8,==,Rt △AOB 中,AO=12AC=,故OB 26.(1)2yx =--;8y x=-(2)4x <-或02x <<(3)6-【分析】(1)把()4,2A -代入反比例函数my x=得出m 的值,再把AB 、代入一次函数的解析式y kx b =+,运用待定系数法分别求其解析式;(2)观察函数图象得到当4x <-或02x <<时,一次函数的图象在反比例函数图象上方,即0kkx b x+->.(3)先求出直线2y x =--与x 轴交点C 的坐标,然后利用S △AOB=S △AOC+S △BOC 进行计算即可;(1)解:∵()4,2A -在my x=上,∴m=-8.∴反比例函数的解析式为8y x=-.∵点(),4B n -在8y x=-上,∴n=2.∴()2,4B -.∵y=kx+b 经过A (-4,2),B (2,-4),∴4224k b k b -+=⎧⎨+=-⎩.解得:12k b =-⎧⎨=-⎩.∴一次函数的解析式为2y x =--.(2)解:根据题意,结合图像可知:当4x <-或02x <<时,一次函数的图象在反比例函数图象上方,即0kkx b x+->.(3)解:∵2yx =--,∴当y=0时,x=-2.∴点C (-2,0).∴OC=2.∴S △AOB=S △ACO+S △BCO=12×2×4+12×2×2=6;27.(1)相等(2)菱形,理由见解析【分析】(1)根据已知条件证明30ADE A ∠=︒=∠即可解答(2)根据已知条件可知四边形AECF 是平行四边形,再证明BCD OCE ≌△△,()OCE OAE SAS ≌△△即可解答(3)分点D 在AB 延长线上或在AB 上,通过解CDA 即可(1)∵90ACB ∠=︒,60ABC ∠=︒∴30A ∠=︒∵CDE △为等边三角形∴60DEC ∠=︒∵DEC ∠是ADE 外角∴DEC A ADE∠=∠+∠∴30ADE A∠=︒=∠∴DE EA=故答案为相等.(2)取AB 中点O ,连接OC 、OE∵AF CE ∥,CF AE∥∴四边形AECF 是平行四边形∵90ACB ∠=︒∴OC OB OA==∵60ABC ∠=︒∴△BCO 为等边三角形∵△CDE 是等边三角形∴60DCB OCE DCO∠=∠=︒-∠∴OC BC =CD CE=∴BCD OCE≌△△∴60EOC B ∠=∠=︒∴60EOA ∠=︒又∵OE OE =,OA OC=∴()OCE OAE SAS ≌△△∴CE EA=∴平行四边形AECF 是菱形(3)当点D 在AB 延长线上时,作CH AD ⊥于H ,当四边形AECF 为正方形时,45ACE BCE ∠=∠=︒,90AEC ∠=︒∵60DCE ∠=︒∴15DCB ∠=︒∵60ABC ∠=︒∴45CDH ∠=︒∵63BC =∴322AC ==∴122CH AC ==∴36AH =∵CDE △为等边三角形∴2CH DH ==∴62AD =当点D 在AB 上时作CH AB ⊥于H ,同理可得CDH △是等腰直角三角形,则AD AH DH=-综上AD=。
九年级上学期期末考试数学试卷(附答案)
![九年级上学期期末考试数学试卷(附答案)](https://img.taocdn.com/s3/m/f65bd1a3a1116c175f0e7cd184254b35eefd1afe.png)
九年级上学期期末考试数学试卷(附答案)一.单选题。
(每小题4分,共40分)1.﹣5的相反数是()A.15B.﹣15C.5D.﹣52.如图是一根空心方管,它的左视图是()A. B. C. D.3.一个数是8600,这个数用科学计数法表示8600为()A.8.6×102B.8.6×103C.86×102D.0.86×1044.下列各式计算正确的是()A.3x+3y=6xyB.4xy2-5xy2=﹣1C.﹣2(x-3)=﹣2x+6D.2a+a=3a25.把20个除颜色外完全相同的小球,放在一个不透明的盒子中,其中有m个白球,做大量重复试验,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子里,最终发现摸到白球的频率稳定在35%左右,则m的值大约是()A.7B.8C.9D.106.关于菱形一定具有的性质,下列说法错误的是()A.对角线互相平分B.对角线互相垂直C.邻边相等D.对角线相等7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,下列关系正确的是()A.sinA=BCAC B.tanB=ACABC.cosA=CDACD.sinB=CDBC(第7题图)(第8题图)(第9题图)8.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,AC⊥x轴于点C,BD⊥x轴于点D,连接OA ,BC ,若点C (1,0),BD=2,△BCD 面积为3,则△AOC 的面积是( ) A.2 B.3 C.4 D.59.如图,已知点C ,D 是以AB 为直径的半圆O 的三等分点,圆的半径为1,则图中阴影部分面积是( )A.16π B.316π C.124π D.112π+√3410.如图,二次函数y=ax 2+bx+c 的图象的顶点在第一象限,且过点(0,1)和(﹣1,0)下列结论:①ab >0,②b 2-4ac >0,③0<a+b+c <2,④0<b <1,⑤当y >﹣1时,x >0,其中正确结论个数是( )A.2个B.3个C.4个D.5个(第10题图)二.填空题。
完整版)初三上数学期末考试试卷含答案
![完整版)初三上数学期末考试试卷含答案](https://img.taocdn.com/s3/m/e40f43eecf2f0066f5335a8102d276a200296012.png)
完整版)初三上数学期末考试试卷含答案注意事项:1.本试卷共6页,全卷共三大题28小题,满分130分,考试时间120分钟;2.选择题部分必须使用2B铅笔填涂,填空题、解答题必须用黑色签字笔答题,答案填在答题卡相应的位置上;3.在草稿纸、试卷上答题无效;4.各题必须答在黑色答题框内,不得超出答题框。
一、选择题1.方程x(x+2)=0的解是A。
x=0 B。
x=2 C。
x=0或x=2 D。
x=0或x=-22.有一组数据:6,4,6,5,3,则这组数据的平均数、众数、中位数分别是A。
4.8,6,5 B。
5,5,5 C。
4.8,6,6 D。
5,6,53.将抛物线y=3x先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线对应的函数表达式是A。
y=3(x+2)+1 B。
y=3(x+2)-1 C。
y=3(x-2)+1 D。
y=3(x-2)-14.在Rt△ABC中,∠C=90°,BC=l,AC=2,那么cosB的值是A。
2 B。
5/12 C。
5/25 D。
5/245.若二次函数y=x^2-2x+k的图像经过点(-1,y1),(2,y2),则y1与y2的大小关系为A。
y1>y2 B。
y1=y2 C。
y1<y2 D。
不能确定6.某商店6月份的利润是4800元,8月份的利润达到6500元.设平均每月利润增长的百分率为x,可列方程为A。
4800(1-x)=6500 B。
4800(1+x)=6500 C。
6500(1-x)=4800 D。
4800+4800(1+x)+4800(1+x)=65007.二次函数y=ax^2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是A。
a>0 B。
当-10 C。
当x>3时,y<0 D。
当x=-1时,y=0注意事项:本试卷共6页,全卷共三大题28小题,满分130分,考试时间120分钟。
选择题部分需使用2B铅笔填涂,填空题和解答题需使用黑色签字笔作答,答案填在答题卡相应位置上。