2.2 第2课时 平方根1 省级一等奖教案(含反思)

合集下载

平方根教学反思

平方根教学反思

平方根教学反思1. 引言在教学过程中,平方根是一个重要的数学概念。

它是数学中的一个基础知识点,对学生的数学思维能力和解决问题的能力有着重要的影响。

本文将对平方根的教学进行反思,分析教学中存在的问题,并提出改进的建议。

2. 问题分析2.1 学生对平方根的理解不深入在教学中,发现学生对平方根的理解并不深入。

他们往往只是记住了平方根的定义和求解方法,而没有理解其背后的数学原理和思想。

这导致了学生在解决实际问题时缺乏创新性和灵活性。

2.2 缺乏实际问题的应用在教学中,平方根的应用往往只停留在数学课本中的抽象题目上,缺乏与实际生活的联系。

这使得学生很难将平方根的概念与实际问题相结合,从而限制了他们对平方根的理解和应用能力的发展。

2.3 缺乏足够的练习和巩固在教学中,平方根的练习和巩固环节相对较少。

学生往往只在课堂上进行一些简单的计算练习,而缺乏系统性的训练和巩固。

这导致了学生对平方根的理解和掌握程度不够,容易出现记忆遗忘和应用困难的情况。

3. 改进措施3.1 引导学生深入理解平方根的概念在教学中,应该注重引导学生深入理解平方根的概念。

可以通过实际问题的引入,让学生发现平方根的应用场景,从而激发他们的学习兴趣。

同时,可以引导学生思考平方根的数学原理和思想,培养他们的数学思维能力和解决问题的能力。

3.2 增加实际问题的应用在教学中,应该增加平方根的实际问题的应用。

可以通过生活中的例子,让学生将平方根的概念与实际问题相联系,培养他们的应用能力。

例如,可以引导学生计算建筑物的高度、电线杆的长度等实际问题,让他们明白平方根在测量和计算中的重要性。

3.3 加强练习和巩固环节在教学中,应该加强平方根的练习和巩固环节。

可以设计一系列的练习题,包括计算题、应用题等,让学生进行反复练习和巩固。

同时,可以提供一些拓展性的问题,让学生进行思考和探索,培养他们的创新能力和问题解决能力。

4. 教学实施在教学中,可以按照以下步骤进行实施:4.1 引入实际问题可以通过引入一些具体的实际问题,让学生认识到平方根的重要性和应用场景。

2.2平方根(2)教案

2.2平方根(2)教案

2.2 平方根( 2)教课目的: 知识与技术1、认识平方根的观点,会用根号表示一个数的平方根。

2 、会求一个正数的平方根。

3 、认识平方根和算术平方根的性质。

4 、认识乘方和开方是互逆运算,会利用这个互逆运算求某些非负数的算术平方根和平方根。

过程与方法经过回首算术平方根的相关知识,能正确地进行推理和判断,会求一个数和平方根。

感情与价值观1.激励学生踊跃参加教课活动,提升大家学习数学的热忱.2.指引学生充足进行沟通,议论与探究等教课活动,培育他们的合作与研究精神.教课要点:认识平方根和开平方的观点、性质,会用根号表示一个正数的算术平方根和平方根。

教课难点:平方根和算术平方根的差别。

负数没有平方根,即负数不可以进行开平方运算。

教课过程: 一、复习发问1、算术平方根的观点,任何一个有理数都有算术平方根吗?算术平方根有什么性质。

2、 9 的算术平方根是 ,3 的平方是,还有其余的数的平方是9 吗?二、讲解新课:1. 想想 平方等于4的数有几个?平方等于 0.64 的数呢?25学生活动:学生思虑,而后沟通,得出平方根的定义。

2. 教师活动:一般地,假如一个数x 的平方等于a ,即x 2a ,那么,这个数x 就叫做 a 的平方根。

也叫做二次方根。

3 和— 3 的平方都是 9,即9 的平方根有两个3 和— 3;9 的算术平方根只有—个,是3。

3. 学生活动:求出以下各数的平方根。

16,0, 4,— 25,9三、议一议:( 1)一个正数的有几个平方根? ( 2) 0 有几个平方根?( 3)负数呢? ★教师活动:一个正数有两个平方根, 0 只有一个平方根,它是0 自己;负数没有平方根。

☆学生活动:正数的两个平方根有什么关系吗?议论,沟通得出:一个正数a 有两个平方根,一个是a 的算术平方根, “a”,另一个是“a”,它们互为相反数。

这两个平方根合起来,能够记做“a ”,读作“正、负根号a ”。

开平方:求一个数a 的平方根的运算,叫做开平方。

八年级数学上册2.2平方根第2课时平方根教学设计 (新版北师大版)

八年级数学上册2.2平方根第2课时平方根教学设计 (新版北师大版)

八年级数学上册2.2平方根第2课时平方根教学设计(新版北师大版)一. 教材分析平方根是八年级数学上册第2.2节的内容,主要介绍了平方根的定义、性质和运算方法。

本节内容是学生进一步理解实数体系的重要环节,也为后续学习二次根式打下基础。

教材通过例题和练习,使学生掌握平方根的概念,能够熟练求一个数的平方根,并理解平方根的性质。

二. 学情分析八年级的学生已经学习了有理数、无理数等概念,对实数体系有了一定的了解。

但是,学生对于平方根的理解可能还存在困难,需要通过具体的例题和实践活动来加深理解。

同时,学生对于数学符号和公式的记忆还不够牢固,需要在教学中加强巩固。

三. 教学目标1.理解平方根的定义,掌握求一个数的平方根的方法。

2.理解平方根的性质,能够运用平方根解决实际问题。

3.培养学生的数学思维能力,提高学生的数学素养。

四. 教学重难点1.平方根的定义和求法。

2.平方根的性质。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索,通过案例分析和实践操作,使学生理解和掌握平方根的概念和性质,通过小组合作学习,培养学生的团队协作能力。

六. 教学准备1.PPT课件2.教学视频或案例七. 教学过程1.导入(5分钟)通过复习上节课的内容,引导学生回忆无理数的概念,为新课的学习做好铺垫。

2.呈现(15分钟)PPT展示平方根的定义和性质,通过讲解和例题,使学生理解平方根的概念,掌握求一个数的平方根的方法。

3.操练(15分钟)学生独立完成练习题,教师巡回指导,及时解答学生的疑问。

4.巩固(5分钟)学生分享解题心得,教师总结平方根的求法和性质,帮助学生巩固知识点。

5.拓展(5分钟)通过教学视频或案例,让学生了解平方根在实际生活中的应用,提高学生的数学素养。

6.小结(5分钟)教师引导学生总结本节课所学内容,加深对平方根的理解。

7.家庭作业(5分钟)布置适量作业,让学生巩固所学知识,提高解题能力。

北师大版八年级数学上册:2.2《平方根》教案

北师大版八年级数学上册:2.2《平方根》教案

北师大版八年级数学上册:2.2《平方根》教案一. 教材分析《平方根》是北师大版八年级数学上册第2章“实数与平方根”的第2节内容。

本节内容是在学生已经掌握了有理数、无理数的概念,以及算术平方根的基础上,进一步研究平方根的概念和性质。

通过本节内容的学习,学生能够理解平方根的定义,掌握求一个数的平方根的方法,以及了解平方根在实际生活中的应用。

二. 学情分析学生在学习本节内容之前,已经掌握了有理数、无理数的概念,以及算术平方根的知识。

但是,对于平方根的性质和求法,以及平方根在实际生活中的应用,可能还存在一定的困难。

因此,在教学过程中,需要结合学生的实际情况,逐步引导学生理解和掌握平方根的知识。

三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。

2.能够运用平方根的知识解决实际问题。

3.培养学生的逻辑思维能力和创新能力。

四. 教学重难点1.平方根的概念和性质。

2.求一个数的平方根的方法。

3.平方根在实际生活中的应用。

五. 教学方法1.情境教学法:通过生活实例,引导学生理解和掌握平方根的知识。

2.启发式教学法:通过提问和讨论,激发学生的思考,培养学生的创新能力。

3.实践操作法:通过实际操作,让学生掌握求一个数的平方根的方法。

六. 教学准备1.教学课件:制作平方根的概念、性质和求法的课件。

2.教学素材:准备一些实际问题,用于引导学生运用平方根的知识解决。

3.练习题:准备一些有关平方根的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如测量物体长度、计算土地面积等,引出平方根的概念。

提问:你们知道这些实例中涉及到的数学知识吗?2.呈现(10分钟)展示平方根的定义和性质,引导学生理解和掌握。

同时,介绍求一个数的平方根的方法,如:分解因式法、配方法等。

3.操练(10分钟)让学生分组讨论,互相练习求一个数的平方根。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些实际问题,让学生运用平方根的知识解决。

平方根教学设计(教案)

平方根教学设计(教案)

平方根教学设计(教案)第一章:平方根的引入1.1 平方根的概念解释平方根的定义通过实际例子说明平方根的概念1.2 平方根的性质探讨平方根的性质,如正数的平方根有两个等通过图形和实际例子来展示平方根的性质第二章:平方根的计算方法2.1 手算法介绍手算法计算平方根的方法通过实际例子演示手算法计算平方根的过程2.2 计算器法介绍如何使用计算器计算平方根通过实际例子演示计算器法计算平方根的过程第三章:平方根的应用3.1 实际问题解决通过实际问题引入平方根的应用引导学生运用平方根的性质和计算方法解决问题3.2 平方根在科学和工程中的应用介绍平方根在科学和工程中的常见应用通过实际例子展示平方根在科学和工程中的重要性第四章:平方根的性质和判定4.1 平方根的性质探讨平方根的性质,如正数的平方根有两个等通过图形和实际例子来展示平方根的性质4.2 平方根的判定介绍如何判定一个数的平方根通过实际例子演示如何判定一个数的平方根第五章:平方根的综合练习5.1 练习题提供一些有关平方根的练习题引导学生通过运用平方根的性质和计算方法来解决练习题5.2 应用题提供一些有关平方根应用的题目引导学生通过运用平方根的性质和计算方法来解决应用题第六章:平方根的图像6.1 平方根的图像特点解释平方根函数的图像特点通过图形展示平方根函数的图像特点6.2 利用图像求解平方根介绍如何利用平方根函数的图像来求解平方根通过实际例子演示如何利用图像求解平方根第七章:平方根的性质和定理7.1 平方根的性质探讨平方根的性质,如正数的平方根有两个等通过图形和实际例子来展示平方根的性质7.2 平方根的定理介绍与平方根相关的定理,如平方根的乘积等于原数的乘积等通过实际例子来展示平方根的定理第八章:平方根在代数中的应用8.1 平方根在解方程中的应用介绍平方根在解方程中的应用通过实际例子演示如何利用平方根来解方程8.2 平方根在证明中的应用介绍平方根在证明中的应用通过实际例子演示如何利用平方根来证明代数式第九章:平方根在实际生活中的应用9.1 平方根在几何中的应用介绍平方根在几何中的应用,如求解三角形的面积等通过实际例子展示平方根在几何中的应用9.2 平方根在其他领域中的应用介绍平方根在其他领域中的应用,如物理学、经济学等通过实际例子展示平方根在其他领域中的应用第十章:平方根的综合练习与拓展10.1 综合练习题提供一些有关平方根的综合练习题引导学生通过运用平方根的性质、计算方法和图像来解决练习题10.2 拓展题目提供一些有关平方根的拓展题目引导学生通过运用平方根的知识来解决拓展题目,提高学生的思维能力重点和难点解析六、平方根的图像:理解平方根函数的图像特点对于学生来说是一个难点,因为它涉及到函数图像的直观理解和数学概念的结合。

“同课异构”优质优质课获奖教案《平方根》word教案(部优)

“同课异构”优质优质课获奖教案《平方根》word教案(部优)

本课的设计初衷,是为全体学生的共同提高。

作为教师要充分保护好孩子的自信心,只有孩子们有了自信,才有可能持续保持对某些事物的兴趣和热情。

“失败是成功之母”应该改为“成功是成功之母”,特别是在孩子刚开始对某些事物倾注热情和精力的时候,对他们自信心的保护至关重要。

所以强烈建议平时的测验应在学目标范围内尽可能的简单,最大限度的保持孩子的自尊心和自信心。

正所谓“大道至简”,在保证教学目标实现的情况下,教师的课堂要设计的简便扼要,要把较难的、复杂的问题、深刻的问题讲的轻松自然,诙谐幽默,像涓涓细流,于无声中浸润学生的思维。

本课在单元中,属于承上而启下的教学内容。

平方根(第二课时)一、教材分析本节是平方根的第二课时,主要通过数学问题引入算术平方根的概念,为二次根式的运算打下基础。

二、学情分析学生已经对平方根的相关概念有了一定的认识,所以在理解本节课内容时难度不大,在教学中重点关注学生对平方根与算术平方根关系的理解。

三、教学目标1、了解并掌握算术平方根的概念,掌握其表示方法及求法。

2、灵活运用算术平方根解决实际问题。

四、重点、难点重点:算术平方根的概念,会求一个非负数的算术平方根.难点:平方根与算术平方根的区别与联系.五、教学设计教学环节教学活动设计设计意图说明创设问题情境判断下列各数是否有平方根,若有请写出25,-9,1625, 7, 10-2回顾上节课平方根相关知识,为本节课的学习打下基础算术平方根的定义由此引入:一个正数的正的平方根,叫做这个数的算术平方根。

规定:0的算术平方根等于0想一想:正数a的算术平方根与0的大小关系?引出算术平方根的概念例题解析求下列各数的算术平方根:(1)36;(2)0.01;(3)449;(4)(-16)2巩固算术平方根的定义,以及表示方法归纳与反思若a为正数,那么a的平方根应怎样表示,a的算术平方根又应该如何表示?例题解析求下列各式的值1.69 ,-625 ,±8125,-()172-进一步理解平方根与算术平方根的联系与区别归纳与反思± a , a ,- a 分别表示什么意义。

2.2第2课时平方根2-2021-2022学年八年级上册初二数学(教案)(北师大版)

2.2第2课时平方根2-2021-2022学年八年级上册初二数学(教案)(北师大版)
此外,在实践活动和小组讨论环节,我注意到有的同学参与度不高,可能是由于他们对平方根的知识掌握不够牢固,导致在讨论中不敢发表自己的观点。针对这个问题,我打算在接下来的课程中,多关注这些同学,鼓励他们积极参与,并及时给予指导和鼓励。
在教学方法上,我觉得可以尝试更多元化的教学手段。例如,利用信息技术手段,通过动画、视频等展示平方根的求解过程,让同学们更直观地理解。同时,可以增加一些互动环节,如小组竞赛、抢答等,激发同学们的学习兴趣。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平方根的基本概念。平方根是一个数乘以自身得到另一个数的运算结果。它是解决几何计算和物理问题中非常重要的一环。
2.案例分析:接下来,我们来看一个具体的案例。比如,计算一个边长为2米的正方形的面积,我们可以通过求2的平方根来得到答案。
3.重点难点解析:在讲授过程中,我会特别强调平方根的定义和求解方法这两个重点。对于难点部分,如平方根的双重性和非完全平方数的求解,我会通过举例和比较来帮助大家理解。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平方根的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对平方根的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学过程中,我注意到同学们对平方根的概念和性质有了初步的理解,但在具体应用方面还存在一些困难。我尝试通过实例和实验操作来帮助大家更好地掌握平方根的知识,以下是我对今天教学的一些思考:
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平方根在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

北师大版八年级数学上册:2.2《平方根》教学设计

北师大版八年级数学上册:2.2《平方根》教学设计

北师大版八年级数学上册:2.2《平方根》教学设计一. 教材分析《平方根》是北师大版八年级数学上册第二章第二节的内容。

本节内容是在学生已经掌握了有理数的乘方、算术平方根的基础上,进一步引导学生探索平方根的概念,理解平方根与算术平方根的联系和区别,以及掌握平方根的运算方法。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于有理数的乘方、算术平方根等概念有一定的了解。

但是,学生对于平方根的理解可能会存在一定的困难,因此需要通过实例来帮助学生直观地理解平方根的概念。

三. 教学目标1.理解平方根的概念,掌握平方根的运算方法。

2.能够运用平方根的概念解决实际问题。

3.培养学生的数学思维能力,提高学生的数学素养。

四. 教学重难点1.重点:平方根的概念,平方根的运算方法。

2.难点:平方根与算术平方根的联系和区别。

五. 教学方法采用讲授法、引导发现法、实践操作法、小组合作交流法等,结合多媒体教学手段,以学生为主体,教师为指导,引导学生自主探索、合作交流,从而达到理解平方根的概念,掌握平方根的运算方法。

六. 教学准备1.教学课件:制作平方根的教学课件,包括平方根的定义、例题、练习等。

2.教学素材:准备一些有关平方根的实际问题,以及一些关于平方根的图片素材。

3.教学工具:准备黑板、粉笔、投影仪等教学工具。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如:“一个正方形的边长是6厘米,求它的面积。

”让学生思考如何求解这个问题。

2.呈现(10分钟)引导学生回顾算术平方根的定义,然后给出平方根的定义:“一个非负数x的平方根是另一个非负数y,使得y²=x。

”接着,通过PPT展示一些平方根的例子,让学生观察、思考,加深对平方根的理解。

3.操练(10分钟)让学生自主完成一些关于平方根的练习题,如:求下列各数的平方根:(1)4;(2)-4;(3)9;(4)-9。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生分组讨论,总结平方根的运算方法,以及平方根与算术平方根的联系和区别。

2022秋八年级数学上册第二章实数2.2平方根1算术平方根教案新版北师大版

2022秋八年级数学上册第二章实数2.2平方根1算术平方根教案新版北师大版

2.2.1 算术平方根一、学生起点分析学生的知识技能基础:学生刚学完《勾股定理》,通过本章第一节的学习,已具备了对无理数的认识,知道只有有理数是不够的.学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能.学生活动经验基础:在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析本节课是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》的第二节《平方根》.本节内容计2个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学.课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性,因此确定本节的教学目标如下:①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质.②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识.③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.三、教学过程设计本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:问题情境 初步探究 反馈练习 学习小结 作业布置 深入探究=2x ,=2y ,=2z ,=2w .目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.第二环节:初步探究内容1:情境引出新概念22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗? 目的:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.目的:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的. 内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=;(2)因为112=,所以1的算术平方根是1,即11=;(3)因为6449)87(2=,所以 6449的算术平方根是87, 即876449=;(4)14的算术平方根是14. 内容4:回解课堂引入问题 22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .第三环节:深入探究内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将29.4t h =进行变形,再用求算术平方根的方法求得题目的解.解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数24==t (秒).即铁球到达地面需要2秒.说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的. 内容2:观察我们刚才求出的算术平方根有什么特点.目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根. 第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是 ;2.9的算术平方根是 ;3.2)32(的算术平方根是 ;4.若22=+m ,则=+2)2(m . 二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(. 三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3;3.32;4.16;二、6;1211;15;0.8;210-;15;1. 三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在R t △ABC 中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是10米.目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3四、教学设计反思1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,”的“正数x ”,即被开方数是正的,由平方的意义,a 也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示.“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用.2.发展思维、适度拓展 在教学中,根据学生的实际情况,在学有余力的情况下,可以对a 的双重非负性的知识进行适当的拓展.。

北师大版八年级上册数学2.2《平方根》(2)(教案)

北师大版八年级上册数学2.2《平方根》(2)(教案)

北师大版八年级上册数学2.2《平方根》(2)(教案)2.2平方根(2)教学目标知识与技能1、了解平方根的概念,会用根号表示一个非负数的平方根。

2、了解平方根和算术平方根的性质。

3、了解乘方和开方是互逆运算,会利用这个互逆运算求某些非负数的算术平方根和平方根。

过程与方法通过回顾算术平方根的有关知识,能正确地进行推理和判断,会求一个非负数的平方根。

情感与价值观1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.重点难点重点:了解平方根和开平方的概念、性质,会用根号表示一个非负数的平方根。

难点:1.开方与乘方是互逆的运算,会利用这个互逆的关系求某些非负数的平方根. 2.2a =a (a ≥0)和2a =|a |的区别和联系.教学过程【情境导入】前面我们学习算术平方根,知道9的算术平方根是3,根据七年级我们学过的平方的意义,-3的平方也是9,也就是说,平方为9的数有两个:3和-3.一个正数a 的算术平方根有一个,通过进一步的思考知道平方为a 的数有两个,另外一个我们也不能把它给丢了,今天再学习一个平方根的概念.【新知构建】一、共同探究 展示教材P27“想一想” (1)9的算术平方根是3,也就是说,3的平方是9.还有其他的数,它的平方也是9吗?(2)平方等于254的数有几个?平方等于0.64的数呢?学生活动:学生思考,然后交流,得出平方根的定义。

平方根的概念:一般地,如果一个数x 的平方等于a ,即a x 2,那么,这个数x 就叫做a 的平方根。

也叫做二次方根。

举例:3和-3的平方都是9,即9的平方根有两个3和—3;9的算术平方根只有—个,是3。

平方根的性质:一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根. 正数的两个平方根有什么关系吗?讨论,交流得出:正数a 有两个平方根,一个是a 的算术平方根a ,另一个是-a ,它们互为相反数.这两个平方根合起来可以记作±a ,读作“正、负根号a ”.开平方:求一个数a 的平方根的运算,叫做开平方,a 叫做被开方数.归纳总结:平方根与算术平方根的联系与区别联系:1.包含关系:平方根包含算术平方根,算术平方根是平方根的一种.2.只有非负数才有平方根和算术平方根.3.0的平方根是0,算术平方根也是0.区别:1.个数不同:一个正数有两个平方根,但只有一个算术平方根.2.表示法不同:一个正数a 的平方根表示为 ±a ,而算术平方根表示为a .二、例题讲解1.展示教材第28页例3求下列各数的平方根.(1)64; (2)12149; (3)0.0004; (4)(-25)2; (5) 11. 解:(1)因为(±8)2=64,所以64的平方根是±8,即±64=±8.(2)因为2117⎪⎭⎫ ⎝⎛±=12149,所以12149的平方根是±117,即±12149 =±117. (3)因为(±0.02)2=0.0004,所以0.0004的平方根是±0.02,即±0004.0=±0.02. (4)因为(±25)2=(-25)2,所以(-25)2的平方根是±25, 即±()225-=±25.(5)11的平方根是±11.2.展示教材P28“想一想”师生互动,讨论交流得出:a a a ()(=2≥0) 【课堂小结】1.平方根的概念:若x 2=a ,则x 叫做a 的平方根,x =±.2.平方根的个数:正数有2个平方根,0的平方根是0,负数没有平方根.3.平方与开平方之间的关系.4.求平方根的方法:求一个数的平方根就是转化为寻找哪个数的平方等于这个数.【课后作业】教材第29页随堂练习第1,2题,教材第29页习题2.4. ()()等于多少?对于正数等于多少?等于多少?等于多少?2222)3(2.7)2(12149)64)(1(a a ,⎪⎪⎭⎫ ⎝⎛。

部编人教版数学七年级下册《平方根》省优质课一等奖教案

部编人教版数学七年级下册《平方根》省优质课一等奖教案

《平方根》教学设计教学设计思想:平方根及算术平方根是两个重要的概念,是全章的教学重点.学生对平方根及算术平方根的概念常常混淆,因此,在教学中引导学生真正理解这两个概念的本质是什么,并能分清它们的区别与联系,这是两节课的主要教学目标.在教学设计中,力求在以下两方面突出特点:1.引导学生建立清晰的概念系统,首先在第1课进要求学生正确理解平方根的概念的意义和平方根的表示法;其次在第2课时专门讨论算术平方根的概念及其表示.对于a表示a的算术平方根的条件是,被开方数a表示非负数,而a本身也表示非负数,因此在教学中不能要求学生死记硬背,要向学生说明规定的合理性.为此,提出算术平方根的一种几何解释,即面积为a的正方形(a为正数),它的边长为a(a 也是正数),从而直观、形象地说明了算术平方根约定的合理性.2.编选了有针对性的、有梯度的、形式多样的课堂练习题,让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到自己原有的认知结构中.教学目标:知识与技能:1.能说出平方根和算术平方根的概念,会用根号表示一个数的平方根。

2.知道开平方与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的平方根。

3表示的是非负数a的平方根。

过程与方法:1.通过对比体会平方根、算术平方根的联系和区别;12.在学习开平方运算求一个数的平方根、算术平方根的过程中,体会开平方运算与平方运算之间的互逆关系.情感态度价值观:进一步感受到所学数学知识之间的内在联系.教学重难点:重点:平方根和算术平方根的概念和求法.难点:弄清平方根与算术平方根的意义教学过程:2互学二、问题探究,学习新知探究一:2有多大呢?问题:(1)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?(2)你知道这个大正方形的边长是多少吗?(3)小正方形对角线的长是多少呢?思考:你能说一说2有多大吗?你以前见过这样的数吗?如果见过,请举例。

(参考书本42页的探究过程)【归纳】无限不循环小数:小数位数无限,并且小数部分不循环的小数。

优质课《平方根》精品教案 (省一等奖)2

优质课《平方根》精品教案 (省一等奖)2

本资源为2021年制作,是一线教师经过认真研究,综合教学中遇到的各种问题,总结而来。

是一个非常实用的资源。

资源以课本为依托,以教学经验为蓝本,经过二次备课和实践研究,将教学环节进一步细化,综合同课异构的课堂结构,统一编写而成。

欢迎您下载使用!平方根教学目标:1、了解平方根的概念,会用根号表示一个数的平方根,并了解被开方数的非负性;2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。

教学重点:了解平方根的概念,求某些非负数的平方根 教学难点:了解被开方数的非负性; 教学过程: 一、学习准备1、我们已经学习过哪些运算?它们中互为逆运算的是?答:加法、减法、乘法、除法、乘方五种运算。

加法与减法互逆;乘法与除法互逆。

2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。

32= ( ) ( )2= 9 (-3)2= ( ) ( )2=41 ( )2= ( ) ( )2= 0 ( )2=( ) 02 =( ) ( )2= -43、左边算式底数、指数 求幂 ,右边算式幂、指数 求底数一般地,如果一个数的平方等于a,那么这个数叫做a 的平方根,也叫做a 的二次方根。

即如果X 2=a,那么 叫做 的平方根。

请按照第3页的举例你再举两个例子说明: 叫做开平方,平方与 互为逆运算 4、观察上面两组算式,归纳一个数的平方根的性质是: 一个正数 有两个平方根,它们互为相反数; 零 有一个平方根,它是零本身; 负数 没有平方根。

交流:〔1〕2516的平方根是什么? 2112〔2〕0.16的平方根是什么? 〔3〕0的平方根是什么? 〔4〕-9的平方根是什么? 5、平方根的表示方法一个正数a 有两个平方根,它们互为相反数. 正数a 的正的平方根,记作“a 〞 正数a 的负的平方根,记作“a -〞 这两个平方根合在一起记作“a ± 〞如果X 2=a ,那么X=a ±,其中符号“〞读作根号,a 叫做被开方数这里的a 表示什么样的数? a 是非负数 二、合作探究1、判断下面的说法是否正确:1〕.-5是25的平方根; 〔 〕 2〕.25的平方根是-5; 〔 〕 3〕.0的平方根是0 〔 〕 4〕.1的平方根是1 〔 〕 5〕.〔-3〕2的平方根是-3 〔 〕 6〕. -32的平方根是-3 〔 〕2、阅读课本第4页例题1,按例题格式判断以下各数有没有平方根,假设有,求其平方根。

省优获奖教案 第2课时 平方根

省优获奖教案  第2课时 平方根

第2课时 平方根1.了解平方根的概念,会用根号表示一个数的平方根;(重点)2.了解开平方与平方是互逆运算,会用开平方运算求非负数的平方根.(难点)一、情境导入填空:(1)3的平方等于9,那么9的算术平方根就是________;(2)25的平方等于425,那么425的算术平方根就是________;(3)展厅的地面为正方形,其面积是49平方米,则边长为________米.平方等于9,425,49的数还有吗?二、合作探究探究点一:平方根的概念及性质【类型一】 求一个数的平方根求下列各数的平方根:(1)12425;(2)0.0001;(3)(-4)2;(4)81. 解析:把带分数化为假分数,含有乘方运算先求出它的幂.注意正数有两个互为相反数的平方根.解:(1)∵12425=4925,(±75)2=4925,∴12425的平方根为±75,即±12425=±75; (2)∵(±0.01)2=0.0001,∴0.0001的平方根是±0.01,即±0.0001=±0.01;(3)∵(±4)2=(-4)2,∴(-4)2的平方根是±4,即±(-4)2=±4;(4)∵(±3)2=9=81,∴81的平方根是±3.方法总结:正确理解平方根的概念,明确是求哪一个数的平方根.如(4)中就是求9的平方根.【类型二】 利用平方根的性质求数的值一个正数的两个平方根分别是2a +1和a -4,求这个数.解析:因为一个正数的平方根有两个,且它们互为相反数,所以2a +1和a -4互为相反数,根据互为相反数的两个数的和为0列方程求解.解:由于一个正数的两个平方根是2a +1和a -4,则有2a +1+a -4=0.即3a -3=0,解得a =1.所以这个数为(2a +1)2=(2+1)2=9.方法总结:一个正数的平方根有两个,它们互为相反数,即它们的和为零. 探究点二:开平方及相关运算求下列各式中x 的值.(1)x 2=361;(2)81x 2-49=0;(3)(3x -1)2=(-5)2.解析:若x 2=a(a ≥0),则x =±a ,先把各题化为x 2=a 的形式,再求x.其中(3)中可将(3x -1)看作一个整体,先通过开平方求出这个整体的值,然后解方程求出x.解:(1)∵x 2=361,∴开平方得x =±361=±19;(2)整理81x 2-49=0,得x 2=4981,∴开平方得x =±4981=±79; (3)∵(3x-1)2=(-5)2,∴开平方得3x -1=±5;当3x -1=5时,x =2;当3x -1=-5时,x =-43;综上所述,x =2或-43. 方法总结:利用平方根的定义进行开平方解方程,从而求出未知数的值,一个正数的平方根有两个,它们互为相反数;开平方时,不要漏掉负平方根.三、板书设计1.平方根的概念:若x 2=a ,则x 叫a 的平方根,x =± a.2.平方根的性质:正数有两个平方根,且它们互为相反数;0的平方根是0;负数没有平方根.3.开平方及相关运算:求一个数a 的平方根的运算叫做开平方,其中a 叫做被开方数.开平方与平方互为逆运算.为学生提供有趣且富有数学含义的问题,让学生进行充分的探索和交流.如把正方形的面积不断地扩大为原来的2倍、3倍、n 倍,引导学生充分进行交流、讨论与探索,从中感受学习平方根的必要性. 4.4 一次函数的应用第1课时 确定一次函数的表达式第一环节 复习引入内容:提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数具有什么性质?目的:学生回顾一次函数相关知识,温故而知新.第二环节 初步探究内容1:展示实际情境提供两个问题情境,供老师选用.实际情境一:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系如图所示.(1)写出v与t之间的关系式;(2)下滑3秒时物体的速度是多少?分析:要求v与t之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可.实际情境二:假定甲、乙二人在一项赛跑中路程y与时间x的关系如图所示.(1)这是一次多少米的赛跑?(2)甲、乙二人谁先到达终点?(3)甲、乙二人的速度分别是多少?(4)求甲、乙二人y与x的函数关系式.目的:利用函数图象提供的信息可以确定正比例函数的表达式,一方面让学生初步掌握确定函数表达式的方法,即待定系数法,另一方面让学生通过实践感受到确定正比例函数只需一个条件.情景一、二可根据学生情况进行选取,情景二几个问题有一定的梯度,学生可能更易写出函数关系式.教学注意事项:学生可能会用图象所反映的实际意义来求函数表达式,如先求出速度,再写表达式,教师应给予肯定,但要注意比较两种方法异同,并突出待定系数法.内容2:想一想:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?目的:在实践的基础上学生加以归纳总结。

《平方根》word优秀获奖教案(省优)

   《平方根》word优秀获奖教案(省优)

按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。

2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。

从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。

本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。

《平方根》教学目的:1、使学生理解数的平方根的概念,能运用根号表示一个数的平方根.2、掌握用平方运算求某些数的平方根的方法.教学重点和难点:重点:平方根的概念及求某些数的平方根的方法.难点:平方根的概念.关键:对符号“”意义的理解.教学过程:一、引入新课:我们学习了有理数的加、减、乘、除和乘方运算,但在现实生活中,有些问题仅运用这五种运算是无法解决的.例如已知正方形一边长是4厘米,那么它的一条对角线的长是多少厘米?解决这个问题就要运用一种新的运算方法,这种运算叫做开方.这节课我们就要学习开方运算和平方根.二、新课学习:1、知识设疑:(1)计算:42;(-4)2;(23)2;(0.8)2;(-0.8)2(2)如果已知一个数的平方等于16,怎样求这个数?2、知识形成:知识点一:我们可以设这个数为x,则x2=16,问题归结为求x.这个问题可以通过乘方运算来解决. 因为42=16所以x=4;又因为(-4)2=16,所以x=-4.4或-4的平方都等于16,可以表示为(±4)2=16.因为4或-4的平方都等于16,我们把4及-4叫做16的平方根.概括1:一般地,如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根).就是说,如果x2=a,那么x就叫做a的平方根.如:23与-23都是529的平方根.因为(±23)2=529,所以±23是529的平方根.问:(1)16,49,100,1 100都是正数,它们有几个平方根?平方根之间有什么关系?(2)0的平方根是什么?概括2:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.知识点二:概括:求一个数a(a≥0)的平方根的运算,叫做开平方.开平方运算是已知指数和幂求底数.平方与开平方互为逆运算.一个数可以是正数、负数或者是0,它的平方数只有一个,正数或负数的平方都是正数,0的平方是0.但一个正数的平方根却有两个,这两个数互为相反数,0的平方根是0.负数没有平方根.因为平方与开平方互为逆运算,因此我们可以通过平方运算来求一个数的平方根,也可以通过平方运算来检验一个数是不是另一个数的平方根.知识点三:(1)625的平方根是多少?这两个平方根的和是多少?-7和7是哪个数的平方根?正数m的平方根怎样表示?(2)下列各数的平方根各是什么?64; 0;(-0.4)2;-16;(-4)3(3)已知正方形的面积等于a,那么它的边长等于多少?3、例题讲解:例1、求下列各数的平方根.(1)81;(2)1916;(3)0.09.例2、下列各数有平方根吗?如果有,求出它的平方根;如果没有,请说明理由.(1)-64;(2)0;(3)(-4)2[教学反思]学生对生活中的立体图形感兴趣,气氛极好,能认识圆柱、圆椎、正方体、长方体、棱柱、球,并能用自己的语言简单描述它们的某些特征,也能分别举出生活中的物体哪些是属于圆柱、圆椎、正方体、长方体、棱柱、球.本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。

平方根教案的教学反思是什么

平方根教案的教学反思是什么

平方根教案的教学反思是什么平方根教案的教学反思是什么平方根教案的教学反思是什么一教学反思本节课的主要内容是让学生理解平方根的含义,并能熟练地用语言和公式这两种不同的方法表示出来,掌握平方根的符号表示,能正确区分平方根与算术平方根,知道两种符号的含义。

并熟练求一个数的平方根。

回顾自己的课堂,觉得又优点又有缺点。

做的比较好的是备课比较充分,设计严谨,注意了细节的处理。

教案的设计贴近学生,所以课堂气氛活跃,学生的积极性被充分调动起来。

练习题的设计比较恰当。

还有一点就是评价学生时注意使用亲切的语言,让学生勤学、乐学。

当然这堂课我觉得有以下几点做得不够好:1.忽视平方根表示的规范化由于我忽视了在课堂上的平方根表示的示范,使得有不少学生能够知道一个数的平方根,但是符号表示不规范。

2.没有对概念进行总结在实际操作时,由于临近下课,时间较仓促,所以无论是学生的总结还是教师的总结都显得比较贫乏,没有抓住实质。

在今后的总结中,应注意引导学生从知识方面,数学思想方法等不同方面进行有效的小结,而不要流于形式。

3.学生的练习不够学生对概念的理解只停留在死记硬背,机械模仿的阶段,后果就像一座没有合格框架结构的摩天大厦一样,早晚会因为经不住考验而倒塌。

所以,今后在课堂上要多给学生练习巩固的时间,多提供一些类型不同的题目,使学生在练习中慢慢强化对概念的理解。

所以在教学过程中学生常见的几种错误主要有:1.在求数a的平方根时,学生往往会用连等的式子来表示2.错在符号乱用,添加或缺少正负号,导致等式无法成立在以后的教学过程中要通过练习发现学生存在的问题,并对一些典型的错题进行分析讲解,通过练习规范学生的解题格式,提高学生解决实际问题的能力。

本节课的内容不是很多,但这是学好平方根的关键,为后面学习立方根及运用平方根进行基本运算和解决实际问题打下基础,也是一个关键。

在本节课的教学过程中还存在一些小的问题,如个别题目对学生而言难度稍大了一点,不利于学生思考、解决问题,在以后的教学过程中会注意这些问题,确保每节课每个学生都能听懂。

期八年级数学上册2.2平方根第二课时平方根全国公开课一等奖百校联赛微课赛课特等奖PPT课件

期八年级数学上册2.2平方根第二课时平方根全国公开课一等奖百校联赛微课赛课特等奖PPT课件
12/13
• 1.习题2.4 1、2、3、4题. • 2.完成本课时习题
13/13
平方根
第2课时 平方根
1/13
上节课我们学习了算式平方根的概念、性质 知道:若一个正数x的平方等于a,即x2 a. 则x叫a的算术平方根,记作x a,而且 a 也是非负数.
2/13
正数22=4,则2叫做4算术平方根, 4叫2平方。 思索: 若(-2)2=4,则-2叫做4什么根呢?
3/13
• 请大家思索下面两个问题。
7/13
区分:
(1)定义不一样:“假如一个数平方等于a,这个数 就叫做a平方根”;“非负数a非负平方根叫a算术 平方根”.
(2)个数不一样:一个正数有两个平方根,而一个 正数算术平方根只有一个.
(3)表示法不一样:正数a平方根表示为±√a,正 数a算术平方根表示为√a.
(4)取值范围不一样:正数平方根一正一负,互为 相反数;正数算术平方根只有一个.
8/13
思索
• (1 • (2)0 • (3
9/13
10/13
• 3.判断以下各数是否有平方根?并说明理由. (1)(-3)2;(2)0;(3)-0.01; (4)-52;(5)-a2;(6)a2-2a+2
11/13
• 1.师生共同回顾平方根和开平方概念以及 只有非负数才有平方根.
• 2.本节课你有哪些收获?还存在哪些不足?
(1)9的算术平方根是3,也就是说3的平方是9, 还存在其他的数,它的平方也是9吗? (2)平方等于 4 的数有几个?
25 平方等于0.64的数呢?
4/13
3的平方等于9,-3的平方也等于9,
3是9的算术平方根,-3是9的平方根.
平方等于 4 的数有两个,即2 和 - 2,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 平方根
1.了解平方根的概念,会用根号表示一个数的平方根;(重点)
2.了解开平方与平方是互逆运算,会用开平方运算求非负数的平方根.(难点)
一、情境导入
填空:(1)3的平方等于9,那么9的算术平方根就是________;(2)25的平方等于425
,那么425
的算术平方根就是________;(3)展厅的地面为正方形,其面积是49平方米,则边长为________米.
平方等于9,425
,49的数还有吗?
二、合作探究
探究点一:平方根的概念及性质
【类型一】 求一个数的平方根
求下列各数的平方根:
(1)12425
;(2)0.0001;(3)(-4)2;(4)81. 解析:把带分数化为假分数,含有乘方运算先求出它的幂.注意正数有两个互为相反数的平方根.
解:(1)∵12425=4925,(±75)2=4925,∴12425的平方根为±75
,即±12425=±75; (2)∵(±0.01)2=0.0001,∴0.0001的平方根是±0.01,即±0.0001=±0.01;
(3)∵(±4)2=(-4)2,∴(-4)2的平方根是±4,即±(-4)2=±4;
(4)∵(±3)2=9=81,∴81的平方根是±3.
方法总结:正确理解平方根的概念,明确是求哪一个数的平方根.如(4)中就是求9的平方根.
【类型二】 利用平方根的性质求数的值
一个正数的两个平方根分别是2a +1和a -4,求这个数.
解析:因为一个正数的平方根有两个,且它们互为相反数,所以2a +1和a -4互为相反数,根据互为相反数的两个数的和为0列方程求解.
解:由于一个正数的两个平方根是2a +1和a -4,则有2a +1+a -4=0.即3a -3=0,
解得a =1.所以这个数为(2a +1)2=(2+1)2=9.
方法总结:一个正数的平方根有两个,它们互为相反数,即它们的和为零.
探究点二:开平方及相关运算
求下列各式中x 的值.
(1)x 2=361;(2)81x 2-49=0;(3)(3x -1)2=(-5)2.
解析:若x 2=a(a ≥0),则x =±a ,先把各题化为x 2=a 的形式,再求x.其中(3)中可将(3x -1)看作一个整体,先通过开平方求出这个整体的值,然后解方程求出x.
解:(1)∵x 2=361,∴开平方得x =±361=±19;
(2)整理81x 2-49=0,得x 2=4981
,∴开平方得x =±4981=±79; (3)∵(3x-1)2=(-5)2,∴开平方得3x -1=±5;当3x -1=5时,x =2;当3x -1=
-5时,x =-43;综上所述,x =2或-43
. 方法总结:利用平方根的定义进行开平方解方程,从而求出未知数的值,一个正数的平方根有两个,它们互为相反数;开平方时,不要漏掉负平方根.
三、板书设计(这节课适合使用思维导图方式设计)
1.平方根的概念:若x 2=a ,则x 叫a 的平方根,x =± a.
2.平方根的性质:正数有两个平方根,且它们互为相反数;0的平方根是0;负数没有平方根.
3.开平方及相关运算:求一个数a 的平方根的运算叫做开平方,其中a 叫做被开方数.开平方与平方互为逆运算.
为学生提供有趣且富有数学含义的问题,让学生进行充分的探索和交流.如把正方形的面积不断地扩大为原来的2倍、3倍、n 倍,引导学生充分进行交流、讨论与探索,从中感受学习平方根的必要性.。

相关文档
最新文档