复合材料期末复习资料.
复合材料整合期末复习资料
复合材料(composite materials):由两种或两种以上不同性能、不同形态的组分通过复合工艺组合而成的一种多相材料,它既保持了原组分材料的主要特点又显示了原组分材料所没有的新性能复合材料的特征:▪可设计性:即通过对原材料的选择、各组分分布设计和工艺条件的保证等,使原组分材料优点互补,因而呈现了出色的综合性能;▪由基体组元与增强体或功能组元所组成;▪非均相材料:组分材料间有明显的界面:有三种基本的物理相(基体相、增强相和界面相);▪组分材料性能差异很大:组成复合材料后的性能不仅改进很大,而且还出现新性能。
复合材料的分类:按基体材料分类①聚合物基复合材料:以有机聚合物(热固性树脂、热塑性树脂及橡胶等)为基体;②金属基复合材料:以金属(铝、镁、钛等)为基体;③无机非金属基复合材料:包括陶瓷基、碳基和水泥基复合材料。
按增强材料形态分类:①纤维增强复合材料:a.连续纤维复合材料:作为分散相的长纤维的两个端点都位于复合材料的边界处;b.非连续纤维复合材料:短纤维、晶须无规则地分散在基体材料中;②颗粒增强复合材料:微小颗粒状增强材料分散在基体中;③板状增强体、编织复合材料:以平面二维或立体三维物为增强材料与基体复合而成。
其他增强体:层叠、骨架、涂层、片状、天然增强体按用途分类①结构复合材料:用于制造受力构件;②功能复合材料:具备各种特殊性能(如阻尼、光、电、磁、摩擦、屏蔽等)③智能复合材料混杂复合材料增强体是结构复合材料中能提高材料力学性能的组分,在复合材料中起着增加强度、改善性能的作用。
增强体的基本特征:❖能明显提高材料的一种或几种性能❖具有良好的化学稳定性❖具有良好的润湿性碳纤维:由有机纤维如黏胶纤维、沥青纤维或聚丙烯腈(Polyacrylonitrile,PAN)纤维在保护气氛(N2或Ar)下热处理碳化成含碳量90-99%的纤维。
碳纤维的性能➢最突出的特点是强度和模量高、密度小(1.5~2.0g/cm3), 因而比强度、比模量高。
复合材料期末复习资料.doc
复合材料中增强体与基体接触构成的界面,是一层具有一•定厚度(纳米以上)、结构随基体 和增强体而异的、与基体有明显差别的新相一一界面相(层)。
5适当的界面结合强度。(简答)聚合物基复合材料
增强体与聚合物基体之间形成较好的界面粘结,才能保证应力从基体传递到增强材料。充分 发挥数以万计单根纤维同时受力的作用。界面黏合强度不仅与界面的形成过程有关,还取决 于界面粘结形式(物理机械结合、化学结合)。物理机械结合,即通过等离了体刻蚀或化学 腐蚀使增强体表面凹凸不平,基体扩散嵌入到增强体表面的凹坑、缝隙和微孔中,增强材料 则“锚固”在聚合物基体中;化学结合,即基体与增强体之间形成化学键,可以设法使增强 体表面带有极性基团,使之与基体间产生化学键或其他相互作用力(如纭I键)。
小,体积分数越高,弥散强化效果越好。
2混合法则的定义?
Ec=Ef*Vf+Em*Vm,表明纤维、基体对复合材料平均性能的贡献正比于它们各自的体积分数。
3临界纤维长度的定义?
Lc是载荷传递长度的最大值,称为临界纤维长度,在这个长度上纤维承载应力小于最大纤 维强度。
当纤维长度小于临界长度时,,最大纤维应力小于纤维平均断裂强度,纤维不会断裂。当纤 维长度大于临界长度时,纤维应力可以达到平均强度,当纤维应力等于其强度是,纤维将发 生断裂。
界面粘结太弱,复合材料在应力作用下容易产生界面脱粘破坏,纤维不能充分发挥增强作用。 出现韧性断裂。界面粘结太强,复合材料在应力作用下破裂产生的正在增长的裂纹容易扩散 到界面,直接冲击增强材料而呈现脆性断裂。
金属基夏合材料…•连续纤维增强金属基夏合材料,增强纤维具有很高的强度和模型,当夏 合材料中某一根纤维发生断裂产生的裂纹到达相邻纤维的表面时,裂纹尖端的应力作用在界 面上,如果界面结合适中,则纤维与基体在界面处脱粘,裂纹沿界面发展,短话了裂纹尖端, 当主裂纹越过纤维继续向前扩展时,纤维呈“桥接”现象。当界面结合很强时,界面处不发 生脱粘,裂纹继续发展穿过纤维,造成“脆断气
复合材料复习重点
1、复合材料:由两种或两种以上不同性质的单一材料,通过不同复合方法所得到的宏观多相材料。
分类:(基体材料不同)无机非金属基复合材料、聚合物基复合材料、金属基复合材料;(工程应用的角度)结构复合材料、功能复合材料。
2、复合材料:是以一种材料为基体(Matrix),另一种材料为增强体(reinforcement)组合而成的材料。
分类:(按其组成分)金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料;(按其结构特点)纤维复合材料、夹层复合材料、细粒复合材料、混杂复合材料。
3、纺织复合材料:如果复合材料的组分中含有纤维、纱线或织物,则称之为纺织复合材料。
4、碳纤维:是由90%以上的碳元素组成的纤维。
性能特点:碳原子结构最规整排列的物质是金刚石,碳纤维结构近乎石墨结构,比金刚石结构规整性稍差,具有很高的抗拉强度,它的强度约为钢的四倍,密度为钢的四分之一。
同时具有耐高温、尺寸稳定、导电性好等其他优良性能。
5、陶瓷纤维:新型功能性陶瓷纤维,是通过添加和配合不同种类的陶瓷微粉,采用不同方法制作而成。
(1)防紫外线纤维纤维织物防紫外线整理方法主要有两种:①使用紫外线吸收剂对织物或纤维进行处理。
它主要通过吸收紫外线并进行能量转换,将紫外线变成低能量的热能或波长较短的电磁波,从而达到防紫外辐射的目的。
②利用陶瓷微粉与纤维或织物结合。
增加表面对紫外线的反射和散射作用,以防紫外线透过织物而损害人体皮肤,其中没有光能的转化作用。
这些无机组分与紫外线吸收剂相比,每单位重量的紫外线吸收效果虽稍小,但光热稳定性、耐久性等优良。
此外,紫外线吸收剂与陶瓷微粉在纤维或织物上同时应用,则相互还有增效,防护效果更为优越。
(2)保温纤维①蓄热保温纤维:是一种可吸收太阳辐射中的可见光与近红外线,且可反射人体热辐射,具有保温功能的阳光蓄热保温材料。
用该纤维制成的服装,平时穿着时装内温度比传统服装高出2~8℃,即使在湿态下也有良好的吸光蓄热性能。
复合材料期末复习资料3
SiC纤维
• 结构:热分解碳呈2~5nm的结晶状态。Si的氧化 物呈非晶状态,彼此均匀分布。
• 物理性能:电阻率随烧成温度而异。可在106~ 103Ωcm的范围变化。
• 用途:该类纤维用于强化环氧树脂基复合材料, 其压缩强度和冲击强度与碳纤维强化环氧树脂相 比,可提高2倍。且由于具有电波透过性,可用于 雷达无线电罩。该类纤维也用于强化Al基复合材 料。不仅力学性能优异,且容易形变加工。
讨论:①如果Ef =20Em,φf =0.6,则 Pf /Pm =30
② Pf /Pm 随Ef /Em ↑、 φf ↑而增加 ③选择纤维
纤维与基体的杨氏模量与载荷分配
增强效果用复合材料承担的载荷与基体之比表示:
Pc 1 Pc 1 E f f
Pm
Pm
Em 1 f
增强效果取决于Ef /Em 和 φf
• 物理性能: ρ=1.5~2.5g/cm3,
热膨胀系数轴向为负,径向为正,α=-0.72~-0.9×10-6/K
α′=32~22×10-6/K • 化学性能: 与碳相似,除被强氧化剂氧化外,一般对酸、
碱惰性,在空气中T>400℃后开始明显氧化,但非氧化性 气氛中,碳纤维具有突出的耐热性,直到T>1500℃强度才 开始下降
1985 50
1990 21
1995 20
2000 17
3. 4 硼纤维
• 硼纤维是以钨丝为芯线,用化学气相沉积 (CVD)的方法制备的。它具有优异的力 学性能。虽然价格很高,但性能稳定,偏 差小,是信赖性很高的一种纤维。
• 比较:
玻璃纤维——熔融纺丝 金属纤维——拔丝 碳纤维——制成丝后碳化
SiC纤维
• 将非晶结构Si-Ti-C-O等的材料进行纺丝,再经热氧化不融 处理,烧成制作了纤维。该类纤维的直径可达10μm以下, 且柔韧性好,所以适合于三维编织物。纤维的高温性能较 好,用其强化的复合材料不仅在与纤维平行方向强度很高, 而且在纤维垂直的方向上也获得了较高的强度。该类纤维 对金属、陶瓷的适应性较好,可望得到大的发展。
复合材料期末复习
复合材料C 复习第一章概论1. 复合材料的定义?复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
三要素:基体(连续相)增强体(分散相)界面(基体起粘结作用并起传递应力和增韧作用)复合材料的特点:(明显界面、保留各组分固有物化特性、复合效应,可设计性)(嵌段聚合物、接枝共聚物、合金:是不是复合材料??)2、复合材料的命名f(纤维),w(晶须),p(颗粒)比如:TiO2p/Al3. 复合材料的分类:1) 按基体材料类型分为:聚合物基复合材料;金属基复合材料;无机非金属基复合材料(陶瓷基复合材料)。
2)按增强材料分为:玻璃纤维增强复合材料;碳纤维增强复合材料;有机纤维增强复合材料;晶须增强复合材料;陶瓷颗粒增强复合材料。
3) 按用途分为:功能复合材料和结构复合材料。
结构复合材料主要用做承载力和此承载力结构,要求它质量轻、强度和刚度高,且能承受一定温度。
功能复合材料指具有除力学性能以外其他物理性能的复合材料,即具有各种电学性能、磁学性能、光学性能、声学性能、摩擦性能、阻尼性能以及化学分离性能等的复合材料。
第二章增强体1、增强体定义:结合在基体内、用以改进其力学等综合性能的高强度材料。
要求:1) 增强体能明显提高基体某种所需性能;2) 增强体具有良好的化学稳定性;3) 与基体有良好润湿性。
分类:f,w,p2、纤维类增强体特点:长径比较大;柔曲性;高强度。
❖玻璃纤维主要成分:SiO2性能:拉伸强度高;较强耐腐蚀;绝热性能好。
(玻璃纤维高强的原因(微裂纹)及影响因素(强度提升策略:减小直径、减少长度、降低含碱量,缩短存储时间、降低湿度等))分类:无碱(E玻璃)、有碱(A玻璃)制备:坩埚法(制球和拉丝)、池窑法(熔融拉丝)。
浸润剂作用:(i) 粘结作用,使单丝集束成原纱或丝束;(ii) 防止纤维表面聚集静电荷;(iii)进一步加工提供所需性能;(iv) 防止摩擦、划伤。
(无偶联剂作用)玻璃纤维表征:(i) 定长法:“tex”(含义);(ii) 质量法:“支”(含义)❖硼纤维芯材:钨、碳和石英制备:化学沉积(CVD)法原料:卤化硼或氢化硼形貌:玉米棒状(W芯)光滑(C芯)表面涂层:SiC (防止脆性相的产生or 便于与基体结合)目前比模量和比强度最高的陶瓷增强纤维❖碳纤维1)制备:有机纤维碳化法有机纤维前驱体满足条件:碳化过程不熔融,保持纤维形态,碳化收率高··三种重要的前驱体:聚丙烯腈;黏胶纤维(人造丝);沥青纤维。
复合材料期末考试重点.docx
一、复合材料为何具有可设计性?简述复合材料设计的意义。
组分的选择、各组分的含量及分布设计、复合方式和程度、工艺方法和工艺条件的控制等均影响复合材料的性能,赋予复合材料的可设计性。
意义:①每种组分只贡献自己的优点,避开自己的缺点。
②由一组分的优点补偿另一组分的缺点,做到性能互补。
③使复合材料获得一种新的、优于各组分的性能(叠加效应)。
优胜劣汰、性能互补、推陈出新。
四、在聚合物基复合材料屮,为什么必须有适度的界面粘结?答:界面粘结的好坏直接影响增强体与基体之间的应力传递效果,从而影响复合材料的宏观力学性能。
界面粘结太弱,复合材料在应力作用下容易发生界面脱粘破坏,纤维不能充分发挥增强作用。
若对增强材料表面采用适当改性处理,不但可以提高复合材料的层间剪切强度, 而且拉伸强度及模量也会得到改善。
但同时会导致材料冲击韧性下降,因为在聚合物基复合材料川,冲击能量的耗散是通过增强体与基体Z间界面脱粘、纤维拔出、增强树料与基体Z 间的摩擦运动及界面层可塑性变形来实现的。
若界面粘结太强,在应力作用下,材料破坏过程中正在增长的裂纹容易扩散到界面,直接冲击增强材料而呈现脆性破坏。
适当调整界面粘结强度,使复合材料的裂纹沿界面扩展,形成曲折的路径,耗散较多的能量,则能提高复合材料的韧性。
因此,不能为提高复合材料的拉伸强度或抗弯强度而片面提高复合材料的界面粘结强度,要从复合树料的综合力学性能出发,根掘具体要求设计适度的界面粘结,即进行界向优化设计。
四、叙述金属基复合材料基体选择的原则。
答:(1)金属基复合材料构件的使用性能要求是选择金属基体材料最重要的依据。
(2)由于增强体的性质和增强机理不同,在基体材料的选择上有很大差别。
(3)选择金属基体时要充分考虑基体与增强体的相容性和物理性能匹配。
尽量避免增强体与基体合金之间有界面反应,界面润湿性良好。
八、根据下图,讨论为什么在相同体积含量下,SiC晶须增强MMC强度(抗拉与屈服强度)均高于颗粒增强MMC,而这两者的弹性模量相差不大。
复合材料复习资料1.
1、什么是复合材料学:是由两种或以上物理和化学性质不同的原料结合而成的多相固体材料。
在复合材料中, 通常有一相为连续相,我们称它为基体。
能提高基体材料力学性能的材料, 称为增强材料, 或强化材料。
在复合材料中包含有基体,强化材和界面三要素。
2、复合材料的分类:按来源分天然和人工合成复合材料。
3、人工复合材料--用途分:结构复合材料:即传统的复合材料,以提高力学性能为主要目的,作为结构材料使用。
功能复合材料:包括功能梯度复合材料,是指通过复合工艺,使制得的材料具有特别的功能。
智能复合材料:对环境变化能作出智能响应,并具有促发功能的新材料。
如SMP,SMA等。
---基材分:聚合物基复合材料、金属基复合材料、陶瓷基复合材料、碳/碳复合材料。
----强化材的形式分:纤维状复合材料、颗粒状复合材料、积层状、薄片状、填充状。
4、复合材料的性能:一般性能:1、具有较高的比强度和比模量。
2、抗疲劳性能好,3、减振性能好,4、耐高温性能好,5、可设计性强,成型工艺简单。
特殊性能:特殊的力学性能、功能性、智能型5、应用:航空航天、汽车制造、制船业、建筑业、化工业、体育业、医疗6、基体:在复合材料中, 通常有一相为连续相,我们称它为基体。
7、基体的作用:固结增强相,均衡载荷和传递应力,保持基体性质,保护增强材料。
8、基体的种类:金属基体、无机胶凝基体、陶瓷基体、高分子基体9、陶瓷:是氧化物、碳化物、氮化物和硅酸盐等无机化合物的总称。
陶瓷复合目的:增韧10、陶瓷的特点:耐高温、耐腐蚀、强度高、硬度大但呈脆性。
11、陶瓷的种类:玻璃: 是通过无机材料高温烧结而成的具有非晶态结构的一种陶瓷.2. 玻璃陶瓷: 将无机玻璃通过特定的反玻璃化过程,形成无残余应力的微晶玻璃. 3. 氧化陶瓷: 含有三氧化二铝,氧化镁等氧化物的陶瓷 4. 非氧化陶瓷:不含有氧化物的陶瓷12、聚合物基体种类:不饱和聚脂树脂、环氧树脂, 酚醛树脂等热固性树脂和有机玻璃(PMMA)、聚醚亚胺等各种热塑性树脂。
复合材料知识点复习
第一章概论物质与材料材料:具有满意指定工作条件下使用要求的形态和物理性状的物质人类(材料)进展的四大阶段:石器时代-►青铜时代T铁器时代T人工合成时代1.1复合材料的定义与特点复合材料:由两种或两种以上物理和化学性质不同的物质,用适当的工艺方法组合起来,而得到的具有复合效应的多相固体材料。
特点:①人为选择复合材料的组分和比例,具有极强的可设计性。
②组分保存各自固有的物化特性③复合材料的性能不仅取决于各组分性能,同时与复合效应有关④组分间存在这明显的界面,并可在界面处发生反响形成过渡层,是一种多相材料简述复合材料的特点。
①比强度、比模量大耐疲惫性能好,聚合物基复合材料中,纤维与基体的界面能阻挡裂纹的扩展, 破坏是渐渐进展的,破坏前有明显的预兆。
②减震性好,复合材料中的基体界面具有吸震力量,因而振动阻尼高。
③耐烧蚀性能好,因其比热大、熔融热和气化热大,高温下能汲取大量热能,是良好的耐烧蚀材料。
④工艺性好,制造制品的工艺简洁,并且过载时平安性好。
4. 3. 2碳纤维CF具有沿纤维轴择优取向的同质多晶结构,使其与树脂的界面结合力不大,尤其是石墨碳纤维,外表处理方法有:1)氧化法(气相、液相、阳极电解氧化)2)外表晶须化法(将CF在高温的晶须生长炉中外表沉积生长晶须,提高CF与基体的粘结力3)蒸汽沉积法(高温裂解乙快或甲烷生成的碳沉积在CF上,沉积的碳活性大,增加界面结合力)4)电沉积法(电化学法使聚合物沉积在CF外表)5)等离子体法4界面表征方法(表征界面的形态、成分、结构、剩余应力、结合强度)界面形态的表征.透射电镜TEM是把经加速和聚集的电子束(波长很短)投射到特别薄的样品(nm级别)上,电子与样品中的原子碰撞而转变方向,从而产生立体角散射。
散射角的大小与柱品的密度、厚度相关,因此可以形成明暗不同的衬度,影像将在放大、聚焦后在成像器件上显示出来。
TEM的区分力可达0.2nm。
衬度:两像点间的明暗差异(质厚衬度、相位衬度、衍射衬度).扫描电镜SEM (界面形貌和界面层断裂面观看)扫描电镜从原理上讲就是采用聚焦得特别细的高熊曳土兔在试样上扫描,激发出各种物理信息(二次电子)。
复合材料原理期末重点.
复合材料:由两种或两种以上不同性质的单一材料,通过不同复合方法所得到的宏观多相材料。
主要特征:多相结构存在着复合效应。
特点:1、不仅保持原组分的部分优点,而且具有原组分不具备的特性2、区别于单一材料的另一显著特性是材料的可设计性3、材料与结构的一致性工程应用的角度分类:结构复合材料和功能复合材料复合材料的组成:A、结构复合材料:增强体:在结构复合材料中主要起承受载荷的作用;基体:起连接增强体、传递载荷、分散载荷的作用。
B、功能复合材料:基体:主要起连接作用;功能体:是赋予复合材料以一定的物理、化学功能。
界面的功能:传递应力、粘结与脱粘。
材料的复合效应线性效应:线性指量与量之间成正比关系。
非线性效应:非线性指量与量之间成曲线关系。
1)平均效应:是复合材料所显示的最典型的一种复合效应。
2)平行效应:增强体(如纤维)与基体界面结合很弱的复合材料所显示的复合效应,可以看作是平行效应。
3)相补效应:组成复合材料的基体与增强体,在性能上能互补,从而提高了综合性能,则显示出相补效应。
4)相抵效应:基体与增强体组成复合材料时,若组分间性能相互制约,限制了整体性能提高,则复合后显示出相抵效应。
1.相乘效应:两种具有转换效应的材料复合在一起,有可能发生相乘效应。
Eg:把具有电磁效应的材料与具有磁光效应的材料复合时,将可能产生复合材料的电光效应。
2.诱导效应:在一定条件下,复合材料中的一组分材料可以通过诱导作用使另一组分材料的结构改变而改变整体性能或产生新的效应。
3.共振效应:两相邻的材料在一定条件下,会产生机械的或电、磁的共振。
4.系统效应:这是一种材料的复杂效应,至目前为止,这一效应的机理尚不很清楚。
1)、两相复合体系有l0种可能的连通性复合材料结构(0-0、0-1、0-2、0-3、1-1、1-2、1-3、2-2、2-3、3-3);2)、三个相组成的复合体系结构有20种可能存在的连通性;3)、四个相时,它可能存在35种连通性。
复合材料-复习材料及答案
复合材料第一章1、材料科技工作者的工作主要体现在哪些方面?(简答题)①发现新的物质,测试新物质的结构和性能;②由已知的物质,通过新的制备工艺,改善其微观结构,改善材料的性能;③由已知的物质进行复合,制备出具有优良特性的复合材料。
2、复合材料的定义(名词解释)复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
3、复合材料的分类(填空题)⑴按基体材料分类①聚合物基复合材料;②金属基复合材料;③无机非金属基复合材料。
⑵按不同增强材料形式分类①纤维增强复合材料:②颗粒增强复合材料;③片材增强复合材料;④叠层复合材料。
4、复合材料的结构设计层次(简答题)⑴一次结构:是指由基体和增强材料复合而成的单层复合材料,其力学性能取决于组分材料的力学性能,各相材料的形态、分布和含量及界面的性能;⑵二次结构:是指由单层材料层合而成的层合体,其力学性能取决于单层材料的力学性能和铺层几何(各单层的厚度、铺设方向、铺层序列);⑶三次结构:是指工程结构或产品结构,其力学性能取决于层合体的力学性能和结构几何。
5、复合材料设计分为三个层次:(填空题)①单层材料设计;②铺层设计;③结构设计。
第二章1、复合材料界面对其性能起很大影响,界面的机能可归纳为哪几种效应?(简答题)①传递效应:基体可通过界面将外力传递给增强物,起到基体与增强体之间的桥梁作用。
②阻断效应:适当的界面有阻止裂纹的扩展、中断材料破坏、减缓应力集中的作用。
③不连续效应:在界面上产生物理性能的不连续性和界面摩擦出现的现象。
④散热和吸收效应:光波、声波、热弹性波、冲击波等在界面产生散射和吸收。
⑤诱导效应:复合材料中的一种组元的表面结构使另一种与之接触的物质的结构由于诱导作用而发生变化。
2、对于聚合物基复合材料,其界面的形成是在材料的成型过程中,可分为两个阶段(填空题)①基体与增强体的接触与浸润;②聚合物的固化。
3、界面作用机理界面作用机理是指界面发挥作用的微观机理。
复合材料复习资料
1、复合材料定义复合材料(composite materials):由两种或两种以上不同性能、不同形态的组分通过复合工艺组合而成的一种多相材料,它既保持了原组分材料的主要特点又显示了原组分材料所没有的新性能。
2、组成、定义、作用基体:构成复合材料的连续相;增强剂(增强相、增强体):复合材料中独立的形态分布在整个基体中的分散相,这种分散相的性能优越,会使材料的性能显著改善和增强。
界面相:不同组元相接触的界面,具有一定厚度,结构随组元相而异。
是组元相之间相互连接的纽带。
组成:基体相,界面相,增强相作用:增强相:一般具有很高的力学性能(强度、弹性模量),及特殊的功能性。
其主要作用是承受载荷或显示功能。
基体相:保持材料的基本特性,如硬度、耐磨、耐热性等。
主要作用是将增强相固结成一个整体,起传递和均衡应力的作用。
界面相作用:应力和其他信息传递的桥梁,具有传递效应,阻断效应,不连续效应,散热和吸热效应,诱导效应。
3、分类,不同类型复合材料的定义及特点分类:①聚合物基复合材料: 以有机聚合物(热固性树脂、热塑性树脂及橡胶等)为基体;②金属基复合材料:以金属(铝、镁、钛等)为基体;③无机非金属基复合材料:包括陶瓷基、碳基和水泥基复合材料。
定义:聚合物基复合材料(PMC):树脂基复合材料,纤维增强塑料,是目前技术比较成熟且应用最为广泛的一类复合材料。
这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。
特点:1. 高比强度、高比模量;2. 可设计性;3. 热膨胀系数低,尺寸稳定;4.耐腐蚀;5.耐疲劳;6.阻尼减震性好金属基复合材料(MMC):是以金属及其合金为基体,与一种或几种金属或非金属增强相人工结合成的复合材料。
其增强材料大多为无机非金属,如陶瓷、碳、石墨及硼等,也可以用金属丝。
特点:1、高比强度比模量;2、高断裂韧性和高抗疲劳性能;3、良好的高温稳定性和热冲击性;4、热膨胀系数小、尺寸稳定性好;5、导热、导电性能好;6、良好的耐磨性;7、不吸潮、不老化、气密性好陶瓷基复合材料(CMC):氧化铝陶瓷也称为高铝陶瓷,主要成分是A12O3和SiO2。
复合材料期末复习题库
复合材料期末复习题库一、选择题1. 复合材料是由两种或两种以上不同性质的材料,通过物理或化学方法复合而成的新材料,其主要特点不包括以下哪项?A. 高强度B. 轻质C. 易加工D. 导电性2. 纤维增强复合材料中,纤维主要作用是提供:A. 韧性B. 耐腐蚀性C. 强度D. 绝缘性3. 以下哪种不是常用的树脂基体材料?A. 环氧树脂B. 聚酯树脂C. 聚乙烯D. 酚醛树脂4. 复合材料的层合板结构中,每层材料的铺设角度对材料的性能有重要影响,其中0°铺设主要提供:A. 抗拉强度B. 抗弯强度C. 抗剪强度D. 抗冲击强度5. 复合材料的界面结合力是影响复合材料性能的关键因素之一,以下哪种方法可以增强界面结合力?A. 增加基体材料的粘度B. 提高纤维的表面粗糙度C. 降低纤维与基体的相容性D. 减少纤维的表面处理二、填空题6. 复合材料通常由______和______两部分组成。
7. 复合材料的命名通常遵循“______+基体材料”的规则。
8. 复合材料的力学性能主要取决于______和______的性能以及它们之间的______。
9. 复合材料的制备工艺包括______、______、______等。
10. 复合材料在______、______、______等领域有广泛的应用。
三、简答题11. 简述复合材料的优势和局限性。
12. 解释什么是复合材料的界面相容性和界面结合力,并说明它们对复合材料性能的影响。
13. 描述复合材料的常见制备工艺,并简述每种工艺的特点。
14. 举例说明复合材料在航空航天领域的应用。
15. 讨论复合材料在环境友好和可持续发展方面的优势。
四、计算题16. 假设有一块碳纤维增强环氧树脂基复合材料,其体积分数为60%碳纤维和40%环氧树脂。
已知碳纤维的密度为1.75 g/cm³,环氧树脂的密度为1.15 g/cm³,试计算该复合材料的密度。
五、论述题17. 论述复合材料在现代汽车工业中的应用及其对汽车性能的影响。
复合材料考试复习资料
名词解释1.界面:复合材料中相与相之间的两相交界区称为界面;把物体与空气接触的面称为表面.2.比表面积:单位体积的物质所具有的表面积称比表面积,以As表示.3.复合材料:是指由两种或两种以上不同性质的单一材料通过一定的复合方法所得到的宏观多相材料.4.偶联剂:偶联剂是这样的一类化合物,它们的分子两端通常含有性质不同的基团,一端的基团与增强体表面发生化学作用或物理作用,另一端的基团则能与基体发生化学作用或物理作用,从而使增强体和基体很好地偶联起来,获得良好的界面粘结. 当增强体为玻璃纤维时,偶联剂主要可分为有机铬和有机硅两类:1)、有机酸氯化铬络合物类偶联剂2)、有机硅烷类偶联剂3)、新品种硅烷偶联剂:耐高温型、过氧化物型、阳离子型、水溶性、叠氮型.5.2-2型结构:是一种有两种组分材料呈层状叠合而成的多层结构复合材料.6.诱导效应:在一定条件下,复合材料中的一组分材料可以通过诱导作用使另一组分材料的结构改变而改变整体性能或产生新的效应.7.复合材料界面优化设计:是指对复合材料界面相进行设计及控制,以使整体材料的综合性能达到最优性能,包括以下几个方面:1.材料的应用要求;2.弹性模量的设计;3.界面的残余应力;4.基体与增强体的相容性;5.相间的动力学效果;6.偶联剂的性能.8.组分效果:在复合材料的基体和增强体或功能体的物理机械性能确定的情况下,仅仅把相对组成作为变量,不考虑组分的几何形态、分布状态和尺度等复杂变量影响时产生的效果称为组分效果.9.物理吸附:当固体表面的原子价已被相邻的原子所饱和,表面分子与吸附物之间的作用力是分子间引力,这类吸附称物理吸附.10.化学吸附:当固体表面原子的原子价未完全被原子所饱和,还有剩余的成键能力,在吸附剂及吸附物之间有电子转移生成化学键的吸附称化学吸附.11.表面处理:是在增强体表面涂覆上一种称为表面处理剂的物质,这种表面处理剂包括浸润剂及一系列偶联剂和助剂等物质,它有利于增强体与基体间形成一个良好的粘结界面,从而达到提高复合材料各种性能的目的.填空1.四个相组成的复合体系结构有35中可能存在的连通性.2.复合材料中,增强体与基体间最终界面的获得,一般分为接触或润湿过程和固化过程两个阶段.3.复合材料的复合效应分为线性效应和非线性效应两类.4.按化学组成,偶联剂主要可分为有机铬和有机硅两大类.5.有机硅烷中的R基团可以是双键、是双键、环氧基、氨基、长链烷基等.6.通常的研究中,习惯于把气-液、气-固界面分别称为液相表面、固相表面.7. (RO)mTi-(OX-R’-Y)n是钛酸酯偶联剂的结构通式.8.材料的传递性质是指材料在外作用场作用时,表征某通量通过材料阻力大小的物理量.9.聚合物基磁性复合材料由强磁粉、聚合物粘结剂和加工助剂三大部分组成.10.聚丙烯的改性有共聚、共混与填充增强等方法.11.晶格是表征晶体材料微观结构的基础.12.如果增强体被树脂完全浸润,液态树脂的表面张力必须低于增强体的临界表面张力.13.增强体表面的极性取决于本身的分子结构、物质结构及外场的作用.14.螯合偶联剂有螯合100型和螯合200型两种基本类型.判断题1.三氧化二锑单独使用有很强的阻燃效果.(×三氧化二锑在单独使用时几乎没有阻燃效果,但与有机卤化物并用时却具有明显的阻燃效果)2.共振效应属于线性效应.(×线性效应有平均、平行、相补、相抵;非线性效应有相乘、诱导、共振、系统)3.吸附过程是放热反应.(√)4.同轴圆柱模型主要适用于0-3型复合材料.(×1-3型)5.功能复合材料主要是以其力学性能为工程所应用.(×物理特性)6.显示平行效应的复合材料,其组成复合材料的各组分在复合材料中均保留本身的,既无制约,也无补偿.(√)7.沃兰处理剂是一种硅烷偶联剂.(×是有机酸铬络合物类偶联剂)8.复合材料界面形成过程中,一般是润湿过程完成后在进行固化过程.(×这两个过程往往是连续的,有时几乎是同时发生的)9.组成复合材料的基体与增强体,在性能上能互补,从而提高了综合性能,则显示出相抵效应.(×相补效应)10.钼化物的阻燃效果虽高于三氧化二锑但具有阻燃时发烟的特点.(×钼化物的阻燃效果虽略低于三氧化二锑,但它具有抑制燃烧时发烟的特点)11.当试样断面上被拔出的纤维表面粘附有基体树脂时,表明界面粘结强度高,破坏发生在基体中.(√)12.功能复合材料相对于结构复合材料研制周期长.(√)13.凡是具有可产生不然性气体的填料都有良好的阻燃效果.(×有效的阻燃剂须满足以下条件:产生不燃性气体的温度略低于聚合物热分解温度;在复合材料的混炼、成型温度下不产生不燃性气体)14.氢氧化铝一般不能作为热塑性和热固性聚合物的阻燃填料.(×对大多数热塑性和热固性聚合物,氢氧化铝是最常用的阻燃剂填料之一)15.RnSiX4-n是有机硅烷表面处理剂的一般结构通式,其R基团为有机基团.(√)16.玻璃纤维的处理法中,前处理法较后处理法省去了复杂的处理工艺设备,使用方便,所以是目前普遍采用的一种方法.(×目前普遍采用后处理法)17.功能复合材料主要以其声、光、电、热、磁等物理特性为工程所用.(√)18.比表面积是表面积与体积之比.(√)19.耐高温硅烷偶联剂都含有一个与Si原子直接相连的稳定的芳香环,芳香环上有一个能与树脂基体反应的官能团.(×)简答题1.吸附按作用力的性质可分为物理吸附和化学吸附:物理吸附的一般特点有:1)、物理吸附无选择性;2)、吸附在表面的可以呈单分子层,也可以是多分子层;3)、物理吸附和解吸速度都较快,易达到平衡.化学吸附的一般特点有:1)、化学吸附是有选择性的;2)、只能是单分子吸附,且不易吸附和解吸;3)、化学吸附平衡慢.2.表面张力是物质的一种特性,与表面张力有关的因素有:表面张力与物质结构、性质有关;物质的表面张力与它相接触的另一相物质有关;表面张力随温度不同而不同.3. 玻璃纤维与块状玻璃具有相似的结构,玻璃表面会产生一种表面力,此表面力与表面张力、表面吸湿性有密切关系。
复合材料复习资料
复合材料复习资料《复合材料学》作业1.常见的材料强化途径都有哪些?请分别进行简要的论述固溶强化、细晶强化、析出强化、弥散强化、形变强化、相变强化。
【固溶强化】溶入固溶体中的溶质原子产生晶格畸变,晶格畸变增大了位错运动的阻力,使滑移难以进行,从而使合金固溶体的强度与硬度增加。
在溶质原子浓度适当时,可提高材料的强度和硬度,而其韧性和塑性却有所下降。
【细晶强化】通过细化晶粒而使金属材料力学性能提高的方法称为细晶强化,符合霍尔-佩奇公式σs=σ0+kd-1/2第二相粒子强化包括析出强化和弥散强化。
析出强化(时效强化):指金属在过饱和固溶体中溶质原子偏聚区和(或)由其脱溶出微粒弥散分布于基体中而导致硬化的一种热处理工艺。
弥散强化的实质是利用弥散细微粒阻碍位错的运动,从而提高材料的力学性能。
【形变强化】金属材料冷变形时强度和硬度升高.而塑性和韧性降低的现象。
【相变强化】它不是一种独立的强化机制,实际上是固溶强化、弥散强化、形变强化和细晶强化的综合效应。
2.碳钢的常用热处理工艺有哪些?主要操作方法及目的?有退火、正火、回火、淬火。
【退火】将钢件加热到一定的温度,并保温一定时间,然后,以相对缓慢的速度冷却(随炉或埋沙)到室温,得到接近平衡状态的显微组织的热处理。
【目的】a)均匀化学成分及组织,细化晶粒b)调整硬度,消除内应力和加工硬化,改善成形和切削加工性能c)为淬火做好组织准备【正火】将钢加热到奥氏体区完全奥氏体化,然后出炉进行空冷,以得到珠光体类(索氏体)组织的热处理。
【目的】a)改善低碳钢和低碳合金钢的可加工性能b)作为最终热处理,提高工件力学性能c)作为中碳和低合金结构钢重要零件的预备热热处理d)消除热加工缺陷【回火】将淬火钢件重新加热到Ac1以下的温度,保温,然后冷却的一种热处理形式。
【目的】a)降低或消除内应力,防止工件开裂变形b)减少或消除残余奥氏体,稳定工件尺寸c)调整内部组织和性能,满足工件使用要求【淬火】加钢加热到奥氏体转变区进行奥氏体化(亚共析钢加热到Ac3以上,过共析钢加热到Ac1以上),保温一定时间,然后以大于淬火临界冷却速度进行冷却,使奥氏体发生非平衡转变,得到马氏体或贝氏体等非平衡组织的热处理工艺。
复合材料期末复习
1.复合材料的定义(任选一种)国际标准化组织:(广义)由两种或两种以上在物理和化学上不同的物质组合起来而得到的一种多相固体材料。
《材料大词典》:(狭义)根据应用进行设计,把两种以上的有机聚合物材料或无机非金属材料或金属材料组合在一起,使其性能互补,从而制成的一类新型材料。
《材料科学技术百科全书》:(狭义,更具体)复合材料是由有机高分子、无机非金属或金属等几类不同材料通过复合工艺组合而成的新型材料。
2.增强材料——分散相 (称被分散的物质为分散相,又称弥散相) ,也称为增强体、增强剂、增强相等3.草梗合泥筑墙:草茎增强,土坯做住房墙体材料4.简述一到两种复合材料的应用5.复合材料的命名:强调基体的名称(例如树脂基复合材料、金属基复合材料、陶瓷基复合材料等)强调增强体的名称(例如碳纤维复合材料、玻璃纤维复合材料、陶瓷颗粒增强复合材料等)基体名称和增强体名称并用(习惯把增强体的名称放在前面,基体的名称在后面,例如玻璃纤维增强环氧树脂复合材料,简化为玻璃纤维/环氧树脂(俗称玻璃钢);碳化硅颗粒增强基复合材料,简化为碳化硅/铝基(SiCp/Al),碳纤维增强基体复合材料称为碳/碳复合材料(Cf/C)复合材料的分类(按增强材料的形态)任选三种纤维增强复合材料颗粒增强复合材料板状增强体、编织复合材料叠、骨架、涂层、片状、天然增强体按基体材料分类金属基复合材料陶瓷基复合材料聚合物基复合材料6. 混杂复合材料:两种或两种以上增强体与同一基体制成的复合材料可以看成是两种或多种单一纤维或颗粒复合材料的相互复合,即复合材料的“复合材料”。
7.复合材料产品只是固体,悬浮液、气溶胶、雾等含有气相或者液相的多相体系不能称之为复合材料。
8. 碳/碳复合材料:定义:以碳纤维(或石墨纤维)为骨架来增强以碳或石墨为基质而构成的复合材料。
9.复合材料的特点多相:至少两相独立性:相是独立的,组成和性能独立复合效益:具备不同于组成相的独特的性能或是效应固相:复合产物为固相可设计性:组成和性能可调10. 复合的目的:获得新组成的材料获得新形态的材料获得单一组分不具备的性质和功能,获得复合效应获得某种特定的性能和效益11.金属基复合材料正是为了满足高强度、重量轻的要求而诞生的。
[精品]复合材料复习资料.doc
复合材料复习资料1 ISO定义复合材料:是将两种或两种以上的物理和化学性质不同的物质组合而成的一种多和固体材料。
2按照基体材料不同分类:金属基复合材料,无机非金属基复合材料,聚合物基复合材料。
按照材料作用分类:结构复合材料和功能复合材料。
3复合材料的基本性能:(1)可综合发挥各种组成材料的优点,使一种材料具有多种性能。
(2)n J*按对材料性能的需耍进行材料的设计和制造。
(3)nJ'制成所需任意形状的产品,可避免多次加工工序。
4复合材料的基本性能取决于:(1)增强材料的性能,含量及分布情况(2)基体材料的性能及含蜃(3)界面的结合情况力学性能主要取决于1, 2, 3 导热,电,燃烧,耐自然老化,耐腐蚀性能主要取决于2, 35热固性树脂:树脂加热后产生化学变化,逐渐硬化成型,再受热也不软化,也不能溶解。
热固性树脂其分了结构为体型,它包括大部分的缩合树脂,热固性树脂的优点是耐热性高, 受压不易变形。
其缺点是机械性能较差。
热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅瞇树脂等。
经常是一次成型加工。
热塑性树脂:可反复加热软化、冷却固化的一大类合成树脂(也包括常见的天然树脂)。
它可反复成型加工。
在反复受热过程中,分子结构基本上不发生变化,当温度过高、时间过长时,则会发生降解或分解。
这些都是与热固性树脂相区别的特征。
常用的热塑性树脂有:聚乙烯、聚丙烯、聚氯乙烯(PVC)、聚苯乙烯、聚甲基丙烯酸甲酯、聚酯、聚甲醛、聚酰胺、聚苯讎。
6热塑性复合材料(FRTP)和热固性复合材料(FRP)注射成型工艺特点比较:(1)FRTP可以反复加热塑化,物料的熔融和硕化完全是物理变化;FRP加热固化后不能再塑化,加热过程为不可逆反应。
(2)FRTP受热时,物料由玻璃态变为熔融的粘流态,料筒温度要分段控制,其塑化温度应高于粘流温度,但低于分解温度;FRP在料筒加热时,树脂分了链发生运动,物料熔融,但接着发生化学反应,放热,加速化学反应过程。
复合材料期末考试复习题
1.复合材料的分类方法?复合材料的分类方法也很多。
常见的有以下几种。
按基体材料类型分类聚合物基复合材料以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体制成的复合材料。
金属复合材料以金属为基体制成的复合材料,如铝墓复合材料、铁基复合材料等。
无机非金属基复合材料以陶瓷材料(也包括玻璃和水泥)为基体制成的复合材料。
按增强材料种类分类玻璃纤维复合材料。
碳纤维复合材料。
有机纤维(芳香族聚酰胺纤维、芳香族聚酯纤维、高强度聚烯烃纤维等)复合材料。
金属纤维(如钨丝、不锈钢丝等)复合材料。
陶瓷纤维(如氧化铝纤维、碳化硅纤维、翩纤维等)复合材料。
此外,如果用两种或两种以上的纤维增强同一基体制成的复合材料称为“混杂复合材料”。
混杂复合材料可以看对免戈趁两种或多种单一纤维复合材料的相互复合,即复合材料的“复合材料”。
按增强材料形态分类连续纤维复合材料作为分散相的纤维,每根纤维的两个端点都位于复合材料的边界处。
短纤维复合材料短纤维无规则地分散在基体材料中制成的复合材料。
粒状填料复合材料微小颗粒状增强材料分散在基体中制成的复合材料。
编织复合材料以平面二维或立体三维纤维编织物为增强材料与基体复合而成的复合材料。
按用途分类复合材料按用途可分为结构复合材料和功能复合材料。
2.举例说明复合材料在现代工业中的应用?<1>建筑工业中,复合材料广泛应用于各种轻型结构房屋,建筑装饰、卫生洁具、冷却塔、储水箱、门窗及其门窗构件、落水系统和地面等。
<2>化学工业中,复合材料主要应用于防腐蚀管、罐、泵、阀等。
<3>交通运输方面,如汽车制造业中,复合材料主要应用于各种车身结构件、引擎罩、仪表盘、车门、底板、座椅等;在铁路运输中用于客车车厢、车门窗、水箱、卫生间、冷藏车、储藏车、集装箱、逃生平台等。
<4>造船工业中,复合材料用于生产各种工作挺、渔船、摩托艇、扫雷艇、潜水艇、救生艇、游艇以及船上舾装件等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合材料C 复习第一章概论1. 复合材料的定义?复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
三要素:基体(连续相)增强体(分散相)界面(基体起粘结作用并起传递应力和增韧作用)复合材料的特点:(明显界面、保留各组分固有物化特性、复合效应,可设计性)(嵌段聚合物、接枝共聚物、合金:是不是复合材料??)2、复合材料的命名/Alf(纤维),w(晶须),p(颗粒)比如:TiO2p3. 复合材料的分类:1) 按基体材料类型分为:聚合物基复合材料;金属基复合材料;无机非金属基复合材料(陶瓷基复合材料)。
2)按增强材料分为:玻璃纤维增强复合材料;碳纤维增强复合材料;有机纤维增强复合材料;晶须增强复合材料;陶瓷颗粒增强复合材料。
3) 按用途分为:功能复合材料和结构复合材料。
结构复合材料主要用做承载力和此承载力结构,要求它质量轻、强度和刚度高,且能承受一定温度。
功能复合材料指具有除力学性能以外其他物理性能的复合材料,即具有各种电学性能、磁学性能、光学性能、声学性能、摩擦性能、阻尼性能以及化学分离性能等的复合材料。
第二章增强体1、增强体定义:结合在基体内、用以改进其力学等综合性能的高强度材料。
要求:1) 增强体能明显提高基体某种所需性能;2) 增强体具有良好的化学稳定性;3) 与基体有良好润湿性。
分类:f,w,p2、纤维类增强体特点:长径比较大;柔曲性;高强度。
玻璃纤维主要成分:SiO2性能:拉伸强度高;较强耐腐蚀;绝热性能好。
(玻璃纤维高强的原因(微裂纹)及影响因素(强度提升策略:减小直径、减少长度、降低含碱量,缩短存储时间、降低湿度等))分类:无碱(E玻璃)、有碱(A玻璃)制备:坩埚法(制球和拉丝)、池窑法(熔融拉丝)。
浸润剂作用:(i) 粘结作用,使单丝集束成原纱或丝束;(ii) 防止纤维表面聚集静电荷;(iii)进一步加工提供所需性能;(iv) 防止摩擦、划伤。
(无偶联剂作用)玻璃纤维表征:(i) 定长法:“tex”(含义);(ii) 质量法:“支”(含义)硼纤维芯材:钨、碳和石英制备:化学沉积(CVD)法原料:卤化硼或氢化硼形貌:玉米棒状(W芯)光滑(C芯)表面涂层:SiC (防止脆性相的产生or 便于与基体结合)目前比模量和比强度最高的陶瓷增强纤维碳纤维1)制备:有机纤维碳化法有机纤维前驱体满足条件:碳化过程不熔融,保持纤维形态,碳化收率高···三种重要的前驱体:聚丙烯腈;黏胶纤维(人造丝);沥青纤维。
以PAN为例(制造高强度、高模量碳纤维多选用聚丙烯腈):拉丝--牵引--稳定化--碳化--石墨化拉丝:即PAN原纤维制备,湿法纺丝、干法纺丝,不能熔融纺丝;PAN特性:受热分解不熔融。
施加牵伸力目的在于使纤维产生择优取向,提高强度和模量。
碳纤维的表面处理方法(见第4章)石墨纤维和碳纤维的区别:处理温度不同、C含量不同、晶型不同碳纤维结构:乱层石墨结构。
特性:导热系数较高、线膨胀系数具有负的温度效应(可以抵消热胀冷缩现象)例1)碳纤维增强复合材料是在合成树脂的基体中加入了碳纤维做增强体,具有韧性好等特点,下列物质中可用于制造的是()。
A、电话亭和餐桌椅B、网球拍和钓鱼竿C、飞机用隔热瓦2)在PAN法制备CF的工艺过程中,为什么要进行预氧化、碳化和石墨化三个处理过程?(P20)聚丙烯腈纤维(PAN)是线性高分子结构,耐热性差,高温会裂解,不能经受碳化的高温得到碳纤维,预氧化可避免直接碳化处理时爆发产生有害的闭环和脱氢等放热反应,防止后续工序中纤维熔并。
碳化是在N保护下进行热解反2应,将结构中不稳定部分与非碳原子裂解出去,同时进行分子间的缩合,形成碳素缩合环。
石墨化处理可以使碳纤维发生石墨化结晶,形成石墨纤维,以较大幅度提高碳纤维的模量SiC 纤维1) 特点: 高比强度、高比模量、高温抗氧化性、优异的耐烧蚀性、耐热冲击性和吸波隐身性能等。
2) 碳纤维增强铝基复合材料可用于飞机、导弹、发动机的高性能结构件。
碳化硅纤维增强聚合物基复合材料,可以吸收或透过部分雷达波;作为雷达天线罩、火箭、导弹和飞机等飞行器部件的隐身结构材料,和航空、航天、汽车工业的结构材料与耐热材料。
3) 制备: (i) 化学气相沉积法 CH 3SiCl 3 → SiC ↓ +3 HCl ↑(ii) 先驱体法: (Nicalon) 制备聚碳硅烷、熔融纺丝、不熔化处理和高温烧成。
3、晶须1) 晶须与纤维的区别: ①晶须是单晶;纤维可以是非晶、单晶或多晶; ②晶须直径< 3 μm ; 纤维直径几微米至几十微米。
③晶须较纤维缺陷少,强度高(机械强度近似相邻原子之间的作用力)、模量大。
2) 晶须主要分陶瓷晶须(Al 2O 3、SiC) 和金属晶须两大类。
3) 唯一一种具有空间结构的晶须: ZnO 晶须4、颗粒颗粒增强体(炭黑)与填料(滑石粉、CaCO 3)的区别:前者以增强为主要目的,后者以填充体积为主要目的。
刚性颗粒增强体:指具有高强度、高模量、耐热、耐磨、耐高温的陶瓷和石墨等非金属颗粒,如碳化硅、氧化钛、氮化硅、石墨、细金刚石等。
延性颗粒增强体:主要为金属颗粒,加入到陶瓷基体和玻璃陶瓷基体中增强其韧性,如Al 2O 3中加入Al ,W C 中加入Co 等。
金属颗粒的加入使材料的韧性显著提高,但高温力学性能会有所下降。
例:下列哪一项不是颗粒增强体的特点( )。
A 、选材方便B 、力学性能取决于颗粒的形貌、直径、结晶完整度、体积分数等C 、成本高5、有机高分子纤维Kevlar 纤维(芳纶纤维):聚合物大分子的主链由芳香环和酰胺键构成。
(PPTA )合成方法:1) PPTA 分子合成(P42);2) 纺丝: 湿纺、干喷和干喷—湿纺(溶致液晶)可用来制备防弹衣Kevlar 纤维化学结构特点:含有大量苯环,内旋转困难,为处于拉伸状态的刚性伸直链晶体。
苯环与酰胺键交替排列对称性好,结晶性好。
分子间有氢键。
芳香族聚酯纤维 :可以进行熔融纺丝。
UHMW-PE :密度最低的高性能纤维。
第三章 复合理论✓ 复合理论:包括组分相(基体、增强体)的合理设计、组分相间的复合机理(复合效应与增强原理)。
1、复合材料设计的原理复合材料为什么具有可设计性?2、复合材料的复合效应✓ 线性效应(平均效应、平行效应、相补效应、相抵效应)✓ 平均效应:密度、单向纤维复合材料的纵向杨氏模量等 单向纤维复合材料的横向杨氏模量等例: SiC f /硼硅玻璃复合材料的强度随增强纤维体积含量线性增加反映的是复合线性效应中的( )A 、平均效应B 、平行效应C 、相补效应D 、相抵效应✓ 平行效应:ci K K≅ 即:复合材料的某项性能与某一组分的该项性能相当。
(如玻璃纤维增强环氧树脂的耐蚀性能与基体相当)✓ 相补效应:组成复合材料的基体与增强体,在性能上互补,从而提高了综合性能,显示出相补效应。
✓ 相抵效应:基体与增强体组成复合材料时,组分间性能相互制约,限制了整体性能提高(性能低于混合定律的预测值),则复合后显示出相抵效应。
(脆性的纤维增强体与韧性基体组成的复合材料,当两者界面结合很强时,复合材料整体显示为脆性断裂)✓ 非线性效应(相乘效应、诱导效应、系统效应、共振效应) ✓ 相乘效应: (/)(/)/X Y Y Z X Z ⋅=例: 用作温度自控发热体的石墨粉/聚合物复合材料,可以达到自动控温的效果,其利用的是复合效应的________。
()11()c i i i c i K K K K φφ==∑∑并联模型串联模型✓诱导效应:诱导另一相材料产生特殊的界面层,传递载荷,改变功能。
(在碳纤维增强尼龙或聚丙烯中,由于碳纤维表面对基体的诱导作用,致使界面上的结晶状态与数量发生了改变,如出现横向穿晶等,这种效应对尼龙或聚丙烯起着特殊的作用。
)✓系统效应:复合材料具有单个组分不具有的某种性能。
(涂膜的硬度大于基体和膜层硬度之和)✓共振效应(强选择性效应):A组分的大多数性能受到抑制,而其某一项性能充分发挥。
(导电不导热)例:彩色胶卷仅含有三种感光乳剂层却能记录各种颜色,利用了复合效应中的()A、诱导效应B、系统效应C、相补效应3、复合材料的增强机制✓颗粒增强机制(颗粒切过、颗粒未切过)✓颗粒切过增强机制1) 适用于:颗粒的尺寸较大(> 1 μm),自身强度不高,结合力较强2) 受力特点:基体承担主要的载荷,颗粒阻止位错的运动,并约束基体的变形。
3) 位错切过强化:(有序增强机制、界面强化机制、共格应变强化机制等)4) 颗粒的尺寸越小,体积分数越大,强化效果越好。
✓颗粒未切过增强机制(颗粒较小,<1 μm)●低温、高外加应力----位错绕过理论(Orowan机制)(注意:有位错环)1) 硬质颗粒如Al2O3,TiC,SiC阻碍基体(金属基)中的位错运动或分子链(高聚物基)运动。
2) 载荷主要由基体承担,弥散微粒阻碍基体的位错运动。
3) 颗粒尺寸越小,体积分数越大,强化效果越好。
一般Vp 为1%~15%,dp为0.001μm ~ 0.1μm。
●高温、低外加应力----位错攀移机制1) 形式:局部攀移和整体攀移●残余应力强化机制:增强体颗粒与基体的膨胀系数和弹性模量存在差异,使得裂纹在界面处发生偏转(消耗更多能量),起到增韧补强复合材料。
●影响颗粒增强因素:颗粒的性质、基体性质、结合界面、制备工艺(P61)。
✓纤维增强机制受力特点:高强度、高模量的纤维承受载荷,基体只是作为传递和分散载荷的媒介。
●单向排列连续纤维增强原理(单向长纤维)纵向:1) 初始阶段(纤维、基体、复合材料具有相同的应变)c f f m mE E V E V =+ 纤维/基体弹性模量的比值↑,纤维体积含量↑,则纤维承载比↑。
2) 断裂顺序和断裂强度: (会分析,判断谁先断裂,然后该材料断裂后另一种材料能否承受全部载荷)✓ 纤维的强化作用取决于纤维与基体的性质、二者的结合强度、纤维在基体中的排列方式。
✓ 为了达到纤维增强的效果,须遵循以下原则:(简答题)1) 纤维的强度和弹性模量应远高于基体(使纤维尽可能多的承担外加负荷);2) 纤维与基体间应有一定的界面结合强度,以保证基体所承受的载荷能通过界面传递给纤维,并防止脆性断裂;3) 纤维的排列方向要与构件的受力方向一致;4) 纤维与基体的热胀系数应匹配(纤维的热膨胀系数略大于基体);5) 纤维与基体不能发生使结合强度降低的化学反应;6) 纤维所占体积分数、纤维长度和直径及长径比等必须满足一定要求。
✓ 复合材料的物理性质1) 热膨胀系数: 满足平均效应。
一般无机材料的热膨胀系数较聚合物的要小得多,所以,以无机材料为增强体的聚合物基复合材料其热膨胀系数要较纯聚合物的小,其数值接近于金属的热膨胀系数。