最新新版人教版八年级数学下册期中考试数学试题考试范围:二次根式、勾股定理、平行四边形
2024年人教版八年级数学下册期中考试卷(附答案)
2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。
()2. 平行四边形的对角线互相平分。
()3. 正方形的对角线相等且互相垂直。
()4. 圆的半径是圆心到圆上任意一点的距离。
()5. 圆的直径是圆上任意两点之间的距离。
()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。
2. 平行四边形的对角线互相平分,所以它的对角线长度是______。
3. 正方形的四个角都是______度。
4. 圆的半径是圆心到圆上______的距离。
5. 圆的直径是圆上______点之间的距离。
四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。
2. 简述平行四边形的性质。
3. 简述正方形的性质。
4. 简述圆的性质。
5. 简述圆的直径和半径之间的关系。
五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。
2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。
人教版数学八年级下册期中考试试题带答案
人教版数学八年级下册期中考试试卷一、单选题1.二次根式a 的取值范围是()A .a <1B .a≤1C .a≥1D .a >12.下列计算正确的是()A =B .2+=C .-=D .1883212-==-=3.下列二次根式是最简二次根式的是()AB C .D4.以下列各组数据为边不能组成直角三角形的一组数据是()A .3,4,5B .111345,,C .6,8,10D .5,12,135.下列说法中,正确的是()A .一组对边平行,另一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .有一组邻边相等的矩形是正方形D .对角线互相垂直的四边形是菱形6.如图,一根长5米的竹竿斜靠在一竖直的墙AO 上,这时AO 为4米.如果竹竿的顶端A 沿墙下滑1米,竹竿底端B 外移的距离BD ()A .等于1米B .大于1米C .小于1米D .以上都不对7.如图,在□ABCD 中,对角线AC ,BD 相交于点O ,AC=10,BD=6,AD=4,则□ABCD 的面积是()A .12B .123C .24D .308.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=2,点D 在BC 上,以AC 为对角线的所有 ADCE 中DE 的最小值是()A .1B .2C .2D .229.如图,正方形ABCD 的边长为2,点E 、F 分别为边AD 、BC 上的点,5EF =,点G 、H 分别为AB 、CD 边上的点,连接GH ,若线段GH 与EF 的夹角为45 ,则GH 的长为()A 5B .2103C .253D 7二、填空题10245y 35y -()A 9y3-B .y -C .35y -D .35511225(5)-=____________12.若1x <2(1)x -=____________13.平面直角坐标系中,点P(-4,2)到坐标原点的距离是____________14.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,若AD=3,DB=5,DE=1.2,则BC=________15.如图,□ABCD和□DCFE的周长相等,∠B+∠F=220°,则∠DAE的度数为__________16.如图,将一个长为9,宽为3的长方形纸片ABCD沿EF折叠,使点C与点A重合,则EF的长为___________.三、解答题17.(1)计算:(2)计算:-+18.已知x 1,求代数式256x x +-的值.19.如图,在 ABCD 中,E 、F 分别是AB 、CD 的中点,求证:四边形EBFD 是平行四边形.20.如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD(1)求证:四边形OCED 是菱形;(2)若AD=2CD ,菱形面积是16,求AC 的长.21.已知:如图,四边形ABCD 中,∠ABC=90°,∠ADC=90°,点E 为AC 中点,点F 为BD 中点.求证:EF ⊥BD22.如图,在△ABC中,D为BC上一点,且AB=5,BD=3,AD=4,且△ABC的周长为18,求AC的长和△ABC的面积.23.如图,在△ACD中,AD=9,CD=32△ABC中,AB=AC,若∠CAB=60°,∠ADC=30°,在△ACD外作等边△ADD′(1)求证:BD=CD′(2)求BD的长.24.如图,平面直角坐标系中,直线AB:y=-2x+8交y轴于点A,交x轴于点B,以AB为底作等腰三角形△ABC的顶点C恰好落在y轴上,连接BC,直线x=2交AB于点D,交BC于点E,交x轴于点G,连接CD.(1)求证:∠OCB=2∠CBA;(2)求点C的坐标和直线BC的解析式;(3)求△DEB的面积;(4)在x轴上存在一点P使PD-PC最长,请直接写出点P的坐标.参考答案1.C【解析】【分析】由二次根式有意义的条件可知a-1≥0,解不等式即可.【详解】由题意a-1≥0解得a≥1故选C.【点睛】本题考查了二次根式的意义,掌握被开方数需大于等于0即可解题.2.C【解析】【分析】原式各项利用二次根式的乘除法则,以及合并同类二次根式化简得到结果,即可做出判断.【详解】解:是最简结果,不能合并,错误;B.C.=正确; D.188********-==,错误.故选C .3.B【解析】A.=,故不是最简二次根式;B.是最简二次根式;C.=,故不是最简二次根式;D.=,故不是最简二次根式;故选B.4.B【解析】【详解】解:A.∵32+42=52,∴3,4,5能组成直角三角形;B.222111345⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,∴13,14,15不能组成直角三角形;C.∵62+82=102,∴6,8,10能组成直角三角形;D.∵52+122=132,∴5,12,13能组成直角三角形;故选B .5.C【解析】【分析】根据平行四边形、矩形、正方形、菱形的判定方法以及定义即可作出判断.【详解】解:一组对边平行且相等的四边形是平行四边形,故A 错误;对角线相等的平行四边形是矩形,故B 错误;有一组邻边相等的矩形是正方形,故C 正确;对角线互相垂直平分的四边形是菱形或对角线互相垂直的平行四边形是菱形,故D 错误;故本题答案应为:C.【点睛】平行四边形、矩形、正方形、菱形的判定方法以及定义是本题的考点,熟练掌握其判定方法是解题的关键.6.A【解析】【分析】根据题意要求出下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得BO 和DO的长即可.【详解】解:由题意得:在Rt△AOB中,OA=4米,AB=5米,∴=3米,在Rt△COD中,OC=3米,CD=5米,∴米,∴AC=OD-OB=1米.故选:A.【点睛】本题考查了勾股定理的应用,注意此题中梯子的长度是不变的.熟练运用勾股定理是解题的关键.7.C【解析】【分析】由▱ABCD的对角线AC和BD交于点O,若AC=10,BD=6,AD=4,易求得OA与OB的长,又由勾股定理的逆定理,证得AD⊥BD,继而求得答案.【详解】∵四边形ABCD是平行四边形,且AC=10,BD=6,∴OA=OC=12AC=5,OB=OD=12BD=3,∵AD=4,∴AD2+DO2=OA2,∴△ADO是直角三角形,且∠BDA=90°,即AD ⊥BD ,∴▱ABCD 面积为:AD•BD=4×6=24.故选C .【点睛】此题考查了平行四边形的性质与勾股定理的逆定理.此题难度不大,注意掌握数形结合思想的应用.8.B【解析】【详解】解:平行四边形ADCE 的对角线的交点是AC 的中点O ,当OD BC ^时,OD 最小,即DE 最小OD BC BC AB⊥⊥ ,//OD AB∴又OC OA= OD ∴是ABC 的中位线112OD AB ∴==22DE OD ∴==故选B9.B【解析】【分析】过点B 作BK ∥EF 交AD 于K ,作BM ∥GH 交CD 于M ,可得∠KBM=45°,作∠MBN=45°交DC 的延长线于N ,求出∠ABK=∠CBN ,然后利用“角边角”证明△ABK 和△CBN 全等,根据全等三角形对应边相等可得BN=BK ,AK=CN ,利用勾股定理列式求出AK ,过点M 作MP ⊥BN 于P ,可得△BMP 是等腰直角三角形,设GH=BM=x ,表示出MP ,然后利用∠N 的正切值列出方程求解即可.【详解】如图,过点B 作BK ∥EF 交AD 于K ,作BM ∥GH 交CD 于M ,则BM=GH ,∵线段GH 与EF 的夹角为45°,∴∠KBM=45°,∴∠ABK+∠CBM=90°-45°=45°,作∠MBN=45°交DC 的延长线于N ,则∠CBN+∠CBM=45°,∴∠ABK=∠CBN ,在△ABK 和△CBN 中,90ABK CBNAB BC A BCN ∠∠⎧⎪=⎨⎪∠=∠=︒⎩=,∴△ABK ≌△CBN (ASA ),∴BN=BK ,AK=CN ,在Rt △ABK 中,=,过点M 作MP ⊥BN 于P ,∵∠MBN=45°,∴△BMP 是等腰直角三角形,设GH=BM=x ,则BP=MP=22BM=22x ,∵tan ∠N=BC MP CN PN=,∴2221x =,解得x=2103,所以GH=2103,故选B.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,熟记各性质并作辅助线构造出全等三角形和等腰直角三角形是解题的关键.10.B【解析】===.故选B.11.0.【解析】【分析】利用二次根式的性质化简,然后进行减法运算即可.【详解】原式=5-5=0.故答案为0.【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.1-x【解析】【详解】解:1x < ,10x ∴-<,1x =-故答案为:1-x 13.【解析】由勾股定理得=.14.3.2【解析】【分析】首先由DE ∥BC ,可证得△ADE ∽△ABC ,进而可根据相似三角形得到的比例线段求得BC 的长.【详解】∵DE ∥BC ,∴△ADE∽△ABC,∴DE ADBC AB,即1.238BC=,解得:BC=3.2.故答案为:3.2.【点睛】此题主要考查的是相似三角形的判定和性质.15.20°【解析】【分析】由▱ABCD与▱DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠B+∠F=220°可得∠ADC+∠EDC=220°,从而得∠ADE的度数,即可求出∠DAE的度数.【详解】∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∴∠DAE=∠DEA,∵∠B+∠F=220°,∴∠ADC+∠EDC=220°,∴∠ADE=360°-220°=140°,∴∠DAE=1801402︒-︒=20°,故答案为20°.【点睛】本题考查了平行四边形的性质:平行四边形的对边相等、平行四边形的对角相等以及邻角互补和等腰三角形的判定和性质、三角形的内角和定理.16【解析】【详解】解:EF 是四边形EFCD 与EFGA 的对称轴9AE CE AE BE CE BE ∴=+=+=,又3AB = 设AE xcm =,则9BE x=-222AB BE AE += 2223(9)x x ∴+-=计算得出5x =则5AE CE ==又四边形ABCD 是矩形,//AD BC∴EFA FEC∴∠=∠CEF AEF∠=∠ FEC AEF AFE∴∠=∠=∠5AF AE ∴==过E 点作EH AD ⊥于H,41AH BE FH AF AH ∴===-=,EF ∴===.17.;(2)【解析】【详解】解:(1)原式=650302=(2)原式=4323123143-+=18.535-+【解析】【分析】把x 的值代入多项式进行计算即可.【详解】当x =51-时,256x x +-=()()2515516-+--=6255556-+--=535-+【点睛】本题考查了二次根式的化简求值,掌握完全平方公式是解题的关键.19.证明见解析.【解析】【详解】证明:在ABCD 中,DC ∥AB ,DC =AB ,∵E 、F 分别是AB 、C D 的中点,∴EB ∥FD ,EB =FD∴四边形EBFD 是平行四边形.20.(1)证明见解析;(2)AC=45.【解析】【详解】解:(1)//,//DE AC CE BD四边形OCED 是平行四边形四边形ABCD 是矩形11,,22AC BD OD BD OC AC ∴===OC OD∴=四边形OCED 是菱形;(2)∵=16S 菱形8OCD S ∴= 连接OE ,交CD 于F ,则OE CD⊥设CD x =,则2AD x=,AO OC DF FC== 12OF AD x ∴==211822OCD S CD OF x ∴=⋅== 4x =±0x >4x ∴=2222(2)55AC AD DC x x x ∴=++=21.详见解析【解析】【分析】连接BE 、DE ,根据直角三角形斜边上的中线等于斜边的一半可得BE=DE=12AC ,再根据等腰三角形三线合一的性质证明.【详解】证明:如图,连接BE、DE,∵∠ABC=90°,∠ADC=90°,点E是AC的中点,∴BE=DE=12 AC,∵点F是BD的中点,∴EF⊥BD.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作出辅助线是解题的关键.22.14.4.【解析】【详解】32+42=52,∴BD2+AD2=AB2,∴∠ADB=∠ADC=90°,设CD=x,在Rt△ADC中,AD2=AC2-CD2,∴42=(10-x)2-x2,∴x=4.2,∴AC=10-x=5.8,△ABC 的面积=12BC•AD=12×(3+4.2)×4=14.4.23.(1)证明见解析;(2)【解析】【分析】(1)只要证明△CAD′≌△BAD 即可解决问题.(2)首先证明∠CDD′=90°,利用勾股定理求出CD′,再利用全等三角形的性质即可解决问题.【详解】(1)证明:∵△ADD′和△ABC 都是等边三角形,∴AD=AD′,AC=AB ,∠DAD′=∠CAB=60°,∴∠CAD′=∠BAD ,在△CAD′和△BAD 中,CA BA CAD BAD AD AD ⎧⎪∠'∠⎨⎪'⎩===,∴△CAD′≌△BAD ,∴BD=CD′.(2)解:∵△ADD′是等边三角形,∴∠ADD′=60°,DD′=AD=9,∵∠ADC=30°,∴∠CDD′=90°,∴∵△CAD′≌△BAD ,∴.【点睛】本题考查等边三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题24.(1)证明见解析;(2)C(0,3),直线BC解析式为y=-34x+3;(3)52;(4)P(-6,0).【解析】【分析】(1)利用等腰三角形的性质和外角的性质可证得结论;(2)可先求得A、B的坐标,则可求得OA=8、OB=4,在设OC=x,则AC=BC=8-x,在Rt△OBC中由勾股定理可列方程,可求得OC的长,则可求得点C的坐标,再利用待定系数法可求得直线BC的解析式;(3)由直线AB、BC的解析式可分别求得点D、E的坐标,则可求得DE的长,可求得△DEB的面积;(4)利用三角形三边关系可知PD-PC<CD,当P、D、C三点在一条线上时,则有PD-PC=CD,此时其差最长,延长CD交x轴于点P,则该点即为P点,由C、D的坐标可求得直线CD的解析式,则可求得点P的坐标.【详解】(1)证明:∵△ABC为等腰三角形,∴∠CAB=∠CBA,∠OCB为外角,∴∠OCB=∠CAB+∠CBA,∴∠OCB=2∠CBA;(2)在y=-2x+8中,令x=0可得y=8,令y=0可求得x=4,∴A (0,8),B (4,0),∴OA=8,OB=4,设OC=x ,则AC=BC=8-x ,在Rt △OBC 中,由勾股定理可得BC 2=OC 2+OB 2,即(8-x )2=x 2+42,解得x=3,∴C (0,3),设直线BC 解析式为y=kx+b ,把B 、C 点的坐标代入可得403k b b +⎧⎨⎩==,解得343k b ⎧-⎪⎨⎪⎩==,∴直线BC 解析式为y=-34x+3;(3)直线x=2交AB 于点D ,交BC 于点E ,交x 轴于点G ,∴D (2,4),E (2,32),G (2,0),∴DE=4-32=52,且B (4,0),∴BG=4-2=2,∴S △DEB =12DE•BG=12×52×2=52;(4)∵PD-PC <CD ,∴当P 、D 、C 三点在一条线上时,则有PD-PC=CD ,此时其差最长,延长CD交x轴于点P,则该点即为P点,设直线CD解析式为y=mx+n,把C、D坐标代入可得324bk b⎧⎨+⎩==,解得123kb⎧⎪⎨⎪⎩==,∴直线CD解析式为y=12x+3,令y=0可得12x+3=0,解得x=-6,∴P(-6,0).【点睛】本题为一次函数的综合应用,涉及等腰三角形和外角的性质、勾股定理、三角形的面积、三角形的三边关系、待定系数法及方程思想.在(1)中注意利用三角形外角的性质,在(2)中注意利用方程思想,在(3)中求得DE的长是解题的关键,在(4)中确定出点P的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
新人教版八年级下册数学期中测试卷及答案)
新人教版八年级下册数学期中测试卷及答案)八年级下册数学期中测试卷(1)一、选择答案:(每题3分,共30分)1、下列二次根式中,属于最简二次根式的是()A。
1B。
2√2C。
4D。
52、二次根式x+3有意义的条件是()A.x>3B。
x>-3C。
x≥-3D。
x≥33、正方形面积为36,则对角线的长为()A.6B.6√2C.9D.9√24、矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为()A。
12B。
10C。
7.5D。
55、下列命题中,正确的个数是()①若三条线段的比为1:1:2,则它们组成一个等腰直角三角形;②两条对角线相等的平行四边形是矩形;③对角线互相垂直的四边形是菱形;④有两个角相等的梯形是等腰梯形;⑤一条直线与矩形的一组对边相交,必分矩形为两个直角梯形。
A、2个B、3个C、4个D、5个6、下列条件中能判断四边形是平行四边形的是()A)对角线互相垂直B)对角线相等C)对角线互相垂直且相等D)对角线互相平分7、在□ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A)1cmB)2cmC)3cmD)4cm8、如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12B.16C.20D.249、如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D’处,则重叠部分△AFC的面积为()A.6B.8C.10D.1210、如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.45°B.30°C.60°D.55°二、填空:(每题2分,共20分)11、ABCD中一条对角线分∠A为35°和45°,则∠B=100度。
12、矩形的两条对角线的夹角为60度,较短的边长为12cm,则对角线的长为12√3 cm。
人教版数学八年级下册期中考试试题附答案
人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。
人教版八年级下册数学期中考试试题含答案
人教版八年级下册数学期中考试试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣22.下列二次根式中,最简二次根式是()A.B.C.D.3.下列二次根式中,与之积为无理数的是()A.B.C.D.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.25.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,256.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm29.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.810.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.12.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.8二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=.14.相邻两边长分别是2+与2﹣的平行四边形的周长是.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是,面积是.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【解答】解:由题意得:2+x≥0,解得:x≥﹣2,故选D.【点评】本题考查了二次根式有意义的条件,难度不大,解答本题的关键是掌握二次根式的被开方数为非负数.2.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:=a,A错误;=,B错误;=3,C错误;是最简二次根式,D正确,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.下列二次根式中,与之积为无理数的是()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘法进行计算逐一判断即可.【解答】解:A、,不是无理数,错误;B、,是无理数,正确;C、,不是无理数,错误;D、,不是无理数,错误;故选B.【点评】此题考查二次根式的乘法,关键是根据法则进行计算,再利用无理数的定义判断.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,25【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、52+122=132,故是直角三角形,故正确;B、42+52≠62,故不是直角三角形,故错误;C、12+()2=()2,故是直角三角形,故正确;D、72+242=252,故是直角三角形,故正确.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【考点】平行四边形的性质.【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°【考点】三角形内角和定理;正方形的性质.【分析】根据三角形内角和为180°,得到∠BAC+∠BCA+∠ABC=180°,又∠4=∠5=∠6=90°,根据平角为180°,即可解答.【解答】解:如图,∵图中是三个正方形,∴∠4=∠5=∠6=90°,∵△ABC的内角和为180°,∴∠BAC+∠BCA+∠ABC=180°,∵∠1+∠4+∠BAC=180°,∠2+∠6+∠ABC=180°,∠3+∠5+∠ACB=180°,∴∠1+∠4+∠BAC+∠2+∠6+∠ABC+∠3+∠5+∠ACB=540°,∴∠1+∠2+∠3=540°﹣(∠4+∠5+∠6+∠BAC+∠ABC+∠ACB)=540°﹣90°﹣90°﹣90°﹣180°=90°,故选:B.【点评】本题考查了三角形内角和定理,解决本题的关键是运用三角形内角和为180°,正方形的内角为90°以及平角为180°,即可解答.8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm2【考点】勾股定理;矩形的性质.【专题】计算题.【分析】在直角三角形ABC中,由AB与AC的长,利用勾股定理求出BC的长,再由BE的长,求出矩形CBEF的面积即可.【解答】解:在Rt△ABC中,AB=17cm,AC=8cm,根据勾股定理得:BC==15cm,则矩形CBEF面积S=BC•BE=45cm2.故选C【点评】此题考查了勾股定理,以及矩形的性质,熟练掌握勾股定理是解本题的关键.9.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.10.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【考点】勾股定理的逆定理.【分析】对原式进行化简,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()【考点】矩形的性质.【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.12.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为()【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE 平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=6.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化简,然后把括号内合并后进行二次根式的乘法运算即可.【解答】解:原式=(+2)×=3×=6.故答案为6.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.14.相邻两边长分别是2+与2﹣的平行四边形的周长是8.【考点】二次根式的应用.【分析】根据平行四边形的周长等于相邻两边的和的2倍进行计算即可.【解答】解:平行四边形的周长为:(2++2﹣)×2=8.故答案为:8.【点评】本题考查的是平行四边形的周长的计算和二次根式的加减,掌握平行四边形的周长公式和二次根式的加减运算法则是解题的关键.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为60cm2.【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据BC=10cm可知BD=5cm.由勾股定理求出AD的长,再由三角形的面积公式即可得出结论.【解答】解:如图所示,过点A作AD⊥BC于点D,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD===12cm,∴S△ABC=BC•AD=×10×12=60(cm2).故答案为:60cm2.【点评】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是60°.【考点】平行四边形的性质.【分析】由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=60°;故答案为:60°.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是20,面积是24.【考点】菱形的性质.【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故答案为:20,24.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于对角线积的一半.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为(9,4).【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出CD=AB=9,由勾股定理求出OD,即可得出点C的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=9,∵点A的坐标为(﹣3,0),∴OA=3,∴OD===4,∴点C的坐标为(9,4).故答案为:(9,4).【点评】本题考查了平行四边形的性质、坐标与图形性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OD是解决问题的关键.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是24.【考点】平行四边形的性质.【分析】由在平行四边形ABCD中,DE平分∠ADC,易证得△CDE是等腰三角形,继而求得CD的长,则可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=8,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CD=CE=BC﹣BE=8﹣4=4,∴AB=CD=4,∴平行四边形ABCD的周长是:AD+BC+CD+AB=24.故答案为:24.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CDE是等腰三角形是关键.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为24m2.【考点】勾股定理的应用.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接AC由勾股定理可知AC===5,又AC2+BC2=52+122=132=AB2故三角形ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积==24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=4×12÷(5+﹣4)=48÷(2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.【考点】图形的剪拼;实数与数轴;分式的化简求值;勾股定理.【分析】(1)首先将括号里面通分,进而利用分式的除法运算法则化简,进而将已知代入求出答案;(2)直接利用勾股定理结合数轴得出的位置;(3)直接利用勾股定理得出大正方形的边长即可.【解答】解:(1)原式=÷=×=,当x=+,y=﹣时,原式==;(2)因为30=25+5,则首先作出以5和为直角边的直角三角形,则其斜边的长即是.如图所示:;(3)如图所示:∵左边是由两个边长为2的小正方形组成,∴大正方形的边长为:=2.【点评】此题主要考查了分式的混合运算以及无理数的确定方法以及勾股定理、图形的剪拼,正确应用勾股定理是解题关键.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可.【解答】证明:四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=BE,∴AF=CE,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;(2)原式=+++…+=(﹣1).【点评】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【考点】正方形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.。
人教版八年级下册数学期中考试试卷及答案
人教版八年级下册数学期中考试试题一、单选题1x 的取值范围是()A .2x >B .2x ≥C .2x <D .2x ≤2.若x ≤0,则化简|1﹣x |)A .1﹣2xB .2x ﹣1C .﹣1D .13.菱形具有而矩形不具有的性质是()A .对角相等B .对角线互相平分C .四边相等D .四角相等4.菱形的周长是它的高的()A .100°B .120°C .135°D .150°5.已知菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD =120°,AC =4,则该菱形的面积是()A .B .16C .D .86.在Rt ABC △中,90ACB ∠=︒,5cm =BC ,12cm AC =,三个内角的平分线交于点P ,则点P 到AB 的距离PH 为()A .1cmB .2cmC .3013cmD .6013cm 7.在平行四边形ABCD 中,∠B =110°,延长AD 至F ,延长CD 至E ,连接EF ,则∠E +∠F =()A.110°B.30°C.50°D.70°8.如图,在□ABCD中,对角线AC,BD相交于点O,E是BC的中点,若OE=3,则AB 的长为()A.3B.6C.9D.129.如图所示,矩形ABCD中,AB=1AD,E为BC上的一点,且AE=AD,则∠EDC的度2数是( )A.30°B.75°C.45°D.15°10.如图,D、E、F是△ABC各边的中点,连接DE、EF、FD,可组成()个平行四边形.A.1B.2C.3D.4二、填空题11.已知矩形两对角线夹角为60°,对角线长为2cm,则矩形面积为________.AB CD,PM、PN、QM、QN分别为角平分线,则四边形PMQN是_______.12.如图,//13.如图,已知四边形ABCD 是一个平行四边形,则只须补充条件__________,就可以判定它是一个菱形.14.菱形ABCD 的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_____.15.如图,在ABC 中,已知25AB =42AC =6BC =.则ABC 的面积为______.16.如果42a ,小数部分为b ,则a b -=__________.17.已知实数a,b,c 在数轴上的位置如图所示,化简代数式22||()||a a c b c b +--_______三、解答题18.计算:(115515527(2)2(23)(236)(236)+19.已知15x =+,15y =y x和22x y +的值.20.如图,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB=5,AO=4,求BD 的长.21.已知a ,b 为等腰三角形的两条边长,且a ,b 满足b+4,求此三角形的周长.22.如图,在ABC 中,点D 、E 分别是AB ,AC 边中点CD AB ⊥于D ,延长DE ,过C 作CF DE ⊥于F .(1)求证:ADC BDC ≌△△.(2)若10BC =,9DF =,求FC 的长度.23.如图,DE 是ABC 的中位线,延长DE 到点F ,使EF DE =,连接CF ,CD ,AF .(1)请判断线段AD 与CF 的数量关系与位置关系,并给予证明;(2)若AC BC =,求证:四边形ADCF 是矩形.24.如图所示,ABCD 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F .求证:四边形AFCE 是菱形.25.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E(1)证明:四边形ACDE 是平行四边形;(2)若AC=8,BD=6,求△ADE 的周长.26.阅读下列解题过程:====请回答下列问题:(1=__________;(2)利用上面的解法,+参考答案1.D【解析】根据二次根式有意义的条件可直接进行求解.【详解】解:根据二次根式要有意义,被开方数大于等于0,可得:20x-≥,解得:2x≤;故选D.2.D【详解】试题分析:根据x≤0,可知-x≥0,因此可知1-x≥0(0){0(0)(0)a aa aa a><===-可求解为|1﹣x|故选:D3.C【解析】根据矩形、菱形的性质分别判断即可解决问题.【详解】A.矩形、菱形的对角线都是相等的,故不符合.B.矩形、菱形的对角线都是互相平分的,故不符合.C.菱形的四边相等,矩形的四边不一定相等,故符合题意.D.矩形的四角相等,菱形的四角不一定相等,菱形不具有这个性质,故不符合.故选C.4.C【解析】根据菱形周长等于它高的,.因此若作出此菱形的一条高,所得的三角形为等腰直角三角形.所以它的两个角分别为45°和135°.故答案为C.5.C【解析】根据四边形ABCD 是菱形,且∠BAD =120°可知∠ABC=60°,AB=AC ,即△ABC 为等边三角形,则AB=AC=BC=4,作AE ⊥BC 于点E ,可得BE=2,AE=,求得S 菱形ABCD =BC·AE=4×【详解】在菱形ABCD 中,有AB=AC∵∠BAD =120°∴∠ABC=60°∴△ABC 为等边三角形即AB=AC=BC=4作AE ⊥BC 于点E∴BE=2,AE=∴S 菱形ABCD =BC·AE=4×故选C6.B【解析】由勾股定理解得13cm AB =,根据角平分线的性质,可得,,CAP PAB ABP CBP ACP BCP ∠=∠∠=∠∠=∠,过点P ,分别作Rt ABC △三边的垂线段,继而证明MAP △()HAP ASA ≅△,PMC △()PNC ASA ≅△,BHP ()BNP ASA ≅△,由全等三角形对应边相等的性质得到PM PH =,,PM PN PN PH ==,即可证明PM PH PN ==,最后利用三角形面积公式及等积法解题即可求得PH 的值.【详解】解:在Rt ABC △中,90ACB ∠=︒,5cm =BC ,12cm AC =,13AB ∴===P 是Rt ABC △中三个内角的平分线的交点,,,CAP PAB ABP CBP ACP BCP∴∠=∠∠=∠∠=∠过点P ,分别作Rt ABC △三边的垂线段,如图,在MAP △与HAP △中,CAP BAP AP AP AMP AHP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴MAP △()HAP ASA ≅△PM PH∴=同理得,PMC △()PNC ASA ≅△,BHP ()BNP ASA ≅△,PM PN PN PH∴==PM PH PN∴==111222ABC S AC PM AB PH BC PN ∴=⋅+⋅+⋅ 1()2AC AB BC PH =++⋅1(51213)2PH =⨯++⋅15PH=又115123022ABC S AC BC =⋅=⨯⨯= 1530PH ∴=2PH ∴=故选:B.7.D【解析】要求∠E +∠F ,只需求∠ADE ,而∠ADE =∠A 与∠B 互补,所以可以求出∠A ,进而求解问题.【详解】解:∵四边形ABCD 是平行四边形,∴∠A =∠ADE =180°﹣∠B =70°,∵∠E +∠F =∠ADE ,∴∠E +∠F =70°;故选:D .【点睛】本题主要考查了平行四边形的性质应用,准确分析计算是解题的关键.8.B【解析】点O 是AC 的中点,E 是BC 的中点,则OE 是三角形ABC 的中位线,据此计算即可【详解】∵在□ABCD 中,对角线AC ,BD 相交于点O ,∴OA =OC ,∵EB =EC ,∴AB =2OE ,∵OE =3,∴AB =6,故选:B .9.D【解析】试题分析:因为AB=12AD ,AE=AD ,所以在Rt △ABE 中,∠BEA=30°,所以∠DAE=30°,因为AE=AD ,所以∠ADE=180302︒-︒=75°,所以∠EDC=="90°-75°"=15°,故选D .考点:1.矩形的性质;2.直角三角形的性质;3.等腰三角形的判定与性质;4.互余.10.C【解析】根据三角形中位线的性质得到//EF AB 、//DE BC 、EF AD DB ==、DE CF =,再根据平行四边形的判定条件,即可求解.【详解】解:已知点D 、F 、E 分别是△ABC 的边AB 、CA 的中点,∴//EF AB 且12EF AB AD DB ===,//DE BC 且DE CF =∴四边形ADFE 、四边形BDEF 和四边形CFDE 为平行四边形,故选:C .【点睛】此题考查了三角形中位线的性质以及平行四边形的判定,熟练掌握中位线的性质以及平行四边形的判定是解题的关键.112【解析】分析:作出图形,根据矩形的对角线互相平分且相等求出OA =OB ,然后求出△AOB 是等边三角形,根据等边三角形的性质求出AB ,再利用勾股定理列式计算即可得解.详解:∵四边形ABCD 是矩形,∴OA =OB =12×2=1.∵两对角线的夹角∠AOB =60°,∴△AOB 是等边三角形,∴AB =OA =1.在Rt △ABC中,矩形的长BC2.点睛:本题考查了矩形的性质,等边三角形的判定与性质,勾股定理,熟记性质是解题的关键,作出图形更形象直观.12.矩形【解析】首先根据角平分线的性质证明∠MPQ +∠NPQ =90°,再证明四边形PMQN 是平行四边形,然后根据有一个角是直角的平行四边形是矩形进行判定.【详解】解:∵PM 、PN 分别平分∠APQ ,∠BPQ ,∴∠MPQ=12∠APQ,∠NPQ=12∠BPQ,∵∠APQ+∠BPQ=180°,∴∠MPQ+∠NPQ=90°,即∠NPM=90°,∵AB∥CD,∴∠APQ=∠PQD,∵QN平分∠PQD,∴∠PQN=12∠PQD,∴∠MPQ=∠NQP,∴PM∥QN,同理QM∥PN,∴四边形PMQN是平行四边形,∵∠NPM=90°,∴四边形PMQN是矩形.故答案为:矩形.【点睛】此题主要考查了矩形的判定和平行线的性质,解题关键是根据角平分线和平行线的性质得出90°角和平行四边形.13.AB=BC(答案不唯一)【解析】根据有一组邻边相等的平行四边形是菱形添加即可.【详解】解:补充的条件是AB=BC,理由是:∵AB=BC,四边形ABCD是平行四边形,∴平行四边形ABCD是菱形,故答案为:AB=BC.【点睛】本题考查了平行四边形的性质和菱形的判定,注意:有一组邻边相等的平行四边形是菱形.此题是一道开放性的题目,答案不唯一.14.40.5【解析】【分析】根据相邻两内角的度数比为1:5,可求出一个30°角,根据周长为36,求出菱形的边长,根据直角三角形里30°角的性质求出高,从而求出面积.【详解】解:作AE ⊥BC 于E 点,∵其相邻两内角的度数比为1:5,∴∠B =180°×115+=30°,∵菱形ABCD 的周长为36,∴AB =BC =14×36=9.∴AE =12×9=92.∴菱形的面积为:BC •AE =9×92=40.5.故答案为40.5.【点睛】本题考查菱形的性质,菱形的邻角互补,四边相等.15.12【解析】【分析】过A 作AD BC ⊥于D ,设BD x =,则6CD x =-,依题意有2222(6)x x -=--,求得2x =,再根据勾股定理求得AD ,再根据三角形面积公式即可求解.【详解】解:如图,过A 作AD BC ⊥于D ,设BD x =,则6CD x =-,依题意有2222(6)x x -=--,解得2x =,在Rt ADB ∆中,4AD ===,则ABC ∆的面积为164122⨯⨯=.故答案为:12.【点睛】本题考查了勾股定理,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,本题关键是求出BC 边的高.16【解析】【分析】根据12<得出a 与b ,再代入所求式子计算即可.【详解】解:∵12<,∴243<<4a ,小数部分为b ,∴a =2,b =2∴a ﹣b =22-.【点睛】本题主要考查估算无理数的大小,解题关键是通过估计无理数大小,确定无理数的整数部分和小数部分.17.0【解析】【分析】先判断a 、b 、c 的关系,继而利用二次根式及绝对值的的基本性质解答即可.【详解】解:由图可知:c <a <0<b ,∴a +c <0,b−c >0,−b <0,原式=−a +a +c +b−c−b =0,故答案为0.【点睛】此题考查二次根式的性质与化简,关键是利用二次根式的基本性质解答.18.(1)(2)11-【解析】【分析】(1)先进行乘除运算,再化简合并即可;(2)运用平方差和完全平方公式进行计算,再合并即可.【详解】解:(1=(2)2+=23126-++-=11-【点睛】本题考查了二次根式的运算,解题关键是熟练运用完全平方公式和平方差公式进行计算,准确运用法则进行计算.1932-;12.【解析】【分析】把1x =+,1y =y x中,分母有理化后可得答案;再把22x y +化为()22x y xy +-,再代入1x =+,1y =【详解】解:y x21==154--=322-22x y +=()22x y xy+-=(2112(1+--⨯+-=()424-⨯-48=+=12【点睛】本题考查的是二次根式的除法运算,二次根式的混合运算,利用完全平方公式与平方差公式进行简便运算,掌握以上运算是解题的关键.20.6【解析】【分析】根据菱形的性质得出AC ⊥BD ,DO=BO ,然后根据Rt △AOB 的勾股定理求出BO 的长度,然后根据BD=2BO 求出答案.【详解】∵四边形ABCD 是菱形,对角线AC 与BD 相交于O ,∴AC⊥BD ,DO=BO ,∵AB=5,AO=4,∴,∴BD=2BO=2×3=6考点:菱形的性质21.10或11【解析】【详解】试题分析:根据题意,30{260a a -≥-≥,解得3a =,所以44b ==,(1)若3是腰长,则三角形的三边长为:3,3,4,能组成三角形,周长为3+3+4=10;(2)若4是腰长,则三角形的三边长为:4,4,3,能组成三角形,周长为4+4+3=11.故填10或11.考点:1.等腰三角形的性质;2.二次根式有意义的条件;3.三角形三边关系.22.(1)见详解;(2)3【解析】【分析】(1)根据D为AB中点,得出AD=BD,根据CD⊥AВ,可得∠CDA=∠CDB=90°,再结合DC=DC,即可证明△ADC≌△BDC;(2)根据△ADC≌△BDC,得出CA=CB=10,求出DE和EF即可求出FC.【详解】(1)∵D为AB中点,∴AD=BD,∵CD⊥AВ,∴∠CDA=∠CDB=90°,∴在△ADC与△BDC中AD BDADC BDC DC DC===⎧⎪⎨⎪⎩∠∠,∴△ADC≌△BDC(SAS);(2)∵△ADC≌△BDC,∴CA=CB=10,∵E为AC中点,∠CDA=90°∴DE=CE=12CA=5,∵DF=9,∴EF=9-5=4,∴在Rt△CEF中.【点睛】本题考查了全等三角形的判定和性质,勾股定理,证明△ADC≌△BDC是解题关键.23.(1)AD=CF,AD∥CF;证明见解析(2)证明见解析【解析】【分析】(1)证明四边形ADCF 是平行四边形,进而证得AD =CF ,AD ∥CF ;(2)结合(1)根据有一个角是直角的平行四边形是矩形判定即可.【详解】(1)AD =CF ,AD ∥CF ;证明:∵DE 是ABC 的中位线,∴AE =EC ,AD =DB ,∵DE =EF ,∴四边形ADCF 是平行四边形,∴AD =CF ,AD ∥CF ,(2)由(1)可知,四边形ADCF 是平行四边形,∵AC =BC ,AD =DB ,∴CD ⊥AB ,∴∠ADC =90°,∴平行四边形ADCF 是矩形【点睛】本题考查了平行四边形的判定与性质、矩形的判定、三角形的中位线定义、等腰三角形的性质等知识,解题的关键是能够利用中位线证明四边形ADCF 是平行四边形.24.见解析【解析】【分析】根据题意先证明()ASA AOE COF ≌△△,即可证明四边形AFCE 为平行四边形,根据EF AC ⊥可得结果.【详解】证明:∵四边形ABCD 是平行四边形∴//AE FC ,AO CO =,∴EAC FCA ∠=∠,∵EF 是AC 的垂直平分线,∴EF AC ⊥,在AOE △与COF 中,EAO FCO AO CO AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA AOE COF ≌△△,∴EO FO =,∴四边形AFCE 为平行四边形,又∵EF AC ⊥,∴四边形AFCE 为菱形.【点睛】本题主要考查了菱形的判定,平行四边形的判定与性质,熟知判定定理以及性质是解题的关键.25.(1)证明见解析;(2)18.【解析】【详解】解:(1)∵四边形ABCD 是菱形,∴AB ∥CD ,AC ⊥BD ,∴AE ∥CD ,∠AOB=90°,∵DE ⊥BD ,即∠EDB=90°,∴∠AOB=∠EDB ,∴DE ∥AC ,∴四边形ACDE 是平行四边形;(2)解:∵四边形ABCD 是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE 是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE 的周长为AD+AE+DE=5+5+8=18.26.(1)10-(2)9【解析】【分析】(1)根据平方差公式,进行分母有理化即可;(2)根据平方差公式,分母有理化,根据实数的运算,可得答案.【详解】解:(110====-,故答案为:10-(2﹣﹣1=9.【点睛】本题考查了分母有理化,利用平方差公式进行分母有理化是解题关键.。
人教版八年级下册数学期中考试试题含答案
人教版八年级下册数学期中考试试卷一、单选题1.下列二次根式中,属于最简二次根式的是()AB C D 2.下列计算正确的是()A .29=B 2÷=C 6=D 2=-3.下列各组数中,能构成直角三角形的是()A .4,5,6B .1,1C .6,8,11D .5,12,234.等边三角形的边长为6,则它的面积为()A .B .18C .36D .5.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是()A .AB =BC ,CD =DA B .AB //CD ,AD =BC C .AB //CD ,∠A =∠CD .∠A =∠B ,∠C =∠D6.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是()A .1∶2∶3∶4B .1∶2∶2∶1C .1∶1∶2∶2D .2∶1∶2∶17.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为()A .10mB .15mC .18mD .20m8.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于()A .1cmB .2cmC .3cmD .4cm9x ,小数部分为y y -的值是()A .3B C .1D .310.给出下列命题:①在直角三角形ABC 中,已知两边长为3和4,则第三边长为5;②三角形的三边a 、b 、c 满足a 2+c 2=b 2,则∠C=90°;③△ABC 中,若∠A :∠B :∠C=1:5:6,则△ABC 是直角三角形;④△ABC 中,若a :b :c=1:2形.其中,正确命题的个数为()A .1个B .2个C .3个D .4个二、填空题11.在实数范围内分解因式:25x -=______.12在实数范围内有意义,则实数x 的取值范围是______________13.在数轴上表示实数a 的点如图所示,化简|a -2|的结果为____________.14.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积和是___cm 2.15.已知ABCD 中一条对角线分A ∠为35°和45°,则B ∠=________度.16.命题“对顶角相等”的逆命题的题设是___________.17.已知a 、b 、c 是△ABC a b 0-=,则△ABC 的形状为_______18.对于任意不相等的两个数a ,b ,定义一种运算※如下:=12※4=______________________.三、解答题19.计算或化简:(1-(2)2+---(3)22⎛+- ⎝(420.先化简,再求值:211x x --÷22x x x+,其中21.如图,已知□ABCD 中,AE 平分∠BAD ,CF 平分∠BCD ,分别交BC 、AD 于E 、F .求证:AF =EC .22.如图在△ABC 中,∠ACB=90°,点D ,E 分别是AC 、AB 的中点,点F 在BC 的延长线上,且∠CDF=∠A .求证:四边形DECF 是平行四边形.23.在△ABC 中,AB=15,AC=13,BC 边上高AD=12,试求△ABC 周长.24.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解).25.如图是一块地,已知AD=4,CD=3,AB=13,BC=12,且CD⊥AD,求这块地的面积.26.观察下列等式:1==;==;==;…回答下列问题:(1)仿照上列等式,写出第n个等式:;(2;(3参考答案1.D 【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A 、被开方数含分母,故A 错误;B 、被开方数含分母,故B 错误;C 、被开方数含能开得尽方的因数,故C 错误;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 正确;故选:D .【点睛】本题考查最简二次根式的定义,被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.B 【解析】分析:根据二次根式的计算法则即可得出正确答案.详解:A 、原式=3,故计算错误;B 、原式2=,故计算正确;C 、原式,故计算错误;D 、原式=22-=,故计算错误;则本题选B .点睛:本题主要考查的就是二次根式的计算法则,属于基础题a a ====,的计算法则.3.B 【解析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、因为42+52≠62,所以不能构成直角三角形;B 、因为12+12=2,所以能构成直角三角形;C 、因为62+82≠112,所以不能构成直角三角形;D 、因为52+122≠232,所以不能构成直角三角形.故选:B .【点睛】此题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.A 【解析】【详解】试题解析:如图所示:等边三角形高线即中线,故D 为BC 中点,∵AB =6,∴BD =3,∴AD ==∴等边△ABC 的面积11622BC AD =⋅=⨯⨯=故选A.点睛:等腰三角形顶角的平分线,底边的中线,底边上的高三线合一.5.C 【解析】【分析】根据平行四边形的判定定理,分别进行判断,即可得到答案.【详解】解:如图:A 、根据AB=BC ,AD=DC ,不能推出四边形ABCD 是平行四边形,故本选项错误;B 、根据AB ∥CD ,AD=BC 不能推出四边形ABCD 是平行四边形,故本选项错误;C 、由AB ∥CD ,则∠A+∠D=180°,由∠A=∠C ,则∠D+∠C=180°,则AD ∥BC ,可以推出四边形ABCD 是平行四边形,故本选项正确;D 、∵∠A=∠B ,∠C=∠D ,∠A+∠B+∠C+∠D=360°,∴2∠B+2∠C=360°,∴∠B+∠C=180°,∴AB ∥CD ,但不能推出其它条件,即不能推出四边形ABCD 是平行四边形,故本选项错误;故选:C .【点睛】本题考查了对平行四边形的判定定理和等腰梯形的判定的应用,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形,等腰梯形的定义是两腰相等的梯形.6.D 【解析】【分析】根据平行四边形的性质得到∠A=∠C ,∠B=∠D ,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.【详解】解:如图,∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D ,∴:::A B C D ∠∠∠∠的值可以是2:1:2:1.故选D .【点睛】本题主要考查对平行四边形的性质的理解和掌握,能根据平行四边形的性质进行判断是解此题的关键,题目比较典型,难度适中.7.C【解析】【详解】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB=12m,∴=13m,∴这棵树原来的高度=BC+AC=5+13=18m.故选C.8.B【解析】【详解】解:如图,∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC-BE=5-3=2.故选B.9.C 【解析】【详解】因为12<11-,即x =1,1y =-,所以1)1y -==.10.B 【解析】【详解】试题分析:①错误,因为没有说明3、4是直角边,还是斜边;②错误,三角形的三边a 、b 、c 满足a 2+c 2=b 2,则∠B=90°;③正确,∵∠A :∠B :∠C=1:5:6,∴∠C=90°,所以是直角三角形;④正确,∵12+2=22,∴是直角三角形.故选B .考点:命题与定理.11.(x x【解析】【分析】根据平方差公式()()22a b a b a b -=+-,得(x x +-.【详解】解:根据平方差公式,得(2225x x x x -=-=+-故答案为:(x x -.【点睛】此题考核知识点:平方差公式()()22a b a b a b -=+-,解题的关键在于将式子化为22a b -形式.12.x≥-2且x≠1,【解析】【详解】由题意得:x+2⩾0且x≠1,解得:x ⩾−2且x≠1,故答案为x ⩾−2且x≠1.13.3.【解析】【详解】试题分析:由数轴得知,a>2,且a<5,所以a-5<0,a-2>0,原式化简=5-a+a-2=3.故答案为3.考点:绝对值意义与化简.14.49【解析】【分析】如图,正方形A ,B 的面积和等于1S ,正方形C ,D 的面积和等于3s ,13249S S S +==,【详解】如图,设正方形A ,B ,C ,D 的边长分别为a b c d ,,,,设标有13,S S 的两个正方形的边长为,x y ,根据勾股定理可得22222213,a b S x c d S y+==+==则2222749x y S +===222249a b c d ∴+++=故答案为:49【点睛】此题考查勾股定理,解题关键在于勾股定理结合正方形面积的运用.15.100【解析】【详解】分析:首先求出∠A的度数,然后根据平行四边形的性质得出答案.详解:∵∠A=35°+45°=80°,∠A+∠B=180°,∴∠B=100°.点睛:本题主要考查的就是平行四边形的性质,属于基础题型.平行四边形的对角相等,邻角互补,本题只要明确这个就非常好解答了.16.两个角相等【解析】【分析】交换原命题的题设与结论即可得到逆命题,然后根据命题的定义求解.【详解】解:命题“对顶角相等”的逆命题是:“如果两个角相等,那么这两个角是对顶角”,题设是:两个角相等故答案为:两个角相等.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.17.等腰直角三角形.【解析】【详解】a b0+-=,∴c2-a2-b2=0,且a-b=0.由c2-a2-b2=0得c2=a2+b2,∴根据勾股定理的逆定理,得△ABC为直角三角形.又由a-b=0得a=b,∴△ABC为等腰直角三角形.18.1. 2【解析】【分析】依据新定义进行计算即可得到答案.【详解】解: a※b=-a b∴12※4=41,12482==-故答案为:1.2【点睛】本题考查的是新定义下的实数的运算,弄懂定义的含义,掌握求解算术平方根是解题的关键.19.(1(2)1+(3)4,(4)【解析】【分析】(1)分别先计算二次根式的乘法与除法,再合并同类二次根式即可,(2)利用乘法公式先计算二次根式的乘法运算,再合并同类二次根式即可,(3)利用乘法公式先计算二次根式的乘法运算,再合并同类二次根式即可,(4)利用乘法公式把分子分解,约分后再合并同类二次根式即可.【详解】解:(1-=-=(2)2+---1812(32)=---65=-+1=+(3)22⎛+- ⎝112(2a a a a =++--+1122a a a a=++-+-4,=(42==【点睛】本题考查的是二次根式的加减乘除的混合运算,掌握运算顺序,运算法则,以及利用乘法公式进行简便运算是解题的关键.20.1x ;3.【解析】【分析】各分式的分子分母分别分解因式,约分后再利用分式的除法运算法则进行化简,然后将数值代入进行计算即可.【详解】原式=()()x 1x 1x 1-+-÷()2x x x 1+=1x 1+•x 1x +=1x,当【点睛】本题考查了分式的化简求值,熟练掌握分式除法运算的运算法则是解本题的关键.21.证明见解析.【解析】【分析】由四边形ABCD 是平行四边形,AE 平分∠BAD ,CF 平分∠BCD ,易证得△ABE ≌△CDF (ASA ),即可得BE=DF ,又由AD=BC ,即可得AF=CE .【详解】证明:∵四边形ABCD 是平行四边形,∴∠B=∠D ,AD=BC ,AB=CD ,∠BAD=∠BCD ,∵AE 平分∠BAD ,CF 平分∠BCD ,∴∠EAB=12∠BAD ,∠FCD=12∠BCD ,∴∠EAB=∠FCD ,在△ABE 和△CDF 中,B D AB CD EAB FCD ===∠∠⎧⎪⎨⎪∠∠⎩,∴△ABE ≌△CDF (ASA ),∴BE=DF .∵AD=BC ,∴AF=EC .【点睛】本题主要考查平行四边形的性质与判定;证明四边形AECF 为平行四边形是解决问题的关键.22.证明见解析.【解析】【详解】∵D ,E 分别为AC ,AB 的中点,∴DE 为△ACB 的中位线.∴DE ∥BC .∵CE 为Rt △ACB 的斜边上的中线,∴CE=12AB=AE .∴∠A=∠ACE .又∵∠CDF=∠A ,∴∠CDF=∠ACE .∴DF ∥CE .又∵DE ∥BC ,∴四边形DECF 为平行四边形.23.周长为42或32【解析】【详解】试题分析:由题可得△ABC为锐角三角形和钝角三角形两种情况.锐角三角形时,AB=15,AC=13,∠ADC=∠ADB=90°,在△ABD中,∠ADB=90°,由勾股定理得BD2=AB2–AD2=152-122=81.∴BD=在△ACD中,∠ADC=90°,由勾股定理得CD2=AC2–AD2=132-122=25.∴CD=∴△ABC的周长=AC+AB+CB=AC+AB+BD+CD=13+15+9+5=42.钝角三角形时,AB=15,AD=12,∠ADB=90°,在△ABD中,∠ADB=90°,由勾股定理得BD2=AB2–AD2=152-122=81.∴BD=在△ACD中,∠ADC=90°,由勾股定理得CD2=AC2–AD2=132-122=25.∴CD=∴BC=BD-CD=9-5=4.∴△ABC的周长=AC+AB+CB=15+13+4=32.∴△ABC的周长是32或42.考点:勾股定理的运用24.小鸟飞行的最短路程为13m.【解析】【详解】试题分析:根据题意画出图形,构造出直角三角形,利用勾股定理求解.试题解析:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB-BE=AB-CD=13-8=5∴在Rt△ADE中,DE=BC=12∴AD 2=AE 2+DE 2=122+52=144+25=169∴AD =13(负值舍去)答:小鸟飞行的最短路程为13m .25.24.【解析】【分析】连接AC ,利用勾股定理可以得出三角形ACD 和ABC 是直角三角形,△ABC 的面积减去△ACD 的面积就是所求的面积.【详解】解:连接AC ,∵CD ⊥AD∴∠ADC=90°,∵AD=4,CD=3,∴AC2=AD2+CD2=42+32=25,又∵AC >0,∴AC=5,又∵BC=12,AB=13,∴AC2+BC2=52+122=169,又∵AB2=169,∴AC2+BC2=AB2,∴∠ACB=90°,∴S 四边形ABCD=S △ABC-S △ADC=30-6=24.【点睛】本题主要考查勾股定理和勾股定理逆定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.26.(1=(2)(3 1.-【解析】【分析】(1)根据观察,发现规律,由发现的规律可得答案,(2)利用平方差公式把分母化为有理数,即可得到答案,(3)利用(1)中发现的规律依次把每一个二次根式化简,再观察可得答案.【详解】解:(1)根据规律得到第n 个等式:==(21211==-(3+…1=∙∙∙+1.-【点睛】本题考查的是二次根式的除法运算中的规律题,掌握化简的方法,概括出发现的规律是解题的关键.。
人教版八年级下册数学期中考试试题含答案
人教版八年级下册数学期中考试试卷一、单选题1.下列式子是最简二次根式的是()A BC D2.以下列长度的线段为边,能构成直角三角形的是()A .1,2B C .5,6,7D .7,8,93)A BC .2D4.3月9日中国政府向世界卫生组织捐款2000万美元,捐款将用于新冠肺炎防控、发展中国家公共卫生体系建设等指定用途.2000万用科学计数法表示为()A .3210⨯B .4200010⨯C .6210⨯D .7210⨯5.如图,在△ABC 中,点D 是BC 的中点,点E 是AC 的中点,若DE =3,则AB 等于()A .4B .5C .5.5D .66.下列运算正确的是()A B .4=C3=D =7.如图,四边形ABCD 是菱形,AC =8,DB =6,DE ⊥AB 于点E ,则DE 的长度为()A .125B .245C .5D .4858.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.两条对角线互相垂直的四边形是菱形C.三角形的中位线平行于三角形的第三边,并且等于第三边的一半D.直角三角形斜边上的中线等于斜边的一半9.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,∠EAF=45°,且AE+AF=3,则▱ABCD的周长是()A.12B.C.D.10.如图,矩形ABCD中,AB=10,AD=4,点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的左上方作正方形AEFG,同时垂直于CD的直线MN也从C向D以每秒2个单位的速度运动,当点F落在直线MN上,设运动的时间为t,则t的值为()A.1B.103C.4D.143二、填空题11=_____.12.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是_______.13.如图,P是正方形ABCD内一点,且PA=PD,PB=PC.若∠PBC=60°,则∠PAD=_____.14.若x 2,y 2﹣1,则x 2y +xy 2=____.15.在平面直角坐标系中,已知点()()()3,0,1,0,0,2A B C -,则以A ,B ,C 为顶点的平行四边形的第四个顶点D 的坐标为______.16.如图,在四边形ABCD 中,AD =CD ,∠D=60°,∠A =105°,∠B =120°,则ADBC的值为__________.17()2255-+=.三、解答题182×823|+(12)﹣3.19.已知x 3,y 3﹣1,求:(1)代数式xy 的值;(2)代数式x 3+x 2y +xy 2+y 3的值.20.如图,在正方形网格中,每个小正方形的边长均为1,△ABC 的三个顶点都在格点上.(1)直接写出边AB 、AC 、BC 的长.(2)判断△ABC 的形状,并说明理由.21.已知:如图,在⊿ABC 中,AB=AC ,D 、E 、F 分别是BC 、AB 、AC 边的中点.求证:四边形AEDF是菱形.22.一架云梯长13m,如图所示斜靠在一面墙上,梯子底端C离墙5m.(1)这个梯子AC的顶端A距地面有多高?(2)如果梯子的顶端下滑了3m,如图到达DE位置,那么梯子的底部在水平方向滑动的距离CE是多少米?23.如图所示,以△ABC的三边AB、BC、CA在BC的同侧作等边△ABD、△BCE、△CAF,请说明:四边形ADEF为平行四边形.24.如图1, ACB和 ECD都是等腰直角三角形,CA=CB,CE=CD,∠ACB=∠ECD =90°, ACB的顶点A在 ECD的斜边DE上.(1)求证:AE2+AD2=2AC2;(2)如图2,若AE=2,AC=F是AD的中点,求CF的长.25.在△ABC 中,AB =AC =5.(1)若BC =6,点M 、N 在BC 、AC 上,将△ABC 沿MN 折叠,使得点C 与点A 重合,求折痕MN 的长;(2)点D 在BC 的延长线上,且BC :CD =2:3,若AD =10,求证:△ABD 是直角三角形.参考答案1.B 【分析】直接利用最简二次根式的定义分析得出答案.【详解】A 2025=,故此选项错误;B 7是最简二次根式,故此选项正确;C 120.522=,故此选项错误;D 3=,故此选项错误;故选:B .【点睛】本题主要考查了最简二次根式,关键是掌握最简二次根式概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.2.A 【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、122=22,故是直角三角形,故此选项正确;B 、)22)2,故不是直角三角形,故此选项错误;C 、52+62≠72,故不是直角三角形,故此选项错误;D 、72+82≠92,故不是直角三角形,故此选项错误.故选:A .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.C 【分析】把被开方数相除,然后化简即可.【详解】原式.故选C .【点睛】本题考查了二次根式的除法,熟练掌握二次根式的除法法则是解答本题的关键.4.D 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:2000万=7210⨯,故答案为:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.D 【分析】由两个中点连线得到DE 是中位线,根据DE 的长度即可得到AB 的长度.【详解】∵点D 是BC 的中点,点E 是AC 的中点,∴DE 是△ABC 的中位线,∴AB=2DE=6,故选:D.【点睛】此题考查三角形的中位线定理,三角形两边中点的连线是三角形的中位线,平行于三角形的第三边,且等于第三边的一半.6.C 【分析】根据二次根式加、减、乘、除的运算法则进行计算.【详解】解:A B 、=C 3=,原式运算正确,故本选项符合题意;D =故选C.【点睛】本题考查的是二次根式的加、减、乘、除的运算法则,在解题时不仅要明确同类二次根式的概念,还要懂得二次根式的化简,方能正确计算.7.B【分析】利用已知的对角线求出菱形的面积以及菱形的边长,再根据菱形面积(底×高)求出DE长.【详解】解:∵四边形ABCD是菱形,∴面积是12AC×BD=12×6×8=24,AC⊥BD且互相平分,因为菱形的对角线长为6和8,=5,则5×DE=24,解得DE=24 5,故选:B.【点睛】本题考查菱形的性质,勾股定理,利用等面积法是解答本题的关键.8.B【分析】直接利用平行四边形的判定方法以及菱形的判定方法和三角形中位线的性质、直角三角形的性质分别判断得出答案.【详解】A、一组对边平行且相等的四边形是平行四边形,正确,不合题意;B、两条对角线互相垂直且互相平分的四边形是菱形,故原说法错误,符合题意;C、三角形的中位线平行于三角形的第三边,并且等于第三边的一半,正确,不合题意;D、直角三角形斜边上的中线等于斜边的一半,正确,不合题意;故选:B.【点睛】此题考查平行四边形的判定,菱形的判定,三角形中位线的性质,直角三角形的性质,正确掌握相关判定方法是解题关键.9.D【分析】要求平行四边形的周长就要先求出AB、AD的长,利用平行四边形的性质和勾股定理即可求出.【详解】解:∵∠EAF=45°,∴∠C=360°﹣∠AEC﹣∠AFC﹣∠EAF=135°,∴∠B=∠D=180°﹣∠C=45°,则AE=BE,AF=DF,设AE=x,则AF=3﹣x,在Rt△ABE中,根据勾股定理可得,AB x同理可得AD(3﹣x)则平行四边形ABCD的周长是2(AB+AD)=(3﹣x)]=,故选:D.【点睛】本题主要考查了平行四边形的性质,解题关键是利用平行四边形的性质结合等角对等边、勾股定理来解决有关的计算和证明.10.D【分析】过点F作FH⊥CD,交直线CD于点Q,则∠EHF=90°,易证∠ADE=∠EHF,由正方形的性质得出∠AEF=90°,AE=EF,证得∠AED=∠EFH,由AAS证得△ADE≌△EHF得出AD=EH=4,则t+2t=4+10,即可得出结果.【详解】过点F作FH⊥CD,交直线CD于点Q,则∠EHF=90°,如图所示:∵四边形ABCD为矩形,∴∠ADE=90°,∴∠ADE=∠EHF ,∵在正方形AEFG 中,∠AEF=90°,AE=EF ,∴∠AED+∠HEF=90°,∵∠HEF+∠EFH=90°,∴∠AED=∠EFH ,在△ADE 和△EHF 中,ADE EHF AED EFH AE EF ∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADE ≌△EHF (AAS ),∴AD=EH=4,由题意得:t+2t=4+10,解得:t=143,故选D .【点睛】本题考查了正方形的性质、矩形的性质、全等三角形的判定与性质等知识,熟练掌握正方形与矩形的性质,通过作辅助线证明三角形全等是解题的关键.11【分析】【详解】=2,故答案为:2【点睛】此题主要考查了二次根式的除法运算,熟练掌握运算法则是解答此题的关键.12.17米【分析】在直角三角形ABC 中,已知AB ,BC ,根据勾股定理即可求得AC 的值,根据题意求地毯长度即求得AC+BC即可.【详解】将水平地毯下移,竖直地毯右移即可发现:地毯长度为直角三角形ABC的两直角边之和,即AC+BC,在直角△ABC中,已知AB=13米,BC=5米,且AB为斜边,则根据勾股定理(米),故地毯长度为AC+BC=12+5=17(米).故答案为17米【点睛】本题考查勾股定理的应用,解题的关键是知道求地毯长度即求AC+BC.13.15°【分析】先根据已知求得∠ABP=30°,再证明AB=BC=BP,进而求出∠PAB的度数,然后求得∠PAD的度数即可.【详解】解:∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠DAB=∠CBA=90°,∵PB=PC,∠PBC=60°,∴△PAB是等边三角形,∴∠APB=∠PBA=60°,PA=PB=AB,∴∠DAP=∠CBP=30°,∵PA=PD,∴∠PDA=180302︒︒-=75°.∴∠PAD=15°,故答案为:15°.【点睛】本题是对正方形知识的综合考查,熟练掌握正方形的性质是解决本题的关键. 14..【分析】先求出xy,x+y,再将x2y+xy2变形为xy(x+y).然后代入计算即可.【详解】∵x+1,y﹣1,∴xy+1)﹣1)=2﹣1=1,x+y+1)+﹣1)=,∴x2y+xy2=xy(x+y)==【点睛】本题考查了二次根式的化简求值,因式分解,难度适中.能够根据字母的取值将所求式子进行因式分解是解题的关键.15.(4,2)或(-4,2)或(2,-2)【分析】当平行四边形的一组对边平行于x轴时,可得可能的2个点;当平行于x轴的一边为平行四边形的对角线时,利用平移的性质可得另一点.【详解】解:①如图1,以AB为边时,A(3,0)、B(-1,0)两点之间的距离为:3-(-1)=4,∴第四个顶点的纵坐标为2,横坐标为0+4=4,或0-4=-4,即D(4,2)或D′(-4,2);②如图2,以AB为对角线时,∵从C(0,2)到B(-1,0),是横坐标减1,纵坐标减2,∴第四个顶点D的横坐标为:3-1=2,纵坐标为0-2=-2,即D(2,-2)综上所述,第四个顶点D的坐标为(4,2)或(-4,2)或(2,-2).故答案为:(4,2)或(-4,2)或(2,-2).【点睛】本题考查了平行四边形的判定,坐标与图形性质.平行于x轴的直线上的点的横坐标相等;一条直线上到一个定点为定长的点有2个;平行四边形的对边平行且相等,可利用平移的性质得到平行于x 轴的一边为平行四边形的对角线时第四个点.16.2【分析】沿AB 作垂线与C 的延长线相交于M 点,可得到等边直角三角形和锐角为30°的直角三角形,根据三角函数求解即可.【详解】解:如图连接AC 并过B 点作BM ⊥CM ,设BM=k ,∵AD =CD ,∠D=60°,∴△ACD 是等边三角形,AD=AC ,∵∠A =105°,∠B =120°,∠DAC=60°,∴∠MBC=60°,∠BCM=30°,∠BAC=45°,∵BM=k ,∴BC=2k ,MC=BM tan 30,∵∠BAC=45°,∠MCA=45°,∴AD=AC=MC sin 45=,∴==AD BC .【点睛】本题考查了特殊角的三角函数值和公式的应用,正确应用公式和作出辅助线是解题的关键.tan 30 sin45=2.17.10【分析】根据二次根式的性质计算.【详解】2=5+5=10.故答案为:10.【点睛】本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【分析】根据负整数指数幂和二次根式的乘法法则运算.【详解】﹣3+8=﹣3+8=.【点睛】本题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.19.(1)2;(2)【分析】(1)直接代入平方差公式计算即可;(2)先计算出x+y和x2+y2,原式整理成(x2+y2)(x+y)代入计算即可;【详解】(1)xy=))=2-1=2;(2)∵x,y1,xy=2,∴∴x2+y2=(x+y)2-2xy=8,则x3+x2y+xy2+y3=x2(x+y)+y2(x+y)=(x2+y2)(x+y).【点睛】此题考查整式的化简求值,平方差公式,完全平方公式,解题关键在于掌握运算法则.AC BC;(2)△ABC是等腰直角三角形,理由见解析.20.(1)AB【分析】(1)利用勾股定理进行求解即可得到结论;(2)根据勾股定理的逆定理进行判断即可得到结论.【详解】BC=(1)ABAC(2)△ABC是等腰直角三角形,理由如下:∵AB2+AC2=5+5=10=BC2,∴△ABC是直角三角形,又∵AB=AC,∴△ABC是等腰直角三角形.【点睛】本题考查了勾股定理,勾股定理的逆定理,熟练掌握勾股定理是解题的关键.21.证明见解析.【分析】根据三角形的中位线的性质,证明AE=AF=ED=FD,然后根据四条边相等的四边形是菱形证明即可.【详解】证明:⊿ABC中,E、D分别是AB,BC的中点,∴ED=1AC2(三角形的中位线等于第三边的一半).同理FD=1AB 2.∵AE=1AB2,AF=1AC2,∴AE=AF=ED=FD,∴四边形AEDF是菱形(四条边相等的四边形是菱形).22.(1)梯子的高为12m;(2)(【分析】(1)直接根据勾股定理求出AB的长即可;(2)先根据梯子的顶端下滑了3米求出AD的长,再根据勾股定理求出BE的长,进而可得出结论.【详解】解:(1)由题意可知△ABC是直角三角形,∵BC=5m AC=13m.∴由勾股定理得:AB12(m),∴梯子的高为12m;(2)由题意可知DE=AC=13m,∵AD=3m,∴BD=12﹣3=9(m),在Rt△DBE中,由勾股定理得:BE(m),∴CE BE BC=-=﹣5)(m).【点睛】本题考查了勾股定理的应用,勾股定理揭示了直角三角形三边长之间的数量关系:直角三角形两直角边的平方和等于斜边的平方.当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解这在几何的计算问题中是经常用到的,请同学们熟记并且能熟练地运用它.23.证明见解析【详解】分析:由△ABD,△EBC都是等边三角形,易证得△DBE≌△ABC(SAS),则可得DE=AC,又由△ACF是等边三角形,即可得DE=AF,同理可证得AD=EF,即可判定四边形ADEF 是平行四边形.本题解析:证明:∵△ABD,△EBC都是等边三角形,∴AD=BD=AB,BC=BE=EC,∠DBA=∠EBC=60°,∴∠DBE+∠EBA=∠ABC+∠EBA,∴∠DBE=∠ABC,在△DBE和△ABC中,∵BD BADBE ABC BE BC=⎧⎪∠=∠⎨⎪=⎩,∴△DBE≌△ABC(SAS),∴DE=AC,又∵△ACF是等边三角形,∴AC=AF,∴DE=AF,同理可证:AD=EF,∴四边形ADEF是平行四边形.24.(1)见解析;(2【分析】(1)由“SAS”可证△ECA≌△DCB,可得AE=BD,∠CEA=∠CDB=45°,由勾股定理可求解;(2)由勾股定理可求AD的长,由等腰直角三角形的性质可得CH=DH=EH=4,可求HF 的长,由勾股定理可求CF的长.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,∴∠ECA+∠ACD=∠ACD+∠DCB=90°,∠CEA=∠CDE=45°,∠CAB=∠CBA=45°,AB2=2AC2,∴∠ECA=∠DCB,连接BD,如图1所示:在△ECA和△DCB中,CE CDECA DCB AC BC=⎧⎪∠=∠⎨⎪=⎩,∴△ECA≌△DCB(SAS),∴AE=BD,∠CEA=∠CDB=45°,∴∠ADB=∠CDB+∠EDC=90°,∴△ADB是直角三角形,∴AD2+BD2=AB2,∴AD2+AE2=AB2,∴AE2+AD2=2AC2;(2)解:如图2,过点C作CH⊥DE于H,如图2所示:∵AE2+AD2=2AC2,AE=2,AC=5∴AD=6,∴DE=AE+AD=8,∵点F是AD的中点,∴AF=DF=3,∵△ECD都是等腰直角三角形,CH⊥DE,DE=8,∴CH=DH=EH=4,∴HF=DH﹣DF=1,∴CF .【点睛】本题考查了全等三角形的判定与性质,勾股定理,等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解答本题的关键.25.(1)103;(2)见解析【分析】(1)如图1,过A 作AD BC ⊥于D ,根据等腰三角形的性质得到3BD CD ==,求得4=AD ,根据折叠的性质得到AM CM =,1522AN AC ==,设AM CM x ==,根据勾股定理即可得到结论;(2)如图2,过A 作AE BC ⊥于E ,根据等腰三角形的性质得到12BE CE BC ==,设2BC t =,3CD t =,AE h =,得到BE CE t ==,根据勾股定理和勾股定理的逆定理即可得到结论.【详解】解:(1)如图1,过A 作AD BC ⊥于D ,5AB AC == ,6BC =,3BD CD ∴==,4AD ∴=,将ABC ∆沿MN 折叠,使得点C 与点A 重合,AM CM ∴=,1522AN AC ==,设AM CM x ==,3MD x ∴=-,222AD DM AM += ,2224(3)x x ∴+-=,解得:256x =,103MN ∴==;(2)如图2,过A 作AE BC ⊥于E ,AB AC = ,12BE CE BC ∴==,:2:3BC CD = ,∴设2BC t =,3CD t =,AE h =,BE CE t ∴==,5AB = ,10AD =,2225h t ∴+=,222(4)10h t +=,联立方程组解得,t =,BD ∴=222222510125AB AD BD +=+=== ,ABD ∴∆是直角三角形.【点睛】本题考查了翻折变换(折叠问题),等腰三角形的性质,勾股定理的逆定理,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.。
人教版八年级数学下册期中检测卷(附带答案)
人教版八年级数学下册期中检测卷(附带答案)(考试范围:第十六-十八章)一、单选题(共30分)1.(本题3分)下列二次根式中属于最简二次根式的是()B C DA2.(本题3分)下列线段不能组成直角三角形的是()A.3 4 5B.4 6 8C.5 12 13D.2 3果一个三角形的两边a 、b 的平方和等于第三边c 的平方 那么这个三角形是直角三角形. 3.(本题3分)下列计算正确的是( )AB .3=CD 1=4.(本题3分)在ABCD 中 :::A B C D ∠∠∠∠可能是( ) A .1:2:2:1B .1:2:3:4C .2:1:1:2D .2:1:2:1 【答案】D 【分析】根据平行四边形的对角相等 即可求解.【详解】解:∵四边形ABCD 是平行四边形∵,A C B D ∠=∠∠=∠∵:::A B C D ∠∠∠∠可能是2:1:2:1;故选:D .【点睛】本题主要考查了平行四边形的性质 熟练掌握平行四边形的性质是解题的关键. 5.(本题3分)如图 数轴上点A 表示的数为a 则a 的值是( )AB C 1 D6.(本题3分)已知四边形ABCD 是平行四边形 下列结论中错误的有( )①当AB DC =时 它是菱形;②当AC BD ⊥时 它是菱形;③当90ABC ∠=︒时 它是矩形;④当AC BD =时 它是正方形.A .1个B .2个C .3个D .4个 【答案】B【分析】根据矩形、菱形、正方形的判定逐一判断各项即可得出答案.【详解】解:∵四边形ABCD 是平行四边形∵当AB DC =时 不能判断它是菱形(对边相等是平行四边形的性质) 故①错误当AC BD ⊥时 它是菱形 故②正确 当90ABC ∠=︒时 它是矩形 故③正确当AC BD =时 它是矩形 故④错误故选:B .【点睛】本题考查了矩形、菱形、正方形的判定 熟练掌握性质定理是解题的关键.7.(本题3分)如图 小正方形的边长为1 连接小正方形的三个顶点可得∵ABC 则AB 边上的高是( )A BC D 【答案】CS ABC =S ADC -S EBC -S ABF =42S ABC =可得h =故选C8.(本题3分)在菱形ABCD 中 AC 是对角线 CD CE = 连接DE .16AC = 10CD = 则DE 的长为( )A .B .C .D 【答案】A 【分析】连接BD 交AC 于K .在Rt ∵AKD 中 利用勾股定理求出DK 再求出EK 在Rt ∵DKE 中 利用勾股定理即可解决问题.【详解】解:连接BD 交AC 于K .9.(本题3分)如图已知正方形ABCD的边长为4 P是对角线BD上一点PE∵BC于点E PF∵CD于点F连接AP EF.给出下列结论:①PD EC:②四边形PECF的周长为8;③∵APD一定是等腰三角形:④AP=EF;⑤EF的最小值为⑥AP∵EF.其中正确结论的序号为()C.②④⑤D.②④⑤⑥10.(本题3分)如图1 在Rt ABC 中 AC BC = 90C ∠=︒ 点D 为AB 边的中点 90EDF ∠=︒ 将EDF ∠绕点D 旋转 它的两边分别交AC 、CB 所在直线于点E 、F 有以下4个结论:①CE BF =;②180DEC DFC ∠+∠=︒;③222EF DE =;④如图2 当点E 、F 落在AC 、CB 的延长线上时 12DEF CEF ABC S S S -=△△△ 在旋转的过程中上述结论一定成立的是( )A .①②B .②③C .①②③D .①③④【答案】D 【分析】连结CD 由“ASA”可证∵CDE ∵∵BDF 利用全等三角形的性质和等腰直角三角形的性质依CDE BDF CD BDDCE B∵∵CDE∵∵BDF(ASA ∵CE=BF∵BFD=第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(共18分)11.(本题3分)则x的取值范围是____________.故答案为:1x<【点睛】本题考查了二次根式有意义的条件熟练掌握二次根式的定义是解题的关键.12.(本题3分)a<且a为整数则a的值为_____.13.(本题3分)已知实数x y|4|0y-=则1xy-⎛⎫⎪⎝⎭=_______.14.(本题3分)我们学习了勾股定理后都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;… 发现这些勾股数的勾都是奇数且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:________;(2)若第一个数用字母n(n为奇数且n≥3)表示那么后两个数用含n的代数式分别表示为________.15.(本题3分)如图 在菱形ABCD 中 110A ∠=︒ E 、F 分别是AB 、BC 的中点 EP CD ⊥于点P 则FPC ∠=_______.【答案】55°【分析】延长PF 交AB 的延长线于点G .根据已知可得∵ABC 、∵BEF 、∵BFE 的度数 再根据余角的性质可得到∵EPF 的度数 进而求得∵FPC 的度数.【详解】解:延长PF 交AB 的延长线于点G .如图所示:16.(本题3分)如图 在Rt ABC 中 905ACB AC BC ∠=︒==, 点E F ,分别在CA CB ,上 且1CE CF == 点M N ,分别为AF BE ,的中点 则MN 的长为___________.利用三角形中位线定理证得DMN 为等腰直角三角形.为ABE 的中位线12AE ==∵DMN 为等腰直角三角形2MN DM =【点睛】本题考查了三角形中位线定理和等腰直角三角形的判定和性质形中位线定理是解答本题的关键.三、解答题(共72分)17.(本题6分)计算:((72-÷18.(本题8分)请结合以下命题和图形 写出已知 求证 并进行证明命题:如果三角形一条边上的中线等于这条边的一半 那么这个三角形是直角三角形.已知:如图 _______________________________________________________.求证:___________________________________________________________.证明:在ABC 中求证:ABC 是直角三角形.证明:延长CD 至1∵ABC 是直角三角形.【点睛】本题主要考查了矩形的判定与性质19.(本题6分)先化简后再求值:35222x x x x -⎛⎫÷+- ⎪--⎝⎭其中3x = 【答案】-【分析】先算出括号里面的式子20.(本题8分)如图一根垂直于地面的旗杆高8m因刮大风旗杆从点C处折断顶部B着地且离旗杆底部的距离4mAB=.(1)求旗杆折断处C点距离地面的高度AC;(2)工人在修复的过程中发现在折断点C的下方1.25m的点D处有一明显裂痕若下次大风将修复好的旗杆从点D处吹断旗杆的顶点落在水平地面上的B'处形成一个直角ADB'请求出AB'的长.21.(本题8分)(1的点.(不写作法保留作图痕迹)(2)正方形网格中的每个小正方边长都是1 在图中以AB为一边画一个边长均为无理数的直角三角形.(说明:直角三角形的顶点均为小正方形的顶点)ABC即为所求作(答案不唯一)22.(本题8分)如图四边形ABCD的对角线AC∵BD于点E.点F为四边形ABCD外一点且∵FCA =90° BC平分∵DBF∵CBF=∵DCB.(1)求证:四边形DBFC是菱形;(2)若AB=BC∵F=45° BD=2 则AC=.)证明:AC BD∠是平行四边形;BC平分∴∠=CBFCBF∠=∴∠=CBD∴=CD BD∴平行四边形(2)解:四边形=AB BC∴=AE CE过C作CMBC平分CE CM∴=∠=︒F45∴∆是等腰直角三角形CFM23.(本题8分)小明在解决问题:已知a =求2281a a -+的值.他是这样分析与解的:∵2a ===∵2a -=∵()2223,443a a a -=-+=∵241a a -=-∵()()222812412111a a a a -+=-+=⨯-+=-. 请你根据小明的分析过程 解决如下问题:(1)1121++ (2)若121a ①求2481a a -+的值;②直接写出代数式的值3231a a a ++-=___________.1121+++)121119++- 24.(本题10分)如图1 四边形ABCD 是矩形 点O 位于对角线BD 上 将∵ADE ∵CBF 分别沿DE 、BF 翻折 点A 点C 都恰好落在点O 处.(1)求证:∵EDO= ∵FBO;(2)求证:四边形DEBF是菱形;(3)如图2 若AD=2 点P是线段ED上的动点求2AP + DP的最小值.垂直时AP+PH有最小值过点A作AG∵BD在Rt∵ABD中BD=2AD=4 AD=2 ∵2223AB BD AD=-=∵由等面积法可知1122BD AG AD AB⋅=⋅∵3AD ABAGBD⋅==∵()2=2=23AP DP AP PH++∵2AP+DP的最小值为23.25.(本题10分)已知如图边长为2的正方形ABCD中P是对角线AC上的一个动点(与点A、C不重合)过点P作PE PB⊥PE交射线DC于点E过点E作EF AC⊥垂足为点F.(1)求证:PB PE=:(2)在点P的运动过程中PF的长度是否发生变化?若不变试求出这个不变的值写出解答过程:若变化试说明理由:(3)在点P的运动过程中PEC∆能否为等腰三角形?如果能直接写出此时AP的长;如果不能试说明理由.∵四边形ABCD 是正方形 PG BC ⊥ PH DC ⊥∵45GPC ACB ACD HPC ∠=∠=∠=∠=︒.∵PG PH = 90GPH PGB PHE ∠=∠=∠=︒.∵PE PB ⊥即90BPE ∠=︒∵90BPG GPE EPH ∠=︒-∠=∠.在PGB ∆和PHE ∆中PG PHE PG PHBPG EPH ∠=∠⎧⎪=⎨⎪∠=∠⎩. ∵()PGB PHE ASA ∆≅∆∵PB PE =.(2)连接BD 如图2.∵四边形ABCD 是正方形 ∵90BOP ∠=︒.∵PE PB ⊥即90BPE ∠=︒∵90PBO BPO EPF ∠=︒-∠=∠.∵EF PC ⊥即90PFE ∠=︒∵BOP PFE ∠=∠.在BOP ∆和PFE ∆中PBO EPF BOP PFE PB PE ∠=∠⎧⎪∠=∠⎨⎪=⎩∵CP CE =∵22.5CPE CEP ∠=∠=︒.∵1809022.567.5APB ︒︒︒∠=--=︒.∵9090PRC PBR CER ∠=︒+∠=︒+∠∵22.5PBR CER ∠=∠=︒∵67.5ABP ∠=︒∵ABP APB ∠=∠.∵2AP AB ==.∵AP 的长为2.【点睛】此题主要考查正方形的性质 解题的关键是熟知正方形的性质与全等三角形的判定与性质.。
人教版八年级下册数学期中考试试卷含答案
人教版八年级下册数学期中考试试题一、单选题1)A .3B .2C .2D2④中,最简二次根式是()A .①②B .③④C .①③D .①④3x 的取值范围是()A .x >12B .x≥12C .x <12D .x >04.下列各组数中,能够组成直角三角形的是()A .3,4,5B .4,5,6C .5,6,7D .6,7,85.如图,已知四边形ABCD 是平行四边形,下列结论中错误的是()A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是菱形C .当AC=BD 时,它是矩形D .当∠ABC=90°时,它是正方形6.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是()A .4B .6C .8D .107.如图,在平行四边形ABCD 中,∠A +∠C =160°,则∠B 的度数是()A .130°B .120°C .100°D .90°8.若1≤x≤4,则化简1x -)A .25x -B .3C .32x-D .—39.如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是()A .AD =BCB .AB =CDC .AD ∥BC D .∠A =∠C10.如图,△ABC 和△DCE 都是边长为3的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,则BD 长()A B .C .D .二、填空题11.若最简二次根式132-+b a 与a b -4是同类二次根式,则a+b =___.12=______.13.如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(﹣3,0),(2,0),点D 在y 轴上,则点C 的坐标是_______.14.如图,已知△ABC 中,AB =5cm ,BC =12cm ,AC =13cm ,那么AC 边上的中线BD 的长为____________cm.15.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点B 、D 作DE a ⊥于点E 、BF a ⊥于点F ,若4DE =,3BF =,则EF 的长为______.16.如图,菱形ABCD 的边长为2,∠ABC=45°,则点D 的坐标为_____.三、解答题17.计算:(1)37-()37()2(22)(2)221()-01π-()-|2218.38a -172a -42a x x a --有意义,x 的取值范围是什么?19.如图,点B 、E 、C 、F 在一条直线上,AB =DF ,AC =DE ,BE =FC .(1)求证:△ABC ≌△DFE ;(2)连接AF、BD,求证:四边形ABDF是平行四边形.20.如图,在四边形ABCD中,AD∥BC且AD=9cm,BC=6cm,点P、Q分别从点A、C同时出发,点P以1cm/s的速度由A向D运动,点Q以2cm/s的速度由C向B运动.问几秒后直线PQ将四边形ABCD截出一个平行四边形?21.如图,E,F,G,H分别是边AB,BC,CD,DA的中点.(1)判断四边形EFGH的形状,并证明你的结论;(2)当BD,AC满足什么条件时,四边形EFGH是正方形.(不要求证明)22.如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.23.在平面内,正方形ABCD与正方形CEFH如图放置,连接DE,BH,两线交于M,求证:(1)BH=DE;(2)BH⊥DE.24.如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.25.如图,在Rt△ABC中,∠B=90°,BC3C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案1.B【详解】B.2.C【解析】判断一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】是最简二次根式;=,被开方数含分母,不是最简二次根式;5=①③是最简二次根式.故选C.【点睛】本题考查了最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.A【详解】由题意得,2x﹣1>0,解得12x .故选A.点睛:分析:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.根据被开方数大于等于0,分母不等于0列式计算即可得解.4.A【解析】解:A、∵32+42=9+16=25;52=25,∴32+42=52,则此选项线段长能组成直角三角形;B、∵42+52=16+25=41;62=36,∴42+52≠62,则此选项线段长不能组成直角三角形;C、∵52+62=25+36=61;72=49,∴52+62≠72,则此选项线段长不能组成直角三角形;D、∵62+72=36+49=85;82=64,∴62+72≠82,则此选项线段长不能组成直角三角形.故选:A.5.D【解析】A.根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B.∵四边形ABCD是平行四形,当AC⊥BD时,它是菱形,故B选项正确;C.根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,故C选项正确;D.有一个角是直角的平行四边形是矩形,不一定是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.6.C【解析】∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=12AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故选C.7.C【解析】【分析】根据平行四边形的性质可得:∠A=∠C,∠A+∠B=180°,再根据∠A+∠C=160°计算出∠A 的度数,进而可算出∠B的度数.【详解】∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180︒,∵∠A+∠C=160︒,∴∠A=80︒,∴∠B=180︒−80︒=100︒.故选C.【点睛】本题考查平行四边形的性质,对角相等,对边平行.8.A【解析】分析:根据x 的取值范围可知1-x <0,x-4<0,再根据绝对值的性质和二次根式的性质化简即可.详解:因为2816x x -+=(x-4)2∴原式可化为1x --因为1≤x≤4所以1-x <0,x-4<0,所以1x -=1x --=x-1-(4-x )=x-1-4+x =2x-5故选A.点睛:此题主要考查了的非负数的化简,关键是利用绝对值的性质和二次根式的性质求解即可.9.A 【解析】【分析】根据平行四边形的判定方法,逐项判断即可.【详解】解:A 、当AB ∥CD ,AD =BC 时,四边形ABCD 可能为等腰梯形,所以不能证明四边形ABCD 为平行四边形;B 、AB ∥CD ,AB =DC ,一组对边分别平行且相等,可证明四边形ABCD 为平行四边形;C 、AB ∥CD ,AD ∥BC ,两组对边分别平行,可证明四边形ABCD 为平行四边形;D 、∵AB ∥CD ,∴∠A +∠D =180°,∵∠A =∠C ,∴∠C +∠D =180°,∴AD ∥BC ,∴四边形ABCD 为平行四边形;故选:A .【点睛】本题主要考查平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.10.C 【解析】【分析】根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现∠BDE=90°,再进一步根据勾股定理进行求解.【详解】解:∵△ABC 和△DCE 都是边长为3的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=3.∴∠BDC=∠CBD=30°.∴∠BDE=90°.∴=故选:C .【点睛】此题综合运用了等边三角形的性质、等腰三角形的性质、三角形的外角的性质和勾股定理.11.2【解析】【分析】根据同类二次根式的定义:被开方数相同的二次根式,列方程,即可解答.【详解】解:∵最简二次根式132-+b a 与a b -4是同类二次根式,∴31224b a b a -=⎧⎨+=-⎩,解得:11a b =⎧⎨=⎩,则a+b =2,故答案为:2.【点睛】本题考查了同类二次根式:把各二次根式化为最简二次根式后若被开方数相同,那么这样的二次根式叫同类二次根式.12.1【解析】【详解】分析:先根据二次根式的性质进行化简,再合并同类二次根式即可得解.=21|211=-=|.故答案为1.(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩.13.(5,4).【解析】【分析】利用菱形的性质以及勾股定理得出DO 的长,进而求出C 点坐标.【详解】解:∵菱形ABCD 的顶点A ,B 的坐标分别为(﹣3,0),(2,0),点D 在y 轴上,∴AB=5,∴DO=4,∴点C 的坐标是:(5,4).故答案为(5,4).14.132【解析】【分析】先根据勾股定理的逆定理判断形状,即可得到结果.【详解】52+122=132∴△ABC 是直角三角形,∴AC边上的中线BD的长为132 cm.【点睛】解答本题的关键是熟练掌握勾股定理的逆定理:两边的平方和等于第三边的平方,那么这样的三角形是直角三角形.同时熟记直角三角形斜边的中线等于斜边的一半.15.1或7【解析】【分析】如图1或2,证明△ABF≌△DAE,得到BF=AE=3,AF=DE=4,即可解决问题.【详解】如图1,∵四边形ABCD为正方形,∴∠BAD=90°,AB=AD;∵BF⊥EF,DE⊥EF,∴∠FBA+∠FAB=∠FAB+∠DAE,∴∠FBA=∠DAE;在△ABF与△DAE中,∠FBA=∠DAE,AB=AD,∠BAF=∠ADE,∴△ABF≌△DAE(ASA),∴BF=AE=3,AF=DE=4,∴EF=3+4=7;如图2,同理可证△ABF≌△DAE,∴BF=AE=3,AF=DE=4,∴EF=4−3=1;故答案为:7或1.【点睛】该题以正方形为载体,以考查正方形的性质、全等三角形的判定及其性质的应用为核心构造而成;解题的关键是深入把握题意,准确找出图形中隐含的等量关系.16.(22+,2).【解析】【分析】直接利用菱形的性质结合锐角三角三角函数关系得出D 点坐标即可.【详解】解:过点D 作DE x ⊥轴,垂足为E .∵菱形的边长为2,∠ABC=45°,∴CO=DC=2,∠DCE=45°,在Rt CDE △中,,CE DE =2224CE DE CD +==2,CE DE ∴==22,OE OC CE ∴=+=+∴点D 坐标为()22,2.+故答案为()22,2.+17.(1)2(2)2【解析】【详解】分析:(1)根据平方差公式和二次根式的性质,进行二次根式的求和运算求解即可;(2)根据完全平方公式,零次幂的性质,绝对值的性质求解即可.详解:(1)3(3(2-2(2)21)-01π-()-|2点睛:此题主要考查了实数的运算,关键是利用乘方公式、二次根式的性质、零次幂的性质和绝对值的性质进行计算.18.a =5;5≤x ≤10【解析】【详解】试题分析:先根据二次根式的定义,列方程求出a 次根式的定义列出不等式组,求出x 的取值范围即可.∴3a -8=17-2a∴a =52020{50x x -≥-≥解得:510x ≤≤.19.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由SSS 证明△ABC ≌△DFE 即可;(2)连接AF 、BD ,由全等三角形的性质得出∠ABC=∠DFE ,证出AB ∥DF ,即可得出结论.【详解】详解:证明:()1BE FC = ,BC EF ∴=,在ABC 和DFE 中,AB DF AC DE BC EF =⎧⎪=⎨⎪=⎩,ABC ∴≌()DFE SSS ;()2解:如图所示:由()1知ABC ≌DFE ,ABC DFE ∴∠=∠,//AB DF ∴,AB DF = ,∴四边形ABDF 是平行四边形.点睛:本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.20.2或3秒【解析】【分析】设点P,Q 运动的时间为ts ,分别表示出CQ 、BQ 、AP 、PD 的长,然后分为BQ=AP 和CQ=PD 两种情况构成平行四边形求解即可.【详解】设点P,Q 运动的时间为ts.依题意得:CQ=2t ,BQ=6-2t ,AP=t,PD=9-t.①当BQ=AP 时,四边形APQB 是平行四边形.即6-2t=t,解得t=2.②当CQ=PD时,四边形CQPD是平行四边形,即2t=9-t,解得t=3.∴经过2或3秒后,直线PQ将四边形ABCD截出一个平行四边形.【点睛】此题考查了平行四边形的判定方法及有关面积问题.关键把握“化动为静”的解题思想和分类讨论思想.21.(1)四边形EFGH是平行四边形,证明见解析;(2)当BD=AC且BD⊥AC时,四边形EFGH是正方形.【解析】【分析】(1)根据三角形中位线的性质得出EF∥HG,且EF=HG,从而得出平行四边形;(2)要使邻边相等则需要满足BD=AC,要使有一个角为直角则需要满足BD⊥AC,从而得出正方形.【详解】解:(1)四边形EFGH是平行四边形.∵E,F分别是边AB、BC的中点,∴EF∥AC,且EF=12 AC同理:HG∥AC,且HG=12 AC∴EF∥HG,且EF=HG∴四边形EFGH是平行四边形.(2)同(1)得到四边形EFGH为平行四边形,且EH=GH=12AC=12BD,∠EHG=90°,∴平行四边形EFGH为正方形.【点睛】此题考查了中点四边形,以及正方形的判定,熟练掌握中位线定理是解本题的关键.22.(1)见解析;(2)当BC=AF时,四边形ABFC是矩形,理由见解析【解析】【分析】(1)根据平行四边形的性质得到两角一边对应相等,利用AAS判定△ABE≌△FCE,从而得到AB=CF;(2)由已知可得四边形ABFC是平行四边形,BC=AF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC 是矩形.【详解】(1)证明:∵四边形ABCD 是平行四边形∴AB ∥CD ,AB=CD∴BAE CFE ∠=∠,ABE FCE∠=∠∵E 为BC 的中点∴BE=EC∴△ABE ≌△FCE∴AB=CF.(2)解:当BC=AF 时,四边形ABFC 是矩形.理由如下:∵AB ∥CF ,AB=CF∴四边形ABFC 是平行四边形∵BC=AF∴四边形ABFC 是矩形.23.(1)证明见解析(2)证明见解析【解析】【详解】试题分析:(1)根据正方形的性质可得BC =CD ,CE =CH ,∠BCD =∠ECH =90°,然后求出∠BCH =∠DCE ,再利用“边角边”证明△BCH 和△DCE 全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CBH =∠CDE ,然后根据三角形的内角和定理求出∠DMB =∠BCD =90°,再根据垂直的定义证明即可.试题解析:(1)在正方形ABCD 与正方形CEFH 中,BC =CD ,CE =CH ,∠BCD =∠ECH=90°,∴∠BCD +∠DCH =∠ECH +∠DCH ,即∠BCH =∠DCE ,在△BCH 和△DCE 中,{BC CDBCH DCE CE CH∠∠===,∴△BCH≌△DCE(SAS),∴BH=DE;(2)由(1)知△BCH≌△DCE∴∠CBH=∠EDC设BH,CD交于点N,则∠BNC=∠DNH∴∠CBH+∠BNC=∠EDC+∠DNH=90°∴∠DMN=180°-90°=90°∴BH⊥DE.【点睛】本题考查了全等三角形的判定与性质,正方形的性质,熟记性质并确定出全等三角形是解题的关键,也是本题的难点.24.(1)见详解;(2)【解析】【分析】(1)首先根据菱形的性质,得到AB=BC=AD=CD,∠B=∠D,结合点E、F分别是边BC、AD的中点,即可证明出△ABE≌△CDF.(2)证明出△ABC是等边三角形,结合题干条件在Rt△AEB中,∠B=60°,AB=4,即可求出AE的长.【详解】解:(1)证明:∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B=∠D.∵点E、F分别是边BC、AD的中点,∴BE=DF.在△ABE和△CDF中,∵AB=CD,∠B=∠D,BE=DF,∴△ABE≌△CDF(SAS).(2)∵∠B=60°,AB=BC,∴△ABC是等边三角形.∵点E是边BC的中点,∴AE ⊥BC .在Rt △AEB 中,∠B=60°,AB=4,∴.25.(1)证明见解析;(2)能,103t =;(3)52t =或4时,△DEF 为直角三角形.【解析】【分析】()1在DFC △中,90DFC ∠= ,30C ∠= ,根据30°角直角三角形的性质及已知条件即可证得结论;()2先证得四边形AEFD 为平行四边形,使▱AEFD 为菱形则需要满足的条件为AE=AD ,由此即可解答;() 390EDF ①∠=时,四边形EBFD 为矩形.在Rt △AED 中求可得2AD AE =,由此即可解答;90DEF ∠= ②时,由()2知//EF AD ,则得90ADE DEF ∠=∠= ,求得cos60AD AE =⋅ ,由此列方程求解即可;90EFD ∠= ③时,此种情况不存在.【详解】()1在DFC △中,90DFC ∠= ,30C ∠= ,2DC t =,DF t ∴=.又AE t = ,AE DF ∴=.()2能,AB BC ⊥ ,DF BC ⊥,//AE DF ∴.又AE DF =,∴四边形AEFD 为平行四边形.tan305AB BC =⋅== ,210AC AB ∴==.102AD AC DC t ∴=-=-.若使▱AEFD 为菱形,则需AE AD =,即102t t =-,103t =.即当103t =时,四边形AEFD 为菱形.()390EDF ∠= ①时,四边形EBFD 为矩形.在Rt AED △中,30ADE C ∠=∠= ,2AD AE ∴=.即1022t t -=,52t =.90DEF ∠= ②时,由()2四边形AEFD 为平行四边形知//EF AD ,90ADE DEF ∴∠=∠= .9060A C ∠=-∠= ,cos60AD AE ∴=⋅ .即11022t t -=,4t =.90EFD ∠= ③时,此种情况不存在.综上所述,当52t =秒或4秒时,DEF 为直角三角形.【点睛】本题考查了菱形的性质,考查了菱形是平行四边形,考查了菱形的判定定理,以及菱形与矩形之间的联系.难度适宜,计算繁琐.。
2022-2023学年新人教版八年级下数学期中试卷(含解析)
2022-2023学年初中八年级下数学期中试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:140 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 在二次根式,,,,中,最简二次根式有( )个.A.B.C.D.2. 下列计算正确的是( )A.B.C.D.3. 如图,在正方形网格中,每个小正方形的边长都为,的顶点都在格点上,则的边长为无理数的条数是( )A.条B.条C.条D.条16x 3−−−−√−2–√30.5−−−√a x−−√−a 2b 2−−−−−−√1234=2()2–√2=−2(−2)2−−−−−√=223−−√=−2(−)2–√21△ABC △ABC 01234. 在中, ,则 的度数为( )A.B.C.D.5. 在中,,,,则的长是( )A.B.C.D. 6.实数,在数轴上对应的位置如图,则化简结果为( )A.B.C.D.7. 如图,平行四边形的周长为,对角线,交于点,为的中点,,则的周长为( )A.B.C.D.8. 若一个三角形的一条边的长为,其面积为,则这条边上的高为( )▱ABCD ∠B +∠D =216∘∠A 36∘72∘80∘108∘Rt △ABC ∠C =90∘a =1c =2b 13–√25–√a b +(1−a)2−−−−−−−√(b −2)2−−−−−−√a +b −3a −b −33−a −ba −b −1ABCD 20AC BD O E CD BD =6△DOE 67810+13–√633–√A.B.C.D.9. 下列命题中,正确的是( )A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.对角线互相垂直的四边形是菱形10. 两条对角线相等且互相垂直平分的四边形是( )A.平行四边形B.矩形C.菱形D.正方形卷II (非选择题)二、 填空题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )12. 如图,受台风的影响,一棵树在离地面处折断,树顶落在离树干底部处,则这棵树在折断前的高度(树干与地面垂直)是________.13. 如图所示是一个矩形,在上取一点,过作于,于,其中,,求________.33–√6−63–√3+33–√6+63–√3m 4m ABCD AD P P PF ⊥AC F PE ⊥BD E AD =12AB =5PE +PF =14. 如图,点是长方形中边上一点,将沿折叠为,点落在边上,若,,则________.15. 菱形的两条对角线长分别是和,则它的面积为________.16. 已知中,, ,且有一个锐角为 ,则边的长等于________.17. 化简:_________.18. 如图,在中,,于点,是的中点.若,则的长为________ .三、 解答题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )19. 计算:. 20. 计算下列各题:;先化简,再求值:,其中,. E ABCD CD △BCE BE △BFE F AD AB =8BC =10CE =14cm 20cm cm 2Rt △ABC ∠C =90∘AB =630∘BC −=2a −28−4a 2△ABC AB =AC AD ⊥BC D E AC DE =5AB −+(−2)2–√2−−−−−−−−√()1−12–√−1()2–√3(1)×+÷|−2|(−)13−240(−2)3(2)(x +y)(x −y)−−y (x −2y)(x −y)2x =−20202019y =20212020A C21. 如图,在所给的方格纸中,每个小正方形的边长都是,点,,位于格点处,请按要求画出格点四边形.(1)在图中画出格点,使=,且以点,,,为顶点的四边形面积为;(2)在图中画出一个以点,,,为顶点的格点四边形,使=.22. 已知:如图,平行四边形的对角线的垂直平分线与边,分别交于,.求证:四边形是菱形.23. 如图实数在数轴上表示为:化简:.24. 课堂上同学们正在讨论课本例题:如图,一架长的梯子斜靠在竖直的墙上,的距离为,若梯子顶端下滑的距离为,则点向外移动的距离为多少?同学甲:本题可以这样来做解:在中,,,根据勾股定理得:,则________,又在中,,根据勾股定理得:________,则________.同学乙.我发现在本题答案中,梯子顶端下滑的距离比末端向外移动的距离小,说明在梯子下滑时,梯子顶端下滑的距离一定比末端向外移动的距离小.同学丙:不一定,我能举个反例,比如,当梯子顶端下滑的距离为时,在中,,,根据勾股定理得:________,则,又在中,,根据勾股定理得:________,则________.即:,老师.通过上面的讨论,同学们发现有时大,有时大,那么有没有可能正好的情况存在呢?同学丁:有.当梯子顶端从处下滑时,末端向外也移动.你认为他的说法正确吗?说明理由.1A B C 1P AC CP A B C P 32A B C P A +C P 2P 215ABCD AC AD BC E F AFCE −|a −b |−|c −a |+a 2−−√(b −c)2−−−−−−√2.5m AB AC BC 0.7m 0.4m B Rt △ABC BC =0.7m AB =2.5m AC ==2.4m −2.520.72−−−−−−−−−√C =A 1m Rt △C A 1B 1=2.5m A 1B 1C =B 1m B =B 1m AA 1BB 11.9m Rt △ABC BC =0.7m AB =2.5m AC =m C =AC−A 1A =0.5m A 1Rt △C A 1B 1=2.5m A 1B 1C =B 1m B =B 1m A >B A 1B 1AA 1BB 1A =B A 1B 1A 1.7m 1.7m =125. 小明在解决问题:已知,求的值他是这样分析与解的:∵,∴,∴,∴,.请你根据小明的分析过程,解决如下问题:(1)化简(2)若,求下面式的值①;②. 26. 如图,已知.猜测之间的数量关系,并证明你的结论.若点向右移动到线段的右侧,并且点在平行线 和之间时,之间的关系仍然满足中的结论吗?若满足,请证明你的结论;若不满足,请你写出正确的结论并证明,要求画出相应的图形.若点向右移动到线段的右侧,并且点在平行线和之外,则之间的数量关系又是怎样的?请你写出正确的结论并证明. 27. 提出问题:如图①,在四边形中,是边上任意一点,与和的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:当时(如图②):∵,和的高相等,∴.∵,和的高相等,∴.a =12+3–√2−8a +1a 2a ===2−12+3–√2−3–√(2+)(2−)3–√3–√3–√a −2=−3–√(a −2=3)2−4a +4=3a 2−4a =−1a 22−8a +1=2(−4a)+1=2×(−1)+1=−1a 2a 2+++...+1+13–√1+5–√3–√1+7–√5–√1+121−−−√119−−−√a =1−12–√2−8a +1a 22−5a ++2a 21a AB//DE (1)∠A ,∠ACD ,∠D (2)C AD C AB DE ∠A ,∠ACD ,∠D (1)(3)C AD C AB DE ∠A ,∠ACD ,∠D ABCD P AD △PBC △ABC △DBC AP =AD 12AP =AD 12△ABP △ABD =S △ABP 12S △ABD PD =AD −AP =AD 12△CDP △CDA =S △CDP 12S △CDA =−−S PBC S 边形ABCD S ABP S CDP∴.当时,探求与和之间的关系,写出求解过程;当时,与和之间的关系式为:________;一般地,当(表示正整数)时,探求与和之间的关系,写出求解过程;问题解决:当时,与和之间的关系式为:________.28. 如图,是与弦所围成的图形的内部的一定点,点是弦上一动点,连接并延长交于点,连接.已知,设、两点间的距离为,、两点间的距离为,、两点间的距离为,小东根据学习函数的经验,分别对函数,随自变量的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:按照表中自变量的值进行取点、画图、测量,分别得到了,与的几组对应值;其中________;如图,函数的图象已经画出,请在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,并画出函数的图象;结合函数图象,解决问题:当为等腰三角形时,的长度约为________.=−−S △PBC S 四边形ABCD S △ABP S △CDP =−−S 四边形ABCD 12S △ABD 12S △CDA =−(−)−(−)S 四边形ABCD 12S 四边形ABCD S △DBC 12S 四边形ABCD S △ABC =+12S △DBC 12S △ABC (1)AP =AD 13S △PBC S △ABC S △DBC (2)AP =AD 16S △PBC S △ABC S △DBC (3)AP =AD 1n n S △PBC S △ABC S △DBC AP =AD(0≤≤1)m n m n S △PBC S △ABC S △DBC Q AB ˆAB P AB PQ AB ˆC AC AB =6cm A P xcm P C cm y 1A C cm y 2y 1y 2x (1)x y 1y 2x a =/cm x 10123456/cm y 1 5.64.73.8a 2.73.24.4/cm y 2 5.65.55.45.35.24.74.1(2)y 2xOy (x,)y 1y 1(3)△APC AP参考答案与试题解析2022-2023学年初中八年级下数学期中试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】B【考点】最简二次根式【解析】根据二次根式的性质看看每个二次根式是否能继续往外开(也可以根据最简二次根式的定义直接判断),即可得出答案.【解答】解:,不是最简二次根式;是最简二次根式;,不是最简二次根式;,不是最简二次根式;是最简二次根式;即最简二次根式有个.故选.2.【答案】A【考点】二次根式的性质与化简【解析】本题考查二次根式的乘法和二次根式的化简,根据二次根式的乘法法则和性质解答.【解答】解:.原式,故正确;=4x 16x 3−−−−√x −√−2–√3==0.5−−−√12−−√2–√2=a x −−√ax −−√|x |−a 2b 2−−−−−−√2B A =2.原式,故错误;.原式,故错误; .原式,故错误.故选.3.【答案】C【考点】勾股定理【解析】根据图形和勾股定理来解答即可.【解答】解:∵,,,的边长有两条是无理数.故选.4.【答案】B【考点】平行四边形的性质【解析】此题暂无解析【解答】解:∵四边形是平行四边形,∴,,∵,∴,∴.故选.5.【答案】B【考点】B =2C =22–√D =2A AB ==+1242−−−−−−√17−−√BC ==+1232−−−−−−√10−−√AC ==5+3242−−−−−−√∴△ABC C ABCD ∠B =∠D ∠A +∠B =180∘∠B +∠D =216∘∠B =108∘∠A =−=180∘108∘72∘B勾股定理【解析】根据勾股定理即可求解.【解答】解:在中,,,,∴.故选.6.【答案】C【考点】二次根式的性质与化简数轴绝对值【解析】根据数轴表示数的方法得到,,则,,再根据化简原式,然后根据绝对值的意义得到原式 ,再去括号合并即可.【解答】解:,,,,原式 .故选.7.【答案】C【考点】三角形中位线定理平行四边形的性质【解析】Rt △ABC ∠C =90∘a =1c =2b ===−c 2a 2−−−−−−√−2212−−−−−−√3–√B b <1a <01−a >0b −2<0=|a|a 2−−√=|1−a|+|b −2|=1−a −(b −2)∵a <00<b <1∴1−a >0b −2<0∴=|1−a|+|b −2|=1−a −(b −2)=1−a −b +2=3−a −b C OB =OD CD根据平行四边形的对边相等和对角线互相平分可得,,又因为点是的中点,可得是的中位线,可得,所以易求的周长.【解答】解:∵▱的周长为,∴,则.∵四边形是平行四边形,,∴.又∵点是的中点,∴是的中位线,,∴,∴的周长 ,即的周长为.故选.8.【答案】B【考点】二次根式的应用【解析】设这边上的高为,根据三角形的面积公式列式,然后进行分母有理化即可得解.【解答】解:设这边上的高为,则,.故选.9.【答案】A【考点】正方形的判定OB =OD E CD OE △BCD OE =BC 12△DOE ABCD 202(BC +CD)=20BC +CD =10ABCD BD =6OD =OB =BD =312E CD OE △BCD DE =CD 12OE =BC 12△DOE =OD +OE +DE =BD +(BC +CD)1212=3+5=8△DOE 8C h h (+1)h =6123–√h ===6−612+13–√12(−1)3–√(+1)(−1)3–√3–√3–√B菱形的判定平行四边形的判定【解析】、根据矩形的定义作出判断;、根据菱形的性质作出判断;、根据平行四边形的判定定理作出判断;、根据正方形的判定定理作出判断.【解答】解:,对角线互相平分的四边形是平行四边形;故本选项正确;,两条对角线相等且相互平分的四边形为矩形;故本选项错误;,对角线互相垂直平分且相等的四边形是正方形;故本选项错误;,对角线互相垂直的平行四边形是菱形;故本选项错误;故选.10.【答案】D【考点】正方形的判定与性质【解析】两条对角线互相垂直平分的四边形是菱形,对角线相等的菱形是正方形,所以该四边形是正方形.【解答】解:根据正方形的判别方法知,两条对角线互相垂直平分的四边形是菱形,且相等又可判定为正方形,故选.二、 填空题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )11.【答案】【考点】分式有意义、无意义的条件二次根式有意义的条件A B C D A B C D A D x <12根据二次根式有意义的条件:被开方数为非负数,再结合分式有意义的条件:分母,可得不等式,再解不等式即可.【解答】解:由题意得:,解得:.故答案为:.12.【答案】【考点】勾股定理的应用勾股定理【解析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【解答】解:如图,由题意得,,在直角三角形中,根据勾股定理得:,所以大树的高度是.故答案为:.13.【答案】【考点】矩形的性质≠01−2x >01−2x >0x <12x <128mAB =3m BC =4m ABC AC ==5(m)+3242−−−−−−√3+5=8(m)8m 6013连接,由矩形推出,,,由勾股定理求出和的长,求出矩形的面积,进而得到的面积,根据三角形的面积公式即可求出答案.【解答】解:如图,连接.∵四边形是矩形,∴,,,.在中,,,,由勾股定理,得,∴.∵,∴,∴,即,∴.故答案为:.14.【答案】【考点】翻折变换(折叠问题)勾股定理【解析】由矩形的性质可得==,==,==,由折叠的性质可求==,=,由勾股定理可求的长,的长.【解答】解:∵四边形是长方形,∴,,.∵将沿折叠为,∴,.OP AC =BD OA =OC OB =OD AC BD ABCD △AOD OP ABCD ∠BAD =90∘AC =BD OA =OC OB =OD △BAD ∠BAD =90∘AD =12AB =5AC =BD ===13A +A B 2D 2−−−−−−−−−−√+52122−−−−−−−√OA =OD =132=12×5=60S 矩形ABCD ==15S △AOD 14S 矩形ABCD =+=OA ⋅PF +OD ⋅PE S △AOD S △APO S △DPO 121215=××PF +××PE 1213212132PE +PF =601360135AB CD 8AD BC 10∠A ∠D 90∘BF BC 10EF CE AF CE ABCD AB=CD =8AD=BC =10∠A =∠D=90∘△BCE BE △BFE BF =BC =10EF =CE∴.在中,,∴,∴.故答案为:.15.【答案】【考点】菱形的面积【解析】根据菱形的面积等于对角线乘积的一半,即可解答.【解答】解:∵菱形的面积等于对角线乘积的一半,∴面积.故答案为: .16.【答案】或【考点】勾股定理含30度角的直角三角形【解析】分两种情况讨论,当时,或当时,然后根据含角的直角三角形的性质和勾股定理即可解答.【解答】解:①当时,∵,,,∴;②当时,∵,,,∴.DF =AD −AF =4Rt △DEF D +D F 2E 2=EF 2=CE 216+(8−CE)2=CE 2CE =55140S =×14×20=140()12cm 2140333–√∠A =30∘∠B =30∘30∘∠A =30∘∠C =90∘AB =6∠A =30∘BC =AB =×6=31212∠B =30∘∠C =90∘AB =6∠B =30∘AC =AB =×6=31212∴的边长为或.故答案为:或.17.【答案】【考点】二次根式的化简求值【解析】此题暂无解析【解答】解:故答案为.18.【答案】【考点】直角三角形斜边上的中线等腰三角形的性质【解析】解答此题的关键在于对直角三角形斜边上的中线的理解,了解直角三角形斜边上的中线等于斜边的一半.【解答】解:如图,∵,BC 333–√333–√2a +2−2a −28−4a 2=−2a −28(a +2)(a −2)=−2(a +2)(a +2)(a −2)8(a +2)(a −2)=2(a −2)(a +2)(a −2)=2a +2:2a +210AD ⊥BC ∘∴.∵,∴.故答案为:.三、 解答题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )19.【答案】解:原式.【考点】二次根式的混合运算【解析】首先分别化简二次根式,然后进行加减计算即可解答.【解答】解:原式.20.【答案】解:原式.原式,将,带入,得.【考点】零指数幂、负整数指数幂有理数的混合运算平方差公式完全平方公式整式的混合运算——化简求值AC =2DE =10AB =AC AB =1010=|−2|−(−1)+22–√2–√2–√=2−−+1+22–√2–√2–√=3=|−2|−(−1)+22–√2–√2–√=2−−+1+22–√2–√2–√=3(1)=9×1+(−8)÷2=9−4=5(2)=−−+2xy −−xy +2x 2y 2x 2y 2y 2=xy x =−20202019y =20212020xy (−)×=−202020192021202020212019【解析】无无【解答】解:原式.原式,将,带入,得.21.【答案】如图中,四边形即为所求(答案不唯一).如图中,四边形即为所求(答案不唯一).【考点】作图—应用与设计作图勾股定理三角形的面积【解析】此题暂无解析(1)=9×1+(−8)÷2=9−4=5(2)=−−+2xy −−xy +2x 2y 2x 2y 2y 2=xy x =−20202019y =20212020xy (−)×=−20202019202120202021201912此题暂无解答22.【答案】证明:∵四边形是平行四边形,∴,∴,∵在与中,∴.∴,∴四边形为平行四边形,又∵,∴四边形为菱形;【考点】菱形的判定【解析】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.【解答】证明:∵四边形是平行四边形,∴,∴,∵在与中,∴.∴,∴四边形为平行四边形,又∵,∴四边形为菱形;23.【答案】解:原式.ABCD AE //FC ∠EAC =∠FCA △AOE △COF ∠EAO =∠FCO ,AO =CO ,∠AOE =∠COF ,△AOE ≅△COF(ASA)EO =FO AFCE EF ⊥AC AFCE ABCD AE //FC ∠EAC =∠FCA △AOE △COF ∠EAO =∠FCO ,AO =CO ,∠AOE =∠COF ,△AOE ≅△COF(ASA)EO =FO AFCE EF ⊥AC AFCE =|a |−|a −b |−|c −a |+|b −c |=−a −(b −a)−c +a +c −b =−a −b +a −c +a +c −b =a −2b二次根式的性质与化简在数轴上表示实数【解析】根据数轴上点的位置,可化简二次根式,绝对值,根据整式的加减,可得答案.【解答】解:原式.24.【答案】解:同学甲:在中,,,根据勾股定理,得,则,又在中,,根据勾股定理,得,则.故答案为:;;.同学丙:在中,,,根据勾股定理,得,则,又在中,,根据勾股定理,得,则.即.故答案为:; ;.同学丁:说法正确,理由如下:在中, ,,根据勾股定理,得,则,又在中,,根据勾股定理,得,则 ,即.【考点】勾股定理的应用【解析】直接利用勾股定理解答即可【解答】解:同学甲:在中,,,根据勾股定理,得,=|a |−|a −b |−|c −a |+|b −c |=−a −(b −a)−c +a +c −b =−a −b +a −c +a +c −b =a −2b Rt △ABC BC =0.7m AB =2.5m AC ==2.4m −2.520.72−−−−−−−−−√C =2A 1m Rt △C A 1B 1=2.5m A 1B 1C =1.5B 1m B =0.8B 1m 2 1.50.8Rt △ABC BC =0.7m AB =2.5m AC =2.4m C =AC−A 1A =0.5m A 1Rt △C A 1B 1=2.5m A 1B 1C =B 16–√m B =(−0.7)B 16–√m A >B A 1B 12.46–√(−0.7)6–√Rt △ABC BC =0.7m AB =2.5m AC ==2.4m −2.520.72−−−−−−−−−√C =0.7m A 1Rt △C A 1B 1=2.5m A 1B 1C ==2.4m B 1−2.520.72−−−−−−−−−√B =1.7m B 1A =B A 1B 1Rt △ABC BC =0.7m AB =2.5m AC ==2.4m −2.520.72−−−−−−−−−√根据勾股定理,得,则.故答案为:;;.同学丙:在中,,,根据勾股定理,得,则,又在中,,根据勾股定理,得,则.即.故答案为:; ;.同学丁:说法正确,理由如下:在中, ,,根据勾股定理,得,则,又在中,,根据勾股定理,得,则 ,即.25.【答案】解:(1)原式;(2)①∵,∴;②.【考点】分母有理化【解析】(1)将原式分母有理化即可;(2)将分母有理化,化简为,代入①,②进行运算即可.【解答】解:(1)原式C =1.5B 1m B =0.8B 1m 2 1.50.8Rt △ABC BC =0.7m AB =2.5m AC =2.4m C =AC−A 1A =0.5m A 1Rt △C A 1B 1=2.5m A 1B 1C =B 16–√m B =(−0.7)B 16–√m A >B A 1B 12.46–√(−0.7)6–√Rt △ABC BC =0.7m AB =2.5m AC ==2.4m −2.520.72−−−−−−−−−√C =0.7m A 1Rt △C A 1B 1=2.5m A 1B 1C ==2.4m B 1−2.520.72−−−−−−−−−√B =1.7m B 1A =B A 1B 1=×(+−+−+...+−)123–√5–√3–√7–√5–√121−−−√119−−−√=×(−1)12121−−−√=×1012=5a ==+11−12–√2–√2−8a +1a 2=2×(+1−8×(+1)+12–√)22–√=−6−12–√2−5a ++2a 21a =2×(+1−5(+1)+22–√)22–√=2a +12–√=×(+−+−+...+−)123–√5–√3–√7–√5–√121−−−√119−−−√=×(−1)12121−−−√×101;(2)①∵,∴;②.26.【答案】解:.证明如下:如图,过点作,则,∵,∴,∵,∴,∵,∴如图,此时之间的数量关系为.证明如下:过点作,则,∵,∴,∵,.∵,∴..证明如下:①当点直线的下方时,如图,过点作,则,则,∵,∴,∵,∴,∵,∴②当点直线的上方时,如图,过点作,则,=×1012=5a ==+11−12–√2–√2−8a +1a 2=2×(+1−8×(+1)+12–√)22–√=−6−12–√2−5a ++2a 21a =2×(+1−5(+1)+22–√)22–√=2(1)∠A +∠ACD +∠D =360∘1C CF//AB CF//DE CF//AB ∠A +∠ACF =180∘CF//DE ∠D +∠FCD =180∘∠ACD =∠ACF +∠DCF ∠A +∠ACD +∠D =+=.180∘180∘360∘(2)2∠A ,∠ACD ,∠D ∠ACD =∠A +∠D C CF//AB CF//DE CF//AB ∠A =∠ACF CF//DE ∴∠D =∠DCF ∠ACD =∠ACF +∠DCF ∠ACD =∠A +∠D (3)∠ACD =∠A −∠D C DE 3C CF//AB CF//DE CF//DE CF//AB ∠A =∠ACF CF//DE ∠D =∠DCF ∠ACD =∠ACF −∠DCF ∠ACD =∠A −∠DC AB 4C CF//AB CF//DE∵.,∵,∴,∵,.【考点】平行四边形的性质全等三角形的性质【解析】此题暂无解析【解答】解:.证明如下:如图,过点作,则,∵,∴,∵,∴,∵,∴如图,此时之间的数量关系为.证明如下:过点作,则,∵,∴,∵,.∵,∴..证明如下:①当点直线的下方时,如图,过点作,则,则,∵,∴,∵,∴,∵,CF//AB ∴∠A =∠ACF CF//DE ∠D =∠DCF ∠ACD =∠DCF −∠ACF ∴∠ACD =∠D −∠A (1)∠A +∠ACD +∠D =360∘1C CF//AB CF//DE CF//AB ∠A +∠ACF =180∘CF//DE ∠D +∠FCD =180∘∠ACD =∠ACF +∠DCF ∠A +∠ACD +∠D =+=.180∘180∘360∘(2)2∠A ,∠ACD ,∠D ∠ACD =∠A +∠D C CF//AB CF//DE CF//AB ∠A =∠ACF CF//DE ∴∠D =∠DCF ∠ACD =∠ACF +∠DCF ∠ACD =∠A +∠D (3)∠ACD =∠A −∠D C DE 3C CF//AB CF//DE CF//DE CF//AB ∠A =∠ACF CF//DE ∠D =∠DCF ∠ACD =∠ACF −∠DCF ∠ACD =∠A −∠D∴②当点直线的上方时,如图,过点作,则,∵.,∵,∴,∵,.27.【答案】解:∵,和的高相等,∴.又∵,和的高相等,∴.∴,即.;,求解过程如下:∵,和的高相等,∴.又∵,和的高相等,∴.∴.∴.同理,当时,.∠ACD =∠A −∠DC AB 4C CF//AB CF//DE CF//AB ∴∠A =∠ACF CF//DE ∠D =∠DCF ∠ACD =∠DCF −∠ACF ∴∠ACD =∠D −∠A (1)AP =AD 13△ABP △ABD =S △ABP 13S △ABD PD =AD −AP =AD 23△CDP △CDA =S △CDP 23S △CDA =−−S △PBC S 四边形ABCD S △ABP S△CDP=−−S 四边形ABCD 13S △ABD 23S △CDA=−(−)−(−)S 四边形ABCD 13S 四边形ABCD S △DBC 23S 四边形ABCD S △ABC =+13S △DBC 23S △ABC =+S △PBC 13S △DBC 23S △ABC=+S △PBC 16S △DBC 56S △ABC (3)=+S △PBC 1n S △DBC n −1n S △ABC AP =AD 1n △ABP △ABD =S △ABP 1n S △ABD PD =AD −AP =AD n −1n△CDP △CDA =S △CDP n −1nS △CDA =−−S △PBC S 四边形ABCD S △ABP S △CDP=−−S 四边形ABCD 1n S △ABD n −1n S △CDA=−(−)−(−)S 四边形ABCD 1n S 四边形ABCD S △DBC n −1nS 四边形ABCD S △ABC =+1n S △DBC n −1n S △ABC=+S △PBC 1n S △DBC n −1n S △ABC AP =AD(0≤≤1)m n m n =+S △PBC m n S △DBC n −m n S △ABC【考点】规律型:图形的变化类三角形的面积【解析】此题暂无解析【解答】解:∵,和的高相等,∴.又∵,和的高相等,∴.∴,即.∵,和的高相等,∴.又∵,和的高相等,∴.∴,即.故答案为:.,求解过程如下:∵,和的高相等,∴.又∵,和的高相等,∴.(1)AP =AD 13△ABP △ABD =S △ABP 13S △ABDPD =AD −AP =AD 23△CDP △CDA =S △CDP 23S △CDA =−−S △PBC S 四边形ABCD S △ABP S △CDP =−−S 四边形ABCD 13S △ABD 23S △CDA =−(−)−(−)S 四边形ABCD 13S 四边形ABCD S △DBC 23S 四边形ABCD S △ABC =+13S △DBC 23S △ABC =+S △PBC 13S △DBC 23S △ABC (2)AP =AD 16△ABP △ABD =S △ABP 16S △ABD PD =AD −AP =AD 56△CDP △CDA =S △CDP 56S △CDA =−−S △PBC S 四边形ABCD S △ABP S △CDP =−−S 四边形ABCD 16S △ABD 56S △CDA =−(−)−(−)S 四边形ABCD 16S 四边形ABCD S △DBC 56S 四边形ABCD S △ABC =+16S △DBC 56S △ABC =+S △PBC 16S △DBC 56S △ABC =+S △PBC 16S △DBC 56S △ABC (3)=+S △PBC 1n S △DBC n −1n S △ABCAP =AD 1n △ABP △ABD =S △ABP 1n S △ABD PD =AD −AP =AD n −1n △CDP △CDA =S △CDP n −1n S △CDA=−−S PBC S 边形ABCD S ABP S CDP∴.∴.同理,当时,.28.【答案】函数图象如图所示:或或【考点】动点问题勾股定理圆周角定理函数的图象【解析】左侧图片未给出解析左侧图片未给出解析左侧图片未给出解析【解答】解:时,,,,,,是直径,当时,,.故答案为:.函数图象如图所示:n =−−S △PBC S 四边形ABCD S △ABP S △CDP =−−S 四边形ABCD 1n S △ABD n −1n S △CDA=−(−)−(−)S 四边形ABCD 1n S 四边形ABCD S △DBC n −1n S 四边形ABCD S △ABC =+1n S △DBC n −1n S △ABC =+S △PBC 1n S △DBC n −1n S △ABCAP =AD(0≤≤1)m n m n =+S △PBC m n S △DBC n −m n S △ABC 3(2)3 4.9 5.8(1)∵PA =6AB =6BC =4.4AC =4.1∴A ≈A +B B 2C 2C 2∴∠ACB =90∘∴AB x =3PA =PB =PC =3∴=3y 13(2)观察图象可知:当,即当或时,或,当时,即时,,综上所述,满足条件的的值为或或.(由于是结果是测量出来的,允许有误差)故答案为:或或.(3)x =y PA =PC PA =AC x =3 4.9=y 1y 2PC =AC x =5.8x 3 4.9 5.83 4.9 5.8。
人教版数学八年级下册《期中考试卷》(含答案)
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题4分,共计40分)1. 在二次根式2x -中,字母x 的取值范围是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤ 2. 下列根式中属于最简二次根式的是( )A. 12B. 8C. 27D. 21a + 3. 下列各组数中,不是勾股数的为( )A. 3,4,5B. 6,8,10C. 5,12,13D. 5,7,10 4. 计算33008÷,结果( ) A 403B. 402C. 203D. 202 5. 如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能..是( )A. AE =CFB. BE =FDC. BF =DED. ∠1=∠26. 如图所示,四边形ABCD 是平行四边形,∠D =120°,∠CAD =32°,则∠ABC 、∠CAB 的度数分别为( ).A. 28°,120°B. 32°,120°C. 120°,28°D. 120°,32°7. 实数在数轴上的位置如图所示,化简22(1)(2)p p-+-=( )A. B. 3 C. 3p- D. 18. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 59. 平行四边形的两条对角线长分别是、,一边长为12,则、可能是下列各组中的()A. 8与14B. 10与14C. 18与20D. 10与3810. 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是()A. 105B.2105C.255D.355二、填空题(每题4分,共计24分)11. 1326⨯=____________. 12. 比较大小:1010-__________13-(填“>”、“=”、“<”) 13. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.14. 在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.15. 如图,将有一边重合两张直角三角形纸片放在数轴上,纸片上的点表示的数是-2,1AC BC BD ===,若以点为圆心、AD 的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.16. 如图,▱ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 延长线上,AE ∥BD ,EF ⊥BC ,EF=3,则AB 的长是_____.三、解答题(共计86分)17. 计算:1325045183(2)2(13)(26)(221)+-18. 已知:ABC ∆中的三条中位线的长分别为5cm 、6cm 、10cm ,求这个三角形的周长.19. 21点.20. 如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=2求斜边AB 的长.21. 如图,在ABC ∆中,13AB =,14BC =,AD 是BC 边上的高,12AD =,求AC 的长.22. 如图,在平行四边形ABCD 中,若AB=6,AD=10,∠ABC 的平分线交AD 于点E,交CD 的延长线于点F,求DF 的长.23. (1)定义新运算:对于任意实数,a b ,都有()1a b a a b ⊕=-+.例如,数字2和5在该新运算下结果为.计算如下:25⊕=()22515⨯-+=-.(1)求()37-⊕的值;(2)请你模仿(1),定义一种新运算,使得实数642+和322-的运算结果为2020.写出你定义的新运算,并写出计算过程.答案与解析一、选择题(每题4分,共计40分)1. ,字母x 的取值范围是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤[答案]C[解析][分析]根据二次根式意义,被开方数是非负数,列出不等式,解不等式得到答案.[详解]解:由题意得,x-2≥0,解得x≥2,故选:C[点睛]本题考查的是二次根式有意义的条件,掌握二次根式的意义,被开方数是非负数是解题的关键. 2. 下列根式中属于最简二次根式的是( )[答案]D[解析][分析]根据最简二次根式的两个条件进行判断,即可得出结论.[详解]A =2,不是最简二次根式,错误;B =不是最简二次根式,错误;C ,不是最简二次根式,错误;D ,正确;故选D .[点睛]本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3. 下列各组数中,不是勾股数的为( )A. 3,4,5B. 6,8,10C. 5,12,13D. 5,7,10 [答案]D[解析][分析]满足222+=a b c 的三个正整数,称为勾股数,由此判断即可.[详解]解:、222435+=,此选项是勾股数; 、2226810+=,此选项是勾股数; 、22251213+=,此选项是勾股数;、2225710+≠,此选项不是勾股数.故选:.[点睛]此题主要考查了勾股数,关键是掌握勾股数的定义.4. 结果为( )A. B. C. D. [答案]D[解析][分析]利用二次根式的乘除法运算法则进行运算即可.[详解]原式===, 故选:D .[点睛]本题考查二次根式的乘除运算,熟练掌握二次根式的乘除运算法则是解答的关键.5. 如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能..是( )A. AE=CFB. BE=FDC. BF=DED. ∠1=∠2[答案]A[解析]试题分析:因为四边形ABCD是平行四边形,所以AB//CD,AB=CD,所以∠ABD=∠CDB,所以要使△ABE≌△CDF,若添加条件:∠1=∠2,可以利用ASA证明△ABE≌△CDF,所以D正确,若添加条件:BE=FD,可以利用SAS证明△ABE≌△CDF,所以B正确,若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明△ABE≌△CDF,所以C 正确;若添加条件:AE=CF,因为∠ABD=∠CDB,不是两边的夹角,所以不能证明△ABE≌△CDF,所以A错误,故选A.考点:1.平行四边形的性质2.全等三角形的判定.6. 如图所示,四边形ABCD是平行四边形,∠D=120°,∠CAD=32°,则∠ABC、∠CAB的度数分别为().A. 28°,120°B. 32°,120°C. 120°,28°D. 120°,32°[答案]C[解析][分析][详解]解:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠BAD+∠D=180°.∵∠D=120°,∠CAD=32°,∴∠ABC=∠D=120°,∠BAD=60°,∴∠CAB=∠BAD﹣∠CAD=60°﹣32°=28°.故选C.7. 实数在数轴上的位置如图所示,化简22-+-=( )(1)(2)p pp- D. 1A. B. 3 C. 3[答案]D[解析][分析]根据数轴确定p的取值范围,再利用二次根式的性质化简即可.[详解]由数轴可得,1<p<2,∴p-1>0,p-2<0,22--,p p(1)(2)故选:D.[点睛]本题主要考查二次根式的化简,判断出代数式的正负是解题关键.8. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 5[答案]A[解析]分析] 设BN=x ,则由折叠的性质可得DN=AN=9-x ,根据中点的定义可得BD=3,在Rt △BND 中,根据勾股定理可得关于x 的方程,解方程即可求解.[详解]解:设BN=x ,由折叠的性质可得DN=AN=9-x ,∵D 是BC 的中点,∴BD=3,在Rt △NBD 中,x 2+32=(9-x )2,解得x=4.即BN=4.故选A .[点睛]本题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强. 9. 平行四边形的两条对角线长分别是、,一边长为12,则、可能是下列各组中的( )A. 8与14B. 10与14C. 18与20D. 10与38[答案]C[解析][分析] x、y是平行四边形的两条对角线的长,则它们的一半与平行四边形长为12的边构成三角形,根据三角形三边关系中“三角形的任意两边之和大于第三边”即可从选项中判定出正解的答案.[详解]解:∵平行四边形的对角线互相平分,此平行四边形的两对角线长为x、y∴这两条对角线的一半就是x2,y2∴这两条对角线的一半与边长为12的边组成的三角形的三边为:x2、y2、12 根据三角形任意两边之和大于第三边得: A选项中149212=8+2<,不符合;B选项中1014122=+2,不符合;C选项中182019122=>+2,符合;D选项中1038172=<+122,不符合. 故选:C[点睛]本题考查的知识点有两个:一是平行四边形的对角线互相平分,一是三角形的三边关系,综合运用这两个知识点逐个判定是解题的基本方法.10. 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC ,则AC 边上的高是( )A. 105 2105255 355[答案]D[解析][分析]先求出△ABC 的面积,再根据勾股定理求出AC 的长度,即可求出AC 边上的高.[详解]1113222121112222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= 22125AC =+=AC 边上的高133525225ABC SAC =÷÷=⨯= 故答案为:D .[点睛]本题考查了三角形的高的问题,掌握勾股定理、三角形面积公式是解题的关键. 二、填空题(每题4分,共计24分)11.=____________.[答案[解析][分析] 利用二次根式的乘除法运算法则进行运算即可.[详解]原式=====[点睛]本题考查了二次根式的运算,熟练掌握二次根式的乘除法运算法则是解答的关键.12. 比较大小:__________13-(填“>”、“=”、“<”) [答案]>[解析][分析]先将这两个数分别平方,通过比较两个数的平方的大小即可得解.[详解]解:∵21()1010-=,211()39-=且11109<,∴1103<,∴13>- 故答案为:>.[点睛]此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.13. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.[答案]13cmcm[解析][分析]设直角三角形的第三条边为c ,分c 为斜边和12cm 为斜边两类进行讨论,根据勾股定理计算即可.[详解]解:设直角三角形的第三条边为c ,当c 为斜边时,2251213c =+= ;当12cm 为斜边时,22125119c =-=.故答案为:13cm 或119cm[点睛]本题考查了勾股定理和直角三角形分类讨论思想.由于条件没有指明直角边和斜边,故要分类讨论,同时要注意直角三角形斜边最长,5cm 不可能为斜边,故分两类讨论.14. 在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.[答案][解析][分析]连接AC ,利用1sin 2ABC S AB BC B ∆=••求出ABC ∆的面积,再求出ABCD 的面积. [详解]解:连接AC ,如图:∵30B ∠=︒,BC 10cm =,6AB cm =,∴111sin 61015222ABC S AB BC B ∆=••=⨯⨯⨯=; ∴215230ABCD ABC S S ∆==⨯=.故答案为:30.[点睛]本题考查了解直角三角形,平行四边形的性质,以及求三角形的面积,解题的关键是利用1sin 2ABC S AB BC B ∆=••求出三角形的面积.15. 如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点表示的数是-2,1AC BC BD ===,若以点为圆心、AD 的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.[答案]32-[解析][分析]首先根据勾股定理求出AB 、AD 的长,再根据圆的半径相等可知AD=AE ,再根据数轴上两点间距离的公式即可得出答案.[详解]根据勾股定理得:2AB =,3AD =,∴3AE =,∴23OE =-∴点表示的数为23-+.故答案为:23-+[点睛]此题主要考查了勾股定理,以及数轴与实数,解题时求数轴上两点间的距离应让较大的数减去较小的数即可,本题的关键是求出AE 的长.16. 如图,▱ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 的延长线上,AE ∥BD ,EF ⊥BC ,EF=3,则AB 的长是_____.[答案]1[解析][分析]根据平行四边形性质推出AB=CD ,AB ∥CD ,得出平行四边形ABDE ,推出DE=DC=AB ,根据直角三角形性质求出CE 长,即可求出AB 的长.[详解]∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB=CD.∵AE ∥BD ,∴四边形ABDE 是平行四边形.∴AB=DE=CD ,即D 为CE 中点.∵EF ⊥BC ,∴∠EFC=90°.∵AB ∥CD ,∴∠DCF=∠ABC=60°.∴∠CEF=30°.∵EF=,∴CE=2∴AB=1三、解答题(共计86分)17. 计算:(2)2(11)+-[答案](1);(2)9;[解析][分析](1)先化简根式,然后再合并同类根式即可;(2)先算乘法和完全平方,再去括号,计算加减即可.[详解](1==+(2)2(13)(26)(221)+---26618(8421)=-+---+232942=--+229-=.[点睛]本题主要考查了二次根式的混合运算,关键是掌握计算顺序和运算法则.18. 已知:ABC ∆中三条中位线的长分别为5cm 、6cm 、10cm ,求这个三角形的周长.[答案]42.cm[解析][分析]根据三角形中位线定理可分别求得三角形各边的长,从而不难求得其周长.[详解]∵三角形的三条中位线的长分别是5cm 、6cm 、10cm ,∴三角形的三条边分别是10cm 、12cm 、20cm .∴这个三角形的周长=10+12+20=42cm .[点睛]此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 19. 作图题:在数轴上画出表示21+的点.[答案]作图见解析[解析]分析]由题意,作斜边为2的等腰直角三角形,以数1为圆心画弧,与数轴正方向的交点为所求.[详解]解:如图所示,点A 为21+的点;[点睛]本题考查的是实数与数轴,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.20. 如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=2求斜边AB 的长.[答案]433. [解析][分析]设BC=x,则AB=2x,再根据勾股定理求出x 值,进而得出结论.[详解]∵在Rt △ABC 中,∠C=90°,∠A=30°,AC=2, ∴设BC=x ,则AB=2x,∵AC 2+BC 2=AB 2,即22+x 2=(2x)2,解得x=233, ∴AB=2x=433. [点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.21. 如图,在ABC ∆中,13AB =,14BC =,AD 是BC 边上的高,12AD =,求AC 的长.[答案]15.AC =[解析][分析]利用勾股定理先求出BD ,进而求得DC ,再用勾股定理求得AC 即可.[详解]∵AD 是BC 上的高,∴AD BC ⊥,在Rt ABD ∆中,222213125BD AB AD =-=-=,∴9CD BC BD =-=,∴在Rt ADC ∆中,222212915AC AD CD =+=+=.[点睛]本题考查勾股定理,会利用勾股定理解直角三角形是解答的关键.22. 如图,在平行四边形ABCD 中,若AB=6,AD=10,∠ABC 的平分线交AD 于点E,交CD 的延长线于点F,求DF 的长.[答案]4[解析][分析]首先根据平行四边形的性质可得AB=DC=6,AD=BC=10,AB ∥DC ,再根据平行线的性质与角平分线的性质证明∠2=∠3,根据等角对等边可得BC=CF=10,再用CF ﹣CD 即可算出DF 的长.[详解]∵四边形ABCD 为平行四边形,∴AB=DC=6,AD=BC=10,AB ∥DC .∵AB ∥DC,∴∠1=∠3,又∵BF 平分∠ABC,∴∠1=∠2,∴∠2=∠3,∴BC=CF=10,∴DF=CF ﹣DC=10﹣6=4.[点睛]本题考查了平行四边形的性质;等腰三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.23. (1)定义新运算:对于任意实数,a b ,都有()1a b a a b ⊕=-+.例如,数字2和5在该新运算下结果为.计算如下:25⊕=()22515⨯-+=-.(1)求()37-⊕的值;(2)请你模仿(1),定义一种新运算,使得实数642+和322-的运算结果为2020.写出你定义的新运算,并写出计算过程.[答案](1)31; (2)见解析 [解析][分析](1)根据新定义即可求解;(2)根据平方差公式即可构造新定义运算求解.[详解]解:(1)(37)⊕-()()3371=-⨯--+31=.(2)答案不唯一,合理即可.如:定义新运算:对于任意实数,a b ,都有2018a b ab *=+. (642)(322)+*-(62)(32)2018=+-+2020=.[点睛]此题主要考查新定义运算,解题的关键是熟知平方差公式的运用.。
人教版 八年级数学下册二次根式、勾股定理 综合测试卷 (含答案解析)
(2)当﹣4<x<1时,化简 ﹣2 .
21.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?
22.综合题
(1)试比较 与 的大小;
(2)你能比较 与 的大小吗?其中k为正整数.
A. B. C. D.
2.若式子 在实数范围内有意义,则x的取值范围是( )
A. x>1 B. x<1 C. x≥1 D. x≤1
3.下列变形中,正确的是( )
A.(2 )2=2×3=6 B.
C. D.
4.下列组合哪个不是勾股数()
A.30,40,50 B.7,24,25 C.5,12,13 D.1,2,3
【解析】【分析】(1)先根据二次根式有意义的条件可得x的值,进一步得到y的值,代入 得到它的平方根;
(2)由于﹣4<x<1,根据完全平方公式和二次根式的性质得到 ﹣2 =|x+4|﹣2|x﹣1|,再去绝对值化简即可.
21.【答案】解:不对.
理由:如图,依题意可知
AB=25(米),AO=24(米),∠O=90°,
22.【答案】(1)解: ,
,
故 <
(2)解: ,
,
故 <
【考点】二次根式的性质与化简,二次根式的乘除法
【解析】【分析】(1)比较两个二次根式的大小,用分母有理化的法则先将其化为最简二次根式,再比较大小即可;(2)方法同(1).
23.【答案】解:如图,AB=28 ,∠P=45°,∠PAC=90°,∠ABQ=45°,∴∠ACP=45°,
5.下列二次根式中,与 是同类二次根式的是()
人教版八年级下册数学期中考试试题含答案
人教版八年级下册数学期中考试试卷一、单选题1x的取值范围是()A .x<1B .x≤1C .x>1D .x≥12的相反数是()A B .2C .D .23.下列根式中属于最简二次根式的是()ABC D 4.下列计算错误..的是()A=B C=D .35是同类二次根式的是()ABC D 6.直线y=-x -2不经过()A .第一象限B .第二象限C .第三象限D .第四象限7.若一次函数y =x+4的图象上有两点A(﹣12,y 1)、B(1,y 2),则下列说法正确的是()A .y 1>y 2B .y 1≥y 2C .y 1<y 2D .y 1≤y 28.如图,在▱ABCD 中,BE 平分∠ABC ,BC=6,DE=2,则▱ABCD 的周长等于()A .20B .18C .16D .149.在△ABC 中,∠A=90°,∠A 、∠B 、∠C 的对边长分别为a 、b 、c ,则下列结论错误的是()A .a 2+b 2=c 2B .b 2+c 2=a 2C .222a c b -=D .222a cb -=10.在直角坐标系中,点P(2,3)到原点的距离是()AB C D .2二、填空题11.三角形中两边的平方差恰好等于第三边的平方,则这个三角形是______三角形.12.已知a =21a -的值是________.13a=________.14.一直角三角形的两边长分别为5和12,则第三边的长是_______.15=___________________.162(1)0n +=,则m -n 的值为_____.17.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,正方形A ,B ,C 的面积分别是28cm ,210cm ,214cm ,则正方形D 的面积是___________2cm .18.在△ABC 中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为______.三、解答题19.求使下列各式有意义的字母的取值范围:(1(2(320.化简:(1(2)2⎛ ⎝21.计算:(1)(2)-(3)(4)((5)2013+2)(6)(÷22.已知△ABC 三边a b c 、、满足222102426338a b c a b c ++=++-,请你判断△ABC 的形状,并说明理由.23.直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,-2),(1)求直线AB 的解析式,并指出该直线所经过的象限.(2)求S △AOB 的面积.24.某中学有一块四边形的空地ABCD ,如下图所示,学校计划在空地上种植草皮,经测量90A ∠=︒,3m AB =,12m BC =,13m CD =,4m DA =,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?25.如图,△ABC 中,AB=AC ,E 、F 分别是BC 、AC 的中点,以AC 为斜边作Rt △ADC .(1)求证:FE=FD ;(2)若∠CAD=∠CAB=24°,求∠EDF 的度数.26.如图,四边形ABCD 是矩形,点E 在CD 边上,点F 在DC 延长线上,AE =BF .(1)求证:四边形ABFE 是平行四边形;(2)若∠BEF =∠DAE ,AE =3,BE =4,求EF 的长.27.阅读下面问题:111⨯=;=2==.(1(21n 为正整数);(3+参考答案1.D【解析】根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】由题意得,x-1≥0,解得x≥1.故选D.【点睛】本题主要考查二次根式有意义的条件,要使二次根式有意义,其被开方数应为非负数. 2.C【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.故选C.考点:相反数.3.A【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A是最简二次根式,正确;B2,不是最简二次根式,错误;CD,不是最简二次根式,错误;故选A.【点睛】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)二次根式的被开方数不能含有开方开得尽的因数或因式.4.D【解析】【分析】根据二次根式的运算法则即可计算,进行判断.【详解】A.B.C.D.-故选D.【点睛】此题主要考查二次根式的运算,解题的关键是熟知二次根式的运算法则.5.D【解析】【详解】试题分析:同类二次根式的定义:化为最简二次根式后被开方数相同的二次根式.A、,B、,C、,均不是同类二次根式,故错误;D、,符合同类二次根式的定义,本选项正确.考点:同类二次根式的定义点评:本题属于基础应用题,只需学生熟练掌握同类二次根式的定义,即可完成. 6.A【解析】【详解】解:∵直线y=﹣x﹣2中,k=﹣1<0,b=﹣2<0,∴此函数的图象在二、三、四象限故选:A.【点睛】本题考查一次函数图象与系数的关系.7.C【解析】【详解】试题分析:∵k=1>0,∴y随x的增大而增大,∵-<1,∴y1<y2.故选C.考点:一次函数的性质.8.A【解析】【分析】由已知条件易证AB=AE=AD-DE=BC-DE=4,结合AB=CD,AD=BC=6即可求得平行四边形ABCD的周长.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC=6,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=AD-DE=6-2=4,∴CD=AB=4,∴平行四边形ABCD的周长=2×(4+6)=20.故选A.点睛:“由BE平分∠ABC结合AD∥BC得到∠ABE=∠CBE=∠AEB,从而证得AB=AE=AD-DE=BC-DE=4”是解答本题的关键.9.A【解析】【分析】根据在△ABC中,∠A=90°,∠A、∠B、∠C的对边长分别为a、b、c,可得b2+c2=a2然后即可对4个选项作出判定即可.【详解】∵在△ABC中,∠A=90°,∠A、∠B、∠C的对边长分别为a、b、c,∴a为斜边,∴b2+c2=a2或a2-b2=c2或a2-c2=b2等式成立,所以选项A错误,B、C、D正确.故选A.【点睛】此题主要考查学生对勾股定理这一知识点的理解和掌握,看清楚∠A、∠B、∠C的对边长分别为a、b、c,找出斜边是解题关键.10.B【解析】【分析】根据题意画出图形,根据勾股定理求解即可.【详解】如图所示:过点P作PA⊥x轴于点A,则AO=2,PA=3,故故选B【点睛】此题考查勾股定理和坐标与图形性质,解答本题的关键在于根据题意画出图形.11.直角【解析】【分析】根据勾股定理逆定理推断即可.【详解】解:设三角形的三边分别是a、b、c,则c2−a2=b2,∴a 2+b 2=c 2,∴这个三角形是直角三角形,故答案为:直角.【点睛】本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.12.1【解析】【分析】直接把a =【详解】∵a =∴221211a --=-=.故答案为:1.【点睛】此题主要考查了二次根式的性质,注意:2(0)a a =≥.13.1【解析】【分析】根据同类二次根式可知,两个二次根式内的式子相等,从而得出a 的值.【详解】∴1+a=4a-2解得:a=1故答案为:1.【点睛】本题考查同类二次根式的应用,解题关键是得出1+a=4a-2.14.13.【解析】【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】设第三边为x,(1)若12是直角边,则第三边x是斜边,由勾股定理得:52+122=x2,∴x=13(负值舍去);(2)若12是斜边,则第三边x为直角边,由勾股定理得:52+x2=122,∴(负值舍去);∴第三边的长为13故答案为:13.【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.15.0.32【解析】【详解】分析:根据二次根式的化简计算即可;=|-0.3|=0.3;=|(2|=2.故答案为0.32.16.4【解析】【分析】根据二次根式与平方的非负性即可求解.【详解】依题意得m-3=0,n+1=0,解得m=3,n=-1,∴m-n=4【点睛】此题主要考查二次根式与平方的非负性,解题的关键是熟知二次根式与平方的非负性.17.17【解析】【分析】根据正方形的面积公式,连续运用勾股定理,得到四个小正方形的面积和等于最大正方形的面积,即可列出等式求出正方形D 的面积.【详解】解:∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A 的面积2a =,正方形B 的面积2b =,正方形C 的面积2c =,正方形D 的面积2d =,∵222a b x +=,222c d y +=,∴正方形A 、B 、C 、D 的面积和()()2222222749a b c d x y =+++=+==,即28101449d +++=,解得:217d =.故答案为:17.【点睛】本题考查了勾股定理的应用,根据数形结合得出正方形之间面积关系是解题关键.18.108【解析】【详解】∵在△ABC 中,三条边的长度分别为9、12、15,∵92+122=152,∴△ABC 是直角三角形,∴用两个这样的三角形所拼成的长方形的面积是2×12×9×12=10819.(1)43x ;(2)全体实数;(3)0x <.【解析】【分析】(1)根据二次根式有意义的条件可得不等式340x -,再解不等式即可;(2)根据二次根式有意义的条件可得不等式240m +,再解不等式即可;(3)根据分式有意义和二次根式有意义的条件可得10x-≥,且0x ≠,解不等式即可.【详解】解:(1)由题意得:340x - ,解得:43x ;(2)240m +,m ∴的取值范围是全体实数;(3)由题意得:10x-≥,且0x ≠,解得0x <.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数,(3)要注意分母不为零.20.(1)156;(2)125【解析】【分析】(1)直接利用二次根式的乘法运算法则计算得出答案;(2)先算根号里面的减法,再算平方;【详解】解:(1)原式==12×13=156;(2)原式=2⎛ ⎝=125.【点睛】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.21.(1)(2(3)2;(4)6;(5)2014;(6)2-【解析】【分析】(1)先将各二次根式化简,然后合并同类二次根式即可;(2)先去括号、将各二次根式化简,然后合并同类二次根式即可;(3)利用二次根式的乘、除法公式计算即可;(4)利用平方差公式计算即可;(5)先约分,然后计算即可;(6)先化简并合并同类二次根式,然后根据二次根式的除法公式计算即可.【详解】解:(1)=-+=(2)-=((-=--(3)=4=2(4)(=(22-=12-6=6(5)2013+2)=2013+1=2014(6)(÷=(÷==2-【点睛】此题考查的是二次根式的混合运算,掌握二次根式的乘、除法公式和合并同类二次根式法则是解决此题的关键.22.直角三角形,理由见解析【解析】【分析】将222102426338a b c a b c ++=++-进行配方,求出a b c 、、,根据勾股定理的逆定理判断△ABC 的形状.【详解】解:△ABC 是直角三角形.∵222102426338a b c a b c ++=++-,∴222102524144261690a a b b c c -++-++-+=,∴222(5)(12)(13)0a b c -+-+-=,∴50120130a b c -=-=-=,,,即5a =,12b =,13c =.∵222512=13+,∴△ABC 是直角三角形.【点睛】本题考查勾股定理的逆定理.23.(1)22y x =-,直线经过一、三、四象限;(2)1【解析】【分析】(1)用待定系数法求直线AB 解析式即可;(2)由点A ,B 的坐标,求得OA ,OB 的长,再根据三角形的面积公式求解即可.【详解】(1)设直线AB 的解析式为:(0)y kx b k =+≠,由题意得:直线AB 过点A(1,0),点B(0,-2),代入得,02k b b=+⎧⎨-=⎩,解得:22k b =⎧⎨=-⎩∴直线AB 的解析式为:22y x =-,经过一、三、四象限;(2)∵点A 坐标为(1,0),点B 坐标为(0,-2)∴OA=1,OB=2,∴1112122AOB S OA OB ∆=⋅=⨯⨯=.【点睛】本题考查了用待定系数法求一次函数解析式,求三角形面积,属于基础题,解题的关键是熟练掌握待定系数法.24.7200【解析】【分析】先利用勾股定理求出BD 的长,然后利用勾股定理的逆定理证明三角形BDC 是直角三角形,然后求出四边形ABCD 的面积,最后进行求解即可得到答案.【详解】解:连接BD ,∵在Rt BAD V 中,3m AB =,4m AD =,∴BD =,∵在BCD △中,22222251216913BD BC CD +=+===,∴BCD △是直角三角形.∴216m 2ABD S AD AB == △,2130m 2BCD S BD BC == △,∴四边形ABCD 的面积为6+30=236m .∴投入资金为:362007200⨯=元答:学校需要投入7200元资金买草皮【点睛】本题主要考查了勾股定理和勾股定理的逆定理,三角形的面积公式,解题的关键在于能够熟练掌握相关知识进行求解25.(1)证明见解析;(2)54°.【解析】【分析】(1)根据三角形的中位线定理得到FE=12AB ,根据直角三角形的性质得到FD=12AC ,等量代换即可;(2)根据平行线的性质得到∠EFC=∠BAC=24°,根据直角三角形的性质得到∠DFC=48°,根据等腰三角形的性质计算即可.【详解】解:(1)∵E 、F 分别是BC 、AC 的中点,∴FE=12AB ,∵F 是AC 的中点,∠ADC=90°,∴FD=12AC ,∵AB=AC ,∴FE=FD ;(2)∵E、F分别是BC、AC的中点,∴FE∥AB,∴∠EFC=∠BAC=24°,∵F是AC的中点,∠ADC=90°,∴FD=AF.∴∠ADF=∠DAF=24°,∴∠DFC=48°,∴∠EFD=72°,∵FE=FD,∴∠FED=∠EDF=54°.【点睛】本题考查的是三角形中位线定理和直角三角形的性质的应用,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.26.(1)证明见解析;(2)EF=5【解析】【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC,∠D=∠BCD=90°.∴∠BCF=180°﹣∠BCD=180°﹣90°=90°.∴∠D=∠BCF.在Rt△ADE和Rt△BCF中AE BF AD BC ì=ïí=ïî,∴Rt△ADE≌Rt△BCF.∴∠1=∠F.∴AE∥BF.∵AE=BF,∴四边形ABFE是平行四边形.(2)解:∵∠D=90°,∴∠DAE+∠1=90°.∵∠BEF=∠DAE,∴∠BEF+∠1=90°.∵∠BEF+∠1+∠AEB=180°,∴∠AEB=90°.在Rt△ABE中,AE=3,BE=4,5==.∵四边形ABFE 是平行四边形,∴EF=AB=5.【点睛】熟练运用矩形的性质,平行四边形的判定方法,勾股定理是解答本题的关键.27.(1(2(3)9【解析】【分析】(1)由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,分母利用平方差公式计算即可;(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可.【详解】解:(1===;(2=1n n=+-=(3)原式1=-+ 1=-101=-9 .【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.。
人教版八年级下册数学期中考试试题及答案
人教版八年级下册数学期中考试试卷一、单选题1.下列二次根式为最简二次根式的是()AB C D 2.在ABCD 中,70B ∠=︒,则D ∠的度数为()A .20︒B .60︒C .70︒D .110︒3.如图所示,从电线杆离地面5m 处向地面拉一条长13m 的缆绳,则这条缆绳在地面的固定点距离电线杆底部()A .6mB .8mC .10mD .12m 4.矩形具有而菱形不具有的性质是()A .两组对边分别平行B .对角线相等C .对角线互相平分D .两组对角分别相等5.在▱ABCD 中,AB =3cm ,BC =5cm ,对角线AC ,BD 交于点O ,则OA 的取值范围是A .3cm <OA <5cmB .2cm <OA <8cmC .1cm <OA <4cmD .3cm <OA <8cm6.实数a )A .2a b -B .aC .a -D .2+a b7.如图,菱形ABCD 中,B 60∠= ,AB=4,则以AC 为边长的正方形ACEF 的周长为A .14B .15C .16D .178.如图,在ABCD 中,E ,F 分别是AB ,CD 的中点,连接DE ,EF ,BF ,则图中平行四边形的个数是()A .3B .4C .5D .69.如图,直线l 上有三个正方形,若a c ,的面积分别为5和11,则b 的面积为()A .4B .6C .16D .5510.如图所示,45BOD ∠=︒,BO DO =点A 在OB 上,四边形ABCD 是矩形,AC ,BD 交于点E ,连接OE 交AD 于点F .有下列3个推断:(1)OE 平分BOD ∠;(2)OF BD =;(3)DF =;其中正确的个数是()A .3B .2C .1D .0二、填空题11.若25=,则m =_______________________.12.如图,CD 是Rt ⊿ABC 斜边AB 上的中线,若CD=4,则AB=__________.13.如图,在ABCD 中,若12∠=∠,则四边形ABCD 是_______________________.(填“矩形”“菱形”或“正方形”)14.如图所示是某商场营业大厅自动扶梯示意图,自动扶梯AB 的长为12米,大厅两层之间的高度BC 的长为6米,自动扶梯AB 的坡比BC i AC==_______________________.(坡比是坡面的铅直高度BC 与水平宽度AC 之比)15.如图,正方形ABCD 的边长为4,点E 在AB 上且1BE =,F 为对角线AC 上一动点,则BFE △周长的最小值为_____________.三、解答题16.计算:312246417.如图所示,四边形ABCD 中,AB=1,BC=2,CD=2,AD=3,且AB ⊥BC .求证:AC ⊥CD18.如图,B ,E ,C ,F 在一条直线上,已知//AB DE ,//AC DF ,BE CF =,连接AD .求证:四边形ABED 是平行四边形.1912)x y x y x y,其中实数x 、y 满足3622y x x =--.20.已知:如右下图所示,四边形ABCD 是由两个全等的等边三角形ABD 和BCD 组成的,M 、N 分别为BC 、AD 的中点.求证:四边形BMDN 是矩形.21.小王与小林进行遥控赛车游戏,终点为点A ,小王的赛车从点C 出发,以4米/秒的速度由西向东行驶,同时小林的赛车从点B 出发,以3米/秒的速度由南向北行驶(如图).已知赛车之间的距离小于或等于25米时,遥控信号会产生相互干扰,40AC =米,30AB =米,(1)出发3秒钟时,遥控信号是否会产生相互干扰?(2)当两赛车距A 点的距离之和为35米时,遥控信号是否会产生相互干扰?22.如图,在ABCD 中,ABC ∠,ADC ∠的平分线分别交AD ,BC 于点E ,F .(1)求证:四边形EBFD 是平行四边形;(2)小明在完成(1)的证明后继续进行了探索,连接AF ,CE ,分别交BE ,DF 于点G ,H ,得到四边形EGFH .此时,他猜想四边形EGFH 是平行四边形,请在框图中补全他的证明思路.小明的证明思路由(1)可证,四边形EBFD 是平行四边形,所以//BE DF ,要证四边形EGFH 是平行四边形,只要证________.由(1)可证,ED BF =,则AE CF =,又由________,得四边形AFCE 是平行四边形,从而可证得四边形EGFH 是平行四边形.23.已知:如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点(1)求证:△ABM ≌△DCM(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;(3)当AD :AB=_时,四边形MENF 是正方形(只写结论,不需证明)参考答案1.B【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】=,不是最简二次根式,故A不符合题意;解:A2B是最简二次根式,故B选项符合题意;C.,不是最简二次根式,故C不符合题意;D=D不符合题意.故选:B.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.C【解析】根据平行四边形的性质即可得到结果.【详解】解:∵ ABCD,∴∠B=∠D=70°.故选C.【点睛】本题考查的是平行四边形的性质,解答本题的关键是熟练掌握平行四边形的对角相等.3.D【解析】【分析】根据题意得出在Rt△ABC中,BC,进而求出即可.【详解】解:如图所示:由题意可得,AB=5m,AC=13m,在Rt△ABC中,BC(m),答:这条缆绳在地面的固定点距离电线杆底部12m.故选D.【点睛】本题考查了勾股定理的应用,根据题意得出△ABC是直角三角形是解题的关键.4.B【解析】【详解】根据矩形与菱形的性质对各选项解析判断后利用排除法求解:A.矩形与菱形的两组对边都分别平行,故本选项错误;B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;C.矩形与菱形的对角线都互相平分,故本选项错误;D.矩形与菱形的两组对角都分别相等,故本选项错误.故选B.5.C【解析】【详解】试题分析:如图,在△ABC中,根据三角形的三边关系可得2cm<AC<8cm,又因平行四边形的对角线互相平分,即可得OA=12AC,所以OA的取值范围是1cm<OA<4cm,故答案选C.考点:三角形的三边关系;平行四边形的性质.6.B【解析】【分析】由数轴上点的位置关系可得0b a <<,然后根据绝对值的性质和二次根式的性质化简即可.【详解】解:由数轴得0b a <<,∴0a b ->,0b <,∴原式=a b b --=()()---=a b b a .故选B .【点睛】本题考查绝对值和二次根式的化简,熟练掌握绝对值的性质和二次根式的性质是关键.7.C【解析】【详解】根据菱形得出AB=BC ,得出等边三角形ABC ,求出AC ,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可:∵四边形ABCD 是菱形,∴AB=BC .∵∠B=60°,∴△ABC 是等边三角形.∴AC=AB=4.∴正方形ACEF 的周长是AC+CE+EF+AF=4×4=16.故选C .8.B【解析】【分析】根据平行四边形的判定及性质进行分析,从而可得到共有四个平行四边形,分别是:▱ABFE ,▱EFCD ,▱EBFD ,▱ABCD .【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ,AD =BC∵E ,F 分别是AB ,CD 的中点∴AE =BF =DE =FC∴四边形ABFE 是平行四边形,四边形EFCD 是平行四边形,四边形BEDF 是平行四边形∴共有4个.故选:B.【点睛】此题主要考查平行四边形的判定及性质的理解及运用,熟练掌握平行四边形的判定是解答此题的关键.9.C【解析】【分析】运用正方形边长相等,结合全等三角形和勾股定理来求解即可.【详解】解:∵a、b、c都是正方形,∴AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,∴∠BAC=∠DCE,∵∠ABC=∠CED=90°,AC=CD,∴△ACB≌△DCE,∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即Sb=Sa+Sc=11+5=16,故选C.【点睛】此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.10.A【解析】【分析】由矩形得EB=ED=EA,∠BAD为直角,再由等腰三角形的三线合一性质可判断①的正误;证明△AOF≌△ABD,便可判断②的正误;连接BF,由线段的垂直平分线得BF=DF,由前面的三角形全等得AF=AB,进而便可判断③的正误.【详解】解:①∵四边形ABCD是矩形,∴EB=ED,∵BO=DO,∴OE平分∠BOD,故①正确;②∵四边形ABCD是矩形,∴∠OAD=∠BAD=90°,∴∠ABD+∠ADB=90°,∵OB=OD,BE=DE,∴OE⊥BD,∴∠BOE+∠OBE=90°,∴∠BOE=∠BDA,∵∠BOD=45°,∠OAD=90°,∴∠ADO=45°,∴AO=AD,∴△AOF≌△ABD(ASA),∴OF=BD,故②正确;③∵△AOF≌△ABD,∴AF=AB,连接BF,如图1,∴BF2,∵BE=DE,OE⊥BD,∴DF=BF,∴DF2AF,故③正确;故选:A.【点睛】本题考查了矩形的性质,等腰三角形的性质,等腰直角三角形,全等三角形,关键是熟记这些图形的性质.11.5【解析】【分析】根据实数的性质即可求解.【详解】∵255=,m≥0∴m=5故答案为:5.【点睛】此题主要考查实数的性质,解题的关键是熟知实数的运算性质.12.8【解析】【分析】本题考查直角三角形的性质,根据直角三角形的性质直接求解.【详解】解:∵CD是Rt△ABC斜边AB上的中线,CD=4,∴AB=2CD=8.故答案为8.【点睛】本题考查直角三角形斜边中线定理,此题关键是要熟记直角三角形斜边上的中线等于斜边的一半.13.矩形【解析】【分析】由四边形ABCD为平行四边形,可得OA=OC,OB=OD,由12∠=∠,可得AC=BD,即可得出结论.【详解】解:∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,又∵12∠=∠,∴OB=OC,∴AC=BD,是矩形.∴ABCD故答案为:矩形.【点睛】本题考查矩形的判定,掌握矩形判定定理是解题关键.14.3【解析】【分析】铅直高度BC可得∠ACB=90°,由勾股定理AC=AB的坡比即可.【详解】解:∵BC⊥AC,∴∠ACB=90°,在Rt △ABC 中,∵AB =12米,BC =6米,由勾股定理==∴自动扶梯AB 的坡比3BC i AC ==.故答案为:3.【点睛】本题考查解直角三角形应用,掌握坡比概念,利用勾股定理求出AC 是解题关键.15.6【解析】【分析】连接ED 交AC 于一点F ,连接BF ,根据正方形的对称性得到此时△BFE 的周长最小,利用勾股定理求出DE 即可得到答案.【详解】解:连接ED 交AC 于一点F ,连接BF ,∵四边形ABCD 是正方形,∴点B 与点D 关于AC 对称,∴BF =DF ,∴BFE △的周长=BF +EF +BE =DE +BE ,此时周长最小,∵正方形ABCD 的边长为4,∴AD =AB =4,∠DAB =90°,∵点E 在AB 上且1BE =,∴AE =3,∴DE 5=,∴BFE △的周长=5+1=6,故答案为:6.【点睛】此题主要考查了正方形的性质,依据正方形的对称性,连接DE交AC于点F时△BFE的周长有最小值是解题的关键.16.5【解析】【分析】根据二次根式混合运算的运算顺序,先算乘除,再将二次根式化成最简二次根式,最后合并同类二次根式即可得出结果.【详解】解:4+=+32=+5=【点睛】本题考查了二次根式的混合运算,解题的关键是掌握运算法则和运算顺序.17.先根据勾股定理求得AC的长,再根据勾股定理的逆定理即可作出判断.【解析】【详解】试题分析:∵AB=1,BC=2,AB⊥BC∴∵CD=2,AD=3∴,即∴△ACD为直角三角形∴AC⊥CD考点:勾股定理,勾股定理的逆定理点评:解答本题的关键是熟练掌握勾股定理的逆定理:若一个三角形的两边长的平方和等于第三边的平方,则这个三角形的直角三角形.18.证明见解析.【解析】【详解】分析:由AB ∥DE 、AC ∥DF 利用平行线的性质可得出∠B=∠DEF 、∠ACB=∠F ,由BE=CF 可得出BC=EF ,进而可证出△ABC ≌△DEF (ASA ),根据全等三角形的性质可得出AB=DE ,再结合AB ∥DE ,即可证出四边形ABED 是平行四边形.详证明:∵AB ∥DE ,AC ∥DF ,∴∠B=∠DEF ,∠ACB=∠F .∵BE=CF ,∴BE+CE=CF+CE ,∴BC=EF .在△ABC 和△DEF 中,B DEF BC EF ACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA ),∴AB=DE .又∵AB ∥DE ,∴四边形ABED 是平行四边形.点睛:本题考查了平行线的性质、平行四边形的判定以及全等三角形的判定与性质,利用全等三角形的性质找出AB=DE 是解题的关键.19,【解析】【分析】先根据二次根式有意义的条件求出x ,y 的值,然后把所给代数式化简后代入计算.【详解】解:由题意得30620x x -⎧⎨-⎩,解得3x =,于是2y =,∴原式∴原式=.【点睛】本题考查了二次根式有意义的条件,以及二次根式的化简求值,熟练掌握二次根式的运算法则是解答本题的关键.20.证明见解析【解析】【分析】【详解】∵△ABD 和△BCD 是全等的两个正三角形.∴AD =BD =AB =BC ,∠ADB =∠DBC =60°,∴ND ∥BM ,又∵N 是AD 的中点,∴ND =12AD ,同理:BN =12BC ,∴ND =BM ,∴四边形BMDN 是平行四边形.根据三线合一可知NB ⊥AD ,∠DNB =90°,∴四边形BMDN 是矩形.考点:矩形的性质21.(1)出发三秒钟时,遥控信号不会产生相互干扰;(2)当两赛车的距离之和为35米时,遥控信号将会产生干扰.【解析】【分析】(1)根据题意求得112CC =米,19BB =米,得到128AC =米,121AB =米,根据勾股定理即可得到结论;(2)设出发t 秒钟时,遥控信号将会产生相互干扰,根据题意列方程即可得到结论.【详解】解:(1)出发3秒钟时,112CC =米,19BB =米40AC = 米,30AB =米128AC ∴=米,121AB =米1135B C ∴==(米)3525> ∴出发三秒钟时,遥控信号不会产生相互干扰(2)设出发t 秒钟时,两赛车距A 点的距离之和为35米,由题意得,404303t 35t -+-=,解得5t =此时AC 1=20,AB 1=15,此时2222211201525AC AB +=+=即两赛车间的距离是25米,所以遥控信号将会受到干扰答:当两赛车的距离之和为35米时,遥控信号将会产生干扰.【点睛】本题考查了解直角三角形的应用,熟练掌握勾股定理是解题的关键.22.(1)见解析;(2)(2)//GF EH ,//AE CF 【解析】【分析】(1)由平行四边形的性质得出AD ∥BC ,∠ABC =∠ADC .AD =BC ,由角平分线得出∠ABE =∠EBC =∠ADF =∠CDF .证出EB ∥DF ,即可得出结论;(2)由平行四边形的性质得出BE ∥DF ,DE =BF ,得出AE =CF ,证出四边形AFCE 是平行四边形,得出GF∥EH,即可证出四边形EGFH是平行四边形.【详解】(1)证明:在▱ABCD中,AD∥BC,∠ABC=∠ADC.AD=BC,∵BE平分∠ABC,∴∠ABE=∠EBC=12∠ABC.∵DF平分∠ADC,∴∠ADF=∠CDF=12∠ADC.∵∠ABC=∠ADC.∴∠ABE=∠EBC=∠ADF=∠CDF.∵AD∥BC,∴∠AEB=∠EBC.∴∠AEB=∠ADF.∴EB∥DF.∵ED∥BF,∴四边形EBFD是平行四边形.(2)解:补全思路:GF∥EH,AE∥CF;理由如下:∵四边形EBFD是平行四边形;∴BE∥DF,DE=BF,∴AE=CF,又∵AE∥CF,∴四边形AFCE是平行四边形,∴GF∥EH,∴四边形EGFH是平行四边形.【点睛】此题主要考查了平行四边形的性质与判定;熟练掌握平行四边形的性质,证明EB∥DF和四边形AFCE是平行四边形,是解决问题的关键.23.(1)证明见解析;(2)证明见解析;(3)2:1.【解析】【分析】(1)求出AB=DC,∠A=∠D=90°,AM=DM,根据全等三角形的判定定理推出即可.(2)根据三角形中位线定理求出NE∥MF,NE=MF,得出平行四边形,求出BM=CM,推出ME=MF,根据菱形的判定推出即可.【详解】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC.又∵MA=MD,∴△ABM≌△DCM(SAS).(2)四边形MENF是菱形.证明如下:∵N、E、F分别是BC、BM、CM的中点,∴NE∥CM,NE=12CM,MF=12CM.∴NE=FM,NE∥FM.∴四边形MENF是平行四边形.∵△ABM≌△DCM,∴BM=CM.∵E、F分别是BM、CM的中点,∴ME=MF.∴平行四边形MENF是菱形.(3)当AD:AB=2:1时,四边形MENF是正方形,理由如下:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90°,∴∠ABM=∠AMB=45°.同理∠DMC=45°.∴∠EMF=180°-45°-45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.。
新人教版度八年级下学期期中测试二次根式勾股定理平行四边形经典
2013-2014学年度八年级下学期期中考试数学试题考试时间:120分钟试卷满分:100分(试题范围:二次根式、勾股定理、平行四边形)一、选择题(共8题,每小题3分,共24分)下面每小题给出的四个选项中, 有且只有一个是正确的, 请把正确选项前的代号填在答卷指定位置.1、 计算()24-- 38 的结果是( ).A.2 B.±2 C.-2或0 D.0. 2、如图,把矩形ABCD 沿EF 对折后使两部分重合, 若150∠=,则AEF ∠=( )A .110°B .115°C .120°D .130°3、已知Rt △ABC 中,∠C=90°,若a+b=14cm,c=10cm , 则Rt △ABC 的面积是( )A.24cm 2B.36cm 2C.48cm 2D.60cm 2 4、下列各式不是最简二次根式的是( ) A.21a + B. 21x + C.24bD.0.1y5、已知:如图,菱形ABCD 中,对角线AC 与BD 相交于点O,OE ∥DC 交BC 于点E,AD=6cm, 则OE 的长为( ). A.6 cm B.4 cm C.3 cm D.2 cm6、给出下列几组数:①6,7,8;②8,15,6;③n 2-1 ,2n ,n 2+1; ④21+,21-,6 .其中能组成直角三角形三条边长的是( ) A .①③ B .②④ C .①② D .③④7、 如图,正方形ABCD 中,以对角线AC 为一边作 菱形AEFC ,则∠FAB 等于( )A .22.5°B .45°C .30°D .135°8、如图,数轴上的点A 所表示的数为x ,则x 2—10的立方根为()第2题CA B1A-1-21A .2-10B .-2-10C .2D .-2 二、填空题(共6小题,每小题3分,共18分) 下列不需要写出解答过程,请将结果直接填写在答卷指定的位置.9、(-4)2的算术平方根是______,25的平方根是______.10、ABCD 中一条对角线分∠A 为35°和45°,则∠B= __ 度。
人教版数学八年级下学期《期中考试卷》(附答案解析)
2020-2021学年度第二学期期中测试人教版八年级数学试题 一、选择题1.x 的取值范围是( )A. x >2B. x≥2C. x<2D. x≤22.一次函数y=x+3的图像与y 轴的交点坐标是( )A. (0,3)B. (0,-3)C. (3,0)D. (-3,0)3.下列计算正确的是( )A×× 4.一架5m 的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m ,若梯子的顶端下滑1m ,则梯足将滑动() A. 0m B. 1m C. 2m D. 3m5.下列各组数中,是勾股数一组是( )A. 7,8,9B. 8,15,17C. 1,1,2D. 2,3,4 6.矩形的对角线一定具有的性质是( )A. 互相垂直B. 互相垂直且相等C. 互相垂直且平分D. 相等且平分7.在菱形ABCD 中,AB=4,∠ABC=60°,则菱形的面积为( )A. 16B.C.D. 88.若菱形的周长为16,高为2,则菱形两个邻角的比为( )A. 6:1B. 5:1C. 4:1D. 3:19.下列说法错误的是( )A. 对角线互相垂直平行四边形是正方形B. 对角线互相垂直平分的四边形是菱形C. 对角线相等的平行四边形是矩形D. 对角线互相平分的四边形是平行四边形 10.将直线y=x-2向上平移3个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是()A. 经过第一、二、四象限B. 与x轴交于(1,0)C. 与y轴交于(0,1)D. y随x的增大而减小11. 一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,假设每分的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图.则每分钟的进水量与出水量分别是()A. 5、2.5B. 20、10C. 5、3.75D. 5、1.2512.如图,四边形ABCD是菱形,42BD=,26AD=,点E是CD边上的一动点,过点E作EF OC⊥于点F,EG OD⊥于点G,连接FG,则FG的最小值为( )A. 52B.125C. 433D. 6二、填空题13.计算:()223-=_____________________ .14.函数y=-2x+3的图像不经过第_________象限.15.如图,四边形ABCD是正方形,AE⊥BE于点E,且AE=3,BE=4,则阴影部分的面积是_____.16.一次函数y 1=kx +b 与y 2=x +a 的图象如图所示,若y 1<y 2,则x 的取值范围是______.17.如图,在矩形ABCD 中,BC=4,CD=3,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的点F 处,则DE 的长是________.三、解答题18.计算:(1)()21483-1224--22÷⨯+ (2)()()()2131-3-23-1+19.先化简,再求值:1111a a a a ⎛⎫⎛⎫+÷- ⎪ ⎪--⎝⎭⎝⎭,其中22a =+. 20.已知:如图,四边形ABCD 是平行四边形,CE ∥BD 交AD 的延长线于点E ,CE=AC .(1)求证:四边形ABCD 矩形;(2)若AB=4,AD=3,求四边形BCED 的周长.21.如图,已知 ABED ,延长AD 到C 使AD=DC ,连接BC ,CE ,BC 交DE 于点F ,若AB=BC . (1)求证:四边形BECD 是矩形;(2)连接AE ,若∠BAC=60°,AB=4,求AE 的长.22.在平面直角坐标系xOy 中,直线()0y kx b k =+≠过点B(0,1),且与直线23y x =相交于点A (-3,m ). (1)求直线(0)y kx b k =+≠的解析式; (2)若直线(0)y kx b k =+≠与x 轴交于点C ,点P 在x 轴上,且S △APC =3,求点P 的坐标.23.某商店决定购进A 、B 两种纪念品.若购进A 种纪念品10件,B 种纪念品5件,需要1000元;若购进A 种纪念品5件,B 种纪念品3件,需要550元.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A 种纪念品的数量不少于B 种纪念品数量的6倍,且不超过B 种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在(2)的各种进货方案中,哪一种方案获利最大?最大利润是多少元?答案与解析一、选择题1.x 的取值范围是( )A. x >2B. x≥2C. x<2D. x≤2【答案】D【解析】【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【详解】解:由题意得,20x -≥,解得,2x ≤,故选:D .【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键. 2.一次函数y=x+3的图像与y 轴的交点坐标是( )A. (0,3)B. (0,-3)C. (3,0)D. (-3,0) 【答案】A【解析】【分析】令0x =,求出y 的值即可.【详解】解:∵令0x =,则3y =,∴一次函数3y x =-+的图象与y 轴的交点坐标为(0,3).故选:A .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知y 轴上点的坐标特点是解答此题的关键. 3.下列计算正确的是( )A. B. × C. × D. 【答案】D【解析】【分析】根据二次根式乘法法则将四个选项分别计算,再判断.【详解】×,故错误.=,故错误.=,故错误.×=,正确.故选D.【点睛】考查二次根式的乘法,熟练掌握二次根式的乘法法则是解题的关键.4.一架5m的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m,若梯子的顶端下滑1m,则梯足将滑动()A. 0mB. 1mC. 2mD. 3m【答案】B【解析】【分析】在Rt△ACB中,运用勾股定理,求出AC的长;根据题意,在Rt△A'CB'中,再利用勾股定理,求出B'C的长,从而求出BB'即为所求【详解】在Rt△ACB中,∠C=90°,AB=5 m,BC=3 m.由勾股定理,得AB2=AC2+BC2.∴AC2=AB2-BC2=52-32=42.∴AC=4.在Rt△A'CB'中,∠C=90°,A'C=AC-AA'=4-1=3,A'B'=5.由勾股定理,得A'B'2=A'C2+B'C2.∴B'C2=A'B'2-A'C2=52-32=42. ∴B'C=4.∴BB'=B'C-BC=4-3=1(m). 故选B. 【点睛】本题考查了勾股定理的实际应用,将实际问题转化为勾股定理问题是解题的关键. 5.下列各组数中,是勾股数的一组是()A. 7,8,9 B. 8,15,17 C. 1,1,2 D. 2,3,4 【答案】B【解析】【分析】满足a 2+b 2=c 2的三个正整数,称为勾股数,由此求解即可.【详解】解:A 、∵72+82≠92,∴此选项不符合题意;B 、∵82+152=172,∴此选项符合题意;C 、∵12+12≠22,∴此选项不符合题意;D 、∵22+32≠42,∴此选项不符合题意.故选B .【点睛】考查了勾股数,说明:①三个数必须是正整数,例如:2.5、6、6.5满足a 2+b 2=c 2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;….6.矩形的对角线一定具有的性质是( )A. 互相垂直B. 互相垂直且相等C. 互相垂直且平分D. 相等且平分【答案】D【解析】【分析】根据矩形的性质即可判断; 【详解】解:因为矩形的对角线相等且互相平分,所以选项D 正确,故选:D .【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质,属于中考基础题.7.在菱形ABCD 中,AB=4,∠ABC=60°,则菱形的面积为( ) A. 16B.C. D. 8【答案】C【解析】【分析】 画出菱形ABCD ,连接AC ,交BD 于点O ,先判断出△ABC 是等边三角形,再根据菱形的对角线互相垂直平分和等边三角形的性质求出AO 、BO ,然后根据菱形的对角线互相平分求出BD,再利用菱形的面积公式进行求解即可.【详解】解:如图,在菱形ABCD 中,连接AC 、BD 交于点O ,∵菱形ABCD 中,∠ABC=60°,AB=4,AB=BC∴△ABC 是等边三角形,AB=BC=AC=4∴AO=1422⨯=, ∴BO=23,∴BD=2BO=2×23=43,∴ABCD 11S AC BD 4438322=⨯=⨯⨯=菱形故选:C【点睛】本题考查了菱形的性质,菱形的面积公式,等边三角形的判定与性质,熟记菱形的对角线互相垂直平分是解题的关键.8.若菱形的周长为16,高为2,则菱形两个邻角的比为( )A. 6:1B. 5:1C. 4:1D. 3:1【答案】B【解析】【分析】由锐角函数可求∠B 的度数,可求∠DAB 的度数,即可求解.【详解】如图,∵四边形ABCD 是菱形,菱形的周长为16,∴AB=BC=CD=DA=4,∵AE=2,AE ⊥BC ,∴sin∠B=12 BEAB=∴∠B=30°∵四边形ABCD是菱形,∴AD∥BC,∴∠DAB+∠B=180°,∴∠DAB=150°,∴菱形两邻角的度数比为150°:30°=5:1,故选:B.【点睛】本题考查了菱形的性质,锐角三角函数,能求出∠B的度数是解决问题的关键.9.下列说法错误的是()A. 对角线互相垂直的平行四边形是正方形B. 对角线互相垂直平分的四边形是菱形C. 对角线相等的平行四边形是矩形D. 对角线互相平分的四边形是平行四边形【答案】A【解析】【分析】根据菱形、矩形、平行四边形、正方形的判定定理判断即可.【详解】解:对角线互相垂直的平行四边形是菱形,A错误;对角线互相垂直平分的四边形是菱形,B正确;对角线相等的平行四边形是矩形,C正确;对角线互相平分的四边形是平行四边形,D正确.故选:A.【点睛】本题重点考察了菱形、矩形、平行四边形、正方形的判定方法,熟练掌握这些判定定理是解题的关键.10.将直线y=x-2向上平移3个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A. 经过第一、二、四象限B. 与x轴交于(1,0)C. 与y轴交于(0,1)D. y随x的增大而减小【答案】C【解析】【分析】利用一次函数图像的平移规律,左加右减,上加下减,得出即可.【详解】解:将直线2y x =-向上平移3个单位长度后得到直线231y x x =-+=+,A 、直线1y x =+经过第一、二、三象限,错误;B 、直线1y x =+与x 轴交于(1,0)-,错误;C 、直线1y x =+与y 轴交于(0,1),正确;D 、直线1y x =+,y 随x 的增大而增大,错误;故选:C .【点睛】此题主要考查了一次函数图像与几何变换,正确把握变换规律是解题关键.11. 一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,假设每分的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图.则每分钟的进水量与出水量分别是( )A. 5、2.5B. 20、10C. 5、3.75D. 5、1.25【答案】C【解析】 试题分析:∵t=4时,y=20,∴每分钟的进水量=204=5(升); ∴4到12分钟,8分钟的进水量=8×5=40(升), 而容器内的水量只多了30升-20升=10升,∴8分钟的出水量=40升-10升=30升,∴每分钟的进水量=308=3.75(升). 故选C .考点:一次函数的应用.12.如图,四边形ABCD 是菱形,42BD =,26AD =,点E 是CD 边上的一动点,过点E 作EF OC ⊥于点F ,EG OD ⊥于点G ,连接FG ,则FG 的最小值为( )A. 52B. 125C. 433D. 6【答案】C【解析】【分析】连接OE ,根据题意得出四边形OFEG 为矩形,故FG=OE ,作OE’⊥CD ,即为最短,再根据勾股定理即可求解. 【详解】连接OE ,∵EF OC ⊥,EG OD ⊥∴四边形OFEG 为矩形,∴FG=OE ,作OE’⊥CD ,此时OE 即为最短, ∵42BD =,∴2,∵26AD =CD=26AD =∴22CD OD -∴OE’=1212OD OC CD ⨯=122421262⨯⨯433 故选C.【点睛】此题主要考查最短距离,解题的关键是熟知矩形的判定与性质.二、填空题13. 计算:(223-= _____________________ . 【答案】12【解析】【分析】 a b ab =【详解】解:(((22323312-=-⨯-= 故答案为:12.【点睛】本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式的乘法法则.14.函数y =-2x+3的图像不经过第_________象限.【答案】三【解析】【分析】由于20k =-<,30=>b ,根据一次函数图像与系数的关系得到一次函数23y x =-+的图像经过第二、四象限,与y 轴的交点在x 轴上方,即还要过第一象限.【详解】解:∵20k =-<,∴一次函数23y x =-+的图像经过第二、四象限,∵30=>b ,∴一次函数23y x =-+的图像与y 轴的交点在x 轴上方,∴一次函数23y x =-+的图像经过第一、二、四象限,即一次函数23y x =-+的图像不经过第三象限.故答案为:三.【点睛】本题考查了一次函数图像与系数的关系:一次函数y kx b =+(k 、b 为常数,0k ≠)的图像是一条直线,当0k >,图像经过第一、三象限,y 随x 的增大而增大;当k 0<,图像经过第二、四象限,y 随x 的增大而减小;图像与y 轴的交点坐标为(0,)b .15.如图,四边形ABCD 是正方形,AE ⊥BE 于点E ,且AE =3,BE =4,则阴影部分的面积是_____.【答案】19【解析】【分析】由题意可得△ABE 是直角三角形,根据勾股定理求出其斜边长度,即正方形边长,再根据割补法求阴影面积即可.【详解】∵AE⊥BE,∴△ABE 是直角三角形,∵AE=3,BE =4, ∴AB=22AE BE =2234+=5,∴阴影部分的面积=S 正方形ABCD ﹣S△ABE=52﹣12×3×4=25﹣6=19. 故答案为:19.【点睛】本题考查了勾股定理的简单应用,以及割补法求阴影面积,熟练掌握和运用勾股定理是解答关键. 16.一次函数y 1=kx +b 与y 2=x +a 的图象如图所示,若y 1<y 2,则x 的取值范围是______.【答案】3x >【解析】【分析】利用函数图象,写出直线1y 在直线2y 下方所对应的自变量的范围即可.【详解】解:结合图象,当3x >时,12y y <,故答案为:3x >.【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.17.如图,在矩形ABCD 中,BC=4,CD=3,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的点F 处,则DE 的长是________.【答案】52【解析】【分析】由ABCD 为矩形,得到BAD ∠为直角,且三角形BEF 与三角形BAE 全等,利用全等三角形对应角、对应边相等得到EF BD ⊥,AE EF =,AB BF =,利用勾股定理求出BD 的长,由BD BF -求出DF 的长,在Rt EDF ∆中,设EF x =,表示出ED ,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,即可确定出DE 的长.【详解】解:∵矩形ABCD ,∴90BAD ︒∠=,由折叠可得BEF BAE ∆≅∆,∴EF BD ⊥,AE EF =,AB BF =,在Rt ABD ∆中,3AB CD ==,4BC AD ==,根据勾股定理得:5BD =,即532FD =-=,设EF AE x ==,则有4ED x =-,根据勾股定理得:2222(4)x x +=-, 解得:32x =,则35422DE =-=.故答案:52. 【点睛】此题考查了翻折变换,矩形的性质,以及勾股定理,熟练掌握定理及性质是解本题的关键.三、解答题18.计算:(1()2-2(2)(()21-+【答案】(1;(2)15-+【解析】【分析】(1)二次根式及实数的混合运算,注意先做乘方,然后利用二次根式的乘除法运算法则计算乘除,最后做加减得出答案;(2)先分别利用平方差公式和完全平方公式进行计算并化简二次根式,然后去括号进行实数的加减混合运算计算得出答案.【详解】解:(1)原式4=44=+=(2)原式222211]=---13(121)=---213=--+15=-+.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.先化简,再求值:1111a a a a ⎛⎫⎛⎫+÷- ⎪ ⎪--⎝⎭⎝⎭,其中2a =.【答案】12a -【解析】【分析】先根据分式的运算法则进行化简,再代入求值.【详解】解:原式=()11111---+÷--a a a a a a =()211-÷--a a a a a =()112-⨯--a a a a a =12a - 当22a =+时, 原式=122=2222=-+-a 【点睛】本题考查了分式化简求值,解题关键是能将分式进行化简.20.已知:如图,四边形ABCD 是平行四边形,CE ∥BD 交AD 的延长线于点E ,CE=AC .(1)求证:四边形ABCD 是矩形;(2)若AB=4,AD=3,求四边形BCED 的周长.【答案】(1)详见解析;(2)16.【解析】【分析】(1)根据已知条件推知四边形BCED 是平行四边形,则对边相等:CE=BD ,依据等量代换得到对角线AC=BD ,则平行四边形ABCD 是矩形;(2)通过勾股定理求得BD 的长度,再利用四边形BCED 是平行四边形列式计算即可得解.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AE∥BC.∵CE∥BD,∴四边形BCED是平行四边形.∴CE=BD.∵CE=AC,∴AC=BD.∴□ABCD是矩形.(2)解:∵□ABCD是矩形,AB=4,AD=3,∴∠DAB=90°,BC=AD=3,∴2222BD AB AD=+=+=.435∵四边形BCED是平行四边形,∴四边形BCED的周长为2(BC+BD)=2×(3+5)=16.故答案为(1)详见解析;(2)16.【点睛】本题考查矩形的判定,平行四边形的判定与性质,勾股定理,熟记性质是解题的关键.21.如图,已知 ABED,延长AD到C使AD=DC,连接BC,CE,BC交DE于点F,若AB=BC.(1)求证:四边形BECD是矩形;(2)连接AE,若∠BAC=60°,AB=4,求AE的长.【答案】(1)见解析;(2) 7【解析】【分析】(1)根据平行四边形的性质得到AD=BE,由此推出四边形BECD是平行四边形,由AB=BC根据等腰三角形的性质得到BD⊥AC,即可推出结论;(2)根据AB=BC,∠BAC=60°,推出△ABC是等边三角形,得到AC=AB=4,利用四边形BECD是矩形,求出∠ADB=∠DCE=90°,利用三角函数求出CE=BD=3sin 604232AB ⋅=⨯=,再利用勾股定理求出AE.【详解】(1)∵四边形ABED 是平行四边形,∴AD=BE ,AC ∥BE ,∵AD=DC ,∴BE=DC ,∴四边形BECD 是平行四边形,∵AB=BC , ∴BD ⊥AC ,∴∠BDC=90°,∴四边形BECD 是矩形;(2)∵AB=BC ,∠BAC=60°,∴△ABC 是等边三角形,∴AC=AB=4,∵四边形BECD 是矩形,∴∠ADB=∠DCE=90°,∴CE=BD=3sin 60423AB ⋅=⨯=, ∴AE=22224(23)27AC CE +=+=.【点睛】此题考查平行四边形的性质,等边三角形的判定及性质,矩形的判定及性质,勾股定理及解直角三角形.(1)中理解有一个角是90°的平行四边形是矩形是解题关键;(2)中能根据∠ACE=90°想到借助勾股定理是解题关键.22.在平面直角坐标系xOy 中,直线()0y kx b k =+≠过点B(0,1),且与直线23y x =相交于点A (-3,m ). (1)求直线(0)y kx b k =+≠解析式;(2)若直线(0)y kx b k =+≠与x 轴交于点C ,点P 在x 轴上,且S △APC =3,求点P 的坐标.【答案】(1)1y x =+;(2)(4,0)-或(2,0).【解析】【分析】(1)先根据直线23y x =过点(3,)A m -求出点A 坐标,再根据直线(0)y kx b k =+≠过点(3,2)A --和点(0,1)B ,利用待定系数法即可得到直线(0)y kx b k =+≠的解析式;(2)依据3APC S ∆=,即可得到3CP =,依据(1,0)C -,即可得到(4,0)P -或(2,0)P .【详解】解:(1)直线23y x =过点(3,)A m -, ∴2(3)23m =⨯-=-,(3,2)A ∴--,直线(0)y kx b k =+≠过点(3,2)A --和点(0,1)B ,∴321k b b -+=-⎧⎨=⎩, 解得:11=⎧⎨=⎩k b , 1y x ∴=+;(2)把y =0代入1y x =+,得x =-1;∴点C 坐标为(1,0)-,3APC S ∆=, ∴1232CP ⨯⨯=,3CP ∴=,又(1,0)C -,(4,0)P ∴-或(2,0)P .【点睛】本题考查了运用待定系数法求一次函数的解析式,以及三角形面积的计算.求一次函数解析式,需要知道两个条件;本题注意3CP =,由C 点坐标求P 坐标注意分类讨论.23.某商店决定购进A 、B 两种纪念品.若购进A 种纪念品10件,B 种纪念品5件,需要1000元;若购进A 种纪念品5件,B 种纪念品3件,需要550元.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A 种纪念品的数量不少于B 种纪念品数量的6倍,且不超过B 种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在(2)的各种进货方案中,哪一种方案获利最大?最大利润是多少元?【答案】(1)购进一件A 种纪念品需要50元,购进一件B 种纪念品需要100元(2)共有6种进货方案(3)当购进A 种纪念品160件,B 种纪念品20件时,可获最大利润,最大利润是3800元【解析】【分析】(1)设我校购进一件A 种纪念品需要a 元,购进一件B 种纪念品需要b 元,根据条件建立二元一次方程组求出其解即可;(2)设我校购进A 种纪念品x 个,购进B 种纪念品y 个,根据条件的数量关系建立不等式组求出其解即可; (3)设总利润为W 元,根据总利润=两种商品的利润之和建立解析式,由解析式的性质就可以求出结论.【详解】(1)设我校购进一件A 种纪念品需要a 元,购进一件B 种纪念品需要b 元,由题意,得 1051000{53550a b a b +=+=, ∴解方程组得:精品试卷 50{100a b == 答:购进一件A 种纪念品需要50元,购进一件B 种纪念品需要100元.(2)设我校购进A 种纪念品x 个,购进B 种纪念品y 个,由题意,得则 5010010000?{68?x y y x y +=≤≤, 解得 2002{620028x y y y y=-≤-≤, 解得:20≤y≤25∵y 为正整数∴y=20,21,22,23,24,25答:共有6种进货方案;(3)设总利润为W 元,由题意,得W=20x+30y=20(200-2 y )+30y ,=-10y+4000(20≤y≤25)∵-10<0,∴W 随y 的增大而减小,∴当y=20时,W 有最大值W 最大=-10×20+4000=3800(元)答:当购进A 种纪念品160件,B 种纪念品20件时,可获最大利润,最大利润是3800元. 考点:1.一次函数的应用;2.二元一次方程组的应用;3.一元一次不等式组的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-2014人教版八年级下期中考试数学试题满分120分,考试时间120分钟一、选择题(每小题2分,共12分)1.下列式子中,属于最简二次根式的是( ) A. 9 B. 7 C. 20 D. 312. 如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上,连接BM 、DN.若四边形MBND 是菱形,则MD AM 等于( ) A.83 B.32 C.53 D.543.若代数式1-x x 有意义,则实数x 的取值范围是( ) A. x ≠ 1B. x ≥0C. x >0D. x ≥0且x ≠14.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是 ( )A.12B. 24C. 312D. 3165.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5 º,EF ⊥AB ,垂足为F ,则EF 的长为( )A .1B . 2C .4-2 2D .32-46.在平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )A.1:2:3:4B.1:2:2:1C.1:2:1:2D.1:1:2:2二、填空题:(每小题3分,共24分)7.计算:()()03132-+-= .8.若x 31-在实数范围内有意义,则x 的取值范围是 .9.若实数a 、b 满足042=-++b a ,则ba = . 10.如图,□ABCD 与□DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数书为 .11.如图,在直角坐标系中,已知点A (﹣3,0)、B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为 .12.如图,ABCD 是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCD 成为菱形.(只需添加一个即可)N M D B CA 2题图4题图 5题图 10题图13 .如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF.若菱形ABCD 的边长为2cm ,∠A=120°,则EF= .14.如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直角三角形时,BE 的长为_________.三、解答题(每小题5分,共20分)15.计算:1021128-⎪⎭⎫ ⎝⎛+--+π16.如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.17.先化简,后计算:11()b a b b a a b ++++,其中512a +=,512b -=.18. 如图,在平行四边形ABCD 中,对角线AC,BD 交于点O,经过点O 的直线交AB 于E ,交CD 于F. E C D B A B ′OF E D CB A11题图 12题图 13题图 14题图16题图求证:OE=OF.四、解答题(每小题7分,共28分) 19.在矩形ABCD 中,将点A 翻折到对角线BD 上的点M 处,折痕BE 交AD 于点E .将点C 翻折到对角线BD 上的点N 处,折痕DF 交BC 于点F .(1)求证:四边形BFDE 为平行四边形;(2)若四边形BFDE 为菱形,且AB =2,求BC 的长.20.如图,在四边形ABCD 中,AB =BC ,对角线BD 平分 ∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂 足分别为M 、N 。
(1) 求证:∠ADB =∠CDB ;(2) 若∠ADC =90︒,求证:四边形MPND 是正方形。
21.如图,在□ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE=21BC ,连结DE ,CF 。
(1)求证:四边形CEDF 是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE 的长。
22.如图,四边形ABCD 是平行四边形,DE 平分∠ADC 交AB 于点E ,BF 平分∠ABC ,交CD 于点F . O F E D CB A AB C D N M P 18题图19题图 20题图 21题图(1)求证:DE=BF ;(2)连接EF ,写出图中所有的全等三角形.(不要求证明)五、解答题(每小题8分,共16分)23.如图,在△ABC 中,∠ACB=90°,∠B >∠A ,点D 为边AB 的中点,DE ∥BC 交AC 于点E ,CF ∥AB 交DE 的延长线于点F .(1)求证:DE=EF ;(2)连结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:∠B=∠A+∠DGC .24. 2013如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE =CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE =BF ,∠BEF =2∠BAC 。
(1)求证;OE =OF ;(2)若BC =32,求AB 的长。
六解答题:(每小题10分,共20分)25.如图1,在△OAB 中,∠OAB=90°,∠AOB=30°,OB=8.以OB 为边,在△OAB 外作等边△OBC ,D 是OB 的中点,连接AD 并延长交OC 于E .A B C D E F O F E D C B A22题图 23题图24题图(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.25题图26.如图,在等边三角形ABC中,BC=6cm. 射线AG//BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为_________s时,四边形ACFE是菱形;②当t为_________s时,以A、F、C、E为顶点的四边形是直角梯形.26题图参考答案1.B ;2.C ;3.D ;4.D ;5.C ;6.C ;7.-7;8. x ≤31;9. 21-;10.25°;11. (8052,0);12. OA=OC 或AD=BC 或AD ∥BC 或AB=BC ;13.3;14. 23或3; 15. 22-;16. 解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O ,∴AC ⊥BD ,DO=BO ,∵AB=5,AO=4,∴BO==3, ∴BD=2BO=2×3=6.17. :原式22()ab a ab b ab a b +++=+2()()a b a b ab a b ab++==+ 当512a +=,512b -=时,原式的值为5。
18. 证明:∵四边形ABCD 是平行四边形,∴OA=OC,AB ∥CD∴∠OAE=∠OCF∵∠AOE=∠COF∴△OAE ≌△OCF (ASA )∴OE=OF19. (1)证明:∵四边形ABCD 是矩形,∴∠A=∠C=90°,AB=CD ,AB ∥CD ,∴∠ABD=∠CDB ,∵在矩形ABCD 中,将点A 翻折到对角线BD 上的点M 处,折痕BE 交AD 于点E .将点C 翻折到对角线BD 上的点N 处,∴∠ABE=∠EBD=∠ABD ,∠CDF=∠CDB ,∴∠ABE=∠CDF ,在△ABE 和△CDF 中∴△ABE ≌△CDF (ASA ),∴AE=CF ,∵四边形ABCD 是矩形,∴AD=BC ,AD ∥BC ,∴DE=BF ,DE ∥BF ,∴四边形BFDE 为平行四边形;(2)解:∵四边形BFDE为为菱形,∴BE=ED,∠EBD=∠FBD=∠ABE,∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE==,BE=2AE=,∴BC=AD=AE+ED=AE+BE=+=2.20. (1) ∵BD平分∠ABC,∴∠ABD=∠CBD。
又∵BA=BC,BD=BD,∴△ABD≅△CBD。
∴∠ADB=∠CDB。
(4分)(2) ∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90︒。
又∵∠AD C=90︒,∴四边形MPND是矩形。
∵∠ADB=∠CDB,PM⊥AD,PN⊥CD,∴PM=PN。
∴四边形MPND是正方形。
21.(1)略(2)1322. 证明:(1)∵四边形ABCD 是平行四边形,∴DC∥AB,∴∠CDE=∠AED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠ADE=∠AED,∴AE=AD,同理CF=CB,又AD=CB,AB=CD,∴AE=CF,∴DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,(2)△ADE≌△CBF,△DFE≌△BEF.23.解答:证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=BC,∴EF=DF﹣DE=BC﹣CB=CB,FED CBA∴DE=EF ;(2)∵四边形DBCF 为平行四边形,∴DB ∥CF ,∴∠ADG=∠G ,∵∠ACB=90°,D 为边AB 的中点,∴CD=DB=AD ,∴∠B=∠DCB ,∠A=∠DCA ,∵DG ⊥DC ,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B ,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B .24. (1)证明:∵四边形ABCD 是矩形 ∴AB ∥CD ,∠OAE =∠OCF ,∠OEA =∠OFC∵AE =CF ∴△AEO ≌△CFO (ASA ) ∴OE =OF(2)连接BO ∵OE =OF ,BE =BF ∴BO ⊥EF 且∠EBO =∠FBO ∴∠BOF =900∵四边形ABCD 是矩形 ∴∠BCF =900 又∵∠BEF =2∠BAC ,∠BEF =∠BAC +∠EOA ∴∠BAC =∠EOA ∴AE =OE ∵AE =CF ,OE =OF ∴OF =CF 又∵BF =BF ∴△BOF ≌△BCF (HL ) ∴∠OBF =∠CBF ∴∠CBF =∠FBO =∠OBE∵∠ABC =900 ∴∠OBE =300 ∴∠BEO =600 ∴∠BAC =300∴AC=2BC=34,∴AB=61248=-25.(1)证明:∵Rt △OAB 中,D 为OB 的中点,∴DO=DA ,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,AO=34,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.26.(1)证明:∵AG BC∥∴EAD ACB∠=∠∵D是AC边的中点∴AD CD=又∵ADE CDF∠=∠∴△ADE≌△CDF(2)①∵当四边形ACFE是菱形时,∴AE AC CF EF===由题意可知:,26AE t CF t==-,∴6t=②若四边形ACFE 是直角梯形,此时EF AG ⊥过C 作CM AG ⊥于M ,3AG =,可以得到AE CF AM -=,即(26)3t t --=,∴3t =,此时,C F 与重合,不符合题意,舍去。