反激变压器设计实例

合集下载

反激变压器计算实例

反激变压器计算实例

技术要求:输入电压Vin:90-253Vac输出电压Vo:27.6V输出电流Io:6A输出功率Po:166W效率η:0.85输入功率Pin:195W一、输入滤波电容计算过程:上图为整流后滤波电容上电压波形,在最低输入电压下,如果我们想在滤波电容上得到的电压Vdc为115V,则从上图可以得到:Vpk=90*1.414=127VVmin=Vdc-(Vpk-Vdc)=103V将电源模块等效为一个电阻负载的话,相当于在T3时间内电容对恒定功率负载进行放电,电容电压降低(Vpk-Vmin)V。

Idc*T3=C*△V其中:△V=Vpk-Vmin=127-103=24V关键部分在T3的计算,T3=t1+t2,t1为半个波头,时间比较好算,对于50Hz的交流来说,t1=5mS,然后就是计算t2,其实t2也很好计算,我们知道交流输入电压的公式为Vx=Vpksinθx,根据已知条件,Vx=103V,Vpk=127V,可以得到θx=54度,所以t2=54*10ms/180=3mS,T3=t1+t2=8mS。

C=1.7*8/24=0.57mF=570uF二、变压器的设计过程变压器的设计分别按照DCM、CCM、QR两种方式进行计算,其实QR也是DCM的一种,不同的地方在于QR的工作频率是随着输入电压输出功率的变化而变化的。

对于变压器磁芯的选择,比较常用的方法就是AP法,但经过多次具体设计及根据公司常用型号结合,一般可以直接选择磁芯,象这个功率等级的反激,选择PQ3535的磁芯即可。

磁芯的参数如下:AE=190mm2,AL=4300nH,Bmax≥0.32T1)DCM变压器设计过程:开关频率选择80K,最大占空比选择0.48,全范围DCM,则在最低输入电压Vdc下,占空比最大,电路工作在BCM状态,根据伏秒平衡,可以得到以下公式,Vdc*Dmax=Vor*(1-Dmax),从而计算反射电压为Vor=95V匝比 n=Vor/(Vo+Vf)=3.32 Vf 为整流二极管压降计算初级匝数计算副边匝数 Ns=Np/n=6.32,选择7匝,则原边匝数调整为 Np=3.32*7=23匝计算辅助绕组匝数,输出电压变化范围按照20-27.6V 设计,要求在20V 输出下辅助绕组能正常供电,所以,辅助绕组选择4匝。

反激变压器设计实例

反激变压器设计实例

I2 SRMS
− IO2
= 1.3( A)
副边交流电损耗: Pac2 = I ac22 * Rac2 = 0.073(W )
副边绕组线圈总损耗: P2 = Pdc2 + Pac2 = 0.113(W )
总的线圈损耗: Pw = P1 + P2 = 0.153(W ) 2)磁芯损耗:
峰值磁通密度摆幅: ∆B = BMAX K RP = 0.1(T ) 2
原边交流电流分量有效值: Iac1 =
I2 RMS
− I AVG 2
= 0.107( A)
原边交流电损耗: Pac1 = I ac12 * Rac1 = 0.0229(W )
原边绕组线圈总损耗: P1 = Pdc1 + Pac1 = 0.04(W )
副边直流电阻: Rdc2 = ρ * l = 0.04(Ω) A
7
5
原边导线厚度与集肤深度的比值: Q = 0.83d d / s = 0.5678 ∆
d为原边漆包线直径0.23mm,s为导线中心距0.27mm, ∆ 为集肤深度0.31mm。 原边交流电阻与直流电阻比:由于原边采用包绕法,故原边绕组层数可按两层考虑,根据上
式所求的Q值,查得 Fr = Rac1/ Rdc1 ≈ 1 。 原边交流电阻: Rac1 = Rdc1× Fr = 1.993(Ω)
选择磁芯材料为铁氧体,PC40。
4、选择磁芯的形状和尺寸:
在这里用面积乘积公式粗选变压器的磁芯形状和尺寸。具体公式如下:
反激变压器工作在第一象限,最高磁密应留有余度,故选取BMAX=0.3T,反激变压器的系数 K1=0.0085(K1是反激变压器在自然冷却的情况下,电流密度取420A/cm2时的经验值。)

反激式开关变压器的通俗讲解及实例计算

反激式开关变压器的通俗讲解及实例计算

反激式开关变压器的通俗讲解及实例计算咱先看下在理想情况下的VDS波形上面说的是指变压器和开关都是理想工作状态!从图上可以看出Vds是由VIN和VF组成,VIN大家可以理解是输入电压,那VF呢?这里我们引出一个反激的重要参数:反射电压即VF,指次级输出电压按照初次级的砸比反射到初级的电压。

可以用公式表示为VF=VOUT/(NS/NP),(因分析的是理想情况,这里我们忽略了整流管的管压降,实际是要考虑进去的)式中VF为反射电压;VOUT为输出电压;NS为次级匝数;NP为初级匝数。

比如,一个反激变换器的匝比为NP:NS=6:1,输出电压为12V,那么可以求出反射电压VF=12/(1/6)=72V。

上边是一个连续模式(CCM模式)的理想工作波形。

下面咱在看一个非连续模式(DCM模式)的理想工作波形从图上可以看出DCM的Vds也是由VIN和VF组成,只不过有一段时间VF为0,这段时候是初级电流降为0,次级电流也降为0。

那么到底反激变化器怎么区分是工作在连续模式(CCM)还是非连续模式(DCM)?是看初级电感电流是否降到0为分界点吗,NO,反激变换器的CCM和DCM分界点不是按照初级电感电流是否到0来分界的,而是根据初次级的电流是否到0来分界的。

如图所示从图上可以看出只要初级电流和次级电流不同时为零,就是连续模式(CCM);只要初级电流和次级电流同时为零,便是不连续模式(DCM);介于这俩之间的是过度模式,也叫临界模式(CRM)。

以上说的都是理想情况,但实际应用中变压器是存在漏感的(漏感的能量是不会耦合到次级的),MOS管也不是理想的开关,还有PCB板的布局及走线带来的杂散电感,使得MOS的Vds波形往往大于VIN+VF。

类似于下图这个图是一个48V输入的反激电源。

从图上看到MOS的Vds有个很大的尖峰,我用的200V的MOS,尖峰到了196了。

这是尖峰是由于漏感造成的,上边说到漏感的能量不能耦合到次级,那么MOS关断的时候,漏感电流也不能突变,所以会产生个很高的感应电动势,因无法耦合到次级,会产生个很高的电压尖峰,可能会超过MOS的耐压值而损坏MOS管,所以我们实际使用时会在初级加一个RCD吸收电路,把尖峰尽可能的吸到最低值,来确保MOS管工作在安全电压。

反激变压器设计实例(二)

反激变压器设计实例(二)

反激变压器设计实例(二)目录反激变压器设计实例(二) (1)导论 (1)一.自跟踪电压抑制 (2)2. 反激变换器“缓冲”电路 (4)3. 选择反击变换器功率元件 (5)3.1 输入整流器和电容器 (5)3.2 原边开关晶体管 (5)3.3 副边整流二极管 (5)3.4 输出电容 (6)4. 电路搭接和输出结果 (6)总结 (7)导论前面第一节已经将反激变换器的变压器具体参数计算出来,这里整个反激电路最核心的部件已经确定,我们可以利用saber建立电路拓扑,由saber得出最初的输出参数结果。

首先进行开环控制,输出电容随便输出一个值(由于C1作为输出储能单元,其容值估算应考虑到输出的伏秒,也有人用1~2uF/W进行大概估算),这里选取1000uF作为输出电容。

初始设计中的输出要求12V/3A,故负载选择4欧姆电阻,对于5V/10A的输出,通过调节负载和占空比可以达到。

由实际测量可得,1mm线径的平均电感和电阻值分别为6uH/匝和2.6mΩ/匝,寄生电感通常为5%,由于副边匝数较少,可不考虑寄生电感,所以原边寄生电感为27uH,电阻为11.57mΩ,最终结果如图1所示。

图1.反激电路主拓扑图2.开关管电压、输出电压、输出电流首先由输出情况可以看出,变压器的设计还是满足要求的。

查看图2中开关管电压曲线可以看出,其开关应力过高,不做处理会导致开关管导通瞬间由于高压而击穿。

在反激变换器中,有两个主要原因会引起高开关应力。

这两个原因都与晶体管自带感性负载关断特性有关。

最明显的影响是由于变压器漏感的存在,集电极电压在关断边沿会产生过电压。

其次,不是很明显的影响是如果没有采用负载线整形技术,开关关断期间会出现很高的二次测击穿应力。

一.自跟踪电压抑制当警惕管所在电路中带感性或变压器负载,在晶体管关断时,由于有能量存储在电感或变压器漏感的磁场中,在其集电极将会产生高压。

在反激变换器中,储存在变压器中的大部分能量在反激期间将会传递到副边。

反激变压器计算实例.docx

反激变压器计算实例.docx

技术要求:输入电压Vin : 90-253Vac 输出电压Vo:27.6V 输出电流Io: 6A输出功率Po: 166W 效率η: 0.85输入功率Pin:195W一、输入滤波电容计算过程:上图为整流后滤波电容上电压波形,在最低输入电压下,如果我们想在滤波电容上得到的电压VdC 为115V,则从上图可以得到:Vpk=90*1.414=127VVmi n=Vdc-(Vpk-Vdc)=103V将电源模块等效为一个电阻负载的话,相当于在T3时间内电容对恒定功率负载进行放电,电容电压降低(VPk-Vmin)V Oldc*T3=C* △ V其中:△ V=VPk-Vmi n=127-103=24V关键部分在T3的计算,T3=t1+t2 , t1为半个波头,时间比较好算,对于50Hz的交流来说,t1=5mS,然后就是计算t2,其实t2也很好计算,我们知道交流输入电压的公式为VX=VPkSin θX,根据已知条件,Vx=103V , Vpk=127V ,可以得到θx=54度,所以t2=54*10ms∕180=3mS , T3=t1+t2=8mS。

C=1.7*8∕24=0.57mF=570uF二、变压器的设计过程变压器的设计分别按照DCM、CCM、QR两种方式进行计算,其实QR也是DCM的一种,不同的地方在于QR的工作频率是随着输入电压输出功率的变化而变化的。

对于变压器磁芯的选择,比较常用的方法就是AP法,但经过多次具体设计及根据公司常用型号结合,一般可以直接选择磁芯,象这个功率等级的反激,选择PQ3535的磁芯即可。

磁芯的参数如下:AE=190mm2,AL=4300nH, Bmax≥0.32T1) DCM变压器设计过程:开关频率选择80K,最大占空比选择0.48,全范围DCM,则在最低输入电压VdC下,占空比最大,电路工作在BCM状态,根据伏秒平衡,可以得到以下公式,Vdc*Dmax=Vor*(1-Dmax),IrmS = IPk L* n*^Dma^ ≡12.3AV 3根据电流有效值, 求,即可得到合适的变压器。

反激变压器计算实例

反激变压器计算实例

技术要求:输入电压Vin:90-253Vac输出电压Vo:27、6V输出电流Io:6A输出功率Po:166W效率η:0、85输入功率Pin:195W一、输入滤波电容计算过程:上图为整流后滤波电容上电压波形,在最低输入电压下,如果我们想在滤波电容上得到得电压Vdc为115V,则从上图可以得到:Vpk=90*1.414=127VVmin=Vdc—(Vpk—Vdc)=103V将电源模块等效为一个电阻负载得话,相当于在T3时间内电容对恒定功率负载进行放电,电容电压降低(Vpk—Vmin)V。

Idc*T3=C*△V其中:△V=Vpk—Vmin=127-103=24V关键部分在T3得计算,T3=t1+t2,t1为半个波头,时间比较好算,对于50Hz得交流来说,t 1=5mS,然后就就是计算t2,其实t2也很好计算,我们知道交流输入电压得公式为Vx=Vpksinθx,根据已知条件,Vx=103V,Vpk=127V,可以得到θx=54度,所以t2=54*10ms/180=3mS, T3=t1+t2=8mS。

C=1.7*8/24=0、57mF=570uF二、变压器得设计过程变压器得设计分别按照DCM、CCM、QR两种方式进行计算,其实QR也就是DCM得一种,不同得地方在于QR得工作频率就是随着输入电压输出功率得变化而变化得。

对于变压器磁芯得选择,比较常用得方法就就是AP法,但经过多次具体设计及根据公司常用型号结合,一般可以直接选择磁芯,象这个功率等级得反激,选择PQ3535得磁芯即可、磁芯得参数如下:AE=190mm2,AL=4300nH,Bmax≥0。

32T1)DCM变压器设计过程:开关频率选择80K,最大占空比选择0.48,全范围DCM,则在最低输入电压Vdc下,占空比最大,电路工作在BCM状态,根据伏秒平衡,可以得到以下公式,Vdc*Dmax=Vor*(1-Dmax),从而计算反射电压为Vor=95V匝比n=Vor/(Vo+Vf)=3、32 Vf为整流二极管压降计算初级匝数计算副边匝数Ns=Np/n=6。

反激式变压器的设计实例

反激式变压器的设计实例

反激式变压器的设计实例尽管在buck变换器的设计中没有用到反激式变压器,但由于反激式变压器介于电感与变压器之间,为了帮助大家进一步搞清楚这个特殊的磁性元件,在此我们给出反激式变压器的设计,并作为设计范例。

介绍的内容要比直流电感简单一些,但是很多方面是一致的。

说明一下,这里设计的反激式变压器是有隔离的,而非隔离反激式电感的设计除了没有副边以外,其他的几乎相同。

我们的设计要求为:直流输入电压为48V(为了简便起见,假设没有线电压波动),功率输出为10W,开关频率是250kHz,允许功率损耗0.2W(根据总的损耗,可以知道变换器的效率要求),因此变换器效率为98%(0.2W/10W=2%)。

效率的大小与磁芯的尺寸有关,变压器体积越小,效率越低。

(隔离、断续模式的)反激式变压器原边设计时只需要用到四个参数:输出功率、开关频率、功耗、输入电压(设计非隔离反激式电感也只需这四个参数)。

这里,我们还没有提到电感量,电感量由很多参数决定,在下面的内容中我们将会介绍它们之间的关系。

我们用UC3845芯片(8脚、中等价格)提供PWM信号,其最大占空比为45%,占空比的大小是根据变换器是工作在连续状态还是断续状态来确定的,稍后的章节中将介绍如何计算占空比,在这个例子中,我们选用断续模式。

我们再增加一项设计要求:就是变压器体积要尽量小,有一定的高度限制。

我们将会看到,变压器的设计与电感的设计不完全相同,变压器通常可以选用多种不同的磁芯来实现相同的电气特性。

在这个例子中,还要根据其他一些要求来选择磁芯,包括尺寸、成本等因素。

1 反激式变压器的主要方程首先,我们做一些基本的准备工作。

正如这一章一开始介绍的理论内容中所说的那样,当反激式变换器原边开关器件导通时,变压器原边绕组的作用相当于一个电感。

电压加在原边电感上,开关导通期间,电流持续上升:这里,DC是占空比,f是开关频率,T=1/f是开关周期,这个方程适用于电流断续模式反激式变压器,原边电流波形如图案5-17所示。

反激变压器的设计

反激变压器的设计

反激变压器的设计————————————————————————————————作者: ————————————————————————————————日期:反激变压器的设计//========================================================反激变压器设计最简单的方法ﻫ我自己综合了一下众多高手的方法,自认为是比较简单的方法了!如下: ﻫ1,VDC min=VAC min * 1.2VDC max=VAC max* 1.42,输出功率Po=P1+P2+Pn......ﻫ上式中P1=(Vo1+Vf)*I1 、P2 =(Vo2+Vf)*I2上式中Vo为输出电压,Vf为整流管压降ﻫ3,输入功率Pin=(Po/η)*1.2(此处1.2为输入整流损耗) ﻫ4,输入平均电流:Iav = Pin/VDCminﻫ5,初级峰值电流:Ip = 2*Iav/Dmax6,初级电感量:Lp=Vdc min *Dmax/(Ip*fs) fs为开关频率ﻫ7,初级匝数:Np=VDC min *Dmax /(ΔB*Ae*fs) ﻫ上式中ΔB推荐取值0.2 Ae为磁芯横截面积,查规格资料可得!8,次级匝数:NS =(Vout+Vd)*(1-Dmax)*Np / Vin min*Dmax至此变压器参数基本完成!另就是线径,可根据具体情况调整!宗旨就是在既定的BOBINN上以合适的线径,绕线平整、饱满!///================================反激式变压器设计原理(FlybackTransformer Design Theory)第一节. 概述.反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图.一、反激式转换器的优点有:2.转换效率高,损失小.1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求.ﻫ4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实3. 变压器匝数比值较小. ﻫ现交流输入在85~265V间.无需切换而达到稳定输出的要求.二、反激式转换器的缺点有:1.输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下.2.转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大.3. 变压器有直流电流成份,且同时会工作于CCM/ DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂.ﻫ第二节. 工作原理ﻫ在图1所示隔离反驰式转换器(The isolatedflybackconverter)中, 变压器" T"有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下:ﻫ当开关晶体管Tr ton时,变压器初级Np有电流Ip,并将能量储存于其中(E = LpIp/ 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律: (e=-N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2.ﻫ由图可知,导通时间ton的大小将决定Ip、Vce的幅值:Vce max = VIN/1-Dmax ﻫVIN:输入直流电压;Dmax: 最大工作周期Dmax = ton/ Tﻫ由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax= 0.4,以限制Vcemax≦ 2.2VIN.开关管Tron时的集电极工作电流Ie,也就是原边峰值电流Ip为: Ic = Ip =IL /n.因IL = Io,故当Io一定时,匝比n的大小即决定了Ic的大小,上式是按功率守恒原则,原副边安匝数相等NpIp= NsIs而导出. Ip亦可用下列方法表示:Ic=Ip= 2Po/ (η*VIN*Dmax)η: 转换器的效率公式导出如下:输出功率:Po= LIp2η/ 2T输入电压:VIN = Ldi /dt设di = Ip,且1/ dt = f /Dmax,则:VIN = LIpf/ Dmax或Lp= VIN*Dmax / Ipf则Po又可表示为: ﻫPo= ηVINf DmaxIp2/2f Ip= 1/2ηVINDmaxIp∴Ip=2Po/ηVINDmax上列公式中:ﻫVIN:最小直流输入电压(V)ﻫDmax:最大导通占空比ﻫLp: 变压器初级电感(mH)ﻫIp :变压器原边峰值电流(A)f:转换频率(KHZ)//========================================你看的书就会把你给绕进去...绕半天却找不到自己了。

反激式开关变换器之变压器设计实例

反激式开关变换器之变压器设计实例

关于反激变压器的设计1、确定Dmax和Vor。

2、求匝比n。

3、求初级电感量Lp。

4、选择磁芯。

5、求最小初级匝数。

6、初级、次级和反馈绕组匝数关系。

7、选择线经,确定初级、次级和反馈绕组匝数。

8、做样品、调整参数。

9、参考例子。

原理:一、确定Dmax和Vor当开关管Q闭合时,初级线圈电压为:Vin(当输入为265V时,达到375V),如果变压器初级线圈为:Np;次级线圈为:Ns。

匝比:n=Np/Ns。

则:次级线圈的电压为:Vin/n。

由于次级二极管D3反向,没有形成回路,所以线圈没有电流流经负载。

而二极管的反向耐压:VDf=Vin/n+Vo,Vo为输出电压。

当开关管Q关断时,变压器中储存的能量向负载释放。

次级线圈的电压VS=Vo+Vd,Vd为整流二极管D3正向压降。

初级线圈的电压为:VP=n*VS+Vleg。

Vleg为变压器漏感产生的尖锋电压;与输入电压反向。

设定Vor=n*VS,为反射电压。

则开关管承受的电压Vds=Vinmax+Vor+Vleg。

实际选择开关管是必须留20~50V的余量。

所以:Vor=VDS-(Vinmax+Vleg+余量)=600-(375+120+20~50)=55~85V VDS:开关管的额定耐压,600VVin:在265V输入时,375VVleg:一般在120V余量:20V~50V根据伏秒法则:Vin*Ton=Vor*ToffTon:为开关管闭合时间。

Toff:为开关管关断时间。

占空比:D=Ton/(Ton+Toff),Ton+Toff为周期T。

Ton=T*DToff=T*(1-D)所以: Vin*D=Vor*(1-D)D=Vor/(Vin+Vor)Dmax=Vor/(Vinmin+Vor)建议设置在0.3~0.5 当输入电压最小时取得最大占空比。

二、求匝比nn =Vor/(Vo+Vd)三、求初级电感量Lp。

计算电感量:BCM时,有电感、电压、电流和时间的关系:L=V*t/Ipp t:为时间。

反激变压器设计实例(一)

反激变压器设计实例(一)

反激变压器设计实例(一)目录1.导论 (2)2.磁芯参数和气隙的影响 (2)2.1 AC极化 (3)2.2 AC条件中的气隙影响 (3)2.3 DC条件中的气隙影响 (3)3. 110W反激变压器设计例子 (4)3.1 步骤1,选择磁芯尺寸 (4)3.2 步骤2,选择导通时间 (6)3.3 步骤3,变换器最小DC输入电压的计算 (6)3.4 步骤4,选择工作便宜磁通密度 (6)3.5 步骤5,计算最小原边匝数 (7)3.6 步骤6,计算副边匝数 (7)3.7 步骤7,计算附加匝数 (8)3.8 步骤8,确定磁芯气隙尺寸 (8)3.9 步骤9,磁芯气隙尺寸(实用方法) (9)3.10 步骤10,计算气隙 (9)3.11 步骤11,检验磁芯磁通密度和饱和裕度 (10)4 反激变压器饱和及暂态影响 (11)1.导论由于反激变换器变压器综合了许多功能(储存能量、电隔离、限流电感),并且还常常支持相当大的直流电流成分,故比直接传递能量的正激推挽变压器的设计困难得多、以下变压器设计例子中没选择过程使用反复迭代方法,无论设计从哪里开始没开始时须有大量近似的计算。

没有经验工程师的问题是要得到对控制因数的掌握。

特别的,磁芯大小、原边电感的选择、气隙的作用、原边匝数的选择以及磁芯内交流和直流电流(磁通)成分的相互作用常常给反激变压器设计带来挑战。

为使设计者对控制因数有好的感觉,下面的设计由检查磁芯材料的特性和气隙的影响开始,然后检查交流和直流磁芯极化条件,最后给出100W变压器的完整设计。

2.磁芯参数和气隙的影响图1表示一个铁氧体变压器在带有和不带气隙时典型的B/H(磁滞回归线)环。

注意到虽然B/H环的磁导率(斜率)随气隙的长度变化,但磁芯和气隙结合后的饱和磁通密度保持不变。

进一步,在有气隙的情况下,磁场强度H越大,剩磁通密度B r越低。

这些变化对反激变压器非常有用。

图1.不同情况下磁芯的磁滞回归曲线图2只表示了反激变压器使用的磁滞回环的前四分之一,也表示了磁芯中引入气隙所产生的影响。

反激变压器设计实例

反激变压器设计实例

反激变压器设计实例首先,需要确定输出功率。

假设需要输出功率为50W,根据功率平衡关系可知,输入功率和输出功率之间满足关系:输入功率=输出功率/效率。

假设效率为80%,则输入功率为62.5W。

接下来,需要确定工作频率。

工作频率是根据具体应用场景和电子元器件选择而定。

在一般应用中,常用的工作频率为20kHz-200kHz。

本文选择工作频率为50kHz。

根据输入功率和工作频率,可以确定变压器的整流磁链。

整流磁链的计算公式为:Bac = (2*P)/(f*Ae),其中Bac为整流磁链,P为输入功率,f为工作频率,Ae为有效磁路面积。

根据公式计算,整流磁链为0.25T。

接下来,需要确定变压器的变比。

变比是根据输入和输出电压之间的关系来确定的。

根据输入电压和输出电压的比值,可以确定变压器的变比。

本文选择输入电压为220V,输出电压为12V,变比为18.33然后,需要确定变压器的初始工作条件。

变压器在初始工作条件下需要满足一些性能指标,包括工作电流、磁通密度、差动感应电势等。

根据这些指标可以确定变压器的铁芯截面积和匝数。

在本文的实例中,输入电压为220V,输出电压为12V,变比为18.33,因此输入电流为0.28A,输出电流为4.34A。

根据输出电流和工作频率可以确定匝数。

根据变压器的铁芯材料和工作磁通密度,可以确定变压器的铁芯截面积。

最后,需要进行变压器的检验和调试。

对于反激变压器的设计,主要检验电路是否稳定、变压器的各项指标是否达标。

可以通过调试和测量来验证设计的正确性。

常见的检验和调试项目包括输出电压稳定性、效率、输入电流波形、输出电流波形等。

以上是一个反激变压器的设计实例。

设计反激变压器需要考虑各种因素,包括输入功率、输出功率、输入和输出电压、工作频率等。

通过合理的设计和调试,可以保证反激变压器的性能指标和稳定性,满足具体的应用要求。

反激式开关电源变压器的设计案例

反激式开关电源变压器的设计案例

鍙嶆縺寮忓紑鍏崇數婧愬彉鍘嬪櫒鐨勮璁℃渚?鍙嶆縺寮忓彉鍘嬪櫒鏄弽婵€寮€鍏崇數婧愮殑鏍稿績锛屽畠鍐冲畾浜嗗弽婵€鍙樻崲鍣ㄤ竴绯诲垪鐨勯噸瑕佸弬鏁帮紝濡傚崰绌烘瘮D锛屾渶澶у嘲鍊肩數娴侊紝璁捐鍙嶆縺寮忓彉鍘嬪櫒锛屽氨鏄璁╁弽婵€寮忓紑鍏崇數婧愬伐浣滃湪涓€涓悎鐞嗙殑宸ヤ綔鐐逛笂銆傝繖鏍峰彲浠ヨ鍏剁殑鍙戠儹灏介噺灏忥紝瀵瑰櫒浠剁殑纾ㄦ崯涔熷敖閲忓皬銆傚悓鏍风殑鑺墖锛屽悓鏍风殑纾佽姱锛岃嫢鏄彉鍘嬪櫒璁捐涓嶅悎鐞嗭紝鍒欐暣涓紑鍏崇數婧愮殑鎬ц兘浼氭湁寰堝ぇ涓嬮檷锛屽鎹熻€椾細鍔犲ぇ锛屾渶澶ц緭鍑哄姛鐜囦篃浼氭湁涓嬮檷锛屼笅闈㈡垜绯荤粺鐨勮涓€涓嬫垜绠楀彉鍘嬪櫒鐨勬柟娉曘€?绠楀彉鍘嬪櫒锛屽氨鏄鍏堥€夊畾涓€涓伐浣滅偣锛屽湪杩欎釜宸ヤ綔鐐逛笂绠楋紝杩欎釜鏄渶鑻涘埢鐨勪竴涓偣锛岃繖涓偣灏辨槸鏈€浣庣殑浜ゆ祦杈撳叆鐢靛帇锛屽搴斾簬鏈€澶х殑杈撳嚭鍔熺巼銆備笅闈㈡垜灏辨潵绠椾簡涓€涓緭鍏?5V鍒?65V锛岃緭鍑?V锛?A 鐨勭數婧愶紝寮€鍏抽鐜囨槸100KHZ銆?绗竴姝ュ氨鏄€夊畾鍘熻竟鎰熷簲鐢靛帇VOR锛岃繖涓€兼槸鐢辫嚜宸辨潵璁惧畾鐨勶紝杩欎釜鍊煎氨鍐冲畾浜嗙數婧愮殑鍗犵┖姣斻€傚彲鑳芥湅鍙嬩滑涓嶇悊瑙d粈涔堟槸鍘熻竟鎰熷簲鐢靛帇锛屾槸杩欐牱鐨勶紝杩欒浠庝笅闈㈢湅璧凤紝鎱㈡參鐨勬潵锛?杩欐槸涓€涓吀鍨嬬殑鍗曠鍙嶆縺寮忓紑鍏崇數婧愶紝澶у鍐嶇啛鎮変笉杩囦簡锛屾潵鍒嗘瀽涓€涓嬩竴涓伐浣滃懆鏈燂紝褰撳紑鍏崇寮€閫氱殑鏃跺€欙紝鍘熻竟鐩稿綋浜庝竴涓數鎰燂紝鐢垫劅涓ょ鍔犱笂鐢靛帇锛屽叾鐢垫祦鍊间笉浼氱獊鍙橈紝鑰岀嚎鎬х殑涓婂崌锛屾湁鍏紡涓婂崌浜嗙殑I=Vs*ton/L,杩欎笁椤瑰垎鍒槸鍘熻竟杈撳叆鐢靛帇锛屽紑鍏冲紑閫氭椂闂达紝鍜屽師杈圭數鎰熼噺锛庡湪寮€鍏崇鍏虫柇鐨勬椂鍊欙紝鍘熻竟鐢垫劅鏀剧數锛岀數鎰熺數娴佸張浼氫笅闄嶏紝鍚屾牱瑕佸皧瀹堜笂闈㈢殑鍏紡瀹氬緥锛屾鏃舵湁涓嬮檷浜?锛?VOR*toff/L,杩欎笁椤瑰垎鍒槸鍘熻竟鎰熷簲鐢靛帇锛屽嵆鏀剧數鐢靛帇锛屽紑鍏崇鍏虫柇鏃堕棿锛屽拰鐢垫劅閲忥紟鍦ㄧ粡杩囦竴涓懆鏈熷悗锛屽師杈圭數鎰熺數娴佺殑鍊间細鍥炲埌鍘熸潵锛屼笉鍙兘浼氬彉锛屾墍浠ワ紝鏈塚S*TON/L=VOR*TOFF/L,锛屼笂鍗囦簡鐨勶紝绛変簬涓嬮檷浜嗙殑锛屾噦鍚楋紝濂芥噦鍚э紝涓婂紡涓彲浠ョ敤锛ゆ潵浠f浛锛达集锛紝鐢紤锛嶏激鏉ヤ唬鏇匡即OOF锛岀Щ椤瑰彲寰楋紝D=VOR/锛圴OR+VS锛夈€傛鍗虫槸鏈€澶у崰绌烘瘮浜嗐€傛瘮濡傝鎴戣璁$殑杩欎釜锛屾垜閫夊畾鎰熷簲鐢靛帇涓?0V锛孷S涓?0V 锛屽垯D=80/锛?80+90锛?0.47鍙嶆縺寮忓彉鍘嬪櫒鏄弽婵€寮€鍏崇數婧愮殑鏍稿績锛屽畠鍐冲畾浜嗗弽婵€鍙樻崲鍣ㄤ竴绯诲垪鐨勯噸瑕佸弬鏁帮紝濡傚崰绌烘瘮D锛屾渶澶у嘲鍊肩數娴侊紝璁捐鍙嶆縺寮忓彉鍘嬪櫒锛屽氨鏄璁╁弽婵€寮忓紑鍏崇數婧愬伐浣滃湪涓€涓悎鐞嗙殑宸ヤ綔鐐逛笂銆傝繖鏍峰彲浠ヨ鍏剁殑鍙戠儹灏介噺灏忥紝瀵瑰櫒浠剁殑纾ㄦ崯涔熷敖閲忓皬銆傚悓鏍风殑鑺墖锛屽悓鏍风殑纾佽姱锛岃嫢鏄彉鍘嬪櫒璁捐涓嶅悎鐞嗭紝鍒欐暣涓紑鍏崇數婧愮殑鎬ц兘浼氭湁寰堝ぇ涓嬮檷锛屽鎹熻€椾細鍔犲ぇ锛屾渶澶ц緭鍑哄姛鐜囦篃浼氭湁涓嬮檷锛屼笅闈㈡垜绯荤粺鐨勮涓€涓嬫垜绠楀彉鍘嬪櫒鐨勬柟娉曘€?绠楀彉鍘嬪櫒锛屽氨鏄鍏堥€夊畾涓€涓伐浣滅偣锛屽湪杩欎釜宸ヤ綔鐐逛笂绠楋紝杩欎釜鏄渶鑻涘埢鐨勪竴涓偣锛岃繖涓偣灏辨槸鏈€浣庣殑浜ゆ祦杈撳叆鐢靛帇锛屽搴斾簬鏈€澶х殑杈撳嚭鍔熺巼銆備笅闈㈡垜灏辨潵绠椾簡涓€涓緭鍏?5V鍒?65V锛岃緭鍑?V锛?A 鐨勭數婧愶紝寮€鍏抽鐜囨槸100KHZ銆?绗竴姝ュ氨鏄€夊畾鍘熻竟鎰熷簲鐢靛帇VOR锛岃繖涓€兼槸鐢辫嚜宸辨潵璁惧畾鐨勶紝杩欎釜鍊煎氨鍐冲畾浜嗙數婧愮殑鍗犵┖姣斻€傚彲鑳芥湅鍙嬩滑涓嶇悊瑙d粈涔堟槸鍘熻竟鎰熷簲鐢靛帇锛屾槸杩欐牱鐨勶紝杩欒浠庝笅闈㈢湅璧凤紝鎱㈡參鐨勬潵锛?杩欐槸涓€涓吀鍨嬬殑鍗曠鍙嶆縺寮忓紑鍏崇數婧愶紝澶у鍐嶇啛鎮変笉杩囦簡锛屾潵鍒嗘瀽涓€涓嬩竴涓伐浣滃懆鏈燂紝褰撳紑鍏崇寮€閫氱殑鏃跺€欙紝鍘熻竟鐩稿綋浜庝竴涓數鎰燂紝鐢垫劅涓ょ鍔犱笂鐢靛帇锛屽叾鐢垫祦鍊间笉浼氱獊鍙橈紝鑰岀嚎鎬х殑涓婂崌锛屾湁鍏紡涓婂崌浜嗙殑I=Vs*ton/L,杩欎笁椤瑰垎鍒槸鍘熻竟杈撳叆鐢靛帇锛屽紑鍏冲紑閫氭椂闂达紝鍜屽師杈圭數鎰熼噺锛庡湪寮€鍏崇鍏虫柇鐨勬椂鍊欙紝鍘熻竟鐢垫劅鏀剧數锛岀數鎰熺數娴佸張浼氫笅闄嶏紝鍚屾牱瑕佸皧瀹堜笂闈㈢殑鍏紡瀹氬緥锛屾鏃舵湁涓嬮檷浜?锛?VOR*toff/L,杩欎笁椤瑰垎鍒槸鍘熻竟鎰熷簲鐢靛帇锛屽嵆鏀剧數鐢靛帇锛屽紑鍏崇鍏虫柇鏃堕棿锛屽拰鐢垫劅閲忥紟鍦ㄧ粡杩囦竴涓懆鏈熷悗锛屽師杈圭數鎰熺數娴佺殑鍊间細鍥炲埌鍘熸潵锛屼笉鍙兘浼氬彉锛屾墍浠ワ紝鏈塚S*TON/L=VOR*TOFF/L,锛屼笂鍗囦簡鐨勶紝绛変簬涓嬮檷浜嗙殑锛屾噦鍚楋紝濂芥噦鍚э紝涓婂紡涓彲浠ョ敤锛ゆ潵浠f浛锛达集锛紝鐢紤锛嶏激鏉ヤ唬鏇匡即OOF锛岀Щ椤瑰彲寰楋紝D=VOR/锛圴OR+VS锛夈€傛鍗虫槸鏈€澶у崰绌烘瘮浜嗐€傛瘮濡傝鎴戣璁$殑杩欎釜锛屾垜閫夊畾鎰熷簲鐢靛帇涓?0V锛孷S涓?0V 锛屽垯D=80/锛?80+90锛?0.47绗簩姝?纭疄鍘熻竟鐢垫祦娉㈠舰鐨勫弬鏁?鍘熻竟鐢垫祦娉㈠舰鏈変笁涓弬鏁?骞冲潎鐢垫祦,鏈夋晥鍊肩數娴?宄板€肩數娴?,棣栧厛瑕佺煡閬撳師杈圭數娴佺殑娉㈠舰,鍘熻竟鐢垫祦鐨勬尝褰㈠涓嬪浘鎵€绀?鐢荤殑涓嶅ソ,浣嗕笉瑕佺瑧鍟?杩欐槸涓€涓褰㈡尝妯悜琛ㄧず鏃堕棿,绾靛悜琛ㄧず鐢垫祦澶у皬,杩欎釜娉㈠舰鏈変笁涓€?涓€鏄钩鍧囧€?浜屾槸鏈夋晥鍊?涓夋槸鍏跺嘲鍊?骞冲潎鍊煎氨鏄妸杩欎釜娉㈠舰鐨勯潰绉啀闄や互鍏舵椂闂?濡備笅闈㈤偅涓€鏉℃í绾挎墍绀?棣栧厛瑕佺‘瀹氳繖涓€硷紝杩欎釜鍊兼槸杩欐牱绠楃殑锛岀數娴佸钩鍧囧€?杈撳嚭鍔熺巼/鏁堢巼*VS锛屽洜涓鸿緭鍑哄姛鐜囦箻浠ユ晥鐜囧氨鏄緭鍏ュ姛鐜囷紝鐒跺悗杈撳叆鍔熺巼鍐嶉櫎浠ヨ緭鍏ョ數鍘嬪氨鏄緭鍏ョ數娴侊紝杩欎釜灏辨槸骞冲潎鍊肩數娴併€傜幇鍦ㄤ笅涓€姝ュ氨鏄眰閭d釜鐢垫祦宄板€硷紝灏栧嘲鍊兼槸澶氬皯鍛紝杩欎釜鎴戜滑鑷繁杩樿璁惧畾涓€涓弬鏁帮紝杩欎釜鍙傛暟灏辨槸KRP锛屾墍璋揔RP锛屽氨鏄寚鏈€澶ц剦鍔ㄧ數娴佸拰宄板€肩數娴佺殑姣斿€艰繖涓瘮鍊间笅鍥惧垎鍒槸鏈€澶ц剦鍔ㄧ數娴佸拰宄板€肩數娴併€傛槸鍦?鍜?涔嬮棿鐨勩€傝繖涓€煎緢閲嶈銆傚凡鐭ヤ簡KRP锛岀幇鍦ㄨ瑙f柟绋嬩簡锛岄兘浼氳В鏂圭▼鍚э紝杩欐槸鍒濅竴鐨勫簲鐢ㄩ鍟婏紝鎴戞潵瑙d竴涓嬶紝宸茬煡杩欎釜娉㈠舰涓€涓懆鏈熺殑闈㈢Н绛変簬鐢垫祦骞冲潎鍊?1锛岃繖涓尝褰㈢殑闈㈢Н绛変簬锛屽嘲鍊肩數娴?KRP*D+宄板€肩數娴?锛?-KRP锛?D锛屾墍浠ユ湁鐢垫祦骞冲潎鍊肩瓑浜庝笂寮忥紝瑙e嚭鏉ュ嘲鍊肩數娴?鐢垫祦骞冲潎鍊?锛?-0.5KRP锛?D銆傛瘮濡傝鎴戣繖涓緭鍑烘槸10W锛岃瀹氭晥鐜囨槸0.8.鍒欒緭鍏ョ殑骞冲潎鐢垫祦灏辨槸10/0.8*90=0.138A,鎴戣瀹欿RP鐨勫€兼槸0.6鑰屾渶澶у€?0.138/(1-0.5KRP).D=0.138/(1-0.5*0.6)*0.47=0.419A.绗笁涓數娴佸弬鏁?灏辨槸杩欎釜鐢垫祦鐨勬湁鏁堝€?鐢垫祦鏈夋晥鍊煎拰骞冲潎鍊兼槸涓嶄竴鏍风殑,鏈夋晥鍊肩殑瀹氫箟杩樿寰楀悧,灏辨槸璇存妸杩欎釜鐢垫祦鍔犲湪涓€涓數闃讳笂,鑻ユ槸鍏跺彂鐑拰鍙﹀涓€涓洿娴佺數娴佸姞鍦ㄨ繖涓數闃讳笂鍙戠儹鏁堟灉涓€鏍风殑璇?閭d箞杩欎釜鐢垫祦鐨勬湁鏁堝€煎氨绛変簬杩欎釜鐩存祦鐨勭數娴佸€?鎵€浠ヨ繖涓數娴佺殑鏈夋晥鍊间笉绛変簬鍏跺钩鍧囧€?涓€鑸瘮鍏跺钩鍧囧€艰澶?鑰屼笖鍚屾牱鐨勫钩鍧囧€?鍙互瀵瑰簲寰堝涓湁鏁堝€?鑻ユ槸鎶奒RP 鐨勫€奸€夊緱瓒婂ぇ,鏈夋晥鍊煎氨浼氳秺澶?鏈夋晥鍊艰繕鍜屽崰绌烘瘮D涔熸湁鍏崇郴,鎬讳箣.瀹冭繖涓數娴佹尝褰㈢殑褰㈢姸鏄伅鎭浉鍏崇殑.鎴戝氨鐩存帴缁欏嚭鏈夋晥鍊肩殑鐢垫祦鍏紡,杩欎釜鍏紡瑕佺敤绉垎鎵嶈兘鎺ㄥ緱鍑烘潵,鎴戝氨涓嶆帹浜?鍙澶у鍖哄垎寮€鏉ユ湁鏁堝€煎拰骞冲潎鍊煎氨鍙互浜?鐢垫祦鏈夋晥鍊?鐢垫祦宄板€?鏍瑰彿涓嬬殑D*(KRP鐨勫钩鏂?3-KRP+1)濡傛垜鐜板湪杩欎釜,鐢垫祦鏈夋晥鍊?0.419*鏍瑰彿涓?.47*(0.36/3-0.6+1)=0.20A.鎵€浠ュ搴斾簬鐩稿悓鐨勫姛鐜?涔熷氨鏄湁鐩稿悓鐨勮緭鍏ョ數娴佹椂,鍏舵湁鏁堝€煎拰杩欎簺鍙傛暟鏄湁鍏崇殑,閫傚綋鐨勮皟鏁村弬鏁?浣挎湁鏁堝€兼渶灏?鍙戠儹涔熷氨鏈€灏?鎹熻€楀皬.杩欎究浼樺寲浜嗚璁?绗笁姝?寮€濮嬭璁″彉鍘嬪櫒鍑嗗宸ヤ綔.宸茬煡浜嗗紑鍏抽鐜囨槸100KHZ鍒欏紑鍏冲懆鏈熷氨鏄?0寰浜?鍗犵┖姣旀槸0.47.閭d箞TON灏辨槸4.7寰浜?璁板ソ杩欎袱涓暟,瀵逛笅闈㈡湁鐢?绗洓姝?閫夊畾鍙樺帇鍣ㄧ鑺?杩欎釜灏辨槸鍑粡楠屼簡,濡傛灉浣犱笉浼氶€?灏变及涓€涓?璁$畻灏辫浜?鑻ユ槸涓嶈,鍙互鍐嶆崲涓€涓ぇ涓€鐐圭殑鎴栨槸灏忎竴鐐圭殑,涓嶈繃鏈夌殑璧勬枡涓婃湁濡備綍鏍规嵁鍔熺巼鍘婚€夌鑺殑鍏紡鎴栨槸鍖虹嚎鍥?澶у涓嶅Θ涔熷彲浠ュ弬鑰冧竴涓?鎴戜竴鑸槸鍑粡楠屾潵鐨?绗簲姝?璁$畻鍙樺帇鍣ㄧ殑鍘熻竟鍖濇暟鍘熻竟浣跨敤鐨勭粡寰?璁$畻鍘熻竟鍖濇暟鐨勬椂鍊?瑕侀€夊畾涓€涓鑺殑鎸箙B,鍗宠繖涓鑺殑纾佹劅搴斿己搴︾殑鍙樺寲鍖洪棿,鍥犱负鍔犱笂鏂规尝鐢靛帇鍚?杩欎釜纾佹劅搴斿己搴︽槸鍙樺寲鐨?姝f槸鍥犱负鍙樺寲,鎵€浠ュ叾鎵嶆湁浜嗗彉鍘嬬殑浣滅敤,NP=VS*TON/SJ*B,杩欏嚑涓弬鏁板垎鍒槸鍘熻竟鍖濇暟,,鏈€灏忚緭鍏ョ數鍘?瀵奸€氭椂闂?纾佽姱鐨勬í鑺傞潰绉拰纾佽姱鎸箙,涓€鑸彇B鐨勫€兼槸0.1鍒?.2涔嬮棿,鍙栧緱瓒婂皬,鍙樺帇鍣ㄧ殑閾佹崯灏辫秺灏?浣嗙浉搴斿彉鍘嬪櫒鐨勪綋绉細澶т簺.杩欎釜鍏紡鏉ユ簮浜庢硶鎷夊紵鐢电鎰熷簲瀹氬緥,杩欎釜瀹氬緥鏄,鍦ㄤ竴涓搧蹇冧腑,褰撶閫氬彉鍖栫殑鏃跺€?鍏朵細浜х敓涓€涓劅搴旂數鍘?杩欎釜鎰熷簲鐢靛帇=纾侀€氱殑鍙樺寲閲?鏃堕棿T鍐嶄箻浠ュ対鏁版瘮,鎶婄閫氬彉鍖栭噺鎹㈡垚纾佹劅搴斿己搴︾殑鍙樺寲閲忎箻浠ュ叾闈㈢Н灏卞彲浠ユ帹鍑轰笂寮忔潵,绠€鍗曞惂.鎴戠殑杩欎釜NP=90*4.7寰/32骞虫柟姣背*0.15,寰楀埌88鍖?.15鏄垜閫夊彇鐨勪簡鍊?绠椾簡鍖濇暟,鍐嶇‘瀹氱嚎寰?涓€鑸潵璇寸數娴佽秺澶?绾胯秺鐑?鎵€浠ラ渶瑕佺殑瀵肩嚎灏辫秺绮?,闇€瑕佺殑绾垮緞鐢辨湁鏁堝€兼潵纭畾,鑰屼笉鏄钩鍧囧€?涓婇潰宸茬粡绠楀緱浜嗘湁鏁堝€?鎵€浠ュ氨鏉ラ€夌嚎,鎴戠敤0.25鐨勭嚎灏卞彲浠ヤ簡,鐢?.25鐨勭嚎,鍏堕潰绉槸0.049骞虫柟姣背,鐢垫祦鏄?.2瀹?鎵€浠ュ叾鐢垫祦瀵嗗害鏄?.08,鍙互,涓€鑸€夊畾鐢垫祦瀵嗗害鏄?鍒?0瀹夌骞虫柟姣背.璁颁綇杩欎竴鐐?杩欏緢閲嶈.鑻ユ槸鐢垫祦寰堝ぇ,鏈€濂介噰鐢ㄤ袱鑲℃垨鏄袱鑲′互涓婄殑绾垮苟缁?鍥犱负楂橀鐢垫祦鏈夎秼鏁堝簲,杩欐牱鍙互姣旇緝濂?绗叚姝?纭畾娆$骇缁曠粍鐨勫弬鏁?鍦堟暟鍜岀嚎寰?璁板緱鍘熻竟鎰熷簲鐢靛帇鍚?杩欏氨鏄竴涓斁鐢电數鍘?鍘熻竟灏辨槸浠ヨ繖涓數鍘嬫斁鐢电粰鍓竟鐨?鐪嬩笂杈圭殑鍥?鍥犱负鍓竟杈撳嚭鐢靛お涓?V,鍔犱笂鑲栫壒鍩虹鐨勫帇闄?灏辨湁5.6V,鍘熻竟浠?0V鐨勭數鍘嬫斁鐢?鍓竟浠?.6V鐨勭數鍘嬫斁鐢?閭d箞鍖濇暟鏄灏戝憿,褰撶劧鍏堕伒瀹堝彉鍘嬪櫒閭d釜鍖濇暟鍜岀數鍘嬫垚姝f瘮鐨勮寰嬪暒.鎵€浠ュ壇杈圭數鍘?NS*(UO+UF)/VOR,鍏朵腑UF涓鸿倴鐗瑰熀绠″帇闄?濡傛垜杩欎釜鍓竟鍖濇暟绛変簬88*5.6/80,寰?.16,鏁村彇6鍖?鍐嶇畻鍓竟鐨勭嚎寰?褰撶劧涔熷氨瑕佺畻鍑哄壇杈圭殑鏈夋晥鍊肩數娴佸暒,鍓竟鐢垫祦鐨勬尝褰細鐢诲悧,鎴戠敾缁欏ぇ瀹剁湅涓€涓嬪惂鐢荤殑涓嶅お瀵圭О,娌″叧绯?鍙鐭ラ亾杩欎釜鎰忔€?灏卞彲浠ヤ簡.鏈夌獊璧风殑鏃堕棿鏄?-D,娌℃湁绐佽捣鐨勬槸D,鍒氬ソ鍜屽師杈圭浉鍙?浣嗗叾KRP 鐨勫€煎拰鍘熻竟鐩稿悓鐨勮繖涓嬬煡閬撲簡杩欎釜娉㈠舰鐨勬湁鏁堝€兼槸鎬庝箞绠楃殑浜嗗惂,鍝?鍐嶆彁閱掍竴鍙?杩欎釜宄板€肩數娴佸氨鏄師杈瑰嘲鍊肩數娴佷箻浠ュ叾鍖濇暟姣?瑕佹瘮鍘熻竟宄板€肩數娴佸ぇ鏁板€嶃€?绗竷姝ョ‘瀹氬弽棣堢粫缁勭殑鍙傛暟鍙嶉鏄弽婵€鐨勭數鍘?鍏剁數鍘嬫槸鍙栬嚜杈撳嚭绾х殑,鎵€浠ュ弽棣堢數鍘嬫槸绋冲畾鐨?TOP 鐨勭數婧愮數鍘嬫槸5.7鍒?V,缁曚笂7鍖?閭d箞鍏剁數鍘嬪ぇ姒傛槸6V澶?杩欏氨鍙互浜?璁板緱,鍙嶉鐢靛帇鏄弽婵€鐨?鍏跺対鏁版瘮瑕佸拰骞呰竟瀵瑰簲,鎳備粈涔堟剰鎬濆悧,鑷充簬绾?鍥犱负娴佽繃鍏剁殑鐢垫祦寰堝皬,鎵€浠ュ氨鐢ㄧ粫鍘熻竟鐨勭嚎缁曞氨鍙互浜?鏃犱弗鏍肩殑瑕佹眰.绗叓姝?纭畾鐢垫劅閲?璁板緱鍘熻竟鐨勭數娴佷笂鍗囧叕寮忓悧I=VS*TON/L.鍥犱负浣犲凡缁忎粠涓婇潰鐢诲嚭浜嗗師杈圭數娴佺殑娉㈠舰,杩欎釜I灏辨槸:宄板€肩數娴?KRP,鎵€浠=VS.TON/宄板€肩數娴?KRP,鐭ラ亾浜嗗悧,浠庢灏辩‘瀹氫簡鍘熻竟鐢垫劅鐨勫€?绗節姝?楠岃瘉璁捐鍗抽獙璇佷竴涓嬫渶澶х鎰熷簲寮哄害鏄笉鏄秴杩囦簡纾佽姱鐨勫厑璁稿€?鏈塀MAX=L*IP/SJ*NP.杩欎釜浜斾釜鍙傛暟鍒嗗埆琛ㄧず纾侀€氭渶澶у€?鍘熻竟鐢垫劅閲?宄板€肩數娴?鍘熻竟鍖濇暟,杩欎釜鍏紡鏄粠鐢垫劅閲廘鐨勬蹇靛叕寮忔帹杩囨潵鐨?鍥犱负L=纾侀摼/娴佽繃鐢垫劅绾垮湀鐨勭數娴?纾侀摼绛変簬纾侀€氫箻浠ュ叾鍖濇暟,鑰岀閫氬氨鏄鎰熷簲寮哄害涔樹互鍏舵埅闈㈢Н,鍒嗗埆浠e叆鍒颁笂闈?鍗冲綋鍘熻竟绾垮湀娴佽繃宄板€肩數娴佹椂,姝ゆ椂纾佽姱杈惧埌鏈€澶х鎰熷簲寮哄害,杩欎釜纾佹劅搴斿己搴﹀氨鐢ㄤ互涓婂叕寮忚绠?BMAX鐨勫€间竴鑸竴瑕佽秴杩?.3T ,鑻ユ槸濂界殑纾佽姱,鍙互澶т竴浜?鑻ユ槸瓒呰繃浜嗚繖涓€?灏卞彲浠ュ鍔犲師杈瑰対鏁?鎴栨槸鎹㈠ぇ鐨勭鑺潵璋?鎬荤粨涓€涓?璁捐楂橀鍙樺帇鍣?鏈夊嚑涓弬鏁拌鑷繁璁惧畾,杩欏嚑涓弬鏁板氨鍐冲畾浜嗗紑鍏崇數婧愮殑宸ヤ綔鏂瑰紡,绗竴鏄璁惧畾鏈€澶у崰绌烘瘮D,杩欎釜鍗犵┖姣旀槸鐢变綘鑷繁璁惧畾鐨勬劅搴旂數鍘媀OR鏉ョ‘瀹氱殑,鍐嶅氨鏄瀹氬師杈圭數娴佺殑娉㈠舰,纭畾KRP鐨勫€?璁捐鍙樺帇鍣ㄦ椂,杩樿璁惧畾鍏剁鑺尟骞匓,杩欏張鏄竴涓瀹?鎵€鏈夎繖浜涜瀹?灏辫杩欎釜寮€鍏崇數婧愬伐浣滃湪浣犺瀹氱殑鏂瑰紡涔嬩笅浜?瑕佷笉鏂殑璋冩暣,宸ヤ綔鍦ㄤ竴涓浣犳潵璇存渶濂界殑鐘舵€佷箣涓?杩欏氨鏄珮棰戝彉鍘嬪櫒鐨勮璁′换鍔?鎬荤粨涓€涓?。

反激式LED驱动电源的高频变压器设计实例

反激式LED驱动电源的高频变压器设计实例

反激式LED驱动电源的高频变压器设计实例利用单片开关电源TOP226Y设计一个60W反激式LED驱动电源模块,要求交流输人电压为85~265V,输出为+12V、5A设计步骤如下:(1)计算一次侧电感量L P一次侧电感量计算公式,L P=2P0ηI R f如果电源效率为80%,脉动电流(I R)与峰值电流(I P)的比例系数K RP取0.7。

TOP226Y的开关频率为100kHz,漏极极限电流I LIMIT=2.25A。

取I P=2.25A计算时,I R=K RP*I P=0.7×2.25A=1.58A,可得L P=2P0ηI R f =2×600.8×1.58×1.58×100K=600(mH)若取K RP=1,则可算出L P=296μH。

因此,L P可在296-600μH范围内选取,本例选择中间值L P=450μH。

计算Lp时还有另一个公式L P=(U Imin−U DS(ON))∗D maxI R fU Imin为直流输入电压的最小值;U DS(ON)为功率开关管的导通压降;D max为最大占空比。

通常U DS(ON)仅为几伏,可忽略不计。

假定U Imin=85V×1.2=102V,D max=0.6, I R=1.58A,f=100kHz,代人式中得到L P=102×0.61.58×100K=387(μH)计算出的387μF与本例所选择的Lp=450μH比较接近。

(2)选择磁心。

采用AP法选择磁心已知η =80%,P0=60W, K W=0.35,D=0.5;对于反激式LED驱动电源,B M值应介于0.2-0.3T之间,现取B M=0.25T,K RP=0.7,f=100kHz,AP=A W×A e=0.433(1+η)∗P0ηK W DJB M K RP f ×104=0.433×(1+0.8)×600.8×0.35×0.5×400×0.25×0.7×100K×104=0.48cm4根据AP=0.48cm4,查出与之接近的最小磁心规格为EI28,其AP=0.58cm²。

SMPS-反激变压器设计

SMPS-反激变压器设计

开关电源设计——反激变压器设计Flock fai liu2012-02-23学习除了努力,还需要方法!一、电流纹波率在设计之前,先引入SMPS最基本也是影响最广的一个设计参数——电流纹波率(K RP)。

它的设定非常重要,一旦设定好了它,几乎所有参数都已确定。

它会影响功率器件(开关管、输出整流二极管),输出滤波电容的电流应力和损耗,变压器几何尺寸。

所以不了解它,就无法开展变压器的设计。

电流纹波率定义初级纹波电流(△I)与电流有效值(I P)的比值。

即:K RP=△II P ; △I=V DCmin∗T ONL p; I p=I O∗1n1−D MaxK RP的有效范围为0—2,CCM<1,DCM=1,BCM=2 (电感电流的三种工作模式,自参阅书籍),若将它设为0,△I必为0,根据电感方程V=L*△I△t表明此时电感量为无穷大,所以实际中不可能。

从铜损跟铁损的折中考虑、变压器的几何尺寸以及EMI等综合折中;根据输出功率或特性的不同,将K RP设定在0.4—1之间进行调整,低压大电流和大功率输出选择偏低;高压小电流和小功率输出选择偏大。

当V INmin增加时,K RP相对应偏大。

当然任何情况下如果将K RP设定偏小,允许选择更大的磁蕊,效果是非常好的。

但从商业角度来说,控制成本,体积等原因,大多情况下只是空谈吧了。

不过认识这一点是很有帮助的。

当然有时也会有,这时可相对应偏小。

我们必须要深刻了解K RP的设定给设计结果带来的影响。

设置过小,会增大变压器尺寸以及高频铜损问题,当然会减小峰值电流、功率器件、电容的损耗。

CCM模式会使输出整流二极管发热增加。

然而设置过大自然与上述相反了,它还会影响EMI。

然而我们从低压时设计的CCM并不意味着它会一直工作在CCM模式。

它会随着电压的升高或负载的减小,使K RP=1后进入DCM模式,此时在输出整流二极管反向恢复之前电感电流刚好为0,给DIODE提供一个很好的工作条件,但此时再次提醒,K RP越大的缺点。

反激变压器设计实例(二)

反激变压器设计实例(二)

反激变压器设计实例(二)反激变压器设计实例(二)目录反激变压器设计实例(二) (2)导论 (2)一.自跟踪电压抑制. 错误!未定义书签。

2. 反激变换器“缓冲”电路 (8)3. 选择反击变换器功率元件 (10)3.1 输入整流器和电容器 (11)3.2 原边开关晶体管 (11)3.3 副边整流二极管 (12)3.4 输出电容 (13)4. 电路搭接和输出结果 (14)总结 (15)导论前面第一节已经将反激变换器的变压器具体参数计算出来,这里整个反激电路最核心的部件已经确定,我们可以利用saber建立电路拓扑,由saber得出最初的输出参数结果。

首先进行开环控制,输出电容随便输出一个值(由于C1作为输出储能单元,其容值估算应考虑到输出的伏秒,也有人用1~2uF/W进行大概估算),这里选取1000uF作为输出电容。

初始设计中的输出要求12V/3A,故负载选择4欧姆电阻,对于5V/10A 的输出,通过调节负载和占空比可以达到。

由实际测量可得,1mm线径的平均电感和电阻值分别为6uH/匝和2.6mΩ/匝,寄生电感通常为5%,由于副边匝数较少,可不考虑寄生电感,所以原边寄生电感为27uH,电阻为11.57mΩ,最终结果如图1所示。

图1.反激电路主拓扑电压反激到该值,此时二极管导通并保持电压为常数(与得到的能量相比较大)。

在钳位作用结束时,上的电压比开始值稍高。

在周期的维持阶段,由于向放电,上的电压回到他原来的值。

因此多余的反激能量消耗在上。

如果所有的条件保持恒定,减小的值或漏感,钳位电压就会减小。

图3.用于反激变换器原边降低应力的自跟踪集电极电压箝位图4.集电极电压波形,表示电压箝位作用由于反激超调具有有用的功能,因此不希望使钳位电压太低。

在反激作用期间,它提供附加的电压以驱动电流进入副边漏感。

这使变压器副边反激电流更加快速增加,改善了变压器效率并减小了上的损耗。

这对低电压、大电流的输出尤为重要,因为此时漏感相对较大。

反激变压器计算实例

反激变压器计算实例

输出电压Vo:输出电流Io:6A输出功率Po:166W效率η:输入功率Pin:195W一、输入滤波电容计算过程:上图为整流后滤波电容上电压波形,在最低输入电压下,如果我们想在滤波电容上得到的电压Vdc为115V,则从上图可以得到:Vpk=90*=127VVmin=Vdc-(Vpk-Vdc)=103V将电源模块等效为一个电阻负载的话,相当于在T3时间内电容对恒定功率负载进行放电,电容电压降低(Vpk-Vmin)V。

Idc*T3=C*△V其中:△V=Vpk-Vmin=127-103=24V关键部分在T3的计算,T3=t1+t2,t1为半个波头,时间比较好算,对于50Hz的交流来说,t1=5mS,然后就是计算t2,其实t2也很好计算,我们知道交流输入电压的公式为Vx=Vpksinθx,根据已知条件,Vx=103V,Vpk=127V,可以得到θx=54度,所以t2=54*10ms/180=3mS, T3=t1+t2=8mS。

C=*8/24==570uF二、变压器的设计过程变压器的设计分别按照DCM、CCM、QR两种方式进行计算,其实QR也是DCM的一种,不同的地方在于QR的工作频率是随着输入电压输出功率的变化而变化的。

对于变压器磁芯的选择,比较常用的方法就是AP法,但经过多次具体设计及根据公司常用型号结合,一般可以直接选择磁芯,象这个功率等级的反激,选择PQ3535的磁芯即可。

磁芯的参数如下:AE=190mm2,AL=4300nH,Bmax≥1)DCM变压器设计过程:开关频率选择80K,最大占空比选择,全范围DCM,则在最低输入电压Vdc下,占空比最大,电路工作在BCM状态,根据伏秒平衡,可以得到以下公式,Vdc*Dmax=Vor*(1-Dmax),从而计算反射电压为Vor=95V匝比 n=Vor/(Vo+Vf)= Vf为整流二极管压降计算初级匝数计算副边匝数 Ns=Np/n=,选择7匝,则原边匝数调整为 Np=*7=23匝计算辅助绕组匝数,输出电压变化范围按照设计,要求在20V输出下辅助绕组能正常供电,所以,辅助绕组选择4匝。

反激式变压器设计(52步)

反激式变压器设计(52步)

工作在不连续电流模式且具有隔离的Buck-Boost 变换器的设计举例Buck-Boost-倒向型的设计要求:1. 输入电压标称值V V 28in =2. 输入电压最小值V V 24in(min)=3. 输入电压最大值V V 32in(max)=4. 输出电压V V 521=5. 输出电流A I 221=6. 输出电压V V 1222=7. 输出电流A I 5.022=8. 窗口利用系数29.0u =K 注:当工作在高频时,工程师必须重新考虑窗口利用系数。

当采用有骨架的铁氧体磁心时,骨架的绕线面积与磁心的窗口面积之比仅为0.6.工作在100kHz 和由于趋肤效应,必须要用26号线时,导线裸铜面积与带绝缘面积之比为0.78因此总的窗口利用系数变小。

在第三章中磁心几何常数是利用窗口u K g K 4.0u =K 计算的。

为了计算恢复正常。

磁心几何常数要乘以1.35,然后用窗口利用系数g K 29.0u =K 计算电流密度,详见第四章9. 变换器效率)(%9898.0=η 10. 频率khz f 100=11. 最大占空比5.0max =D 12. 休止时间的占空比为1.0=w D 13. 调整率%0.1=α14. 工作磁通密度T B m 25.0=15. 二极管压降V V d 1=趋肤效应:电感器中的趋肤效应和变压器中的趋肤效应一一样得。

在常规的直流电感器(DC )中。

交流(AC )电流(交流AC 磁通)很小,不需要与变压器中同样的最大号导线。

而在不连续电流模式时的flyback 变换器的设计中。

必须像高频变压器那样来考虑趋肤效应。

有时,大尺寸粗导线太难绕制,大尺寸导线不仅加工困难,而且也不可能绕的很伏贴。

通常用双股或四股来绕制就比较容易,或用利玆线。

选择一导线,使其交流电阻等于直流电阻,即;DC AC R R = 趋肤深度是:)(0209.010000062.6)(62.6cm cm f==−−=ε则考虑趋肤效应后导线的最小直径为:2min (min)min 126.044.0418.00418.00209.022mm A mm mm cm d W ==≈==×==πε导线面积为 *************************************************))(75Hz f mm f s s 开关频率(−−=Δ 8***************************************************计算步骤1计算总周期s f T μ1010000011=== 计算步骤2计算晶体管最大导通时间n t 0 s s TD t n μμ55.010)(max 0=×=−−=计算步骤3计算次级绕组1负载功率21P ()()ww V V I P d 12152)(212121=+×=−−+=计算步骤4计算次级绕组2负载功率 22P()()ww V V I P d 5.61125.0)(222222=+×=−−+=计算步骤5计算输出总功率 2P )(5.185.61222212w P P P =+=+=计算步骤6计算最大输入电流(max)in I A A V P I in in 787.098.0245.18)((min)2(max)=×=−−×=η 计算步骤7计算初级电流峰值)(pk p I A A t V T P I on in pk p 15.31052498.010105.182)(266(max)(min)2)(=××××××=−−−=−−η计算步骤8计算初级电流有效值)(RMS P I A A T t I I on PK P RMS P 29.1103515.3)(3)()(=×=−−−= 计算步骤9 计算最大输入功率(max)in P w w P P o in 88.1898.05.18)((max)(max)==−−=η计算步骤10计算等效输入电阻)(equiv in R Ω=×=Ω−−−=5.3088.182424)((max)2(min))(in in equiv in P V R计算步骤11计算要求的初级电感量 L H H TD R L equiv in μ3825.010105.30)(2262max)(=×××=−−−=− 计算步骤12计算能量处理能力WJ JLI W pk p −=××=−−=−000189.0215.310382262)( 计算步骤13计算电状态e K0000168.01025.05.18145.010145.042422=×××=×=−−m e B P K 计算步骤14计算磁心几何常数g K 55625200288.035.100213.000213.01108.16000189.0)(cm cm cm K W K e g =×=××=−−−=−α计算步骤15查表找出磁心尺寸铁氧体磁心尺寸数据表选上磁心型号为EFD-20其参数如下:制造商 Plilips材料牌号: 3C85磁路平均长度MPL=4.7cm磁心质量g W tFe 7=铜线质量g W tCu 8.6=线圈平均匝长MLT=3.8cm磁心截面积231.0cm A c =2501.0cm W a =窗口面积4155.0cm A p =面积乘积500506..0cm K g =磁心几何常数23.13·cm A t =散热面积变压器2500=m μ磁心导磁率cm G 54.1=绕组长度计算步骤16计算绕组电流密度J29.0/36.329.0155.025.010000189.02)/(1022422=−−=××××=−−×=磁心窗口铜线利用系数u up m K mm A mm A K A B W J 计算步骤17计算初级导线面积)(B pw A 22)()(384.036.329.1mm mm J I A RMS P B pw ==−−=计算步骤18计算初级绕组需要导线股数np S 304.3126.0384.0(min))(≈===W B pw np A A S 计算步骤19计算初级绕组匝数p N 1. 先根据导线面积看骨架能容纳几根导线2. 初、次级绕组各占一半绕线面积225.02501.02cm W W a ap === 199.1810384.025.029.02)(≈=××==−B pw apu p A W K N 即绕组最多可绕19匝计算步骤20计算磁心需要的气隙g l cm cm MPL L A N l mc pg −−=−×××=−−−×=−−0384.025007.4000035.01031.0194.0)(104.08282πμπ 计算步骤21计算以圆密尔为单位的等效气隙mils 圆密尔-157.3930384.07.393=×=×=g l mils不知次计算有什么用?计算步骤22计算边缘磁通系数 F 30.10384.054.12ln 31.00384.012ln 1=×+=+=gc gl G A l F 计算步骤23通过引入边缘磁通系数F 计算新的初级匝数 np N 匝−−=××××=×=−−17103.131.04.0000038.00384.0104.088ππF A L l N c g np 计算步骤24计算磁通密度峰值pk B)(219.025007.40384.01015.,33.1174.0)(104.044)(T T MPL l FI N B m g PK P np PK −−=+××××=−−−+×=−−πμπ 计算步骤25计算初级每厘米阻值cm /Ωμ cm S cm r np p /--45331360/Ω==Ω=μμ计算步骤26计算初级绕组阻值P R ())(293.010453178.3)(10)(66Ω−−=×××=Ω−−⎟⎠⎞⎜⎝⎛×Ω=−−cm N MLT R np P μ 计算步骤27计算初级铜损pcu P w w R I P p RMS P pcu −−=×=−−=488.0293.029.1)(22)(计算步骤28计算次级1绕组的匝数 21N ()()()()34.35.0241.05.0115171max min max 2121≈=×−−+=−−+=D V D D V V N N P W d np 计算步骤29计算次级绕组1电流的峰值 21I )21pk I ()(101.05.0122)(12max 21)21A A D D I I W pk −=−−×=−−−−=(计算步骤30计算次级绕组1电流的有效值 21I )21RMS I (A A D D I I W pk RMS −−=−−=−−−−=65.331.05.0110)(31max )21)21((计算步骤31计算次级绕组1导线的面积 21W A 22)(212108.136.365.3mm mm J I A RMS W −==−−= 计算步骤32计算次级绕组1需要导线股数 21n S 96,8126.008.1min2121≈===W W n A A S 计算步骤33计算次级绕组1的每厘米阻值 21r cm cm S cm r n /15191360//2121Ω−−==Ω−−Ω=μμμ 计算步骤34计算次级绕组1的阻值 21R ()()Ω−−=×××=Ω−−×=−−0018.01015138.3)(1066212121r N MLT R 计算步骤35计算次级绕组1的铜损cu P 21w w R I P rms cu −−=×=−−=0240.00018.065.3)(2212)(2121 计算步骤36计算次级2绕组的匝数 22N()()()()74.75.0241.05.01112171max min max 2222≈=×−−+=−−+=D V D D V V N N P W d np 计算步骤37计算次级绕组2电流的峰值 22I )22pk I ()(5.21.05.015.02)(12max 22)22A A D D I I W pk −=−−×=−−−−=(计算步骤38计算次级绕组2电流的有效值 22I )22rms I (A A D D I I W pk rms −−=−−=−−−−=913.031.05.015.2)(31max )22)22((计算步骤39计算次级绕组2导线的面积 22W A 22)(2222271.036.3913.0mm mm J I A RMS W −==−−=计算步骤40计算次级绕组2需要导线股数 22n S 21,2126.0271.0min2222≈===W W n A A S 计算步骤41计算次级绕组2的每厘米阻值 22r cm cm S cm r n /68021360//2122Ω−−==Ω−−Ω=μμμ 计算步骤42计算次级绕组2的阻值22R ()()Ω−−=×××=Ω−−×=−−0181.01068078.3)(1066222222r N MLT R 计算步骤43计算次级绕组2的铜损cu P 22ww R I P RMS cu −−=×=−−=0151.00181.0913.0)(2222)(2222计算步骤44计算窗口利用系数 U K ()()可以绕下小于计算设定−−==××+×+×++=29.0224.0501.000126.02793316(min)22222121u aW n n np P u K W A S N S N S N K计算步骤45计算总铜损 CU P wP P P P CUCU PCU CU −−=++=++=0879.00151.00240.00488.02221计算步骤46计算此设计的调整率α %475.0%1005.180879.0%1002=×=×=P P CU α计算步骤47计算交流磁通密度AC B )(111.025007.4384.010244.33.1164.0)(1024.044){T T MPL l I FN B mg PK P np AC −−=+××××=−−−+×=−−πμπ计算步骤48计算磁心每公斤损耗功率p )/(6.21111.010*********.4)/(10855.462.263.1562.263.15kg w kg w B f p AC AC −−=×××=−−×××=−−计算步骤49计算磁心损耗fe P ww W p P t fe −−=××=−−××=−−151.01076.21)(1033 计算步骤50计算变压器效率η%7.98151.00879.05.185.18%10022=++=×++=feCU P P P P η计算步骤51计算变压器散热表面积散热密度ψ018.03.13151.00879.0)/(2=+=−−+=cm w A P P tfecu ψ计算步骤52计算温升t T )(3.16018.0450)(450826.0826.0C C T t °−−=×=°−−×=ψ隐形专家根据“变压器与电感器设计手册”第三版。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AC输入:85-265V
输出功率:10瓦 n=0.85
查磁芯规格F=60KHZ时宽电压10W选EE19合适, 查得Ae=0.22平方厘米 Bm=0.22T
例1:
设Dmax=0.5 f=60k
DCinmin=85v*1.414-20v=100v
Ipk=(2*Po)/DCinmin*Dmax
=(2*10)/100*0.5
=0.4A
LP =(DCinmin*Dmax*Ts)/Ipk
=[100*0.5*(1/60000)]/0.4
=0.00208H
=2.08mH
NP =(LP*Ipk)/(Ae*Bm)
=0.00208*0.4/0.22*0.22
=172T
例2:
Pin=Po/n =10/0.85=11.76W
Ts=1/60000=16.7us
ton=Dmax*Ts=0.5*16.7=8.33
Np=(DCinmin*ton)/Ae*Bm
=100*8.33/0.22*0.22
=172T
Is=Pin/DCinmin=11.76/100=0.12A
Iave=(Is*Ts)/ton
=0.12*16.7/8.33=0.24A
Imin=Iave/2=0.24/2=0.12A
Ipk=3*Imin=0.12*3=0.36A
LP=(DCinmin*ton)/Ipk
=100*0.00000833/0.36
=0.0023H=2.3mH
例3:
Vf反射电压
VmosMOS管耐压设600V留150V裕量
DCinmax=ACinmax*1.414-20
=265*1.414-20=355V
Vf=Vmos-DCinmax-150v
=600-355-150=95V
DCinmin*Dmax=Vf*(1-Dmax)
100*Dmax=95*(1-Dmax)
Dmax=0.49
1/2*(Imin+Ipk)*Dmax*DCinmin=(Po/n)
Ipk=3*Imin
1/2*(Ipk/3+Ipk)*0.49*100=10/0.85
Ipk=0.36A
Lp=(Dmax*DCinmin)/(f*Ipk)
=(0.49*100)/(600000*0.36)
=0.0023H=2.2mH
NP=(LP*Ipk*10000)/(Bm*Ae)
=(0.0023mH*0.36A*10000)/0.22*0.22
=171T
完成! 回复1帖
2
帖 xcj-wj 营长
4262005-06-12 21:48 路过,支持一下! 回复2帖
3帖 philips 旅长
22192005-06-13 08:37
欢迎指正! 回复3帖
4帖 philips 旅长 22192005-06-13 08:39
第三例的f 输错了!应该是60000.但结果没错!
AC 输入:85-265V
输出功率:110瓦 n=0.83
F=60KHZ
例1:
设Dmax=0.5 f=60k
DCinmin=85v*1.414-20v=100v
Ipk=(2*Po)/DCinmin*Dmax
=(2*110)/100*0.5
=4.4A
例2:
Pin=Po/n =110/0.83=133W
Ts=1/60000=16.7us
ton=Dmax*Ts=0.5*16.7=8.33
Is=Pin/DCinmin=133/100=1.33A
Iave=(Is*Ts)/ton
=1.33*16.7/8.33=2.66A
Imin=Iave/2=2.66/2=1.33A
Ipk=3*Imin=1.33*3=3.99A
为什么我算的出来的峰值电流差别那么大,是不是功率越大,误差越大?我看你的10W 误差是0.04A 啊,我的110W 误差是0.4A 啊?这在可接受的范围内吗?
回复15帖
162帖 hmwdjcat 工兵 4六2009-08-22 12:45
因为在 反激电源拓扑中应该取n=0.75而不是0.85,所以你们的误差比较大, 回复162帖
16帖 peterchen0721旅长
21012005-08-21 09:02
如果反激式照你的評估方式去做那還有幾個考量點請再查一下資料.
1.把171T與
2.2mH結合去查鐵心資料看AL值為多少(gap問題).
2.利用找到的AL值去對照NIpk值(安匝)是否在曲線內.
完成以上兩個工作才能說初步完成變壓器設計.否則你的電特性與磁特性無法確定是否配合的上.以上提供參考.
回复16帖
17帖philips旅长22192005-08-21 14:03
说的也是!变压器是不可完全套公式去设计的!我大多也是靠经验来完成!不过套公式!变压器是绝对可工作的!只是某些细节要求可能达不到!。

相关文档
最新文档