六年级-数学-小升初奥数:分数、百分数-应用题[1]
【奥数题】人教版小学数学六年级上册分数、百分数问题奥数思维拓展(试题)含答案与解析
分数、百分数问题奥数思维拓展一.选择题(共6小题)1.一袋洗衣粉,第一周用了全部的,第二周用了全部的25%,还剩1.2千克。
这瓶洗衣粉原来有多少千克?()A.3.2B.5.6C.3.5D.5.22.汽车厂今年上半年完成计划的75%,下半年完成计划的,汽车厂今年超产()A.75%B.50%C.25%D.125%3.甲数比乙数多,乙数就比甲数少()A.12.5%B.37.5%C.60%4.体育用品商店进购一批体育器材,其中足球和篮球的总数是150个,足球的数量占两种球总数的40%.后来又进购了一些足球,此时篮球的数量占两种球总数的,后来又进购了()个足球.A.90B.70C.605.学校一次课外活动,缺勤人数是出勤人数的10%,后来又有2人因病请假,这时缺勤人数是出勤人数的,这个学校课外活动小组共有()A.99人B.90人C.100人D.190人6.某厂上半月完成计划的75%,下半月完成计划的,这个月增产()A.25%B.45%C.30%D.20%二.填空题(共8小题)7.某服装厂计划一个月生产衬衫8000件,结果上半月完成了60%,下半月完成,这个月超量生产件。
8.某超市将商品促销活动,一种书包原价是100元,先降价20%后,又提价这种书包现在的售价是元。
9.湖边种了40棵柳树,是桃树棵数的,榕树的棵数是桃树棵数的65%。
湖边种了棵榕树。
10.工地有水泥120吨,沙子的质量是水泥的40%,又是石子的,石子的质量是吨。
11.运动健身迎亚运,和谐杭州展新韵。
为迎接第十九届杭州亚运会,学校组织教师健步走,张老师已经走了全程的40%,如果再走4千米,已走路程就占全程的。
这次健步走的全程是千米。
12.明彩文具超市新购进180支钢笔,新购进的圆珠笔的数量比钢笔多,新购进的圆珠笔有支;新购进的中性笔比圆珠笔少50%。
新购进的中性笔有支。
13.一堆货物,第一天运走了总数的,第二天运走了总数的25%,剩下的按3:4分配给甲车和乙车。
小升初奥数分数百分数知识点总结
小升初奥数分数百分数知识点总结【篇一】基本概念与性质:分数:把单位“1”平均分成几份,表示这样的一份或几份的数。
分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
分数单位:把单位“1”平均分成几份,表示这样一份的数。
百分数:表示一个数是另一个数百分之几的数。
常用方法:①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。
②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。
③转化思维方法:把一类应用题转化成另一类应用题进行解答。
最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。
常见的处理方法是确定不同的标准为一倍量。
④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。
⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。
有以下三种情况:A、分量发生变化,总量不变。
B、总量发生变化,但其中有的分量不变。
C、总量和分量都发生变化,但分量之间的差量不变化。
⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。
⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。
⑧浓度配比法:一般应用于总量和分量都发生变化的状况。
【篇二】分数和百分数的常用小学数学公式:1、特殊形式(1)“的”字类“的”前ד的”后(2)“是、相当于、占”字类“是”前÷“是”后“相当于”前÷“相当于”后“占”前÷“占”后(3)“比”字类(大数—小数)÷“比”后的数2、找标准量(单位“1”)的方法要正确找准单位“1”的量(即标准量)必须从题目中的分率句着手。
(1)分数应用题,存在着整体和部分两个数量,一般来说,整体是标准量,部分是比较量。
六年级小升初奥数题100例附答案(完整版)
六年级小升初奥数题100例附答案(完整版)题目1:一个数的30%是15,这个数是多少?答案:15÷30% = 50题目2:比80 米多25%是多少米?答案:80×(1 + 25%) = 100 米题目3:某班男生人数是女生人数的4/5,女生比男生多5 人,男生有多少人?答案:设女生人数为x 人,则男生人数为4/5 x 人。
x - 4/5 x = 5 ,解得x = 25 ,男生人数为20 人。
题目4:一个圆的半径是4 厘米,它的面积是多少平方厘米?答案:3.14×4×4 = 50.24 平方厘米题目5:一件商品原价200 元,现打八折出售,现价是多少元?答案:200×80% = 160 元题目6:在一个比例中,两个外项互为倒数,其中一个内项是 2.5,另一个内项是多少?答案:两个外项互为倒数,积为1。
所以另一个内项为1÷2.5 = 0.4题目7:一项工程,甲单独做15 天完成,乙单独做20 天完成,甲乙合作几天完成?答案:1÷(1/15 + 1/20) = 60/7 天题目8:一个数除以8,商是12,余数是5,这个数是多少?答案:8×12 + 5 = 101题目9:有一堆煤,第一天用去1/3,第二天用去1/4,还剩下18 吨,这堆煤原有多少吨?答案:设这堆煤原有x 吨,x - 1/3 x - 1/4 x = 18 ,解得x = 43.2 吨题目10:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少?答案:48÷4 = 12 厘米,长为12×3/(3 + 2 + 1) = 6 厘米,宽为4 厘米,高为2 厘米,体积为6×4×2 = 48 立方厘米题目11:一个圆锥形沙堆,底面周长是18.84 米,高是 2 米,每立方米沙重 1.8 吨,这堆沙重多少吨?答案:底面半径为18.84÷3.14÷2 = 3 米,体积为1/3×3.14×3×3×2 = 18.84 立方米,重18.84×1.8 = 33.912 吨题目12:甲乙两车同时从A、B 两地相对开出,3 小时相遇,甲车每小时行50 千米,乙车每小时行40 千米,A、B 两地相距多少千米?答案:(50 + 40)×3 = 270 千米题目13:小明看一本120 页的书,第一天看了全书的1/4,第二天看了全书的1/3,第三天应从第几页看起?答案:第一天看了120×1/4 = 30 页,第二天看了120×1/3 = 40 页,前两天共看了70 页,第三天从第71 页看起。
六年级下册数学试题 - 小升初奥数常考题型100题(无答案) 人教新课标(2014秋)
小升初奥数常考题型100题列方程解应用题:1、李老师给幼儿园小朋友分草莓,如果每个小朋友分5个草莓还剩下14个;如果每个小朋友分7个草莓则差4个,求共有多少草莓?共有多少个小朋友?2、小明同学看见山上有一群羊,他自言自语到:“我如果有这些羊,再加上这些羊,然后加上这些羊的一半,又加上这些羊一半的一半,最后再加上我家里的那只,一共有100只羊”.山上的羊共有______只.3、张老师周六晚带六年级同学去春游,男孩戴小黄帽,女孩戴小红帽。
在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍。
问:六年级男孩、女孩各多少人?【答案】男14人,女8人(提示:每个人看不到自己的帽子)4、笑笑要将一批《530冲刺班》课本打包后送往邮局(要求每包所装册数相同),这批课本的35够打5包多44本。
如果这批课本刚好可以打9包,那么这批课本共多少本?、5、寒暑表上通常有两个刻度,摄氏度(记为℃)和华氏度(记为F。
),它们之间的换算关系是:摄氏度9325⨯+=华氏度,那么在摄氏多少度时,华氏度的值恰好比摄氏度的值大60.6、淘气同学家有一种神奇的植物,它生长得非常迅速,每天都会生长到昨天质量的2倍还多3公斤.培养了3天后,植物的质量达到45公斤,求这株植物原来有多少公斤?7、某旅游点有儿童票、成人票两种规格的门票卖,儿童票的价格为30元,成人票的价格为40元,如果是团体还可以买平均32元一位的团体票,一个由8个家庭组成的旅游团(每个家庭由两位大人,或两个大人、一个小孩组成)来景点旅游,如果他们买团体票那么可以比他们各自买票少花120元,问这个旅游团一共有多少人?8、唐代大诗人李白虽然诗写得好,但是很爱喝酒,杜甫说他是“李白斗酒诗百篇”。
传说李白喝酒曾有一道数学趣题:李白好喝酒,提壶街上走。
遇店加一倍,逢花喝一斗。
三遇店和花,喝光壶中酒。
请问此壶中,原有多少酒。
9、小明、小张、小李迪三位同学同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量.10、把金放在水里称,其重量减轻119;把银放在水里称,其重量减轻110.现有一块金银合金重770克,放在水里称共减轻了50克,问这块合金含金、银各多少克?11、赵老师购买了一套教师住宅,原计划采取分期付款方式.一种付款方式是开始第一年先付7万元,以后每年付款1万元;另一种付款方式是前一半时间每年付款2万元,后一半时间,每年付款1万5千元.两种付款方式的付款总数和付款时间都相同.假如一次性付款,可以少付房款1万6千元.现在赵老师决定采用一次性付款方式.问:赵老师要付房款多少万元?12、从前有一位王子,有一天,他把几位妹妹召集起来,出了一道数学题考她们.题目是:我有金、银两个首饰箱,箱内分别装有若干件首饰,如果把金箱中25%的首饰送给第一个算对这个题目的人,把银箱中20%的首饰送给第二个算对这个题目的人,然后我再从金箱中拿出5件送给第三个算对这个题目的,再从银箱中拿出4件送给第四个算对这个题目的人.最后我的金箱中剩下的首饰比分掉的多10件,银箱中剩下的首饰与分掉的比是2:1.王子的金箱中原来有首饰________件,银箱中原来有首饰________件.13、共有多少人参加测验?14、任和同学用边长相同的正六边形白色皮块、正五边形黑色皮块总计32块,缝制成一个足球,如图所示,每个黑色皮块邻接的都是白色皮块;每个白色皮块相间地与3个黑色皮块及3个白色皮块相邻接.问:这个足球上共有多少块白色皮块?分比百应用题:15、某商品价格为1200元,降价15%后,又降价20%,由于销售额猛增,商店决定再提价25%,提价后这种商品的价格为元。
小学六年级奥数教程题目
奥数教程(六年级)第一讲 分数的计算例1 计算:4.3695.3)5.3694.3(2009-⨯+⨯⨯ (提示:转化成分母相同) 例2 计算:1341321318428.44.22.113913313118628.106.32.1⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯ (提示:找分子分母共同点,变形)例3 计算:10241195121172561151281136411132191617815413211+++++++++(提示:先合并再相加) 例4 计算:)1099()988()877()766()655()544()433()322()211(-⨯-⨯-⨯-⨯-⨯-⨯-⨯-⨯-(提示:先求差)例5 计算:23191713111917132223171311132613117455⨯⨯+⨯⨯+⨯⨯+⨯⨯(分子分解质因数,约分) 例6 计算:()123...891098...32199...531)100...642(22222222++++++++++++++++-++++第二讲 分数的大小比较例1 分数75、1715、94、12440、309103中,哪一个最大?(提示:化简,统一分子)例2 在□内填上相同的自然数,使不等式3619613111>++++ 成立,此时□内的数的最大值是几?例3 若A=12009200912+-, B=2220082009200820091+⨯-,比较A 与B 的大小。
(提示:比较分母)例4 不求和,比较200520022004200420032005+与200520022003200420032006+的大小。
例5 在下列□内填两个相邻的整数,使不等式成立。
□<10191817161514131211+++++++++<□ 例6 已知A=21771 (21611216011)+++,求A 的整数部分是多少?第三讲 巧算分数的和例1 计算:50491...431321211⨯++⨯+⨯+⨯ 例2 计算:100981...861641421⨯++⨯+⨯+⨯ 例3 计算:10099981...43213211⨯⨯++⨯⨯+⨯⨯ 例4 计算:10099...3211...4321132112111++++++++++++++++例5 计算:2019...4321...54321432132121++++++++++++++++ 例6 计算:⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++9911...311211991 (41131121141)3112113121121 第四讲 繁分数例1 计算:20072008200820091200920092009122⨯+-+-÷ 例2 计算:41322111+++例3 规定□表示选择两数中较大的数的运算,△表示选择两数中较小的数的运算。
六年级下册奥数试题-百分数应用题全国通用
百分数应用题 姓名1(例)、甲数比乙数大20%,乙数比丙数大20%,则甲数比丙数大百分之几?2、中心小学四年级学生人数比五年级多20%,五年级比六年级多10%,四年级比六年级多百分之几?3(例)、兄弟两人各有10元钱,弟弟给哥哥几元后,哥哥的钱比弟弟多50%?4、小红要做50道题,她还没做的比已做好的多50%,她已做好几题?5(例)、某商品按定价的80%(打八折)出售,仍获得10%的利润率,定价时期望的利润率是多少?6、某商品原来期望的利润率为20%,后来降价后得到的利润率是8%,求这种商品打几折出售?7(例)、某商店同时卖出两件商品,每件各卖得120元,但其中一件赚20%,另一件亏20%,问这个商店卖出这两件商品是赚了还是亏本?8、妈妈买了苹果和梨各一千克,价格不一样,如果梨价格提高20%,苹果价格降低10%,那么两种水果所花的钱一样,问梨的价格是苹果的百分之几?9(例)、体育用品商店进了一批足球,分一级品和二级品,二级品的进价比一级品便宜10%,按优质优价原则,一级品按20%利润定价,二级品按15%利润定价,一级品足球比二级品足球每个贵3.3元,问一级品足球进价是每个多少元?10、一种商品,甲店进货价格比乙店进货价格便宜5%,甲店按20%的利润定价,乙店按15%定价,结果乙店比甲店贵3.3元,问乙店的进货价格是多少元?11(例)、某商店进甲、乙两种商品共用了4000元,全部卖完后共盈利500元,甲种商品的利润率为12%,乙种商品的利润率为14%,问商店购进甲、乙两种商品分别用了多少钱?12、体育用品商店进了篮球和足球,共用去200元,篮球以30%的利润定价,足球以20%的利润定价,卖完后共盈利50元,问篮球的售出价共多少钱?练习题(A 组)1、某商品按15%的利润定价,然后又按八折出售,结果亏损了32元,问这种商品的成本是多少元?2、某商品按20%的利润定价,然后按九折卖出,共获利80元,求商品的成本是多少元?3、陈老师把节省下来的钱2500元存入银行,一年定期的月利率为00051.1,一年后本息共多少元?4、某企业向银行贷款140万元,半年后还贷款时共付144.284万元。
六年级数学上应用题归纳
六年级数学上应用题归纳一、分数应用题1.求一个数是另一个数的几分之几解法:部分量÷标准量=分率2.已知一个数,求这个数的几分之几是多少(已知整体,求部分)解法:标准量×分率=部分量3.已知一个数的几分之几是多少,求这个数是几(已知部分,求整体)解法①:部分量÷分率=标准量解法②:(列方程)设这个数是x,则x×分率=部分量二、百分数应用题1. 求一个数是另一个数的百分之几解法:部分量÷标准量=百分率2. 已知一个数,求这个数的百分之几是多少(已知整体,求部分)解法:标准量×百分率=部分量3.已知一个数的百分之几是多少,求这个数是几(已知部分,求整体)解法①:部分量÷百分率=标准量解法②:(列方程)设这个数是x,则x×百分率=部分量分百应用题要找准题中的关键词,比如:是,比,占,相当于,等于,和“谁”比,谁就是单位“1”,就是标准量三、比的问题1.已知A,B比A多几分之几,求B解法:A×(1+分率)2.已知B,B比A多几分之几,求A解法:(列方程)设A为x,则x ×(1+分率)=B“少几分之几”的问题把加号改减号四、替换法替换的策略是指将题目中的一个量用另一个量表示,这样就将两个量替换成为一个量,将题目进行了简化,从而方便解题。
替换法体现了数学中等量代换的思想,在运用过程中一定要注意找准进行替换的量,只有相等的两个量才能够进行替换替换法一定要用“箭头()”表示清楚用哪个替换哪个,它们之间的数量关系是如何,五、假设法(“鸡兔同笼”问题)解法1:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数解法2:假设全是鸡(略)“鸡兔同笼”问题一定要先假设,假设为同一类,把问题简单化,然后再解替换法和假设法两类题解答完后一定要把答案代入题中验算,防止把两者对应答案搞错!!分数应用题在小学数学中非常重要,它不仅是考试中的重点,也是难点。
(应用题专题)百分数(一)六大类型应用题(小升初专项练习)六年级数学小考总复习(含答案)
(应用题专题)百分数(一)六大类型应用题(小升初专项练习)六年级数学小考总复习(含答案)类型一、求百分率的问题(1)求百分率就是求一个数是另一个数的百分之几。
(2)常用公式:成活率=成活数÷种植总数×100%;合格率=合格产品数÷产品总数×100%;出勤率=出勤人数÷总人数×100%;发芽率=发芽数÷种植总数×100%;正确率=正确题数÷总题数×100%;通过率=通过人数÷总人数×100%;【例1】林园里种了500棵树苗,其中成活了485棵树苗,那么树苗的成活率是多少?【解题分析】(1)采用公式:成活率=成活数÷种植总数×100%;(2)百分率表示两个数的比,所以不带单位名称。
【解答】485÷500×100%=0.97×100%=97%答:树苗的成活率是95%。
1、生产一批洗衣液1250瓶,其中有180瓶不合格,那么这批洗衣液是合格率是多少?2、果园里种植了800棵苹果树,其中成活了780棵苹果树,那么树苗的不成活率是多少?3、六(1)班有28人参加校运动会的50米短跑比赛的淘汰赛,其中有13人第一轮就被淘汰,第二轮又淘汰了8人,剩下的人都通过,那么这次短跑比赛淘汰赛的通过率是多少?4、小琳做了30道竖式计算练习题,做对了27道,这次练习她的正确率是多少?5、生产一批螺丝的合格率是85%,那么360个螺丝就有多少个不合格?合格的螺丝数量比不合格的数量多多少个?6、豆芽发芽培植试验,用300颗绿豆做试验,结果有15颗绿豆没有发芽,本次试验豆芽的发芽率约为百分之几?7、信仪电子厂有200名员工,元旦假期后第一周的出勤情况如下图:(1)求周三的出勤率是多少?(2)如果出勤率是97.5%,那么这一天共有多少人上班?类型二、求一个数的百分之几是多少所求量=一个数(单位“1”)×百分率。
六年级小升初奥数题
1、一件工程,甲独做12天完成,乙独做18天完成,丙独做24天完成;这件工作先由甲做了若干天,然后由乙做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于完成任务,求这件工作做完共用多少天2、砌一面墙,甲要用10天,若甲乙合作6天可以完成,乙丙合作要8天完成;现在三人合作,砌完墙后甲比丙多砌了3000块;乙砌了多少块3、4、一件工程,甲先做63天,再由乙独做28天完成,如果两队合作需48天完成;现在甲先做42天,再由乙做,还要多少天完成565、一件工程,甲独做要12天完成,乙独做要9天完成,如果甲先做若干天后乙接着做,共用10天完成,问甲做了多少天46、一份稿件,甲、乙、丙三人单独打字分别要20小时,24小时,30小时;现在三人合打,但甲因中途另有任务提前撤出,结果用12小时完成,甲只打了多少小时27、师徒两人加工同样多的零件,师傅要10分钟,徒弟要18分钟;两人共同加工零件168个,如果要在相同的时间内完成,两人各应加工零件多少个108 608、修一条公路,甲独修要40天,乙独修要24天;现在两队同时从两端开工,结果在距中点750米处相遇,这段公路长多少米6009、师徒两人同时一起加工一批零件,用了15/4小时完成,完工时师傅比徒弟一共多做零件30个;如果单独加工这批零件,师傅需要6小时,徒弟需要10小时,这批零件共有多少个10、120•1师徒效率比5:3,即工作量的比也是5:3,师比徒弟多做2份,两份对应30个;•30÷5-3×5+3=120•215/4 ÷6=5/8甲15/4时完成工作总量的5/815/4 ÷10=3/8乙15/4时完成工作总量的3/830 ÷5/8-3/8=12011、移栽树苗,兄弟俩合栽8小时完成,哥哥先栽了3小时后,弟弟又栽了1小时,还剩总数11/16没栽,已知哥哥每小时比弟弟多栽7棵,这块地共有多少棵树苗11210、一批零件,由甲乙两人合做30天完成,甲先做22天,两人再合作12天,剩下的乙单独做还要16天才能全部完成;又知甲每天比乙少做4个零件,问照这样完成任务时,乙共做了多少个零件11、株洲火车站检票前若干分钟开始排队,假设每分钟来的旅客一样多;若同时开4个检票口,15分钟检完,若同时开6个检票口,9分钟检完,那么要求5分钟检完,开放多少个检票口12、仓库里原有一些货物,以后还不断运货进仓,而且每天运进的货同样多;如果用4辆同样的汽车运,9天运完;如果用5辆汽车运,6天运完;如果用1辆汽车运出仓库里原有的存货,则需要几天运完1813、加工一批零件,甲独做需75小时,乙独做需50小时,已知每小时乙比甲多做12个;如果甲的工效提高50%,而乙每小时比原来多做8个,那么两人合做完成这批零件的2/3需要多少小时 1514、加工一批零件,甲、乙合做24小时可以完成;现在由甲先独做16小时,然后乙再独做12小时,还剩下这批零件的2/5没完成;已知甲每小时比乙多做3个零件,问这批零件共有多少个 36015、有一批黄沙,如果用3辆卡车,4天可运完;如果用4辆马车,5天可运完;如果用20辆板车,6天可运完;现在由2辆卡车、3辆马车、7辆板车共同运2天后,全部改用板车运,且必须在2天内运完,后两天需多少辆板车 1516、甲乙丙三人合修一堵围墙,甲、乙合修6天完成了1/3,乙丙合修2天完成余下工程的1/4,剩下的再由甲、乙、丙三人合修5天完成;现在领工资360元,依工作量分配,甲、乙、丙应各得多少元66 182 11217、甲乙两人承包一项工程,共得工资1120元;已知甲工作了10天,乙工作了13天,又知甲4天的工资比乙5天的工资多40元,求乙分得工资多少元52018、早上8点,甲、乙两车同时从A、B两地的中点处背向开出,甲车开向A地,乙车开向B地,上午9点30分,甲车到达A地,此时乙车距离B地还有60千米;甲车到达A地后立即掉头开往B地,乙车到达B地后也立即掉头开往A地,中午12点,两车在途中相遇,求A、B两地的距离;24019、甲乙两人分别从A、B两地同时出发,相向而行,已知甲的速度是乙的倍,小时后相遇,如果他们同向而行甲在乙的后面,那么甲追上乙需要多少小时 320、甲、乙两人分别从A、B两地同时出发,相向而行,出发时他们的速度比是3:2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B地时,乙离A地还有14千米,那么AB 两地的距离是多少千米 4521、甲乙两车分别从A、B两地出发,相向而行,甲乙的速度比是5:4,相遇后,甲减速20%,乙增速20%,当甲到达B时,乙离A还有10千米,A、B两地相距多少千米45022、一辆汽车从A城开往B城,如果把车速提高20%,则可比原定时间提前1小时到达B城市,如果按原来速度行驶100千米后,再将速度提高30%,恰巧也能比原定时间提前1小时到达B城市;A、B两城市之间的路程是多少千米36023、小明星期天从家去电影院观看电影叶问,去时每分钟走60米,回来时每分钟走50米,这样来回在路上共用了11/12小时,小明家距电影院多远 150024、某人从甲地去乙地,如果先骑摩托车行12小时,再换骑自行车9小时正好到达乙地;如果先骑自行车21小时,再换骑摩托车行8小时,也正好到达乙地;问全程骑摩托车需要多少小时到达乙地;15 25、小景同学每天早晨在同一时刻从家里骑自行车去学校上学,如果以每分钟200米的速度行进,则可在上课前5分钟到达学校;如果以每分钟160米的速度行进,则会迟到5分钟;请问小景家距离学校多远 800026、0901班的小匡、小贺、小龙三位同学进行百米赛跑假设在赛跑中三人均保持速度不变,跑步结束时,玲玲同学记录结果显示:当小匡到达终点时,小贺落后8米;当小贺到达终点时,小龙落后5米;那么当小匡到达终点时,小龙距离终点还有多远27、甲乙两人分别从A、B两地同时出发,相向而行,出发时他们的速度之比为3:2;相遇后甲的速度提高20%,乙的速度提高1/3,继续前行,这样当甲到达B地时,乙离A地还有41千米;求A 、 B两地的距离;•13528、快、中、慢三辆车同时从甲地出发去乙地,沿同一条公路,有一骑摩托车的人从乙地前往甲地;骑摩托车的人经过了6分钟、10分钟、15分钟分别与这三辆车相遇;现在知道快车每小时80千米,中车每小时走40千米,求慢车每小时走多少千米先求出摩托车的速度和AB的距离,也可以根据总路程不变列出方程;2029、甲乙两人分别从A、B两地同时出发,相向而行,匀速前进,如果每人按一定的速度前进,则4小时相遇;如果每人各自都比原计划每小时少走1千米,5小时相遇,那么,A、B两地的距离是多少千米4030、某商品按20%的利润定价,然后按9折出售,结果赚了32元,该商品的成本是多少元 40031、如果李先生以定价的6/7出售一台照相机,他将赚取80元的利润;如果他以其定价的7/8出售,则赚取85元的利润;求照相机的原定价; 28032、某商品按定价出售,每件可获利润45元;如果按定价的70%出售10件,与按定价每件减价25元出售12件所获得的利润一样多;这种商品每件定价多少元 7033、甲乙两种商品成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价;后来都按定价的90%打折出售,结果仍获利131元;甲种商品的成本是多少元120034、商店以每只28元的价格购进一批玩具熊,然后以每只36元的价格出售;当卖出总数的5/6时,不仅收回了全部成本,还盈利240元;商店一共购进多少只玩具熊12035、商店以每双13元的价格购进一批凉鞋,售价为每双16元,卖到还剩5双时,除去购进这批凉鞋的成本还获利88元;这批凉鞋共多少双5636、已知甲校学生数是乙校学生数的2/5,甲校的女生数是甲校学生数的3/10,乙校的男生数是乙校学生数的21/50,那么两校女生总数占两校学生总数的几分之几1/237、某中学的初中部三个年级中,初一的学生数是初二学生的9/10,初二的学生数是初三学生数的5/4,这个学校里初三的学生数占初中部学生的几分之几8/2738、甲班原有学生是乙班的2/3,现在从乙班调4人到甲班,那么甲班人数就相当于乙班人数的7/8,甲乙两班共有学生多少人6039、甲乙两人原有钱若干,现有18元奖金,如果全部给甲,则甲的钱为乙的2倍,如果全部给乙,则乙的钱为甲的7/8,问原来两人各有多少元钱72 4540、两筐苹果共重80千克,如果甲筐取出1/5给乙筐,两筐苹果重量正好相等,原来两筐苹果各有多少千克50 3041、某校有3/5的学生是男生,男生的1/20想当医生,全校想当医生的学生的3/4是男生,那么全校女生的几分之几想当医生42、一包糖,奶糖占总块数1/3,放入18块水果糖后,奶糖占总块数的2/9,奶糖有多少块1243、甲乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,甲、乙两桶油原来各有多少千克 27 2144、甲乙两个桶,甲桶内装1升油,乙桶是空的;第一次把甲桶的1/2倒给乙,第二次把乙桶的1/3倒给甲,第三次把甲的1/4倒给乙,第四次在把乙桶的1/5倒给甲;如此反复,不计消耗,倒了19次,甲桶中还有多少升油45、一个半圆的周长是分米,它的半径是多少分米46、47、48、49、50、51、52、53、54、55、56、57、时针和分针在9点多少分第一次重合49有1/1158、在4点与5点之间,时针与分针什么时候成直角4时5又5/11分和4时38又2/11分59、兴趣小组四年级学生比三年级多25%,五年级学生比四年级少10%,六年级学生比五年级多10%,如果六年级学生比三年级多38人,那么三至六年级共有多少人 73860、大小两桶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶内油的重量比是3:2,求大瓶里原有多少千克油61、洗衣机厂计划20天内生产洗衣机1600台,生产了5天后,由于技术改进了,效率提高了25%,完成计划要用多少天62、如图,甲乙两人分别从A、B两地同时同向而行,经过4小时15分,甲在C处追上乙,这时两人共行了41千米;如果乙从A到B再到C那样走,则他还要用1小时45分;A,B两地相距多少千米63、甲乙两辆汽车同时从A,B两个城市相对开出,经过8小时相遇后,甲车继续向前开到B城还要4小时,已知甲每小时比乙快35千米,求A,B两个城市之间的距离;64、甲乙两辆汽车同时从A,B两站相对开出,第一次相遇时离A站有90千米,然后各按原速度继续行驶,分别到达对方车站后立即沿原路返回,第二次相遇时离A站的距离占A,B两站间的65%,A,B两站间的路程是多少千米65、甲乙两车分别从A,B两地同时出发相向而行,相遇点距中点320米;已知甲的速度是乙的速度的5/6,求A,B两地的路程;66、小明家到学校3.5千米,通常他总是步行上学;有一天他想锻炼身体,前1/3的路程快跑,速度是步行速度的4倍,后一段路程慢跑,速度是步行速度的2倍,这样比平时早35分钟到校,小明步行速度是多少67、如图,在三角形ABC中,M是AD的中点,BD是DC的3倍,求AE是EC的几分之几68、如图,长方形ABCD长8厘米,宽6厘米,延长BC到E,三角形甲比三角形乙面积多16平方厘米,求CE的长;69、图中,两个1/4圆弧的半径分别为2厘米和4厘米,求两个阴影A 与B的面积差;70、如图:BF:AB=1:6,AE:AC=1:5,CD:CB=1:4.若三角形ABC的面积为120平方厘米,求三角形DEF 的面积;71、在如图所示的长方形ABCD中,三角形ABD的面积比三角形BCD的面积大10平方厘米,求阴影部分的面积;72、如图:一个矩形被分成8个小矩形,其中有5个矩形的面积如图所示,那么其中最大的矩形的面积;。
6六年级奥数-第六讲.分数百分数应用题.教师版
一、解答题(共25小题,满分0分)1.(2011•成都)甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价,后来都按定价的90%打折出售,结果仍获利131元,甲商品的成本是多少元?2.(2006•泉山区校级自主招生)100千克刚采下的鲜蘑菇含水量为99%,稍微晾晒后,含水量下降到98%,这100千克的蘑菇现在还有千克.3.有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是多少升?4.(2012•哈尔滨校级自主招生)有甲、乙两堆煤,如果从甲堆运12吨给乙堆,那么两堆煤就一样重.如果从乙堆运12吨给甲堆,那么甲堆煤就是乙堆煤的2倍.这两堆煤共重多少吨?5.一堆围棋子黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为2:1;再拿走45枚黑棋子后,黑子与白子的个数比为1:5,求开始时黑棋子、白棋子各有多少枚?6.某班有学生48人,女生占全班的37.5%,后来又转来女生若干人,这时人数恰好是占全班人数的40%,问转来几名女生?7.(2010•北京校级自主招生)把一个正方形的一边减少20%,另一边增加2米,得到一个长方形.它与原来的正方形面积相等.问正方形的面积是多少?8.学校男生人数占45%,会游泳的学生占54%.男生中会游泳的占72%,问在全体学生中不会游泳的女生占百分之几?9.某校四年级原有2个班,现在要重新编为3个班,将原一班的与原二班的组成新一班,将原一班的与原二班的组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多10%,那么原一班有多少人?10.(2012•中山校级模拟)一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?11.有正方形和长方形两种不同的纸板,正方形纸板总数与长方形纸板总数之比为2:5.现在将这些纸板全部用来拼成横式和竖式两种无盖纸盒,其中竖式盒由一块正方形纸板做底面,四块长方形纸板做侧面(图1),横式盒由一块长方形纸板做底面,两块长方形和两块正方形纸板做侧面(图2),那么做成的竖式纸盒与横式纸盒个数之比是多少?12.(2009•东莞市校级自主招生)某学校入学考试,参加的男生与女生人数之比是4:3.结果录取91人,其中男生与女生人数之比是8:5.未被录取的学生中,男生与女生人数之比是3:4.问报考的共有多少人?13.(2013•北京模拟)幼儿园大班和中班共有32名男生,18名女生.已知大班男生数与女生数的比为5:3,中班中男生数与女生数的比为2:1,那么大班有女生多少名?14.某商店进了一批笔记本,按30%的利润定价.当售出这批笔记本的80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是多少?15.(2014•长沙)A,B,C三个试管中各盛有10克、20克、30克水.把某种浓度的盐水10克倒入A 中,混合后取出10克倒入B中,混合后又从B中取出10克倒入C中.现在C中盐水浓度是0.5%.问最早倒入A中的盐水浓度是多少?16.(2015•泸州校级模拟)小明到商店买红、黑两种笔共66支.红笔每支定价5元,黑笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,黑笔按定价80%付钱,如果他付的钱比按定价少付了18%,那么他买了红笔多少支?17.制鞋厂生产的皮鞋按质量共分10个档次,生产最低档次(即第1档次)的皮鞋每双利润为24元.每提高一个档次,每双皮鞋利润增加6元.最低档次的皮鞋每天可生产180双,提高一个档次每天将少生产9双皮鞋.按天计算,生产哪个档次的皮鞋所获利润最大?最大利润是多少元?18.某中学,上年度高中男、女生共290人.这一年度高中男生增加4%,女生增加5%,共增加13人.本年度该校有男、女生各多少人?19.在如图中AB,AC的长度是15,BC的长度是9.把BC折过去与AC重合,B点落在E点上,求三角形ADE与三角形ABC面积之比.20.(2012•长春)成本0.25元的练习本1200本,按40%的利润定价出售,当销掉80%后,剩下的练习本打折扣出售,结果获得的利润是预定的86%.问剩下的练习本出售时按定价打了多少折扣?21.甲乙两人各有一些书,甲比乙多的数量恰好是两人总数的,如果甲给乙20本,那么乙比甲多的数量恰好是两人总数的.那么他们共有多少本书?22.甲、乙、丙三位同学共有图书108本.乙比甲多18本,乙与丙的图书数之比是5:4.求甲、乙、丙三人所有的图书数之比.23.一个容器内已注满水,有大、中、小三个球.第一次把小球沉入水中;第二次把小球取出,把中球沉入水中;第三次取出中球,把小球和大球一起沉入水中,现在知道每次从容器中溢出水量的情况是,第一次是第二次的,第三次是第一次的2.5倍,求三个球的体积之比.24.某种密瓜每天减价20%.第一天妈妈按定价减价20%买了3个密瓜,第二天妈妈又买了5个密瓜,两天共花了42元.如这8个密瓜都在第三天买,问要花多少钱?25.(2007•兴庆区校级自主招生)袋子里红球与白球数量之比是19:13.放入若干只红球后,红球与白球数量之比变为5:3;再放入若干只白球后,红球与白球数量之比变为13:11.已知放入的红球比白球少80只,那么原先袋子里共有多少只球?2010年学而思教育小升初专项训练9:比例百分数篇参考答案与试题解析一、解答题(共25小题,满分0分)1.(2011•成都)甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价,后来都按定价的90%打折出售,结果仍获利131元,甲商品的成本是多少元?分析:设甲成本为X元,则乙为2200﹣X元,分别把甲、乙商品定价后的价钱求出,然后根据一个数乘分数的意义,求出后来都按定价的90%打折出售的总价钱,继而根据“按定价的90%打折出售的总价钱﹣成本价=获利钱数(131)”列出方程,解答即可.解答:解:设甲成本为x元,则乙为2200﹣x元,则:90%×[(1+20%)x+(2200﹣x)×(1+15%)]﹣2200=131,0.9×[1.2x+2200×1.15﹣1.15x]﹣2200=131,0.9×[0.05x+2530]﹣2200=131,0.045x+2277﹣2200=131,0.045x+77=131,x=1200.答:甲商品的成本是1200元.点评:解答此题的关键是先设出要求的量,进而判断出单位“1”,根据题意,找出数量间的相等关系式,然后根据关系式,进行解答即可;用到的知识点:一个数乘分数的意义.2.(2006•泉山区校级自主招生)100千克刚采下的鲜蘑菇含水量为99%,稍微晾晒后,含水量下降到98%,这100千克的蘑菇现在还有千克.kaodian:浓度问题;百分数的实际应用.分析:此题转化为浓度问题来解答,相当于蒸发问题,所以蘑菇的数量不变,列方程得:100×(1﹣99%)=(1﹣98%)X,解答即可.解答:解:设这100千克的蘑菇现在还有X千克,由题意得:(1﹣98%)X=100×(1﹣99%),2%X=100×1%,2X=100,X=50.答:这100千克的蘑菇现在还有50千克.点评:此题解答的关键是根据蘑菇的数量不变,列出方程,解决问题.3.有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是多少升?kaodian:比的应用;比例的应用.分析:由题意可知:设加进去的水量为x升,则会有(8+x):(13+x)=5:7,解此比例即可.解答:解:设加进去的水量为x升,则会有(8+x):(13+x)=5:7,(8+x)×7=(13+x)×5,56+7x=65+5x,2x=9,x=4.5;答:加进去的水量为4.5升.点评:解答此题的关键是:设出未知数,利用比例解答比较容易理解.4.(2012•哈尔滨校级自主招生)有甲、乙两堆煤,如果从甲堆运12吨给乙堆,那么两堆煤就一样重.如果从乙堆运12吨给甲堆,那么甲堆煤就是乙堆煤的2倍.这两堆煤共重多少吨?分析:“从甲堆运12吨给乙堆两堆煤就一样重”说明甲堆比乙堆原来重12×2=24吨,这样乙堆运12吨给甲堆,说明现在甲乙相差就是24+24=48吨,而甲堆煤就是乙堆煤的2倍,说明相差1份,所以现在甲重48×2=96吨,总共重量为48×3=144吨解答:解:(12×2+12×2)÷(2﹣1),=48÷1,=48(吨);所以甲乙两堆煤重:48×(2+1)=144(吨);答:这两堆煤共重144吨.点评:此题关系较为复杂,要求学生要认真审题,找准等量关系分别得出甲乙原来相差的吨数,以及2倍关系下1份的重量即乙煤重量,从而求得甲乙的总重量.5.一堆围棋子黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为2:1;再拿走45枚黑棋子后,黑子与白子的个数比为1:5,求开始时黑棋子、白棋子各有多少枚?kaodian:比的应用.分析:由题意可知:第二次拿走45枚黑棋,黑子与白子的个数之比由2:1(即10:5)变为1:5,而其中白棋的数目是不变的,这样我们就知道白棋由原来的10份变成现在的1份,减少了9份,这9分对应的数量是45,可以求出原来黑棋的个数,再据“拿走15枚白棋子后,黑子与白子的个数之比为2:1”即可求得原来白棋子的个数.解答:解:因为2:1=10:5,则原来黑棋子的个数:45÷9×10,=5×10,=50(个);原来白棋的个数:45÷9×5+15,=5×5+15,=25+15,=40(个);答:原来黑棋子有50个,白棋子有40个.点评:解答此题的关键是:拿走的45枚棋子对应的是9份的量,求出一份的量,即可逐步求解.6.某班有学生48人,女生占全班的37.5%,后来又转来女生若干人,这时人数恰好是占全班人数的40%,问转来几名女生?kaodian:百分数的实际应用.分析:把原来全班共有的学生(48人)看作单位“1”,则男生人数占全班人数的(1﹣37.5%),根据一个数乘分数的意义,求出男生人数,进而把后来全班人数看作单位“1”,根据“对应数÷对应分率=单位“1”的量“进行解答,求出后来的全班人数,然后减去原来全班人数,即可得出结论.解答:解:48×(1﹣37.5%)÷(1﹣40%)﹣48,=30÷0.6﹣48,=50﹣48,=2(人);答:转来2名女生.点评:这是一道变换单位“1”的分数应用题,需抓住男生人数这个不变量,进行解答,用到的知识点:(1)一个数乘分数的意义,用乘法解答;(2)已知一个数的几分之几是多少,求7.(2010•北京校级自主招生)把一个正方形的一边减少20%,另一边增加2米,得到一个长方形.它与原来的正方形面积相等.问正方形的面积是多少?kaodian:百分数的实际应用;长方形、正方形的面积.分析:把正方形的边长看做单位“1”,根据一边减少了20%,另一边将增加2米,得到的长方形与原来的正方形面积相等,可知减少的面积就等于增加的面积,先求得增加的面积即2×(1﹣20%),也就是减少的面积数,再用减少的面积数除以20%就是原来正方形的边长,再用边长乘边长即得正方形的面积.解答:解:正方形的边长:2×(1﹣20%)÷20%,=2×0.8÷0.2,=8(米);正方形的面积:8×8=64(平方米);答:正方形的面积是64平方米.点评:解决此题关键是把正方形的边长看做“1”,根据减少的面积就等于增加的面积,先求得正方形的边长,进而求得面积.8.学校男生人数占45%,会游泳的学生占54%.男生中会游泳的占72%,问在全体学生中不会游泳的女生占百分之几?kaodian:分数和百分数应用题(多重条件).分析:由于男生人数占总人数的45%,男生中会游泳的占72%,所以在全体学生中,会游泳的男生占45%×72%=32.4%;则在全体学生中,会游泳的女生占54%﹣32.4%=21.6%;由于男生人数占总人数的45%,设全体学生为单位“1”,由于女生占全体学生的1﹣45%=55%,则不会游泳的女生有55%﹣21.6%=33.4%.解答:解:会游泳的女生占全体学生的:54%﹣45%×72%=54%﹣32.4%,=21.6%;则不会会游泳的女生占全体学生的:(1﹣45%)﹣21.6%=55%﹣21.6%,=33.4%.答:在全体学生中不会游泳的女生占33.4%.点评:先根据已知条件求出会游泳的女生占全体学生的分率是完成本题的关键.9.某校四年级原有2个班,现在要重新编为3个班,将原一班的与原二班的组成新一班,将原一班的与原二班的组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多10%,那么原一班有多少人?kaodian:分数和百分数应用题(多重条件).分析:由题意可知,原一班的与原二班的+原一班的与原二班的=总人数,所以余下的30人占总人数的1﹣=,所以总人数有30÷=72人;72﹣30=42人,即新一班与新二班的人数和为42人,新一班的人数比新二班的人数多10%,则新二班的人数是42÷(1+1+10%)=20人,则新一班有42﹣20=22人,即原一班的(﹣)=比原二班的多2人,原一班比原二班共多2=24人,所以,原一班有(72+24)÷=48人.解答:解:则总人数有:30÷(1﹣)=30,=72(人);新一、二班共有学生:72﹣30=42(人);新二班的人数是:42÷(1+1+10%)=20(人),新一班比新二班多:(42﹣20)﹣22=2(人);即原一班的(﹣)=比原二班的多2人,原一班比原二班共多2=24人,所以,原一班有(72+24)÷2=48人.答:原一班有48人.点评:本题中的数量关系较为复杂,完成要思路清晰,根据条件中的逻辑关系认真分析,逐步解答.10.(2012•中山校级模拟)一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?kaodian:组合图形的面积;长方形、正方形的面积.分析:画出图便于解题:长方形长与宽的比是14:5,则设原来的长方形的长宽分别为14x厘米、5x厘米,则图中红色部分是长减少13厘米后原长方形面积减少了13×5x平方厘米,绿色部分是宽增加13厘米后长方形面积增加了(14x﹣13)×13平方厘米,而实际变化后比原来长方形的面积增加182平方厘米,由此列出方程即可解答.解答:解:设原长方形长为14x,宽为5x.由图分析得方程(14x﹣13)×13﹣5x×13=182,182x﹣169﹣65x=182,117x=351,x=3;则原长方形面积:(14×3)×(5×3),=42×15,=630(平方厘米).答:原来的长方形的面积是630平方厘米.点评:此题的关键是根据长宽的变化,画出图形,正确找出增加部分和减少部分的面积进行解答.11.有正方形和长方形两种不同的纸板,正方形纸板总数与长方形纸板总数之比为2:5.现在将这些纸板全部用来拼成横式和竖式两种无盖纸盒,其中竖式盒由一块正方形纸板做底面,四块长方形纸板做侧面(图1),横式盒由一块长方形纸板做底面,两块长方形和两块正方形纸板做侧面(图2),那么做成的竖式纸盒与横式纸盒个数之比是多少?kaodian:比的应用;简单的立方体切拼问题.分析:此题可以用设数法来解答,假设竖式纸盒有a个,横式纸盒有b个,由题意列式为(a+2b):(4a+3b)=2:5,然后化简即可.解答:解:设竖式纸盒有a个,横式纸盒有b个,则共用长方形纸板(4a+3b)块,正方形纸板(a+2b)块.根据题意有:(a+2b):(4a+3b)=2:5,即5(a+2b)=2(4a+3b),5a+10b=8a+6b,3a=4b,即a:b=4:3.答:做成的竖式纸盒与横式纸盒个数之比是4:3.点评:此题的解题思路是:先设出竖式纸盒和横式纸盒的个数,然后相应地表示出共用长方形纸板的块数,正方形纸板的块数,再根据正方形纸板总数与长方形纸板总数之比为2:5,列出等式并化简.12.(2009•东莞市校级自主招生)某学校入学考试,参加的男生与女生人数之比是4:3.结果录取91人,其中男生与女生人数之比是8:5.未被录取的学生中,男生与女生人数之比是3:4.问报考的共有多少人?kaodian:比的应用;比例的应用.分析:先依据“结果录取91人,其中男生与女生人数之比是8:5”,利用按比例分配的方法求出录取的男女生的人数,再据未被录取的男女生人数比和参加考试的男女生人数比,即可列比例求解.解答:解:录取学生中男生:91×=56(人),女:91﹣56=35(人).设未被录取的男生有3x人,未被录取的女生有4x人,则有(56+3x):(35+4x)=4:3(56+3x)×3=(35+4x)×4,168+9x=140+16x,7x=168﹣140,7x=28,x=4;所以未录取男生:4×3=12(人),女生4×4=16(人).报考人数是:(56+12)+(35+16),=68+51,=119(人);答:报考的共有119人.点评:解答此题的关键是:先求出录取的男女生的人数,再据题目条件,即可求出报考的总人数.13.(2013•北京模拟)幼儿园大班和中班共有32名男生,18名女生.已知大班男生数与女生数的比为5:3,中班中男生数与女生数的比为2:1,那么大班有女生多少名?kaodian:比的应用.分析:方法一:由于男女生有比例关系,而且知道总数,所以我们可以用鸡兔同笼的方法解答,假设18名女生全部是大班,再据“大班男生数与女生数的比为5:3”,即可逐步求解.方法二:可以把中班女生数看作“1”份,那么中班男生数为2份.从而大班中的男生数为32﹣2份,大班里的女生人数是18﹣1份.根据题意有(32﹣2份):(18﹣1份)=5:3,只要求出1份的数目即可.解答:解:方法一:假设18名女生全部是大班,则大班男生数:女生数=5:3=30:18,即男生应有30人,实际男生有32人,32﹣30=2,相差2个人;中班男生数:女生数=2:1=6:3,以3个中班女生换3个大班女生,每换一组可增加1个男生,需要换2组;所以,大班女生有18﹣3×2=12个.方法二:把中班女生数看作单位“1”,则有(32﹣2份):(18﹣1份)=5:3,(32﹣2份)×3=(18﹣1份)×5,96﹣6份=90﹣5份1份=6;所以大班的女生则有18﹣6=12(人).答:大班有女生12名.点评:解答此题的关键是:知道男女生的人数比例,既可以用鸡兔同笼的方法解答,也可以用份数解答.14.某商店进了一批笔记本,按30%的利润定价.当售出这批笔记本的80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是多少?kaodian:利润和利息问题.分析:把这批笔记本的成本是“1”,因此定价是1×(1+30%)=1.3;其中80%的卖价是1.3×80%,20%的卖价是1.3÷2×20%;因此全部卖价是1.3×80%+1.3÷2×20%=1.17;实际获得利润的百分数是1.17﹣1=0.17=17%.解答:解:[1×(1+30%)×80%+1×(1+30%)÷2×(1﹣80%)]﹣1,=[1.04+0.13]﹣1,=0.17,=17%;答:销完后商店实际获得的利润百分数是17%.点评:此题较难,解答此题的关键:把这批笔记本的成本是“1”,根据题意,求出全部卖出的总价,进而与成本总价进行比较,得出结论;用到的知识点:一个数乘分数的意义.15.(2014•长沙)A,B,C三个试管中各盛有10克、20克、30克水.把某种浓度的盐水10克倒入A中,混合后取出10克倒入B中,混合后又从B中取出10克倒入C中.现在C中盐水浓度是0.5%.问最早倒入A中的盐水浓度是多少?kaodian:浓度问题.分析:混合后,三个试管中的盐水分别是20克、30克、40克,又知C管中的浓度为0.5%,可算出C管中的盐是:40×0.5%=0.2(克).由于原来C管中只有水,说明这0.2克的盐来自从B管中倒入的10克盐水里.B管倒入C管的盐水和留下的盐水浓度是一样的,10克盐水中有0.2克盐,那么原来B管30克盐水就应该含盐:0.2×3=0.6(克).而且这0.6克盐来自从A管倒入的10克盐水中.A管倒入B管的盐水和留下的盐水的浓度是一样的,10克盐水中有0.6克盐,说明原A管中20克盐水含盐:0.6×2=1.2(克),而且这1.2克的盐全部来自某种浓度的盐水.即说明倒入A管中的10克盐水含盐1.2克.所以,某种浓度的盐水的浓度是1.2÷10×100%=12%.解答:解:B中盐水的浓度是:(30+10)×0.5%÷10×100%,=40×0.005÷10×100%,=2%.现在A中盐水的浓度是:(20+10)×2%÷10×100%,=30×0.002÷10×100%,=6%.最早倒入A中的盐水浓度为:(10+10)×6%÷10,=20×6%÷10,=12%.答:最早倒入A中的盐水浓度为12%.点评:不管是哪类的浓度问题,最关键的思维是要抓住题中没有变化的量,不管哪个试管中的盐,都是来自最初的某种浓度的盐水中,运用倒推的思维来解答.16.(2015•泸州校级模拟)小明到商店买红、黑两种笔共66支.红笔每支定价5元,黑笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,黑笔按定价80%付钱,如果他付的钱比按定价少付了18%,那么他买了红笔多少支?kaodian:浓度问题.分析:浓度倒三角的妙用:红笔按85%优惠,黑笔按80%优惠,结果少付18%,相当于按82%优惠,可按浓度问题进行配比.与其他题不同的地方在于红、黑两种笔的单价不同,要把这个因素考虑进去.然后就可以按比例分配这66支笔了.解答:解:1﹣18%=82%;红笔每支多付:5×(85%﹣82%),=5×3%,=0.15(元);黑笔每支少付:9×(82%﹣80%),=9×2%,=0.18(元);红笔总共多付的钱等于黑笔总共少付的钱,红笔与黑笔数量之比是0.15与0.18的反比,即:0.18:0.15=6:5,红笔是:66×=36(支),答:他买了红笔36支.点评:解答此题的关键是求出红笔与黑笔数量之比,然后根据按比例分配的方法解答即可.17.制鞋厂生产的皮鞋按质量共分10个档次,生产最低档次(即第1档次)的皮鞋每双利润为24元.每提高一个档次,每双皮鞋利润增加6元.最低档次的皮鞋每天可生产180双,提高一个档次每天将少生产9双皮鞋.按天计算,生产哪个档次的皮鞋所获利润最大?最大利润是多少元?kaodian:利润和利息问题.分析:由题意,生产第n(n=1,2,…,10)档次的皮鞋,每天生产的双数为189﹣9n=9×(21﹣n)双,每双利润为18+6n=6×(3+n)(元),所以每天获利润[6×(3+n)]×[9×[(21﹣n)]=54×(3+n)×(21﹣n)元;两个数的和一定时,这两个数越接近,这两个数的乘积越大,上式中,因为(3+n)与(21﹣n)的和是24,而n=9时,(3+n)与(21﹣n)都等于12,所以每天生产第9档次的皮鞋所获利润最大,然后算出最大利润即可.解答:由题意,生产第n(n=1,2,…,10)档次的皮鞋,每天生产的双数为189﹣9n=9×(21﹣n)双,每双利润为:18+6n=6×(3+n)(元),所以每天获利润:[6×(3+n)]×[9×[(21﹣n)]=54×(3+n)×(21﹣n)元;两个数的和一定时,这两个数越接近,这两个数的乘积越大,上式中,因为(3+n)与(21﹣n)的和是24,而n=9时,(3+n)与(21﹣n)都等于12,所以每天生产第9档次的皮鞋所获利润最大,最大利润是:54×(3+9)×(21﹣9)=7776(元);答:生产第9个档次的皮鞋所获利润最大,最大利润是7776元.点评:解答此题的关键:认真分析题意,找出题中数量间的关系,进而根据每双鞋的利润、生产鞋的双数和总利润之间的关系解答即可.18.某中学,上年度高中男、女生共290人.这一年度高中男生增加4%,女生增加5%,共增加13人.本年度该校有男、女生各多少人?kaodian:列方程解含有两个未知数的应用题;百分数的实际应用.分析:如果女生也是增4%,这样增加的人数是290×4%=11.6(人),比13人少1.4人,少的1.4人就是因为女生本是增加5%,而算成4%,少算了上年度女生的1%,用除法可求出上年度女生的人数,根据“上年度男、女生共290人”算出上年度男生的人数,又因为4%,5%的单位“1”是上年度女生和男生,所以用乘法可算出本年度男女生人数.解答:解:如果女生也是增加4%,这样增加的人数是:290×4%=11.6(人),女生少算了:13﹣11.6=1.4(人),上年度女生是:1.4÷(5%﹣4%)=140(人),上年度男生有:290﹣140=150(人),本年度男生有:150×(1+4%)=156(人),本年度女生有:140×(1+5%)=147(人),答:本年度该校有男生156人,女生147人.点评:解此题的关键是先算出上年度男女生的人数,再根据增加的比算出本年度的男女生人数.19.在如图中AB,AC的长度是15,BC的长度是9.把BC折过去与AC重合,B点落在E点上,求三角形ADE与三角形ABC面积之比.kaodian:简单图形的折叠问题;比的意义;三角形的周长和面积.分析:首先,根据△ADE和△DEC的高相等,那么可推出这两个三角形的面积之比,等于这两个三角形的底边之比为(15﹣9):9=6:9=2:3.三角形BCD与三角形CDE面积相等.所以三角形ADE与三角形ABC的面积之比为2:8 即1:4解答:解:因为BC=CE=9,所以AE=15﹣9=6(厘米);因为△ADE和△DEC的高相等,所以△ADE和△DEC的面积比为(15﹣9):9=6:9=2:3;又因为三角形BCD与三角形CDE面积相等.所以三角形ADE与三角形ABC的面积之比为2:8 即1:4.答:三角形ADE与三角形ABC面积之比为1:4.点评:此题重点考查等高的两个三角形的面积之间的关系.如果在两个三角形中,底边上的高相等,这两个三角形的面积比等于底边之比.20.(2012•长春)成本0.25元的练习本1200本,按40%的利润定价出售,当销掉80%后,剩下的练习本打折扣出售,结果获得的利润是预定的86%.问剩下的练习本出售时按定价打了多少折扣?kaodian:利润和利息问题.分析:此题可以先求出每本练习本的预定利润为:0.25×40%=0.1元,则预定价格为:0.25+0.25×40%=0.35元,那么预定总利润就是:1200×0.1=120元,销掉80%得到的利润就是:1200×80%×0.1=96(元),而实际获得的利润为:120×86%=103.2,所以剩下的20%的利润是103.2﹣96=7.2元,由此可以求得剩下的每本的利润为:7.2÷(1200×20%)=0.03元,那么剩下的练习本的单价为:0.03+0.25=0.28元,0.28÷0.35=0.8,故剩下的练习本出售时按定价打了八折.解答:解:预定价格为:0.25+0.25×40%=0.35(元),预定利润为:0.25×40%=0.1(元),预定总利润为:0.1×1200=120(元),剩下的20%的练习本的每一本价格为:(120×86%﹣120×80%)÷(1200×20%)+0.25,=(103.2﹣96)÷240+0.25,=7.2÷240+0.25,=0.03+0.25,=0.28(元),0.28÷0.35=0.8答:剩下的练习本出售时按定价打了8折.点评:此题的解题过程有点复杂,只要抓住先求得预定价格,和剩下的20%的练习本的价格为做题思路,即可解决问题21.甲乙两人各有一些书,甲比乙多的数量恰好是两人总数的,如果甲给乙20本,那么乙比甲多的数量恰好是两人总数的.那么他们共有多少本书?kaodian:分数和百分数应用题(多重条件).分析:甲比乙多的数量恰好是两人总数的,把差1份,和4份,用和差问题来算一下,大数为:(4+1)÷2=2.5,小数:(4﹣1)÷2=1.5,,得甲是2.5份,乙是1.5份,甲与乙的比是5:3.同理,甲给乙20本后,甲与乙的比是5:7;因为甲给乙20本书,甲减少多少,乙就增加多少,甲乙两人共有书的总数不变,在这里8与12的最小公倍数是24份:5:3=15:9,5:7=10:14观察比较甲从15份变为10份,是因为少了20本书,因此每份是4本,共有书就为4×(15+9)=96本解答:解:甲比乙多的数量恰好是两人总数的,甲:(4+1)÷2=2.5(份),乙:4﹣2.5=1.5(份),甲:乙=2.5:1.5=5:3=15:9;那么乙比甲多的数量恰好是两恰好是两人总数的,乙:(1+6)÷2=3.5(份),甲:6﹣3.5=2.5份,甲:乙=2.5:3.5=5:7=10:14,每份:20÷(15﹣10)=4(本),一共有:4×(15+9)=96(本).答:他们共有96本书.点评:根据和差问题求出他们前后书的本数的比是完成本题的关键.。
小升初典型奥数:百分数问题(讲义)-2023-2024学年六年级下册数学通用版
解得x=10000元.
答:甲原来有10000元.
【点睛】本题考查的是利息问题和利润问题的综合求解.在计算本息和时最好写成x(1+4%),这样后面的也可以直接写为x(1+4%)(1+2%)了,比较简单明了方便计算.推而广之,在计算所有增加或者减少分率时都可以这样处理,一般公式为单位“1”×(1±增加或减少分率).
8.国家规定个人发表文章,出版图书获得稿费的计算方法是:①稿费不高于800元的不纳税;②稿费高于800元又不高于4000元的应缴纳超过800元的那一部分的14%的税;③稿费高于4000元的应缴纳全部稿费的11%的税。今得知丁老师获得一笔稿费,并且依法缴纳个人所得税420元,问丁老师这笔稿费是多少元?又得知马老师获得一笔稿费,并且依法缴纳个人所得税550元,问马老师这笔稿费是多少元?
17.李校长向某课桌生产厂订购了定价为100元的课桌80套.李校长对厂长说:“如果你肯减价,那么每减价1元,我们就多订购4套.”厂长听后算了一下:若减价5%,则由于李校长多订购,所获利润反而比原来多100元.问这种课桌每套的成本价是多少元?
18.某商店同时卖出两件商品,每件60元,但其中一件赚20%,另一件亏本20%,问这个商店卖出这两件商品是赚钱还是亏本?
11.某人到商品买红、蓝两种笔,红笔定价5元,蓝笔定价9元.由于买的数量较多,商店就给打折扣.红笔按定价85%出售,蓝笔按定价80%出售.结果他付的钱就少了18%.已知他买了蓝笔30支,问红笔买了几支?
12.某商场在迎元旦展销期间,将一批电视机降价出售.如果打九折出售,可盈利215元;如果打八折出售,亏损125元.此电视机的购入价是多少元?
小升初六年级奥数——几何(平面图形)
⼩升初六年级奥数——⼏何(平⾯图形)⼀、分数百分数问题,⽐和⽐例这是六年级的重点内容,在历年各个学校测试中所占⽐例⾮常⾼,重点应该掌握好以下内容:对单位1的正确理解,知道甲⽐⼄多百分之⼏和⼄⽐甲少百分之⼏的区别;求单位1的正确⽅法,⽤具体的量去除以对应的分率,找到对应关系是重点;分数⽐和整数⽐的转化,了解正⽐和反⽐关系;通过对“份数”的理解结合⽐例解决和倍(按⽐例分配)和差倍问题;⼆、⾏程问题应⽤题⾥最重要的内容,因为综合考察了学⽣⽐例,⽅程的运⽤以及分析复杂问题的能⼒,所以常常作为压轴题出现,重点应该掌握以下内容:路程速度时间三个量之间的⽐例关系,即当路程⼀定时,速度与时间成反⽐;速度⼀定时,路程与时间成正⽐;时间⼀定时,速度与路程成正⽐。
特别需要强调的是在很多题⽬中⼀定要先去找到这个“⼀定”的量;当三个量均不相等时,学会通过其中两个量的⽐例关系求第三个量的⽐;学会⽤⽐例的⽅法分析解决⼀般的⾏程问题;有了以上基础,进⼀步加强多次相遇追及问题及⽕车过桥流⽔⾏船等特殊⾏程问题的理解,重点是学会如何去分析⼀个复杂的题⽬,⽽不是⼀味的做题;三、⼏何问题⼏何问题是各个学校考察的重点内容,分为平⾯⼏何和⽴体⼏何两⼤块,具体的平⾯⼏何⾥分为直线形问题和圆与扇形;⽴体⼏何⾥分为表⾯积和体积两⼤部分内容。
学⽣应重点掌握以下内容:等积变换及⾯积中⽐例的应⽤;与圆和扇形的周长⾯积相关的⼏何问题,处理不规则图形问题的相关⽅法;⽴体图形⾯积:染⾊问题、切⾯问题、投影法、切挖问题;⽴体图形体积:简单体积求解、体积变换、浸泡问题;四、数论问题常考内容,⽽且可以应⽤于策略问题,数字谜问题,计算问题等其他专题中,相当重要,应重点掌握以下内容:掌握被特殊整数整除的性质,如数字和能被9整除的整数⼀定是9的倍数等;最好了解其中的道理,因为这个⽅法可以⽤在许多题⽬中,包括⼀些数字谜问题;掌握约数倍数的性质,会⽤分解质因数法,短除法,辗转相除法求两个数的最⼤公因数和最⼩公倍数;学会求约数个数的⽅法,为了提⾼灵活运⽤的能⼒,需了解这个⽅法的原理;了解同余的概念,学会把余数问题转化成整除问题,下⾯的这个性质是⾮常有⽤的:两个数被第三个数去除,如果所得的余数相同,那么这两个数的差就能被这个数整除;能够解决求⼀个多位数除以⼀个较⼩的⾃然数所得的余数问题,例如求1011121314 (9)899除以11的余数,以及求20082008除以13的余数这类问题;五、计算问题计算问题通常在前⼏个题⽬中出现概率较⾼,主要考察两个⽅⾯,⼀个是基本的四则运算能⼒,同时,⼀些速算巧算及裂项换元等技巧也经常成为考察的重点。
六年级奥数-第六讲.分数百分数应用题
第六讲:分数百分数应用题教学目标1.分析题目确定单位“1”2.准确找到量所对应的率,利用量÷对应率=单位“1”解题3.抓住不变量,统一单位“1”BJ03-Y0355知识点拨:一、知识点概述分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a是b的几分之几,就把数b看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1 199÷=.二、怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
小升初奥数题及答案(全面)
精心整理使用办法:题目后面有答案,但是要遮住答案完成,把题目完成在笔记本,自行核对,一天一题小学六年级奥数题及答案1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3922.(x-3){((1+1/5元,3.答案取409600×4.30答案加10再增加增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
”小明原有玻璃球多少个?答案小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份4*1/6=2/3(小明要给小亮2/3份玻璃球)小明还剩:4-2/3=3又1/3(份)小亮现有:3+2/3=3又2/3(份)这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间? 解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是 答:丙帮助甲搬运3小时,帮助乙搬运5小时 解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为60.甲每小时搬运6,乙每小时搬运5,丙每小时搬运4( (7.作,答案甲乙丙3甲乙丙3甲乙丙38.26日以每月答案10.65*113.86*1%=0.1386(元)13.86*2%=0.2772(元)0.1386+0.2772=0.415813.86+0.4158=14.2758(元)14.2758-10.9695=3.3063(元)答:老王卖出这种股票一共赚了3.3063元.9.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。
六年级小升初奥数
六年级小升初奥数奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。
小升初可以通过奥数这门竞赛来为自己争取到更好的机会。
下面就是小编为大家梳理归纳的内容,希望能够帮助到大家。
六年级小升初奥数1、一个两位数除72,余数是12,那么满足要求的所有两位数有几个?分别是多少?解答:由题意知,所求的两位数应是7212=60的约数,还应大于12。
在60的约数中,两位数有10、12、15、20、30、60这六个数,大于12的有:15、20、30、60这四个数。
所以满足要求的两位数有4个,分别是15、20、30、60。
2、有写着5、9、17的卡片各8张,现在从中任意抽出5张,这5张卡片上的数字之和可能是()。
A、31B、39C、55D、41解答:5、9、17三个数除以4都是余1的,任取5张,也是除以4余1的,所以是D。
3、某校五年级学生排成一个实心方阵,最外一层总人数为60人,问方阵最外层每边有多少人?这个方阵共有学生多少人?解答:方阵最外层每边人数:604+1=16(人)整个方阵共有学生人数:1616=256(人)4、12张乒乓球台上共有34人在打球,那么正在进行单打和双打的台子各有多少张?解答:利用鸡兔同笼的想法,假设都在进行单打,那么应有122=24人,多出34-24=10人。
把单打变为双打,每个台子需要增加2人,所以双打的台子有102=5张,单打的台子有12-5=7张。
5、一队学生站成20行20列方阵,如果去掉4行4列,那么要减少多少人?解答:20-4=16(人),2020=400(人),1616=256(人),400-256=144(人)6、有黑白两种棋子共300枚,按每堆3枚分成100堆。
其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。
那么在全部棋子中,白子共有多少枚?解答:271+432+153=158(枚)7、有336个苹果、252个桔子、210个梨,用这些水果最多可以分成多少份同样的礼物?每份礼物中的三样水果各有多少个?解答:(336,252)=(84,252)=84(84,210)=(84,42)=42所以可以分成42份礼物苹果:33642=8(个)桔子:25242=6(个)梨:21042=5(个)8、正方形操场四周栽了一圈树,每两棵树相隔5米。
六年级下册数学试题小升初奥数练习1
奥数练习题姓名一、一般应用题例1:五年级有6个班,每班人数相等,从每班选16人参加少先队活动,剩下的人数相当于原来4个班的人数。
原来每班有多少人?例2:甲仓存油是乙仓的3倍,每天从甲仓运出10吨油,从乙仓运出3吨,当甲仓油正好运完时,乙仓还剩8吨油。
甲、乙两仓原来各有存油多少吨?例3:甲乙两人同时加工一批零件,甲比乙每天多加工10个零件,乙中途休息了15天,40天后乙加工的零件数正好是甲的一半。
这时两人各加工多少个零件?二、平均数应用题总数量÷总份数=平均数例1:把五个数从小到大排列,其平均数是75,前三个数的平均数是 64,后三个数的平均数是85,中间一个数是多少?例2:希望小学五(1)班数学期末考试,全班平均91.2分,已知女生有21人,平均每人92分,男生平均每人90.5分,这个班的男生有多少人?例3:小刚四次数学单元的平均成绩是78分,他想在下一次单元考试后,将五次的平均成绩提高到80分,那么在下次的单元考试中,他至少要得多少分?例4:一个零件加工厂前6天平均每天生产零件93箱,为赶工期,第7天生产的零件数比这7天的平均数还多3箱。
这个工厂第7天生产零件多少箱?例5:小红早上上学,他从家到学校的速度是60米∕分钟,放学从学校到家的速度是40米∕分钟,求小红往返的平均速度。
三、用假设法解应用题例1:现有鸡、兔共居一笼,鸡头和兔头一共有15个,鸡脚和兔脚共有44只,问鸡、兔各有几只?例2:四(1)班学生共52人,到公园去划船共租用11条船,每条大船坐6人,每条小船坐4人,刚好坐满,求租用大船、小船各有多少只?例3:鸡兔同笼,鸡比兔多12只,共有114只脚,求鸡、兔各有多少只?例4:东东在一次数学测验中,共做了10道题,规定做对一题得10分,做错一题倒扣2分,结果东东得了76分,他做对了几题?四、用消元法解应用题例1:买9支钢笔和5支圆珠笔共用89.1元,买同样的9支钢笔和8支圆珠笔共用94.5元,钢笔与圆珠笔的单价各是多少?例2:小王买6个本子和4支铅笔共用4.6元,小刘买同样的3个本子和1支铅笔共用1.9元,求本子和铅笔的单价各是多少?例3:买9张桌子和3把椅子共780元,5张桌子的价格比3把椅子的价格多340元,桌子和椅子的单价各多少元?例4:乐乐买3支笔和5本书共用18元,笑笑买同样的5支笔和3本书共用14元,一本书和一支笔各多少元?例5:王阿姨买了苹果、橘子和梨各一箱,已知苹果和梨共55元,橘子和梨共50元,苹果和橘子共45元,求三种水果的单价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初奥数:分数、百分数应用题
知识要点:
1、 分数、百分数应用题分为三大类:
(1) 求一个数是另一个数的几分之几(或百分之几)
(2) 求一个数的几分之几(或百分之几)是多少
(3) 已知一个数的几分之几(或百分之几)是多少,求这个数
2、 解答分数、百分数应用题,首先要找到单位“1”。
在单位“1”确定的前提下,一个具
体数量总对应着一个具体分数,我们把这种对应关系叫做“量率对应”,这是解答分数、百分数应用题的关键。
例1:李华看一本故事书,每天看15页,6天后还剩余全书的8
5没看,这本故事书共有多少页?
分析:解答本题的关键是找出已经看的页数相当于全书总页数的几分之几。
由题意可知,已看的页数为15*6=90页;由还剩全书的
85没看可知,已经看了的是全书的1-85=83,于是90页与全书的8
3相对应,全书的总页数即可求出。
解:15×6÷(1-85)=90÷8
3=240(页) 答:这本故事书共有240页。
例2: 希望小学五年级有学生360人,其中男生占12
7,后来又转来了几名男生,这时男生占五年级总人数的60%,转来的男生有多少人?
分析:在本题中男生人数、五年级总人数都发生了变化,但女生人数却没有变化,因此可抓住女生人数这个不变量先求出后来五年级总人数,再求出转来的男生人数。
解:360×(1-12
7)=150(人) 150÷(1-60%)=375(人)
375-360=15(人)
答:转来的男生有15人。
例3:3只猴子吃篮子里的桃子,第一只猴子吃了
51,第二只猴子吃了剩下的41,第三只猴子吃了第二只猴子吃剩下的3
1,最后篮子里还剩12只桃子。
问篮子里原来有多少个桃子?
分析:这道题可以从结果入手,采用倒推的方法来解答。
最后剩下的12只桃子相当于第二
只猴子吃剩后桃子数的1-
31=3
2;第二只猴子吃剩下的桃子数是第一只猴子吃剩桃子数的1-41=43;第一只猴子吃剩的桃子数又是篮子里原有桃子数的1-51=5
4。
解:12÷(1-31)÷(1-41)÷(1-51)
=12÷32÷43÷5
4=30(个) 答:篮子里原有30个桃子。
能力训练:
1.制造一批零件,按计划18天可以完成它的
21,如果工作3天后,工作效率提高了81,那么完成这批零件的
31一共需要多少天?
2.一桶油连桶重11千克,把油倒出4
3后,剩下的油连桶重3.5千克。
原来这桶油重多少千克?油桶重多少千克?
3.小芳第一周读书160页,比第二周少读20%,第三周比第二周多读10%,她第三周读了多少页?
4.红星机械厂加工一批零件,甲车间加工这批零件的20%,乙车间加工余下的25%,丙车间加工再余下的40%,还剩下1800个零件没有加工,这批零件一共有多少个?
5.食堂有一批煤,用去总重量的
32后,又运回2600千克,现在存煤比原来还多20%。
现在存煤多少千克?
6.某饲养场有改良羊和牛共160头,一次卖出羊总数的10
1,又买来30头牛,这时羊和牛的头数相等,求原来羊和牛各有多少头?
7.某机关有60名干部,其中女干部占25%。
精简人员后调走一些女干部,这时女干部占总数的10%,调走女干部多少名?
8.一堆围棋子,白子的个数是黑子的
43,从中取出91个子,并且白子的个数是黑子的8
5,剩下的棋子中白子的个数是黑子的131,这堆棋子共有多少个?
百度文库:waynealwin ——小勇。