2012年高考真题——数学理(四川卷)word版含答案

合集下载

2012年四川高考理科数学含答案

2012年四川高考理科数学含答案

2012年普通高等学校招生全国统一考试(四川卷)数学(理工类)参考公式:如果事件互斥,那么球的表面积公式如果事件相互独立,那么其中表示球的半径球的体积公式如果事件在一次试验中发生的概率是,那么在次独立重复试验中事件恰好发生次的概率其中表示球的半径第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、的展开式中的系数是()A、 B、 C、 D、2、复数()A、B、C、D、3、函数在处的极限是()A、不存在B、等于C、等于D、等于4、如图,正方形的边长为,延长至,使,连接、则()A、 B、 C、 D、5、函数的图象可能是()6、下列命题正确的是()A、若两条直线和同一个平面所成的角相等,则这两条直线平行B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D、若两个平面都垂直于第三个平面,则这两个平面平行7、设、都是非零向量,下列四个条件中,使成立的充分条件是()A、 B、 C、 D、且8、已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点。

若点到该抛物线焦点的距离为,则()A、 B、 C、 D、9、某公司生产甲、乙两种桶装产品。

已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克。

每桶甲产品的利润是300元,每桶乙产品的利润是400元。

公司在生产这两种产品的计划中,要求每天消耗、原料都不超过12千克。

通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是()A、1800元B、2400元C、2800元D、3100元10、如图,半径为的半球的底面圆在平面内,过点作平面的垂线交半球面于点,过圆的直径作平面成角的平面与半球面相交,所得交线上到平面的距离最大的点为,该交线上的一点满足,则、两点间的球面距离为()A、 B、 C、 D、11、方程中的,且互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A、60条B、62条C、71条D、80条12、设函数,是公差为的等差数列,,则()A、 B、 C、 D、第二部分(非选择题共90分)注意事项:(1)必须使用0.5毫米黑色签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚。

2012年四川省高考理科数学试卷及答案(word版)

2012年四川省高考理科数学试卷及答案(word版)

2012年普通高等学校招生全国统一考试(四川卷)数学(理工类)参考公式:如果事件互斥,那么球的表面积公式()()()P A B P A P B+=+24S Rp=如果事件相互独立,那么其中R表示球的半径()()()P A B P A P B?g球的体积公式如果事件A在一次试验中发生的概率是p,那么343V Rp=在n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径()(1)(0,1,2,,)k k n kn nP k C p p k n-=-=…第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1)x+的展开式中2x的系数是()A、42B、35C、28D、212、复数2(1)2ii-=()A、1B、1- C、i D、i-3、函数29,3()3ln(2),3xxf x xx x⎧-<⎪=-⎨⎪-≥⎩在3x=处的极限是()A、不存在B、等于6C、等于3D、等于04、如图,正方形ABCD的边长为1,延长BA至E,使1AE=,连接EC、ED则sin CED∠=()A B5、函数1(0,1)xy a a aa=->≠的图象可能是()6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a r 、b r 都是非零向量,下列四个条件中,使||||a ba b =r rr r 成立的充分条件是( )A 、a b =-r rB 、//a b r rC 、2a b =r rD 、//a b r r 且||||a b =r r8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

2012年高考真题——理科数学(四川卷) (word版) (有答案)

2012年高考真题——理科数学(四川卷) (word版) (有答案)

D CB2012年普通高等学校招生全国统一考试(四川卷)数 学(理工类)参考公式:如果事件互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ?g 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=…第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、212、复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i -3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于04、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A 、31010 B 、1010 C 、510 D 、5155、函数1(0,1)xy a a a a=->≠的图象可能是( )6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a r 、b r 都是非零向量,下列四个条件中,使||||a ba b =r rr r 成立的充分条件是( )A 、a b =-r rB 、//a b r rC 、2a b =r rD 、//a b r r 且||||a b =r r8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

2012年高考数学(理)试卷及答案四川卷

2012年高考数学(理)试卷及答案四川卷

D B2012年普通高等学校招生全国统一考试(四川卷)数 学(理工类)参考公式:如果事件互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=…第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、212、复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i -3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于04、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A 310B 10C 5D 5155、函数1(0,1)xy a a a a=->≠的图象可能是( )6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

2012年全国高考理科数学试题及答案-四川卷

2012年全国高考理科数学试题及答案-四川卷

DCAE B2012年普通高等学校招生全国统一考试(四川卷)数 学(理工类)参考公式:如果事件互斥,那么 球的表面积公式 ()()()P AB P A P B 24SR如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343VR 在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,,)k k n k n n P k C p p k n …第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、212、复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i -3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于0 4、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED ,则sin CED ∠=( )A 310B 10C 5D 55、函数1(0,1)xy a a a a=->≠的图象可能是( )A B C D6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行 7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( ) A 、a b =- B 、//a b C 、2a b = D 、//a b 且||||a b = 8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

2012年四川省高考理科数学试卷及答案(word版)

2012年四川省高考理科数学试卷及答案(word版)

2012年普通高等学校招生全国统一考试(四川卷)数 学(理工类)参考公式:如果事件互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=…第一部分 (选择题 共60分)注意事项:1.选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上·2.本部分共12小题,每小题5分,共60分·一.选择题:每小题给出的四个选项中,只有一项是符合题目要求的· 1.7(1)x +的展开式中2x 的系数是( )A.42B.35C.28D.212.复数2(1)2i i-=( ) A.1 B.1- C.i D.i -3.函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A.不存在B.等于6C.等于3D.等于04.如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC .ED 则sin CED ∠=( )A.10B.10C.10D.155.函数1(0,1)xy a a a a=->≠的图象可能是( )6.下列命题正确的是( )A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行 7.设a .b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( ) A.a b =- B.//a b C.2a b = D.//a b 且||||a b =8.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y ·若点M 到该抛物线焦点的距离为3,则||OM =()A.B. C.4D.9.某公司生产甲.乙两种桶装产品·已知生产甲产品1桶需耗A 原料1千克.B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克·每桶甲产品的利润是300元,每桶乙产品的利润是400元·公司在生产这两种产品的计划中,要求每天消耗A .B 原料都不超过12千克·通过合理安排生产计划,从每天生产的甲.乙两种产品中,公司共可获得的最大利润是( )A.1800元B.2400元C.2800元D.3100元 10.如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠=,则A .P 两点间的球面距离为() A.arccos4R B.4R πC.arccos 3R D.3R π11.方程22ay b x c =+中的,,{3,2,0,1,2,3}a b c ∈--,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )A.60条B.62条C.71条D.80条12.设函数()2c o s f x x x =-,{}n a 是公差为8π的等差数列,125()()()5f a f a f a π++⋅⋅⋅+=,则2313[()]f a a a -=( )A.0B.2116πC.218π D.21316π第二部分 (非选择题 共90分)注意事项:(1)必须使用0.5毫米黑色签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚·答在试题卷上无效· (2)本部分共10个小题,共90分·二.填空题(本大题共4个小题,每小题4分,共16分·把答案填在答题纸的相应位置上·) 13.设全集{,,,}U a b c d =,集合{,}A a b =,{,,}B b c d =,则()()U U A B =痧___________·14.如图,在正方体1111ABCD A BC D -中,M .N 分别是CD .1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________·15.椭圆22143x y+=的左焦点为F ,直线x m =与椭圆相交于点A .B ,当FAB ∆的周长最大时,FAB ∆的面积是____________·16.记[]x 为不超过实数x 的最大整数,例如,[2]2=,[1.5]1=,[0.3]1-=-·设a 为正整数,数列{}n x 满足1x a =,1[][]()2n nn ax x x n N *++=∈,现有下列命题:①当5a =时,数列{}n x 的前3项依次为5,3,2; ②对数列{}n x 都存在正整数k ,当n k ≥时总有n k x x =; ③当1n ≥时,1n x ;④对某个正整数k ,若1k k x x +≥,则n x =·其中的真命题有____________·(写出所有真命题的编号)三.解答题(本大题共6个小题,共74分·解答应写出必要的文字说明,证明过程或演算步骤·) 17.(本小题满分12分)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和B 在任意时刻发生故障的概率分别为110和p · (Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值; (Ⅱ)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E ξ·18.(本小题满分12分)函数2()6coscos 3(0)2xf x x ωωω=+->在一个周期内的图象如图所示,A 为图象的最高点,B .C 为图象与x 轴的交点,且ABC ∆为正三角形· (Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()f x =,且0102(,)33x ∈-,求0(1)f x +的值·19.(本小题满分12分) 如图,在三棱锥P A-NA 1中,90APB ∠=,60PAB ∠=,AB BC CA ==,平面PAB ⊥平面ABC · (Ⅰ)求直线PC 与平面ABC 所成角的大小; (Ⅱ)求二面角B AP C --的大小·20.(本小题满分12分) 已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立· (Ⅰ)求1a ,2a 的值; (Ⅱ)设10a >,数列110{lg }na a 的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值·21.(本小题满分12分)如图,动点M 到两定点(1,0)A -.(2,0)B 构成MAB ∆,且2MBA MAB ∠=∠,设动点M 的轨迹为C ·(Ⅰ)求轨迹C 的方程;(Ⅱ)设直线2y x m =-+与y 轴交于点P ,与轨迹C 相交于点Q R 、,且||||PQ PR <,求||||PR PQ 的取值范围·22.(本小题满分14分)已知a 为正实数,n 为自然数,抛物线22na y x =-+与x 轴正半轴相交于点A ,设()f n 为该抛物线在点A 处的切线在y 轴上的截距·(Ⅰ)用a 和n 表示()f n ;(Ⅱ)求对所有n 都有33()1()11f n n f n n -≥++成立的a 的最小值; (Ⅲ)当01a <<时,比较11()(2)nk f k f k =-∑与27(1)()4(0)(1)f f n f f --的大小,并说明理由·。

2012年四川省高考数学试卷理科及答案

2012年四川省高考数学试卷理科及答案

教学资料教育精品资料2012年四川省高考数学试卷(理科)一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的.1.(2012•四川)(1+x)7的展开式中x2的系数是()A.42 B.35 C.28 D.212.(2012•四川)复数=()A.1B.﹣1 C.i D.﹣i 3.(2012•四川)函数在x=3处的极限是()A.不存在B.等于6 C.等于3 D.等于04.(2012•四川)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连接EC、ED则sin∠CED=()A.B.C.D.5.(2012•四川)函数的图象可能是()A.B.C.D.6.(2012•四川)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行7.(2012•四川)设、都是非零向量,下列四个条件中,使成立的充分条件是()A.B.C.D.且8.(2012•四川)已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0).若点M 到该抛物线焦点的距离为3,则|OM|=()A.B.C.4D.9.(2012•四川)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是()A.1800元B.2400元C.2800元D.3100元10.(2012•四川)如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A、P两点间的球面距离为()A.B.C.D.11.(2012•四川)方程ay=b2x2+c中的a,b,c∈{﹣3,﹣2,0,1,2,3},且a,b,c互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A.60条B.62条C.71条D.80条12.(2012•四川)设函数f(x)=2x﹣cosx,{a n}是公差为的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则=()A.0B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分.把答案填在答题纸的相应位置上.)13.(2012•四川)设全集U={a,b,c,d},集合A={a,b},B={b,c,d},则(∁U A)∪(∁U B)=_________.14.(2012•四川)如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是_________.15.(2012•四川)椭圆的左焦点为F,直线x=m与椭圆相交于点A、B,当△FAB的周长最大时,△FAB的面积是_________.16.(2012•四川)记[x]为不超过实数x的最大整数,例如,[2]=2,[1.5]=1,[﹣0.3]=﹣1.设a为正整数,数列{x n}满足x1=a,,现有下列命题:①当a=5时,数列{x n}的前3项依次为5,3,2;②对数列{x n}都存在正整数k,当n≥k时总有x n=x k;③当n≥1时,;④对某个正整数k,若x k+1≥x k,则.其中的真命题有_________.(写出所有真命题的编号)三、解答题(本大题共6个小题,共74分.解答应写出必要的文字说明,证明过程或演算步骤.)17.(2012•四川)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为和p.(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;(Ⅱ)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.18.(2012•四川)函数f(x)=6cos2sinωx﹣3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.(Ⅰ)求ω的值及函数f(x)的值域;(Ⅱ)若f(x0)=,且x0∈(﹣),求f(x0+1)的值.19.(2012•四川)如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC.(Ⅰ)求直线PC与平面ABC所成角的大小;(Ⅱ)求二面角B﹣AP﹣C的大小.2012高考试卷(四川卷)数学(理科)试题及答案320.(2012•四川)已知数列{a n}的前n项和为S n,且a2a n=S2+S n对一切正整数n都成立.(Ⅰ)求a1,a2的值;(Ⅱ)设a1>0,数列的前n项和为T n,当n为何值时,T n最大?并求出T n的最大值.21.(2012•四川)如图,动点M到两定点A(﹣1,0)、B(2,0)构成△MAB,且∠MBA=2∠MAB,设动点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设直线y=﹣2x+m与y轴交于点P,与轨迹C相交于点Q、R,且|PQ|<|PR|,求的取值范围.22.(2012•四川)已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距.(Ⅰ)用a和n表示f(n);(Ⅱ)求对所有n都有成立的a的最小值;(Ⅲ)当0<a<1时,比较与的大小,并说明理由.2012年四川省高考数学试卷(理科)参考答案与试题解析一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的.1.(2012•四川)(1+x)7的展开式中x2的系数是()A.42 B.35 C.28 D.21考点:二项式定理。

2012年四川省高考数学试卷理科及答案

2012年四川省高考数学试卷理科及答案

教学资料2012年四川省高考数学试卷(理科)一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的.722.(2012•四川)复数=( )3.(2012•四川)函数在x=3处的极限是( )4.(2012•四川)如图,正方形ABCD 的边长为1,延长BA 至E ,使AE=1,连接EC 、ED 则sin ∠CED=( )5.(2012•四川)函数的图象可能是( )7.(2012•四川)设、都是非零向量,下列四个条件中,使成立的充分条件是( )B且8.(2012•四川)已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点MC9.(2012•四川)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.通过合理10.(2012•四川)如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A、P两点间的球面距离为()11.(2012•四川)方程ay=b2x2+c中的a,b,c∈{﹣3,﹣2,0,1,2,3},且a,b,c互不相同,在所12.(2012•四川)设函数f(x)=2x﹣cosx,{a n}是公差为的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则=()二、填空题(本大题共4个小题,每小题4分,共16分.把答案填在答题纸的相应位置上.)13.(2012•四川)设全集U={a,b,c,d},集合A={a,b},B={b,c,d},则(∁U A)∪(∁U B)=_________.14.(2012•四川)如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是_________.15.(2012•四川)椭圆的左焦点为F,直线x=m与椭圆相交于点A、B,当△FAB的周长最大16.(2012•四川)记[x]为不超过实数x的最大整数,例如,[2]=2,[1.5]=1,[﹣0.3]=﹣1.设a为正整数,数列{x n}满足x1=a,,现有下列命题:①当a=5时,数列{x n}的前3项依次为5,3,2;②对数列{x n}都存在正整数k,当n≥k时总有x n=x k;③当n≥1时,;④对某个正整数k,若x k+1≥x k,则.其中的真命题有_________.(写出所有真命题的编号)三、解答题(本大题共6个小题,共74分.解答应写出必要的文字说明,证明过程或演算步骤.)17.(2012•四川)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为和p.(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;(Ⅱ)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.18.(2012•四川)函数f(x)=6cos2sinωx﹣3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.(Ⅰ)求ω的值及函数f(x)的值域;(Ⅱ)若f(x0)=,且x0∈(﹣),求f(x0+1)的值.19.(2012•四川)如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC.(Ⅰ)求直线PC与平面ABC所成角的大小;(Ⅱ)求二面角B﹣AP﹣C的大小.20.(2012•四川)已知数列{a n}的前n项和为S n,且a2a n=S2+S n对一切正整数n都成立.(Ⅰ)求a1,a2的值;(Ⅱ)设a1>0,数列的前n项和为T n,当n为何值时,T n最大?并求出T n的最大值.21.(2012•四川)如图,动点M到两定点A(﹣1,0)、B(2,0)构成△MAB,且∠MBA=2∠MAB,设动点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设直线y=﹣2x+m与y轴交于点P,与轨迹C相交于点Q、R,且|PQ|<|PR|,求的取值范围.22.(2012•四川)已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距.(Ⅰ)用a和n表示f(n);(Ⅱ)求对所有n都有成立的a的最小值;(Ⅲ)当0<a<1时,比较与的大小,并说明理由.2012年四川省高考数学试卷(理科)二13.{a,c,d}.14.90°.15.3.16.①③④.,则∴;;;==x+sin),从而,即sin()x),由,知x∈,)x)=.(+)()]=2x cos x)sin(×+×)OP=====arctan )知,DE=,在RT △CDE 中,CED==1=2a 1+a 2①② 2③ =0, a 2≠0,则a 2﹣a 1=1④ ④联立可得或或II )当a 1>0,由(I )可得n ≥2时,,∴∴∴=)可知=是单调递减的等差数列,公差为﹣的坐标为(≠90≠2,由∠MBA=2∠MAB 有tan >1);,∴,∴的坐标分别为(x Q ,,,∴= ∴,且∴,且∴7+4抛物线与求导得处的切线方程为,∴,则≥,时,时,对所有都有;,下面证明:时,=x﹣时,;当),∴,因此从而===11。

2012年四川高考数学试题及答案(理科)

2012年四川高考数学试题及答案(理科)

..2012年四川高考数学试题及答案(理科)参考公式:如果事件互斥,那么球的表面积公式如果事件相互独立,那么其中表示球的半径球的体积公式如果事件在一次试验中发生的概率是,那么在次独立重复试验中事件恰好发生次的概率其中表示球的半径第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、的展开式中的系数是()A、 B、 C、 D、2、复数()A、 B、 C、 D、3、函数在处的极限是()A、不存在B、等于C、等于 D、等于4、如图,正方形的边长为,延长至,使,连接、,则()A、 B、 C、 D、5、函数的图象可能是()A B C D6、下列命题正确的是()A、若两条直线和同一个平面所成的角相等,则这两条直线平行B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D、若两个平面都垂直于第三个平面,则这两个平面平行7、设、都是非零向量,下列四个条件中,使成立的充分条件是()A、 B、 C、 D、且8、已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点。

若点到该抛物线焦点的距离为,则()A、 B、 C、 D、9、某公司生产甲、乙两种桶装产品。

已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克。

每桶甲产品的利润是300元,每桶乙产品的利润是400元。

公司在生产这两种产品的计划中,要求每天消耗、原料都不超过12千克。

通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是()A、1800元B、2400元C、2800元D、3100元10、如图,半径为的半球的底面圆在平面内,过点作平面的垂线交半球面于点,过圆的直径作平面成角的平面与半球面相交,所得交线上到平面的距离最大的点为,该交线上的一点满足,则、两点间的球面距离为()A、 B、 C、 D、11、方程中的,且互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A、60条B、62条C、71条D、80条12、设函数,是公差为的等差数列,,则()A、 B、 C、 D、第二部分(非选择题共90分)注意事项:(1)必须使用0.5毫米黑色签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚。

2012年四川高考理科数学题含答案

2012年四川高考理科数学题含答案

D C B2012年普通高等学校招生全国统一考试(四川卷)数 学(理工类)参考公式:如果事件互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ?g 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、21 2、复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i -3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于04、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( ) A 、310 B 、10 C 、5 D 、5155、函数1(0,1)x y a a a a =->≠的图象可能是( )6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a r 、b r 都是非零向量,下列四个条件中,使||||a b a b =r r r r 成立的充分条件是( ) A 、a b =-r r B 、//a b r r C 、2a b =r r D 、//a b r r 且||||a b =r r8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

2012年四川省高考理科数学试卷及答案

2012年四川省高考理科数学试卷及答案

2012年普通高等学校招生全国统一考试(四川卷)数学(理科)参考公式:如果事件互斥,那么球的表面积公式()()()P A B P A P B+=+24S Rp=如果事件相互独立,那么其中R表示球的半径()()()P A B P A P B? 球的体积公式如果事件A在一次试验中发生的概率是p,那么343V Rp=在n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径()(1)(0,1,2,,)k k n kn nP k C p p k n-=-=…第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1)x+的展开式中2x的系数是()A、42B、35C、28D、212、复数2(1)2ii-=()A、1B、1-C、iD、i-3、函数29,3()3ln(2),3xxf x xx x⎧-<⎪=-⎨⎪-≥⎩在3x=处的极限是()A、不存在B、等于6C、等于3D、等于04、如图,正方形ABCD的边长为1,延长BA至E,使1AE=,连接EC、ED则sin CED∠=()A B C D5、函数1(0,1)xy a a aa=->≠的图象可能是()6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

2012年高考数学(理科)试卷四川卷(含答案)最完美最高清word版

2012年高考数学(理科)试卷四川卷(含答案)最完美最高清word版

2012年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)参考公式:如果事件A、B互斥,那么P(A+B)=P(A)+P(B)如果事件A、B相互独立,那么P(A·B)=P(A)·P(B)如果事件A在一次试验中发生的概率是p,那么n次独立重复试验中事件A恰好发生k次的概率P n(k)=C knp k(1-p)n-k(k=0,1,2,…,n)球的表面积公式S=4πR2其中R表示球的半径球的体积公式V=43πR3其中R表示球的半径第一部分(选择题共60分)本部分共12小题,每小题5分,共60分.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.)(1+x)7的展开式中x2的系数是()A.42 B.35 C.28 D.212.复数2(1i)2i-=()A.1 B.-1 C.i D.-i3.函数293()3ln(2)3xxf x xx x⎧-<⎪=-⎨⎪-≥⎩,,,在x=3处的极限()A.不存在B.等于6C.等于3 D.等于0A.101 B.808 C.1 212 D.2 0124.如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连结EC,ED,则sin∠CED=()A.10B.10C10D155.函数y=a x-1a(a>0,且a≠1)的图象可能是()6.下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行7.设a,b都是非零向量,下列四个条件中,使||||=a ba b成立的充分条件是()A.a=-b B.a∥bC.a=2b D.a∥b且|a|=|b|8.已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0).若点M到该抛物线焦点的距离为3,则|OM|=()A.B.C.4 D.9.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是()A.1 800元B.2 400元C.2 800元D.3 100元10.如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作与平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A,P两点间的球面距离为()A.arccos4R B.π4RC.arccos3R D.π3R11.方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同.在所有这些方程所表示的曲线中,不同的抛物线共有()A.60条B.62条C.71条D.80条12.设函数f (x )=2x -cos x ,{a n }是公差为π8的等差数列,f (a 1)+f (a 2)+…+f (a 5)=5π,则[f (a 3)]2-a 1a 5=( )A .0B .21π16C .21π8D .213π16第二部分 (非选择题 共90分)本部分共10小题,共90分.二、填空题:本大题共4小题,每小题4分,共16分。

2012年四川高考数学理科试卷(带详解)

2012年四川高考数学理科试卷(带详解)

2012年普通高等学校招生全国统一考试(四川卷)数 学(理工类)一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的.1.7(1)x +的展开式中2x 的系数是 ( ) A.42 B.35 C.28 D.21 【测量目标】二项式定理.【考查方式】由二项展开式,求满足条件的项的系数. 【难易程度】容易. 【参考答案】D【试题解析】二项式7)1(x +展开式的通项公式为1+k T =27C ,k x ,令k =2,则2237C T x =,2x ∴的系数为27C 21=.2.复数2(1i)2i-= ( ) A.1 B.1- C.i D.i - 【测量目标】复数代数形式的四则运算.【考查方式】给出两复数比的形式,根据复数代数形式的四则运算直接求解. 【难易程度】容易. 【参考答案】B【试题解析】2(1i)2i-=21i 2i12i +-=- 3.函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-⎩…在3x =处的极限是 ( )A.不存在B.等于6C.等于3D.等于0 【测量目标】分段函数,对数函数的性质,函数的定义域. 【考查方式】直接给出分段函数,求分段函数在一点的极限值. 【难易程度】容易. 【参考答案】A【试题解析】分段函数在3x =处不是无限靠近同一个值,故不存在极限.4.如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠= ( ) A.31010 B.1010 C.510 D.515第4题图【测量目标】余弦定理,同角三角函数的基本关系.【考查方式】已知图形中直角三角形各边长,利用余弦定理求其中一角的余弦值,并转化为正弦值. 【参考答案】B 【试题解析】1,AE = 正方形的边长也为1222ED AE AD ∴=+=22222251310cos 21010sin 1cos 10EC EA AB CB CD ED EC CDCED ED ECCED CED =++==+-∴∠==∠=-∠=(), 5.函数1(0,1)xy a a a a=->≠的图象可能是 ( )A B C D第5题图【测量目标】函数图象的判断,【考查方式】直接给出函数解析式,判断其函数图象. 【难易程度】容易. 【参考答案】D【试题解析】函数1(0,1)xy a a a a=->≠的图象可以看成把函数x y a =的图象向下平移1a .个单位得到的。

2012年四川高考理科数学试题和答案

2012年四川高考理科数学试题和答案

2012年普通高等学校招生全国统一考试(四川卷)数学(理工类)参考公式:如果事件互斥,那么球的表面积公式()()()P A B P A P B+=+24S Rp=如果事件相互独立,那么其中R表示球的半径()()()P A B P A P B? 球的体积公式如果事件A在一次试验中发生的概率是p,那么343V Rp=在n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径()(1)(0,1,2,,)k k n kn nP k C p p k n-=-=…第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1)x+的展开式中2x的系数是()A、42B、35C、28D、212、复数2(1)2ii-=()A、1B、1-C、iD、i-3、函数29,3()3ln(2),3xxf x xx x⎧-<⎪=-⎨⎪-≥⎩在3x=处的极限是()A、不存在B、等于6C、等于3D、等于04、如图,正方形ABCD的边长为1,延长BA至E,使1AE=,连接EC、ED则sin CED∠=()A B C D5、函数1(0,1)xy a a aa=->≠的图象可能是()6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

2012高考试题―数学理(四川卷)word版含答案真正免费下载.

2012高考试题―数学理(四川卷)word版含答案真正免费下载.

2012年普通高等学校招生全国统一考试(四川卷数学(理工类参考公式:如果事件互斥,那么球的表面积公式(((P A B P A P B +=+24S R p =如果事件相互独立,那么其中R 表示球的半径(((P A B P A P B ?球的体积公式如果事件A 在一次试验中发生的概率是p ,那么343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径((1(0,1,2,,k k n k n n P k C p p k n -=-=…第一部分 (选择题共60分注意事项: 1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1x 的展开式中2x 的系数是(A 、42B 、35C 、28D 、212、复数2(12ii-=(A、1B、1-C、iD、i-3、函数29,3(3ln(2,3 xxf x xx x⎧-<⎪=-⎨⎪-≥⎩在3x=处的极限是(A、不存在B、等于6C、等于3D、等于04、如图,正方形ABCD的边长为1,延长BA至E,使1 AE=,连接EC、ED则sin CED∠=(A、B、D5、函数1(0,1xy a a aa=->≠的图象可能是(6、下列命题正确的是(A、若两条直线和同一个平面所成的角相等,则这两条直线平行B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||aba b =成立的充分条件是(A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,M y 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年普通高等学校招生全国统一考试(四川卷)
数学(理工类)
参考公式:
如果事件互斥,那么球的表面积公式
()()()
P A B P A P B
+=+2
4
S R
p
=
如果事件相互独立,那么其中R表示球的半径
()()()
P A B P A P B
?球的体积公式
如果事件A在一次试验中发生的概率是p,那么3
4
3
V R
p
=
在n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径
()(1)(0,1,2,,)
k k n k
n n
P k C p p k n
-
=-=…
第一部分(选择题共60分)
注意事项:
1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7
(1)x
+的展开式中2x的系数是()
A、42
B、35
C、28
D、21
2、复数
2
(1)
2
i
i
-
=()
A、1
B、1-
C、i
D、i-
3、函数
29
,3
()3
ln(2),3
x
x
f x x
x x
⎧-
<

=-

⎪-≥

在3
x=处的极限是()
A、不存在
B、等于6
C、等于3
D、等于0
4、如图,正方形ABCD的边长为1,延长BA至E,使1
AE=,连接EC、ED则sin CED
∠=()
A B C D
5、函数
1
(0,1)
x
y a a a
a
=->≠的图象可能是()
6、下列命题正确的是( )
A 、若两条直线和同一个平面所成的角相等,则这两条直线平行
B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D 、若两个平面都垂直于第三个平面,则这两个平面平行
7、设a 、b 都是非零向量,下列四个条件中,使||||
a b a b =成立的充分条件是( ) A 、a b =- B 、//a b C 、2a b = D 、//a b 且||||a b =
8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

若点M 到该抛物线焦点的距离为3,则||OM =(

A 、
B 、
C 、4
D 、9、某公司生产甲、乙两种桶装产品。

已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克。

每桶甲产品的利润是300元,每桶乙产品的利润是400元。

公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克。

通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )
A 、1800元
B 、2400元
C 、2800元
D 、3100元
10、如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α
的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45
角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠=,则A 、P 两点间的球
面距离为(

A 、R
B 、4R π
C 、R
D 、3R π 11、方程22ay b x c =+中的,,{3,2,0,1,2,3}a b c ∈--,且,,a b c 互不相同,在所有这些方
程所表示的曲线中,不同的抛物线共有( )
A 、60条
B 、62条
C 、71条
D 、80条
12、设函数()2cos f x x x =-,{}n a 是公差为
8π的等差数列,125()()()5f a f a f a π++⋅⋅⋅+=,则2313[()]f a a a -=( )
A 、0
B 、
2116π C 、218
π D 、21316π
第二部分 (非选择题 共90分)
注意事项:
(1)必须使用0.5毫米黑色签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚。

答在试题卷上无效。

(2)本部分共10个小题,共90分。

二、填空题(本大题共4个小题,每小题4分,共16分。

把答案填在答题纸的相应位置上。


13、设全集{,,,}U a b c d =,集合{,}A a b =,{,,}B b c d =,则()()U U A B =痧___________。

14、如图,在正方体1111ABCD A BC D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________。

15、椭圆22143x y +=的左焦点为F ,直线x m =与椭圆相交于点A 、B ,当FAB ∆的周长最大时,FAB ∆的面积是____________。

16、记[]x 为不超过实数x 的最大整数,例如,[2]2=,[1.5]1=,[0.3]1-=-。

设a 为正整数,数列{}n x 满足1x a =,1[
][]()2n n
n a x x x n N *++=∈,现有下列命题:
①当5a =时,数列{}n x 的前3项依次为5,3,2;
②对数列{}n x 都存在正整数k ,当n k ≥时总有n k x x =;
③当1n ≥
时,1n x ;
④对某个正整数k ,若1k k x x +≥
,则n x =。

其中的真命题有____________。

(写出所有真命题的编号)
三、解答题(本大题共6个小题,共74分。

解答应写出必要的文字说明,证明过程或演算步骤。


17、(本小题满分12分)
某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和B 在任意时刻发生故障的概率分别为110
和p 。

(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为
4950,求p 的值; (Ⅱ)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E ξ。

18、(本小题满分12分)
函数2()6cos 3(0)2x
f x x ωωω=+->在一个周期内的图象如图所示,A 为图
象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形。

(Ⅰ)求ω的值及函数()f x 的值域;
(Ⅱ)若0()5
f x =,且0102(,)33x ∈-,求0(1)f x +的值。

N
A 1
19、(本小题满分12分)
如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,平面PAB ⊥平面ABC 。

(Ⅰ)求直线PC 与平面ABC 所成角的大小;
(Ⅱ)求二面角B AP C --的大小。

20、(本小题满分12分) 已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立。

(Ⅰ)求1a ,2a 的值;
(Ⅱ)设10a >,数列110{lg
}n a a 的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值。

21、(本小题满分12分)
如图,动点M 到两定点(1,0)A -、(2,0)B 构成MAB ∆,且2MBA MAB ∠=∠,设动点M 的轨迹为C 。

(Ⅰ)求轨迹C 的方程;
(Ⅱ)设直线2y x m =-+与y 轴交于点P ,与轨迹C 相交
于点Q R 、,且||||PQ PR <,求
||||PR PQ 的取值范围。

22、(本小题满分14分) 已知a 为正实数,n 为自然数,抛物线2
2
n
a y x =-+与x 轴正半轴相交于点A ,设()f n 为该抛物线在点A 处的切线在y 轴上的截距。

(Ⅰ)用a 和n 表示()f n ;
(Ⅱ)求对所有n 都有3
3()1()11
f n n f n n -≥++成立的a 的最小值; (Ⅲ)当01a <<时,比较
11()(2)n k f k f k =-∑与27(1)()4(0)(1)
f f n f f --的大小,并说明理由。

相关文档
最新文档