文科高三数学试题
高三文科数学试卷电子版
第1页 共4页 ◎ 第2页 共4页…………外………………内……………○……在※※装※※订※※线………○……第II卷(非选择题)二、填空题(共4题,每题5分,共20分)13.若(x2+a)(x+x)8的展开式中x8的系数为9,则a的值为.14.北宋时期的科学家沈括在他的著作《梦溪笔谈》一书中提出一个有趣的问题,大意是:酒店把酒坛层层堆积,底层摆成长方形,以后每上一层,长和宽两边的坛子各少一个,堆成一个棱台的形状(如图1),那么总共堆放了多少个酒坛?沈括给出了一个计算酒坛数量的方法——隙积术,设底层长和宽两边分别摆放a,b个坛子,一共堆了n层,则酒坛的总数S=ab+(a-1)(b-1)+(a-2)(b-2)+…+(a-n+1)(b-n+1).现在将长方形垛改为三角形垛,即底层摆成一个等边三角形,向上逐层等边三角形的每边少1个酒坛(如图2),若底层等边三角形的边上摆放10个酒坛,顶层摆放1个酒坛,那么酒坛的总数为.15.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足f'(x1)=f'(x2)=f(b)-f(a)b-a,则称函数f(x)是[a,b]上的“中值函数”.已知函数f(x)=13x3-12x2+m是[0,m]上的“中值函数”,则实数m的取值范围是.16.设函数f(x)=exx+a(x-1)+b(a,b∈R)在区间[1,3]上总存在零点,则a2+b2的最小值为.三、解答题(共6题,共70分)17.已知数列{a n}的各项均为正数,S n为其前n项和,且4S n=a n2+2a n-3.(1)求数列{a n}的通项公式;(2)若T n=a1+1S1−a3+1S3+a5+1S5-…+(-1)n+1a2n-1+1S2n-1,比较T n与1的大小.18.已知△ABC的内角A,B,C的对边分别为a,b,c,且2a sin(C+π6)=b+c.(1)求角A的大小;(2)若a=√7,BA⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =-3,角A的平分线交边BC于点T,求AT的长.19.垃圾是人类生产和生活中产生的废弃物,由于排出量大,成分复杂多样,且具有污染性,因此需要无害化、减量化处理.某市为调查产生的垃圾数量,采用简单随机抽样的方法抽取20个镇进行分析,得到样本数据(x i,y i)(i=1,2,…,20),其中x i和y i分别表示第i个镇的人口(单位:万人)和该镇年垃圾产生总量(单位:吨),并计算得∑i=120x i=80,∑i=120y i=4 000,∑i=120(x i-x¯)2=80,∑i=120(y i-y¯)2=8 000,∑i=120(x i-x¯)(y i-y¯)=700.(1)请用相关系数说明该组数据中y与x之间的线性相关程度;(2)求y关于x的线性回归方程;(3)某机构有两款垃圾处理机器,其中甲款机器每台售价100万元,乙款机器每台售价80万元,下表是这两款垃圾处理机器的使用年限(整年)统计表:根据以往经验可知,某镇每年可获得政府支持的垃圾处理费用为50万元,若仅考虑购买机器的成本和每台机器的使用年限(使用年限均为整年),以频率估计概率,该镇选择购买哪一款垃圾处理机器更划算?参考公式:相关系数r=∑i=1n(x i-x¯)(y i-y¯)√∑i=1(x i-x¯)2∑i=1(y i-y¯)2,对于一组具有线性相关关系的数据(x i,y i)(i=1,2,…,n),其回归直线y^=b^x+a^的斜率和截距的最小二乘估计分别为b^=∑i=1nx i y i−nx-y-∑i=1nx i2−nx-2,a^=y-−b^x-.20.如图,已知各棱长均为2的直三棱柱ABC-A1B1C1中,E为AB的中点.(1)求证:BC1∥平面A1EC;(2)求点B1到平面A1EC的距离.21.已知椭圆C:y2a2+x2b2=1(a>b>0)的离心率为√22,且椭圆上一点到两个焦点的距离之和为2√2.(1)求椭圆C的标准方程.(2)过点S(-13,0)的动直线l交椭圆C于A,B两点,试问:在x轴上是否存在一个定点T,使得无论直线l如何转动,以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由.22.已知函数f(x)=lnx,g(x)=-12x.(1)令F(x)=ax·f(x)-2x2·g(x),讨论F(x)的单调性;(2)设φ(x)=f(x)x-g(x),若在(√e,+∞)上存在x1,x2(x1≠x2)使不等式|φ(x1)-φ(x2)|≥k|lnx1-lnx2|成立,求k的取值范围.第3页共4页◎第4页共4页参考答案1.D【解析】解法一 因为A ={x ||x |≤3}={x |-3≤x ≤3},(题眼)(方法点拨:含有一个绝对值的不等式的解法口诀是“大于在两边,小于在中间”,即|x |≤a 的解集是{x |-a ≤x ≤a },|x |≥a 的解集是{x |x ≤-a 或x ≥a })B ={x |x ≤2},所以A ∩B ={x |-3≤x ≤2},故选D.解法二 因为3∉B ,所以3∉(A ∩B ),故排除A,B;因为-3∈A 且-3∈B ,所以-3∈(A ∩B ),故排除C.故选D. 【备注】无 2.B【解析】解法一 z =4-3i 2-i=(4-3i)(2+i)(2-i)(2+i)=11-2i 5=115−25i,所以|z |=√(115)2+(-25)2=√5,(题眼)故选B.解法二 |z |=|4-3i2-i |=|4-3i||2-i|=√42+(-3)2√22+(-1)2=√5=√5,故选B.(方法总结:若z 1,z 2∈C ,则|z 1z 2|=|z 1|·|z 2|,|z1z 2|=|z 1||z 2|(|z 2|≠0)) 【备注】无3.A【解析】解法一 由sin x =1,得x =2k π+π2(k ∈Z ),则cos (2k π+π2)=cos π2=0,故充分性成立;又由cosx =0,得x =k π+π2(k ∈Z ),而sin(k π+π2)=1或-1,故必要性不成立.所以“sin x =1”是“cos x =0”的充分不必要条件,(判断充分、必要条件应分三步:(1)确定条件是什么,结论是什么;(2)尝试从条件推结论(充分性),从结论推条件(必要性);(3)确定条件和结论是什么关系)故选A.解法二 由sin x =1,得x =2k π+π2 (k ∈Z ),则cos(2k π+π2)=cos π2=0,故充分性成立;又cos 3π2=0,sin 3π2=-1,故必要性不成立.所以“sin x =1”是“cos x =0”的充分不必要条件,故选A. 【备注】无 4.A【解析】由题可知,数列{a n }是首项为29、公比为12的等比数列,所以S n =29[1-(12)n ]1-12=210-210-n,T n =29×28×…×210-n=29+8+…+(10-n )=2n(19-n)2,由T n >S n ,得2n(19-n)2>210-210-n,由n(19-n)2≥10,可得n 2-19n +20≤0,结合n ∈N *,可得2≤n ≤17,n ∈N *.当n =1时,S 1=T 1,不满足题意;当n ≥18时,n(19-n)2≤9,T n ≤29,S n =210-210-n>210-1>29,所以T n <S n ,不满足题意.综上,使得T n >S n 成立的n 的最大正整数值为17. 【备注】无 5.B【解析】依题意,1=a 2+b 2-2a ·b =1+1-2a ·b ,故a ·b =12,所以(a -b )·(b -c )=a ·b -b 2-(a -b )·c =(b -a )·c -12=|b -a ||c |·cos<b -a ,c >-12≤1-12=12,当且仅当b -a 与c 同向时取等号.所以(a -b )·(b -c )的最大值为12.故选B.【备注】无 6.D【解析】由已知可得∠xOP =∠P 0OP -∠P 0Ox =π2t -π3,所以由三角函数的定义可得y =3sin∠xOP =3sin(π2t -π3),故选D.【备注】无 7.B【解析】本题主要考查古典概型、排列与组合等知识,考查的学科素养是理性思维、数学应用. “礼、乐、射、御、书、数”六节课程不考虑限制因素有A 66=720(种)排法,其中“数”排在前两节,“礼”和“乐”相邻排课的排课方法可以分两类:①“数”排在第一节,“礼”和“乐”两门课程相邻排课,则有C 41A 22A 33=48(种)排法;②“数”排在第二节,“礼”和“乐”两门课程相邻排课,则有C 31A 22A 33=36(种)排法.(方法总结:解决排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置))故“数”排在前两节,“礼”和“乐”相邻排课的排法共有48+36=84(种),所以“数”排在前两节,“礼”和“乐”相邻排课的概率P =84720=760,故选B. 【备注】无 8.C【解析】解法一 由已知可得AA 1⊥底面ABC ,且AC ⊥BC ,所以V A -PBC =V P -ABC =13×S △ABC ×PA =13×12×3×4×PA =4,解得PA =2.在平面ACC 1A 1内,过点C 1作C 1H ⊥PC ,垂足为H ,如图.由CC 1⊥底面ABC ,可得CC 1⊥BC ,因为AC ⊥BC ,AC ∩CC 1=C ,所以BC ⊥平面ACC 1A 1,所以BC ⊥C 1H ,又C 1H ⊥PC ,PC ∩BC =C ,所以C 1H ⊥平面PBC ,连接BH ,故∠C 1BH 就是直线BC 1与平面PBC 所成的角.在矩形ACC 1A 1中,CP =√CA 2+AP 2=√42+22=2√5,sin∠C 1CH =cos∠PCA =AC CP =2√5=√5=C 1H CC 1=C 1H 3,故C 1H =3×√5=√5.故在△BC 1H中,sin∠C 1BH =C 1HBC 1=√53√2=√105,所以直线BC 1与平面PBC 所成角的正弦值等于√105.故选C.解法二 由已知得AA 1⊥底面ABC ,且AC ⊥BC ,所以V A -PBC =V P -ABC =13×S △ABC ×PA =13×12×3×4×PA =4,解得PA =2.如图,以C 为坐标原点,分别以CB⃗⃗⃗⃗⃗ ,CA ⃗⃗⃗⃗⃗ ,C C_1的方向为x ,y ,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,4,2),B (3,0,0),C 1(0,0,3),则CB⃗⃗⃗⃗⃗ =(3,0,0),CP ⃗⃗⃗⃗⃗ =(0,4,2),B ⃗ C_1=(-3,0,3).设平面BCP 的法向量为n =(x ,y ,z ),则由{n ⊥CB⃗⃗⃗⃗⃗ ,n ⊥CP⃗⃗⃗⃗ 可得{n·CB ⃗⃗⃗⃗⃗ =3x =0,n·CP ⃗⃗⃗⃗ =4y +2z =0,即{x =0,2y +z =0,得x =0,令y =1,得z =-2,所以n =(0,1,-2)为平面BCP 的一个法向量.设直线BC 1与平面PBC 所成的角为θ,则sin θ=|cos<n ,B ⃗ C_1>|=|n·B⃗⃗ C_1||n||B⃗⃗ C_1|=√(-3)2+32×√12+(-2)2=√105.故选C.【备注】求直线与平面所成角的方法:(1)定义法,①作,在直线上选取恰当的点向平面引垂线,确定垂足的位置是关键;②证,证明所作的角为直线与平面所成的角,证明的主要依据是直线与平面所成角的概念;③求,利用解三角形的知识求角.(2)向量法,sin θ=|cos<AB ⃗⃗⃗⃗⃗ ,n >|=|AB ⃗⃗⃗⃗⃗⃗·n||AB ⃗⃗⃗⃗⃗⃗||n|(其中AB 为平面α的斜线,n 为平面α的法向量,θ为斜线AB 与平面α所成的角).9.B【解析】本题主要考查集合以及自定义问题的解题方法;G =N,⊕为整数的加法时,对任意a,b ∈N ,都有a ⊕b ∈N ,取c =0,对一切a ∈G ,都有a ⊕c =c ⊕a =a ,G 关于运算⊕为“融洽集”. 【备注】无 10.D【解析】对于A,甲街道的测评分数的极差为98-75=23,乙街道的测评分数的极差为99-73=26,所以A 错误;对于B,甲街道的测评分数的平均数为75+79+82+84+86+87+90+91+93+9810=86.5,乙街道的测评分数的平均数为73+81+81+83+87+88+95+96+97+9910=88,所以B 错误;对于C,由题中表可知乙街道测评分数的众数为81,所以C 错误;对于D,甲街道的测评分数的中位数为86+872=86.5,乙街道的测评分数的中位数为87+882=87.5,所以乙的中位数大,所以D 正确. 故选D. 【备注】无 11.A【解析】本题考查函数的图象与性质,数形结合思想的应用,考查考生分析问题、解决问题的能力. 解法一 易知x =0是方程|x |-a (x 3+3x 2)=0的一个根,显然x ≠-3,当x ≠0且x ≠−3时,由|x |-a (x 3+3x 2)=0,得a =|x|x 3+3x 2,设g (x )=|x|x 3+3x 2,则g (x )的图象与直线y =a 有3个不同的交点.当x >0时,g (x )=1x 2+3x ,易知g (x )在(0,+∞)上单调递减,且g (x )∈(0,+∞).当x <0且x ≠-3时,g (x )=-1x 2+3x,g'(x )=2x+3(x 2+3x)2,令g'(x )>0,得-32<x <0,令g'(x )<0,得−3<x <−32或x <−3,所以函数g (x )在(−∞,−3)和(−3,−32)上单调递减,在(−32,0)上单调递增,且当x 从左边趋近于0和从右边趋近于−3时,g (x )→+∞,当x 从左边趋近于-3时,g (x )→−∞,当x →−∞时,g (x )→0,可作出函数g (x )的大致图象,如图所示,由图可知,a >49.综上,实数a 的取值范围是(49,+∞).解法二 易知x =0是方程|x |-a (x 3+3x 2)=0的一个根,当x ≠0时,由|x |-a (x 3+3x 2)=0,得1|x|=a (x +3),则该方程有3个不同的根.在同一坐标系内作出函数y =1|x|和y =a (x +3)的图象,如图所示.易知a >0,当y =a (x +3)与曲线y =1|x|的左支相切时,由-1x=a (x +3)得ax 2+3ax +1=0,Δ=(3a )2-4a =0,得a =49.由图可知,当a >49时,直线y =a (x +3)与曲线y =1|x|有3个不同的交点,即方程1|x|=a (x +3)有3个不同的根.综上,实数a 的取值范围是(49,+∞).【备注】【方法点拨】利用方程的根或函数零点求参数范围的方法及步骤:(1)常规思路:已知方程的根或函数的零点个数,一般利用数形结合思想转化为两个函数图象的交点个数,这时图象一定要准确,这种数形结合的方法能够帮助我们直观解题.(2)常用方法:①直接法——直接根据题设条件构建关于参数的不等式,通过解不等式确定参数范围;②分离参数法——先将参数分离,转化成求函数的值域问题加以解决;③数形结合法——先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.(3)一般步骤:①转化——把已知函数零点的存在情况转化为方程的解或两函数图象的交点的情况;②列式——根据零点存在性定理或结合函数图象列式;③结论——求出参数的取值范围或根据图象得出参数的取值范围 12.B【解析】因为圆x 2+y 2=a 2与双曲线的渐近线在第一象限的交点为M ,所以∠A 1MA 2=90°,tan∠MOA 2=ba,所以∠PMA 2=90°.因为△MPA 2是等腰三角形,所以∠MA 2P =45°.因为∠PA 2M 的平分线与y 轴平行,所以∠OA 2M =∠PA 2x ,又∠OA 2M +∠A 2MO +∠MOA 2=180°,∠OA 2M =∠A 2MO ,所以∠MOA 2=∠MA 2P =45°,(题眼)所以b a=tan∠MOA 2=1,所以C 的离心率e =c a =√a 2+b 2a 2=√1+b 2a 2=√2.故选B.【备注】无 13.1【解析】二项式(x +1x )8的展开式中,含x 6的项为C 81x 7(1x )1=8x 6,含x 8的项为C 80x 8(1x )0=x 8,所以(x 2+a )(x +1x)8的展开式中,x 8的系数为8+a =9,解得a =1.【备注】无 14.220【解析】根据题目中已给模型类比和联想,得出第一层、第二层、第三层、…、第十层的酒坛数,然后即可求解.每一层酒坛按照正三角形排列,从上往下数,最上面一层的酒坛数为1,第二层的酒坛数为1+2,第三层的酒坛数为1+2+3,第四层的酒坛数为1+2+3+4,…,由此规律,最下面一层的酒坛数为1+2+3+…+10,所以酒坛的总数为1+(1+2)+(1+2+3)+…+(1+2+3+…+10)=1+3+6+…+55=220. 【备注】无 15.(34,32)【解析】由题意,知f '(x )=x 2-x 在[0,m ]上存在x 1,x 2(0<x 1<x 2<m ),满足f '(x 1)=f '(x 2)=f(m)-f(0)m=13m 2-12m ,所以方程x 2-x =13m 2-12m 在(0,m )上有两个不相等的解.令g (x )=x 2-x-13m 2+12m (0<x <m ),则{Δ=1+43m 2-2m >0,g(0)=-13m 2+12m >0,g(m)=23m 2-12m >0,解得34<m <32.【备注】无16.e 48 【解析】设x 0为函数f (x )在区间[1,3]上的零点,则e x 0x 0+a (x 0-1)+b =0,所以点(a ,b )在直线(x 0-1)x +y +e x 0x 0=0上,(题眼)而a 2+b 2表示坐标原点到点(a ,b )的距离的平方,其值不小于坐标原点到直线(x 0-1)x +y +e x 0x 0=0的距离的平方,(名师点拨:直线外一点到直线上的点的距离大于等于该点到直线的距离)即a 2+b 2≥e 2x 0x 02(x 0-1)2+12=e 2x 0x 04-2x 03+2x 02.令g (x )=e 2xx 4-2x 3+2x 2,x ∈[1,3],则g'(x )=2e 2x (x 4-2x 3+2x 2)-e 2x (4x 3-6x 2+4x)(x 4-2x 3+x 2)2=2x(x-1)2(x-2)e 2x (x 4-2x 3+x 2)2,则当1≤x <2时,g'(x )<0,当2<x ≤3时,g'(x )>0,所以函数g (x )在区间[1,2)上单调递减,在区间(2,3]上单调递增,所以g (x )min =g (2)=e 48,所以a 2+b 2≥e 48,所以a 2+b 2的最小值为e 48. 【备注】无17.解:(1)令n =1,则4a 1=a 12+2a 1-3,即a 12-2a 1-3=0,解得a 1=-1(舍去)或a 1=3.因为4S n =a n 2+2a n -3 ①,所以4S n +1=a n+12+2a n +1-3 ②,②-①,得4a n +1=a n+12+2a n +1-a n 2-2a n ,整理得(a n +1+a n )(a n +1-a n -2)=0, 因为a n >0,所以a n +1-a n =2,所以数列{a n }是首项为3、公差为2的等差数列,所以a n =3+(n -1)×2=2n +1.(2)由(1)可得,S n =(n +2)n ,a 2n -1=4n -1,S 2n -1=(2n +1)(2n -1), 所以a 2n-1+1S 2n-1=4n (2n+1)(2n-1)=12n-1+12n+1.当n 为偶数时,a 1+1S 1−a 3+1S 3+a 5+1S 5-…+(-1)n+1a 2n-1+1S 2n-1=(1+13)-(13+15)+(15+17)-…-(12n-1+12n+1) =1-12n+1<1; 当n 为奇数时,a 1+1S 1−a 3+1S 3+a 5+1S 5-…+(-1)n+1a 2n-1+1S 2n-1=(1+13)-(13+15)+(15+17)-…+(12n-1+12n+1)=1+12n+1>1.综上,当n 为偶数时,T n <1;当n 为奇数时,T n >1. 【解析】无 【备注】无 18.无【解析】(1)由已知及正弦定理,得2sin A sin(C +π6)=sin B +sin C ,所以sin A cos C +√3sin A sin C =sinB +sin C.(有两角和或差的正弦(余弦)形式,并且其中有一个角是特殊角时,常常将其展开) 因为A +B +C =π,所以sin B =sin(A +C ),所以sin A cos C +√3sin A sin C =sin(A +C )+sin C ,则sin A cos C +√3sin A sin C =sin A cos C +cos A sin C +sin C ,即√3sin A sin C =sin C cos A +sin C.因为sin C ≠0,所以√3sin A =cos A +1,即sin(A -π6)=12. 因为0<A <π,所以A =π3.(2)由BA ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =-3可知cb cos 2π3=-3,因此bc =6. 由a 2=b 2+c 2-2bc cos∠BAC =(b +c )2-2bc -bc =7,可得b +c =√7+3×6=5. 由S △ABC =S △ABT +S △ACT 得,12bc sin π3=12c ·AT ·sin π6+12b ·AT ·sin π6,(与角平分线相关的问题,常常利用三角形的面积来解决)因此AT =bcsinπ3(b+c)sinπ6=6×√325×12=6√35. 【备注】无19.解:(1)由题意知,相关系数r =∑i=120(x i -x ¯)(y i -y ¯)√∑i=1(x i -x ¯)2∑i=1(y i -y ¯)2=√80×8 000=78=0.875, 因为y 与x 的相关系数接近于1,所以y 与x 之间具有较强的线性相关关系.(2)由题意可得,b ^=∑i=120(x i -x ¯)(y i -y ¯)∑i=120(x i-x ¯)2=70080=8.75,a ^=y -−b ^x -=4 00020-8.75×8020=200-8.75×4=165,所以y ^=8.75x +165.(将变量x ,y 的平均值代入线性回归方程,求得a ^)(3)以频率估计概率,购买一台甲款垃圾处理机器节约政府支持的垃圾处理费用X (单位:万元)的分布列为E (X )=-50×0.1+0×0.4+50×0.3+100×0.2=30(万元).购买一台乙款垃圾处理机器节约政府支持的垃圾处理费用Y (单位:万元)的分布列为E (Y )=-30×0.3+20×0.4+70×0.2+120×0.1=25(万元).因为E (X )>E (Y ),所以该镇选择购买一台甲款垃圾处理机器更划算.(根据已知数据,分别计算随机变量X 和Y 的分布列、期望,期望越大,说明节约费用的平均值越大,也就越划算)【解析】本题主要考查变量相关性分析、线性回归方程的求解、概率的计算以及随机变量期望的意义和求法,考查的学科素养是理性思维、数学应用.第(1)问,由已知数据,代入相关系数公式,求得相关系数r 即可判断x 和y 的相关程度;第(2)问,根据最小二乘估计公式,求得b ^,a ^的值,从而确定y 关于x 的线性回归方程;第(3)问,根据统计数据计算随机变量X 和Y 的分布列,并分别求期望,由期望的意义可知,数值越大表示节约的垃圾处理费用的平均值越大,从而确定购买哪一款垃圾处理机器. 【备注】无20.(1)如图,连接AC 1交A 1C 于点O ,连接OE ,则BC 1∥OE.(题眼)BC 1∥OEOE ⊂平面A 1EC BC 1⊄平面A 1EC }⇒BC 1∥平面A 1EC.(运用直线与平面平行的判定定理时,关键是找到平面内与已知直线平行的直线)(2)如图,连接A 1B ,则V A 1-ACE =12V A 1-ABC =12×13V ABC-A 1B 1C 1=12×13×√34×22×2=√33.(题眼) 根据直三棱柱的性质,易得A 1A ⊥平面ABC ,因为CE ⊂平面ABC ,所以AA 1⊥CE .因为E 为AB 的中点,△ABC 为正三角形,所以CE ⊥AB. 又AA 1∩AB =A ,AA 1,AB ⊂平面ABB 1A 1,所以CE ⊥平面ABB 1A 1, 因为A 1E ⊂平面ABB 1A 1,所以A 1E ⊥CE .在Rt△A 1CE 中,A 1E ⊥CE ,A 1C =2√2,A 1E =√5,EC =√3,所以S △A 1CE =12×√5×√3=√152. 设点A 到平面A 1EC 的距离为h ,则点B 1到平面A 1EC 的距离为2h .因为V A 1-ACE =V A-A 1CE =13×S △A 1CE ×h ,(点到平面的距离可转化为几何体的体积问题,借助等体积法来解决.等体积法:轮换三棱锥的顶点,体积不变;利用此特性,把三棱锥的顶点转换到易于求出底面积和高的位置是常用方法) 所以h =2√55,即点A 到平面A 1EC 的距离为2√55, 因此点B 1到平面A 1EC的距离为4√55.【解析】无【备注】高考文科数学对立体几何解答题的考查主要设置两小问:第(1)问通常考查空间直线、平面间的位置关系的证明;第(2)问通常考查几何体体积的计算,或利用等体积法求点到平面的距离.21.解:(1)由椭圆的定义可得2a =2√2,则a =√2, ∵椭圆C 的离心率e =ca =√22,∴c =1,则b =√a 2-c 2=1,∴椭圆C 的标准方程为y 22+x 2=1.(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),(由于存在直线l 与x 轴重合的情形,故需进行分类讨论) 由{x =my-13y 22+x 2=1消去x 并整理,得(18m 2+9)y 2-12my -16=0,Δ=144m 2+64(18m 2+9)=144(9m 2+4)>0恒成立,则y 1+y 2=12m 18m 2+9=4m 6m 2+3,y 1y 2=-1618m 2+9. 由于以AB 为直径的圆恒过点T ,则TA ⊥TB ,TA⃗⃗⃗⃗⃗ =(my 1-t -13,y 1),TB ⃗⃗⃗⃗⃗ =(my 2-t -13,y 2), 则TA ⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =(my 1-t -13)(my 2-t -13)+y 1y 2 =(m 2+1)y 1y 2-m (t +13)(y 1+y 2)+(t +13)2=-16(m 2+1)-m(t+13)×12m18m 2+9+(t +13)2=(t +13)2-(12t+20)m 2+1618m 2+9=0,∵点T 为定点,∴t 为定值,∴12t+2018=169,(分析式子结构,要使此式子的取值与m 无关,必须要将含有m 的相关代数式约去,通常采用分子与分母的对应项成比例即可解决) 解得t =1,此时TA⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =(43)2-169=0,符合题意. 当直线l 与x 轴重合时,AB 为椭圆C 的短轴,易知以AB 为直径的圆过点(1,0).综上所述,存在定点T (1,0),使得无论直线l 如何转动,以AB 为直径的圆恒过定点T .【解析】本题主要考查椭圆的定义及几何性质、直线与椭圆的位置关系,考查的学科素养是理性思维、数学探索.(1)首先由椭圆的定义求得a 的值,然后根据离心率的公式求得c 的值,从而求得b 的值,进而得到椭圆C 的标准方程;(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),与椭圆方程联立,得到y 1+y 2,y 1y 2,由题意得出TA⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =0,然后根据平面向量数量积的坐标运算及T 为定点求得t 的值,当直线l 与x 轴重合时,验证即可,最后可得出结论. 【备注】无22.(1)∵F (x )=ax ·f (x )-2x 2·g (x ),∴F (x )=x +ax ·ln x , ∴F'(x )=1+a +a ln x .①当a =0时,F (x )=x ,函数F (x )在(0,+∞)上单调递增;②当a >0时,函数F'(x )=1+a +a ln x 在(0,+∞)上单调递增,令F'(x )=1+a +a ln x =0,得x =e-1-1a>0,∴当x ∈(0,e -1-1a )时,F'(x )<0,当x ∈(e -1-1a ,+∞)时,F'(x )>0,所以当a >0时,F (x )在(0,e -1-1a )上单调递减,在(e-1-1a,+∞)上单调递增;③当a <0时,函数F'(x )=1+a +a ln x 在(0,+∞)上单调递减,令F'(x )=1+a +a ln x =0,得x =e-1-1a>0,∴当x ∈(0,e -1-1a )时,F'(x )>0,当x ∈(e -1-1a ,+∞)时,F'(x )<0,∴F (x )在(0,e -1-1a )上单调递增,在(e -1-1a ,+∞)上单调递减. (2)由题意知,φ(x )=lnx x+12x,∴φ'(x )=1-lnx x 2−12x 2=1-2lnx 2x 2,令φ'(x )=0,得x =√e ,∴x >√e时,φ'(x )<0,∴φ(x )在(√e ,+∞)上单调递减.不妨设x 2>x 1>√e ,则φ(x 1)>φ(x 2),则不等式|φ(x 1)-φ(x 2)|≥k |ln x 1-ln x 2|等价于φ(x 1)-φ(x 2)≥k (ln x 2-ln x 1),即φ(x 1)+k ln x 1≥φ(x 2)+k ln x 2.令m (x )=φ(x )+k ln x ,则m (x )在(√e ,+∞)上存在单调递减区间, 即m'(x )=φ'(x )+kx=-2lnx+2kx+12x 2<0在(√e ,+∞)上有解,即-2ln x +2kx +1<0在(√e ,+∞)上有解,即在(√e ,+∞)上,k <(2lnx-12x)max .令n (x )=2lnx-12x(x >√e ),则n'(x )=3-2lnx 2x 2(x >√e ),由 n'(x )=0得x =e 32, ∴函数n (x )=2lnx-12x在(√e ,e 32)上单调递增,在(e 32,+∞)上单调递减.∴n (x )max =n (e 32)=2ln e 32-12e 32=e -32,∴k <e -32.故k 的取值范围为(-∞,e -32).【解析】本题考查利用导数研究函数的单调性和最值,考查分类讨论思想、化归与转化思想的灵活应用,考查考生的运算求解能力以及运用所学知识分析问题和解决问题的能力.(1)通过对函数求导,对参数进行分类讨论,来讨论函数的单调性;(2)依据函数的单调性将不等式转化为函数存在单调递减区间,最后转化为函数的最值问题来解决.【备注】【素养落地】本题将函数、不等式等知识融合起来,借助导数研究函数的性质,考查逻辑推理、数学运算等核心素养.【技巧点拨】解决本题第(2)问的关键是化归与转化思想的应用,先利用函数的单调性将不等式转化为φ(x1)+k ln x1≥φ(x2)+k ln x2,然后根据式子的结构特征构造函数m(x)=φ(x)+k ln x,将m(x)在(√e,+∞))max.上存在单调递减区间转化为m'(x)<0在(√e,+∞)上有解,进而转化为k<(2lnx-12x。
2023年全国统一高考数学试卷(文科)(甲卷)(解析版)
2023年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={2,5},则N∪∁U M=( )A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}【答案】A【解答】解:因为U={1,2,3,4,5},集合M={1,4},N={2,5},所以∁U M={2,3,5},则N∪∁U M={2,3,5}.故选:A.2.(5分)=( )A.﹣1B.1C.1﹣i D.1+i【答案】C【解答】解:==1﹣i.故选:C.3.(5分)已知向量=(3,1),=(2,2),则cos〈+,﹣〉=( )A.B.C.D.【答案】B【解答】解:根据题意,向量=(3,1),=(2,2),则+=(5,3),﹣=(1,﹣1),则有|+|==,|﹣|==,(+)•(﹣)=2,故cos〈+,﹣〉==.故选:B.4.(5分)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .B .C .D .【答案】D【解答】解:某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,基本事件总数n ==6,这2名学生来自不同年级包含的基本事件个数m ==4,则这2名学生来自不同年级的概率为P ===.故选:D .5.(5分)记S n 为等差数列{a n }的前n 项和.若a 2+a 6=10,a 4a 8=45,则S 5=( )A .25B .22C .20D .15【答案】C【解答】解:等差数列{a n }中,a 2+a 6=2a 4=10,所以a 4=5,a 4a 8=5a 8=45,故a 8=9,则d ==1,a 1=a 4﹣3d =5﹣3=2,则S 5=5a 1+=10+10=20.故选:C .6.(5分)执行下边的程序框图,则输出的B =( )A.21B.34C.55D.89【答案】B【解答】解:模拟执行程序框图,如下:n=3,A=1,B=2,k=1,k≤3,A=1+2=3,B=3+2=5,k=2,k≤3,A=3+5=8,B=8+5=13,k=3,k≤3,A=8+13=21,B=21+13=34,k=4,k>3,输出B=34.故选:B.A.1B.2C.4D.5【答案】B【解答】解:根据题意,点P在椭圆上,满足•=0,可得∠F1PF2=,又由椭圆C:+y2=1,其中c2=5﹣1=4,可得|PF1|•|PF2|=2,故选:B.8.(5分)曲线y=在点(1,)处的切线方程为( )A.y=x B.y=x C.y=x+D.y=x+【答案】C【解答】解:因为y=,y′==,故函数在点(1,)处的切线斜率k=,切线方程为y﹣=(x﹣1),即y=.故选:C.9.(5分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,C的一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.10.(5分)在三棱锥P﹣ABC中,△ABC是边长为2的等边三角形,PA=PB=2,PC=,则该棱锥的体积为( )A.1B.C.2D.3【答案】A【解答】解:如图,PA=PB=2,AB=BC=2,取AB的中点D,连接PD,CD,可得AB⊥PD,AB⊥CD,又PD∩CD=D,PD、CD⊂平面PCD,∴AB⊥平面PCD,在△PAB与△ABC中,求得PD=CD=,在△PCD中,由PD=CD=,PC=,得PD2+CD2=PC2,则PD⊥CD,∴,∴×AB=.故选:A.11.(5分)已知函数f(x)=.记a=f(),b=f(),c=f(),则( )A.b>c>a B.b>a>c C.c>b>a D.c>a>b【答案】A【解答】解:令g(x)=﹣(x﹣1)2,则g(x)的开口向下,对称轴为x=1,∵,而=,∴,∴,∴由一元二次函数的性质可知g()<g(),∵,而,∴,∴,综合可得,又y=e x为增函数,∴a<c<b,即b>c>a.故选:A.12.(5分)函数y=f(x)的图象由y=cos(2x+)的图象向左平移个单位长度得到,则y=f(x)的图象与直线y=x﹣的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:y=cos(2x+)的图象向左平移个单位长度得到f(x)=cos (2x+)=﹣sin2x,在同一个坐标系中画出两个函数的图象,如图:y=f(x)的图象与直线y=x﹣的交点个数为:3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分。
2023年普通高等学校招生全国统一考试数学全国甲卷文科数学(全国甲卷、文科数学)
2023年普通高等学校招生全国统一考试数学(文科)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U ={1,2,3,4,5},集合M ={1,4},N ={2,5},则U N C M =( )A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}2.35(1i )(2i)(2i)+=+-( ) A.-1B.1C.1-ID.l+i3.向量a =(3,1),b =(2,2),则cos <a +b ,a -b>=( )A.117B.17C.5D.54.某校文艺部有4名学生,其中高一、高二年级各2名从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A.16B.13C.12D.235.记S n 为等差数列{a n }的前n 项和.若a 2+a 6=10,a 4a 8=45,则S 5=( )A.25B.22C.20D.156.执行下面的程序框图,输出的B =( )A.21B.34C.55D.897.设F 1,F 2;为椭圆C :2215x y += 的两个焦点,点P 在C 上,若12ꞏ0PF PF = ,则|PF 1|▪|PF 2|=( )A.1B.2C.4D.58.曲线1x e y x =+在点(1,2e)处的切线方程为( ) A.4e y x =B.2e y x =C.44e ey x =+ D.324e e y x =+9.已知双曲线C :22221x y a b-=(a >0,b >0)C 的一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则|AB |=( )A.5B.5C.5D.510.在三棱锥P -ABC 中,△ABC 是边长为2的等边三角形,P A =PB =2,PC,则该棱锥的体积为( )A.1C.2D.311.已知数2(1)()x f x e --=,记2a f =,2b f =,2c f =则( ) A.b >c >aB.b >a >cC.c >b >aD.c >a >b12.已知f (x )为函数y =cos(2x +6π)向左平移6π个单位所得函数,则y =f (x )与1122y x =-交点个数为( )A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分。
高三文科数学试卷(含答案)经典题
高三文科数学试卷一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}24M x x =<,{}2230N x x x =--<,且M N =A .{}2x x <-B .{}3x x >C .{}12x x -<<D .{}23x x << 2.若函数2()log f x x =,则下面必在()f x 反函数图像上的点是反函数图像上的点是A .(2)aa , B .1(2)2-,C .(2)a a ,D .1(2)2-,3.右图为某几何体三视图,按图中所给数据,该几何体的体积为右图为某几何体三视图,按图中所给数据,该几何体的体积为A .64+163B . 16+334C .163D . 16 4.在各项都为正数的等比数列}{n a 中,首项为3,前3项和为项和为21,则=++543a a a ( )A .33 B .72 C .84 D .189 5. 将函数)32sin(p+=x y 的图像向右平移12p=x 个单位后所得的图像的一个对称轴是:个单位后所得的图像的一个对称轴是:A. 6p=x B. 4p=x C. 3p=x D. 2p=x6. 若以连续抛掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在圆落在圆1022=+y x 内(含边界)的概率为内(含边界)的概率为A .61 B .41 C .92D .3677.下列有关命题的说法正确的是.下列有关命题的说法正确的是A .“21x =”是“1-=x ”的充分不必要条件”的充分不必要条件 B .“2=x ”是“0652=+-x x ”的必要不充分条件.”的必要不充分条件. C .命题“x R $Î,使得210x x ++<”的否定是:“x R "Î, 均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.”的逆否命题为真命题.P T O ,m)三点共线, 则m的值为 ..程序框图(即算法流程图)如图所示,其输出结果是 . a b b a a b 2的值为 .p所得的弦长为所得的弦长为. pp .开始开始 a =1 a =3a +1 a >100? 结束结束是否a =a +1 输出a33]3型号型号 甲样式甲样式 乙样式乙样式 丙样式丙样式 500ml2000 z 3000 700ml3000 4500 5000 A B C 2a0AF F F 13OF QN MQ a b a 21n +722p)ppp3122p]1 333222,0),(2,0),2a a --22,a 2)2a a a -22a -22a -222123a a -- QN MQ )33x x-1a£ïíïx=>上恒成立,0x >\只要24aa ì£ïí解:(1)由121n n na a a +=+得:1112n na a +-=且111a=,所以知:数列1n a ìüíýîþ是以1为首项,以2为公差的等差数列,为公差的等差数列, …………2分所以所以1112(1)21,21n nn n a a n =+-=-=-得:; ------------4分(2)由211n n b a =+得:212112,n n n n b b n=-+=\= , 从而:11(1)n n b b n n +=+ ------------6分则 122311111223(1)n n n T b b b b b b n n +=+++=+++´´+=11111111()()()()1223341n n -+-+-++-+ 1111nn n =-=++ ------------9分(3)已知)1()1)(1)(1(12531-++++=n nb b b b P 246213521n n =····- 22212(4)(4)1,221n nn n n n +<-\<- 设:nn T n 2124523+´´´= ,则n n T P >从而:nn n n T P P n n n 2121223423122+´-´´´´=> 21n =+故:故: 21n T n >+ ------------14分。
文科高等数学试题及答案
文科高等数学试题及答案一、选择题(每题3分,共15分)1. 下列函数中,哪一个是周期函数?A. y = x^2B. y = sin(x)C. y = e^xD. y = ln(x)2. 已知函数f(x) = 2x - 1,求f(3)的值。
A. 5B. 4C. 3D. 23. 以下哪个选项是微分方程dy/dx + y = x的解?A. y = x - 1B. y = x + CC. y = e^xD. y = x^24. 函数y = x^3 - 6x^2 + 9x + 5在哪个点取得极值?A. x = 1B. x = 2C. x = 3D. x = 45. 积分∫(2x + 1)dx的结果是:A. x^2 + x + CB. 2x^2 + x + CC. x^2 + CD. 2x^2 + C答案:1. B2. A3. B4. C5. B二、填空题(每空2分,共10分)6. 若f(x) = 3x^2 + 2x - 5,则f'(x) = _______。
7. 函数y = cos(x)的导数是 _______。
8. 函数y = ln(x)的原函数是 _______。
9. 微分方程dy/dx - 2y = 4x的通解是 _______。
10. 曲线y = x^2在点(1,1)处的切线斜率是 _______。
答案:6. 6x + 27. -sin(x)8. xln(x)9. y = 2x + C10. 2三、解答题(共75分)11. 求函数f(x) = x^3 - 3x^2 + 2的极值点和极值。
(15分)12. 已知函数f(x) = 4x^3 - 3x^2 + 7x - 5,求其在区间[-1, 2]上的最大值和最小值。
(20分)13. 解微分方程dy/dx + 2y = 4x,且当x = 0时,y = 1。
(20分)14. 求曲线y = x^3 - 2x^2 + x与直线y = 4x - 5的交点坐标。
高考数学(文科)试题及答案
高考数学(文)试题及答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =Z ,集合M ={-1,0,1},N ={0,1,3},则(∁U M )∩N =(A ){-1} (B ){3} (C ){0,1} (D ){-1,3} 2.下列命题中的假命题是(A )∀x >0且x ≠1,都有x +1x>2(B )∀a ∈R ,直线ax +y -a =0恒过定点(1,0)(C )∃m ∈R ,使f (x )=(m -1)x m 2-4m +3是幂函数 (D )∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数3.在等差数列{a n }中,已知公差d =2,且a 1,a 3,a 4成等比数列,则a 2=(A )-4 (B )-6 (C )-8 (D )-104.函数y =12-x+lg x 的定义域是(A )(0,2] (B )(0,2) (C )(1,2) (D )[1,2)5.已知函数f (x )=⎩⎪⎨⎪⎧4x -4, x ≤1,x 2-4x +3,x >1。
则函数y =f (x )-log 2x 的零点的个数是(A )4 (B )3 (C )2 (D )16.一个几何体的三视图如图所示,则这个几何体的体积等于(A )4 (B )6 (C )8 (D )127.已知函数f (x )=A sin(2x +φ)的部分图象如图所示,则f (0)=(A )-12(B )-1 (C )-32(D )- 38.设O 为△ABC 所在平面内一点.若实数x 、y 、z 满足x →OA +y →OB +z →OC =0(x 2+y 2+z 2≠0),则“xyz =0”是“点O 在△ABC 的边所在直线上”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 9.已知直线l :Ax +By +C =0(A ,B 不全为0),两点P 1(x 1,y 1),P 2(x 2,y 2),若(Ax 1+By 1+C )( Ax 2+By 2+C )>0,且|Ax 1+By 1+C |<|Ax 2+By 2+C |,则直线l (A )与直线P 1P 2不相交 (B )与线段P 2P 1的延长线相交 (C )与线段P 1P 2的延长线相交 (D )与线段P 1P 2相交10.已知圆M :x 2+y 2-8x -6y =0,过圆M 内定点P (1,2)作两条相互垂直的弦AC 和BD ,则四边形ABCD 面积的最大值为(A )2015 (B )16 6 (C )515 (D )40 1 2 3 4 5 6 7 8 9 10二、填空题:本大题共7小题,每小题5分,共35分. 11.若复数z 满足(2-i)z =1+i (i 为虚数单位),则复数z 在复平面内对应的点的坐标为 . 12.设F 1、F 2是双曲线x 216-y 220=1的两焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,则点P 到焦点F 2的距离等于 .13.已知某程序框图如图所示,若分别输入的x 的值为0,1,2,执行该程序后,输出的y 的值分别为a ,b ,c ,则a +b +c = .14.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为s 1、s 2、s 3,则它们的大小关系为 .(用“>”连接)15.若不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,则实数k 的取值范围是 . 16.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为 .17.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ),这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项,据此可得,最佳乐观系数x 的值等于 .三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知B =60°,cos(B +C )=-1114.(Ⅰ)求cos C 的值;(Ⅱ)若a =5,求△ABC 的面积. 19.(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点.已知PD =2,CD =4,AD =3.(Ⅰ)若∠ADE =π6,求证:CE ⊥平面PDE ;(Ⅱ)当点A 到平面PDE 的距离为2217时,求三棱锥A -PDE的侧面积. 20.(本小题满分13分)某校为了解学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:(Ⅰ)求频率分布表中未知量n ,x ,y ,z 的值;(Ⅱ)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率. 21.(本小题满分14分)设a ∈R ,函数f (x )=ln x -ax .(Ⅰ)讨论函数f (x )的单调区间和极值;(Ⅱ)已知x 1=e (e 为自然对数的底数)和x 2是函数f (x )的两个不同的零点,求a 的值并证明:x 2>e 23. 22.(本小题满分14分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为23,半焦距为c (c >0),且a -c =1.经过椭圆的左焦点F ,斜率为k 1(k 1≠0)的直线与椭圆交于A ,B 两点,O 为坐标原点.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)当k 1=1时,求S △AOB 的值; (Ⅲ)设R (1,0),延长AR ,BR 分别与椭圆交于C ,D 两点,直线CD 的斜率为k 2,求证:k 1k 2为定值.参考答案一、选择题:每小题5分,满分50分.1.B 2.D 3.B 4.D 5.B 6.A 7.B 8.C 9.B 10.D 二、填空题:每小题5分,满分35分.11.(15,35) 12.17 13.6 14.s 1>s 2>s 3 15.(-∞,2]16.433 17.5-12三、解答题:本大题共5小题,共65分.18.(本小题满分12分) 解:(Ⅰ)在△ABC 中,由cos(B +C )=-1114,得sin(B +C )=1-cos 2(B +C )=1-(-1114)2=5314,∴cos C =cos[(B +C )-B ]=cos(B +C ) cos B +sin(B +C ) sin B=-1114×12+5314×32=17.…………………………………………(6分)(Ⅱ)由(Ⅰ),得sin C =1-cos 2C =1-(17)2=437,sin A =sin(B +C )=5314.在△ABC 中,由正弦定理a sin A =csin C ,得5 5314=c 437,∴ c =8, 故△ABC 的面积为S =12ac sin B =12×5×8×32=103.…………………(12分)19.(本小题满分12分)解:(Ⅰ)在Rt △DAE 中,AD =3,∠ADE =π6,∴AE =AD ·tan ∠ADE =3·33=1. 又AB =CD =4,∴BE =3.在Rt △EBC 中,BC =AD =3,∴tan ∠CEB =BC BE =33,∴∠CEB =π6.又∠AED =π3,∴∠DEC =π2,即CE ⊥DE .∵PD ⊥底面ABCD ,CE ⊂底面ABCD , ∴PD ⊥CE .∴CE ⊥平面PDE .……………………………………………………………(6分) (Ⅱ)∵PD ⊥底面ABCD ,PD ⊂平面PDE ,∴平面PDE ⊥平面ABCD .如图,过A 作AF ⊥DE 于F ,∴AF ⊥平面PDE ,∴AF 就是点A 到平面PDE 的距离,即AF =2217.在Rt △DAE 中,由AD ·AE =AF ·DE ,得 3AE =2217·3+AE 2,解得AE =2.∴S △APD =12PD ·AD =12×2×3=62,S △ADE =12AD ·AE =12×3×2=3,∵BA ⊥AD ,BA ⊥PD ,∴BA ⊥平面P AD ,∵P A ⊂平面P AD ,∴BA ⊥P A .在Rt △P AE 中,AE =2,P A =PD 2+AD 2=2+3=5,∴S △APE =12P A ·AE =12×5×2=5.∴三棱锥A -PDE 的侧面积S 侧=62+3+5.…………………………(12分) 20.(本小题满分13分)解:(Ⅰ)由频率分布表可知,样本容量为n ,由2n=0.04,得n =50.∴x =2550=0.5,y =50-3-6-25-2=14,z =y n =1450=0.28.……………(6分)(Ⅱ)记样本中视力在(3.9,4.2]的3人为a ,b ,c ,在(5.1,5.4]的2人为d ,e . 由题意,从5人中随机抽取两人,所有可能的结果有:{a ,b },{a ,c },{a ,d },{a ,e },{b ,c },{b ,d },{b ,e },{c ,d },{c ,e },{d ,e },共10种. 设事件A 表示“两人的视力差的绝对值低于0.5”,则事件A 包含的可能的结果有:{a ,b },{a ,c },{b ,c },{d ,e },共4种.∴P (A )=410=25.故两人的视力差的绝对值低于0.5的概率为25.…………………………(13分)21.(本小题满分14分) 解:(Ⅰ)函数f (x )的定义域为(0,+∞).求导数,得f ′(x )=1x -a =1-ax x.①若a ≤0,则f ′(x )>0,f (x )是(0,+∞)上的增函数,无极值; ②若a >0,令f ′(x )=0,得x =1a.当x ∈(0,1a )时,f ′(x )>0,f (x )是增函数;当x ∈(1a,+∞)时,f ′(x )<0,f (x )是减函数.∴当x =1a 时,f (x )有极大值,极大值为f (1a )=ln 1a-1=-ln a -1.综上所述,当a ≤0时,f (x )的递增区间为(0,+∞),无极值;当a >0时,f (x )的递增区间为(0,1a ),递减区间为(1a ,+∞),极大值为-ln a -1.…(8分)(Ⅱ)∵x 1=e 是函数f (x )的零点,∴f (e )=0,即12-a e =0,解得a =12e =e2e .∴f (x )=ln x -12ex .∵f (e 23)=32-e 2>0,f (e 25)=52-e 22<0,∴f (e 23)f (e 25)<0.由(Ⅰ)知,函数f (x )在(2e ,+∞)上单调递减, ∴函数f (x )在区间(e 23,e 25)上有唯一零点,因此x 2>e 23.………………………………………………………………(14分)22.(本小题满分14分)解:(Ⅰ)由题意,得⎩⎪⎨⎪⎧c a =23,a -c =1。
高三文科数学高考复习试题(附答案)
高三文科数学高考复习试题(附答案)考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。
下面是店铺为大家整理的高三文科数学高考复习试题,请认真复习!高三文科数学高考复习试题一、选择题:每小题只有一项是符合题目要求的,将答案填在题后括号内.1.函数y=log2x-2的定义域是( )A.(3,+∞)B.[3,+∞)C.(4,+∞)D.[4,+∞)2.设集合A={(x,y) | },B={(x,y)|y=2x},则A∩B的子集的个数是( )A.1B.2C.3D.43.已知全集I=R,若函数f(x)=x2-3x+2,集合M={x|f(x)≤0},N={x| <0},则M∩∁IN=( )A.[32,2]B.[32,2)C.(32,2]D.(32,2)4.设f(x)是R上的奇函数,当x>0时,f(x)=2x+x,则当x<0时,f(x)=( )A.-(-12)x-xB.-(12)x+xC.-2x-xD.-2x+x5.下列命题①∀x∈R,x2≥x;②∃x∈R,x2≥x;③4≥3;④“x2≠1”的充要条件是“x≠1或x≠-1”.其中正确命题的个数是( )A.0B.1C.2D.36. 已知下图(1)中的图像对应的函数为,则下图(2)中的图像对应的函数在下列给出的四个式子中,只可能是( )7.在用二分法求方程x3-2x-1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为( )A.(1.4,2)B.(1,1.4)C.(1,32)D.(32,2)8.点M(a,b)在函数y=1x的图象上,点N与点M关于y轴对称且在直线x-y+3=0上,则函数f(x)=abx2+(a+b)x-1在区间[-2,2)上( )A.既没有最大值也没有最小值B.最小值为-3,无最大值C.最小值为-3,最大值为9D.最小值为-134,无最大值9.已知函数有零点,则的取值范围是( )A. B. C. D.二、填空题:将正确答案填在题后横线上.10.若全集U=R,A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为_______ _.11.若lga+lgb=0(a≠1),则函数f(x)=ax与g(x)=-bx的图象关于________对称.12.设 ,一元二次方程有正数根的充要条件是 = .13.若函数f(x)在定义域R内可导,f(2+x)=f(2-x),且当x∈(-∞,2)时,(x-2) >0.设a=f(1),,c=f(4),则a,b,c的大小为.14、已知。
高三文科数学试卷带答案
一、选择题(本大题共10小题,每小题5分,共50分)1. 下列各数中,无理数是()A. √4B. 3/5C. √9/16D. √2答案:D解析:无理数是不能表示为两个整数比的实数,只有√2是无理数。
2. 函数y=2x+1在定义域内是()A. 增函数B. 减函数C. 奇函数D. 偶函数答案:A解析:函数的斜率为正,所以是增函数。
3. 已知向量a=(2, -3),向量b=(4, 6),则向量a与向量b的夹角是()A. 0°B. 90°C. 180°D. 120°答案:D解析:向量a与向量b的点积为24 + (-3)6 = -12,向量a的模长为√(2^2 + (-3)^2) = √13,向量b的模长为√(4^2 + 6^2) = √52。
点积公式为a·b =|a||b|cosθ,所以cosθ = -12/(√13√52) ≈ -0.5,夹角θ ≈ 120°。
4. 已知函数f(x) = x^2 - 4x + 3,其对称轴是()A. x = 1B. x = 2C. x = 3D. x = 4答案:B解析:二次函数的对称轴为x = -b/2a,所以对称轴为x = -(-4)/21 = 2。
5. 已知等差数列{an}的第一项为2,公差为3,则第10项是()A. 25B. 28C. 31D. 34答案:D解析:等差数列的通项公式为an = a1 + (n-1)d,所以第10项为2 + (10-1)3 = 2 + 27 = 29。
6. 若复数z满足|z-1| = |z+1|,则z在复平面上的位置是()A. 实轴B. 虚轴C. 第一象限D. 第二象限答案:A解析:|z-1| = |z+1|表示z到点1和点-1的距离相等,因此z在实轴上。
7. 已知圆C的方程为x^2 + y^2 = 25,点P(3, 4)到圆C的最短距离是()A. 4B. 5C. 6D. 7答案:B解析:圆心到点P的距离为√(3^2 + 4^2) = 5,圆的半径为5,所以最短距离为5 - 5 = 0。
全国高考文科全国卷数学试题及答案
年普通高等学校招生全国统一考试文科数学卷3注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上;写在本试卷上无效;3.考试结束后,将本试卷和答题卡一并交回;一、选择题:本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的;1.已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数(2)=-+的点位于z i iA.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量单位:万人的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos 3αα-=,则sin 2α=A .79- B .29- C . 29D .795.设,x y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z x y =-的取值范围是A .-3,0B .-3,2C .0,2D .0,36.函数1()sin()cos()536f x x x ππ=++-的最大值为A .65B .1C .35D .157.函数2sin 1xy x x=++的部分图像大致为 A . B .C .D .8.执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4 C .3 D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B .34π C .2πD .4π10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为12,A A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1312.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分; 13.已知向量(2,3),(3,)a b m =-=,且a b ⊥,则m = .14.双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = .15.ABC ∆的内角,,A B C 的对边分别为,,a b c ;已知60,3C b c ===,则A =_________;16.设函数1,0,()2,0,x x x f x x +≤⎧=⎨>⎩ 则满足1()()12f x f x +->的x 的取值范围是__________;三、解答题:共70分;解答应写出文字说明、证明过程或演算步骤;第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答; 一必考题:共60分; 17.12分设数列{}n a 满足123(21)2n a a n a n +++-=.1求{}n a 的通项公式; 2求数列{}21na n +的前n 项和. 18.12分某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温单位:℃有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:10,1515,2020,2525,3030,3535,40最高气温天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率;1求六月份这种酸奶一天的需求量不超过300瓶的概率;2设六月份一天销售这种酸奶的利润为Y单位:元,当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.12分如图,四面体ABCD中,△ABC是正三角形,AD=CD.1证明:AC⊥BD;2已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.20.12分在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为0,1.当m 变化时,解答下列问题:1能否出现AC ⊥BC 的情况说明理由;2证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 21.12分已知函数()2(1)ln 2x ax a x f x =+++. 1讨论()f x 的单调性; 2当0a <时,证明3()24f x a≤--. 二选考题:共10分;请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分;22.选修4―4:坐标系与参数方程10分在直角坐标系xOy 中,直线1l 的参数方程为2,x t y kt =+⎧⎨=⎩t 为参数,直线2l 的参数方程为2,x m my k =-+⎧⎪⎨=⎪⎩m 为参数,设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .1写出C 的普通方程:2以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l:(cos sin )0ρθθ+-=,M 为3l 与C 的交点,求M 的极径.23.选修4—5:不等式选讲10分已知函数()||||f x x x =+1--2.1求不等式()f x ≥1的解集;2若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.年普通高等学校招生全国统一考试文科数学参考答案一、选择题1.B 2.C 3.A 4.A 5.B 6.A 7.D 8.D 9.B 10.C 11.A 12.C 二、填空题13.2 14.5 15.75° 16.1(,)4-+∞三、解答题 17.解: 1因为123(21)2n a a n a n +++-=,故当2n ≥时, 1213(23)2(1)n a a n a n -+++-=-两式相减得(21)2n n a -= 所以2(2)21n a n n =≥- 又由题设可得12a = 从而{}n a 的通项公式为221n a n =- 2记{}21na n +的前n 项和为n S 由1知21121(21)(21)2121n a n n n n n ==-++--+ 则1111112 (1335212121)n nS n n n =-+-++-=-++ 18.解:1这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为216360.690++=,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为2当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则64504450900Y =⨯-⨯=;若最高气温位于区间20,25,则63002(450300)4450300Y =⨯+--⨯=;若最高气温低于20,则62002(450200)4450100Y =⨯+--⨯=-所以,Y 的所有可能值为900,300,-100Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为3625740.890+++=,因此Y 大于零的概率的估计值为 19.解:1取AC 的中点O ,连结,DO BO ,因为AD CD =,所以AC DO ⊥又由于ABC ∆是正三角形,故BO AC ⊥从而AC ⊥平面DOB ,故AC BD ⊥2连结EO由1及题设知90ADC ∠=,所以DO AO = 在Rt AOB ∆中,222BO AO AB += 又AB BD =,所以ODABCE222222BO DO BO AO AB BD +=+==,故90DOB ∠=由题设知AEC ∆为直角三角形,所以12EO AC =又ABC ∆是正三角形,且AB BD =,所以12EO BD =故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:120.解:1不能出现AC BC ⊥的情况,理由如下:设12(,0),(,0)A x B x ,则12,x x 满足220x mx +-=,所以122x x =- 又C 的坐标为0,1,故AC 的斜率与BC 的斜率之积为121112x x --⋅=-,所以不能出现AC BC ⊥的情况 2BC 的中点坐标为21(,)22x ,可得BC 的中垂线方程为221()22x y x x -=- 由1可得12x x m +=-,所以AB 的中垂线方程为2mx =-联立22,21()22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩又22220x mx +-=,可得,212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以过A,B,C 三点的圆的圆心坐标为1(,)22m --,半径2r =故圆在y轴上截得的弦长为3=,即过A,B,C 三点的圆在y 轴上截得的弦长为定值; 21.解:1fx 的定义域为(0,)+∞,1(1)(21)()221x ax f x ax a xx++'=+++=若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1(,)2x a∈-+∞时,()0f x '< 故()f x 在1(0,)2a -单调递增,在1(,)2a-+∞单调递减; 2由1知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=--- 所以3()24f x a ≤--等价于113ln()12244a a a---≤--,即11ln()1022a a-++≤ 设()ln 1g x x x =-+,则1()1g x x '=- 当(0,1)x ∈时,()0g x '>;当(1,)x ∈+∞,()0g x '<; 所以()g x 在0,1单调递增,在(1,)+∞单调递减; 故当1x =时,()g x 取得最大值,最大值为(1)0g = 所以当0x >时,()0g x ≤从而当0a <时,11ln()1022a a -++≤,即3()24f x a≤-- 22.解: 1消去参数t 得1l 的普通方程1:(2)l y k x =-;消去参数m t 得2l 的普通方程21:(2)l y x k=+ 设(,)P x y ,由题设得(2),1(2).y k x y x k =-⎧⎪⎨=+⎪⎩消去k 得224(0)x y y -=≠ 所以C 的普通方程为224(0)x y y -=≠2C 的极坐标方程为222(cos sin )4(22,)ρθθθπθπ-=<<≠联立222(cos sin )4,(cos sin )0ρθθρθθ⎧-=⎪⎨+=⎪⎩得cos sin 2(cos sin )θθθθ-=+ 故1tan 3θ=-,从而2291cos ,sin 1010θθ== 代入222(cos sin )4ρθθ-=得25ρ=,所以交点M23.解:13,1,()21,12,3,2x f x x x x -<-⎧⎪=--≤≤⎨⎪>⎩当1x <-时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤; 当2x >时,由()1f x ≥解得2x >所以()1f x ≥的解集为{|1}x x ≥2由2()f x x x m ≥-+得2|1||2|m x x x x ≤+---+,而 22|1||2|||1||2||x x x x x x x x +---+≤++--+235(||)24x =--+5 4≤且当32x=时,25|1||2|4x x x x+---+=故m的取值范围为5 (,]4 -∞。
高三文科数学综合卷2
文数综合卷2一、单选题1.i 为虚数单位,则()()13(i i -+= ) A .23i + B .22i -C .22i +D .42i -2.设集合122xA x ⎧⎫=⎨⎬⎩⎭,1|02x B x x +⎧⎫=≤⎨⎬-⎩⎭,则A B =( ) A .()1,2- B .[)1,2-C .(]1,2- D .[]1,2-3.函数()2ln 1y x=+的图象大致是( )A .B .C .D .4.“牟合方盖”是我国古代数学家刘徽在探求球体体积时构造的一个封闭几何体,它由两等径正贯的圆柱体的侧面围成,其直观图如图(其中四边形是为体现直观性而作的辅助线)当“牟合方盖”的正视图和侧视图完全相同时,其俯视图可能为A .B .C .D .5.设实数,x y 满足242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,则1y x +的最大值是( )A .-1B .12C .1D .326.“2211og a og b <”是“11a b<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知向量()4,7a =-,()3,4b =-,则2a b -在b 方向上的投影为( ) A .2B .-2C.-D.8.设抛物线2:12C y x =的焦点为F ,准线为l ,点M 在C 上,点N 在l 上,且()0FN FM λλ=>,若4MF =,则λ的值( )A .32B .2C .5 2D .39.设a b c ,,分别是ABC △的内角A B C ,,的对边,已知()()()()sin sin sin b c A C a c A C ++=+-,则A ∠的大小为( )A .30B .60︒C .120︒D .150︒10.函数()3ln 8f x x x =+-的零点所在的区间为( ) A .()0,1B .()1,2C .()2,3D .()3,411.已知正三棱锥的高为6,内切球(与四个面都相切)表面积为16π,则其底面边长为( ) A .18B .12C.D.12.已知函数()()sin f x x ωϕ=+(其中0>ω)的最小正周期为π,函数()()4g x f x x π⎛⎫=+ ⎪⎝⎭,若对x R ∀∈,都有()3g x g π⎛⎫≤ ⎪⎝⎭,则ϕ的最小正值为( ) A .3πB .23π C .43π D .53π第II 卷(非选择题)二、填空题13.某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样抽方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为_________.14.已知圆C 与y 轴相切,圆心在x 轴的正半轴上,并且截直线10x y -+=所得的弦长为2,则圆C 的标准方程是________.15.已知,αβ均为锐角且()()cos 3cos αβαβ-=+,则()tan αβ+的最小值________.16.若函数()2323020x x f x x ax x +⎧-≤=⎨-+>⎩,,有三个不同的零点则实数a 的取值范围______.三、解答题17.正项等比数列{}n a 中,已知34a =,426a a =+.()1求{}n a 的通项公式;()2设n S 为{}n a 的前n 项和,()()*41log n n b S S n N =+∈,求25850++b b b b ++⋯.18.某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如表所示:(Ⅰ)如果随机调查这个班的一名学生,那么抽到不积极参加班级工作且学习积极性不高的学生的概率是多少?(Ⅱ)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取2名学生参加某项活动,问2名学生中有1名男生的概率是多少?(III )学生的学习积极性与对待班级工作的态度是否有关系?请说明理由.K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)19.已知椭圆()222210x y a b a b +=>>的离心率为2,且经过点()2,0A .()1求椭圆的标准方程;()2过点A 的动直线l 交椭圆于另一点B ,设()2,0D -,过椭圆中心O 作直线BD 的垂线交l 于点C ,求证:•OB OC 为定值.20.如图在多面体ABCDE 中,AC 和BD 交于一点除EC 以外的其余各棱长均为2.()1作平面CDE 与平面ABE 的交线l ,并写出作法及理由; ()2求证:BD CE ⊥;()3若平面ADE ⊥平面ABE ,求多面体ABCDE 的体积.21.已知函数()sin 2cos 2f x x x x ax =+++,其中a 为常数.()1若曲线()y f x =在2x π=处的切线斜率为-2,求该切线的方程;()2求函数()f x 在[]0,x π∈上的最小值.22.在平面直角坐标xOy 系中,曲线C 的参数标方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(其中t 为参数,且0t >),在以O 为极点、x 轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线l的极坐标方程为sin 3πρθ⎛⎫-=⎪⎝⎭()1求曲线C 的极坐标方程;()2求直线l 与曲线C 的公共点P 的极坐标.23.已知函数()21f x x x =-+,且,,a b c R ∈.()1若1a b c ++=,求()()()f a f b f c ++的最小值; ()2若1x a -<,求证:()()()21f x f a a -<+.参考答案1.D 2.A 3.D因为()2ln 1y x =+,满足偶函数f (﹣x )=f (x )的定义, 所以函数()2ln 1y x =+为偶函数,其图象关于y 轴对称,故排除B ,4.B∵相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖). ∴其正视图和侧视图是一个圆,俯视图是从上向下看,相对的两个曲面在同一个圆柱的侧面上,∴俯视图是有2条对角线且为实线的正方形, 5.D由约束条件242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,作出可行域如图,联立10220x x y -=⎧⎨+-=⎩,解得A (112,),1y x+的几何意义为可行域内的动点与定点P (0,-1)连线的斜率, 由图可知,113212PA k +==最大. 6.D若2211og a og b <,则0a b <<,所以110a b >>,即“2211og a og b <”不能推出“11a b<”,反之也不成立,因此“2211og a og b <”是“11a b<”的既不充分也不必要条件.7.B向量()4,7a =-,()3,4b =-,∴221a b -=-(,),∴(2)a b -•b =()213,4--(,)=-10, |b;∴向量2a b -在向量b 方向上的投影为: |2a b -|cos <(2)a b -,b >=()2a b b b-⋅=105-=﹣2.8.D过M 向准线l 作垂线,垂足为M ′,根据已知条件,结合抛物线的定义得''MM FF =MN NF=1λλ-,又4MF =,∴|MM′|=4,又|FF′|=6,∴''MM FF =46=1λλ-,3λ∴=.9.C∵()()()()sin sin sin b c A C a c A C ++=+-,,∴由正弦定理可得:()()b a c b c a c +=+-(),整理可得:b 2+c 2﹣a 2=-bc , ∴由余弦定理可得:cosA=12-,∴由A ∈(0,π),可得:A=23π. 10.B 11.B如图,过点P 作PD ⊥平面ABC 于D ,连结并延长AD 交BC 于E ,连结PE ,△ABC 是正三角形, ∴AE 是BC 边上的高和中线,D 为△ABC 的中心. 此时球与四个面相切,如图D 、M 为其中两个切点, ∵S 球=16π, ∴球的半径r =2.又∵PD=6,OD=2,∴OP=4,又OM=2, ∴OPM ∠=30︒∴, ∴ AB=12, 故选B.12.B由函数()f x 的最小正周期为π,可求得ω=2∴f (x )=()sin 2x ϕ+,()()4g x f x x π⎛⎫=++ ⎪⎝⎭=()sin 2sin 24x x πϕϕ⎡⎤⎛⎫+++ ⎪⎢⎥⎝⎭⎣⎦=()() cos 2sin 2x x ϕϕ++=2sin (2x ϕ++6π), ∴()2sin26g x x πϕ=++,又()3g x g π⎛⎫≤ ⎪⎝⎭,∴x=3π是g(x)的一条对称轴,代入2x ϕ++6π中,有23πϕ⨯++6π=k 2ππ+(k Z),解得ϕ=k 3ππ-+(k Z),k=1时,23πϕ=,13.12∵高中部女教师与高中部男教师比例为2:3,按分层抽样方法得到的工会代表中,高中部女教师有6人,则男教师有9人,∴工会代表中高中部教师共有15人,又初中部与高中部总人数比例为2:3,∴工会代表中初中部教师人数与高中部教师人数比例为2:3,∴工会代表中初中部教师总人数为10,又∵初中部女教师与高中部男教师比例为7:3,工会代表中初中部男教师的总人数为10×30%=3; ∴工会代表中男教师的总人数为9+3=12, 14.()2239x y -+=设圆心为(t ,0),且t>0, ∴半径为r=|t|=t ,∵圆C 截直线10x y -+=所得的弦长为2,∴圆心到直线10x y -+=的距离∴t 2-2t-3=0, ∴t=3或t=-1(舍), 故t=3,∴()2239x y -+=. 故答案为()2239.x y -+= 15.由cos (α-β)=3cos (α+β),可得cosαcosβ+sinαsinβ=3cosαcosβ-3sinαsinβ,同时除以cosαcosβ, 可得:1+tanαtanβ=3-3tanαtanβ,则tanαtanβ=12,又()tan β1tan tan βtan tan ααβα++=-=2tan β2tan α+≥⨯故答案为: 16.()3,+∞因为0x ≤,由2230x +-=可得2230x log =-+<,即函数()f x 在0x ≤上有一个零点;所以函数()2323020x x f x x ax x +⎧-≤=⎨-+>⎩,,有三个不同的零点等价于方程320x ax -+=在()0,∞+上有两个不等实根,等价于方程22a x x=+在()0,∞+上有两个不等实根;即y a =与函数()22g x x x=+在()0,∞+上有两个不同交点; 由()22g x x x =+得()()()2´2221122x x x g x x x x-++=-=,由()´0g x >得1x >; 由()´0gx <得01x <<,即函数()22g x x x=+在()0,1上单调递减,在()1,∞+上单调递增, 所以()g x 最小值为()13g =,所以()[3)g x ∞∈+,, 因为y a =与函数()22g x x x=+在()0,∞+上有两个不同交点,所以3a >.故答案为()3,+∞17.()1 1*2,n n a n N -=∈ ()2221()1设正项等比数列{}n a 的公比为()0q q >,则由34a =及426a a =+得446q q =+,化简得22320q q --=,解得2q =或12q =-(舍去).所以{}n a 的通项公式为31*3•2,n n n a a qn N --==∈. ()2由122112n n n S -==--得,()414log log 22nn n n b S S =+==.所以()()25850117++b =2585025022124b b b ++⋯+++⋯+=+=. 18.(1) P =1950;(2) P =1021;(3) 故有99.9%的把握认为“学生的学习积极性与对待班级工作的态度”有关系.试题解析:(1)由题知,不积极参加班级工作且学习积极性不高的学生有19人,总人数为50人, 所以P =1950;(2)设这7名学生分别为a,b,c,d,e,A,B (大写为男生),则从中抽取两名学生的情况有: (a,b),(a,c),(a,d),(a,e),(a,A),(a,B),(b,c),(b,d),(b,e),(b,A),(B,b),(c,d),(c,e),(c,A),(c,B),(d,e),(d,A),(d,B),(e,A),(e,B),(A,B),共21种情况,其中有1名男生的有10种情况, ∴P =1021.(3)由题意得,K 2=50×(18×19−6×7)224×26×25×25≈11.538>10.828,故有99.9%的把握认为“学生的学习积极性与对待班级工作的态度”有关系.19.()1 22142x y += ()24,证明见解析()1因为椭圆的离心率2c e a ==,且2a =,所以c =又2222b a c =-=.故椭圆的标准方程为22142x y +=.()2设直线l 的方程为2x ty =+(t 一定存在,且0t ≠).代入2224x y +=,并整理得()22240t y ty ++=.解得242B t y t -=+,于是224222B B t x ty t -=+=+. 又()2,0D -,所以BD 的斜率为2224422222t tt t ⎛⎫--÷+=- ⎪++⎝⎭. 因为OC BD ⊥,所以直线的方程为2y t x=. 与方程2x ty =+联立,解得42,C t -⎛⎫- ⎪⎝⎭. 故22222481648•4222t t OB OC t t t -+=+==+++为定值.20.()1见解析()2见解析()3 2()1过点E 作AB (或CD )的平行线,即为所求直线l .AC 和BD 交于一点,,,,A B C D ∴四点共面.又四边形ABCD 边长均相等.∴四边形ABCD 为菱形,从而//AB DC .又AB ⊄平面CDE ,且CD ⊂平面CDE ,//AB ∴平面CDE .AB ⊂平面ABE ,且平面ABE ⋂平面CDE l =,//AB l ∴.()2证明:取AE 的中点O ,连结OB ,OD .AB BE =,DA DE =,OB AE ∴⊥,OD AE ⊥.又OB OD O ⋂=,AE ∴⊥平面OBD ,BD ⊂平面OBD ,故AE BD ⊥.又四边形ABCD 为菱形,AC BD ∴⊥.又AE AC A ⋂=,BD ∴⊥平面ACE .又CE ⊂平面ACE ,BD CE ∴⊥.()3解:平面ADE ⊥平面ABE ,DO ∴⊥平面ABE .故多面体ABCDE 的体积11222?•2232E ABCD E ABD D ABE V V V ---⎛==== ⎝.21.()1 220x y π+--= ()2 ()min 44,4,a f x a a πππ⎧≥⎪⎪=⎨⎪<⎪⎩()1求导得()cos sin f x x x x a -'=+,由122f a π⎛⎫=-=- ⎪⎝⎭'解得1a =-. 此时22f π⎛⎫= ⎪⎝⎭,所以该切线的方程为222y x π⎛⎫-=-- ⎪⎝⎭,即220x y π+--=为所求. ()2对[]0,x π∀∈,()sin 0f x x x '=-≤',所以()f x '在[]0,π区间内单调递减.当0a ≤时,()()00f x f a ''≤=≤,()f x ∴在区间[]0,π上单调递减,故()()min f x f a ππ==.当a π≥时,()()0f x f a ππ'='≥-≥,()f x ∴在区间[]0,π上单调递增,故()()min 04f x f ==.当0a π<<时,因为()00f a '=>,()0f a ππ='-<,且()f x '在区间[]0,π上单调递增,结合零点存在定理可知,存在唯一()00,x π∈,使得()00f x '=,且()f x 在[]00,x 上单调递增,在[]0,x π上单调递减.故()f x 的最小值等于()04f =和()fa ππ=中较小的一个值. ①当4a ππ≤<时,()()0f f π≤,故()f x 的最小值为()04f =. ②当40a π<<时,()()0f f π≤,故()f x 的最小值为()f a ππ=.综上所述,函数()f x 的最小值()min 44,4,a f x a a πππ⎧≥⎪⎪=⎨⎪<⎪⎩. 22.()1 2cos2444ππρθθ⎛⎫=-<< ⎪⎝⎭ ()26π⎛⎫ ⎪⎝⎭ ()1消去参数t ,得曲线C 的直角坐标方程()2242x y x -=≥.将cos x ρθ=,y sin ρθ=代入224x y -=,得()222cos 4sin ρθθ-=.所以曲线C 的极坐标方程为2cos2444ππρθθ⎛⎫=-<< ⎪⎝⎭. ()2将l 与C 的极坐标方程联立,消去ρ得242cos23sin πθθ⎛⎫-= ⎪⎝⎭.展开得()22223cos cos sin 2cos sin θθθθθθ-+=-.因为cos 0θ≠,所以23tan 10θθ-+=.于是方程的解为tan θ=,即6πθ=.代入sin 3πρθ⎛⎫-=⎪⎝⎭ρ=P 的极坐标为6π⎛⎫ ⎪⎝⎭. 23.()173()2见解析 .【详解】 ()1由柯西不等式得,()22221433a b c a b c ++≥++=(当且仅当23a b c ===时取等号),所以()()()()()222473133f a f b f c a b c a b c ++=++-+++≥+=,即()()()f a f b f c ==的最小值为73; ()2因为1x a -<,所以()()()()22f x f a x a x a -=---=()()()()•11212112121x a x a x a x a a x a a a a -+-<+-=-+-≤-+-<++=+,故结论成立.。
江西高三模拟考试(文科)数学试卷附答案解析
江西高三模拟考试(文科)数学试卷附答案解析班级:___________姓名:___________考号:__________一、单选题1.设集合{}2560A x x x =--<和{}4,2,0,2,4B =--,则A B =( )A .{}0,2B .{}2,0-C .2,0,2D .{}0,2,42.复数1z 在复平面内对应的点为()1,3,22z i =-+(i 为虚数单位),则复数12z z 的虚部为( ). A .75B .75-C .7i 5D .7i 5-3.在ABC ∆中AB =AC=1,B=30°,和ABC S ∆=,则C = A .60或120B .30C .60D .454.已知x 与y 的数据如表所示,根据表中数据,利用最小二乘法求得y 关于x 的线性回归方程为0.7 1.05y x =+,则m 的值是( )A .3.8B .3.85C .3.9D .4.05.已知tan 2x =,则sin cos 1x x +=( ) A .25B .75C .2D .36.已知直线:210l x y k +++=被圆22:4C x y +=所截得的弦长为4,则k 为( ) A .1-B .2-C .0D .27.若0a >,0b >且24a b +=,则4ab的最小值为( ) A .2B .12C .4D .148.已知命题:p 已知实数,a b ,则0ab >是0a >且0b >的必要不充分条件,命题:q 在曲线cos y x =上存在 ( ) A .p 是假命题 B .q 是真命题 C .()p q ∧⌝是真命题D .()p q ⌝∧是真命题9.执行如图所示的程序框图,若输出i 的值为7,则框图中①处可以填入( )A .7S >?B .15S >?C .21S >?D .28S >?10.已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F ,2F 椭圆C 在第一象限存在点M ,使得112=MF F F ,直线1F M 与y 轴交于点A ,且2F A 是21MF F ∠的角平分线,则椭圆C 的离心率为( )A B C .12D 11.已知函数()()22e (e =--x xf x x x a )有三个零点,则实数a 的取值范围是( )A .(0,1e -)B .(0,2e -)C .(0,1)D .(0,e )12.在棱长为2的正方体ABCD —A 1B 1C 1D 1中E 是正方形BB 1C 1C 的中心,M 为C 1D 1的中点,过A 1M 的平面α与直线DE 垂直,则平面α截正方体ABCD —A 1B 1C 1D 1所得的截面面积为( )A .B .CD .3二、填空题13.已知向量(),2AB m =,()1,3AC =和()4,2BD =--,若B ,C ,D 三点共线,则m =______.14.双曲线2219x y -=的渐近线方程为__________.15.已知f (x )=sin 6x πω⎛⎫+ ⎪⎝⎭(ω>0),f (6π)=f (3π),且f (x )在区间63ππ⎛⎫ ⎪⎝⎭,上有最小值,无最大值,则ω=_____.16.已知过点(0,1)M 的直线与抛物线22(0)x py p =>交于不同的A ,B 两点,以A ,B 为切点的两条切线交于点N ,若0NA NB ⋅=,则p 的值为__________.三、解答题17.已知数列{}n a 的前n 项和为n S ,且()21n n S a n *=-∈N .(1)求数列{}n a 的通项公式;(2)设13log n n b a =,n C ={}n C 的前n 项和n T18.如图,三棱柱111ABC A B C 各棱长均为2,且13C CA π∠=.(1)求证1AC BC ⊥;(2)若1BC 与平面ABC 所成的角为6π,求三棱柱111ABC A B C 的体积. 19.某工厂生产的产品是经过三道工序加工而成的,这三道工序互不影响,已知生产该产品三道工序的次品率分别为(1)求该产品的次品率;(2)从该工厂生产的大量产品中随机抽取三件,记次品的件数为X ,求随机变量X 的分布列与期望()E X . 20.已知椭圆()2222:10x y C a b a b +=>>,且过点()3,1A .(1)求椭圆C 的方程;(2)点M ,N 在椭圆C 上,且AM AN ⊥.证明:直线MN 过定点,并求出该定点坐标.21.已知函数()f x 对任意实数x 、y 恒有()()()f x y f x f y +=+,当x>0时f (x )<0,且(1)2f =-. (1)判断()f x 的奇偶性;(2)求()f x 在区间[-3,3]上的最大值;(3)若2()22f x m am <-+对所有的[][]1,1,1,1x a ∈-∈-恒成立,求实数m 的取值范围.22.数学上有很多美丽的曲线令人赏心悦目,例如,极坐标方程()1cos a ρθ=+(0a >)表示的曲线为心形线,它对称优美,形状接近心目中的爱心图形.以极点O 为原点,极轴为x 轴的正半轴建立直角坐标系,直线l的参数方程为1,2x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).(1)求直线l 的极坐标方程和心形线的直角坐标方程;(2)已知点P 的极坐标为()2,0,若P 为心形线上的点,直线l 与心形线交于A ,B 两点(异于O 点),求ABP 的面积.23.已知函数()2|1|||(R)f x x x a a =-+-∈. (1)若()f x 的最小值为1,求a 的值;(2)若()||6f x a x <+恒成立,求a 的取值范围.参考答案与解析1.D【分析】求出集合A 中元素范围,然后求A B ⋂即可.【详解】{}{}256016A x x x x x =--<=-<<,又{}4,2,0,2,4B =--{}0,2,4A B ∴=.故选:D. 2.B【解析】根据题意,先得到113z i =+,再由复数的除法运算求出12z z ,即可得出其虚部. 【详解】因为复数1z 在复平面内对应的点为()1,3,所以113z i =+ 又22z i =-+所以()()()()1213213263171722241555i i z i i i i i z i i i +--+++--+===-=-=--+-+--+因此其虚部为75-.故选:B.【点睛】本题主要考查求复数的虚部,考查复数的除法运算,涉及复数的几何意义,属于基础题型. 3.C【分析】由三角形面积公式可得A ,进而可得解.【详解】在ABC ∆中AB 1AC =与30B =12ABC S AB ACsinA ∆=⋅=,可得1sinA =,所以90A = 所以18060C A B =--=【点睛】本题主要考查了三角形的面积公式,属于基础题. 4.D【分析】计算样本中心,将样本中心 710,24m +⎛⎫⎪⎝⎭代入线性回归方程中即可求解. 【详解】因为()17234542x =⨯+++= ()1102.5 3.0 4.544m y m +=⨯+++=.所以样本中心为710,24m +⎛⎫⎪⎝⎭,将其代入回归方程0.7 1.05y x =+得1070.7 1.0542m +=⨯+,解得4m =. 故选:D . 5.B【分析】利用同角三角函数的平方关系、商数关系,将目标式化为2tan 1tan 1xx ++,结合已知即可求值.【详解】222sin cos tan 27sin cos 1111sin cos tan 155x x x x x x x x +=+=+=+=++. 故选:B . 6.A【分析】利用点线距离公式求弦心距,再由弦长与半径、弦心距的几何关系列方程求参数k . 【详解】设圆心()0,0到直线:210l x y k +++=的距离为d ,则由点到直线的距离公式得|1|d k ==+由题意得:42==1k =-.故选:A 7.A【分析】利用基本不等式可求出2ab ≤,即可得出所求. 【详解】0a > 0b >42a b ∴=+≥2a b =,即1,2a b ==时等号成立所以2ab ≤,则42ab≥,即4ab 的最小值为2.故选:A. 8.C【分析】首先判断命题,p q 的真假,再判断选项.【详解】00ab a >⇒> 且0b >,反过来0a >且00b ab >⇒>,所以0ab >是0a > 且0b >的必要不充分条件,所以命题p 是真命题cos y x =,[]sin 1,1y x '=-∈-根据导数的几何意义可知曲线cos y x =所以命题q是假命题根据复合命题的真假判断可知()p q ∧⌝是真命题. 故选:C 9.C故选:C. 10.B【分析】根据题意和椭圆定义可得到2MF ,AM 和a ,c 的关系式,再根据122MF F MF A ∽△△,可得到关于a ,c 的齐次式,进而可求得椭圆C 的离心率e . 【详解】由题意得1122F M F F c == 又由椭圆定义得222MF a c =- 记12MF F θ∠=则212AF F MF A θ∠=∠= 121222F F M F MF MAF θ∠=∠=∠= 则2122AF AF a c ==- 所以42AM c a =- 故122MF F MF A ∽△△则2122MF AMF F MF = 则2a c c a c a c --=-,即222010c ac a e e e +-=⇔+-=⇒=(负值已舍). 故选:B . 11.A【分析】令()()()22ee 0=--=xxf x x x a ,得到22e 0-=x x或e 0x x a -=,令()22e =-xg x x ,易知有一个零点,转化为则e 0x x a -=有两个根求解.【详解】令()()()22ee 0=--=xxf x x x a所以22e 0-=x x 或e 0x x a -=令()22e =-xg x x ,则()()2e '=-x g x x令()2(e )=-x h x x ,则()2(1)e '=-xh x当(,0)x ∈-∞时()0h x '>,h (x )在(-∞,0)上单调递增; 当,()0x ∈+∞时()0h x '<,h (x )在(0,+∞)上单调递减 所以()(0)20h x h ≤=-<,即()0g x '< 所以g (x )在R 上单调递减,又()2110g e-=->,g (0)=20-< 所以存在0(1,0)x ∈-使得()00g x =所以方程e 0x x a -=有两个异于0x 的实数根,则xxa e = 令()x x k x e =,则()1xx e xk -=' 当(,1)x ∞∈-时()0k x '>,k (x )在(-∞,1)上单调递增;当(1,)x ∈+∞时()0k x '<,k (x )在(1,+∞)上单调递减,且()0k x >.所以()1()1k x k e≤= 所以()xxk x e =与y a =的部分图象大致如图所示由图知10a e<< 故选:A . 12.B【解析】确定平面1A MCN 即为平面α,四边形1A MCN 是菱形,计算面积得到答案.【详解】如图,在正方体1111ABCD A B C D -中记AB 的中点为N ,连接1,,MC CN NA 则平面1A MCN 即为平面α.证明如下: 由正方体的性质可知1A MNC ,则1A ,,,M C N 四点共面记1CC 的中点为F ,连接DF ,易证DF MC ⊥. 连接EF ,则EF MC ⊥EFDF F =,EF DF ⊂,平面DEF所以MC ⊥平面DEF又DE ⊂平面DEF ,则DE MC ⊥.同理可证,DE NC ⊥ NC MC C =则DE ⊥平面1A MCN 所以平面1A MCN 即平面α四边形1A MCN 即平面α截正方体1111ABCD A B C D -所得的截面. 因为正方体的棱长为2,易知四边形1A MCN 是菱形其对角线1AC = MN =所以其面积12S =⨯=故选:B【点睛】本题考查了正方体的截面面积,意在考查学生的空间想象能力和计算能力. 13.1-【分析】根据给定条件,求出向量BC 坐标,再利用共线向量的坐标表示计算作答. 【详解】因为向量(),2AB m =,()1,3AC =则(1,1)BC AC AB m =-=-,而()4,2BD =-- 又B ,C ,D 三点共线,则有//BC BD ,因此2(1)4m --=-,解得1m =- 所以1m =-. 故答案为:-1 14.30x y ±-=【分析】根据焦点在横轴上双曲线的渐近线方程的形式直接求出双曲线2219x y -=的渐近线方程.【详解】通过双曲线方程可知双曲线的焦点在横轴上,3,1a b ==,所以双曲线2219x y -=的渐近线方程为:1303b y x y x x y a =±⇒=±⇒±-=. 故答案为30x y ±-=【点睛】本题考查了求双曲线的渐近线方程,通过双曲线方程判断双曲线的焦点的位置是解题的关键. 15.163【分析】由题意可得函数的图象关于直线4x π=对称,再根据()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,可得3462πππω+=,由此求得ω的值. 【详解】对于函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,由63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭得函数图象关于6324x πππ+==对称 又()f x 在区间,63ππ⎛⎫⎪⎝⎭有最小值,无最大值可得()32462k k Z πππωπ+=+∈,即()1683k k Z ω=+∈,又342Tππ-≤,即12ω≤ 所以163ω=. 故答案为163. 【点睛】本题主要考查正弦函数的图象的对称性,正弦函数的最值,属于中档题. 16.2【分析】设()()1122,,,A x y B x y ,设直线AB 的方程为1y kx =+,利用“设而不求法”得到122x x p =-.利用导数求出两条切线斜率为1x p 和2x p,得到121x x p p ⋅=-,即可求出p =2.【详解】设()()1122,,,A x y B x y ,且设直线AB 的方程为1y kx =+,代入抛物线的方程得2220x pkx p --=,则122x x p =-.又22x py =,得22x y p=,则x y p '=,所以两条切线斜率分别为1x p 和2x p .由0NA NB ⋅=,知NA NB ⊥,则121x x p p ⋅=-,所以221pp -=-,即p =2. 故答案为:2 17.(1)13n n a =(2)1n T =【分析】(1)由n a 与n S 关系可推导证得数列{}n a 为等比数列,由等比数列通项公式可得n a ; (2)由(1)可推导得到,n n b C ,采用裂项相消法可求得n T . (1)当1n =时111221a S a =-=,解得:113a =;当2n ≥时1122211n n n n n a S S a a --=-=--+,即113n n a a -=∴数列{}n a 是以13为首项,13为公比的等比数列,1133nn n a ⎛⎫∴== ⎪⎝⎭. (2)由(1)得:131log 3n n b n ⎛⎫== ⎪⎝⎭n C ∴==11n T ∴=⋅⋅⋅=18.(1)证明见解析【分析】(1)通过线面垂直的性质定理证明线线垂直;(2)由(1)知AC ⊥平面1BDC ,则进一步知平面1BDC ⊥平面ABC ,故过1C 作平面ABC 的垂线,垂足为E ,则1C E ⊥平面ABC ,求出1C E 的大小即可求解.【详解】(1)证明:取AC 的中点D ,连接BD ,1C D 和1C A ,则BD AC ⊥因为12CC CA ==,13C CA π∠=所以1ACC △为等边三角形又D 为AC 的中点,所以1C D AC ⊥ 因为1C D BD D =,1,C D BD ⊂平面1BDC ,所以AC ⊥平面1BDC ,.又1BC ⊂平面1BDC ,所以1AC BC ⊥.(2)由(1)知AC ⊥平面1BDC ,又AC ⊂平面ABC ,所以平面1BDC ⊥平面ABC平面1BDC 平面ABC BD =,故过1C 作平面ABC 的垂线,垂足为E ,则E 一定在直线BD 上,因为1BC 与平面ABC 所成的角为6π,所以16C BD π∠= 由题意知1C D BD =,所以123C DB π∠=所以13BC == 所以113sin 62C E BC π==.(或:由题意知1C D BD =13C DE π∠=,所以113sin 32C E CD π===)所以11322sin 232ABC V S C E π=⋅=⨯⨯⨯⨯=△19.(1)14(2)分布列见解析,()34E X =【分析】(1)利用相互独立事件的乘法概率计算公式能求出产品为正品的概率,即可由对立事件求次品概率(2)由题意得X 0=,1,2,3,分别求出其相对应的概率,能求出X 的分布列和数学期望.【详解】(1)产品正品的概率为:11131111011124P ⎛⎫⎛⎫⎛⎫=---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭ 所以为次品的概率为31144-= (2)由题意得X 0=,1,2,3,且13,4X B ⎛⎫~ ⎪⎝⎭3327(0)464P X ⎛⎫=== ⎪⎝⎭ 2133127(1)C 4464P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 223319(2)C 4464P X ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ 311(3)464P X ⎛⎫=== ⎪⎝⎭ X ∴的分布列如下:∴()27279130123646464644E X =⨯+⨯+⨯+⨯=. 20.(1)221124x y += (2)证明详见解析,定点坐标3122⎛⎫ ⎪⎝⎭,-【分析】(1)根据已知条件列方程组,由此求得222,,a b c ,从而求得椭圆C 的方程.(2)根据直线MN 的斜率进行分类讨论,结合根与系数关系以及·0AM AN =求得定点坐标.【详解】(1)由题意可得:22222911c aab a bc ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2221248a b c ===,, 故椭圆方程为221124x y +=. (2)设点()()1122,,,M x y N x y若直线MN 斜率存在时设直线MN 的方程为:y kx m =+代入椭圆方程消去y 并整理得:()2221363120k x kmx m +++-= 可得122613km x x k +=-+ 212231213m x x k -=+ 因为AM AN ⊥,所以·0AM AN =,即()()()()121233110x x y y --+--=根据1122,kx m y kx m y =+=+有()()()()221212121239110x x x x k x x k m x x m -++++-++-=整理可得: ()()()()22121213190k x x km k x x m ++--++-+= 所以()()()222223126131901313m km k km k m k k -⎛⎫++---+-+= ⎪++⎝⎭ 整理化简得2299210k km m m ++--=则有()()321310k m k m +++-=得3210k m ++=或310k m +-=若3210k m ++=,则直线MN 的方程为:3122y k x ⎛⎫=-- ⎪⎝⎭,恒过3122⎛⎫- ⎪⎝⎭, 若310k m +-=,则直线MN 的方程为:()31y k x =-+,过A 点,舍去.所以直线MN 过定点P 3122⎛⎫- ⎪⎝⎭, 当直线MN 的斜率不存在时可得()11,N x y -由·0AM AN =得:()()()()121233110x x y y --+--=得()1221210x y -+-=()2211310x y -+-=,结合22111124x y += 解得:132x = 或23x =(舍去),此时直线MN 方程为32x =,过点P 3122⎛⎫- ⎪⎝⎭,. 综上,直线MN 过定点P 3122⎛⎫- ⎪⎝⎭,. 21.(1)奇函数(2)6(3){2,m m 或者2}m <-【分析】(1)令x =y =0⇒f (0)=0,再令y =﹣x ,⇒f (﹣x )=﹣f (x );(2)设x 1,x 2∈R ,且x 1<x 2,结合条件用单调性的定义证明函数f (x )为R 上的增函数,从而得到()f x 在区间[-3,3]上的最大值;(3)根据函数f (x )≤m 2﹣2am ﹣2对所有的x ∈[﹣1,1],a ∈[﹣1,1]恒成立,说明f (x )的最大值2小于右边,因此先将右边看作a 的函数,m 为参数系数,解不等式组,即可得出m 的取值范围.【详解】(1)取x=y=0,则f (0+0)=f (0)+f (0);则f (0)=0;取y =﹣x ,则f (x ﹣x )=f (x )+f (﹣x )∴f (﹣x )=﹣f (x )对任意x ∈R 恒成立∴f (x )为奇函数;(2)任取x 1,x 2∈(﹣∞,+∞)且x 1<x 2,则x 2﹣x 1>0;∴f (x2)+f (﹣x1)=f (x2﹣x1)<0; ∴f (x2)<﹣f (﹣x1)又∵f (x )为奇函数∴f (x 1)>f (x 2);∴f (x )在(﹣∞,+∞)上是减函数;∴对任意x ∈[﹣3,3],恒有f (x )≤f (﹣3)而f (3)=f (2+1)=f (2)+f (1)=3f (1)=﹣2×3=﹣6; ∴f (﹣3)=﹣f (3)=6;∴f (x )在[﹣3,3]上的最大值为6;(3)由(2)可知函数()f x 在[]1,1-的最大值为()12f -=所以要使()222f x m am <-+对所有的[][]1,1,1,1x a ∈-∈-恒成立只需要()()2max 2212m am f x f -+>=-=即220m am ->对所有[]1,1a ∈-恒成立令()[]22,1,1g a m am a =-∈-,则()()1010g g ⎧->⎪⎨>⎪⎩即222020m m m m ⎧+>⎨->⎩解得22m m ><-,或者 所以实数m 的取值范围是{}2,2m m m <-或者【点睛】本题考查了抽象函数的奇偶性、单调性与函数的值域、不等式恒成立等知识点,属于中档题,解题时应该注意题中的主元与次元的处理.22.(1)极坐标方程为π3θ=或4π3θ=;()()222222x y ax a x y +-=+【分析】(1)先消去参数t 得到直线l 的普通方程,进而得到极坐标方程,由()1cos a ρθ=+,得到2cos a a ρρρθ=+,即22x y ax +=求解.(2)将()2,0代入方程()1cos a ρθ=+得到1a =,进而得到1cos ρθ=+,分别与直线l 的极坐标方程联立,求得A ,B 坐标求解.【详解】(1)解:消去参数t 得到直线l 的普通方程为y = 所以极坐标方程为π3θ=或4π3θ=; (π3θ=(ρ∈R 也正确)由()1cos a ρθ=+,得2cos a a ρρρθ=+,即22x y ax +=化简得心形线的直角坐标方程为()()222222x y ax a x y +-=+. (2)将()2,0代入方程()1cos a ρθ=+,得1a =∴1cos ρθ=+.由π,31cos ,θρθ⎧=⎪⎨⎪=+⎩得3π,23A ⎛⎫ ⎪⎝⎭ 由4π,31cos ,θρθ⎧=⎪⎨⎪=+⎩得14π,23B ⎛⎫ ⎪⎝⎭∴13π112π2sin 2sin 223223ABP AOP BOP S S S =+=⨯⨯+⨯⨯=△△△23.(1)0或2(2)[)3,4【分析】(1)根据1()(1)1x a x x a x a -+-≥---=-结合取等条件即可得解;(2)把()||6f x a x <+恒成立,转化为()2160g x x x a a x =-+---<恒成立,分情况讨论去绝对值符号,从而可得出答案.【详解】(1)因为1()(1)1x a x x a x a -+-≥---=-,当且仅当()(1)0x a x --≤时取等号()2|1||||1||1||1|f x x x a x a a =-+-≥-+-≥-,当且仅当1x =时取等号 所以11a -=,解得0a =或2a =故a 的值为0或2;(2)令g()2|1|||6x x x a a x =-+---,由题意知()0g x <恒成立 当{1x x x ∈≥且}x a ≥时 ()()()g()21638x x x a ax a x a =-+---=---,要使得()0g x <恒成立则30,a -≤可得3,a ≥当3a ≥时()()()()()34,034,0118,138,a x a x a x a x g x a x a x a a x a x a ⎧-+-<⎪-++-≤<⎪=⎨-+-≤<⎪⎪---≥⎩因为()0g x <恒成立, 则max ()0g x <,由图像可知()max ()0g x g = 所以()g()g 040x a ≤=-<,所以4a < 综上可知实数a 的取值范围为[)3,4.。
2024届高三上学期10月大联考(全国乙卷)文科数学试题及答案
绝密★启用前2024届高三10月大联考(全国乙卷)文科数学本卷满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}215,1,1,3A x x B =∈+<=-Z∣,则A B ⋃中元素的个数为()A.3B.4C.5D.62.已知命题200:p x x ∃≥>,则命题p 的否定为()A.200x x ∃<≤ B.2x x ∀≥<C.2x x ∀<> D.2x x ∀≥≤3.若不等式2510x ax -+<的解集为1,a a ⎛⎫⎪⎝⎭,则a =()A.12-B.12C.14-D.144.若函数()e ,3ln 2,3x x x f x x x ⎧-≤=⎨->⎩,则()()2ef f =()A.-1B.-2C.1D.ln22-5.已知54:1,:log 2(033a p a q a <<>>且1)a ≠,则p 是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数()242log 2xf x x x+=-的大致图象是()A. B.C. D.7.白色污染是人们对难降解的塑料垃圾(多指塑料袋)污染环境现象的一种形象称谓,经过长期研究,一种全生物可降解塑料(简称PBAT )逐渐被应用于超市购物袋、外卖包装盒等产品.研究表明,在微生物的作用下,PBAT 最终可被完全分解为二氧化碳和水进入大自然,当其分解率(100%=⨯已分解质量分解率总质量)超过60%时,就会成为对环境无害的物质.为研究总质量为100g 的PBAT 的已分解质量y (单位:g )与时间x (单位:月)之间的关系,某研究所人员每隔1个月测量1次PBAT 的已分解质量,对通过实验获取的数据做计算处理,研究得出已分解质量y 与时间x 的函数关系式为 4.60.1100e x y -=-.据此研究结果可以推测,总质量为100g 的PBAT 被分解为对环境无害的物质的时间至少为()(参考数据:ln40 3.7≈)A.8个月B.9个月C.10个月D.11个月8.已知,0,,2παβαβ⎛⎫∈> ⎪⎝⎭,且()()17cos cos cos sin sin sin ,sin cos 510ααβααβαβ-+-==,则()sin αβ+=()A.45B.35 C.25D.3109.已知O 是ABC 所在平面内一点,若0,,,,,OA OB OC AM xAB AN y AC MO ON x y λ++====均为正数,则xy 的最小值为()A.12B.49C.1D.4310.若函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭∣的部分图象如图所示,则下列说法正确的个数为()①2ω=;②6πϕ=-;③()f x 在5,26ππ⎛⎫⎪⎝⎭上单调递减;④32f π⎛⎫-= ⎪⎝⎭.A.1B.2C.3D.411.已知函数()f x 是偶函数,当0x >时,()2log 1f x x =-,则不等式()()102x f x f x -≥--的解集是()A.11,00,22⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭B.][()2,11,2--⋃C.112,0,22⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭D.()[)11,2,00,1,222∞⎛⎫⎛⎫--⋃-⋃⋃ ⎪ ⎪⎝⎭⎝⎭12.已知函数()2cos (1)xxf x a ax x a -=+++>,则11e 2,e ,ff fππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭的大小关系为()A.11e e 2f f f ππ⎛⎫⎛⎫<-< ⎪ ⎪⎝⎭⎝⎭.B.11e 2e ff f ππ⎛⎫⎛⎫<<- ⎪ ⎪⎝⎭⎝⎭C.11e2e f ff ππ⎛⎫⎛⎫<<- ⎪ ⎪⎝⎭⎝⎭D.11e e 2f f f ππ⎛⎫⎛⎫-<< ⎪ ⎪⎝⎭⎝⎭二、填空题:本题共4小题,每小题5分,共20分.13.已知向量()()1,2,2,a b x =-= ,若a b ⊥ ,则实数x =__________.14.请写出一个满足对任意的()12,0,x x ∞∈+;都有()()()1212f x x f x f x =的函数__________.15.《海岛算经》是魏晋时期数学家刘徽所著的测量学著作,书中有一道测量山上松树高度的题目,受此题启发,小李同学打算用学到的解三角形知识测量某建筑物上面一座信号塔的高度.如图,把塔底与塔顶分别看作点C ,D ,CD 与地面垂直,小李先在地面上选取点A ,B (点,A B 在建筑物的同一侧,且点,,,A B C D 位于同一个平面内),测得AB =,在点A 处测得点,C D 的仰角分别为30,67 ,在点B 处测得点D 的仰角为33.5 ,则塔高CD 为__________m .(参考数据:3sin375≈)16.已知函数()()ln 2f x x a x x =+-在定义域上单调递增,则实数a 的取值范围为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知向量()()sin cos ,1,2cos ,1a x x b x =+=- ,函数()f x a b =⋅,将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象.(1)求函数()f x 的最小正周期和单调递增区间;(2)解方程()0g x =.18.(12分)如图,在平行四边形ABCD 中,13AM AD = ,令,AB a AC b ==.(1)用,a b表示,,AM BM CM ;(2)若2AB AM ==,且10AC BM ⋅= ,求cos ,a b.19.(12分)某公园池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系如下表所示:时间/t 月1234浮萍的面积2/m y 35917现有以下三种函数模型可供选择:①y kt b =+,②t y p a q =⋅+,③log a y m t n =⋅+,其中,,,,,,k b p q m n a 均为常数,0a >且1a ≠.(1)直接选出你认为最符合题意的函数模型,并求出y 关于t 的函数解析式;(2)若该公园池塘里浮萍的面积蔓延到22215m ,31m ,211m 所经过的时间分别为123,,t t t ,写出一种123,,t t t 满足的等量关系式,并说明理由.20.(12分)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且__________.1cossin C A -=;②sin sin sin sin A C A Bbc ab ac --=两个条件中任选一个,填入上面横线处,并解决下列问题.(1)求C ;(2)若ABC 外接圆的半径为ABC 的面积为ABC 的周长.注:若选择不同的条件分别解答,则按第一个解答计分.21.(12分)已知函数()2e 1xf x ax x =-+-.(1)当1a =时,求曲线()y f x =在1x =处的切线方程;(2)若()0f x =有两个不等的实根,求实数a 的取值范围.22.(12分)已知函数()ln 4,f x x a x a =--∈R .(1)讨论函数()f x 的单调性;(2)当1a =时,令()()()2e xF x x f x =--,若0x x =为()F x 的极大值点,证明:()001F x <<.2024届高三10月大联考(全国乙卷)文科数学•全解全析及评分标准一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B 【解析】因为{}{}221541,0,1,1,1,3A x x x x B =∈+<=∈<=-=-ZZ ∣∣,所以{}1,0,1,3A B ⋃=-,有4个元素,故选B.2.D 【解析】根据特称命题的否定为全称命题,知命题“200x x ∃≥>”的否定是“2x x ∀≥”,故选D.3.A 【解析】因为不等式2510x ax -+<的解集为1,a a ⎛⎫⎪⎝⎭,所以15a a a +=,解得12a =±.又1a a >,所以1a >或0a <,所以12a =-(12a =不满足题意,舍去),当12a =-时,2(5)40a -->,故选A.4.C 【解析】因为2e 3>,所以()22e lne20f =-=,所以()()()2e 0e01f f f ==-=,故选C.5.B 【解析】对于q ,若4log 23a>,则24log log 3a a a >.当01a <<时,243a >,无解.当1a >时,243a <,得2313a <<,即不等式4log 23a >的解集为1,3⎛⎫ ⎪ ⎪⎝⎭.因为1,3⎛⎫ ⎪ ⎪⎝⎭⫋51,3⎛⎫⎪⎝⎭,所以p 是q 的必要不充分条件,故选B.6.D【解析】方法一:由题意,知函数()242log 2xf x x x+=-的定义域为()2,2-,关于原点对称,且()()242()log 2xf x x f x x --=-=-+,所以函数()f x 是奇函数,其图象关于原点对称,故排除B,C ;当()0,2x ∈时,212x x +>-,即42log 02xx +>-,因此()0f x >,故排除A.故选D.方法二:由方法一,知函数()f x 是奇函数,其图象关于原点对称,故排除B,C ;又()211log 302f =>,所以排除A.故选D.7.C 【解析】令 4.60.1100e 60x y -=->,得0.1 4.6ln400.9x >-≈,解得9x >,故至少需要10个月,总质量为100g 的PBAT 才会被分解为对环境无害的物质.故选C.8.A【解析】因为()()1cos cos cos sin sin sin 5ααβααβ-+-=,所以()11cos 5αβ--=,所以()4cos 5αβ-=.因为,0,,2παβαβ⎛⎫∈> ⎪⎝⎭,所以02παβ<-<,所以()3sin 5αβ-=,所以3sin cos cos sin 5αβαβ-=.又7sin cos 10αβ=,所以1cos sin 10αβ=,所以()714sin sin cos cos sin 10105αβαβαβ+=+=+=.故选A.9.B 【解析】因为0OA OB OC ++=,所以点O 是ABC 的重心,所以()()211323AO AB AC AB AC =⨯+=+ .因为,AM xAB AN y AC ==,所以11,AB AM AC AN x y == ,所以1133AO AM AN x y=+ .因为MO ON λ=,所以,,M O N 三点共线,所以11133x y +=,即113x y+=.因为,x y 均为正数,所以11x y +≥32≤,所以49xy ≥1132x y ==,即23x y ==时取等号),所以xy 的最小值为49.故选B.10.C 【解析】由题图,得2A =,最小正周期54126T πππ⎛⎫=⨯-= ⎪⎝⎭.又2T ππω==,所以2ω=,故①正确;()()2sin 2f x x ϕ=+,又()f x 的图象过点5,212π⎛⎫⎪⎝⎭,所以522122k k ππϕπ⨯+=+∈Z ,所以2,3k k πϕπ=-∈Z .又2πϕ<,所以3πϕ=-,故②错误;()2sin 23f x x π⎛⎫=- ⎪⎝⎭,令23t x π=-,当526x ππ<<时,2433t ππ<<,函数sin y t =在24,33ππ⎛⎫⎪⎝⎭上单调递减,故③正确;2sin23f πππ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭.故选C.11.D【解析】根据题意,作出函数()y f x =的图象,如图所示.因为函数()y f x =是偶函数,所以()()f x f x -=.由()()102x f x f x -≥--,得()10x f x -≥-,所以()10x f x -≤,所以()()()100f x x f x ⎧-≤⎪⎨≠⎪⎩,所以()100x f x -≥⎧⎨<⎩或()100x f x -≤⎧⎨>⎩,观察图象,得12x ≤<或102x <<或102x -<<或2x <-,故选D.12.B 【解析】易知()2cos (1)xxf x a ax x a -=+++>是偶函数,()()ln 2sin x x f x a a a x x -=-+-',当0x >时,因为1a >,所以ln 0,0x x a a a ->->.令()2sin ,0x x x x ϕ=->,则()2cos 0x x ϕ=->',所以()x ϕ单调递增,所以()()00x ϕϕ>=,所以()()0,f x f x '>在()0,∞+上单调递增.构造函数()ln xg x x=,则()21ln xg x x-='.令()0g x '>,得0e x <<,令()0g x '<,得e x >,所以()g x 在区间()0,e 上单调递增,在区间()e,∞+上单调递减.又ln2ln424=,所以()()()4e g g g π<<,所以ln2ln4ln lne24e ππ=<<,所以111e22e ππ<<,所以111e ee e ff f f ππ⎛⎫⎛⎫⎛⎫<<=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即11ee f f f ππ⎛⎫⎛⎫<<- ⎪ ⎪⎝⎭⎝⎭.故选B .二、填空题:本题共4小题,每小题5分,共20分.13.1【解析】因为a b ⊥ ,所以()1220x ⨯+-=,解得1x =.故填1.14.()12f x x-=(答案不唯一)【解析】任意定义域为()0,∞+的幂函数均可,例如()12f x x-=,()()()()()111122221212121212,f x x x x f x f x x x x x ----==⋅=,即()()()1212f x x f x f x =成立.故可填()12f x x-=.15.24【解析】如图,延长DC 与BA 的延长线交于点E ,则67,30,33.5DAE CAE DBA ∠∠∠=== ,所以33.5ADB ∠= ,所以AD AB ==在ACD 中,37,120CAD ACD ∠∠==,由正弦定理,得3sin37524sin120AD CD =≈=.故填24.16.[)1,∞+【解析】()()ln 2f x x a x x =+-的定义域为()0,∞+,由()()ln 2f x x a x x =+-在定义域上单调递增,得()ln 10af x x x=+-≥'在()0,∞+上恒成立,即ln a x x x ≥-在()0,∞+上恒成立.设()ln (0)g x x x x x =->,所以只需()max (),ln a g x g x x -'≥=,当01x <<时,()0g x '>,当1x >时,()0g x '<,所以()g x 在()0,1上单调递增,在()1,∞+上单调递减,所以()max ()11g x g ==,所以1a ≥,所以实数a 的取值范围为[)1,∞+.故填[)1,∞+.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)【解析】(1)由已知,得()f x a b =⋅()2cos sin cos 1x x x =+-sin 2cos 2x x=+24x π⎛⎫=+ ⎪⎝⎭所以函数()f x 的最小正周期222T πππω===.由222242k x k k πππππ-≤+≤+∈Z ,解得3,88k x k k ππππ-≤≤+∈Z ,所以函数()f x 的单调递增区间为3,,88k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z .(2)将函数()f x 的图象向右平移6π个单位长度,得到函数()226412g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象.令()2012g x x π⎛⎫=-= ⎪⎝⎭,得2,12x k k ππ-=∈Z ,解得,224k x k ππ=+∈Z ,所以方程()0g x =的解集为,224k x x k ππ⎧⎫=+∈⎨⎬⎩⎭Z ∣.18.(12分)【解析】(1)因为,AB a AC b ==,所以BC AC AB b a =-=-,所以()11,33AM BC b a ==-所以()114333BM AM AB b a a b a =-=--=- ,所以()14123333CM BM BC b b a a b =-=---=-- .(2)方法一:由(1)知()114,333AM b a BM =-=-.又,10,2AC b AC BM AB AM =⋅===,所以()14110,2,2333b b a b a a ⎛⎫⋅-=-== ⎪⎝⎭,即222430,236b a b b a a b -⋅=+-⋅=,解得1,a b b ⋅==所以34cos ,68a b a b a b⋅〈〉==.方法二:因为1,23AM AD AM ==,所以6AD =,所以6BC =.因为()22121333AC BM BC BA BA BC BA BA BC BC ⎛⎫⋅=-⋅+=-+⋅+ ⎪⎝⎭,且10AC BM ⋅= ,所以2221262cos 61033ABC ∠-+⨯⨯⨯+=,解得1cos 4ABC ∠=,所以()()22126214a b BA BC BA BA BC BA ⋅=-⋅-=-⋅+=-⨯⨯= .又2,a b ===,所以cos ,68a b a b a b⋅〈〉==.19.(12分)【解析】(1)应选择函数模型②t y p a q =⋅+.依题意,得12335,9p a q p a q p a q ⎧⨯+=⎪⨯+=⎨⎪⨯+=⎩解得12,1p a q =⎧⎪=⎨⎪=⎩所以y 关于t 的函数解析式为21t y =+.(2)1231t t t +=+.理由:依题意,得3122115,2131,21211t t t +=+=+=,所以312214,230,2210t t t ===,所以1222420,t t ⋅=所以3312121222420222t t t t t t ++⋅===⨯=,所以1231t t t +=+.20.(12分)【解析】(11cossin C A -=及正弦定理,得()sin sin 1cos C A A C =-.sin 0,sin A C C ≠∴+= ,sin 32C π⎛⎫∴+= ⎪⎝⎭.又40,333C C ππππ<<∴<+<,2,333C C πππ∴+=∴=.若选②:由sin sin sin sin A C A B bc ab ac --=,得sin sin sin sin a A c C b A b B -=-.由正弦定理,得222a b c ab +-=.由余弦定理,得2221cos 222a b c ab C ab ab +-===.因为()0,C π∈,所以3C π=.(2)设ABC 外接圆的半径为R ,由正弦定理,得2sin 2sin63c R C π==⨯=.又113sin 222ABC S ab C ab ==⨯= ,所以4ab =.由222212cos ()222c a b ab C a b ab ab =+-=+--⨯,可得236()12a b =+-,解得a b +=,所以ABC 的周长为6a b c ++=.21.(12分)【解析】(1)当1a =时,()()2e 1,e 21x xf x x x f x x =-+-'=-+,()()1e 1,1e 1,f f =-=-'所以曲线()y f x =在1x =处的切线方程为()()()e 1e 11y x --=--,即()e 10x y --=.(2)显然()00f =,要使方程()0f x =有两个不等的实根,只需当0x ≠时,()0f x =有且仅有一个实根,当0x ≠时,由方程()0f x =,得2e 1x x a x+-=.令()()2e 10x x g x x x +-=≠,则直线y a =与()()2e 10x x g x x x +-=≠的图象有且仅有一个交点.()()()()()243e 12e 12e1x x x x x x x g x x x +-+---=='.又当0x <时,()()0,g x g x '<单调递减,当02x <<时,()()0,g x g x '<单调递减,当2x >时,()()0,g x g x '>单调递增,所以当2x =时,()g x 取得极小值()2e 124g +=,又当0x <时,e 1x <,所以e 10x x +-<,即()0g x <,当0x >时,e 1,e 10x x x >+->,即()0g x >,所以作出()g x 的大致图象如图所示.由图象,知要使直线y a =与()()2e 10x x g x x x +-=≠的图象有且仅有一个交点,只需0a <或2e 14a +=.综上,若()0f x =有两个不等的实根,则a 的取值范围为()2e 1,04∞⎧⎫+-⋃⎨⎬⎩⎭.22.(12分)【解析】(1)函数()f x 的定义域为()()0,,1a x a f x x x∞-+=-=',①当0a ≤时,()0f x '>,函数()f x 在()0,∞+上单调递增;②当0a >时,由()0f x '>,得x a >,由()0f x '<,得0x a <<,所以,函数()f x 在(),a ∞+上单调递增,在()0,a 上单调递减.综上,当0a ≤时,函数()f x 在()0,∞+上单调递增;当0a >时,函数()f x 在(),a ∞+上单调递增,在()0,a 上单调递减.(2)当1a =时,()()()()()112e ln 4,1e 11e x x x F x x x x F x x x x x ⎛⎫=--++=--+=-- ⎪⎝⎭',设()1e x g x x =-,则()21e x g x x =+',当0x >时,()0g x '>,所以()g x 在()0,∞+上单调递增,又()120,1e 102g g ⎛⎫=-<=-> ⎪⎝⎭,所以存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()00g x =,所以当00x x <<时,()0F x '>,当01x x <<时,()0F x '<,当1x >时,()0F x '>,所以()F x 在()00,x 上单调递增,在()0,1x 上单调递减,在()1,∞+上单调递增,所以当0x x =时,()F x 取得极大值,且001e 0xx -=,所以00001e ,ln x x x x ==-,()()00000000000212e ln 4452x x F x x x x x x x x x ⎛⎫-=--++=--+=-+ ⎪⎝⎭.因为01,12x ⎛⎫∈ ⎪⎝⎭,所以()001F x <<.。
高中数学文科试题及答案
高中数学文科试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = a(x - h)^2 + kC. y = ax^2 + bx + c + 1D. y = ax^2 + bx + c - 1答案:A2. 圆的面积公式是什么?A. A = πr^2B. A = 2πrC. A = πrD. A = r^2答案:A3. 函数f(x) = 2x - 1在点x=2处的导数是多少?A. 1B. 2C. 3D. 4答案:B4. 以下哪个是等差数列?A. 1, 3, 5, 7, 9B. 2, 4, 6, 8, 10C. 1, 4, 9, 16, 25D. 1, 2, 4, 8, 16答案:A5. 集合{1, 2, 3}与集合{2, 3, 4}的交集是什么?A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}答案:B6. 直线y = 3x + 2与x轴的交点坐标是?A. (0, 2)B. (-2/3, 0)C. (2/3, 0)D. (0, -2)答案:C7. 一个等腰三角形的底边长为6,腰长为5,那么它的高是多少?A. 4B. 3C. 2D. 1答案:B8. 函数f(x) = x^3 - 3x^2 + 4在x=1处的值是多少?A. 2B. 0C. -2D. 4答案:A9. 以下哪个选项是复数的标准形式?A. a + biB. a - biC. a + bi + cD. a - bi + c答案:A10. 一个圆的半径为5,那么它的周长是多少?A. 10πB. 20πC. 30πD. 40π答案:B二、填空题(每题4分,共20分)1. 如果一个数列的前三项为1, 4, 9,那么它的第四项是_________。
答案:162. 一个二次方程ax^2 + bx + c = 0的判别式为b^2 - 4ac,当判别式等于0时,方程有_________个实数解。
四川省成都市石室中学2024届高三上学期开学考试数学文科试题含答案
侧视图0.5俯视图1正视图10.5成都石室中学2023-2024年度上期高2024届入学考试数学试题(文)(总分:150分,时间:120分钟)第Ⅰ卷(共60分)一、选择题(本题共12道小题,每小题5分,共60分)1.已知集合{}14A x x =∈-≤<N ,{}2230B x x x =--<,则A B =I ()A .{}1,2B .{}0,1,2C .{}1,2,3D .{}0,1,2,32.若复数z 满足(13i)24i z ⋅+=-,则z =()A .22B .1C D .23.函数23()e xx xf x -=的图象大致是()AB C D 4.已知实数,x y 满足()01x ya a a <<<,则下列关系式恒成立的是()A .221111x y >++B .()()22ln 1ln 1x y +>+C .sin sin x y>D .33x y>5.若()0,0,lg lg lg a b a b a b >>+=+,则a b +的最小值为()A.8B.6C.4D.26.已知命题:p 若22,ac bc >则a b >;命题:q 在ABC ∆中,sin sin A B =是A B =的必要不充分条件,则下列命题为真命题的是()A .p q ⌝∨ B.()p q ⌝∨ C.p q ∧ D.p q ∧⌝7.某四棱锥的三视图如图所示,则该四棱锥的体积是()A .14B.12C.1D.28.已知函数()sin(4)(0)f x A x ϕϕ=+<<π的图象与y 轴交点的坐标为,且图象关于直线24x π=-对称,将()f x 图象上所有点的纵坐标保持不变,横坐标变为原来的2倍,得到函数()g x 的图象,则()g x 在区间0,12π⎡⎤⎢⎥⎣⎦上的最大值为()A .12B .1C D .29.已知ABC ∆中,若23A π=,2c =,ABC ∆的面积为32,D 为边BC 的中点,则AD 的长度是()A.5714B.32C.1D.210.已知0.90.930.7,log 2a c ==,b=0.8,则a ,b ,c 的大小关系为()A .c a b <<B .a c b <<C .b a c <<D .b c a<<11.已知圆2212316:()33C x y +-=过双曲线22222:1(0,0)x y C a b a b -=>>的左右焦点12,F F ,曲线1C 与曲线2C 在第一象限交点为M ,1212,MF MF ⋅=则双曲线2C 的离心率为()A .2B .3C .2D .312.已知函数()114x xf x e e --=-+,若方程()4(0)f x kx k k =+->有三个不同的根1x ,2x ,3x ,则123x x x ++=()A.4B.3C.2D.k第Ⅱ卷(共90分)二、填空题(本题共4道小题,每小题5分,共20分)13.已知倾斜角为α的直线l 与直线:230m x y -+=垂直,则cos 2α=.14.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥-≥+≤--+0202222y x y x y x y x ,则y x z +=2的最大值是_________.15.直线01=--y x 与抛物线x y 42=交于,A B 两点,过线段AB 的中点作直线1-=x 的垂线,垂足为M ,则=⋅MB MA .16.已知三棱锥BCD A -中,2====AD BC CD AB ,t BD AC ==,当三棱锥BCD A -体积最大时,t 的值为.三、解答题(本题共6道小题,17题10分,其余各题12分,共70分)17.(本小题满分12分)已知数列{}n a 满足13a =,121n n a a n +=-+,数列{}n b 满足12b =,1n n n b b a n +=+-.(1)证明:{}n a n -是等比数列;(2)数列{}n c 满足()()111n n n n a nc b b +-=++,求数列{}n c 的前n 项的和n T .18.(本小题满分12分)如图,在四棱锥P -ABCD 中,四边形ABCD 为正方形,平面ADP ⊥底面ABCD ,AP =DP ,且AP ⊥DP ,设E ,F 分别为CP ,BD 的中点,2FP =.(1)求证:AP ⊥CP ;(2)求三棱锥P -ADE 的体积.已知某绿豆新品种发芽的适宜温度在6℃~22℃之间,一农学实验室研究人员为研究温度x (℃)与绿豆新品种发芽数y (颗)之间的关系,每组选取了成熟种子50颗,分别在对应的8℃~14℃的温度环境下进行实验,得到如下散点图:其中24y =,71()(70i i i x x y y =--=∑,721()=176i i y y =-∑.(1)运用相关系数进行分析说明,是否可以用线性回归模型拟合y 与x 的关系?(2)若求出 y 关于 x 的线性回归方程y bx a =+$$$,并预测在19℃的温度下,种子的发芽的颗数.参考公式:相关系数()()nii xx y y r --=∑y bx a =+$$$,其中121()(()nii i nii xx y y bxx ==--=-∑∑ ,a y bx =-$$8.77≈.20.(本小题满分12分)已知椭圆1C :22221x y a b+=(0a b >>)左、右焦点分别为1F ,2F ,且2F 为抛物线22:8C y x=的焦点,P 为椭圆1C 上一点.(1)求椭圆1C 的方程;(2)已知A ,B 为椭圆1C 上不同两点,且都在x 轴上方,满足12F A F B λ=.(ⅰ)若3λ=,求直线1F A 的斜率;(ⅱ)若直线1F A 与抛物线2y x =无交点,求四边形12F F BA 面积的取值范围.设()ln f x x =.(1)证明:()y f x =的图象与直线xy e=-有且只有一个横坐标为α的公共点,且1(,1)e α∈;(2)求所有的实数k ,使得直线y kx =与函数2()y f x =的图象相切;(3)设2,,((,)a b c eα∈+∞(其中α由(1)给出),且3a b c ++=,()ln 2g x x =+,求g 2(a )+g 2(b )+g 2(c )的最大值.22.(本小题满分10分)在直角坐标系中,直线的方程为,曲线的参数方程为(为参数),点,分别在直线和曲线上运动,的最小值为.(1)求的值;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,射线与曲线交于不同的两点与直线交于点,若,求的值.成都石室中学2023-2024年度上期高2024届入学考试数学试题(文)参考答案一、选择题题号123456789101112答案BCADCDACBACB二、填空题13.35-;14.3+15.0;16.433.三、解答题17.解:(1)121n n a a n +=-+()()112n n a n a n +∴-+=-,又因为112a -=,所以{}n a n -是首项为2,公比为2的等比数列..............5分(2)()11122n nn a n a --=-⋅=1n n n b b a n +=+-12nn n b b +∴-=()()()()121112*********n n n n n n n n b b b b b b b b n -----∴=-+-+-+=++++=≥ 12b =满足上式.2nn b ∴=()()()()1112111121212121n n n n n n n n n a n c b b +++-===-++++++12231111111111212121212121321n n n n T ++⎛⎫⎛⎫⎛⎫∴=-+-++-=- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭ ..............12分18.解:(1)∵ABCD 是正方形,∴AD ⊥CD .(1分)∵侧面PAD ⊥底面ABCD ,侧面PAD 底面ABCD =AD ,AD ⊂平面PAD ,∴CD ⊥平面PAD ,(3分)∴CD ⊥AP .又AP ⊥DP ,CD ∩DP =D ,∴AP ⊥平面PCD ,(5分)∴PA PC ⊥.(6分)(2)∵四边形ABCD 为正方形,连接AC ,则AC ∩BD =F ,F 为AC 中点.∵E 为PC 中点,∴在△ACP 中,EF PA ∥.∵PA ⊂平面ADP ,EF ⊄平面ADP ,∴EF 平面ADP .∴E 到面ADP 的距离等于F 到面ADP 的距离.(8分)由(1)知,PA PC ⊥,∴12PF AC ==AC=,∴2AB AD ==,PA PD ==(9分)(法一)取AD 中点M ,连接AC ,MF ,则MF ∥CD ,又CD ⊥平面ADP ,∴MF ⊥平面ADP .∴111113323P ADE E PAD F PAD PAD V V V MF ---∆===⋅=⨯=.(12分)(法二)取AD 中点M ,连接AC ,MF ,则PM ⊥AD .∵侧面PAD ⊥底面ABCD ,侧面PAD 底面ABCD =AD ,PM ⊂平面PAD ,∴PM ⊥底面ABCD ,112PM AD ==.∴11111213323P ADE E PAD F PAD P ADF ADF V V V V S PM ----∆====⋅=⨯⨯⨯⨯=.(12分)19.解:(1)根据题意,得()1891011121314117x =++++++=.(1分)()()()()()()()()2222227122811+911+1011+1111+1211+1311+1411=28i i x x =-------=-∑(2分)70.16.(3分)因而相关系数()()7700.99870.16iix x y y r --==≈∑.(5分)由于0.998r ≈很接近1,∴可以用线性回归方程模型拟合y 与x 的关系.(6分)(2)()()()7172178ˆ0522i ii ii x x yy bx x ==--===-∑∑,(8分)5724112ˆ2a=-⨯=-,(9分)∴ y 关于 x的回归方程为5722ˆy x =-.(11分)若19x =,则5719442ˆ2y=⨯-=颗.∴在19℃的温度下,种子的发芽颗数为44.(12分)20.解:(1)依题意得2c =,则1(2,0)F -,2(2,0)F .于是12a PF =2PF +=,从而a =又222a b c =+,解得2b =所以椭圆1C 的方程为22184x y +=..............3分(2)如图,设1F A 直线交椭圆于另一点'B ,2F B 直线交椭圆于另一点A',由12F A F B λ=,故12//F A F B ,由椭圆对称性,2112',A'BF B F AF F ==,且四边形''ABA B 为平行四边形..............5分○1由题意直线'AB 的斜率不为0,设直线'AB :2x ty =-,由22228x ty x y =-⎧⎨+=⎩,消去x 整理得()222440t y ty +--=,设()11,A x y ,()22',B x y ,则12242t y y t +=+,12242y y t =-+,由12111233'3F A F B F A F B y y =⇒=-⇒=-(*)带入上式,解得:122262,22t ty y t t -==++故2222124,0(),1(2)2t t t t t -=->∴=++由图Q ,故1F A 的斜率为1..............8分○2由22x ty y x=-⎧⎨=⎩,消去x 整理得220y ty -+=,由()280t ∆=--<得28t <.所以12'AB y =-=)2212t t +=+,'AB 与'BA 间的距离d =2F 到'AB 的距离),故1212AF F BAB A B S S ''==)221122t t +⋅+28212t =+,[)1,3s =∈,则1222AF F BS t=+211s s s==++5⎛∈ ⎝,所以四边形12AFF B的面积的取值范围为5⎛⎝⎦..............12分21.解:(1)考虑函数()ln xu x x e =+,易知()u x 在(0,1)上单调递增,且(1)0u >,1()0u e<.因此有且只有1(,1)e α∈使得()0u α=,即()y f x =的图象与直线x y e=-有且只有一个公共点,且该公共点的横坐标为α.…………3分(2)22ln [()]xf x x'=.设200(,ln )P x x 是2()y f x =的图象上一点,则该点处的切线为200002ln ln ()x y x x x x -=-,整理得200002ln 2ln ln x y x x x x =-+.令2002ln ln 0x x -+=,解得01x =或20x e =.因此0y =与24y x e=与函数2()y f x =的图象相切.因此所求实数k 的值为0或24e .…………7分(3)设224()ln h x x x e =-,则22ln 4()x h x x e '=-.设ln ()x x x ϕ=,则21ln ()xx xϕ-'=.当2x e α<<时,()0x ϕ'>;当x e >时,()0x ϕ'<.因此()x ϕ在2(,)e α上单调递增,在(,)e +∞上单调递减.从而()h x '在2(,)e α上单调递增,(,)e +∞上单调递减.注意到2()0h e '=,故当2e x e <<时()0h x '>,当2x e >时()0h x '<,因此()h x 在2(,)e e 上单调递减,在2(,)e +∞上单调递增.所以当[,)x e ∈+∞时,2()()0h x h e ≤=.另一方面,注意到24(1)0h e '=-<,故必然存在0(1,)x e ∈,使得0()0h x '=,且当20x x α<<时()0h x '<,当0x x e <<时()0h x '>.因此()h x 在20(,)x α上单调递减,在0(,)x e 上单调递增.显然2()()0h e h e <=,而22222422()ln (2ln )(2ln )0h e e eααααα=-=+-=.因此当2(,)x e α∈时,()0h x <.综上可知当2x α>时()0h x ≤,即224ln x x e≤,当且仅当2x e =时等号成立.由于222()ln ()g x e x =,故当22e x α>,即2()x e α>时,2224()()4g x e x x e<⋅=,当且仅当22e x e =,即1x =时等号成立.因此222()()()44412g a g b g c a b c ++≤++=,当且仅当1a b c ===时等号成立.因此222322……5分(2)曲线:2cos C ρθ=,直线:(cos sin )4l ρθθ+=,分别代入θα=,得2cos A ρα=,4sin cos B ραα=+,由||||OA AB =知2B A ρρ=,即44cos sin cos ααα=+,2sin cos cos 1ααα∴+=即π2sin(2)42α+=,故π3π244α+=即π4α=.……10分。
2023年全国统一高考数学试卷(文科)(乙卷)(解析版)
2023年全国统一高考数学试卷(文科)(乙卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)|2+i2+2i3|=( )A.1B.2C.D.5【答案】C【解答】解:由于|2+i2+2i3|=|1﹣2i|=.故选:C.2.(5分)设全集U={0,1,2,4,6,8},集合M={0,4,6},N={0,1,6},则M∪∁U N =( )A.{0,2,4,6,8}B.{0,1,4,6,8}C.{1,2,4,6,8}D.U【答案】A【解答】解:由于∁U N={2,4,8},所以M∪∁U N={0,2,4,6,8}.故选:A.3.(5分)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30【答案】D【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.4.(5分)在△ABC中,内角A,B,C的对边分别是a,b,c,若a cos B﹣b cos A=c,且C=,则∠B=( )A.B.C.D.【答案】C【解答】解:由a cos B﹣b cos A=c得sin A cos B﹣sin B cos A=sin C,得sin(A﹣B)=sin C=sin(A+B),即sin A cos B﹣sin B cos A=sin A cos B+sin B cos A,即2sin B cos A=0,得sin B cos A=0,在△ABC中,sin B≠0,∴cos A=0,即A=,则B=π﹣A﹣C==.故选:C.5.(5分)已知f(x)=是偶函数,则a=( )A.﹣2B.﹣1C.1D.2【答案】D【解答】解:∵f(x)=的定义域为{x|x≠0},又f(x)为偶函数,∴f(﹣x)=f(x),∴,∴,∴ax﹣x=x,∴a=2.故选:D.6.(5分)正方形ABCD的边长是2,E是AB的中点,则•=( )A.B.3C.2D.5【答案】B【解答】解:正方形ABCD的边长是2,E是AB的中点,所以=﹣1,,,=2×2=4,则•=()•()=+++=﹣1+0+0+4=3.故选:B.7.(5分)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A.B.C.D.【答案】C【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于的点A构成的区域为图中阴影部分,∴所求概率为=.故选:C.8.(5分)函数f(x)=x3+ax+2存在3个零点,则a的取值范围是( )A.(﹣∞,﹣2)B.(﹣∞,﹣3)C.(﹣4,﹣1)D.(﹣3,0)【答案】B【解答】解:f′(x)=3x2+a,若函数f(x)=x3+ax+2存在3个零点,则f′(x)=3x2+a=0,有两个不同的根,且极大值大于0极小值小于0,即判别式Δ=0﹣12a>0,得a<0,由f′(x)>0得x>或x<﹣,此时f(x)单调递增,由f′(x)<0得﹣<x<,此时f(x)单调递减,即当x=﹣时,函数f(x)取得极大值,当x=时,f(x)取得极小值,则f(﹣)>0,f()<0,即﹣(﹣+a)+2>0,且(﹣+a)+2<0,即﹣×+2>0,①,且×+2<0,②,则①恒成立,由×+2<0,2<﹣×,平方得4<﹣×,即a3<﹣27,则a<﹣3,综上a<﹣3,即实数a的取值范围是(﹣∞,﹣3).故选:B.9.(5分)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A.B.C.D.【答案】A【解答】解:某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,甲、乙两位参赛同学构成的基本事件总数n=6×6=36,其中甲、乙两位参赛同学抽到不同主题包含的基本事件个数m==30,则甲、乙两位参赛同学抽到不同主题概率为P===.故选:A.10.(5分)已知函数f(x)=sin(ωx+φ)在区间(,)单调递增,直线x=和x=为函数y=f(x)的图像的两条对称轴,则f(﹣)=( )A.﹣B.﹣C.D.【答案】D【解答】解:根据题意可知=,∴T=π,取ω>0,∴ω==2,又根据“五点法“可得,k∈Z,∴φ=,k∈Z,∴f(x)=sin(2x)=sin(2x﹣),∴f(﹣)=sin(﹣)=sin(﹣)=sin=.故选:D.11.(5分)已知实数x,y满足x2+y2﹣4x﹣2y﹣4=0,则x﹣y的最大值是( )A.1+B.4C.1+3D.7【答案】C【解答】解:根据题意,x2+y2﹣4x﹣2y﹣4=0,即(x﹣2)2+(y﹣1)2=9,其几何意义是以(2,1)为圆心,半径为3的圆,设z=x﹣y,变形可得x﹣y﹣z=0,其几何意义为直线x﹣y﹣z=0,直线y=x﹣z与圆(x﹣2)2+(y﹣1)2=9有公共点,则有≤3,解可得1﹣3≤z≤1+3,故x﹣y的最大值为1+3.故选:C.12.(5分)设A,B为双曲线x2﹣=1上两点,下列四个点中,可为线段AB中点的是( )A.(1,1)B.(﹣1,2)C.(1,3)D.(﹣1,﹣4)【答案】D【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),,①﹣②得k AB==9×=9×,即﹣3<9×<3⇒,即或,故A、B、C错误,D正确.故选:D.二、填空题:本题共4小题,每小题5分,共20分。
高三年级数学文科试题
高三年级数学文科试题一、选择题(本大题共10小题,每小题5分,共50分)1.若,a b R ∈,i 是虚数单位,且(2)1a b i i +-=+,则a b +的值为A .1B .2C .3D .42.已知命题:,20x p x R ∀∈>,那么命题p ⌝为A .,20x x R ∃∈<B .20x x R ∀∈<,C .,20x x R ∃∈≤D .20x x R ∀∈,≤ 3.已知直线1:l y x =,若直线12l l ⊥,则直线2l 的倾斜角为A . ππ()4k k Z +∈ B .π2 C .3ππ()4k k Z +∈ D .3π44.平面向量a 与b 的夹角为60,(2,0)a =,1b =,则2a b +=A .3B .23C .4D .125.不等式组(3)()004x y x y x -++⎧⎨⎩≥≤≤表示的平面区域是A .矩形B .三角形C .直角梯形D .等腰梯形6.设a R ∈,函数()x x f x e ae -=+的导函数是()f x ',且()f x '是奇函数,则a 的值为A .1-B .12-C .1D .127.某中学高三年级从甲、乙两个班级各选出7名学生 参加数学竞赛,他们取得的成绩(满分100分)的 茎叶图如右图,其中甲班学生成绩的平均分是85, 乙班学生成绩的中位数是83,则x +y 的值为 A .7 B .8 C .9 D .1688.《莱因德纸草书》(Rhind Papyrus )是世界上最古老的数学著作之一,书中有这样的一道题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的1份为第7题图乙甲y x 611926118056798A .53B .116C .56D .1039. 从221x y m n-=(其中{},2,5,4m n ∈--)所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在y 轴上的双曲线方程的概率为( )A .12B .47C .23D .3410.已知函数21(0)()log (0)x x f x x x +⎧=⎨>⎩≤,,则函数[()]1y f f x =+的零点个数是A .4B .3C . 2D .1二、填空题(本大题共5小题,每小题7分,共35分,请将答案填在答题卡对应题号的位置上)11.已知集合{1,2,3,4,5,6}U =,}6,4,2,1{=M ,则U M =ð . 12.已知4cos 5θ=-,且tan 0θ<,则sin θ= .13.某高三年级有500名同学,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图),若用分层抽样的方法选取30人参加一项活动,则从身高在[160,170)内的学生中选取的人数应为 .14.某地区恩格尔系数(%)y 与年份x 的统计数据如下表:年份x 2004 2005 2006 2007 恩格尔系数y (%)4745.543.541从散点图可以看出y 与x 线性相关,且可得回归直线方程为ˆˆ4055.25ybx =+,据此模型可预测2013年该地区的恩格尔系数(%)为 .15.某几何体的三视图如图所示,则该几何体的体积的最大值为 .O yx 0.0350.0200.0100.005190180170160150140第13题图 第15题图 61侧视图俯视图正视图16.已知实数[0,10]x ∈,若执行如下左图所示的程序框图,则输出的x 不小于 47的概率为 .17.右下表中数阵为“森德拉姆素数筛”,其特点是每行每列都成等差数列,记第i 行第j 列的数为),(*N j i a ij ∈,则:(Ⅰ)99a = ; (Ⅱ)表中数82共出现 次.三、解答题(本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤) 18.(本小题满分12分)已知A 、B 、C 为ABC ∆的三个内角且向量3(1,cos )(3sin cos ,)2222C C C m n ==+与共线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三文科数学期末模拟考试
一.选择题
1.集合A = {x ⎢x 2-2x ≤0},B = {x ⎢lg(1)y x =-},则A ∩B 等于 A .{x ⎢0 < x ≤1} B .{x ⎢1≤x < 2} C .{x ⎢ 1 < x ≤2} D .{x ⎢0≤x < 1}
2.若复数z 满足(1)42(z i i i +=-为虚数单位),则||z =
A.
B.
C.
D.
3.直线2(1)40x m y +++=与直线320mx y +-=平行,则m = A .-2 B .-3 C .2或-3
D .-2或-3
4.已知x 、y 满足不等式组2303201
x y x y y +-⎧⎪
+-⎨⎪⎩≤≥≤,则z = x -y 的最大值是
A .6
B .4
C .0
D .-2 5.等差数列{a n }中,a 5 + a 6 = 4,则310122log (2222)a a a a = A .10
B .20
C .40
D .22log 5+
6.已知圆M 的方程为22860x y x y +-+=,则下列说法中不正确的是
A .圆M 的圆心为(4,-3)
B .圆M 被x 轴截得的弦长为8
C .圆M 的半径为25
D .圆M 被y 轴截得的弦长为6
7.已知双曲线22
221(00)x y a b a b
-=>>,
A .2y x =± B
.y =
C
.y x = D .12
y x =±
8.若某多面体的三视图如右图所示,则此多面体外接球的表面积是 A .6 B
C .2π
D .3π
9.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1 = 5.06x -0.15x 2和L 2 = 2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为 A .45.606万元 B .45.6万元 C .45.56万元 D .45.51万元 10.设f (x )为奇函数且在(-∞,0)内是增函数,f (-2) = 0,则xf (x ) > 0的解集为 A .(-∞,-2)∪(2,+∞) B .(-∞,-2)∪(0,2)
2 俯视图 第11题图
C .(-2,0)∪(2,+∞)
D .(-2,0)∪(0,2)
11.某几何体的三视图(单位:cm )如右图所示,其中侧视图是一个边长为 2的正三角形,则这个几何体的体积是
A. 3
2cm
B. 3cm
C. 3cm
D. 33cm
12.若a 、b 是方程lg 4x x +=、104x
x +=的解,函数2()20
()2
0x a b x x f x x ⎧+++=⎨>⎩≤,则关于x
的方程f (x ) = x 的解的个数是 A .1 B .2 C .3 D .4
二.填空题
13.已知幂函数y
= f (x )图象过点(2),则f (9) =
▲ . 14.已知
sin cos 1sin cos αα
αα
-=+tan 2α= ▲ .
15.已知定义在R 上的可导函数y = f (x )的图象在点M (1,f (1))处的切线方程为y =-x + 2,则(1)(1)f f '+= ▲ .
16.已知两个单位向量a 、b 的夹角为60°,且满足a ⊥(t b -a ),则实数t 的值是 ▲
三.解答题
17.定义在区间2[]3ππ-,上的函数y = f (x )的图象关于直线6x π=对称,当2[]36
x ππ∈-,时函
数()sin()(000)f x A x A ωϕωϕπ=+>><<,,图象如图所示.
(1)求函数y = f (x )在2
[]3
ππ-,的表达式;
(2)设[62ππθ∈,,若6()5
f θ=,求sin(2)3π
θ+的值.
18.数列{a n }中,已知a 1 = 1,n ≥2时,11122
333
n n n a a --=+-.数列{b n }满足:13(1)n n n b a -=+. (1)求证:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n .
(1)证明:AA 1⊥BD ;
(2)证明: 平面A 1BD ∥平面CD 1B 1 ; (3)求三棱柱ABD -A 1B 1D 1的体积.
20.已知函数2()f x ax bx =+,()ln g x x =.
(1)当a = 1,b = 2时,求函数y = f (x )-g (x )的图象在点(1,f (1))处的切线方程; (2)若2a = 1-b (b > 1),讨论函数y = f (x )-g (x )的单调性;
(3)若对任意的b ∈[-2,-1],均存在x ∈(1,e )使得f (x ) < g (x ),求实数a 的取值范围.
21.己知曲线28x y =-+与x 轴交于A 、B 两点,动点P 与A 、B 连线的斜率之积为12
-. (1)求动点P 的轨迹C 的方程;
(2) MN 是动点P 的轨迹C 的一条弦,且直线OM 、ON 的斜率之积为12
-. ①求OM ON ⋅的最大值; ②求△OMN 的面积.
A
B
C
D
A 1
B 1
D 1
C 1
O
22. (满分10分)选修4-1:几何证明选讲
如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 作直线AP 垂直直线OM ,垂足为P .
(1) 证明:OM ·OP = OA 2
;
(2) N 为线段AP 上一点,直线NB 垂直直线ON ,且交圆O 于B 点,过点B 的切线交直线ON 于K .证明:∠OKM = 90°。
23.(满分10分)选修4-4:坐标系与参数方程
已知曲线C 1:cos (sin x y θθθ=⎧⎨=⎩为参数)
,曲线C 2
:(x t y ⎧⎪⎪⎨⎪
=⎪⎩
为参数). (1) 指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;
(2) 若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线1'C ,2'C .写出1'C ,2'C 的参数方程.1'C 与2'C 公共点个数和C 1与C 2公共点的个数是否相同?说明你的理由.
24.(满分10分)选修4-5:不等式选讲 已知函数()|8||4|f x x x =---.
(1)作出函数()y f x =的图像; (2)解不等式|8||4|2x x --->。