电力电子技术第2章 电力电子器件概述
电力电子器件概述
5. 反向恢复时间trr 6. 浪涌电流IFSM
1.2.4 主要类型
1. 普通二极管——又称整流二极管 1KHZ以下 数千安和数千伏以上
2. 快恢复二极管 5μs以下 3. 肖特二极管
1.3 半控型器件——晶闸管(SCR)
常用晶闸管的结构
螺栓型晶闸管
晶闸管模块
Id
1
2
3
Im
sin td
t
3
4
Im
0.24Im
I
1
2
Im
sin t
2
d
t
0.46Im
3
Kf
I Id
0.46 0.24
1.92
IT ( AV )
100 2
50
Id
1.57 50 1.92
41 A
Im
Id 0.24
41 0.24
171
A
⑵ 维持电流IH 使晶闸管维持通态所必需的最小主电流。 ⑶ 擎住电流IL ⑷ 浪涌电流ITSM
4. 光控晶闸管LTT
⑴又称光触发晶闸 管,是利用一定 波长的光照信号 触发导通的晶闸 管。
⑵光触发保证了主 电路与控制电路 之间的绝缘,且 可避免电磁干扰 的影响。
⑶在高压大功率的 场合占有重要地位。
1.4 典型全控型器件
门极可关断晶闸管——在晶闸管问世后不久出现。 20世纪80年代以来,电力电子技术进入了一个崭新时代。
不可控器件:电力二极管
半控型器件:晶闸管及其派生器件 全控型器件:功率场效应管、绝缘栅双极性晶体管、
门极可关断晶闸管
⑵ 按照控制信号性质可分为: 电流控制型 电压控制型:控制功率小
《电力电子器件概述》课件
主要器件分类和特点
基础器件
二极管、三极管和电 容器是电力电子器件 家族的基础,它们分 别具有导通和截止、 放大和切换、储能等 特点。
控制器件
可控硅、晶闸管和场 效应管能够在电路中 实现控制和变换电流 的功能,并具有方便 使用、可靠性高等特 点。
开关器件
IGBT和MOSFET是现代 电力电子技术中应用 最广泛的开关器件之 一,它们能够快速地 控制电流,拥有高速 度和低损耗的特点。
核电岛供电系统中的应用
核电岛是核电站中最关键的一部分,核 电岛供电系统中的电力电子器件起到了 重要作用,例如:可控硅直流电源、晶 闸管逆变器以及IGBT变频器等。
电力电子器件的发展历程与趋势
初创时期
重大进展
20世纪30年代初,电力电子器件 的初衷是用于照明和飞机无线电 通信设备,当时的器件非常原始。
快速器件
快恢复二极管和快速 开关器件是一类性能 优异、应用广泛的快 速器件,能够满足复 杂电路和高速电路的 需求。
器件工作原理与应用案例
1
输入输出特性与参数
2
电力电子器件一般具有输入端和输出端,
其特点表现在电路中的传导特性、阻抗
和输出功率等方面。
3
什么是电力电子器件?
电力电子器件是指能够在电力电路中实 现功率控制和转换的电气元件,是现代 电力电子技术的基础。
电力电子器件的作用
通过对电源电路的控制,电力电子器件实现了电力变换和供应的精确控制,同时能够提高电力系统的效率,减 少电力损耗。
- 电力电子器件的分类和应用领域
电力电子器件按照主要功能可以分为基础器件、控制器件、开关器件和快速器件四类,并应用于现代电力电子 技术的众多领域,如可再生能源、工业自动化、电动汽车等。
电力电子技术第二章总结
2016电力电子技术作业:第二章总结班级:XXXXXX学号:XXXXXXX姓名:XXXXXX第二章电力电子器件总结1.概述不可控器件——电力二极管(Power Diode) GPD FRD SBD半控型器件——晶闸管(Thyristor) FST TRIAC LTT典型全控型器件GTO GTR MOSFET IGBT其他新型电力电子器件MCT SIT SITH IGCT功率集成电路与集成电力电子模块HVIC SPIC IPM1.1相关概念主电路(Main Power Circuit):在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。电力电子器件(Power Electronic Device)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。1.2特点电功率大,一般都远大于处理信息的电子器件。一般都工作在开关状态。由信息电子电路来控制,而且需要驱动电路(主要对控制信号进行放大)。功率损耗大,工作时一般都需要安装散热器。通态损耗,断态损耗,开关损耗(开通损耗关断损耗) 开关频率较高时,可能成为器件功率损耗的主要因素。电力电子器件在实际应用中的系统组成一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组成一个系统。关键词电力电子系统电气隔离检测电路保护电路三个端子1.3电力电子器件的分类按能够被控制电路信号控制的程度不同可分为半控型器件(开通可控,关断不可控) 全控型器件(开通,关断都可控) 不可控器件(开通,关断都不可控)按照驱动信号的性质不同可分为电流驱动型电压驱动型按照驱动信号的波形(电力二极管除外)不同可分为脉冲触发型电平控制型按照载流子参与导电的情况不同可分为单极型器件(由一种载流子参与导电) 双极型器件(由电子和空穴两种载流子参与导电)复合型器件(由单极型器件和双极型器件集成混合而成,也称混合型器件) 关键词控制的程度驱动信号的性质、波形载流子参与导电的情况工作原理基本特性主要参数2不可控器件——电力二极管(Power Diode)2.1结构与工作原理电力二极管实际上是由一个面积较大的PN结和两端引线以及封装组成的。PN节(PN junction):采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结。N型半导体(N为Negative的字头,由于电子带负电荷而得此名):即自由电子浓度远大于空穴浓度的杂质半导体。P型半导体(P为Positive的字头,由于空穴带正电而得此名):即空穴浓度远大于自由电子浓度的杂质半导体。正向电流IF :当PN结外加正向电压(正向偏置)时,在外电路上则形成自P区流入而从N区流出的电流。反向截止状态:当PN结外加反向电压时(反向偏置)时,反向偏置的PN结表现为高阻态,几乎没有电流流过的状态。反向击穿:PN结具有一定的反向耐压能力,但当施加的反向电压过大,反向电流将会急剧增大,破坏PN 结反向偏置为截止的工作状态。雪崩击穿齐纳击穿(可以恢复) 热击穿(不可恢复)P-i-N结构电导调制效应(Conductivity Modulation):当正向电流较小时,管压降随正向电流的上升而增加;当正向电流较大时,电阻率明显下降,电导率大大增加的现象。关键词少子扩散运动空间电荷区(耗尽层、阻挡区、势垒区)结电容C J:PN结中的电荷量随外加电压而变化,呈现电容效应。(微分电容)扩散电容C D:扩散电容仅在正向偏置时起作用。正向电压较高时,扩散电容为结电容主要成分。势垒电容C B:势垒电容只在外加电压变化时才起作用,外加电压频率越高,势垒电容作用越明显。在正向偏置时,当正向电压较低时,势垒电容为主。作用:结电容影响PN结的工作频率,特别是在高速开关的状态下,可能使其单向导电性变差,甚至不能工作。2.2基本特性静态特性(伏安特性)门槛电压U TO 正向电压降U F反向漏电流是由少子引起的微小而数值定。动态特性结电容零偏置,正向偏置,反向偏置不能立即转换状态过渡过程正向偏置时延迟时间:t d=t1-t0电流下降时间:t f = t2 - t1反向恢复时间:t rr= t d + t f恢复特性的软度:S r= t f / t d,或称恢复系数,S r越大恢复特性越软。由零偏置转换为正向偏置过冲U FP: 原因:1)电导调制效应起作用所需的大量少子需要一定的时间来储存,在达到稳态导通之前管压降较大。2)正向电流的上升会因器件自身的电感而产生较大压降。电流上升率越大,UFP越高。正向恢复时间:t fr2.3主要参数正向平均电流I F(AV) 正向压降U F反向重复峰值电压U RRM最高工作结温T JM反向恢复时间t rr浪涌电流I FSM2.4主要类型普通二极管(General Purpose Diode)快恢复二极管(Fast Recovery Diode,FRD)肖特基二极管(Schottky Barrier Diode, SBD)3半控型器件——晶闸管(Silicon Controlled Rectifier,SCR)3.1结构和工作原理内部是PNPN四层半导体结构如图a) P1 区引出阳极A、N2 区引出阴极K、P2 区引出门极G 工作原理可以用双晶体管模型解释如右图b)。工作过程关键词: I G V2 I c2 I c1正反馈触发门触发电路其他几种可能导通的情况阳极电压升高至相当高的数值造成雪崩效应阳极电压上升率du/dt过高光触发结温较高只有门极触发是最精确、迅速而可靠的控制手段。3.2基本特性静态特性正常工作特性当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。伏安特性如右图所示包括正向特性和反向特性正向转折电压U bo维持电流I H反向最大瞬态电压U RSM反向重复峰值电压U RRM断态重复峰值电压U DRM断态最大瞬时电压U DSM动态特性如右图所示延迟时间t d (0.5~1.5μs)上升时间t r (0.5~3μs)开通时间t gt=t d+t r反向阻断恢复时间t rr正向阻断恢复时间t gr关断时间t q=t rr+t gr3.3主要参数(包括电压定额和电流定额)电压定额断态重复峰值电压U DRM反向重复峰值电压U RRM通态(峰值)电压U T通常取晶闸管的U DRM和U RRM中较小的标值作为该器件的额定电压。选用时,一般取额定电压为正常工作时晶闸管所承受峰值电压2~3倍。电流定额通态平均电流I T(AV)维持电流I H擎住电流I L浪涌电流I TSM动态参数开通时间t gt和关断时间t q断态电压临界上升率d u/d t通态电流临界上升率d i/d t3.4晶闸管的派生器件快速晶闸管(Fast Switching Thyristor, FST)双向晶闸管(Triode AC Switch——TRIAC or Bidirectional Triode Thyristor) 逆导晶闸管(Reverse Conducting Thyristor, RCT)光控晶闸管(Light Triggered Thyristor, LTT)典型全控型器件4门极可关断晶闸管(Gate-Turn-Off Thyristor, GTO)晶闸管的一种派生器件,但可以通过在门极施加负的脉冲电流使其关断,因而属于全控型器件。4.1结构与工作原理其结构原理可以参考晶闸管数十个甚至数百个小GTO单元4.2基本特性静态特性和普通晶闸管类似动态特性储存时间t s下降时间t f尾部时间t t4.3主要参数最大可关断阳极电流I ATO电流关断增益 off开通时间t on关断时间t off5电力晶体管(Giant Transistor, GTR)5.1结构和工作原理与普通的双极结型晶体管基本原理是一样的。最主要的特性是耐压高、电流大、开关特性好。达林顿接法单元结构并联三层半导体两个PN结5.2基本特性右图所示静态特性右图所示动态特性右图所示5.3主要参数电流放大倍数 直流电流增益h FE集电极与发射极间漏电流I ceo 集电极和发射极间饱和压降U ces 开通时间t on 和关断时间t off 最高工作电压BU ceo :基极开路时集电极和发射极间的击穿电压实际使用GTR 时,为了确保安全,最高工作电压要比BU ceo 低得多。 集电极最大允许电流I cM 集电极最大耗散功率P cM6电力场效应晶体管(Metal Oxide Semiconductor FET, MOSFET) 6.1结构和工作原理6.3基本特性静态特性动态特性MOSFET 的开关速度和其输入电容的充放电有很大关系,可以降低栅极驱动电路的内阻R s ,从而减小栅极回路的充放电时间常数,加快开关速度。6.4主要参数跨导G fs 、开启电压U T 以及开关过程中的各时间参数。漏极电压U DS漏极直流电流I D 和漏极脉冲电流幅值I DM 栅源电压U GS极间电容 C GS 、C GD 和C DS 。N +GS DP 沟道b)N +N -S GD P P N +N +N +沟道a)GS DN 沟道图1-19漏源间的耐压、漏极最大允许电流和最大耗散功率决定了电力MOSFET的安全工作区。7绝缘栅双极晶体管(Insulated-gate Bipolar Transistor, IGBT or IGT) 综合了GTR和MOSFET的优点场控器件7.1结构和工作原理内部结构图其开通和关断是由栅极和发射极间的电压U GE决定的。7.2基本特性静态特性转移特性输出特性动态特性开通过程开通延迟时间t d(on)电流上升时间t r电压下降时间t fv开通时间t on= t d(on)+t r+t fvt fv分为t fv1和t fv2两段。关断过程关断延迟时间t d(off)电压上升时间t rv电流下降时间t fi关断时间t off = t d(off) +t rv+t fit fi分为t fi1和t fi2两段7.3主要参数最大集射极间电压U CES最大集电极电流最大集电极功耗P CM8其他新型电力电子器件MOS控制晶闸管MCT静电感应晶体管SIT静电感应晶闸管SITH集成门极换流晶闸管IGCT基于宽禁带半导体材料的电力电子器件。
《电力电子技术》第2章 电力电子器件
2/89
上节课内容回顾
• 二、电力电子器件
1、概念:是指可直接用于处理电能的主电路中,实现 电能的变换或控制的电子器件。
2、特性:大功率、开关特性、驱动电路、损耗大,加散热
3、组成:主电路、控制电路、检测电路。。。。
4、分类:
1)控制程度:不控器件、半控器件、全控器件
12/89
2.1.3 电力电子器件的分类
■按照载流子参与导电的情况 ◆单极型器件 ☞由一种载流子参与导电。 ◆双极型器件 ☞由电子和空穴两种载流子参与导电。 ◆复合型器件 ☞由单极型器件和双极型器件集成混合而成, 也称混合型器件。
13/89
2.1.4 本章内容和学习要点
■本章内容 ◆按照不可控器件、半控型器件、典型全控型器件和其 它新型器件的顺序,分别介绍各种电力电子器件的工作 原理、基本特性、主要参数以及选择和使用中应注意的 一些问题。
检测
控
电路
制
保护
电
电路
路
驱动ቤተ መጻሕፍቲ ባይዱ
电路
V1 LR
V2
主电路
电气隔离
图2-1 电力电子器件在实际应用中的系统组成
10/89
2.1.3 电力电子器件的分类
■按照能够被控制电路信号所控制的程度 ◆半控型器件 ☞主要是指晶闸管(Thyristor)及其大部分派生器件。 ☞器件的关断完全是由其在主电路中承受的电压和电 流决定的。 ◆全控型器件 ☞目前最常用的是 IGBT和Power MOSFET。 ☞通过控制信号既可以控制其导通,又可以控制其关 断。 ◆不可控器件 ☞电力二极管(Power Diode) ☞不能用控制信号来控制其通断。
■学习要点 ◆最重要的是掌握其基本特性。 ◆掌握电力电子器件的型号命名法,以及其参数和特性 曲线的使用方法。 ◆了解电力电子器件的半导体物理结构和基本工作原理。 ◆了解某些主电路中对其它电路元件的特殊要求。
电力电子技术第2章 电力电子器件的驱动与保护
(b) (a)
图2-1 光电耦合器的类型及接法 a) 普通型 b) 高速型 c) 高传输比型
✓磁隔离的元件通常是脉冲变压器。
(c)
R:限流电阻
电力电子技术
4
2.1 电力电子器件的驱动电路
驱动电路分类
按驱动信号性质,可分为电流驱动型和电压驱动型。 具体形式可为分立元件、集成驱动电路。 双列直插式集成电路及将光耦隔离电路也集成在内的混合 集成电路。 首选所用器件生产厂家专门开发的集成驱动电路。
2.1.1 晶闸管触发电路
VD11
~VD
14
220 V 36V
+15 V
R15
C7 + C6 B
VD 15
+Vc + 15 V
VD 7
TP VD8
R18
R14 R
13
VD9
脉冲信号
C5
R16
VD6
VT7
VT8
电力电子技术
21
2.1.1 晶闸管触发电路
同步信号为锯齿波的触发电路工作波形
u ST
ωt
R15
图2-3b)磁耦合隔离的晶闸管驱动电路
前进
电力电子技术
12
2.1.1 晶闸管触发电路
3. 同步信号为锯齿波的触发电路
该电路可分为:脉冲形成与放大、锯齿波形成及脉冲移相、同步信 号处理
三个基本环节,以及双脉冲形成、强触发等环节。
同步 信号 同步
信号 处理
uK
锯齿 波形
成
脉冲 移相 控制
脉冲 形成 (单稳 态)
由阻断转为导通。 ✓触发信号可以是交流形式,也可直流形式,但它们对门极-阴极来 说必须是正极性的。 ✓为了减少功率,触发信号通常采用脉冲形式。 ✓往往包括相位控制电路。
《电力电子技术》学习指导
《电力电子技术》学习指导第1章绪论电力变换的类型;变流技术的概念;电力电子技术的理论基础;电力电子技术发展简史和主要应用领域。
第2章电力电子器件典型器件SR、SCR、GTO、GTR、MOS、IGBT的中文名称、图形符号、开通条件和关断条件;器件的主要分类方法;上述六种典型器件在不同分类方法中的归属;不同类型器件的优点和缺点;典型器件在最大功率和最大工作频率这两个指标上的排序;器件提高耐压能力和通流能力的方法;六种典型器件的静态特性曲线和动态特性曲线;SR和SCR额定电流的定义;电压、电流平均值和有效值的计算。
第3章整流电路整流电路的主要类型;相控方式的概念;触发角(控制角)的概念;续流二极管的作用;平波电抗器的作用;整流电路带不同性质负载时各自的工作特点。
变压器漏抗对整流电路的影响。
整流电路输入量和输出量的谐波分析。
电容滤波电路的工作特点。
有源逆变的概念和产生有源逆变的条件。
触发电路的作用和主要类型。
单相/三相桥式全控整流电路带电阻/阻感负载时的主电路图、工作原理、晶闸管的移相范围。
单相/三相桥式全控整流电路带阻感负载(且L极大)时主要波形图(u d、i d、i VT、i2)的绘制、主要物理量(U d、I d、I dVT、I VT、I2)的计算、晶闸管额定电压和额定电流的计算、输入电流和输出电压的谐波分析、输入侧功率因数的计算。
第4章逆变电路无源逆变的概念;换流方式的类型及其特点;电压型逆变电路和电流型逆变电路的概念及其特点;电压型单相半桥/全桥逆变电路;移相调压的概念;电压型三相桥式逆变电路;电流型单相/三相逆变电路;逆变电路多重化的概念、作用和特点;多电平逆变电路。
电压型单相全桥逆变电路带电阻/阻感负载时的主电路图、工作原理、主要波形图(u o、i o)。
电压型三相桥式逆变电路带电阻负载时的主电路图、工作原理、主要波形图(线电压u L、相电压u p)。
第5章直流-直流变流电路直流-直流变流电路的主要类型(直接/间接型,非隔离/隔离型);斩波电路的三种控制方式;占空比(导通比)的概念;电感电流断续工作方式和电感电流连续工作方式;六种基本直流斩波电路的英文缩写及其功能;采用直-交-直变换方式的原因;直流斩波电路的主要应用;多相多重斩波电路。
2.电力电子器件 (2) - 半控型器件
+
_
IG2 IG1 IG0
U DRM U BO U 正向转折电压 正向特性
IG2 >IG1 >IG0
o
反向转折电压
U
_ +
反向特性
17
武汉科技大学信息科学与工程学院
电力电子器件
电 力 电 子 技 术
2.3.2 晶闸管的基本特性
(Power Electronics)
晶闸管的门极触发电流从门极流入晶闸管,从阴极 流出。 阴极是晶闸管主电路与控制电路的公共端。 门极触发电流也往往是通过触发电路在门极和阴极 之间施加触发电压而产生的。
武汉科技大学信息科学与工程学院
电力电子器件
电 力 电 子 技 术
2014-2-28
2.3.1 晶闸管的结构与工作原理
(Power Electronics)
5
1、晶闸管的结构
具有四层PNPN结构、三端引出线(A、K、G)的器件。
外形有螺栓型和平板型两种封装。
有三个联接端。
螺栓型封装,通常螺栓是其阳极,能与散热器紧
电压或正向脉冲(正向触发电压)。EG>0 晶闸管导通后,控制极便失去作用。 依靠正反
馈,晶闸管仍可维持导通状态。
14
武汉科技大学信息科学与工程学院
电力电子器件
(Power Electronics) 电 力 电 子 技 术
2014-2-28
晶闸管关断的条件:
1. 必须使可控硅阳极电流减小,直
到正反馈效应不能维持。
7
2014-2-28
电 力 电 子 技 术
2、晶闸管的其它封装形式: 还有塑封和模块式两种封装。
武汉科技大学信息科学与工程学院
电力电子技术_第2章_器件5_IGBT
IGBT的转移特性和输出特性
a) 转移特性 b) 输出特性
• 当UCE<0时,IGBT处于方向阻断工作状态,在系统运行 中,IGBT处于开关状态,因而在正向阻断区和饱和区之 间来回转换。
1-8
IGBT的动态特性:开通特性
IGBT 的开通过程:与 MOSFET 的相似。
开 通 延 迟 时 间 td(on) : 10% uGE 到 10% iC幅值时间。 电流上升时间tr:10% iC幅值上升到 90% iC幅值时间。 集射电压下降时间 tfv : uCE 的下降 过程分为tfv1和tfv2两段。
1-5
集电极 C
N 沟道I G B T
IGBT实用等效电路
• Q1截止时IGBT的实 用等效电路 R d iD + • Uce<0,P N 反偏,反 VF 向阻断。Uce>0,N-P反 P u ds G 偏,正向阻断。正反 u ge N + 阻断能力近似相等。
C N
ic
P+
V u ce
iT
E
IGBT实用等效电路
栅极 Rd P G Q1 Q2 Rd N+ Q3 Q1 - + N PN 发射极 N+ P RB
C
N Q 2
P
+
P
RB
结构与电力 MOSFET区别 于N+层被P+ 层替换形成 IGBT的集电极
寄生三极管
Q2的出现使工作时产 生电导调制效应, NC C E 克服了高耐压与导 通电阻的矛盾。
P+ G G E E 图形符号
t 21 0.27ns Vceon 2.5V
tdoff
+ u g Vceon t -
电力电子技术_洪乃刚_第二章电力电子器件
返回
2、晶闸管的电流参数 通态平均电流和额定电流 通态平均电流IAV国际规 定是在环境温度为40°C和在规定冷却条件下,稳定结 温不超过额定结温时,晶闸管允许流过的最大正弦半 波电流的平均值。晶闸管以通态平均电流标定为额定 电流。 当通过晶闸管的电流不是正弦半波时,选择额定 电流就需要将实际通过晶闸管电流的有效值IT折算为 正弦半波电流的平均值,其折算过程如下: 通过晶闸管正弦半波电流的平均值 :
晶闸管开通和关断过程
晶闸管在受反向电压关断时,反向阻断恢复时间 trr,正向电压阻断能力恢复的这段时间称为正向阻断 恢复时间tgr,晶闸管的关断时间toff=trr+tgr,约为 数百微秒。 (2)dv/dt和di/dt限制 晶闸管在断态时,如果加在阳极上的正向电压上 升率dv/dt很大会使晶闸管误导通,因此,对晶闸管正 向电压的dv/dt需要作一定的限制。 晶闸管在导通过程中,如果电流上升率di/dt很 大 会引起局部结面过热使晶闸管烧坏,因此,在晶闸 管导通过程中对di/dt也要有一定的限制。
返回
二、电力二极管的伏安特性
当施加在二极管上的正向电压大于UTO 时, 二极管导通。当二极管受反向电压时,二极管仅 有很小的反向漏电流(也称反向饱和电流)。
二极管的伏安特性
返回
三、电力二极管的主要参数
A、额定电压 B、额定电流 C、结温
电力二极管实物图
返回
A、电力二极管的额定电压 反向重复峰值电压和额定电压: 额定电压即是能够反复施加在二极管上,二极 管不会被击穿的最高反向重复峰值电压URRM,该电压 一般是击穿电压UB的2/3。在使用中额定电压一般取 二极管在电路中可能承受的最高反向电压(在交流 电路中是交流电压峰值),并增加一定的安全裕量。
电力电子技术2122资料讲解
当原来处于正向导通的电力二极管外加电 压在tF时刻突然从正向变为反向时,正向 电流IF开始下降,下降速率由反向电压和 电路中的电感决定,而管压降由于电导调 制效应基本变化不大。到t0时刻正向电流 降为零,此时器件并没有恢复反向阻断能
力,而是在外加反向电压作用下形成较大 的反向电流。直到t1时刻反向电流IRP(由 URP产生的)达到最大值后,才开始恢复 反向阻断,反向恢复电流迅速减小。到了 t2时刻,电流变化率接近于零,管子两端 的反向电压才降到外加反向电压UR,二极 管完全恢复反向阻断能力。
3) 在实际应用中,电力电子器件与理想开关模型有较大的差别, 即器件在工作时会产生很大的功率损耗。
3 应用电力电子器件的系统组成
从宏观角度来说,电力电子电路也称为电力电子系统,是由 控制电路、驱动电路和以电力电子器件为核心的主电路组成的一 个系统。如下图所示。
广义上,人们往往将主电路以外的其他电路都归为控制电路, 所以,也可以说,电力电子系统是由主电路和控制电路组成的。
6)电气隔离:将主电路和控制电路等进行安全隔离,而 通过光、磁等来传递信号。
因为主电路中电流和电压较大,而控制电路中的元 器件只能承受较小的电压和电流,因此在主电路和控制 电路连接的路径上需要进行电气隔离。例如:驱动电路 与主电路的连接处、与控制信号的连接处,主电路与检 测电路的连接处。
4 电力电子器件的分类
控
检测 电路
制 保护
电
电路
驱动
路
电路
V1 LR
V2 主电路
1)主电路:进行电能的变换和控制的电路。 特 点:电路中的电流和电压一般都较大。
2)控制电路:按照系统的工作要求形成控制信号,通过驱动电路 去控制主电路中电力电子器件的导通或关断,来完成整个系统的 功能。 特 点:电路中的电流和电压较小。
电力电子技术第二章
电
力
电
子
技
术
2.2 电力电子器件基础
1.PN结的形成
完全纯净的、结构完整的半导体晶体称为本征半导体。在常温下,本征 半导体可以激发出少量的自由电子,并出现相应数量的空穴,这两种不同极 性的带电粒子统称为载流子。 用适当的方法在本征半导体内掺入微量的杂质,会使半导体的导电能力 发生显著的变化,这种半导体称为杂质半导体。因掺入杂质化合价的不同, 杂质半导体分为电子型(N型)半导体和空穴型(P型)半导体两类。 N型半导体的杂质为五价元素,在半导体晶体中能给出一个多余的电子, 故N型半导体内自由电子数远大于空穴数,则自由电子称为多数载流子(简 称多子),空穴称为少数载流子(简称少子)。而P型半导体中的杂质为三 价元素,能在半导体晶体中接受电子,使晶体中产生空穴,即P型半导体中 的空穴数远大于自由电子数,则空穴称为多数载流子,自由电子称为少数载 流子。
电
力
电
子
技
术
2.2.2电力电子器件的封装
图2-2是电力电子器件几种常见的封装形式
TO-220
TO-247
SOT-227
TO-64
TO-209
电
力
电
子
技
术
2.3 功率二极管
功率二极管(Power Diode) 属于不可控电力电子器件,是20世 纪最早获得应用的电力电子器件, 它在整流、逆变等领域都发挥着重 要的作用。基于导电机理和结构的 不同,二极管可分为结型二极管和 肖特基势垒二极管。 二极管的基本结构是半导体 PN结,具有单向导电性,正向偏 臵时表现为低阻态,形成正向电流, 称为正向导通;而反向偏臵时表现 为高阻态,几乎没有电流流过,称 为反向截止。
电
电力电子技术总复习
◆直流侧串大电感,相当于电流源。直流侧电流基本无
脉动,直流回路呈现高阻抗 。 ◆交流输出电流为矩形波,与负载阻抗角无关,输出电 压波形和相位因负载不同而不同。 ◆直流侧电感起缓冲无功能量的作用,不必给开关器件 反并联二极管。 ■电流型逆变电路中,采用半控型器件的电路仍应用较多, 换流方式有负载换流、强迫换流。
有源逆变,欲实现有源逆变,只能采用全控电路。
第3章 整流电路
■逆变失败
◆逆变失败的概念 逆变运行时,一旦发生换相失败,外接的直流电源就会 通过晶闸管电路形成短路,或者使变流器的输出平均电 压和直流电动势变成顺向串联,由于逆变电路的内阻很 小,形成很大的短路电流,这种情况称为逆变失败,或
称为逆变颠覆。
第9章 电力电子器件应用的共性问题
■驱动电路是电力电子主电路与控制电路之间的接口。 ■驱动电路的基本任务
◆将信息电子电路传来的控制信号按照控制目标的要求,转
换为加在电力电子器件控制端和公共端之间,可以使其开通 或关断的信号。
☞ 对半控型器件只需提供开通控制信号;
☞ 对全控型器件则既要提供开通控制信号,又要提供关断控 制信号。 ◆驱动电路还要提供控制电路与主电路之间的电气隔离环节。 ☞ 一般采用光隔离或磁隔离。
第5章 直流直流变流电路
直接直流变流电路也称斩波电路(DC Chopper)。 直流斩波电路(直接直流变流电路)的种类 基本斩波电路:降压(Buck)斩波电路、升压(Boost)斩波
电路、 升降压斩波电路 (Buck-Boost) 、 Cuk 斩波电路、
Sepic斩波电路和Zeta斩波电路。其中,降压(Buck)斩波 电路、升压(Boost)斩波电路是最基本的斩波电路。 复合斩波电路:不同结构的基本斩波电路组合(如电流可 逆斩波电路、桥式可逆斩波电路等)。 多相多重斩波电路:相同结构的基本斩波电路组合(如由 三个降压斩波电路并联形成三相三重斩波电路)。
电力电子复习资料
电⼒电⼦复习资料第⼀章概述可以认为,所谓电⼒电⼦技术就是应⽤于电⼒领域的电⼦技术。
电⼦技术包括信息电⼦技术和电⼒电⼦技术两⼤分⽀。
通常所说的模拟电⼦技术和数字电⼦技术都属于信息电⼦技术。
具体地说,电⼒电⼦技术就是使⽤电⼒电⼦器件对电能进⾏变换和控制的技术。
电能变换的形式共有四种:交流-直流变换、直流-直流变换、直流-交流变换、交流-交流变换。
电⼒电⼦器件的制造技术是电⼒电⼦技术的基础。
变流技术则是电⼒电⼦技术的核⼼。
美国学者W. Newell认为电⼒电⼦学是由电⼒学、电⼦学和控制理论三个学科交叉⽽形成的。
⼀般认为,电⼒电⼦技术的诞⽣是以1957年美国通⽤电⽓公司研制出第⼀个晶闸管为标志的。
把驱动、控制、保护电路和电⼒电⼦器件集成在⼀起,构成电⼒电⼦集成电路(PIC),这代表了电⼒电⼦技术发展的⼀个重要⽅向。
电⼒电⼦集成技术包括以PIC为代表的单⽚集成技术、混合集成技术以及系统集成技术。
随着全控型电⼒电⼦器件的不断进步,电⼒电⼦电路的⼯作频率也不断提⾼。
与此同时,软开关技术的应⽤在理论上可以使电⼒电⼦器件的开关损耗降为零,从⽽提⾼了电⼒电⼦装置的功率密度。
第⼆章电⼒电⼦器件2.1:电⼒电⼦器件概述1、电⼒电⼦器件(Power Electronic Device)是指可直接⽤于处理电能的主电路中,实现电能的变换或控制的电⼦器件。
电⼒电⼦器件⼀般⼯作在开关状态2、电⼒电⼦器件的功率损耗:通态损耗、断态损耗、开关损耗(开通损耗、关断损耗)通态损耗是电⼒电⼦器件功率损耗的主要成因。
当器件的开关频率较⾼时,开关损耗会随之增⼤⽽可能成为器件功率损耗的主要因素。
3、电⼒电⼦器件在实际应⽤中,⼀般是由控制电路、驱动电路和以电⼒电⼦器件为核⼼的主电路组成⼀个系统。
4、电⼒电⼦器件的分类(1)按照能够被控制电路信号所控制的程度:半控型器件、全控型器件、不可控器件。
半控型器件是指⽤控制信号可以控制其导通,但不能控制其关断的电⼒电⼦器件。
第2章 电力电子器件的基本特性
• 1)GTO的导通机理与SCR是相同的。GTO一旦导通之后, 门极信号是可以撤除的, 但在制作时采用特殊的工艺 使管子导通后处于临界饱和,而不象普通晶闸管那样 处于深饱和状态,这样可以用门极负脉冲电流破坏临 界饱和状态使其关断。 • 2)在关断机理上与SCR是不同的。门极加负脉冲即从 门极抽出电流(即抽取饱和导通时储存的大量载流子), 强烈正反馈使器件退出饱和而关断。
图2.3.1
晶闸管的外型及符号
• 常用大功率晶闸管实物外形
螺栓型晶闸管
晶闸管模块
平板型晶闸管外形及结构
晶闸管的工作原理
晶闸管的内部结构和等效电路 导通条件: ① 在A-K两端施加正向电压; ② 同时在门极和阴极之间也施加正向触发(电压)信号时,门 极有电流IG流通。 这时,即使去掉触发信号,这时晶闸管仍然能够自动维持导 通。
•① •② •③ •④ 明确门极开通和关断波形; 驱动电路的电源选择; 缓冲吸收回路的合理设计; 阳极电路限流电抗器的合理设计。
§2.4 功率场效应管和绝缘栅双极型晶体管
§2.4.1
功率场效应管(MOSFET)
§2.4.2
绝缘栅双极型晶体管(IGBT)
§2.4.1
现代电力电子技术现代电力电子技术modernpowerelectronicsmodernpowerelectronics电力半导体器件的基本特性21电力半导体器件的种类及应用22半导体整流管23晶闸管和可关断晶闸管24功率场效应管和绝缘栅双极型晶体管25电力半导体器件的功率损耗和冷却重点和难点重点和难点电力电子器件的基本模型和分类电力电子器件指标和特性应用电力电子器件系统的组成电力电子器件的驱动和保护类型及原理电力半导体器件的种类及应用电力半导体器件是电力电子技术及其应用系统的基础
0电力电子技术-目录
第6章 PWM控制技术
6.2 PWM逆变电路及其控制方法
6.3 PWM跟踪控制技术
6.4 PWM整流电路及其控制方法
第7章 第8章
第7章 软开关技术
电 力 电 子 技 术
7.1 软开关的基本概念
7.2 软开关电路的分类
7.3 典型的软开关电路
第8章 组合变流电路
8.1 间接交流变流电路
4.1 交流调压电路
4.4 矩阵式变频电路
第5章 第6章
第5章 逆变电路
电 力 电 子 技 术
5.1 换流方式
5.2 电压型逆变电路
5.3 电流型逆变电路 5.4 多重逆变电路和多电平逆变电路 6.1 PWM控制的基本原理
电 力 电 子 技 术
1.5 其他新型电力电子器件
1.6 电力电子器件的驱动 1.7 电力电子器件的保护 1.8 电力电子器件的串联和并联使用
第2章 整流电路
2.1 单相可控整流电路 2.2 三相可控整流电路 2.3 变压器漏感对整流电路的影响 2.4 电容滤波的不可控整流电路
第8章 组合变流电路
绪论
电 力 电 子 技 术
1. 什么是电力电子技术 2. 电力电子技术的发展史 3. 电力电子技术的应用 4. 电力电子技术的主要内容
第1章 电力电子器件
1.1 电力电子器件概述 1.2 不可控器件-电力二极管 1.3 半控型器件-晶闸管 1.4 典型全控型器件
电力电子技术
教材:《电力电子技术》(第4版)
西安交通大学 王兆安 黄 俊
主讲:物理与机电工程学院自动化系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.3 电力电子器件的分类
2.1.4 本章内容和学习要点
3 3-133
2.1.1 电力电子器件的概念和特征
电力电子器件
1)概念: 电力电子器件(Power Electronic Device)
——可直接用于主电路中,实现电能的变换或控制的电 子器件。
主电路(Main Power Circuit)
Power Diode结构和原理简单,工作可靠,自 20世纪50年代初期就获得应用。
2.2
不可控器件—电力二极管· 引言
快恢复二极管和肖特基二极管,分别在中、高 频整流和逆变,以及低压高频整流的场合,具 有不可替代的地位。
整流二极管及模块
12 12-133
2.2.1 PN结与电力二极管的工作原理
电力二极管的主要类型
按照正向压降、反向耐压、反向漏电流等性能, 特别是反向恢复特性的不同介绍。
1) 普通二极管(General Purpose Diode)
又称整流二极管(Rectifier Diode) 多用于开关频率不高(1kHz以下)的整流电路 其反向恢复时间较长 正向电流定额和反向电压定额可以达到很高 DATASHEET
肖特基二极管的优点
反向恢复时间很短(10~40ns)。 正向恢复过程中也不会有明显的电压过冲。 反向耐压较低时其正向压降明显低于快恢复二极管。 效率高,其开关损耗和正向导通损耗都比快速二极管还小。
24 24-133
2.3
半控器件—晶闸管
2.3.1 晶闸管的结构与工作原理 2.3.2 晶闸管的基本特性 2.3.3 晶闸管的主要参数
电容影响PN结的工作频率,尤其是高速的开关特性
电力二极管的基本特性
I
主要指其伏安特性
门槛电压 UTO,正向电流 IF开始明显增加所对应的 电压。 与IF对应的电力二极管两 端的电压即为其正向电 压降UF 。 承受反向电压时,只有 微小而数值恒定的反向 漏电流。
电力二极管的主要参数
5)最高工作结温TJM
结温是指管芯PN结的平均温度,用TJ表示。
TJM是指在 PN结不致损坏的前提下所能承受的最高 平均温度。 TJM通常在125~175C范围之内。
6) 浪涌电流IFSM
指电力二极管所能承受最大的连续一个或几个工频 周期的过电流。
21 21-133
1.2.4
8 8-133
2.1.3
电力电子器件的分类
按照驱动电路信号的性质,分为两类: 电流驱动型
——通过从控制端注入或者抽出电流来实现导通或者 关断的控制。
电压驱动型
——仅通过在控制端和公共端之间施加一定的电压信 号就可实现导通或者关断的控制。
9 9-133
2.1.4
本章内容:
本章学习内容与学习要点
介绍各种器件的工作原理、基本特性、主要参数以 及选择和使用中应注意的一些问题。 集中讲述电力电子器件的驱动、保护和串、并联使 用这三个问题。
23 23-133
3. 肖特基二极管
2.2.4
电力二极管的主要类型
以金属和半导体接触形成的势垒为基础的二极管称为肖特 基势垒二极管(Schottky Barrier Diode ——SBD)。 肖特基二极管的弱点
反向耐压提高时正向压降会提高,多用于200V以下。 反向稳态损耗不能忽略,必须严格地限制其工作温度。
——— 电子器件:晶体管和集成电路
电力电子电路的基础
——— 电力电子器件
本章主要内容:
概述电力电子器件的概念、特点和分类等问题。
介绍常用电力电子器件的工作原理、基本特性、主 要参数以及选择和使用中应注意问题。
2 2-133
2.1
电力电子器件概述
2.1.1 电力电子器件的概念和特征
2.1.2 应用电力电子器件的系统组成
基本结构和工作 原理与信息电子 电路中的二极管 一样。 由一个面积较大 的 PN 结和两端引 线以及封装组成 的。 从外形上看,主 要有螺栓型和平 板型两种封装。
A a) A K A I K A c) P J b) K N K
图2-2 电力二极管的外形、结构和电气 图形符号 a) 外形 b) 结构 c) 电气图形符号
u i UFP
图2-5(b)关断过程
iF
正向压降先出现一个过冲 UFP ,经 过一段时间才趋于接近稳态压降的 2V 某个值(如 2V)。 正向恢复时间tfr。 电流上升率越大,UFP越高 。
0
uF tfr t
18 18-133
图2-5(b)开通过程
2.2.3
电力二极管的主要参数
1) 正向平均电流IF(AV) 额定电流——在指定的管壳温度和散热条件 下,其允许流过的最大工频正弦半波电流的 平均值。 IF(AV) 是按照正向电流造成的器件本身的通态 损耗的发热效应来定义的。因此在使用时同 样应按照实际波形的电流与通态平均电流所 造成的发热效应相等,即有效值相等的原则 来选取晶闸管的此项电流定额,并应留一定 的裕量
26 26-133
2.3.1
晶闸管的结构与工作原理
A K P1 G A A G a) N1 P2 N2 K b) c) K
G
K
J1 J2 J3
G
A
图2-6 晶闸管的外形、结构和电气图形符号
a) 外形 b) 结构 c) 电气图形符号
外形有螺栓型和平板型两种封装。 有三个联接端。 螺栓型封装,通常螺栓是其阳极,能与散热器紧 密联接且安装方便。 平板型晶闸管可由两个散热器将其夹在中间。
能处理电功率的能力,一般远大于处理信息的电子 器件。 电力电子器件一般都工作在开关状态。 电力电子器件往往需要由信息电子电路来控制。 电力电子器件自身的功率损耗远大于信息电子器件, 一般都要安装散热器。
5 5-133
2.1.1 电力电子器件的概念和特征
电力电子 器件的损耗 通态损耗 主要损耗 断态损耗 开关损耗
19 19-133
2.2.3
电力二极管的主要参数
2)正向压降UF
在指定温度下,流过某一指定的稳态正向电流时对 应的正向压降。
3) 反向重复峰值电压URRM
对电力二极管所能重复施加的反向最高峰值电压。 使用时,应当留有两倍的裕量。
4)反向恢复时间trr
trr= td+ tf
20 20-133
2.2.3
13 13-133
2.2.1 PN结与电力二极管的工作原理
PN结的状态
状态 参数 电流 电压 阻态 正向导通 正向大 维持1V 低阻态 反向截止 几乎为零 反向大 高阻态 反向击穿 反向大 反向大 ——
二极管的基本原理就在于PN结的单向导电性这一主要 特征。
PN结的反向击穿(两种形式)
齐纳击穿:可恢复
22 22-133
2) 快恢复二极管 (Fast Recovery Diode——FRD)
简称快速二极管 快恢复外延二极管
2.2.4
电力二极管的主要类型
(Fast Recovery Epitaxial Diodes——FRED),其 trr更短(可低于50ns), UF也很低(0.9V左右), 但其反向耐压多在1200V以下。 从性能上可分为快速恢复和超快速恢复两个等级。 前者trr为数百纳秒或更长,后者则在100ns以下, 甚至达到20~30ns。
1 ( 1 2 )
学习要点:
最重要的是掌握其基本特性。 掌握电力电子器件的参数和特性曲线。 主电路的其它电路元件有特殊的要求。
10 10-133
2.2
不可控器件—电力二极管
2.2.1 PN结与电力二极管的工作原理 2.2.2 电力二极管的基本特性 2.2.3 电力二极管的主要参数
2.2.4 电力二极管的主要类型
11 11-133
开通损耗 关断损耗
• 通态损耗是器件功率损耗的主要成因。 • 器件开关频率较高时,开关损耗可能成为器件功率损 耗的主要因素。
6 6-133
2.1.2 应用电力电子器件系统组成
电力电子系统:由控制电路、驱动电路、保护电路 和以电力电子器件为核心的主电路组成。 在主电路
控 检测 电路
和控制电 路中附加 一些电路, 以保证电 力电子器 件和整个 系统正常 可靠运行
——电气设备或电力系统中,直接承担电能的变换或控 制任务的电路。 电子闸流管实际上是一只 电真空器件 半导体器件 (汞弧整流器、闸流管) (采用的主要材料硅)
电子管,它在阴极外套一 个栅极,控制栅极电压可 以控制阴极和阳极的导通 与关断
2)分类:
4 4-133
2.1.1 电力电子器件的概念和特征
3)同处理信息的电子器件相比的一般特征:
雪崩击穿:不可恢复
均可能导致热击穿
14 14-133
2.2.1 PN结与电力二极管的工作原理
PN结的电容效应:
PN 结的电荷量随外加电压而变化,呈现电容效应,称为 结电容CJ,又称为微分电容。 结电容按其产生机制和作用的差别分为势垒电容 CB 和扩 散电容CD。 ☞势垒电容只在外加电压变化时才起作用,外加电压频率 越高,势垒电容作用越明显。在反向偏置或正向电压较低时, 势垒电容为主。 ☞扩散电容仅在正向偏置时起作用。正向电压较高时,扩 散电容为结电容主要成分。
2.3.4 晶闸管的派生器件
25 25-133
2.3
半控器件—晶闸管· 引言
晶闸管(Thyristor):晶体闸流管,可控硅整流 器(Silicon Controlled Rectifier——SCR)
1956年美国贝尔实验室发明了晶闸管。 1957年美国通用电气公司开发出第一只晶闸管产品。 1958年商业化。 开辟了电力电子技术迅速发展和广泛应用的崭新时代。 20世纪80年代以来,开始被全控型器件取代。 能承受的电压和电流容量最高,工作可靠,在大容量 的场合具有重要地位。