03月月考c
2023—2024学年山西省运城市景胜中学高一下学期3月月考数学试卷
2023—2024学年山西省运城市景胜中学高一下学期3月月考数学试卷一、单选题(★★) 1. 已知向量且与的夹角为,则A.B.C.D.(★★) 2. 已知向量,则()A.B.C.D.(★★★) 3. 如图,已知两个单位向量和向量与的夹角为,且与的夹角为,若,则()A.B.C.1D.(★★) 4. 如图,已知,,,用、表示为()A.B.C.D.(★★★) 5. 如图,△ABC中,,,P为CD上一点,且满足,若AC=3,AB=4,则的值为()A.B.C.D.(★★★) 6. 在中,E为上一点,,P为上任一点,若,则的最小值是()A.B.C.6D.12(★★★) 7. 中,三边之比,则等于()A.B.C.2D.(★★) 8. 国庆阅兵式上举行升国旗仪式,在坡度为的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,某同学在该列的第一排和最后一排测得旗杆顶端的仰角分别为和,第一排和最后一排的距离为24.5米,则旗杆的高度约为,,A.17米B.22米C.30米D.35米二、多选题(★★★) 9. 已知向量,且则下列选项正确的是()A.B.C.向量与向量的夹角是45°D.向量在向量上的投影向量坐标是(★★★) 10. 设点是所在平面内任意一点,的内角的对边分别为,则下列结论正确的是()A.若点是的重心,则B.若点是的垂心,则C.若,则点是的外心D.若,则点是的内心(★★★) 11. 已知的角、、所对的边分别为、、,且,则下列说法正确的是()A.B.C.为等腰非等边三角形D.为等边三角形三、填空题(★★) 12. 已知,不共线,,,要使,是一组基底,则实数的取值范围是 ______ .(★★) 13. 已知,则在方向上的投影为___________ .(★★)14. 已知为的边上的高,,,,则 ______ .四、解答题(★★) 15. .已知平行四边形ABCD中,,, M为AB中点,N为BD靠近B的三等分点.(1)用基底,表示向量,;(2)求证:M、N、C三点共线.(★★)16. 已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.(★★★) 17. 如图所示,点是所在平面上一点,并且满足,已知,,.(1)若是的外心,求、的值;(2)如果是的平分线上某点,则当达到最小值时,求的值. (★★★) 18. 已知的内角A,B,C所对的边分别为a,b,c,且.(1)若,求B;(2)若D为AC中点,且,求.(★) 19. 在锐角△ABC中,A,B,C的对边分别为a,b,c,且.(1)求角C的大小;(2)若,且,求△ABC的周长.。
2023-2024学年九年级下学期3月月考语文试题(含答案)
3月份月考九年级语文试题一.积累与运用(共15分)1.(8分)阅读下面文字,按要求作答。
①远处流淌着一条美丽的小河,它像一条蓝色的绸带,环绕着那朴素jì_____静的小山村。
②春天,小河刚刚解冻,“_____”,鸭子们争先恐后地跳到河里。
③夏天,小河很早就穿上了荷叶与荷花编织成的衣裳。
④河里美丽的荷花有的含苞欲放【甲】□有的已经张开所有的花瓣怒放着【乙】□还有一些花儿早已diāo_____谢【丙】□却留下了青绿青绿的莲蓬。
⑤秋天,小河两岸开满了金色的菊花,铺天盖地,香飘千里。
⑥田野中的收割机忙碌起来了,将那早已笑弯腰的稻子收入怀中。
⑦冬天,小河没了春天的生机,也没了夏天的美丽,它安静地睡下了。
⑧站在岸边,可以看到河底的卵石、水中的鱼儿,还有人们淘米时留下的米粒。
(1)根据词语解释或拼音,将横线处应填写的汉字用正楷字书写在横线上。
①静②谢(2)根据语境,填入文段第②句横线处的诗句恰当的一项是A.春江水暖鸭先知B.几处早莺争暖树C.沾衣欲湿杏花雨D.草色遥看近却无(3)在【甲】【乙】【丙】三处填入标点符号,最恰当的一项是A.【甲】分号【乙】分号【丙】分号B.【甲】分号【乙】分号【丙】逗号C.【甲】逗号【乙】逗号【丙】逗号D.【甲】逗号【乙】逗号【丙】分号(4)对文段中所使用的修辞方法及其作用理解正确的一项是A.第①句中把“小河”比喻成“绸带”,写出小河的湍急,表达“我”对小山村的怀念之情。
B.第③句用“穿”一词赋予“荷叶与荷花”以人的行为,生动描写了夏天小河的美丽。
C.第⑤句运用夸张的修辞方法,形象地写出秋天小河因为开满菊花而芳香四溢。
D.第⑦句运用排比的修辞手法,突出冬天小河的安静。
2.(7分)古诗文默写填空。
(1)怀旧空吟闻笛赋,。
(2),,此事古难全。
(3)李商隐《无题》中赞美献身事业,奉献不止的精神的诗句是:“,”(4)《白雪歌送武判官归京》中,用比喻的修辞手法描写冬季雪景的句子是,。
福建省福州市外国语学校2023-2024学年九年级下学期3月月考英语试题(含答案,无听力音频及原文)
福州外国语学校2023-2024学年第二学期九年级3月适应性练习英语试卷(时间:120分钟总分:150分)Ⅰ.听力(共三节,20小题;每小题1.5分,满分30分)第一节听下面五个句子,从每小题所给的A、B、C三幅图中选出与句子内容相关的选项。
(每个句子读两遍)()1.A.B.C.()2.A.B.C.()3.A.B.C.()4.A.B.C.()5.A.B.C.第二节听下面七段对话,从每小题所给的A、B、C三个选项中选出正确答案。
(每段对话读两遍)听第1段对话,回答第6小题。
()6.What did Nancy’s father use to be?A.A driver.B.A cook.C.A worker.听第2段对话,回答第7小题。
()7.When will the meeting begin?A.At 8:30.B.At 8:45.C.At9:00.听第3段对话,回答第8小题。
()8.What is the relationship between the speakers?A.Teacher and student.B.Father and daughter.C.Brother and sister.听第4段对话,回答第9小题。
()9.What does the woman think of the tea?A.Expensive.B.Bad.C.Cheap.听第5段对话,回答第10、11小题。
()10.What color does the woman’s son like best?A.Black.B.White.C.Blue.()11.Where are the two speakers?A.In a shop.B.In a restaurant.C.In a hospital.听第6段对话,回答第12、13小题。
()12.What does the boy’s father look like?A.He has short curly hair.B.He has short straight hair.C.He has long straight hair.()13.How old is the boy’s sister?A.She is five years old.B.She is six years old.C.She is seven years old.听第7段对话,回答第14、15小题。
贵州省榕江县朗洞镇初级中学2023-2024学年八年级下学期3月月考语文试题(含答案)
榕江县朗洞中学2023-2024学年度第二学期3月质量监测八年级语文试卷(满分:150分答题时间:150分钟)一、书写水平(5分)1.请使用楷体字答题,书写规范、端正、整洁。
此项根据作文的书写水平计分。
(5分)二、基础积累(共4道小题,20分)在人生的旅途中,我们常常会遇到各种jié①难。
这让我们感到疲惫不堪,甚至想放弃。
但是,正如谚语..所说:“自然总是在不断地yùn yù②着新的生命。
”就像春天里的草木一样,即使经历了严寒酷暑,也依然能够茁壮成长。
因此,我们也应该像草木一样,坚持不懈....地前行。
人生道路上,各种各样的困难必然会袭来,那些放弃或“躺平”的人首屈一指....,但不管是面对突如其...来.的困难,还是面对未来的挑战,我们都要迎难而上。
只有深刻认识并掌握这个道理,才能提高人生的抗挫能力。
人生就像一场旅行,我们在不断地前进,不断地追求自己的梦想。
但是,时间却在不断地流sh ì③。
因此,我们应该珍惜时间,好好地利用每一分每一秒。
2.根据上面文段的语境和拼音,用楷体字写出横线处的汉字。
(4分)3.上面文段中加点词语使用不恰当的一项是(3分)A.谚语B.坚持不懈C.首屈一指D.突如其来4.根据所给信息默写相应内容。
(10分)①革命的道路千万里, ……(贺敬之《回延安》)② ,同是宦游人。
(王勃《送杜少府之任蜀州》)③杜甫川唱来柳林铺笑, 。
(贺敬之《回延安》)④ ,白露为霜。
(《蒹葭》)⑤ ,胡为乎泥中?(《式微》)⑥关关雎鸠, 。
(《关雎》)⑦《子衿》中表现女子在城楼上因久候恋人不至而来来回回地走个不停的诗句是: , 。
⑧《望洞庭湖赠张丞相》中表现水天一色、浑然一体的景色的诗句是: , 。
5.下列文学文化常识表述有误的一项是(3分)A.竺可桢,气象学家、地理学家,我们学过他的作品《大自然的语言》。
B.阿西莫夫,美国科普作家、科幻小说家,代表作有《基地》《新疆域》等。
2023-2024学年重庆市高二下学期3月月考数学质量检测试题(含答案)
2023-2024学年重庆市高二下册3月月考数学质量检测试题一、单选题1.已知集合(){}{}21,60A x y ln x B x x x ==+=--≤,则A B = ()A .(]2,3-B .(]1,3-C .(]3,2-D .()1,3-【正确答案】B【分析】首先求出集合A 、B ,再利用集合的交运算即可求解.【详解】(){}{}{}1101A x y ln x x x x x ==+=+>=>-,{}()(){}{}26032023B x x x x x x x x =--≤=-+≤=-≤≤,所以A B ⋂{}(]131,3x x =-<≤=-,故选:B2.为对某组数据进行分析,建立了四种不同的模型进行拟合,现用回归分析原理,计算出四种模型的相关指数R 2分别为0.97,0.86,0.65,0.55,则拟合效果最好的回归模型对应的相关指数R 2的值是()A .0.97B .0.86C .0.65D .0.55【正确答案】A【分析】在回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好,即可求解.【详解】由题意,四种模型的相关指数R 2分别为0.97,0.86,0.65,0.55,根据在回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好,可得拟合效果最好的回归模型对应的相关指数R 2的值是0.97.故选:A .本题考查了用相关指数拟合模型效果的应用问题,其中解答中熟记回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好是解答的关键,属于基础题.3.已知26=22464+--,53=25434+--,71=27414+--,102=210424-+---,依照以上各式的规律,得到一般性的等式为()A .8=24(8)4n n n n -+---B .1(1)5=2(1)4(1)4n n n n +++++-+-C .4=24(1)4n n n n ++-+-D .15=2(1)4(5)4n n n n ++++-+-【正确答案】A【分析】由已知结合归纳推理即可求解【详解】解:从各个等式可以看出,等式右端均为2,左端为两个分式的和,且两个式子的分子之和恒等于8,分母则为相应分子减去4,设其中一个分子为n ,另一个分子必为8-n ,故8=24(8)4n n n n -+---满足;故选:A4.已知命题p :220x x +->,命题q :()(){|lg 23}x f x x =-,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B分别化简命题p 和命题q ,利用必要不充分条件的定义进行判断即可.【详解】命题p :220x x +->等价于1x >或<2x -;命题q :()(){}3{|lg 23}|230|2x f x x x x x x ⎧⎫=-=->=>⎨⎬⎩⎭则p 是q 的必要不充分条件故选:B5.函数22o )l g (1f x x x =-+的零点所在区间是()A .1184⎛⎫⎪⎝⎭,B .1142⎛⎫ ⎪⎝⎭,C .112⎛⎫⎪⎝⎭D .()12,【正确答案】C【分析】利用零点存在性定理即可求解.【详解】2111151log 08484f ⎛⎫=-+=-< ⎪⎝⎭211151log 04242f ⎛⎫=-+=-< ⎪⎝⎭21111log 1022f ⎛⎫=-+=-< ⎪⎝⎭()12110f =-=>()1102f f ⎛⎫⋅< ⎪⎝⎭,221log ()f x x x ∴=-+的零点所在区间是112⎛⎫ ⎪⎝⎭,故选:C6.某产品的广告费支出x 与销售额y (单位:万元)之间的关系如下表,由此得到y 与x 的线性回归方程为6y x a =+$$,由此可得:当广告支出5万元时,随机误差的效应(残差)为x24568y3040605070A .-10B .0C .10D .20【正确答案】C【分析】由已知求得,x y 的值,得到ˆa,求得线性回归方程,令5x =求得y 的值,由此可求解结论.【详解】由题意,根据表格中的数据,可得2456830406050705,5055x y ++++++++====,所以ˆ6506520ay x =-⨯=-⨯=,所以ˆ620y x =+,取5x =,得ˆ652050y=⨯+=,所以随机误差的效应(残差)为605010-=,故选C.本题主要考查了回归直线方程的求解,以及残差的求法,着重考查了推理与运算能力,属于基础题.7.设曲线f (x )=ax 2在点(2,4a )处的切线与直线4x -y +4=0垂直,则a =()A .2B .-116C .12D .-1【正确答案】B【分析】由已知结合导数的几何意义即可求解.【详解】f (x )=ax 2,则()2f x ax'=因为在点(2,4a )处的切线与直线4x -y +4=0垂直,所以()1244f a =-'=所以116a =-故选:B8.函数3222xxx y -=+在[]6,6-的图像大致为A .B .C .D .【正确答案】B【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果.【详解】设32()22x x x y f x -==+,则332()2()()2222x xx x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B .本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.9.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A .a b c <<B .b a c<<C .b<c<aD .c<a<b【正确答案】D【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系.【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.10.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【正确答案】D【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.11.已知函数()()221x g x x e ax a =--+在()0,∞+上单调递增,则实数a 的取值范围是()A .(,-∞B .(C .(,-∞D .(0,【正确答案】A先求导数,利用单调性转化为()()2120xg x x e ax '=+-≥,构造新函数()()21x xf x x e +=求解()f x 的最小值即可.【详解】()()212x g x x e ax '=+-,由题意可知()()2120xg x x e ax '=+-≥在()0,∞+恒成立,即()212x x e a x+≥恒成立,设()()21x xf x x e +=,()()()()22221211x x x x e x x e x x f x +--+='=10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数;1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x ¢>,()f x 为增函数;()f x 的最小值为12f ⎛⎫= ⎪⎝⎭a ≤故选:A.利用函数单调性求解参数时,通常转化为恒成立问题求解:(1)()f x 在区间D 上单调递增等价于()0f x '≥在区间D 上恒成立;(2)()f x 在区间D 上单调递减等价于()0f x '≤在区间D 上恒成立.12.若正实数a ,b 满足22ln ln 222+≥+-b a b a ,则()A .124+=+a bB .122-=-a b C .2a b >D .240b a -<【正确答案】B【分析】利用基本不等式可得)222212b a +-≥(当且仅当222b a =时取等号),利用熟知的结论1ln x x -≥(当且仅当1x =时取等号)进行放缩可得到2222ln ln 2b a a b +-≥+,结合已知条件,得到22ln ln 222b a b a +=+-,考虑到各不等式取等号的条件,解得,a b 的值,然后逐一检验即可做出正确判断.【详解】先证明熟知的结论:1ln x x -≥恒成立,且当且仅当1x =时取等号.设()1ln f x x x =--,则()11f x x'=-,在(0,1)上,()0f x '<,()f x 单调递减;在(1,+∞)上,()0f x '>,()f x 单调递增.故()()11100min f x f ==--=,∴()1ln f x x x =-≥恒成立,且当且仅当1x =时取等号.由)22222212lnln ln 2b a a b +-≥=≥+,由已知22ln ln 222b a b a +≤+-,∴22ln ln 222b a b a +=+-,且2221b a ⎧=⎪=,解得12a b ⎧=⎪⎨⎪=⎩,经检验只有B 正确,故选:B.本题关键点在于利用基本不等式和熟知的结论1ln x x -≥恒成立,且当且仅当1x =时取等号进行研究,得到2222ln ln 2b a a b +-≥+,结合已知得到等式,一定要注意基本不等式和1ln x x -≥取等号的条件,才能列出方程组求得,a b 的值.二、填空题13.函数()f x =__________.【正确答案】(0,1)(1,]e ⋃【分析】利用对数、分式、根式的性质列不等式,求x 的范围,即得定义域.【详解】由函数解析式,知:01ln 0220x x x ⎧>⎪-≥⎨⎪-≠⎩,解得0x e <≤且1x ≠.故答案为.(0,1)(1,]e ⋃14.i 是复数单位,若()1243i z i +=+,z 的虚部为__________.【正确答案】1【分析】由复数除法求得z 后可得z ,从而得其虚部.【详解】由已知243(43)(12)4836212(12)(12)5i i i i i i z i i i i ++--+-====-++-,2z i =+,虚部为1.故1.15.已知函数()f x 定义域为R ,满足 ()(2)f x f x =-,且对任意121x x ≤<,均有()()12120x x f x f x ->-,则不等式(21)(3)0f x f x ---≥解集为______.【正确答案】4(,0],3⎡⎫-∞+∞⎪⎢⎣⎭【分析】先求出函数()f x 关于直线1x =对称,函数()f x 在[)1,+∞上单调递增.在(],1-∞上单调递减,再解不等式|211||31|x x --≥--即得解.【详解】因为函数()f x 满足()(2)f x f x =-,所以函数()f x 关于直线1x =对称,因为对任意121x x ≤<,均有()()12120x x f x f x ->-成立,所以函数()f x 在[)1,+∞上单调递增.由对称性可知()f x 在(],1-∞上单调递减.因为()()2130f x f x ---≥,即()()213f x f x -≥-,所以|211||31|x x --≥--,即|22||2|x x -≥-,解得0x ≤或43x ≥.故4(,0],3⎡⎫-∞+∞⎪⎢⎣⎭方法点睛:对于函数问题的求解,通常要先研究函数的奇偶性、对称性、周期性和单调性等,再利用这些性质求解函数的问题.16.已知函数()()()202ln f x a x x x a =+>-有两个极值点1x 、()212x x x <,则()()12f x f x +的取值范围为_________.【正确答案】(),16ln 224-∞-【分析】确定函数()y f x =的定义域,求导函数,利用极值的定义,建立方程,结合韦达定理,即可求()()12f x f x +的取值范围.【详解】函数()()22ln f x a x x x =-+的定义域为()0,∞+,()21222212x ax a f x a x x x -+⎛⎫'=-+= ⎪⎝⎭,依题意,方程22220x ax a -+=有两个不等的正根1x 、2x (其中12x x <),则241604a a a ∆=->⇒>,由韦达定理得120x x a +=>,120x x a =>,所以()()()()()22121212122ln 2f x f x a x x x x a x x +=++-+()()()2222121212122ln 222ln 222ln 2a x x x x x x a x x a a a a a a a a a ⎡⎤=++--+=+--=--⎣⎦,令()()22ln 24h a a a a a a =-->,则()2ln 2h a a a '=-,()()2122a h a a a-''=-=,当4a >时,()0h a ''<,则函数()y h a '=在()4,+∞上单调递减,则()()44ln 280h a h '<=-<,所以,函数()y h a =在()4,+∞上单调递减,所以,()()416ln 224h a h <=-.因此,()()12f x f x +的取值范围是(),16ln 224-∞-.故答案为.(),16ln 224-∞-本题考查了函数极值点问题,考查了函数的单调性、最值,将()()12f x f x +的取值范围转化为以a 为自变量的函数的值域问题是解答的关键,考查计算能力,属于中等题.三、解答题17.已知命题:,p x R ∀∈240++≤mx x m .(1)若p 为真命题,求实数m 的取值范围;(2)命题[]:2,8q x ∃∈,使得2log 1m x ≥,当p q ⌝∧⌝为假命题且q ⌝为真命题时,求实数m 的取值范围.【正确答案】(1)14m ≤-;(2)14m ≤-.(1)由题得0m <且21160∆=-≤m ,解不等式即得m 的取值范围;(2)先转化为[]2,8x ∃∈,21log m x ≥,再求21log x的最小值得m 的范围,因为p q ⌝∧⌝为假命题且q ⌝为真命题,所以p 真q 假,从而得到关于m 的不等式组,解不等式组即得解.【详解】(1)∵2,40x R mx x m ∀∈++≤,0m ∴<且21160∆=-≤m ,解得14m ≤-p ∴为真命题时,14m ≤-.(2)[2,8]∃∈x ,21log m x ≥,又[2,8]x ∈时,211[,1]log 3x ∈,13m ∴≥∵p q ⌝∧⌝为假命题且q ⌝为真命题∴当p真q假,有1413mm⎧≤-⎪⎪⎨⎪<⎪⎩解得14m≤-【点晴】方法点晴:复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.18.2020年12月29日至30日,全国扶贫开发工作会议在北京召开,会议指出经过各方面的共同努力,中国现行标准下农村贫困人口全部脱贫,贫困县全部摘帽,贫困村全部退出,脱贫攻坚目标任务如期全面完成.2021年是“十四五”规划开局之年,是巩固拓展脱贫攻坚成果、实现同乡村振兴有效衔接的起步之年.要按照中共中央国务院新决策新部署,把巩固拓展脱贫攻坚成果摆在头等重要位置来抓,推动脱贫攻坚政策举措和工作体系逐步向乡村振兴平稳过渡,用乡村振兴巩固拓展脱贫攻坚成果,坚决守住脱贫攻坚胜利果实,确保不出现规模性返贫,确保实现同乡村振兴有效衔接,确保乡村振兴有序推进.北方某刚脱贫的贫困地区积极响应,根据本地区土地贫瘠,沙地较多的特点,准备大面积种植一种叫做欧李的奇特的沙漠果树,进行了广泛的宣传.经过一段时间的宣传以后,为了解本地区广大农民对引进这种沙漠水果的理解程度、种植态度及思想观念的转变情况,某机构进行了调查研究,该机构随机在该地区相关人群中抽取了600人做调查,其中45岁及以下的350人中有200人认为这种水果适合本地区,赞成种植,45岁以上的人中赞成种植的占2 5.(1)完成如下的2×2列联表,并回答能否有99.5%的把握认为“赞成种植与年龄有关”?赞成种植不赞成种植合计45岁及以下45岁以上合计(2)为了解45岁以上的人的想法态度,需要在已抽取45岁以上的人中按种植态度(是否赞成种植)采用分层抽样的方法选取5位45岁以上的人做调查,再从选取的5人中随机抽取2人做深度调查,求2人中恰有1人“不赞成种植”的概率.附表:()20P K k ≥0.150.100.050.0250.0100.0050.0010k 2.072 2.706 3.841 5.0246.6357.87910.828参考公式为:()()()()()22n ad bc K a b c d a c b d -=++++【正确答案】(1)填表见解析;有99.5%的把握认为“是否赞成种植与年龄有关”;(2)35.【分析】(1)根据题中数据,直接完善列联表,再由公式计算2K ,结合临界值表,即可得出结论;(2)先由题中条件,确定被抽取的5人中,“赞成种植的”有2人,记为a ,b ,“不赞成种植的”有3人,记为C ,D ,E ;用列举法写出总的基本事件,以及满足“恰有1人不赞成种植”的基本事件,基本事件的个数比即为所求概率.【详解】(1)由题意可得2×2列联表:赞成种植不赞成种植合计45岁及以下20015035045岁以上100150250合计30030060022600(200150150100)300300350250K ⨯⨯-⨯=⨯⨯⨯12017.1437.8797=≈>经查表,得()27.8790.005P K >≈,所以有99.5%的把握认为“是否赞成种植与年龄有关”.(2)在45岁以上的人中,赞成种植和不赞成种植的人数比为2:3,所以被抽取到的5人中,“赞成种植的”有2人,记为a ,b ,“不赞成种植的”有3人,记为C ,D ,E ,从被选取到的5人中再从中抽取2人,共有如下抽取方法:(,)a b ,(,)a C ,(,)a D ,(,)a E ,(,)b C ,(,)b D ,(,)b E ,(,)C D ,(,)C E ,(,)D E ,共有10种不同的结果,两人中恰好有1人为“不赞成种植的”包含了(,)a C ,(,)a D ,(,)a E ,(,)b C ,(,)b D ,(,)b E ,共有6种结果.所以所求概率63105P ==.方法点睛:求古典概型的概率的常用方法:(1)古典概型所包含的基本事件个数较少时,可用列举法列举出总的基本事件个数,以及满足条件的基本事件个数,基本事件个数比即为所求概率;(2)古典概型所包含的基本事件个数较多时,可根据排列组合数的计算,求出总的基本事件个数,以及满足条件的基本事件个数,进而求出所求概率.19.已知三次函数32()41f x x ax x =+++(a 为常数).(1)当1a =时,求函数()f x 在2x =处的切线方程;(2)若a<0,讨论函数()f x 在()0,x ∈+∞的单调性.【正确答案】(1)20190x y --=;(2)答案见解析.【分析】(1)对函数求导,由导数的几何意义可得直线的斜率,再由直线的点斜式方程即可得解;(2)对函数求导,结合二次函数的性质,按照0a -≤<、a <-()0f x '>、()0f x '<的解集即可得解.【详解】(1)当1a =时,函数32()41f x x x x =+++,2()324f x x x '=++Q ,(2)20f '∴=即切线的斜率20k =,(2)21f =Q ,∴切线方程为2120(2)y x -=-即20190x y --=;(2)导函数2()324f x x ax '=++的对称轴为03a x =->,①当24480a ∆=-≤即0a -≤<时,()0f x '≥,()f x 在(0,)+∞上单调递增;②当24480a ∆=->即a <-(0)40f '=>,令2()3240f x x ax '=++=,则13a x -=,23a x -=,因为120x x <<,所以当0x <<或x >时,()0f x '>;x <<时,()0f x '<;所以()f x在0,3a ⎛⎫- ⎪ ⎪⎝⎭,,3a ⎛⎫-+∞ ⎪ ⎪⎝⎭上单调递增;()f x 在33a a a a ⎛---+ ⎪ ⎪⎝⎭上单调递减.本题考查了导数几何意义的应用及利用导数研究函数的单调性,考查了运算求解能力与逻辑推理能力,属于中档题.20.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年生产的手机当年能全部销售完.(1)求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(2)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【正确答案】(1)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩;(2)2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.【分析】(1)根据给定的函数模型,直接计算作答.(2)利用(1)中函数,借助二次函数最值及均值不等式求出最大值,再比较大小作答.【详解】(1)依题意,销售收入700x 万元,固定成本250万元,另投入成本210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩万元,因此210600250,040()700()25010000()9200,40x x x W x x R x x x x ⎧-+-<<⎪=--=⎨-++≥⎪⎩,所以2020年的利润()W x (万元)关于年产量x (千部)的函数关系式是210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩.(2)由(1)知,当040x <<时,2()10(30)87508750W x x =--+≤,当且仅当30x =时取等号,当40x ≥时,10000()()920092009000W x x x =-++≤-+=,当且仅当10000x x =,即100x =时取等号,而87509000<,因此当100x =时,max ()9000W x =,所以2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.21.已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【正确答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27e ,4∞⎡⎫-+⎪⎢⎣⎭【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.(2)方法一:首先讨论x =0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a 的取值范围.【详解】(1)当1a =时,()2e x f x x x =+-,()e 21x f x x ='+-,由于()''e 20x f x =+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减,当()0,x ∈+∞时,()()0,f x f x '>单调递增.(2)[方法一]【最优解】:分离参数由()3112f x x ≥+得,231e 12x ax x x +-+,其中0x ≥,①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,321e 12x x x a x----,记()321e 12x x x g x x ---=-,()()2312e 12x x x x g x x⎛⎫---- ⎪⎝⎭'=-,令()()21e 102x h x x x x =---≥,则()e 1x h x x ='--,()''e 10x h x =-≥,故()'h x 单调递增,()()00h x h ''≥=,故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21e 102x x x ---恒成立,故当()0,2x ∈时,()0g x '>,()g x 单调递增;当()2,x ∈+∞时,()0g x '<,()g x 单调递减;因此,()()2max 7e 24g x g -⎡⎤==⎣⎦,综上可得,实数a 的取值范围是27e ,4∞⎡⎫-+⎪⎢⎣⎭.[方法二]:特值探路当0x ≥时,31()12f x x ≥+恒成立27e (2)54-⇒⇒f a .只需证当274e a -≥时,31()12f x x ≥+恒成立.当274e a -≥时,227e ()e e 4-=+-≥+x x f x ax x 2⋅-x x .只需证明2237e 1e 1(0)42-+-≥+≥xx x x x ⑤式成立.⑤式()223e 74244e -+++⇔xx x x ,令()223e 7424()(0)e -+++=≥x x x x h x x ,则()()222313e 2e 92()e -+--=='x x x x h x ()()222213e 2e 9e ⎡⎤-----⎣⎦=x x x x ()2(2)2e 9e ⎡⎤--+-⎣⎦x x x x ,所以当29e 0,2⎡⎤-∈⎢⎣⎦x 时,()0,()h x h x <'单调递减;当29e ,2,()0,()2⎛⎫-∈> ⎪⎝⎭'x h x h x 单调递增;当(2,),()0,()∈+∞<'x h x h x 单调递减.从而max [()]max{(0),(2)}4==h x h h ,即()4h x ≤,⑤式成立.所以当274e a -≥时,31()12f x x ≥+恒成立.综上274e a -≥.[方法三]:指数集中当0x ≥时,31()12f x x ≥+恒成立323211e 1(1)e 122x x x ax x x ax x -⇒+-+⇒-++≤,记()32(1(1)e 0)2x g x x ax x x -=-++≥,()2231(1)e 22123xg x x ax x x ax -'=--+++--()()()2112342e 212e 22x x x x a x a x x a x --⎡⎤=--+++=----⎣⎦,①.当210a +≤即12a ≤-时,()02g x x '=⇒=,则当(0,2)x ∈时,()0g x '>,()g x 单调递增,又()01g =,所以当(0,2)x ∈时,()1g x >,不合题意;②.若0212a <+<即1122a -<<时,则当(0,21)(2,)x a ∈+⋃+∞时,()0g x '<,()g x 单调递减,当(21,2)x a ∈+时,()0g x '>,()g x 单调递增,又()01g =,所以若满足()1g x ≤,只需()21g ≤,即()22(7e 14)g a --≤=27e 4a -⇒,所以当27e 142a -⇒≤<时,()1g x ≤成立;③当212a +≥即12a ≥时,()32311(1)e (1)e 22x x g x x ax x x x --=++≤-++,又由②可知27e 142a -≤<时,()1g x ≤成立,所以0a =时,31()(1)e 21x g x x x -=+≤+恒成立,所以12a ≥时,满足题意.综上,27e 4a -.【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有:方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性;方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性!22.如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧 CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【正确答案】(1)2cos ([0,])4πρθθ=∈,32sin ([])44ππρθθ=∈,32cos ([,])4πρθθπ=-∈,(2))6π,)3π,2)3π,5)6π.【分析】(1)将三个过原点的圆方程列出,注意题中要求的是弧,所以要注意的方程中θ的取值范围.(2)根据条件ρ=P 点的极坐标.【详解】(1)由题意得,这三个圆的直径都是2,并且都过原点.1:2cos ([0,4M πρθθ=∈,23:2cos()2sin ([,])244M πππρθθθ=-=∈,33:2cos()2cos ([,])4M πρθπθθπ=-=-∈.(2)解方程2cos [0,])4πθθ=∈得6πθ=,此时P 的极坐标为)6π解方程32sin [,])44ππθθ=∈得3πθ=或23πθ=,此时P 的极坐标为3π或2)3π解方程32cos [,])4πθθπ-=∈得56πθ=,此时P 的极坐标为5)6π故P 的极坐标为)6π,)3π,2)3π,5)6π.此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题.23.设函数()|21||4|f x x x =+--.(1)求不等式()2f x >的解集;(2)求函数()f x 的最小值.【正确答案】(1){7x x ∈<-R 或53x ⎫>⎬⎭;(2)92-.【分析】(1)将绝对值函数化为分段函数,用不同的区间对应的解析式大于2,分别解出不等式求其并集即可.(2)由分段函数求其值域即可得到最小值.【详解】1521()33425(4)x x f x x x x x ⎧⎛⎫--<- ⎪⎪⎝⎭⎪⎪⎛⎫=--≤≤⎨ ⎪⎝⎭⎪⎪+>⎪⎩⑴①由5212x x -->⎧⎪⎨<-⎪⎩解得7<-x ;②332142x x ->⎧⎪⎨-≤≤⎪⎩解得543x <≤;③524x x +>⎧⎨>⎩解得>4x ;综上可知不等式的解集为{|7x x ∈<-R 或53x ⎫>⎬⎭.⑵由(1)知,当12x <-时,()195522f x x =-->-=-;当142x -≤≤时,()33f x x =-,()992f x -≤≤;当>4x 时,()59f x x =+>;综上x ∈R 时,()92f x ≥-,所以min 9()2f x =-故函数()f x 的最小值为92-.。
2023-2024学年重庆高一下册3月月考数学试题(含解析)
2023-2024学年重庆高一下册3月月考数学试题一、单选题1.sin 74sin 46sin16sin 44-= ()A .12B .12-C .2D .【正确答案】A【分析】转化sin 74cos16,sin 46cos 44== ,再利用两角和的余弦公式即得解【详解】由题意,1sin 74sin 46sin16sin 44cos16cos 44sin16sin 44cos602-=-==故选:A本题考查了三角函数的诱导公式和两角和的余弦公式综合,考查了学生综合分析,数学运算能力,属于基础题2.函数()24sin 1f xx x =+的图象可能是()A .B .C .D .【正确答案】D【分析】根据奇偶性,结合特殊点,即可求解.【详解】函数()24sin 1f xx x =+的定义域为R , ()()()()224sin 4sin 11x xf x f x x x --==-=-+-+,∴函数()f x 是奇函数,排除AC ;当π2x =时,2π4102π12f ⨯⎛⎫=> ⎪⎝⎭⎛⎫+ ⎪⎝⎭,此时图像在x 轴的上方,排除B.故选:D 3.已知4sin ,,52πααπ⎛⎫=∈ ⎪⎝⎭,则tan α的值是()A .34-B .43-C .34D .43【正确答案】B【分析】由同角三角函数的平方关系和商数关系,结合,2παπ⎛⎫∈ ⎪⎝⎭,即得解【详解】由题意,4sin ,,52πααπ⎛⎫=∈ ⎪⎝⎭3cos 5α∴=-sin 4tan cos 3∴==-ααα故选:B4.已知函数()()cos 2f x x ϕ=+,则“π2ϕ=”是“()f x 是奇函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】A【分析】先由()f x 是奇函数求出ϕ的取值集合,再根据逻辑条件判断即可.【详解】()f x 是奇函数等价于cos(2)cos(2)x x ϕϕ-+=-+,即cos(2)cos(π2)x x ϕϕ-+=--,故2π22π,Z x x k k ϕϕ-+=--+∈,所以ππ,Z 2k k ϕ=+∈.则“π2ϕ=”是“()f x 是奇函数”的充分不必要条件.故选:A.5.已知角α满足π1cos 33α⎛⎫-=- ⎪⎝⎭,则πsin 26α⎛⎫- ⎪⎝⎭=()A .79-B .79C.9-D.9【正确答案】A【分析】利用凑角方法,并利用诱导公式和二倍角的余弦公式转化计算.【详解】∵π1cos 33α⎛⎫-=- ⎪⎝⎭,∴πππsin 2sin2632αα⎡⎤⎛⎫⎛⎫-=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2ππ27cos 22cos 113399αα⎛⎫⎛⎫=-=--=-=- ⎪ ⎪⎝⎭⎝⎭,故选:A.6.若1sin cos 2αα+=,则44sin cos αα+=()A .52B .18C .716D .2332【正确答案】D【分析】将已知等式平方,利用二倍角公式得出sin 2α的值,由同角三角函数的关系化简求值即可.【详解】1sin cos 2αα+=,两边平方得11sin 24α+=,即3sin 24α=-则()24422222123sin cos sin cos 2sin cos 1sin 2232ααααααα+=+-=-=故选:D7.已知函数()cos (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间π3,π44⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为()A .80,9⎛⎤ ⎥⎝⎦B .(]1,2C .(]0,1D .20,3⎛⎤⎥⎝⎦【正确答案】A【分析】先由周期大于等于单调区间的长度的2倍,求得ω的初步范围,然后结合余弦函数的单调性进一步确定ω的范围,得到答案.【详解】由题意有2ππT ω=≥,可得02ω<≤,又由πππ5π3436ω<+≤,必有3πππ43ω+≤,可得809ω<≤.故选:A8.设函数()f x 是定义在R 上的奇函数,满足(2)(2)f x f x +=--,若(1)1f >,(2023)2sin f t =,则实数t 的取值范围是()A .π2π2π,2π,33k k k ⎛⎫++∈ ⎪⎝⎭Z B .2ππ2π,2π,33k k k ⎛⎫-+-+∈ ⎪⎝⎭Z C .π5π2π,2π,66k k k ⎛⎫++∈ ⎪⎝⎭ZD .5π2π,2π,66k k k π⎛⎫-+-+∈ ⎪⎝⎭Z 【正确答案】D【分析】根据()f x 为奇函数,(2)(2)f x f x -=--推出()f x 是周期函数,周期为4,利用周期得(2023)(1)(1)2sin f f f t =-=-=,根据(1)1f >推出1sin 2t <-,再利用单位圆可求出结果.【详解】因为()f x 为奇函数,所以()()f x f x -=-,所以(2)(2)f x f x -=--,又因为(2)(2)f x f x +=--,所以(2)(2)f x f x +=-,(4)()f x f x +=,所以()f x 是周期函数,周期为4,所以(2023)(45061)(1)f f f =⨯-=-=(1)f =-,因为(1)1f >,所以(2023)1f <-,即2sin 1t <-,1sin 2t <-,根据单位圆中的三角函数线可得:5ππ2π2π66k t k -+<<-+,Z k ∈,故选:D二、多选题9.下列各式中,值为12的是()A .2sin15cos15B .2π2cos112-C D .2tan22.51tan 22.5-【正确答案】AD【分析】利用二倍角公式,逐项分析、计算判断作答.【详解】对于A ,12sin15cos15sin302==,A 正确;对于B ,2ππ12cos 1cos 1262-=>,B 错误;对于C 1cos152=> ,C 错误;对于D ,22tan22.512tan22.511tan451tan 22.521tan 22.522=⨯=⨯=--,D 正确.故选:AD10.下列不等式中成立的是()A .πsin1sin 3<B .15π4πsinsin 75>C .2πcoscos 23>D .()cos 70sin18->︒︒【正确答案】AD【分析】由三角函数的诱导公式化简,然后根据正弦、余弦函数的单调性比较各选项中角的大小关系,从而得出函数值的大小关系.【详解】对A ,因为ππ0132<<<,sin y x =在π0,2⎛⎫⎪⎝⎭单调递增,所以πsin1sin 3<,故A 正确;对于B ,15ππsinsin 77=,4πππsin sin sin 557=>,故B 错误;对C ,因为π2π2π23<<<,cos y x =在π,π2⎛⎫⎪⎝⎭单调递减,所以2πcos cos 23<,故C 错误;对于D ,()cos 70cos 70sin 20sin18-︒=︒=︒>︒,故D 正确.故选:AD.11.已知函数()πsin 26f x x ⎛⎫=- ⎪⎝⎭,则下列说法正确的是()A .直线4π3x =是函数()f x 图象的一条对称轴B .函数()f x 在区间π7π,412⎡⎤⎢⎥⎣⎦上单调递减C .将函数()f x 图像上的所有点向左平移π6个单位长度,得到函数πsin 26y x ⎛⎫=+ ⎪⎝⎭D .若()π6f x a f ⎛⎫-> ⎪⎝⎭对任意的π0,2x ⎡⎤∈⎢⎥⎣⎦恒成立,则10a <-.【正确答案】AC【分析】利用三角函数对称轴的性质即可验证选项A ,利用函数的单调性即可验证选项B ,利用图像平移的特性验证选项C ,将问题转化为求最值即可得D 选项.【详解】函数()πsin 26f x x ⎛⎫=- ⎪⎝⎭,对于A :4π8ππsin 1336f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故A 正确;对于B :由于π7π,412x ⎡⎤∈⎢⎣⎦,所以ππ2,π63x ⎡⎤-∈⎢⎥⎣⎦,故函数在该区间上有增有减,故B 错误;对于C :将函数π()sin(2)6f x x =-的图像上的所有点向左平移π6个单位,得到函数sin 2sin(2)666y x x ⎡ππ⎤π⎛⎫=+-=+ ⎪⎢⎥⎝⎭⎣⎦的图像,故C 正确;对于D :函数()π6f x a f ⎛⎫-> ⎪⎝⎭,整理得π1sin(262a x <--,即求出函数()π1sin(2)62g x x =--的最小值即可,由于π0,2x ⎡⎤∈⎢⎥⎣⎦,所以ππ5π2,666x ⎡⎤-∈-⎢⎥⎣⎦,故当0x =时取得最小值1-,故1a <-,故D 不正确.故选:AC .12.设函数()sin 2sin cos xf x x x=+,则()A .()f x 的一个周期为πB .()f x 在ππ,44⎛⎫- ⎪⎝⎭上单调递增C .()f x 在π3π,44⎛⎫- ⎪⎝⎭上有最大值4D .()f x 图象的一条对称轴为直线π4x =【正确答案】BD【分析】利用诱导公式化简可得()()πf x f x +=-,可判断选项A ;利用换元法和函数的单调性,可判断选项B 和C ;利用诱导公式化简可得()π2f x f x ⎛⎫-= ⎪⎝⎭,可判断选项D .【详解】对A :()()()()()()sin 2πsin 22πsin 2πsin πcos πsin cos sin cos x x xf x f x x x x xx x+++===-=-+++--+,故π不是()f x 的周期,A 错误;对B :令πsin cos 4t x x x ⎛⎫=+=+ ⎪⎝⎭,则2sin 22sin cos 1x x x t ==-,则211t y t t t-==-,∵ππ,44x ⎛⎫∈- ⎪⎝⎭,则()πππ0,,sin 0,1424x x ⎛⎫⎛⎫+∈+∈ ⎪ ⎪⎝⎭⎝⎭,∴π4t x ⎛⎫=+ ⎪⎝⎭在π0,2⎛⎫ ⎪⎝⎭上单调递增,且(π0,4t x ⎛⎫=+∈ ⎪⎝⎭,又∵1y t t =-在()0,∞+上单调递增,故()f x 在ππ,44⎛⎫- ⎪⎝⎭上单调递增,B 正确;对C :∵π3π,44⎛⎫- ⎪⎝⎭,则()π0,π4x +∈,∴(]πsin 0,14x ⎛⎫+∈ ⎪⎝⎭,则(π4t x ⎛⎫=+∈ ⎪⎝⎭,又∵1y t t =-在(上单调递增,且|2x y ,∴1y t t =-在(上最大值为2,即()f x 在π3π,44⎛⎫- ⎝⎭上有最大值2,C 错误;对D :()()πsin 2sin π2πsin 22ππ2cos sin sin cos sin cos 22x x x f x f x x x x xx x ⎛⎫- ⎪-⎛⎫⎝⎭-=== ⎪++⎛⎫⎛⎫⎝⎭-+- ⎪ ⎪⎝⎭⎝⎭,故()f x 图象的一条对称轴为直线π4x =,D 正确.故选:BD.结论点睛:若()()f m x f n x +=-,则()f x 关于直线2m nx +=对称,特别地()()2f x f a x =-,则()f x 关于直线x a =对称;若()()2f m x f n x b ++-=,则()f x 关于点,2m n b +⎛⎫⎪⎝⎭对称,特别地()()20f x f a x +-=,则()f x 关于点(),0a 对称.三、填空题13.对任意实数0a >且1a ≠,函数31x y a -=+的图象经过定点P ,且点P 在角θ的终边上,则πtan 4θ⎛⎫-= ⎪⎝⎭__________.【正确答案】15-##0.2-【分析】函数过定点()3,2P 得到2tan 3θ=,再利用和差公式计算得到答案.【详解】函数31x y a -=+的图象经过定点()3,2P ,点P 在角θ的终边上,故2tan 3θ=,21πtan 113tan 241tan 513θθθ--⎛⎫-===- ⎪+⎝⎭+.故15-14.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,其图象关于直线π6x =对称,则π()4f =__________.【分析】根据函数的最小正周期得到=2ω,利用对称轴得到ϕ,然后代入计算即可求解.【详解】因为函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,所以2π=2T ω=,又因为直线π6x =是函数的一条对称轴,所以ππ2+=π,Z 62k k ϕ⨯+∈,解得:ππ,Z 6k k ϕ=+∈,因为π2ϕ<,所以π6ϕ=,则函数π()2sin(2)6f x x =+,所以ππππ()2sin(22cos 4466f =⨯+==故答案为15.设()cos 24cos f x x x =+,若对任意实数x 都有()a f x ≤成立,则实数a 的取值范围是__________.【正确答案】(],3-∞-【分析】将问题转化为min ()a f x ≤,然后利用换元法将()f x 转化为二次函数,利用二次函数的性质求最小值即可.【详解】若对任意实数x 都有()a f x ≤成立,则min ()a f x ≤,又2()cos 24cos 2cos 4cos 1f x x x x x =+=+-,令[]cos ,1,1x t t =∈-,()2()241g t f x t t ∴==+-,[]1,1t ∈-,其对称轴为1t =-,故函数()g t 在[]1,1-上单调递增,()min ()12413f x g =-=--=-,3a ∴≤-.故答案为.(],3-∞-16.已知函数1,0sgn()0,01,0x x x x -<⎧⎪==⎨⎪>⎩,关于函数()sgn(π)sin f x x x =-有如下四个命题:①()f x 在ππ2⎡⎤⎢⎥⎣⎦,上单调递减;②()1lg2lg 2f f ⎛⎫=- ⎪⎝⎭;③()f x 的值域为[]11-,;④()f x 的图象关于直线πx =对称.其中所有真命题的序号是__________.【正确答案】②③④【分析】根据函数的概念求出sin ,π()sgn(π)sin 0,πsin ,πx x f x x x x x x -<⎧⎪=-==⎨⎪>⎩,画出函数的图象,结合图象逐项进行判断即可.【详解】依题意可得sin ,π()sgn(π)sin 0,πsin ,πx x f x x x x x x -<⎧⎪=-==⎨⎪>⎩,作出()f x 的部分图象,如图所示,由图可知,()f x 在ππ2⎡⎤⎢⎥⎣⎦,上单调递增,1(lg 2)(lg )2f f =-,()f x 的值域为[1,1]-,()f x 的图象关于直线πx =对称,故所有真命题的序号是②③④.故②③④.四、解答题17.已知0,2πα⎛⎫∈ ⎪⎝⎭,4cos 5α=.(1)求sin 2α的值;(2)求sin 4πα⎛⎫+ ⎪⎝⎭的值.【正确答案】(1)2425【分析】(1)由40,,cos 25παα⎛⎫∈= ⎪⎝⎭,算得sin α,接着利用二倍角公式,即可得到本题答案;(2)利用和角公式展开,再代入sin ,cos αα的值,即可得到本题答案.【详解】(1)因为0,2πα⎛⎫∈ ⎪⎝⎭,4cos 5α=,所以3sin 5α==.所以24sin 22sin cos 25ααα==;(2)sin cos 42210πααα⎛⎫+=+= ⎪⎝⎭.本题主要考查利用同角三角函数的基本关系,和差公式以及二倍角公式求值,属基础题.18.已知()()()πsin 2πcos 2πcos tan π2f ααααα⎛⎫-+ ⎪⎝⎭=⎛⎫-++ ⎪⎝⎭.(1)求4π3f ⎛⎫⎪⎝⎭;(2)已知()ππ4,225f αα-<<=,求tan α.【正确答案】(1)4π1()32f =-;(2)3tan 4α=±【分析】(1)根据三角函数诱导公式化简,再代入求值;(2)由()45f α=得到4cos 5α=,再根据角的范围分情况求得结果.【详解】(1)解:()()()sin sin sin tan f ααααα-⋅-=⋅=cos α∴4π1()32f =-(2)因为()45f α=,所以4cos 5α=当π02α≤<时,3sin 5α==,所以sin 3tan cos 4ααα==,当π02α-<<时,3sin 5α==-,所以sin 3tan cos 4ααα==-,所以3tan 4α=±.19.已知,αβ为锐角,4tan 3α=,cos()αβ+=.(1)求sin()αβ+的值;(2)求tan β的值.【正确答案】(1)5(2)2【分析】(1)利用同角三角函数的基本关系进行计算求解.(2)利用同角三角函数的基本关系以及两角差的正切公式进行求值.【详解】(1)因为,αβ为锐角,所以(0,π)αβ+∈,又因为cos()5αβ+=-,所以sin 5)(αβ+==.(2)由(1)有:sin()tan()2cos()αβαβαβ++==-+,又4tan 3α=,所以42tan()tan 3tan tan[()]241tan()tan 1(2)3αβαβαβααβα--+-=+-===+++-⨯.20.已知函数()π2sin23f x x x ⎛⎫=-- ⎪⎝⎭.(1)求函数()f x 在π5π,66⎡⎤-⎢⎥⎣⎦上的单调递增区间;(2)若123f β⎛⎫= ⎪⎝⎭,求πcos 23β⎛⎫- ⎪⎝⎭的值.【正确答案】(1)ππ,612⎡⎤-⎢⎥⎣⎦和7π5π,126⎡⎤⎢⎥⎣⎦(2)79-【分析】(1)利用三角恒等变换化简函数解析式为()πsin 23f x x ⎛⎫=+ ⎪⎝⎭,由π5π,66x ⎡⎤∈-⎢⎣⎦可求得π23x +的取值范围,结合正弦型函数的单调性可求得函数()f x 在π5π,66⎡⎤-⎢⎥⎣⎦上的单调递增区间;(2)由已知可得出π1sin 33β⎛⎫+= ⎪⎝⎭,利用诱导公式结合二倍角的余弦公式可求得πcos 23β⎛⎫- ⎪⎝⎭的值.【详解】(1)解:由题意得()31πcos2sin2sin2cos2sin2sin 222223f x x x x x x x ⎛⎫=+-=+=+ ⎪⎝⎭,因为π5π,66x ⎡⎤∈-⎢⎣⎦,所以[]20,2πx π3+∈,令ππ0232x ≤+≤,解得ππ612x -≤≤,令3ππ22π23x ≤+≤,解得7π5π126x ≤≤,所以函数()f x 在π5π,66⎡⎤-⎢⎥⎣⎦上的单调递增区间为ππ,612⎡⎤-⎢⎥⎣⎦和7π5π,126⎡⎤⎢⎥⎣⎦.(2)解:由(1)知π1sin 233f ββ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭.22ππππcos 22cos 12cos 13632βββ⎡⎤⎛⎫⎛⎫⎛⎫-=--=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2π272sin 11399β⎛⎫=+-==- ⎪⎝⎭.21.已知函数21()cos cos 2f x x x x =+-.(1)解不等式1()2f x ≥,其中ππ,62x ⎛⎫∈ ⎪⎝⎭.(2)在锐角ABC 中,π3A =,求()()f B f C +的取值范围.【正确答案】(1),63ππ⎛⎤ ⎥⎝⎦(2)1,12⎛⎤ ⎥⎝⎦【分析】(1)利用三角恒等变换化简函数解析式为()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,根据ππ,62x ⎛⎫∈ ⎪⎝⎭得到ππ7π2,626x ⎛⎫+∈ ⎪⎝⎭,然后解不等式sin 212π6x ⎛⎫≥ ⎪⎝⎭+,可得ππ5π2266x <+≤求解即可;(2)利用已知条件求出角B 的取值范围,利用三角恒等变换化简得出()()πsin 26f B f C B ⎛⎫+=- ⎪⎝⎭,利用正弦型函数的基本性质可求得()()f B f C +的取值范围.【详解】(1)()1cos 211π2sin 2cos 2sin 2222226x x x x x x f +⎛⎫+-=+=+ ⎝=⎪⎭ππ,62x ⎛⎫∈ ⎪⎝⎭,ππ7π2,626x ⎛⎫∴+∈ ⎪⎝⎭1()2f x ≥ ,即sin 212π6x ⎛⎫≥ ⎪⎝⎭+,ππ5π2266x ∴<+≤,解得ππ,63x ⎛⎤∈ ⎥⎝⎦故不等式1()2f x ≥的解集为ππ,63⎛⎤ ⎥⎝⎦.(2)由题意可得π02,π2B A B ⎧<<⎪⎪⎨⎪+>⎪⎩且π3A =,可得ππ62B <<,∵π,π3A A B C =++=,∴2π3C B =-,πππ4π()()sin 2sin 2sin 2sin π266636f B f C B C B B ⎛⎫⎛⎫⎛⎫⎛⎫+=+++=++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭π11sin 2cos 22cos 2cos 22cos 2622B B B B B B B ⎛⎫=+-=+-=- ⎪⎝⎭πsin 26B ⎛⎫=- ⎪⎝⎭,∵ππ62B <<,则ππ5π2666B <-<,∴1()()sin 2,162f B fC B π⎛⎫⎛⎤+=-∈ ⎪ ⎥⎝⎭⎝⎦.故()()f B f C +的取值范围为1,12⎛⎤ ⎥⎝⎦.22.设a ∈R ,函数()2πsin cos ,,π2f x x x a x ⎛⎫=-+∈ ⎪⎝⎭.(1)讨论函数()f x 的零点个数;(2)若函数()f x 有两个零点12,x x ,求证.123π2x x +<【正确答案】(1)答案见解析(2)证明见解析【分析】(1)利用分离参数法分类讨论函数()f x 的零点个数;(2)利用根与系数关系和三角函数单调性证明123π2x x +<.【详解】(1)()2cos cos 1f x x x a =--++,令()0f x =,即2cos cos 1x x a +=+,π,π2x ⎛⎫∈ ⎪⎝⎭时,()()21cos 1,0,,0,04t x t t f x ⎡⎫=∈-+∈-=⎪⎢⎣⎭即21t t a +=+,10a +≥或114a +<-即[)5,1,4a ∞∞⎛⎫∈--⋃-+ ⎪⎝⎭时,21t t a +=+无解;114a +=-即54a =-时,21t t a +=+仅有一解12t =-,此时x 仅有一解2π3;1104a -<+<即514a -<<-时,21t t a +=+有两解12t =-±1cos 2x =-()f x 有两个零点;综上,[)5,1,4a ∞∞⎛⎫∈--⋃-+ ⎪⎝⎭时,()f x 无零点,54a =-时,()f x 有一个零点,5,14a ⎛⎫∈-- ⎪⎝⎭时,()f x 有两个零点;(2)()f x 有两个零点时,令1122cos ,cos t x t x ==,则12,t t 为21t t a +=+两解,则121t t +=-,则12cos cos 1x x +=-,则221122cos 2cos cos cos 1x x x x ++=,由12π,,π2x x ⎛⎫∈ ⎪⎝⎭可得12cos 0,cos 0x x <<,则122cos cos 0x x >,则2212cos cos 1x x +<,则2221223πcos sin cos 2x x x ⎛⎫<=- ⎪⎝⎭,由2π,π2x ⎛⎫∈ ⎪⎝⎭可得223ππ3π,π,cos 0222x x ⎛⎫⎛⎫-∈-< ⎪ ⎪⎝⎭⎝⎭,则123πcos cos 2x x ⎛⎫>- ⎪⎝⎭,由cos y x =在π,π2⎛⎫ ⎪⎝⎭递减,可得123π2x x <-,则123π2x x +<.函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.。
2023-2024学年江苏省苏州市张家港梁丰中学雏鹰班七年级(下)3月月考数学试卷+答案解析
2023-2024学年江苏省苏州市张家港梁丰中学雏鹰班七年级(下)3月月考数学试卷一、选择题:本题共15小题,每小题3分,共45分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各式计算正确的是()A. B.C. D.2.中国大陆芯片领域的龙头企业“中芯国际”目前已经实现工艺芯片的量产,使中国集成电路制造技术与世界最先进工艺拉近了距离.数据用科学记数法表示为()A. B. C. D.3.若,则下列不等式一定成立的是()A. B. C. D.4.下列式子从左到右的变形是因式分解的是()A. B.C. D.5.如图,有A、B、C三种类型的卡片若干张,如果要拼成一个长为,宽为的大长方形,则需要A类、B类、C类卡片的张数分别为()A.5,3,6B.6,7,2C.6,2,7D.5,2,66.下列各对数值中,哪一组是方程的解()A. B. C. D.7.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每只各重多少斤?”设每只雀重x 斤,每只燕重y 斤,可列方程组为()A. B.C.D.8.有4张长为a 、宽为的长方形纸片,按如图的方式拼成一个边长为的正方形,图中阴影部分的面积为,空白部分的面积为若,则a 、b 满足()A.B. C. D.9.若不等式组有解,则m 的取值范围是()A.B.C.D.10.若关于x 的不等式的解集是,则关于x 的不等式的解集是()A.B.C. D.11.用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次的已知这个铁钉被敲击3次后全部进入木块木块足够厚,且第一次敲击后铁钉进入木块的长度是2cm ,若铁钉总长度为acm ,则a 满足()A.B.C.D.12.已知非负数x ,y ,z 满足,设,则W 的最大值与最小值的和为()A. B.C.D.13.对x,y定义一种新的运算G,规定,若关于正数x的不等式组恰好有4个整数解,则m的取值范围是()A. B. C. D.14.叶子是植物进行光合作用的重要部分,研究植物的生长情况会关注叶面的面积.在研究水稻等农作物的生长时,经常用一个简洁的经验公式来估算叶面的面积,其中a,b分别是稻叶的长和宽如图,k是常数,试验小组采集了某个品种的稻叶的一些样本,发现绝大部分稻叶的形状比较狭长如图,大致都在稻叶的处“收尖”.根据图2进行估算,对于此品种的稻叶,经验公式中k的值约为()A. B.C. D.15.试确定关于x,y的方程的整数解的个数为()A.0B.1C.2D.3二、填空题:本题共15小题,每小题3分,共45分。
重庆市第一中学校2022-2023学年高二下学期3月月考数学试题
12023年重庆一中高2024届高二下学期3月月考数学试题卷一、单选题:本题共8小题,每小题5分,共40分.1. 若255C C n =,则n =( )A. 2B. 2或3C. 3D. 42. 已知一组样本数据1x ,2x ,3x ,4x ,5x 的平均数x 为2,则51(2)ii x =−=∑( )A. 0B. 2C. 2.5D. 13. 若()()()()112110121121111R x a a x a x a x x −=+−+−++−∈,,则01211a a a a ++++=( )A. 1B. 1131−C. 113D. 1131+4. 某校为了了解同学们参加社会实践活动的意向,决定利用分层抽样的方法从高一、高二、高三学生中选取200人进行调查,已知该校高一年级学生有1300人,高二年级学生有1200人,高三年级学生有1500人,则抽取的学生中,高三年级有( ) A. 50人B. 60人C. 65人D. 75人5. 已知正项数列{}n a 中,22111,1n n a a a +=−=,则数列11nn a a +⎧⎫⎨⎬+⎩⎭的前120项和为( )A. 4950B. 10C. 9D.149506. 某班级周三上午共有5节课,只能安排语文、数学、英语、体育和物理.数学必须安排,且连续上两节,但不能同时安排在第二三节,除数学外其他学科最多只能安排一节,体育不能安排在第一节,则不同的排课方式共有( ) A. 48种B. 60种C. 72种D. 96种7. 将甲、乙、丙、丁4名志愿者随机派往①,②,③三个社区进行核酸信息采集,每个社区至少派1名志愿者,事件A =“志愿者甲派往①社区”; 事件B= “志愿者乙派往①社区”; 事件C= “志愿者乙派往②社区”,则( ) A. 事件A 、B 同时发生的概率为19 B. 事件A 发生的条件下B 发生的概率为16C. 事件A 与B 相互独立D. 事件A 与C 为互斥事件8. 已知O 为坐标原点,P 是椭圆()2222:10x y E a b a b+=>>上位于x 轴上方的点,F 为右焦点.延长PO 、PF 交椭圆E 于Q 、R 两点,QF FR ⊥,4QF FR =,则椭圆E 的离心率为( )A.33B.22 C.53D.104的2二、多选题:本题共4小题,每小题5分,共20分.9. 某科技学校组织全体学生参加了主题为“创意之匠心,技能动天下”的文创大赛,随机抽取了400名学生进行成绩统计,发现抽取的学生的成绩都在50分至100分之间,进行适当分组后(每组的取值区间均为左闭右开),画出频率分布直方图(如图),下列说法正确的是( )A. 图中x 的值为0.020B. 在被抽取的学生中,成绩在区间[)70,80内的学生有60人C. 估计全校学生成绩的中位数约为87.7D. 估计全校学生成绩的众数为95 10. 对于函数()22ln xf x x=,下列说法正确的有( ) A. ()f x 的单调递减区间为()1,+∞ B. ()f x 在e x =1eC. ()f x 只有一个零点D. ()3πf f>11. 已知编号为1,2,3的三个盒子,其中1号盒子内装有两个1号球,一个2号球和一个3号球;2号盒子内装有两个1号球,一个3号球;3号盒子内装有三个1号球,两个2号球.若第一次先从1号盒子内随机抽取1个球,将取出的球放入与球同编号的盒子中,第二次从该盒子中任取一个球,则下列说法正确的是( ) A. 在第一次抽到2号球的条件下,第二次抽到1号球的概率为12 B. 第二次抽到3号球的概率为1148C. 如果第二次抽到的是3号球,则它来自1号盒子的概率最大D. 如果将5个不同的小球放入这三个盒子内,每个盒子至少放1个,则不同的放法有180种12. 冬春季节,人们容易感冒发热.若发生群体性发热,则会影响到人们的身体健康,干扰正常工作,有专业机构认为某地区在一段时间内没有发生大规模群体发热现象的标志为“连续10天,该地区每天新增疑似发热病例不超过7人”.下列连续10天疑似发热病例人数的统计特征数中,能判定该地没有发生群体性发热的为( ) A. 总体平均数为23 B. 总体平均数为4,总体方差为32C. 总体平均数为3,中位数为4D. 总体平均数为2,第65百分位数为5三、填空题:本题共4小题,每小题5分,共20分.13. 在nx x ⎛ ⎝的展开式中,第3项和第4项的二项式系数最大,则展开式中含2x 项的系数为_____.314. 透明袋子中装有黑球1个、白球3个,这些球除了颜色外无其他差别. 从袋子中随机摸出一个球,记下颜色后放回,将袋子中的球摇匀,再随机摸出一个球,记下颜色,求前后两次摸出的球都是白球的概率为___________. 15. 数论领域的四平方和定理最早由欧拉提出,后被拉格朗日等数学家证明.四平方和定理的内容是:任意正整数都可以表示为不超过四个自然数的平方和,例如正整数222222221231112220=+++=+++.设222236a b c d =+++,其中a b c d ,,,均为自然数,则满足条件的有序数组(),,,a b c d 的个数是___________.16. 已知数列{}n a 的前n 项和为n S ,满足3n n S k a =⋅−(k 是常数,1k >)10122a =,且23420222048a a a a ++++=,则23420221111a a a a ++++=___________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17. (本小题满分10分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题概率分别为56、45、34、13,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第三轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率;18. (本小题满分12分)在数列{}n a 中,*1111,20,N 3n n n n a a a a a n ++=+−=∈. (1)求证:1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式; (2)满足不等式()*122311N 8k k a a a a a a k ++++<∈成立的k 的最大值.的419. (本小题满分12分)随机抽取100名男学生,测得他们的身高(单位:cm ),按照区间[)160165,,[)165170,,[)170175,,[)175,180,[]180,185分组,得到样本身高的频率分布直方图如图所示:(1)求身高在170cm 及以上的学生人数; (2)估计该校100名学生身高75%分位数.(3)据统计,身高在[)170175,,[)175,180,[]180,185时,体重超过70kg 的概率分别为16、13、12.现在从身高在[170,185]的学生中任选一个学生,估计其体重超过70kg 的概率.20. (本小题满分12分) 在二项式4)2n x x的展开式中,前三项的系数依次为M ,P ,N ,且满足2P M N =+.(1)若直线l :0ax by c的系数a ,b ,c (a b c >>)为展开式中所有无理项系数,求不同直线l 的条数;(2)求展开式中系数最大的项.21. (本小题满分12分) 已知C :22221x y a b+=7,离心率为12,过椭圆左焦点F 作不与x 轴重合的直线与椭圆C 相交于M 、N 两点,直线m 的方程为:2x a =−,过点M 作ME 垂直于直线m 交直线m 于点E .(1)求椭圆C 标准方程:(2)①若线段EN 必过定点P ,求定点P 的坐标; ②点O 为坐标原点,求OEN 面积的最大值.22. (本小题满分12分) 已知函数()xf x xe =(其中e 为自然对数的底数).(1)求函数()f x 的最小值;(2)求证:()1ln 2xf x e x >+−.的5。
2024北京四中初三3月月考数学试卷和答案
2024北京四中初三3月月考数 学学生须知:1.本练习卷共8页,共28道小题,满分100分.练习时间120分钟.2.在练习卷和答题卡上准确填写班级、姓名和学号.3.答案一律填写在答题纸上,在练习卷上作答无效.4.选择题、作图题用2B 铅笔作答,其它试题用黑色字迹签字笔作答.一、选择题(共16分,每题2分)1. 下面的四个图形中,是圆柱的侧面展开图的是( )A. B. C. D.2. 北京故宫博物院成立于1925年10月10日,它是在明清皇宫及其收藏基础上建立起来的集古代建筑群、宫廷收藏、历代文化艺术为一体的大型综合性博物馆,也是中国最大的古代文化艺术博物馆.馆内约有180万余件藏品,将1800000用科学记数法表示为( )A. 51.810⨯B. 61.810⨯C. 51810⨯D. 418010⨯3. 如图,点O 在直线AB 上,OC OD ⊥.若150AOD ∠=︒,则BOC ∠的大小为( )A. 60︒B. 50︒C. 45︒D. 30︒4. 一个正多边形的内角和是1440°,那么这个正多边形的每个外角是( )A. 30°B. 36°C. 40°D. 45°5. 实数a ,b 在数轴上的对应点的位置如下图所示,下列结论中正确的是( )A. a b <B. 0a b +>C. 0ab >D. 0b a ->6. 如图,在ABC 中,点D 、E 分别在AB 、AC 边上,DE BC ∥,若8AE =,:2:3DE BC =,则AC 等于( )A. 9B. 10C. 12D. 167. 如图,O 的直径AB ⊥弦CD ,垂足为点E ,连接CO 并延长交O 于点F ,连接FD ,70F ∠=︒,则A ∠的度数为( )A. 25︒B. 30︒C. 35︒D. 40︒8. 炎炎夏日,冰激凌成为非常受欢迎的舌尖上的味道,某商店统计了一款冰激凌6月份前6天每天的供应量和销售量,结果如下表:1日2日3日4日5日6日供应量(个)901009010090100销售量(个)809085809085记()V t 为6月t 日冰激凌的供应量,()W t 为6月t 日冰激凌的销售量,其中1t =,2,…,30.用销售指数()(1)(1)(,)100%()(1)(1)W t W t W t n P t n V t V t V t n +++⋅⋅⋅++-=⨯+++⋅⋅⋅++-(1n ≥,n N ∈)来评价从6月t 日开始连续n 天的冰激凌的销售情况.当1n =时,(),1P t 表示6月t 日的日销售指数.给出下列四个结论:①在6月1日至6日的日销售指数中,()4,1P 最小,()5,1P 最大;②在6月1日至6日这6天中,日销售指数越大,说明该天冰激凌的销售量越大;③()()1,34,3P P =;④如果6月7日至12日冰激凌每天的供应量和销售量分别与6月1日至6日每天的供应量和销售量对应相等,则对任意1t =,2,3,4,5,6,7,都有()(),61,12P t P =其中所有正确结论的序号是( ).A. ①②B. ②③C. ①④D. ①③④二、填空题(共16分,每题2分)9. 在实数范围内有意义,则实数x 的取值范围是______.10. 分解因式:32312m mn -=______.11. 方程512x x-=-的解为______.12. 在平面直角坐标系中,若反比例函数(0)k y k x=≠的图象经过点()3,5A -和点()15,B m ,则m 的值为______.13. 如图,PA ,PB 是O 的切线,A ,B 是切点.若60P ∠=︒,OA =PA =______..14. 若22330a b +-=,则代数式()()2421a a b a b ---+的值为______.15. 端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.端午节那天,超市的粽子打9折出售,小阳同学买粽子花了54元钱,比平时多买了3个,则平时每个粽子卖______元.16. 有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x 代表的数字是_______,此时按游戏规则填写空格,所有可能出现的结果共有_______种.三、解答题(共68分,第17-20题每题5分,第21-22题每题6分,第23题5分,第24-27题每题6分,第28题7分)17.计算:236sin 602-+︒--18. 解不等式组:453532x x x x -≤+⎧⎪⎨->⎪⎩19. 小区里有个圆形花坛,春季改造,小区物业想扩大该花坛的面积,他们在图纸上设计了以下施工方案:①在O 中作直径AB ,分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧在直径AB 上方交于点C ,作射线OC 交O 于点D ;②连接BD ,以O 为圆心BD长为半径画圆;③大O 即为所求.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成如下证明:证明:连接CA ,CB .在ABC 中,CA CB = ,O 是AB 的中点,CO AB ∴⊥(____________)(填推理的依据).OB OD = ,90DOB ∠=︒,BD ∴=______OB ,O S ∴= 大______O S 小.20. 已知关于x 的一元二次方程()222120x m x m -++-=有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最小整数时,求方程的根.21. 如图,在AOC 中,OA OC =,OD 是AC 边上的中线.延长AO 至点B ,作COB ∠的角平分线OH ,过点C 作CF OH ⊥于点F .(1)求证:四边形CDOF 是矩形;(2)连接DF ,若4sin 5A =,9AC =,求DF 的长.22. 平面直角坐标系xOy 中,点(1,)A m 在反比例函数6y x =的图象上.一次函数y kx b =+的图象过点A 和x 轴上的一点(),0B n ,与反比例函数的另一交点为点C .(1)当0n <且3AB BC =时,求m 的值和点B 的坐标;(2)在x 轴上移动点B ,若23BC AB BC ≤≤,直接写出n 的取值范围.23. 海淀外国语有两个校区,其中初三年级京北校区有200名学生,海淀校区有300名学生,两个校区所有学生都参加了一次环保知识竞赛,为了解两个校区学生的答题情况,进行了抽样调查,从京北、海淀两个校区各随机抽取20名学生,对他们本次环保知识竞赛的成绩(百分制)进行了整理、描述和分析.下面给出了部分信息.a .京北校区成绩的频数分布直方图如下(数据分成4组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤);b .京北校区成绩在7080x ≤<这一组的是_______:74 74 75 77 77 77 77 78 79 79c .京北、海淀两校区成绩的平均数、中位数如下:平均数中位数京北校区79.5m 海淀校区7781.5根据以上信息,回答下列问题:(1)写出表中m 的值:(2)两个校区分别对本次抽取的学生的成绩进行等级赋分,超过本校区的平均分就可以赋予等级A ,判断在本次抽取的学生中哪个校区赋予等级A 的学生更多,直接写出结果并说明理由;(3)估计该校初三年级所有学生本次环保知识竞赛的平均分为____.24. 如图,AB 是O 的直径,点C 在O 上,CD 与O 相切,AD BC ∥,连结OD AC ,.(1)求证:B DCA ∠=∠;(2)若tan B =OD = 求O 的半径长.25. 如图1,长度为6千米的国道AB 两侧有M ,N 两个城镇,从城镇到公路分别有乡镇公路连接,连接点为C 和D ,其中A 、C 之间的距离为2千米,C 、D 之间的距离为1千米,N 、D 之间的乡镇公路长度为2.3千米,M 、C 之间的乡镇公路长度为3.2千米.为了发展乡镇经济,方便两个城镇的物资输送,现需要在国道AB 上修建一个物流基地T .设A 、T 之间的距离为x 千米,物流基地T 沿公路到M 、N 两个城镇的距离之和为y 千米.以下是对函数y 随自变量x 的变化规律进行的探究,请补充完整.(1)通过取点、画图、测量,得到x 与y 的几组值,如下表:x (千米)0 1.0 2.0 3.0 4.0 5.0 6.0y (千米)10.58.5a 6.5b 10.512.5表中a 的值为___,b 的值为___;(2)如图2,在平面直角坐标系xOy 中,描出补全后的表中各组对应值所对应的点,并画出该函数的图象;(3)结合函数图象,解决以下问题:①若要使物流基地T 沿公路到M 、N 两个城镇的距离之和最小,请直接写出x 的取值范围;②如图3,有四个城镇M 、N 、P 、Q 分别位于国道A C D E B ----两侧,从城镇到公路分别有乡镇公路连接,若要在国道上修建一个物流基地S ,使得S 沿公路到M 、N 、P 、Q 的距离之和最小,则物流基地T 应该修建在何处?26. 在平面直角坐标系xOy 中,已知抛物线21:1C y x =-,将1C 向右平移,得到抛物线2C ,抛物线2C 与1C 交点的横坐标为2.(1)求抛物线2C 的表达式;(2)过点(),0P p 作x 轴的垂线,交1C 于点M ,交2C 于点N ,q 为M 与N 的纵坐标中的较小值(若二者相等则任取其一),将所有这样的点(),p q 组成的图形记为图形T .①若直线y n =与图形T 恰好有2个公共点,直接写出n 的取值范围;②若()1,a y ,()22,a y +,()35,a y +三点均在图形T 上,且满足312y y y >>,直接写出a 的取值范围.27. 如图,在ABC 中,30B ∠=︒,点D 为BC 边上任意一点,将线段BA 绕点B 顺时针旋转60︒得到线段BF ,连接AF ,作FE BD ∥且FE BD =(点E 在点F 的右侧),连接AD 、ED 、EC .(1)依题意补全图形,若2AF =,请直接写出DE 的长度;(2)若对于BC 边上任意一点D ,始终有CE AD =,请写出BC 与AF 的数量关系,并证明.28. 对于平面内的点P 和图形M ,给出如下定义:以点P 为圆心,r 为半径作圆.若P 与图形M 有交点,且半径r 存在最大值与最小值,则将半径r 的最大值与最小值的差称为点P 视角下图形M 的“宽度M d ”.(1)如图1,点()4,3A ,()0,3B .①在点O 视角下,线段AB 的“宽度AB d ”为______;②若B 半径为2,在点A 视角下,B 的“宽度B d ”为______;(2)如图2,O 半径为2.点P 为直线1y x =-+上一点.求点P 视角下O “宽度O d ”的取值范围;(3)已知点(,0)C m ,1CK =,直线3y x =+与x 轴,y 轴分别交于点D ,E .若随着点C 位置的变化,使得在所有点K 的视角下,线段DE 的“宽度”均满足06DE d <<,请直接写出m 的取值范围.参考答案一、选择题(共16分,每题2分)1. 【答案】A【分析】根据题意,注意其按圆柱的侧面沿它的一条母线剪开,分析得到图形的性质,易得答案.【详解】】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是矩形.故选:A .【点睛】本题考查的是圆柱的展开图,需要对圆柱有充分的理解;难度不大.2. 【答案】B【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.【详解】61800000 1.810=⨯,故选B .3. 【答案】A【分析】根据150AOD ∠=︒得到180********BOD AOD ∠=︒-∠=︒-︒=︒,结合OC OD ⊥,得90BOD BOC ∠+∠=︒,代入计算即可,本题考查了垂直的应用,邻补角,余角,熟练掌握邻补角,余角是解题的关键.【详解】∵150AOD ∠=︒,∴180********BOD AOD ∠=︒-∠=︒-︒=︒,∵OC OD ⊥,∴90BOD BOC ∠+∠=︒,∴60BOC ∠=︒.故选A .4. 【答案】B【分析】首先设此多边形为n 边形,根据题意得:()21801440n -⋅︒=︒,即可求得10n =,再由多边形的外角和等于360°,即可求得答案.【详解】设此多边形为n 边形,根据题意得:()21801440n -⋅︒=︒,解得:10n =,∴这个正多边形的每一个外角等于:360°÷10=36°.故选:B .【点睛】本题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:()2180n -⋅︒,外角和等于360°.5. 【答案】D【分析】本题考查实数与数轴,利用数轴比较实数的大小,实数的加法、减法、乘法运算的理解,掌握“数轴上右边的数大于左边的数”是解本题的关键.根据数轴上右边的数总比左边的大,结合绝对值的几何意义和实数的运算法则逐一分析判定即可.【详解】解:观察数轴可得:0a b <<,a b >,A . a b b >=,错误,该选项不符合题意;B . 0a b +<,错误,该选项不符合题意;C . 0ab <,错误,该选项不符合题意;D . ()0b a b a -=+->,正确,该选项符合题意;故选:D .6. 【答案】C【分析】本题考查了相似三角形的判定和性质,平行线的性质,掌握相似三角形的判定和性质是解题的关键.利用平行线的性质可证明ADE ABC △△∽,根据对应边成比例求解即可.【详解】解:∵DE BC ∥,∴,ADE B AED C ∠=∠∠=∠,∴ADE ABC △△∽,∴DE AE BC AC=,∵8AE =,:2:3DE BC =,∴283AC=,∴12AC =,故选:C .7. 【答案】C【分析】本题主要考查了直径所对的圆周角是直角,三角形内角和定理,圆周角定理,先由直径所对的圆周角是直角得到90D Ð=°,进而得到20DCF ∠=︒,进一步求出70COE ∠=︒,则由圆周角定理可得1352A COE ==︒∠.【详解】解:∵CF 是O 的直径,∴90D Ð=°,∵70F ∠=︒,∴20DCF ∠=︒,∵直径AB ⊥弦CD ,∴90CEO ∠=︒,∴70COE ∠=︒,∴1352A COE ==︒∠,故选:C .8. 【答案】C【分析】根据题意,()(),1100%()W t P t V t =⨯,()905,1100%=190P =⨯最大,()804,1100%=0.810P =⨯,最小,故①正确;6月2日销售指数小于6月5日,但是两天的销售量却相等,故②错误;(1)(2)(3)255(1,3)100%=100%(1)(2)(3)280W W W P V V V ++=⨯⨯++;(4)(5)(6)255(4,3)100%=100%(4)(5)(6)290W W W P V V V ++=⨯⨯++,()()1,34,3P P ≠,故③错误;根据题意,(1)(2)(6)(1,6)100%(1)(2)(6)W W W P V V V ++⋅⋅⋅+=⨯++⋅⋅⋅+,[][]2(1)(2)(6)(1)(2)(12)(1,12)100%=100%=(1,6)(1)(2)(12)2(1)(2)(6)W W W W W W P P V V V V V V ++⋅⋅⋅+++⋅⋅⋅+=⨯⨯++⋅⋅⋅+++⋅⋅⋅+(2)(3)(7)(2,6)100%(2)(4)(7)W W W P V V V ++⋅⋅⋅+=⨯++⋅⋅⋅+,∵(1)(7),(1)(7)W W V V ==,∴(2)(3)(1)(2,6)100%=(1,6)(2)(4)(1)W W W P P V V V ++⋅⋅⋅+=⨯++⋅⋅⋅+,对任意1t =,2,3,4,5,6,7,都有()(),61,12P t P =正确,解答即可.本题考查了函数模型的选择和应用,正确理解题意是解题的关键.【详解】根据题意,()(),1100%()W t P t V t =⨯,()905,1100%=190P =⨯最大,()804,1100%=0.8100P =⨯,最小,故①正确;6月2日销售指数小于6月5日,但是两天的销售量却相等,故②错误;(1)(2)(3)255(1,3)100%=100%(1)(2)(3)280W W W P V V V ++=⨯⨯++;(4)(5)(6)255(4,3)100%=100%(4)(5)(6)290W W W P V V V ++=⨯⨯++,()()1,34,3P P ≠,故③错误;根据题意,(1)(2)(6)(1,6)100%(1)(2)(6)W W W P V V V ++⋅⋅⋅+=⨯++⋅⋅⋅+,[][]2(1)(2)(6)(1)(2)(12)(1,12)100%=100%=(1,6)(1)(2)(12)2(1)(2)(6)W W W W W W P P V V V V V V ++⋅⋅⋅+++⋅⋅⋅+=⨯⨯++⋅⋅⋅+++⋅⋅⋅+(2)(3)(7)(2,6)100%(2)(4)(7)W W W P V V V ++⋅⋅⋅+=⨯++⋅⋅⋅+,∵(1)(7),(1)(7)W W V V ==,∴(2)(3)(1)(2,6)100%=(1,6)(2)(4)(1)W W W P P V V V ++⋅⋅⋅+=⨯++⋅⋅⋅+,对任意1t =,2,3,4,5,6,7,都有()(),61,12P t P =正确,故选:C .二、填空题(共16分,每题2分)9. 【答案】5x ≥-【分析】根据二次根式有意义的条件,即可求解.【详解】解:根据题意得:50x +≥,∴5x ≥-,∴实数x 的取值范围是5x ≥-.故答案为:5x ≥-.【点睛】本题主要考查了二次根式有意义的条件,熟练掌握二次根式的被开方数为非负数是解题的关键.10. 【答案】()()322m m n m n +-【分析】本题考查了因式分解,先提取公因式,再套用公式是解题的关键.提取公因式,得()()()322231234322m mn m m nm m n m n -=-=+-,解答即可.【详解】()()()322231234322m mn m m nm m n m n -=-=+-,故答案为:()()322m m n m n +-.11. 【答案】13【分析】本题考查解分式方程,掌握解分式方程的步骤是解题的关键.解分式方程的一般步骤是:去分母转化为整式方程,解整式方程,检验得分式方程的解,据此求解即可.【详解】解:512x x-=-,去分母,得52x x =-+,解得:13x =,经检验,13x =是原方程的解,故答案为:13.12.【答案】1-【分析】根据反比例函数图象上的点的两个坐标的积等于定值k ,得3515m -⨯=,解答即可,本题考查了反比例函数的性质,熟练掌握性质,并列出等式是解题的关键.【详解】反比例函数(0)k y k x=≠的图象经过点()3,5A -和点()15,B m ,故3515m -⨯=,解得1m =-,故答案为:1-.13. 【答案】3【分析】连接OP ,根据PA ,PB 是O 的切线,A ,B 是切点,得到90OAP OBP ∠=∠=︒,结合,OA OB OP OP ==证明OAP OBP △≌△,继而得到1302APO BPO APB ∠=∠=∠=︒,利用三角函数计算即可.本题考查了切线长定理,三角函数,熟练掌握定理,三角函数是解题的关键 .【详解】连接OP ,∵PA ,PB 是O 的切线,A ,B 是切点,60APB ∠=︒,∴90OAP OBP ∠=∠=︒,∵,OA OB OP OP ==,∴OAP OBP △≌△,∴1302APO BPO APB ∠=∠=∠=︒,∵tan tan 30OA APO PA ∠=︒===,∴3PA =,故答案为:3.14. 【答案】2-【分析】根据22330a b +-=得2233a b +=,化简()()22224214441a a b a b a ab a ab b ---+=--+-+()22223131a b a b =--+=-++,代入计算即可,本题考查了整体代入法求代数式的值,熟练掌握整体代入思想是解题的关键.【详解】∵22330a b +-=,∴2233a b +=,∴()()2421a a b a b ---+2224441a ab a ab b =--+-+()22223131a b a b =--+=-++31=-+2=-,故答案为:2-.15.【答案】2【分析】设平时每个粽子卖x 元,端午节这天每个粽子卖0.9x 元,根据题意,得545430.9x x -=,解方程即可,本题考查了分式方程的应用,正确确定等量关系是解题的关键.【详解】设平时每个粽子卖x 元,端午节这天每个粽子卖0.9x 元,根据题意,得545430.9x x-=,解得2x =,经检验,2x =是原方程的根,故答案为:2.16. 【答案】 ①. 2 ②. 6【详解】根据题意知,x <4且x ≠3,则x =2或x =1,∵x 前面的数要比x 小,∴x =2,∵每一行从左到右、每一列从上到下分别依次增大,∴9只能填在右下角,5只能填右上角或左下角,5之后与之相邻的空格可填6、7、8任意一个,余下的两个数字按从小到大只有一种方法,∴共有2×3=6种结果,故答案为2,6.点睛:本题主要考查数字的变化规律,数字问题时排列计数原理中的一大类问题,条件变换多样,把排列问题包含在数字问题中,解决问题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏.三、解答题(共68分,第17-20题每题5分,第21-22题每题6分,第23题5分,第24-27题每题6分,第28题7分)17.【答案】7-【分析】本题考查了实数的混合运算,特殊角的三角函数值,二次根式的加减,掌握相关的运算法则是解题的关键.先算乘方、特殊角的三角函数值,同时化简绝对值和二次根式,再算加减.【详解】解:236sin 602-+︒-962=-++92=-++-7=--18. 【答案】813x <≤【分析】先求出每一个不等式的解集,后确定不等式组的解集.本题考查了解不等式组,熟练掌握解题的基本步骤是解题的关键.【详解】∵453532x x x x -≤+⎧⎪⎨->⎪⎩①②∴解不等式①,得83x ≤,解不等式,②,得1x >, ∴不等式组的解集为813x <≤.19. 【答案】(1)见解析 (2;2【分析】(1)根据垂线的尺规作图,规范作图即可.(2)等腰三角形的三线合一性质,勾股定理,计算解答即可,本题主要考查了线段垂直平分线的性质与尺规作图,三线合一定理,勾股定理,圆的尺规作图等等,正确理解题意作出图形是解题的关键.【小问1详解】根据题意,完善作图如下:故大O 即为所求.【小问2详解】证明:连接CA ,CB .在ABC 中,CA CB = ,O 是AB 的中点,CO AB ∴⊥(等腰三角形三线合一).OB OD = ,90DOB ∠=︒,BD ∴=,)22222O O S BD OB S πππ∴==== 小大.;2.20. 【答案】(1)94m -> (2)121,2x x =-=-【分析】(1)根据方程的根的判别式()()2224214120b ac m m ∆=-=-+-⨯⨯-⎡⎤⎣⎦>,解答即可.(2)根据根的判别式,结合根的整数性质,解答即可本题考查了一元二次方程根的判别式,熟练掌握根的判别式是解题的关键.【小问1详解】∵方程()222120x m x m -++-=,()21,21,2a b m c m ==-+=-,且方程有两个不相等的实数根,∴()()2224214120b ac m m ∆=-=-+-⨯⨯-⎡⎤⎣⎦>,∴490m +>,解得94m ->.【小问2详解】∵94m ->且取最小整数,∴2m =-,∴2320x x ++=,解得121,2x x =-=-.21. 【答案】(1)见解析 (2)152【分析】(1)根据OA OC =,OD 是AC 边上的中线,得1,,2OD AC AD CD AC AOD COD ⊥==∠=∠,结合COB ∠的角平分线OH ,得到BOF COF ∠=∠,由此得到()1902DOC COF AOC BOC ∠+∠=∠+∠=︒,结合CF OH ⊥即可判定四边形CDOF 是矩形.(2)根据OA OC =,OD 是AC 边上的中线,得19,22OD AC AD CD AC ⊥===,结合4sin 5O D A O A ==,设4,5O D k O A k ==,根据勾股定理得3A D k ==,继而得到932k =,得到32k =,求得152OA OC ==,根据四边形CDOF 是矩形,得152DF OC OA ===.本题考查了等腰三角形的性质,矩形的判定,勾股定理,三角函数的应用,熟练掌握三角函数的应用和矩形的判定是解题的关键.【小问1详解】∵OA OC =,OD 是AC 边上的中线,∴1,,2OD AC AD CD AC AOD COD ⊥==∠=∠,∵COB ∠的角平分线OH ,∴BOF COF ∠=∠,∴()1902DOC COF AOC BOC ∠+∠=∠+∠=︒,∵CF OH⊥∴四边形CDOF 是矩形.【小问2详解】∵OA OC =,OD 是AC 边上的中线,9AC =,∴19,22OD AC AD CD AC ⊥===,∵4sin 5O D A O A ==,设4,5O D k O A k ==,根据勾股定理得3A D k ==,∴932k =,∴32k =,∴1552OA OC k ===,∵四边形CDOF 是矩形,∴152DF OC OA ===.22. 【答案】(1)6m =,(2)21n -≤≤-【分析】(1)过点作AE x ⊥轴于E ,过点C 作CD AE ⊥,交AE 延长线于D ,把(1,)A m 代入6y x =,求得6m =,再证明ABE ACD ∽△△, 34AE BE AB AD CD AC ===,则6134n AD CD -==,求得8AD =,()413CD n =-,2DE AD AE =-=,即可得41,233C n ⎛⎫-- ⎪⎝⎭,然后把41,233C n ⎛⎫-- ⎪⎝⎭代入6y x =,得412633n ⎛⎫--= ⎪⎝⎭,解得:2n =-,即可得出点B 坐标;(2)由(1)知:AEBEABAD CD AC ==,所以mABDE BC =,再根据23BC AB BC ≤≤,求得23DE ≤≤,设6,C p p ⎛⎫ ⎪⎝⎭,则1CD p =-,6DE p =-,所以有623p ≤-≤,解得32p -≤≤-,再根据AE BE AD CD =,得61616np p-=--,解得1p n =-,则312n -≤-≤-,求解即可.【小问1详解】解:过点作AE x ⊥轴于E ,过点C 作CD AE ⊥,交AE 延长线于D ,如图,把(1,)A m 代入6y x =,得6m =,∴()1,6A ,∴6AE =,1OE =,∵AE x ⊥,CD AE ⊥,∴CD x ∥,∴ABE ACD ∽△△,∴AEBE ABAD CD AC ==,∵3AB BC =,∴34AE BE AB AD CD AC ===,∴6134n AD CD -==,∴8AD =,()413CD n =-,∴2DE AD AE =-=,∴41,233C n ⎛⎫--⎪⎝⎭,把41,233C n ⎛⎫-- ⎪⎝⎭代入6y x =,得412633n ⎛⎫--= ⎪⎝⎭,解得:2n =-,∴()2,0B -.【小问2详解】解:由(1)知:AE BE AB AD CD AC ==,∴m AB DE BC=,∵23BC AB BC ≤≤,∴263DE DE ≤≤,∴23DE ≤≤,设6,C p p ⎛⎫ ⎪⎝⎭,∴1CD p =-,6DE p =-,∴623p≤-≤,∴32p -≤≤-,∵AE BE AD CD=,∴61616np p-=--,∴1p n =-,∴312n -≤-≤-,∴21n -≤≤-;【点睛】本题考查反比例函数与一次函数交点问题,反比例函数图象,相似三角形的判定与性质,坐标与图形等知识.熟练掌握性质是银题的关键.23. 【答案】(1)78.5(2)海淀校区赋予等级A 的学生更多,理由见解析(3)78【分析】本题考查抽样调查的相关知识,熟练掌握平均数、中位数的定义以及利用样本估计总体的思想是解决问题的关键.(1)根据中位数的定义,将京北校区同学的成绩按从小到大顺序排序,找到第10、第11位的成绩,取平均值即可;(2)根据两个校区成绩的中位数和平均数,求出成绩超过平均数的人数,进行比较即可;(3)利用抽样调查学生的平均数估计总体学生的平均数即可求出答案.【小问1详解】解:京北校区成绩的中位数787978.52m +==.【小问2详解】解:海淀校区赋予等级A 的学生更多,理由如下:京北校区成绩的平均数是79.5,第12位的成绩是79,8090x ≤<之间有7人,90100x ≤≤之间有1人,可知成绩超过平均数的学生有8人,即赋予等级A 的学生有8人;海淀校区成绩的平均数是77,中位数是81.5,可知成绩超过平均数的学生至少有10人,即赋予等级A 的学生至少有10人;所以海淀校区赋予等级A 的学生更多.【小问3详解】解:估计京北校区200名学生成绩的平均数为79.5,海淀校区300名学生成绩的平均数为77,因此估计该校初三年级所有学生本次环保知识竞赛的平均分为79.52007730078200300⨯+⨯=+,故答案为:78.24. 【答案】(1)见解析;(2)3r =【分析】(1)连接OC ,根据切线的性质可得2390∠+∠=︒,根据直径所对的圆周角为直角可得190B ∠+∠=︒,根据OA OC =可得12∠=∠,从而得出3B ∠=∠;(2)根据角度的关系得出ABC 和DCA △相似,根据B ∠的正切值,设AC =,可以得到BC AB ,与k 的关系,根据Rt OCD △的勾股定理求出k 的值.【小问1详解】解:证明:连结OC .∵CD 与O 相切,OC 为半径,∴2390∠+∠=︒∵AB 是O 的直径,∴90ACB ∠=︒,∴190B ∠+∠=︒,又∵OA OC =,∴12∠=∠,∴3B ∠=∠.【小问2详解】解:∵AB 是O 的直径,AD BC ∥,∴90DAC ACB ∠=∠=︒,∵190239012B ∠+∠=︒∠+∠=︒∠=∠,,,∴3B ∠=∠,∴ABC DCA ∽ ∴AC BC DC AB=∴B ∠,设AC =,2BC k =,则23=∴DC =在ODC 中,OD =,OC k =∴222k +=解得2k =,∴36AB k ==∴O 的半径长为3,【点睛】此题考查了相似三角形的判定和性质、解直角三角形、切线的性质和判定、切线的性质、勾股定理等知识,熟练掌握相似三角形的判定和性质是解题的关键.25. 【答案】(1)6.5m ;8.5m(2)见解析 (3)①结合图象,在C 处与D 处之间,包括两地即23x ≤≤;②D 处【分析】(1)把6m AB =六等分即11m 6AE EC CD DF FG GB AB =======,当 2.0x =时,点T 位于C 处,,此时 2.31 3.2 6.5m y NC CD DM =++=++=,当 4.0x =时,点T 位于F 处,此时8.5m y FD DM FC NC =+++=,计算即可.(2)根据列表,描点,画图三步骤画出图像即可.(3)①结合图象,在C 处与D 处之间,包括两地即23x ≤≤时,物流基地T 沿公路到M 、N 两个城镇的距离之和最小.②当S 建在CD 上时,S 到M ,N 的两个城镇的距离之和最小;当S 建在DE 上时,S 到P ,Q 的两个城镇的距离之和最小;综上所述,S 建在D 处,使得S 沿公路到M 、N 、P 、Q 的距离之和最小.【小问1详解】把6m AB =六等分即11m 6AE EC CD DF FG GB AB =======,当 2.0x =时,点T 位于C 处,此时 2.31 3.2 6.5m y ND CD CM =++=++=,故 6.5m a =;当 4.0x =时,点T 位于F 处,此时1 2.32 3.28.5m y FD DN FC CM =+++=+++=,故8.5m b =;故答案为:6.5m ;8.5m【小问2详解】根据题意,画图如下:【小问3详解】①结合图象,在C 处与D 处之间,包括两地即23x ≤≤时,物流基地T 沿公路到M 、N 两个城镇的距离之和最小.②当S 建在CD 上时,S 到M ,N 的两个城镇的距离之和最小;当S 建在DE 上时,S 到P ,Q 的两个城镇的距离之和最小;综上所述,S 建在D 处,使得S 沿公路到M 、N 、P 、Q 的距离之和最小.26. 【答案】(1)()241y x =--(2)①1n =-或3n >;②12a <<或23a <<【分析】(1)设抛物线1C 向右平移h 个单位,则2()1y x h =--,将点()2,3代入求出h 即可求函数的解析式;(2)①由题意画出函数的T 的图象,再用数形结合求解即可;②分三大类:5a ≤-时,4a ≥时,54a -<<时,先确定、、A B C 所在的图象,计算出123,,y y y 的值,再分小类比较大小即可.【小问1详解】解:设抛物线1C 向右平移h 个单位,∴抛物线2C 的解析式为2()1y x h =--,∵抛物线2C 与1C 交点的横坐标为2,∴交点坐标为()2,3,∴()2321h =--,解得4h =,∴抛物线2C 的解析式为()241y x =--;【小问2详解】∵抛物线2C 与 1C 交点为()2,3,∴图形T 如图所示:∵21y x =-,∴抛物线的顶点为(0,)1-,∵直线y m =与图形T 恰好有2个公共点,∴1n =-或3n >时,图形T 与y m =有两个交点;②∵设 1(,)A a y ,2(2,)B a y +, 3)5, (C a y +,∵抛物线1C 的对称轴为0x =,∴50a +≤,即5a ≤-时,、、A B C 三点在抛物线1C 对称轴的左侧,此时123y y y >>,不符合题意;∵抛物线2C 的对称轴为 4x =,∴4a ≥时,、、A B C 三点在抛物线2C 对称轴的右侧,此时321y y y >>,不符合题意;∴54a -<<之间时存在312y y y >>的情况;∵()2²141x x -=--,∴2x =,此时抛物线1C 抛物线 2C 交于点()2,3,当52a +=时,3a =-,∴53a -<≤-时,A B C 、、三点在抛物线 1C 上,∵()12221,21y a y a =-=+-,()2351y a =+-,∴1y 的值最大,不符合题意;当22a +=时, 0a =,∴当30a -<≤时,A B 、两点在抛物线1C 上,C 点在抛物线2C 上,∴211y a =-,()2221y a =+-, ()2311y a =+-,当23y y =时,()()222111a a +-=+-, 解得 32a =-,当332a -<<-时, 132y y y >>,不符合题意;当12y y =时,()22121a a -=+-,解得 1a =-,当13y y =时,()22111a a -=+-,解得12a =-, 当112a -<<-,时,213y y y >>,不符合题意;当102a -<<时, 231y y y >>,不符合题意;当02a <<时,A 点在抛物线1C 上,B C 、点在抛物线2C 上,∴211y a =-,()2221y a =--, ()2311y a =+-,当23y y =时,()()222111a a --=+-,解得 12a =,当12y y =时,()22121a a -=--,解得 1a =,当102a <<时, 231y y y >>,不符合题意;当112a <<时,321y y y >>,不符合题意;当12a <<时,312y y y >>,符合题意;当2a <时,、、A B C 三点在抛物线2C 上,∴()2141y a =--,()2221y a =--,()2311y a =+-,当21y y =时,()()222141a a --=--,解得3a =,当23a <<时,312y y y >>,符合题意;当34a <<时,321y y y >>,不符合题意;综上所述:12a <<或23a <<时,312y y y >>.【点睛】本题考查二次函数的综合应用,熟练掌握二次函数的图象及性质,数形结合,分类讨论思想是解题的关键.27. 【答案】(1)2 (2)BC =,证明见解析【分析】(1)先证明ABF △是等边三角形,得2BF AF ==,再证明四边形BDEF 是平行四边形,得2DE BF ==.(2)过点E 作EM BC ⊥于M ,设AF 交BC 于N ,分两种情况:当点D 在线段BN 上时,当点D 在线段CN 上时,分别求解即可.【小问1详解】解:如图,∵线段BA 绕点B 顺时针旋转60︒得到线段BF ,∴BF BA =,60ABF ∠=︒,∴ABF △是等边三角形,∴2BF AF ==,∵FE BD ∥且FE BD =,∴四边形BDEF 是平行四边形,∴2DE BF ==.【小问2详解】解:BC =,证明:过点E 作EM BC ⊥于M ,设AF 交BC 于N ,当点D 在线段BN 上时,如图,∵60ABF ∠=︒,30ABC ∠=︒,∴ABC FBC ∠=∠,∵ABF △是等边三角形,∴AF BC ⊥,22AF FN AN ==,∴90FNB FNC ∠=∠=︒,∵FB AF =,∴2FB FN =,在Rt FNB △中,由勾股定理,得BN ===,∵AF BC ⊥,EM BC ⊥,∴EM FN ∥,∵FE BD ∥,∴四边形FEMN 是平行四边形,∵90FNC ∠=︒,∴四边形FEMN 是矩形,∴EF MN =,EM FN =,∴AN EM =,∵FE BD =,∴BD MN =,在ANM 与FMC 中,AD ECAND FMC AN EM=⎧⎪∠=∠⎨⎪=⎩,∴()SAS ANM FMC ≌,∴CM DN =,∴BD DN MN CM +=+即BN CN =,∴2BC BN =,∴BC ==;当点D 在线段CN 上时,如图,同理可得,BC =,∴对于BC 边上任意一点D ,始终有CE AD =,则BC =.【点睛】本题考查旋转的性质,等边三角形的判定与性质,平行四边形的判定与性质,矩形的判定与性质,直角三角形的性质,全等三角形的判定与性质,勾股定理.本题综合性较强,属中考常考试题.熟练掌握相关性质与判定是解题的关键.28. 【答案】(1)①2;②3(24O d ≤≤(3)2m <--或1m >-+【分析】(1)①②点P 视角下图形M 的“宽度M d ”的定义解决问题即可.(2)当点P 在O 外时,点P 视角下O “宽度O d ” 4=,可得O d 的最大值为4,当OP ⊥直线1y x =-+时,O d 的最小值2OP ==,由此即可解决问题.(3)如图3中,观察图象可知当C 与直线的交点在线段DE (不包括点D ,)E 上或与直线DE 没有交点,满足条件.求出几种特殊位置点C 的坐标,即可得出结论.【小问1详解】解:①如图1中,(4,3)A ,(0,3)B ,3OB ∴=,4AB =,90∠=︒ABO ,5OA ∴===,∴点O 视角下,则线段AB 的“宽度AB d ”为532-=.②设直线AB 交B 于E ,H .则在点A 视角下,B 的“宽度B d ” 5.5 2.53AH AE =-=-=,【小问2详解】解:如图2中,当点P 在O 外时,点P 视角下O “宽度O d ” 4=,O d ∴ 的最大值为4,当OP ⊥直线1y x =-+时,O d 的最小值2OP ==∴4O d ≤≤ .【小问3详解】解:如图3中,观察图象可知当C 与直线的交点在线段DE (不包括点D ,)E 上或与直线DE 没有交点,满足条件.3y =+ 与x 轴,y 轴分别交于点D ,E ,(0,3)E ∴,(D -,0),当C 在直线的左侧与直线相切时,(2C --,0),当C 经过点D 时,(1C -+,0),观察图象可知满足条件的m 的值为:2m <--1m >-+.【点睛】本题属于圆综合题,考查了直线与圆的位置关系,点与圆的位置关系,切线的性质,解直角三角形等知识,解题的关键是理解题意,学会性质特殊位置解决问题,属于中考压轴题.。
浙江精诚联盟2024年高一3月月考化学答案
2023学年第二学期浙江省精诚联盟3月联考高一年级化学学科参考答案一、选择题(本大题共16小题,每小题3分,共48分。
每个小题列出的四个备选项中只有一个是.....符合题目要求的.......,不选、多选、错选均不得分)题号12345678910答案B C A D C B DBAC题号111213141516答案ACCDBD二、非选择题(本大题共5小题,共52分)17.(10分)【答案】(1)2Cl O Na --+>>(2分,答Na +<O 2-<Cl -不扣分,顺序有错不给分)(2)(2分,有错不给分);离子键和非极性共价键(2分,答离子键和共价键亦可)(3)3232O =2Al O 6H Al 3H ++++(2分,方程式未配平扣1分)(4)Cl 2+H 2S =S+2HCl (2分,用Na 2S 等含-2价硫的化合物代替H 2S 均可,方程式未配平扣1分)18.(7分)【答案】(1)242(2分)(2)①Pb (1分)②减小(1分)③增重(1分)48(2分)19.(10分)【答案】(1)0.0375mol·L -1·min -1(2分,单位错写或漏写扣1分)(2)0.375(2分)(3)AC (2分,答对1个给1分,错选不给分)(4)10(2分)(5)BD (2分,答对1个给1分,错选不给分)20.(12分)【答案】(1)分液漏斗(1分)C+2H2SO 4浓CO 2↑+2SO 2↑+2H 2O(2分,加热条件不写扣1分,方程式未配平扣1分)(2)漂白(1分)、还原(1分)(3)D 装置中溶液不褪色(1分),E 装置中溶液变浑浊(1分);G 装置中黑色固体变为紫红色(1分),H 装置中白色固体变蓝(1分)(4)防止空气中水蒸气进入H 装置,对实验产生干扰(1分)(5)将反应后的溶液(冷却后),倒入水中稀释,取稀释后的溶液分装在两支试管中,向一支试管中加入KSCN 溶液,若溶液显红色,则反应后的溶液中有Fe 3+,若不显红色,则无Fe 3+;向另一支试管中加入KMnO 4溶液,若紫红色褪去,则有Fe 2+,若无明显现象则无Fe 2+。
河北省石家庄二中实验学校2023-2024学年高一下学期3月月考数学试题
河北省石家庄二中实验学校2023-2024学年高一下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知非零向量,,a b c ,则“a c b c ⋅=⋅”是“a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件2.下列各式中不能..化简为PQ 的是( ) A .()AB PA BQ ++ B .PA AB BQ +− C .QC QP CQ −+D .()()AB PC BA QC ++− 3.已知矩形ABCD 中,E 为AB 边中点,线段AC 和DE 交于点F ,则BF =( ) A .1233AB AD −+B .1323AB AD −C .2133AB AD − D .2133AB AD −+ 4.在ABC 中,角,,A B C 的对边分别为,,a b c ,若sin cos 2Bb Cc =,且||||CA CB CA CB +=−,则A =( )A .π6B .π3C .π4D .π25.设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =,D 为边BC 上一点,22CD BD ==,AD =ABC 的面积为( )A B .34C .4D .26.在ABC 中,AC =O 是ABC 的外心,M 为BC 的中点,8AB AO ⋅=,N 是直线OM 上异于M 、O 的任意一点,则AN BC ⋅=uuu r uu u r( )A .3B .6C .7D .97.在直角坐标系xOy 中,已知(1,3)a =,(3,1)b =,若R t ∀∈,a b a tb λ−≤−恒成立,则λ=( ) A .13B .23C .25D .358.在ABC 中,角,,A B C 所对的边分别为,,a b c ,2sin sin 3sin a A b B c C −=,若S 表示ABC 的面积,则2Sb 的最大值为( )A B C D二、多选题9.已知向量()(),1,2,1a m b =−=−,则下列说法正确的是( ) A .若1m =,则13a b −= B .若a ⊥b ,则2m =C .“12m >−”是“a 与b 的夹角为钝角”的充要条件D .若1m =−,则b 在a 上的投影向量的坐标为11,22⎛⎫−− ⎪⎝⎭10.ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,S 为ABC 的面积,且2a =,23AB AC ⋅=,下列选项正确的是( )A .π3A =B .若3b =,则ABC 只有一解C .若ABC 为锐角三角形,则b 取值范围是D .若D 为BC 边上的中点,则AD 的最大值为211.如图,延长正方形ABCD 的边CD 至点E ,使得DE CD =,动点P 从点A 出发,沿正方形的边按逆时针方向运动一周后回到点A ,若AP AB AE λμ=+,则下列判断不正确的是( )A .满足2λμ+=的点P 必为BC 的中点B .满足1λμ+=的点P 有且只有一个C .满足3λμ+=的点P 有且只有一个D .满足32λμ+=的点P 有且只有一个 12.已知平行四边形ABCD 的面积为34,cos 5BAD ∠=−,且3,2DE EC BF FC ==−,则( )A .15ABAD+的最小值为2B .当AB 在AD 上的投影向量为AD −时,143AB AC ⋅=C .EA FA ⋅的最小值为152D .当AB 在AD 上的投影向量为AD −时,194EA FA ⋅=三、填空题13.已知向量()()1,,3,1a m b ==−.若()()2//2a b a b −+,则实数m 的值为 .14.ABC 中,角、、A B C 所对的边分别为a b c 、、,若22a b bc −=,且sin A B =,则角A =15.在ABC 中,5,7,8AB BC AC ===,D 是AB 边上一点,CD AB ⊥,则CD = .16.如图,在四边形ABCD 中,,AB CD ∥3,AB =2,CD ==AD 90BAD ∠=︒.若P 为线段AB 上一动点,则CP DP ⎯⎯→⎯⎯→⋅的最大值为 .四、解答题17.已知向量 a 和 b ,则 2=a ,2b =, ,60a b 〈〉=︒ 求: (1)a b ⋅ 的值; (2)2a b + 的值;(3)2a b + 与 b 的夹角θ的余弦值.18.如图,在ABC 中,已知2AB =,4AC =,60BAC ∠=︒,M ,N 分别为AC ,BC 上的两点12AN AC =,13BM BC =,AM ,BN 相交于点P .(1)求AM 的值; (2)求证:AM PN ⊥.19.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知()sin cos a B B c +=. (1)求A ﹔(2)若c a ==D 为BC 的中点,求AD .20.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且22cos b c a C =+. (1)求A ﹔(2)若ABC 3a =,求ABC 的周长. 21.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2222a abc c b +−=,且a c ≠.(1)求证:2B C =;(2)若ABC ∠的平分线交AC 于D ,且12a =,求线段BD 的长度的取值范围. 22.2023年杭州亚运会首次启用机器狗搬运赛场上的运动装备. 如图所示,在某项运动赛事扇形场地OAB 中,π2AOB ∠=,500OA =米,点Q 是弧AB 的中点,P 为线段OQ 上一点(不与点O ,Q 重合).为方便机器狗运输装备,现需在场地中铺设三条轨道PO ,PA ,PB .记APQ θ∠=,三条轨道的总长度为y 米.(1)将y 表示成θ的函数,并写出θ的取值范围; (2)当三条轨道的总长度最小时,求轨道PO 的长.。
天津市静海区第一中学2024_2025学年高二语文3月月考试题含解析
天津市静海区第一中学2024-2025学年高二语文3月月考试题(含解析)第 I 卷(选择题共18分)一、(10分,每小题2分)1.下列词语中加点字的字音和字形,全都正确的一项是()A. 训诂.(gǔ) 恶.梦(è)寂寥.(liáo)名媛.(yuàn)少.安毋躁(shāo)B. 狷.狂(juàn)博.取(bó)潜藏..(qiǎn)颠簸.(bǒ)披沙捡.金(jiǎn)C. 篡.改(cuàn)梵.文(fán)通牒.(dié)黄膘.马(biāo)源.远流长(yuán)D. 偾.事(fèn)胡诌.(zhōu) 摒.弃(bìn g)乐陶.陶(táo)徇.私枉法(xùn)【答案】D【解析】【详解】本题考查识记现代汉语一般话常用字的字音及识记并正确书写现代常用规范汉字的实力。
解答此类题目应先审题,明确题干的要求,如本题“下列词语中加点字的字音和字形,全都正确的一项是”,要选出的是“正确的一项”,然后依据字形和字义辨析读音字形正误。
本题A项,“少安毋躁”的“少”应读shǎo;B项,“潜藏”的“潜”应读qián,“披沙捡金”应为“披沙拣金”,是比方从大量的事物中选择精华的意思;C项,“梵文”的“梵文”应读fàn,“黄膘马”应为“黄骠马”,意思是一种黄毛夹杂着白点子的马。
故选D。
2.在下面一段话的空缺处依次填入词语,最恰当的一组是金圣叹,中国颇负的文学指责家,才气纵横,性情狂傲。
他选录初唐到五代的七言律诗近六百首进行细致点评,揣摩唐人七言律诗的谋篇布局、起承转合的模式,或,或借题发挥。
《清代七百名人传:金人瑞传》说他:“纵横指责,明快如火,,一时见者叹为灵鬼转世。
”A. 胜名醍醐灌顶笔走龙蛇B. 胜名鞭辟入里笔走龙蛇C. 盛名鞭辟入里妙笔生花D. 盛名醍醐灌顶妙笔生花【答案】C【解析】【详解】本题考查学生正确运用词语(包括熟语)的实力。
北京市2023-2024学年高一下学期3月月考物理试卷含答案
2024北京高一3月月考物理(答案在最后)(考试时间60分钟满分100分)一、单选题(每题4分,共60分)1.物体做匀速圆周运动时,一定不变的物理量是()A.速度B.周期C.加速度D.合外力【答案】B【解析】【详解】ACD:物体做匀速圆周运动时,速度、加速度、合外力的大小不变,方向发生变化.故ACD三项错误.B:匀速圆周运动周期是物体转一圈的时间,是不变的.故B项正确.点睛:矢量的改变可能是大小改变,可能是方向改变.2.关于曲线运动,下列说法正确的是()A.物体做曲线运动,其加速度可能为0B.物体做曲线运动,其速率可能不变C.物体做曲线运动,其速度的方向可能不发生变化D.物体做曲线运动,物体所受合外力的方向与它速度的方向可能在一条直线上【答案】B【解析】【详解】A.物体做曲线运动速度一定变化,其加速度不可能为0,选项A错误;B.物体做曲线运动,其速率可能不变,例如匀速圆周运动,选项B正确;C.物体做曲线运动,其速度的方向一定发生变化,选项C错误;D.物体做曲线运动,物体所受合外力的方向与它速度的方向不可能在一条直线上,选项D错误。
故选B。
3.如图所示,一圆盘可绕一通过圆盘中心O且垂直于盘面的竖直轴转动,圆盘上的小物块A随圆盘一起运动,对小物块进行受力分析,下列说法正确的是()A.受重力和支持力B.受重力、支持力、摩擦力C.受重力、支持力、向心力D.受重力、支持力、摩擦力、向心力【答案】B【解析】【详解】小木块做匀速圆周运动,合力指向圆心,对木块受力分析,受重力、支持力和静摩擦力,如图所示重力和支持力平衡,静摩擦力提供向心力.A.A项与上述分析结论不相符,故A错误;B.B项与上述分析结论相符,故B正确;C.C项与上述分析结论不相符,故C错误;D.D项与上述分析结论不相符,故D错误;4.如图所示,自行车的大齿轮、小齿轮、后轮的半径不一样,它们的边缘有三个点A、B、C.在自行车匀速骑行时,下列说法正确的是()A.A、B两点的角速度大小相等B.B、C两点的线速度大小相等C.A点的向心加速度小于B点的向心加速度D.C点的向心加速度小于B点的向心加速度【答案】C【解析】【详解】A.AB两点在传送带上,是同缘传动的边缘点,所以两点的线速度相等,根据v=ω•r,由于半径不同,则角速度不相等.故A错误;B.BC两点属于同轴转动,角速度相等,半径不相等,根据v=rω可知线速度不相等.故B错误;C.AB两点的线速度相等,根据2nvar,A的半径比较大,所以A点的向心加速度小于B点的向心加速度.故C正确;D.BC点的角速度是相等的,根据a n=ω2r,C点的半径比较大,所以C点的向心加速度大于B点的向心加速度,故D错误;5.一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度逐渐减小,图中分别画出了汽车转弯时所受合力F的四种方向,你认为其中正确的是()A. B.C. D.【答案】B【解析】【详解】根据曲线运动的特点可知,合外力指向曲线凹侧部分,且为减速运动,合外力与运动方向夹角为钝角。
精品解析:云南省昆明市东川区明月中学2023-2024学年九年级下学期3月月考语文试题(解析版)
9.阅读下面文段答题。
周学道虽然赶他出去,却也把卷子取来看看。那童生叫做魏好古,文字也还清通。学道道:“ 把他低低的进了学罢。”因取过笔来,在卷子尾上点了一点,做个记认。又取过卷子来看,看罢,不觉叹息道:“这样文字,连我看一两遍也不能解,直到三遍之后,才晓得是天地间之至文,真乃一字一珠!可见世上糊涂试官,不知屈煞了多少英才!”忙取笔细细圈点,卷面上加了三圈,即填了第一名;又把魏好古的卷子取过来,填了第二十名。
C.忽然想起了那个小村子里的炊烟D.或许不会关注司空见惯的炊烟
【答案】1.C2.B3.A
【解析】
【分析】
【1题详解】
此题考查学生选词填空的能力。选词填空首先要明确词语的意义和用法,然后再结合具体的语言环境来分析,可以从使用范围和语意侧重点角度来辨析。
“弥漫”意思是(烟尘、雾气、水等)充满,布满;
“萦绕”是萦回的意思;
(5)李清照《渔家傲》中“________”一句,写的是云涛翻滚的壮美景象;“_______”一句,表明词人要像大鹏鸟那样乘风高飞。
(6)《醉翁亭记》中,琅琊山四季景物迥然不同,“________,______”两句分别写出春夏之景
【答案】①.芳草萋萋鹦鹉洲②.留取丹心照汗青③.似曾相识燕归来④.学而不思则罔⑤.天接云涛连晓雾⑥.九万里风鹏正举⑦.野芳发而幽香⑧.佳木秀而繁阴
根据表示总产值增速的折线图,“2012年”为“15.7%”、“2013年”为“33.3%”、“2014年”为“24.4%”、“2015年”为“29.2%”、“2016年”为“22.1%”、“2017年”为“20.4%”、“2018年”为“18.3%”、“2019年”为“14.4%”可知,2013年我国卫星导航与位置服务产业总产值历年以来是最高的,为33.3%;(或2013年我国卫星导航与位置服务产业总产值同比增速最快)2015年以后,我国卫星导航与位置服务产业总产值同比增速呈现下降的趋势。
部编版语文五年级下册 3月份月考试卷(1、2单元)(含答案)
统编版五年级语文下册3月份月考试卷时间:90 分钟分值:100请仔细看题,细心答题,相信你会有出色的表现!一.认真书写,做到卷面整洁、清楚。
(3分)二.读拼音,写词语。
(10分)gēng yún bá cǎo chéng rèn guàng jiē shuǐ piáopéng pài fú shì xiào lǜ nù hǒu měi cān三.选择题。
(18分)1.下面加点字的读音完全正确的一组是()。
A.篝.火(gōu)无垠.(yíng)挠.痒(ráo)镌.刻(juàn)B.秉.性(bǐn)旖旎.(nǐ)猕.猿(mí)踉.跄(niàng)C.玷.污(diàn)燕.园(yān)迸.发(bèng)忌讳.(huì)D.倭.瓜(wěi)澄.澈(chéng)血泊.(bó)石窍.(qiào)2.下列词语中有错别字的一项是()。
A.巍峨榆树烟波浩渺风欺雪压B.点缀樱桃乐此不疲顶天立地C.锄头蝴蝶相映成趣低头折节D.蜻蜒阴凉魏峨雄奇美妙绝伦3.以下词语搭配全部恰当的一项是()。
A.军情紧急酒力发生芝兰相衬树木遮阴B.轻易出动齐声高喊虎豹为群獐鹿为友C.说下军令状靠近水寨插在腰间寻看源流D.一个红日一个山神庙一块仙石一盘熟菜4.下列加点字词的解释有误的一项是()。
A.昼出耘田夜绩麻..(把麻搓成线) B.也傍桑阴.学种瓜(山阴)C.敲成玉磬.穿林响(一种打击乐器)D.短笛无腔信口..吹(随口)5.下列句式中加点词理解有误的一项是()。
A.酒家给武松筛.了满满一碗酒。
(斟)B.你如何..不肯卖酒与我吃?(为什么)C.这时候天快晚了,你还过冈,枉.送了自家性命?(冤屈) D.请勿.自误。
山西省吕梁育星中学2024年高考数学试题3月月考模拟试题
山西省吕梁育星中学2024年高考数学试题3月月考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数321()(0)3f x ax x a =+>.若存在实数0(1,0)x ∈-,且012x ≠-,使得01()()2f x f =-,则实数a 的取值范围为( ) A .2(,5)3B .2(,3)(3,5)3⋃ C .18(,6)7D .18(,4)(4,6)7⋃ 2.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab +=B .4a b +>C .()()22112a b -+-< D .228a b +>3.已知三点A (1,0),B (0),C (2,则△ABC 外接圆的圆心到原点的距离为( ) A .53 BC.3D .434.三棱锥S ABC -的各个顶点都在求O 的表面上,且ABC ∆是等边三角形,SA ⊥底面ABC ,4SA =,6AB =,若点D 在线段SA 上,且2AD SD =,则过点D 的平面截球O 所得截面的最小面积为( ) A .3πB .4πC .8πD .13π5.过双曲线22221x y a b-= (0,0)a b >>的左焦点F 作直线交双曲线的两天渐近线于A ,B 两点,若B 为线段FA 的中点,且OB FA ⊥(O 为坐标原点),则双曲线的离心率为( ) ABC .2D6.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .87.ABC 中,点D 在边AB 上,CD 平分ACB ∠,若CB a =,CA b =,2a =,1b =,则CD =( ) A .2133a b + B .1233a b +C .3455a b + D .4355a b +8.已知{}n a 为等比数列,583a a +=-,4918a a =-,则211a a +=( ) A .9B .-9C .212D .214-9.在棱长均相等的正三棱柱111ABC A B C =中,D 为1BB 的中点,F 在1AC 上,且1DF AC ⊥,则下述结论:①1AC BC ⊥;②1AF FC =;③平面1DAC ⊥平面11ACC A :④异面直线1AC 与CD 所成角为60︒其中正确命题的个数为( )A .1B .2C .3D .410.已知数列 {}n a 是公比为 q 的等比数列,且 1a , 3a , 2a 成等差数列,则公比 q 的值为( )A .12-B .2-C .1- 或12D .1 或 12-11.已知抛物线24x y =上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为( ) A .2B .3C .4D .512.已知正四面体的内切球体积为v ,外接球的体积为V ,则Vv=( ) A .4B .8C .9D .27二、填空题:本题共4小题,每小题5分,共20分。
辽宁省沈阳市第一二六中学2023-2024学年八年级下学期3月月考英语试题(解析版)
【解析】
【详解】句意:明天市场上将会卖鱼。
考查时态和语态。根据“tomorrow”可知,时态是一般将来时,且主语和谓语动词之间存在被动关系,所以使用被动语态,结构是will be done。故选C。
10.The shirt matches your trousers well. Their colours really ______.
A.saveB.savingC.savedD.to save
【答案】D
【解析】
【详解】句意:他尽其所能去救那个老人。
考查非谓语动词。根据“He did everything he could ... the old man.”可知,他做他能做的一切去救老人,用不定式表目的。故选D。
5.—Mr. Li asked me to ______ you about the meeting this afternoon. Don’t forget it!
C.Because they feel ashamed.
1ing Aunt Alice’s advice?
A.Happy. B.Sad. C.Surprised.
17.Who is the woman worried about?
考查动词辨析。sound听起来;appear出现,显现;look看起来;feel感觉。根据“They…to be alive.”可知,此处指的是他们似乎是还活着,appear to be“似乎是”。故选B。
9.The fish ______ in the market tomorrow.
A.will sellB.will soldC.will be soldD.will been sold
3.What do the woman’s family usually do together?
初三英语3月月考试题
初三英语3⽉⽉考试题 教师们要如何准备即将到来的⽉考考试呢?接下来是店铺为⼤家带来的关于初三英语3⽉⽉考试题,希望会对⼤家有所帮助。
初三英语3⽉⽉考试题: 第1卷(选择题共85分) 第⼀部分听⼒部分 ⼀、听⼒测试(共三节) 第⼀节(共4⼩题,每⼩题1分,满分4分) 听下⾯4个问题,每个问题后有三个答语,从题中所给的’A、B、C三个选项中选出最佳选项。
听完每个问题后,你都有5秒钟的时间来作答和阅读下⼀⼩题。
每个问题仅读⼀遍。
1. A.Jenny’s. B. Don’t be worried. C.The dog is lovely. 2. A.I’m fine. B. It’s sunny. C. Yes, it is. 3. A.They’re my old clothes. B. It’s a T-shirt. C. They’re nice. 4. A. She is fine. B. She went to school. C. Good idea. 第⼆节(共8题,每⼩题1分,满分8分) 听下⾯8段对话,每段对话后有⼀个⼩题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关⼩题和阅读下⼀⼩题。
每段对话仅读⼀遍。
5. Where may Mary’s mother be now?A. At home.B. In the office.C. In the hospital. 6. What did the girl use to be like?A. Fatter and shy.B. Shorter and shy.C. Taller and outgoing. 7. What is the boy doing?A. Asking the way.B. Going shopping.C. Looking for a park. 8. What program does Elise like?A. Soap operas.B. Talk shows.C.Game shows. 9. When did the movie begin?A. At 6:20.B. At 6:30.C. At 6:40. 10. How much did Wu Min pay for her ticket?A. 30 yuanB. 24 yuanC. 6 yuan 11. What will the woman give the man?A. A banana.B. An apple.C. A pineapple. 12. What can we know from the conversation? A. The grandpa will leave after supper. B. The grandpa often comes to visit them. C. The grandpa will stay with them for days. 第三节(共13⼩题,每⼩题1分,满分13分) 听下⾯4段对话或独⾃,每段对话或独⾃后有⼏个⼩题,从题中所给的’A、B、c:三个选项中选出最佳选项。
2023北京八一学校高三3月月考化学(1)
北京市八一学校2023届高三化学3月月考试卷(考试时长 90分钟)可能用到的相对原子质量:H 1 L i 7 C 12 N 14 O 16 F19 Na 23 Si 28 Fe 56 C o 59 Zn 65第一部分本部分共14题,每题3分,共42分。
选出最符合题目要求的一项。
1.下列化学用语或图示表达正确的是A.HCl的电子式为B.质量数为3的氢原子:3HC.Cl2中的p-p σ键电子云轮廓图D.基态Cr原子的价层电子的轨道表示式:2.下列物质的性质变化规律与键能无关的是A.与硅相比,金刚石的硬度大、熔点高B.HF、HCl、HBr、HI热稳定性依次减弱C.F2、Cl2、Br2、I2的沸点逐渐升高D.Na、Mg、Al的硬度依次增大3.下列离子方程式与所述事实相符且正确的是A. 用稀硫酸做导电实验,小灯泡发光:2H2O 2H2↑+O2↑B.酸化的硫酸亚铁溶液长时间存放,变黄:2Fe2++ 4H+ + SO42-= 2Fe3+ +SO2↑+ 2H2OC.H2C2O4具有还原性,可以使高锰酸钾溶液褪色:2MnO4-+5C2O42-+16H+== 2Mn2++10CO2↑+8H2OD.过量的铁粉与稀硝酸反应,产生无色气体:Fe + NO3-+ 4H+ == Fe3+ + NO↑+ 2H2O4.下列除杂试剂选用正确且除杂过程不涉及氧化还原反应的是物质(括号内为杂质)除杂试剂A Cl2(HCl)H2O、浓H2SO4B NO(NO2)H2O、无水氯化钙C SO2(HCl)饱和Na2SO3溶液、浓H2SO4D NaCl溶液(MgCl2溶液)NaOH溶液、稀盐酸5.25℃、101 kPa 下,①H2O(l) === H2(g) + 1/2 O2(g) ΔH1= +285.8 kJ/mol②H2O(l) === H2O(g) ΔH2 = +44.0 kJ/mol下列说法不正确的是A.液态水变为水蒸气破坏的是分子间作用力B.水分解为氢气和氧气,断键吸收的总能量大于成键放出的总能量C.标准状况下,11.2 L 水中含共用电子对总数约为6.02×1023D.25℃、101 kPa 下,H2O(g) === H2(g) + 1/2 O2(g) ΔH = +241.8 kJ/mol6.下列实验装置或方案能达到实验目的的是A.用图1装置制取乙烯B.用图2装置测定NaHCO3溶液的浓度C.用图3装置,证明混合溶液中有Fe2+D.用图4装置,检验氯化铵受热分解产物7.外加少量酸或碱而pH基本不变的溶液,称为缓冲溶液。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沈阳二中2008—2009学年度下学期3月月考高一(11届)化学试题命题人: 孙沫刘晓妮审校题: 高一化学组说明:1、测试时间:90分钟满分:100分2、客观题涂在答题卡上,主观题答在答题卷上。
第I卷(44分)可能用到的相对原子质量: C 12 O 16 S 32 Cl 35.5 K 39 N 14 Pb 207 Zn 65 Ag 108一、选择题(每小题只有一个选项符合题意,每小题2分,供20分)1.食品卫生与身体健康密切相关。
下列做法会导致食品对人体有害的是:()①在沥青公路上翻晒粮食②香肠中加过量亚硝酸钠以保持肉类新鲜③用生活用煤直接烧烤鸡、鸭④用“瘦肉精”(一种含激素的饲料)饲喂生猪⑤用小苏打做发酵粉做面包⑥用福尔马林保鲜鱼肉等食品A.①②④⑤⑥ B.②③④⑤⑥ C.①②③④⑤⑥ D.①②③④⑥2.下列说法中错误的是( )A.原子的核外电子层数等于该元素所在的周期数B.元素周期表中从ⅢB到ⅡB族10个纵行的元素都是金属元素C.除氦外的稀有气体原子的最外层电子数都是8D.同一元素的各种同位素的物理性质、化学性质均相同3.下列各项表达正确的是()+16288 A.氯化氢分子的电子式: B.S2-的结构示意图:C.四氯化碳的电子式: D.N2的结构式::N≡N:4.已知反应KClO3+6HCl=KCl+3Cl2↑+3H2O,若用K35ClO3和H37Cl反应,则下列说法正确的是()A.该反应中电子转移数为6 B.KCl中只含35ClC.KCl中既有35Cl,又有37Cl D.生成的氯气式量约为73.35.科学家近年来研制出一种新型细菌燃料电池,利用细菌将有机酸转化成氢气,氢气进入以磷酸为电解质的燃料电池发电。
电池负极反应为()A.H2+OH--2e-=2H2OB.O2+4H++4e-=H2OC.H2-2e-=2H+D.O2+H2O+4e-=4OH-6.已知A、B两元素的原子序数在3~18之间,它们可形成离子化合物A m B n,且离子均具有稀有气体的原子结构,若A的原子序数为a,则B的原子序数不可能为 ( ) A.a+8-m-n B.a+16-m-n C.a-8-(m+n) D.a-m-n7.“中和热”是一个在热化学中的重要概念,“中和热”的定义为:在稀溶液中,酸跟碱发生中和反应则生成1mol H2O,这时的反应热叫做中和热。
以下关于中和热的叙述正确的是( ) A.在稀溶液中所有酸和碱反应的中和热数值都相等B.在稀溶液中HCl和NaOH反应和HNO3和KOH的中和热都相等C.在稀溶液中1mol酸和1mol碱反应放出的热量都相等D.将浓硫酸滴入氢氧化钠溶液中刚好生成1mol水时,产生的热量即为中和热8.硫可以形成分子式为S2、S4、S6、S8的单质,其中S8的分子结构如下图所示。
下列有关说法正确的是()A.S2、S4、S6、S8互为同位素B.S2的摩尔质量为32 g∕molC.硫的单质在足量的空气中完全燃烧可生成SO3D.1 molS8单质中含有的S—S键个数为8N A9.目前我国合成一种含铊(Tl)的超导材料,铊原子的核外电子排布为2、8、18、32、18、3。
下列说法不正确的是()A.不能置换酸中的氢 B.铊位于元素周期表的第6周期ⅢA族C.铊的熔点比铝的熔点低 D.它的最高价氧化物的水化物为Tl(OH)3 10.下列粒子的半径之比大于1的是()A.r(K+)/r(K) B.r(Ca)/r(Mg) C.r(S)/r(P) D. r(Na+)/r(F-)二、选择题(每小题有1-2个选项符合题意,每题3分,共24分,多选不给分,少选1分)11.一种新型燃料电池,一极通入空气,另一极通入丁烷气体;电解质是掺杂氧化钇(Y2O3)的氧化锆(ZrO2)晶体,在熔融状态下能传导O2-.下列对该燃料电池说法正确的是()A.在熔融电解质中,O2-由负极移向正极B.电池的总反应是:2C4H10+13O2→8CO2+10H2OC.通入空气的一极是正极,电极反应为:O2+4e-=2O2-D.通入丁烷的一极是正极,电极反应为: 2C4H10+264e-+13O2-→4CO2+5H2O12.根据中学化学教材所附元素周期表判断,下列叙述不正确的是()A.第16列元素的最高价氧化物的化学式为RO3B.第2列元素中一定没有非金属元素C.第15列元素的最高价氧化物对应水化物的化学式均为H3RO4D.在18列元素中,第3列元素种类最多13.下列变化过程中,原物质内仅有共价键被破坏,同时有离子键形成的是()A.盐酸和NaOH溶液反应 B.氯化氢溶于水C.氯化氢与氨气反应生成NH4Cl固体 D.稀硫酸与BaCl2溶液反应14.氯的原子序数为17,氯有两种同位素37Cl、35Cl。
下列说法正确的是()A.35Cl原子所含质子数为18 B.1/18 mol的1H35Cl分子所含中子数约为6.02×1023 C.3.5g35Cl2气体的体积为1.12L D.35Cl2气体的摩尔质量为70g/mol15.一种化学冰袋中含有Na2SO4·10H2O和NH4NO3。
用时将它们混合并用手揉搓就可制冷,且制冷效果能维持一段时间。
以下关于其制冷原因的推测肯定错误的是()A.Na2SO4·10H2O脱水是吸热过程B.较长时间制冷是由于Na2SO4·10H2O脱水是较慢的过程C.Na2SO4·10H2O和NH4NO3在该条件下发生的复分解反应是吸热反应D. NH4NO3溶于水会吸收热量16、2006年11月23日,俄罗斯前特工利特维年科因剧毒放射性“钋——210”中毒死亡,引起全世界的极大关注。
我国专家测定所有香烟中均含有微量的“钋——210”。
已知钋元素是原子最外层电子数为6的主族元素。
下列说法不正确的是()A. 钋——210与钋——209属于同位素B. 钋的氢化物(H2Po)比硫化氢稳定C. 钋元素与氧元素处于同一主族D. 钋——210(84210 Po)核内质子数为12617.同温同压下,等体积的两个密闭容器分别装有12C18O和14N2两种气体,关于这两个容器中气体的说法正确的是()A.质子数相等,质量数不相等 B.分子数、质量数都不相等C.分子数、质量数分别相等 D.原子数、中子数、质子数都相等18.R、Q为短周期中的两种元素,R元素原子的最外层电子数与次外层电子数之差的绝对值等于电子层数;Q元素的原子比R元素的原子多2个核外电子,则下列叙述中肯定不正确的是()A.原子半径:R<Q B.R和Q可形成离子化合物C.R和Q可形成共价化合物RQ2 D.R和Q可形成共价化合物RQ3第Ⅱ卷(56分)(1)在这些元素中,最活泼的金属元素是;元素的最高价氧化物对应水化物中,酸性最强的是。
(2)⑤的一种核素,中子数比质子数多4,写出这种核素的符号:(3)元素①的气态氢化物与其最高价氧化物的水化物反应的化学方程式。
(4)在④与⑧的单质中,化学性质较为活泼的是,请用离子方程式加以说明。
(5)用电子式表示⑦和最活泼的非金属元素形成化合物的过程_____________________ 20.(22分)(1)所含元素超过18种的周期是第周期。
(2)下列曲线分别表示元素的某种性质与核电荷的关系(Z为核电荷数,Y为元素的有关性质)。
把与下面元素有关的性质相符的曲线标号填入相应的空格中:①ⅡA族元素的价电子数;②第3周期元素的最高化合价;(3)Pb是82号元素,铅蓄电池是典型的可充型电池,它的正负极格板是惰性材料,电池总反应式为:Pb+PbO2+4H++2SO2-42PbSO4+2H2O请回答下列问题:①Pb在元素周期表中的位置_ _______②放电时:正极的电极反应式是______________;当消耗Pb 10.35g时,外电路通过________ mol电子,理论上负板的质量增加________g。
③反应中2mol PbSO4和2molH2O的总能量比1molPb和1mol PbO2和2mol硫酸的总能量_______(“高”、“低”、“无法判断”)(4)将锌片和银片浸入稀硫酸中组成原电池,两电极间连接一个电流计。
若该电池中两电极的总质量为60g,工作一段时间后,取出锌片和银片洗净干燥后称重,总质量为47g,书写正极反应式__________________________________________试计算产生氢气的体积(标准状况)___________________(5)下列反应断裂旧化学键需要的能量比形成新化学键放出的能量多的有_________①煅烧石灰石②氨水和醋酸混合③液化石油气燃烧④Ba(OH)2•8H2O固体和氯化铵固体充分混合⑤在家中用铁钉和醋酸制取少许氢气⑥人体内的呼吸作用⑦绿色植物的光合作用21.(10分)已知A、B、C、D、E是短周期中的五种元素,它们的原子序数依次增大。
A 和B可形成常见化合物BA4,一个BA4 分子中电子总数为10;C原子的最外层电子数是核外电子总数的34;D与C同一主族,E-比C2-多一个电子层。
试回答:(1)D与E两元素相比较,非金属性较强的是_______(填元素名称),请你自选试剂设计实验验证该结论(说明试剂、简单操作、实验现象);(2)A、C、D间可形成甲、乙两种微粒,它们均为负一价双原子阴离子且甲有18个电子,乙有l0个电子,则甲与乙反应的离子方程式为;(3)B和C形成的一种化合物是参与大气循环的气体,写出它的电子式________(4)A和C也可形成一种18电子分子,写出该分子的结构式__________________ 22.(10分)第一题:如果给核外电子足够的能量,这些电子便会摆脱原子核的束缚而离去。
核外电子离开该原子或离子所需要的能量主要受两大因素的影响:①原子核对核外电子的吸引力②形成稳定结构的倾向-1):(1)通过上述信息和表中的数据分析为什么锂原子失去核外第二个电子时所需的能量要远远大于失去第一个电子所需的能量。
(2分)(2)表中X可能为第三周期元素中的(填元素名称)。
Y是周期表中族元素。
(3)第二周期元素中,(填元素符号)元素原子失去核外第一个电子需要的能量最多。
第二题:现有四组物质的熔点数据如下表:据此回答下列问题:(1)A组属于晶体,其熔化时克服的微粒间的作用力是;(2)B组晶体共同的物理性质是(填序号);①有金属光泽②导电性③导热性④延展性⑤易溶于有机溶剂中(3)C组HF熔点反常是由于;(4)D组晶体可能具有的性质是(填序号);①硬度小②水溶液能导电③固体能导电④熔融状态能导电高一(11届)下学期3月月考化学试题答题纸19.(1) ____ ;。
(2)(3)。
(4)__________ ,________________ 。