高考数学第二轮专题复习教案数列的综合
高考数学二轮复习数列求和及其综合应用
(2)在各项均为正数的数列{an}中,a1=1,a2n+1-2an+1an-3a2n=0,Sn 是数列 {an}的前 n 项和,若对 n∈N*,不等式 an(λ-2Sn)≤27 恒成立,则实数 λ 的 取值范围为_(-__∞__,__1_7_]_.
∵a2n+1-2an+1an-3a2n=0, ∴(an+1+an)(an+1-3an)=0, ∵an>0,∴an+1=3an,又a1=1, ∴数列{an}是首项为1,公比为3的等比数列, ∴an=3n-1, Sn=11--33n=32n-12, ∴不等式 an(λ-2Sn)≤27 即 λ≤2Sn+2a7n=3n+32n-71-1 对 n∈N*恒成立,
所以 2an1
2an
=4,
所以an+1-an=2,
所以数列{an}是公差为2的等差数列,
因为a2,a4,a7成等比数列,
所以 a24=a2a7,
所以(a1+6)2=(a1+2)(a1+12), 解得a1=6,
所以an=6+2(n-1)=2n+4, 因为Sn为数列{bn}的前n项和,且bn是1和Sn的等差中项, 所以Sn+1=2bn, 当n≥2时,有Sn-1+1=2bn-1, 两式相减得bn=2bn-2bn-1,即bn=2bn-1, 当n=1时,有S1+1=b1+1=2b1, 所以b1=1, 所以数列{bn}是首项为1,公比为2的等比数列,所以bn=2n-1,
考向3 错位相减法
例3 (2022·上饶模拟)从①b5-b4=18b2,②S5=b4-2,③log3bn+1-1= log3bn这三个条件中任选一个,补充在下面问题中,并解答. 已知数列{an}的前n项和为Sn,数列{bn}是正项等比数列,且2an=an+1+ an-1(n≥2),S3=b3=9,b4=a14,________. (1)求数列{an}和{bn}的通项公式; 注:如果选择多个条件分别解答,按第一个解答计分.
高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)
城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。
高三数学复习教案:高考数学数列复习教案
高三数学复习教案:高考数学数列复习教案【】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。
因此小编在此为您编辑了此文:高三数学复习教案:高考数学数列复习教案希望能为您的提供到帮助。
本文题目:高三数学复习教案:高考数学数列复习教案【知识图解】【方法点拨】1.学会从特殊到一般的观察、分析、思考,学会归纳、猜想、验证.2.强化基本量思想,并在确定基本量时注重设变量的技巧与解方程组的技巧.3.在重点掌握等差、等比数列的通项公式、求和公式、中项等基础知识的同时,会针对可化为等差(比)数列的比较简单的数列进行化归与转化.4.一些简单特殊数列的求通项与求和问题,应注重通性通法的复习.如错位相减法、迭加法、迭乘法等.5.增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解.第1课数列的概念【考点导读】1. 了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数;2. 理解数列的通项公式的意义和一些基本量之间的关系;3. 能通过一些基本的转化解决数列的通项公式和前项和的问题。
【基础练习】1.已知数列满足,则 = 。
分析:由a1=0, 得由此可知: 数列是周期变化的,且三个一循环,所以可得:2.在数列中,若,,则该数列的通项 2n-1 。
3.设数列的前n项和为,,且,则 ____2__.4.已知数列的前项和,则其通项 .【范例导析】例1.设数列的通项公式是,则(1)70是这个数列中的项吗?如果是,是第几项?(2)写出这个数列的前5项,并作出前5项的图象;(3)这个数列所有项中有没有最小的项?如果有,是第几项? 分析:70是否是数列的项,只要通过解方程就可以知道;而作图时则要注意数列与函数的区别,数列的图象是一系列孤立的点;判断有无最小项的问题可以用函数的观点来解决,一样的是要注意定义域问题。
解:(1)由得:或所以70是这个数列中的项,是第13项。
数学二轮复习教案: 第一部分 专题三 数列 第一讲 等差数列、等比数列
专题三数列第一讲等差数列、等比数列[考情分析]等差数列、等比数列的判定及其通项公式在考查基本运算、基本概念的同时,也注重对函数与方程、等价转化、分类讨论等数学思想的考查;对等差数列、等比数列的性质考查主要是求解数列的等差中项、等比中项、通项公式和前n项和的最大、最小值等问题,主要是中低档题;等差数列、等比数列的前n项和是高考考查的重点。
年份卷别考查角度及命题位置201 7Ⅰ卷等差、等比数列的综合应用·T17201 5Ⅰ卷等差数列的通项公式及前n项和公式·T7等比数列的概念及前n项和公式·T13Ⅱ卷等差数列的通项公式、性质及前n项和公式·T5[真题自检]1.(2015·高考全国卷Ⅱ)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=( )A.5 B.7C.9 D.11解析:法一:∵a1+a5=2a3,∴a1+a3+a5=3a3=3,∴a3=1,∴S5=错误!=5a3=5.法二:∵a1+a3+a5=a1+(a1+2d)+(a1+4d)=3a1+6d=3,∴a1+2d =1,∴S5=5a1+错误!d=5(a1+2d)=5.解析:A2.(2015·高考全国卷Ⅰ)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=( )A。
错误!B。
错误!C.10 D.12解析:∵公差为1,∴S8=8a1+错误!×1=8a1+28,S4=4a1+6.∵S8=4S4,∴8a1+28=4(4a1+6),解得a1=错误!,∴a10=a1+9d=错误!+9=错误!。
答案:B3.(2015·高考全国卷Ⅰ改编)在数列{a n}中,a1=2,a n+1=2a n,S n 为{a n}的前n项和.若S n=126,求n的值.解析:∵a1=2,a n+1=2a n,∴数列{a n}是首项为2,公比为2的等比数列.又∵S n=126,∴错误!=126,∴n=6.等差数列、等比数列的基本运算[方法结论]1.两组求和公式(1)等差数列:S n=错误!=na1+错误!d;(2)等比数列:S n=错误!=错误!(q≠1).2.在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a1和d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量.[题组突破]1.(2017·贵阳模拟)等差数列{a n}的前n项和为S n,且a3+a9=16,则S 11=( )A .88B .48C .96D .176解析:依题意得S 11=11a 1+a 112=错误!=错误!=88,选A 。
高考数学专题复习 数列的综合应用教案 文 教案
福建省漳浦县道周中学2014年高考数学专题复习数列的综合应用教案文1.数列常与不等式结合,如比较大小、不等式恒成立、求参数范围等,需熟练应用不等式知识解决数列中的相关问题.2.数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率、银行信贷、分期付款、合理定价等.3.解答数列应用题的基本步骤(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的结构和特征.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到原实际问题中.4.数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)分期付款模型:设贷款总额为a,年利率为r,等额还款数为b,分n期还完,则b =r1+r n 1+r n-1a.[难点正本疑点清源]1.用函数的观点理解等差数列、等比数列(1)对于等差数列,由a n=a1+(n-1)d=dn+(a1-d),当d≠0时,a n是关于n的一次函数,对应的点(n,a n)是位于直线上的若干个离散的点.当d>0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常函数,对应的数列是常数列;d<0时,函数是减函数,对应的数列是递减数列. 若等差数列的前n项和为S n,则S n=pn2+qn (p、q∈R).当p=0时,{a n}为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.(2)对于等比数列:a n=a1q n-1.可用指数函数的性质来理解.①当a1>0,q>1或a1<0,0<q<1时,等比数列是递增数列;②当a1>0,0<q<1或a1<0,q>1时,等比数列{a n}是递减数列.③当q=1时,是一个常数列.④当q<0时,无法判断数列的单调性,它是一个摆动数列.2.解答数列综合问题的注意事项(1)要重视审题、精心联想、沟通联系;(2)将等差、等比数列与函数、不等式、方程、应用性问题等联系起来.题型一等差数列与等比数列的综合应用例1在等比数列{a n} (n∈N*)中,a1>1,公比q>0,设b n=log2a n,且b1+b3+b5=6,b1b3b5=0.(1)求证:数列{b n}是等差数列;(2)求{b n}的前n项和S n及{a n}的通项a n ;(3)试比较a n与S n的大小.探究提高在解决等差数列和等比数列综合题时,恰当地运用等差数列和等比数列的性质可以减少运算量,提高解题速度和准确度,如本例中就合理地应用了等差中项.已知数列{a n}中,a1=1,a2=2,且a n+1=(1+q)a n-qa n-1 (n≥2,q≠0).(1)设b n=a n+1-a n (n∈N*),证明:{b n}是等比数列;(2)求数列{a n}的通项公式;(3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,a n是a n+3与a n+6的等差中项. 题型二数列与函数的综合应用例2已知函数f(x)=log2x-log x2(0<x<1),数列{a n}满足f(2a n)=2n (n∈N*).(1)求数列{a n}的通项公式;(2)判断数列{a n}的单调性.探究提高本题融数列、方程、函数单调性等知识为一体,结构巧妙、形式新颖,着重考查学生的逻辑分析能力.已知定义域为R的二次函数f(x)的最小值为0,且有f(1+x)=f(1-x),直线g(x)=4(x -1)的图象被f(x)的图象截得的弦长为417,数列{a n}满足a1=2,(a n+1-a n)g(a n)+f(a n)=0 (n∈N*).(1)求函数f(x)的解析式;(2)求数列{a n}的通项公式;(3)设b n=3f(a n)-g(a n+1),求数列{b n}的最值及相应的n.题型三 数列与不等式的综合应用例3 已知数列{a n },{b n }满足a 1=14,a n +b n =1,b n +1=b n1-a 2n .(1)求b 1,b 2,b 3,b 4; (2)求数列{b n }的通项公式;(3)设S n =a 1a 2+a 2a 3+…+a n a n +1,求实数a 为何值时,4aS n <b n .探究提高 由a n +b n =1得到a n 的表达式,然后利用裂项相消法求得S n ,将4aS n <b n 转化为(a -1)n2+(3a -6)n -8<0对任意n ∈N *恒成立.利用二次函数的性质进行分析,设f (x )=(a -1)x 2+3(a -2)x -8,对x 2的系数分a =1,a >1及a <1三种情况进行分类讨论,从而求得使不等式成立的a 的取值范围.已知函数f (x )=2x +33x ,数列{a n }满足a 1=1,a n +1=f ⎝ ⎛⎭⎪⎫1a n ,n ∈N *,(1)求数列{a n }的通项公式;(2)令T n =a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1,求T n ; (3)令b n =1a n -1a n(n ≥2),b 1=3,S n =b 1+b 2+…+b n ,若S n <m -2 0032对一切n ∈N *成立,求最小正整数m .题型四 数列的实际应用例4 某市2008年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于4 750万平方米? (2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?(参考数据:1.084≈1.36,1.085≈1.47,1.086≈1.59)探究提高 解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题,这恰好是数学实际应用的具体体现.从社会效益和经济效益出发,某旅游县区计划投入资金进行生态环境建设,并以此发展旅游产业,根据规划,2010年投入800万元,以后每年投入将比上年减少15,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业有促进作用,预计今后的旅游业收入每年会比上年增加14.(1)设n 年内(2010年为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入? (参考数据:lg 2=0.301 0)15.用构造新数列的思想解题试题:(12分)已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n ·S n -1 (n ≥2).(1)求数列{a n }的通项公式a n ; (2)求证:S 21+S 22+…+S 2n ≤12-14n.审题视角 (1)从求证内容来看,首先要求出S n .(2)从S n 与S n -1的递推关系看,可考虑构造新数列⎩⎨⎧⎭⎬⎫1S n .(3)可考虑用放缩法证明. 规范解答(1)解 ∵a n =-2S n ·S n -1 (n ≥2),∴S n -S n -1=-2S n ·S n -1.两边同除以S n ·S n -1,得1S n -1S n -1=2 (n ≥2),[2分]∴数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,以d =2为公差的等差数列,[3分]∴1S n =1S 1+(n -1)·d =2+2(n -1)=2n ,∴S n =12n.[5分]将S n =12n 代入a n =-2S n ·S n -1,得a n=⎩⎪⎨⎪⎧12n =1,12n -2n 2n ≥2.[6分](2)证明 ∵S 2n =14n 2<14n n -1=14⎝ ⎛⎭⎪⎫1n -1-1n (n ≥2),S 21=14, ∴当n ≥2时,S 21+S 22+…+S 2n =14+14×2×2+…+14·n ·n<14+14⎝ ⎛⎭⎪⎫1-12+…+14⎝ ⎛⎭⎪⎫1n -1-1n=12-14n;[10分]当n =1时,S 21=14=12-14×1.综上,S 21+S 22+…+S 2n ≤12-14n.[12分]批阅笔记 (1)在数列的解题过程中,常常要构造新数列,使新数列成为等差或等比数列.构造新数列可以使题目变得简单,而构造新数列要抓住题目信息,不能乱变形.(2)本题首先要构造新数列⎩⎨⎧⎭⎬⎫1S n ,其次应用放缩法,并且发现只有应用放缩法才能用裂项相消法求和,从而把问题解决.事实上:14n 2<14n n -1,也可以看成一个新构造:b n =14n n -1. (3)易错分析:构造不出新数列⎩⎨⎧⎭⎬⎫1S n ,从而使思维受阻.不会作不等式的放缩.方法与技巧1.深刻理解等差(比)数列的性质,熟悉它们的推导过程是解题的关键.两类数列性质既有相似之处,又有区别,要在应用中加强记忆.同时,用好性质也会降低解题的运算量,从而减少差错.2.在等差数列与等比数列中,经常要根据条件列方程(组)求解,在解方程组时,仔细体会两种情形中解方程组的方法的不同之处.3.数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟它在解题中的重大作用,常用的数学思想方法有:“函数与方程”、“数形结合”、“分类讨论”、“等价转换”等.4.在现实生活中,人口的增长、产量的增加、成本的降低、存贷款利息的计算、分期付款问题等,都可以利用数列来解决,因此要会在实际问题中抽象出数学模型,并用它解决实际问题. 失误与防范1.等比数列的前n 项和公式要分两种情况:公比等于1和公比不等于1.最容易忽视公比等于1的情况,要注意这方面的练习.2.数列的应用还包括实际问题,要学会建模,对应哪一类数列,进而求解.专题四 数列的综合应用(时间:60分钟) A 组 专项基础训练题组 一、选择题1.(2011·安徽)若数列{a n }的通项公式是a n =(-1)n·(3n -2),则a 1+a 2+…+a 10等于( ) A.15B.12C.-12D.-152.(2010·福建)设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A.6B.7C.8D.93.设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f n(n ∈N *)的前n 项和是( ) A.n n +1B.n +2n +1C.nn -1D.n +1n二、填空题4.(2011·江苏)设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6成公差为1的等差数列,则q 的最小值是________.5.已知数列{a n }满足a 1=1,a 2=-2,a n +2=-1a n,则该数列前26项的和为_____________.6.在等差数列{a n }中,满足3a 4=7a 7,且a 1>0,S n 是数列{a n }前n 项的和,若S n 取得最大值,则n =________. 三、解答题7.已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的最小正整数n 的值.8.某人有人民币1万元,若存入银行,年利率为6%;若购买某种股票,年分红利为24%,每年储蓄的利息和买股票所分的红利都存入银行.(1)问买股票多少年后,所得红利才能和原来的投资款相等?(2)经过多少年,买股票所得的红利与储蓄所拥有的人民币相等?(精确到整年) (参考数据:lg 2≈0.301 0,lg 3≈0.477 1,lg 1.06≈0.025 3)B 组 专项能力提升题组 一、选择题1.{a n }是等差数列,a 2=8,S 10=185,从{a n }中依次取出第3项,第9项,第27项,…,第3n项,按原来的顺序排成一个新数列{b n },则b n 等于 ( )A.3n +1+2 B.3n +1-2C.3n+2D.3n-22.已知数列{a n }的通项公式为a n =log 2n +1n +2 (n ∈N *),设其前n 项和为S n ,则使S n <-5成立的自然数n( )A.有最小值63B.有最大值63C.有最小值31D.有最大值313.已知数列{a n }满足3a n +1+a n =4 (n ∈N *)且a 1=9,其前n 项和为S n ,则满足不等式|S n -n -6|<1125的最小正整数n 是 ( )A.5B.6C.7D.8二、填空题4.(2011·陕西)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为________米.5.将全体正整数排成一个三角形数阵: 1 2 3 4 5 6 7 8 9 10 ………………按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为__________.6.对正整数n ,若曲线y =x n(1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为____________. 三、解答题7.已知数列{a n }满足a 1=2,a n +1=a n -1n n +1.(1)求数列{a n }的通项公式;(2)设b n =na n ·2n,求数列{b n }的前n 项和S n .8.已知等差数列{a n }的首项a 1=1,公差d >0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项. (1)求数列{a n }的通项公式; (2)设b n =1na n +3 (n ∈N *),S n =b 1+b 2+…+b n ,是否存在最大的整数t ,使得对任意的n 均有S n >t 36总成立?若存在,求出t ;若不存在,请说明理由. 答案题型分类·深度剖析例1 (1)证明 ∵b n =log 2a n ,∴b n +1-b n =log 2a n +1a n=log 2q 为常数,∴数列{b n }为等差数列且公差d =log 2q . (2)S n =9n -n 22 a n =25-n (n ∈N *)(3)解 显然a n =25-n>0, 当n ≥9时,S n =n 9-n2≤0,∴n ≥9时,a n >S n .∵a 1=16,a 2=8,a 3=4,a 4=2,a 5=1,a 6=12,a 7=14,a 8=18,S 1=4,S 2=7,S 3=9,S 4=10,S 5=10,S 6=9,S 7=7,S 8=4,∴当n =3,4,5,6,7,8时,a n <S n ; 当n =1,2或n ≥9时,a n >S n .变式训练1 (1)证明 由题设a n +1=(1+q )a n -qa n -1 (n ≥2), 得a n +1-a n =q (a n -a n -1),即b n =qb n -1,n ≥2.由b 1=a 2-a 1=1,q ≠0, 所以{b n }是首项为1,公比为q 的等比数列.(2)a n =⎩⎪⎨⎪⎧1+1-q n -11-q , q ≠1n , q =1(3)解 由(2),当q =1时,显然a 3不是a 6与a 9的等差中项,故q ≠1. 由a 3-a 6=a 9-a 3可得q 5-q 2=q 2-q 8, 由q ≠0得q 3-1=1-q 6,①整理得(q 3)2+q 3-2=0,解得q 3=-2或q 3=1(舍去).于是q =-32. 另一方面,a n -a n +3=q n +2-q n -11-q =q n -11-q (q 3-1),a n +6-a n =q n -1-q n +51-q =q n -11-q(1-q 6).由①可得a n -a n +3=a n +6-a n , 即2a n =a n +3+a n +6,n ∈N *.所以对任意的n ∈N *,a n 是a n +3与a n +6的等差中项.例2 解 (1)由已知得log 22a n -1log 22a n =2n ,∴a n -1a n =2n ,即a 2n -2na n -1=0.∴a n =n ±n 2+1.∵0<x <1,∴0<2a n <1,∴a n <0.∴a n =n -n 2+1.(2)∵a n +1a n =n +1-n +12+1n -n 2+1=n +n 2+1n +1+n +12+1<1, 又∵a n <0,∴a n +1>a n , ∴{a n }是递增数列.变式训练2 (1)f (x )=(x -1)2(2)a n =⎝ ⎛⎭⎪⎫34n -1+1(3)解 b n =3(a n -1)2-4(a n +1-1),令b n =y ,u =⎝ ⎛⎭⎪⎫34n -1,则y =3⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫u -122-14=3⎝ ⎛⎭⎪⎫u -122-34. ∵n ∈N *,∴u 的值分别为1,34,916,2764,…,经比较916距12最近,∴当n =3时,b n 有最小值是-189256,当n =1时,b n 有最大值是0. 例3 (1)b 1=34,b 2=45,b 3=56,b 4=67(2)b n =n +2n +3(3)解 a n =1-b n =1n +3,∴S n =a 1a 2+a 2a 3+…+a n a n +1=14×5+15×6+…+1n +3n +4=⎝ ⎛⎭⎪⎫14-15+⎝ ⎛⎭⎪⎫15-16+…+⎝ ⎛⎭⎪⎫1n +3-1n +4=14-1n +4=n 4n +4. ∴4aS n -b n =an n +4-n +2n +3=a -1n 2+3a -6n -8n +3n +4.由条件可知(a -1)n 2+(3a -6)n -8<0在[1,+∞)上恒成立即可满足条件. 设f (x )=(a -1)x 2+3(a -2)x -8, 则a =1时,f (x )=-3x -8<0,恒成立;a >1时,由二次函数的性质知不可能成立; a <1时,对称轴x =-32·a -2a -1=-32⎝ ⎛⎭⎪⎫1-1a -1<0.f (x )在[1,+∞)上为单调递减函数. f (1)=(a -1)+(3a -6)-8=4a -15<0.∴a <154,∴a <1时,4aS n <b n 恒成立.综上知,a ≤1时,4aS n <b n 恒成立.变式训练3 (1)a n =23n +13(2)-49(2n 2+3n ) (3)2 012例4 解 (1)设中低价房面积形成数列{a n },由题意可知{a n }是等差数列,其中a 1=250,d =50, 则S n =250n +n n -12×50=25n 2+225n ,令25n 2+225n ≥4 750,即n 2+9n -190≥0,而n 是正整数,∴n ≥10.∴到2017年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米. (2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列,其中b 1=400,q =1.08,则b n =400×(1.08)n -1.由题意可知a n >0.85b n , 有250+(n -1)×50>400×(1.08)n -1×0.85.当n =5时,a 5<0.85b 5,当n =6时,a 6>0.85b 6,∴满足上述不等式的最小正整数n 为6.∴到2013年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 变式训练4 (1)a n =4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n ,b n =1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1(2)解 设经过n 年,旅游业的总收入超过总投入,由此b n -a n >0,即1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1-4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n >0,令x =⎝ ⎛⎭⎪⎫45n ,代入上式得5x 2-7x +2>0,解此不等式,得x <25,或x >1(舍去),即⎝ ⎛⎭⎪⎫45n <25,由此得n ≥5. 答 至少经过5年,旅游业的总收入才能超过总投入. 课时规范训练 A 组1.A2.A3.A4.33 5.-10 6.97.解 (1)设此等比数列为a 1,a 1q ,a 1q 2,a 1q 3,…,其中a 1≠0,q ≠0.由题意知:a 1q +a 1q 2+a 1q 3=28,① a 1q +a 1q 3=2(a 1q 2+2).②②×7-①得6a 1q 3-15a 1q 2+6a 1q =0, 即2q 2-5q +2=0,解得q =2或q =12.∵等比数列{a n }单调递增,∴a 1=2,q =2, ∴a n =2n.(2)由(1)得b n =-n ·2n,∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n ·2n). 设T n =1×2+2×22+…+n ·2n, ③ 则2T n =1×22+2×23+…+n ·2n +1.④由③-④,得-T n =1×2+1×22+…+1·2n-n ·2n +1=2n +1-2-n ·2n +1=(1-n )·2n +1-2,∴-T n =-(n -1)·2n +1-2.∴S n =-(n -1)·2n +1-2.要使S n +n ·2n +1>50成立, 即-(n -1)·2n +1-2+n ·2n +1>50,即2n>26.∵24=16<26,25=32>26,且y =2x是单调递增函数,∴满足条件的n 的最小值为5. 8.解 设该人将1万元购买股票,x 年后所得的总红利为y 万元,则y =24%+24%(1+6%)+24%(1+6%)2+…+24%(1+6%)x -1=24%(1+1.06+1.062+…+1.06x -1)=4(1.06x-1).(1)由题意,得4(1.06x-1)=1, ∴1.06x=54.两边取常用对数,得x lg 1.06=lg 54=lg 5-lg 4=1-3lg 2.∴x =1-3lg 2lg 1.06≈1-3×0.301 00.025 3≈4.(2)由题意,得4(1.06x-1)=(1+6%)x,∴1.06x=43.解得x ≈5.答 (1)买股票4年后所得的红利才能和原来的投资款相等; (2)经过大约5年,买股票所得的红利与储蓄所拥有的人民币相等. B 组1.A2.A3.C4.2 0005.n 2-n +626.2n +1-27.(1)a n =n +1n,n ∈N * (2)S n =n ·2n +18.解 (1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2,整理得2a 1d =d 2. ∵a 1=1,解得d =2,d =0(舍). ∴a n =2n -1 (n ∈N *). (2)b n =1na n +3=12n n +1=12⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =b 1+b 2+…+b n=12[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫1n -1n +1] =12⎝ ⎛⎭⎪⎫1-1n +1=n2n +1. 假设存在整数t 满足S n >t36总成立,又S n +1-S n =n +12n +2-n2n +1 =12n +2n +1>0,∴数列{S n }是单调递增的.∴S 1=14为S n 的最小值,故t 36<14,即t <9.又∵t ∈Z ,∴适合条件的t 的最大值为8.。
高考数学二轮复习:第八讲 数列综合
第八讲 数列综合★★★高考在考什么 【考题回放】1.已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于( B )A.3 B.2 C.1 D.2- 2.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.73. 在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于A .122n +- B.3n C. 2n D.31n-【解析】因数列{}n a 为等比,则12n n a q -=,因数列{}1na +也是等比数列, 则22121122212(1)(1)(1)22(12)01n n n n n n n n n n n n n a a a a a a a a a a a a a q q q +++++++++=++⇒+=++⇒+=⇒+-=⇒=即2n a =,所以2n S n =,故选择答案C 。
4.设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j ≠,{123}i j k ∈ 、,,,,),都有min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( B )A .10B .11C .12D .135. 已知正项数列{an},其前n 项和Sn 满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列{an}的通项an . 解析:解: ∵10Sn=an2+5an+6, ① ∴10a1=a12+5a1+6,解之得a1=2或a1=3. 又10Sn -1=an -12+5an -1+6(n≥2),② 由①-②得 10an=(an2-an -12)+6(an -an -1),即(an+an -1)(an -an -1-5)=0 ∵an+an -1>0 , ∴an -an -1=5 (n≥2).当a1=3时,a3=13,a15=73. a1, a3,a15不成等比数列∴a1≠3; 当a1=2时,a3=12, a15=72, 有a32=a1a15 , ∴a1=2, ∴an=5n -3.6.已知公比为(01)q q <<的无穷等比数列{}n a 各项的和为9,无穷等比数列{}2n a 各项的和为815.(I)求数列{}n a 的首项1a 和公比q ;(II)对给定的(1,2,3,,)k k n = ,设()k T 是首项为k a ,公差为21k a -的等差数列,求(2)T 的前10项之和;解: (Ⅰ)依题意可知,⎪⎩⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-=-32358119112121q a qa q a(Ⅱ)由(Ⅰ)知,1323-⎪⎭⎫⎝⎛⨯=n n a ,所以数列)2(T的的首项为221==a t ,公差3122=-=a d ,15539102121010=⨯⨯⨯+⨯=S ,即数列)2(T 的前10项之和为155.★★★高考要考什么本章主要涉及等差(比)数列的定义、通项公式、前n 项和及其性质,数列的极限、无穷等比数列的各项和.同时加强数学思想方法的应用,是历年的重点内容之一,近几年考查的力度有所增加,体现高考是以能力立意命题的原则.高考对本专题考查比较全面、深刻,每年都不遗漏.其中小题主要考查1()a d q 、、n n n a S 、、间相互关系,呈现“小、巧、活”的特点;大题中往往把等差(比)数列与函数、方程与不等式,解析几何 等知识结合,考查基础知识、思想方法的运用,对思维能力要求较高,注重试题的综合性,注意分类讨论.高考中常常把数列、极限与函数、方程、不等式、解析几何等等相关内容综合在 一起,再加以导数和向量等新增内容,使数列综合题新意层出不穷.常见题型:(1)由递推公式给出数列,与其他知识交汇,考查运用递推公式进行恒等变形、推理与综合能力.(2)给出Sn 与an 的关系,求通项等,考查等价转化的数学思想与解决问题能力.(3)以函数、解析几何的知识为载体,或定义新数列,考查在新情境下知识的迁移能力. 理科生需要注意数学归纳法在数列综合题中的应用,注意不等式型的递推数列. ★★ 突 破 重 难 点【范例1】已知数列{}n a ,{}n b 满足12a =,11b =,且11113114413144n n n n n n a a b b a b ----⎧=++⎪⎪⎨⎪=++⎪⎩(2n ≥)(I )令n n n c a b =+,求数列{}n c 的通项公式;(II )求数列{}n a 的通项公式及前n 项和公式n S .解:(I)由题设得11()2(2)n n n n a b a b n --+=++≥,即12n n c c -=+(2n ≥)易知{}n c 是首项为113a b +=,公差为2的等差数列,通项公式为21n c n =+.(II )解:由题设得111()(2)2n n n n a b a b n ---=-≥,令n n n d a b =-,则11(2)2n n d d n -=≥.易知{}n d 是首项为111a b -=,公比为12的等比数列,通项公式为112n n d -=. 由12112n n n n n a b n a b -+=+⎧⎪⎨-=⎪⎩,解得1122n n a n =++, 求和得21122n n n S n =-+++.【变式】在等差数列{}n a 中,11a =,前n 项和n S 满足条件242,1,2,1n n S n n S n +==+,(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记(0)na nn b a p p =>,求数列{}n b 的前n 项和n T 。
2020届数学(理)高考二轮专题复习课件:第二部分 专题二 第2讲 数列的求和及综合应用
[思维升华] 1.给出 Sn 与 an 的递推关系求 an,常用思路是:一 是利用 Sn-Sn-1=an(n≥2)转化为 an 的递推关系,再求其 通项公式;二是转化为 Sn 的递推关系,先求出 Sn 与 n 之 间的关系,再求 an. 2.形如 an+1=pan+q(p≠1,q≠0),可构造一个新的 等比数列.
解:(1)设等差数列{an}的公差为d,等比数列{bn}的 公比为q.
依题意,得33qq=2=31+5+2d4,d,解得dq==33,, 故an=3+3(n-1)=3n,bn=3×3n-1=3n. 所以{an}的通项公式为an=3n,{bn}的通项公式为bn =3n. (2)a1c1+a2c2+…+a2nc2n=(a1+a3+a5+…+a2n-1) +(a2b1+a4b2+a6b3+…+a2nbn)= n×3+n(n2-1)×6 +(6×31+12×32+18×33+…+6n×3n)=3n 2+6(1×31 +2×32+…+n×3n).
记Tn=1×31+2×32+…+n×3n,① 则3Tn=1×32+2×33+…+n×3n+1,② ②-①得,2Tn=-3-32-33-…-3n+n×3n+1= -3(11--33n)+n×3n+1=(2n-1)2 3n+1+3.
所以a1c1+a2c2+…+a2nc2n =3n2+6Tn =3n2+3(2n-12)·3n+1+9 =(2n-1)·32n+2+6n2+9.
从近年高考看,本讲主要考查的内容:(1)以等差(比) 数列为背景,考查等差(比)的通项与求和公式、分组转 化求和;(2)以简单的递推关系为背景,考查错位相减、 裂项相消、倒序相加等求和的基本方法.主要以解答题 的形式呈现,中档难度,且常与函数、不等式知识交 汇.
【例 1】 设数列{an}的前 n 项和为 Sn,对任意的正 整数 n,都有 an=5Sn+1 成立,bn=-1-log2|an|,数列 {bn}的前 n 项和为 Tn,cn=TbnTn+n1+1.
高考数学第二轮专题复习数列教案
高考数学第二轮专题复习数列教案二、高考要求1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 2.理解等差〔比〕数列的概念,掌握等差〔比〕数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题.3.了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明〞这一思想方法.三、热点分析1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式、极限的四那么运算法那么、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.2.有关数列题的命题趋势〔1〕数列是特殊的函数,而不等式那么是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点〔2〕数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。
〔3〕加强了数列与极限的综合考查题3.熟练掌握、灵活运用等差、等比数列的性质。
等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如a2a4+2a3a5+a4a6=25,可以利用等比数列的性质进行转化:a2a4=a32,a4a6=a52,从而有a32+2aa53+a52=25,即〔a3+a5〕2=25.4.对客观题,应注意寻求简捷方法解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中表达,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养。
高考数学二轮复习专题三 第2讲 数列求和及其综合应用
第2讲 数列求和及其综合应用[考情分析]数列求和常与数列的综合应用一起考查,常以解答题的形式出现,有时与函数、不等式综合在一起考查,难度中等偏上. 考点一 数列求和 核心提炼1.裂项相消法就是把数列的每一项分解,使得相加后项与项之间能够相互抵消,但在抵消的过程中,有的是依次项抵消,有的是间隔项抵消.常见的裂项方式有:1n (n +1)=1n -1n +1;1n (n +k )=1k ⎝⎛⎭⎫1n -1n +k ;1n2-1=12⎝⎛⎭⎫1n -1-1n +1;14n2-1=12⎝⎛⎭⎫12n -1-12n +1.2.如果数列{a n }是等差数列,{b n }是等比数列,那么求数列{a n ·b n }的前n 项和S n 时,可采用错位相减法.用错位相减法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写出“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式. 考向1 分组转化法求和例1 已知在等比数列{a n }中,a 1=2,且a 1,a 2,a 3-2成等差数列. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1an+2log 2a n -1,求数列{b n }的前n 项和S n .解 (1)设等比数列{a n }的公比为q ,由a 1,a 2,a 3-2成等差数列,得2a 2=a 1+a 3-2, 即4q =2+2q 2-2,解得q =2(q =0舍去), 则a n =a 1q n -1=2n ,n ∈N *.(2)b n =1an +2log 2a n -1=12n +2log 22n -1=12n +2n -1,则数列{b n }的前n 项和S n =⎝⎛⎭⎫12+14+…+12n +(1+3+…+2n -1) =12⎝⎛⎭⎫1-12n 1-12+12n (1+2n -1)=1-12n +n 2.考向2 裂项相消法求和 例2 (2020·莆田市第一联盟体学年联考)设数列{a n }的前n 项和为S n ,且S n =n 2-2n ,{b n }为正项等比数列,且b 1=a 1+3,b 3=6a 4+2. (1)求数列{a n }和{b n }的通项公式;(2)设c n =1an +1·log2bn +1,求{c n }的前n 项和T n .解 (1)由S n =n 2-2n ,得当n =1时,a 1=S 1=-1, 当n ≥2时,S n -1=(n -1)2-2(n -1)=n 2-4n +3,所以当n ≥2时,a n =S n -S n -1=2n -3,a 1=-1也满足此式.所以a n =2n -3,n ∈N *. 又b 1=a 1+3=2,b 3=6a 4+2=32,因为{b n }为正项等比数列,设{b n }的公比为q (q >0). 所以q 2=b3b1=16,即q =4,所以b n =b 1·q n -1=2·4n -1=22n -1,n ∈N *. (2)因为a n +1=2(n +1)-3=2n -1,b n +1=22n +1. 所以c n =1an +1·log2bn +1=1(2n -1)·log 222n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.所以T n =c 1+c 2+c 3+…+c n=12⎝⎛⎭⎫1-13+13-15+15-17+…+12n -1-12n +1 =12⎝⎛⎭⎫1-12n +1=n 2n +1.所以T n =n 2n +1.考向3 错位相减法求和例3 已知数列{a n }的前n 项和为S n ,a 1=2,a n >0,且a 2n +1-2a n +1a n -3a 2n =0. (1)求数列{a n }的通项公式;(2)设b n =log 3(1+S n ),求数列{a n b n }的前n 项和T n . 解 (1)由a 2n +1-2a n +1a n -3a 2n =0及a n >0, 得⎝⎛⎭⎫an +1an 2-2×an +1an -3=0,解得an +1an =3或an +1an =-1(舍),所以{a n }是等比数列,且公比q =3, 又a 1=2,所以a n =2·3n -1,n ∈N *. (2)因为S n =2(1-3n )1-3=3n-1,所以b n =log 3(1+S n )=n ,则a n b n =2n ·3n -1,所以T n =2×30+4×31+6×32+…+(2n -2)·3n -2+2n ·3n -1,① 所以3T n =2×31+4×32+6×33+…+(2n -2)·3n -1+2n ·3n ,②①-②,得(1-3)T n =2+2×31+2×32+2×33+…+2·3n -1-2n ·3n =2(1-3n )1-3-2n ·3n =(1-2n )·3n -1,所以T n =⎝⎛⎭⎫n -12·3n +12.规律方法 (1)分组转化法求和的关键是将数列通项转化为若干个可求和的数列通项的和差.(2)裂项相消法的基本思路是将通项拆分,可以产生相互抵消的项.(3)错位相减法求和,主要用于求{a n b n }的前n 项和,其中{a n },{b n }分别为等差数列和等比数列.跟踪演练 1 (1)已知函数f (n )=⎩⎨⎧n2,n 为奇数,-n2,n 为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 8等于( ) A .-16 B .-8 C .8 D .16 答案 C解析 当n 为奇数时,n +1为偶数,则a n =n 2-(n +1)2=-2n -1,所以a 1+a 3+a 5+a 7=-(3+7+11+15)=-36.当n 为偶数时,n +1为奇数,则a n =-n 2+(n +1)2=2n +1,则a 2+a 4+a 6+a 8=5+9+13+17=44.所以a 1+a 2+a 3+…+a 8=-36+44=8,故选C. (2)(2020·武汉江夏一中、汉阳一中联考)若首项为23的数列{a n }满足2(2n +1)a n a n +1+a n +1=a n ,则a 1+a 2+a 3+…+a 2 020等于( ) A.8 0804 041 B.4 0784 040 C.4 0404 041 D.4 0394 040 答案 C解析 依题意得a n ≠0,由2(2n +1)a n a n +1=a n -a n +1, 等式两边同时除以a n a n +1可得1an +1-1an=4n +2,则当n ≥2时,1an -1an -1=4n -2,1an -1-1an -2=4n -6,…,1a2-1a1=6,以上式子左右两边分别相加可得 1an -1a1=(6+4n -2)(n -1)2, 即1an =2n 2-12=(2n -1)(2n +1)2, 所以a n =2(2n -1)(2n +1)=12n -1-12n +1,当n =1时,a 1=23满足上式.故a 1+a 2+a 3+…+a 2 020=1-13+13-15+…+14 039-14 041=1-14 041=4 0404 041.(3)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1nb n =b n +1-1(n ∈N *).①求数列{a n }与{b n }的通项公式; ②记数列{a n b n }的前n 项和为T n ,求T n .解 ①由a 1=2,a n +1=2a n ,得a n =2n (n ∈N *). 由题意知:当n =1时,b 1=b 2-1,故b 2=2. 当n ≥2时,1n b n =b n +1-b n .整理得bn +1n +1=bn n ,又b22=b11,所以b n =n (n ∈N *). ②由①知a n b n =n ·2n ,因此T n =2+2·22+3·23+…+n ·2n , 2T n =22+2·23+3·24+…+n ·2n +1, 所以T n -2T n =2+22+23+…+2n -n ·2n +1. 故T n =(n -1)2n +1+2(n ∈N *).考点二 数列的综合问题 核心提炼数列与函数、不等式的综合问题是高考命题的一个方向,此类问题突破的关键在于通过函数关系寻找数列的递推关系,通过放缩进行等式的证明. 例4 (1)(2020·日照模拟)如图,在直角坐标系xOy 中,一个质点从A (a 1,a 2)出发沿图中路线依次经过B (a 3,a 4),C (a 5,a 6),D (a 7,a 8),…,按此规律一直运动下去,则a 2 017+a 2 018+ a 2 019+a 2 020等于( )A .2 017B .2 018C .2 019D .2 020 答案 C解析 由直角坐标系可知,A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),即a 1=1,a 2=1,a 3=-1,a 4=2,a 5=2,a 6=3,a 7=-2,a 8=4,…,由此可知,数列中偶数项是从1开始逐渐递增的,且都等于其项数除以2;每四个数中有一个负数,且为每组的第三个数,每组的第一个数为其组数,每组的第一个数和第三个数是互为相反数, 因为2 020÷4=505,所以a 2 017=505,a 2 018=1 009,a 2 019=-505,a 2 020=1 010, a 2 017+a 2 018+a 2 019+a 2 020=2 019. (2)(2020·洛阳第一高级中学月考)已知数列{a n }满足a 1+12a 2+…+1na n =n 2+n (n ∈N *),设数列{b n }满足b n =2n +1anan +1,数列{b n }的前n 项和为T n ,若T n <n n +1λ(n ∈N *)恒成立,则λ的取值范围是( ) A.⎝⎛⎭⎫14,+∞ B.⎣⎡⎭⎫14,+∞ C.⎣⎡⎭⎫38,+∞ D.⎝⎛⎭⎫38,+∞ 答案 D解析 因为a 1+12a 2+…+1na n =n 2+n (n ∈N *),所以 a 1+12a 2+…+1n -1a n -1=(n -1)2+(n -1)(n ∈N *,n ≥2),故1n a n =2n ,即a n =2n 2(n ≥2). 当n =1时,a 1=12+1=2,满足上式, 故a n =2n 2(n ∈N *).b n =2n +14n2×(n +1)2=14⎣⎡⎦⎤1n2-1(n +1)2,故T n =14⎣⎡⎦⎤⎝⎛⎭⎫112-122+⎝⎛⎭⎫122-132+…+1n2-1(n +1)2 =14⎣⎡⎦⎤1-1(n +1)2=n2+2n 4(n +1)2,故T n <n n +1λ(n ∈N *)恒成立等价于n2+2n 4(n +1)2<n n +1λ,即n +24(n +1)<λ恒成立,化简,得14+14(n +1)<λ, 因为14+14(n +1)≤14+18=38,故λ>38.易错提醒 (1)公式a n =S n -S n -1适用于所有数列,但易忽略n ≥2这个前提.(2)数列和不等式的综合问题,要注意条件n ∈N *,求最值要注意等号成立的条件,放缩不等式要适度. 跟踪演练2 (1)(2020·中国人民大学附属中学模拟)在数列{a n }中,已知a n =n 2+λn ,n ∈N *,则“a 1<a 2”是“{a n }是单调递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 若在数列{a n }中,已知a n =n 2+λn ,n ∈N *,a 1<a 2,则1+λ<4+2λ,解得λ>-3,若数列{a n }是单调递增数列,则对任意的n ∈N *都满足a n +1-a n =(n +1)2+λ(n +1)-n 2-λn =2n +1+λ>0,∴λ>-1-2n ,即λ>(-1-2n )max =-3,因此,“a 1<a 2”是“{a n }是单调递增数列”的充要条件.(2)设曲线y =2 020x n +1(n ∈N *)在点(1,2 020)处的切线与x 轴的交点的横坐标为x n ,令a n = log 2 020x n ,则a 1+a 2+…+a 2 019的值为( ) A .2 020 B .2 019 C .1 D .-1 答案 D解析 因为y ′=2 020(n +1)x n ,所以切线方程是y -2 020=2 020(n +1)(x -1),所以x n =nn +1,所以a 1+a 2+…+a 2 019=log 2 020(x 1·x 2·…·x 2 019) =log 2 020⎝⎛⎭⎫12×23×…×2 0192 020=log 2 02012 020=-1. 专题强化练一、单项选择题 1.(2020·聊城模拟)数列1,6,15,28,45,…中的每一项都可用如图所示的六边形表示出来,故称它们为六边形数,那么第10个六边形数为( )A .153B .190C .231D .276 答案 B解析 由题意知,数列{a n }的各项为1,6,15,28,45,…,所以a 1=1=1×1,a 2=6=2×3,a 3=15=3×5,a 4=28=4×7,a 5=45=5×9,…,a n =n (2n -1), 所以a 10=10×19=190.2.已知数列{a n }满足a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2020等于( )A .3B .2C .1D .0 答案 A解析 ∵a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,∴a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,……,故数列{a n }是周期为6的周期数列,且每连续6项的和为0,故S 2 020=336×0+a 2 017+a 2 018+a 2 019+a 2 020=a 1+a 2+a 3+a 4=3.故选A. 3.已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =bn +1bn=3,n ∈N *,则数列{ba n }的前10项和为( ) A.12×(310-1) B.18×(910-1) C.126×(279-1) D.126×(2710-1) 答案 D解析 因为a n +1-a n =bn +1bn=3,所以{a n }为等差数列,公差为3,{b n }为等比数列,公比为3, 所以a n =1+3(n -1)=3n -2,b n =1×3n -1=3n -1,所以na b =33n -3=27n -1,所以{}na b 是以1为首项,27为公比的等比数列,所以{}na b 的前10项和为1×(1-2710)1-27=126×(2710-1). 4.已知数列{a n }和{b n }的首项均为1,且a n -1≥a n (n ≥2),a n +1≥a n ,数列{b n }的前n 项和为S n ,且满足2S n S n +1+a n b n +1=0,则S 2 021等于( ) A .2 021 B.12 021 C .4 041 D.14 041答案 D解析 由a n -1≥a n (n ≥2),a n +1≥a n 可得a n +1=a n , 即数列{a n }是常数列,又数列{a n }的首项为1,所以a n =1,所以当S n S n +1≠0时,2S n S n +1+a n b n +1=0可化为2S n S n +1+b n +1=0, 因为S n 为数列{b n }的前n 项和,所以2S n S n +1+b n +1=2S n S n +1+(S n +1-S n )=0, 所以1Sn +1-1Sn=2,又1S1=1b1=1,因此数列⎩⎨⎧⎭⎬⎫1Sn 是以1为首项,2为公差的等差数列,所以1Sn =1+2(n -1)=2n -1,故S n =12n -1,即S n S n +1≠0.所以S 2 021=14 041.5.定义在[0,+∞)上的函数f (x )满足:当0≤x <2时,f (x )=2x -x 2;当x ≥2时,f (x )=3f (x -2).记函数f (x )的极大值点从小到大依次为a 1,a 2,…,a n ,…,并记相应的极大值依次为b 1,b 2,…,b n ,…,则S 20=a 1b 1+a 2b 2+…+a 20b 20的值为( ) A .19×320+1 B .19×319+1 C .20×319+1 D .20×320+1答案 A解析 当0≤x <2时,f (x )=2x -x 2=1-(x -1)2,可得a 1=1,b 1=1;当2≤x <4时,有0≤x -2<2,可得f (x )=3f (x -2)=3[1-(x -3)2],可得a 2=3,b 2=3;当4≤x <6时,有0≤x -4<2,可得f (x )=9f (x -4)=9[1-(x -5)2],可得a 3=5,b 3=9;…;a 20=39,b 20=319;….故S 20=a 1b 1+a 2b 2+…+a 20b 20=1×1+3×3+5×9+…+39×319,3S 20=1×3+3×9+5×27+…+39×320,两式相减可得-2S 20=1+2(3+9+27+…+319)-39×320=1+2×3×(1-319)1-3-39×320,化简可得S 20=1+19×320.故选A. 二、多项选择题6.若数列{a n }满足:对任意正整数n ,{a n +1-a n }为递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(n ∈N *),其中是“差递减数列”的有( ) A .a n =3n B .a n =n 2+1 C .a n =n D .a n =ln nn +1答案 CD解析 对于A ,若a n =3n ,则a n +1-a n =3(n +1)-3n =3,所以{a n +1-a n }不为递减数列,故数列{a n }不是“差递减数列”;对于B ,若a n =n 2+1,则a n +1-a n =(n +1)2-n 2=2n +1,所以{a n +1-a n }是递增数列,故数列{a n }不是“差递减数列”;对于C ,若a n =n ,则a n +1-a n =n +1-n =1n +1+n,所以{a n +1-a n }为递减数列,故数列{a n }是“差递减数列”;对于D ,若a n =lnn n +1,则a n +1-a n =ln n +1n +2-ln n n +1=ln ⎝ ⎛⎭⎪⎫n +1n +2·n +1n =ln ⎝⎛⎭⎫1+1n2+2n ,由于函数y =ln ⎝⎛⎭⎫1+1x2+2x 在(0,+∞)上单调递减,所以{a n +1-a n }为递减数列,故数列{a n }是“差递减数列”. 7.(2020·浙江改编)已知等差数列{a n }的前n 项和为S n ,公差d ≠0,a1d≤1.记b 1=S 2,b n +1=S 2n +2-S 2n ,n ∈N *,下列等式可能成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6 C .a 24=a 2a 8 D .b 24=b 2b 8答案 ABC解析 由题意,知b 1=S 2=a 1+a 2, b n +1=S 2n +2-S 2n =a 2n +1+a 2n +2, 可得b n =a 2n -1+a 2n (n >1,n ∈N *). 由{a n }为等差数列,可知{b n }为等差数列.选项A 中,由a 4为a 2,a 6的等差中项,得2a 4=a 2+a 6,成立.选项B 中,由b 4为b 2,b 6的等差中项,得2b 4=b 2+b 6,成立. 选项C 中,a 2=a 1+d ,a 4=a 1+3d ,a 8=a 1+7d . 由a 24=a 2a 8,可得(a 1+3d )2=(a 1+d )(a 1+7d ), 化简得a 1d =d 2,又由d ≠0,可得a 1=d ,符合a1d≤1,成立.选项D 中,b 2=a 3+a 4=2a 1+5d ,b 4=a 7+a 8=2a 1+13d , b 8=a 15+a 16=2a 1+29d .由b 24=b 2b 8,知(2a 1+13d )2=(2a 1+5d )(2a 1+29d ), 化简得2a 1d =3d 2, 又由d ≠0,可得a1d =32.这与已知条件a1d≤1矛盾.8.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x 的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论错误的是( ) A .S n =2T n B .T n =2b n +1 C .T n >a n D .T n <b n +1答案 ABC解析 由题意可得S n +3=3×2n ,S n =3×2n -3,a n =S n -S n -1=3×2n -1(n ≥2),当n =1时,a 1=S 1=3×21-3=3,满足上式,所以数列{a n }的通项公式为a n =3×2n -1(n ∈N *).设等比数列{b n }的公比为q ,则b 1q n -1+b 1q n =3×2n -1,解得b 1=1,q =2,数列{b n }的通项公式为b n =2n -1(n ∈N *),由等比数列的求和公式有T n =2n -1.则有S n =3T n ,T n =2b n -1,T n <a n ,T n <b n +1.三、填空题9.数列{a n }的通项公式为a n =1n +n +1,若该数列的前k 项之和等于9,则k =________.答案 99 解析 a n =1n +n +1=n +1-n ,故前n 项和S n =(2-1)+(3-2)+…+(n +1-n)=n +1-1,令S k =k +1-1=9,解得k =99. 10.设数列{a n }满足a 1=1,且an +1an=n +2n +1(n ∈N *),则数列{a n }的通项公式a n =________,数列⎩⎨⎧⎭⎬⎫1anan +1的前10项和为________. 答案n +12 53解析 因为an +1an =n +2n +1,所以a2a1=32,a3a2=43,a4a3=54,…,anan -1=n +1n (n ≥2),把它们左右两边分别相乘,得a n =n +12(n ≥2),当n =1时,a 1=1也符合上式,所以a n =n +12(n ∈N *).所以1anan +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,所以数列⎩⎨⎧⎭⎬⎫1anan +1的前10项和为4×⎝⎛⎭⎫12-13+13-14+…+111-112=4×⎝⎛⎭⎫12-112=53. 11.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则a 5=________,b 10=________. 答案 4 64解析 因为a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,所以a n ,a n +1是方程x 2-b n x +2n =0的两个根, 根据根与系数的关系,可得a n ·a n +1=2n , a n +a n +1=b n ,由a n ·a n +1=2n ,可得a n +1·a n +2=2n +1, 两式相除可得an +2an=2,所以a 1,a 3,a 5,…成公比为2的等比数列,a 2,a 4,a 6,…成公比为2的等比数列, 又由a 1=1,得a 2=2,所以a 5=1×22=4,a 10=2×24=32,a 11=1×25=32, 所以b 10=a 10+a 11=32+32=64. 12.在数列{a n }中,a 1+a22+a33+…+an n=2n -1(n ∈N *),且a 1=1,若存在n ∈N *使得a n ≤n (n +1)λ成立,则实数λ的最小值为________. 答案12解析 依题意得,数列⎩⎨⎧⎭⎬⎫an n 的前n 项和为2n -1,当n ≥2时,an n =(2n -1)-(2n -1-1)=2n -1,且a11=21-1=21-1,因此an n =2n -1(n ∈N *),an n (n +1)=2n -1n +1,记b n =2n -1n +1,则b n >0,bn +1bn =2(n +1)n +2=(n +2)+n n +2>n +2n +2=1,b n +1>b n ,数列{b n }是递增数列,数列{b n }的最小项是b 1=12.依题意得,存在n ∈N *使得λ≥an n (n +1)=b n 成立,即有λ≥b 1=12,λ的最小值是12.四、解答题13.(2020·新高考全国Ⅰ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8. (1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100. 解 (1)由于数列{a n }是公比大于1的等比数列, 设首项为a 1,公比为q ,依题意有⎩⎪⎨⎪⎧ a1q +a1q3=20,a1q2=8,解得⎩⎪⎨⎪⎧a1=2,q =2,或⎩⎪⎨⎪⎧a1=32,q =12(舍)所以{a n }的通项公式为a n =2n ,n ∈N *.(2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128, 所以b 1对应的区间为(0,1],则b 1=0; b 2,b 3对应的区间分别为(0,2],(0,3], 则b 2=b 3=1,即有2个1; b 4,b 5,b 6,b 7对应的区间分别为 (0,4],(0,5],(0,6],(0,7], 则b 4=b 5=b 6=b 7=2, 即有22个2;b 8,b 9,…,b 15对应的区间分别为(0,8],(0,9],…,(0,15],则b 8=b 9=…=b 15=3, 即有23个3;b 16,b 17,…,b 31对应的区间分别为(0,16],(0,17],…,(0,31], 则b 16=b 17=…=b 31=4,即有24个4;b 32,b 33,…,b 63对应的区间分别为(0,32],(0,33],…,(0,63], 则b 32=b 33=…=b 63=5,即有25个5;b 64,b 65,…,b 100对应的区间分别为(0,64],(0,65],…,(0,100], 则b 64=b 65=…=b 100=6,即有37个6.所以S 100=1×2+2×22+3×23+4×24+5×25+6×37=480.14.已知数列{a n }的前n 项和为S n ,满足S n =2a n -1(n ∈N *),数列{b n }满足nb n +1-(n +1)b n =n (n +1)(n ∈N *),且b 1=1.(1)证明数列⎩⎨⎧⎭⎬⎫bn n 为等差数列,并求数列{a n }和{b n }的通项公式;(2)若c n =(-1)n -1·4(n +1)(3+2log 2a n )(3+2log 2a n +1),求数列{c n }的前2n 项和T 2n ;(3)若d n =a n ·bn ,数列{d n }的前n 项和为D n ,对任意的n ∈N *,都有D n ≤nS n -a ,求实数a 的取值范围.解 (1)由nb n +1-(n +1)b n =n (n +1),两边同除以n (n +1),得bn +1n +1-bnn=1,从而数列⎩⎨⎧⎭⎬⎫bn n 为首项b11=1,公差d =1的等差数列,所以bnn=n (n ∈N *),数列{b n }的通项公式为b n =n 2(n ∈N *). 当n =1时,S 1=2a 1-1=a 1,所以a 1=1. 当n ≥2时,S n =2a n -1,S n -1=2a n -1-1, 两式相减得a n =2a n -1, 又a 1=1≠0,所以anan -1=2,从而数列{a n }为首项a 1=1,公比q =2的等比数列, 从而数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)c n =(-1)n -1·⎣⎢⎡⎦⎥⎤4(n +1)(2n +1)(2n +3) =(-1)n -1⎝⎛⎭⎫12n +1+12n +3,T 2n =c 1+c 2+c 3+…+c 2n -1+c 2n =13+15-15-17+…-14n +1-14n +3 =13-14n +3(n ∈N *).(3)由(1)得d n=a n·bn=n·2n-1,D n=1×1+2×21+3×22+…+(n-1)·2n-2+n·2n-1,①2D n=1×21+2×22+3×23+…+(n-1)·2n-1+n·2n.②①-②得,-D n=1+2+22+…+2n-1-n·2n=1-2n1-2-n·2n=2n-1-n·2n,所以D n=(n-1)·2n+1,由(1)得S n=2a n-1=2n-1,因为任意n∈N*,都有D n≤nS n-a,即(n-1)·2n+1≤n(2n-1)-a恒成立,所以a≤2n-n-1恒成立,记e n=2n-n-1,所以a≤(e n)min,因为e n+1-e n=[2n+1-(n+1)-1]-(2n-n-1) =2n-1>0,从而数列{e n}为递增数列,所以当n=1时,e n取最小值e1=0,于是a≤0. 所以a的取值范围为(-∞,0].。
高考数学二轮复习专题三数列第2讲数列的求和及综合应用课件文1205340-数学备课【全免费】
由 b1=2,所以 bn=2n-1+1. (3)cn=bnbann+1=bnb+nb1-n+b1 n=b1n-bn1+1, 所以 Tn=c1+c2+…cn=b11-b12+b12-b13+…+ b1n-bn1+1=b11-bn1+1=12-2n+1 1.
命题视角 3 错位相减法求和
cn=TbnTn+n+1 1=n2(2nn++11)2=n12-(n+1 1)2, 所以 An=1-(n+1 1)2=(nn2++12)n 2.
因此{An}是单调递增数列, 所以当 n=1 时,An 有最小值 A1=1-14=34;An 没有 最大值.
[规律方法] 1.给出 Sn 与 an 的关系求 an,常用思路是:一是利 用 Sn-Sn-1=an(n≥2)转化为 an 的递推关系,再求其通项 公式;二是转化为 Sn 的递推关系,先求出 Sn 与 n 之间的 关系,再求 an. 2.形如 an+1=pan+q(p≠1,q≠0),可构造一个新的 等比数列.
[变式训练] (2017·太原质检)已知数列{an}的前 n 项 和 Sn=2n+1-2,数列{bn}满足 bn=an+an+1(n∈N*).
(1)求数列{bn}的通项公式; (2)若 cn=log2an(n∈N*),求数列{bn·cn}的前 n 项和 Tn. 解:(1)由于 Sn=2n+1-2,n∈N*,
+2n.
[规律方法] 1.在处理一般数列求和时,一定要注意运用转化思 想.把一般的数列求和转化为等差数列或等比数列进行求 和.在利用分组求和法求和时,常常根据需要对项数 n 进行讨论,最后再验证是否可以合并为一个表达式. 2.分组求和的策略:(1)根据等差、等比数列分组; (2)根据正号、负号分组.
从而{an}的通项公式为 an=2n2-1. an
高考数学复习知识点讲解教案第38讲 数列的综合问题
4.某商场为了满足广大数码爱好者的需求,开展商品分期付款活动.已知某商品一次性付款的金额为元,计划以分期付款的形式等额分成 期付清,每期期末所付款是元,每期利率为,则 _ _________.
[解析] 由题意得 ,, .
5.假设每次用相同体积的清水清洗一件衣服,且每次能洗去污垢的 ,那么至少要清洗___次才能使存留的污垢在 以下.
3.[教材改编] 假设某银行的活期存款年利率为 ,某人存入10万元后,既不加进存款也不取款,每年到期利息连同本金自动转存.如果不考虑利息税及利率的变化,经过年到期时的存款余额为万元,那么 ________________________.
,
[解析] 由题意得, ,, ,则易知 .
题组二 常错题
(1) 求数列 的通项公式;
解:因为,所以,,故,,所以等比数列 的公比,故,所以,即等比数列 的通项公式为 .
(2) 记,的前项和分别为,,求满足 的所有数对 .
解: 由已知得,由(1)可知 ,因为,所以 ,则,可得,因为为正整数, ,所以,8,10,则当时,,当时, ,当时,,故满足条件的所有数对为,, .
[总结反思]解决与数列有关的实际问题的一般步骤:首先要认真阅读,学会翻译(数学化),其次考虑用熟悉的数列知识建立数学模型,然后求出问题的解,最后还需验证求得的解是否符合实际.
变式题(1) 某牧场2022年年初牛的存栏数为1200头,计划以后每年存栏数的增长率为 ,且在每年年底卖出100头牛,按照该计划预计_______年年初牛的存栏量首次超过8900头.(参考数据:, )
所以数列是公比为2的等比数列,又 ,,所以,即 ,所以,可得.因为,所以 ,则,由,得 ,可得,所以不等式的解有无限个,故D正确.故选 .
高三数学二轮复习:专题二 数列
(2)若数列an+bn是首项为 1,公比为 2 的等比数列,求数列{bn}的前 n 项和. 解 因为数列{an+bn}是首项为1,公比为2的等比数列, 所以an+bn=2n-1, 因为an=2n-1,所以bn=2n-1-(2n-1). 设数列{bn}的前n项和为Sn, 则Sn=(1+2+4+…+2n-1)-[1+3+5+…+(2n-1)] =11--22n-n1+22n-1=2n-1-n2, 所以数列{bn}的前n项和为2n-1-n2(n∈N*).
热点一 等差数列、等比数列的运算
1.通项公式 等差数列:an=a1+(n-1)d; 等比数列:an=a1·qn-1. 2.求和公式 等差数列:Sn=na1+ 2 an=na1+nn2-1d; 等比数列:Sn=a111--qqn=a11--aqnq(q≠1).
3.性质 若m+n=p+q, 在等差数列中am+an=ap+aq; 在等比数列中am·an=ap·aq.
板块三 专题突破 核心考点
专题二 数 列
第1讲 等差数列与等比数列
[考情考向分析]
1.等差、等比数列基本量和性质的考查是高考热点,经常以小 题形式出现. 2.数列求和及数列与函数、不等式的综合问题是高考考查的重 点,考查分析问题、解决问题的综合能力.
内容索引
热点分类突破 真题押题精练
热点分类突破
押题依据 解析 答案
2.在等比数列{an}中,a3-3a2=2,且5a4为12a3和2a5的等差中项,则
{an}的公比等于
A.3
B.2或3
√C.2
D.6
押题依据 等差数列、等比数列的综合问题可反映知识运用的综合性和 灵活性,是高考出题的重点.
押题依据 解析 答案
3.已知各项都为正数的等比数列{an}满足 a7=a6+2a5,存在两项 am,an 使得 am·an=4a1,则m1 +4n的最小值为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第26课时 数列的综合
一、基础练习
1、已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于______
2、f(n)=1+2+3+…+n ,则f(n 2)=______
3、等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列,则{a n }前20项的和S 20=_____
4、数列{a n }中,a 1=1,a n 、a n+1是方程x 2-(2n+1)x+
1n
b =0的两个根,数列{b n }的前n 项和S n =______
5、某人从2003年起,每年1月1日到银行存入a 元(一年定期),若年利率为r 保持不变,且每年到期存款均自动转为新的一年定期,到2009年1月1日将所有存款及利息全部取回,他可取回的钱数为________
二、例题
例1:1993年,某内河可供船只航行的河段长1000km ,但由于水资源的过度使用,促使河水断流,从1994年起,该内河每年船只可行驶的河段长度仅为上一年的三分之二,试求:
(1)到2002年,该内河可行驶的河段长度为多少公里?
(2)若有一条船每年在该内河上行驶一个来回,问从1993年到2002年这条船航行的总路程为多少公里?
例2:已知函数y=f(x)的图象是自原点出发的一条折线,当n ≤y ≤n+1(n=0,1,2,…)时,该图象是斜率为b n 的线段(其中正常数b ≠1),设数列{x n }由f(x n )=n(n=1,2,…)定义。
(1)求x 1,x 2和x n 的表达式。
(2)求f(x)的表达式,并写出其定义域。
例3: 已知函数y=f(x)对任意的实数x 、y 都有f(x+y)=f(x)f(y),且f(1)≠0。
(1)设a n =f(n),(n ∈N*),S n =1n i n a =∑,设b n =
21n n
S a +,且{b n }为等比数列,求a 1的值。
(2)在(1)的条件下,设c n =2()72n n n a b n n
++-,问:是否存在最大的整数m ,使得对于任意n ∈N*,均有c n >
3
m ?若存在,求出m 的值;若不存在,请说明理由。
三、巩固练习
1、已知
2、a 、2+a 成等差数列,且0<log m a<1,则m 的取值范围为________________ 2、设数列{a n }的前n 项和为S n ,S n =1(31)2
n a -(对于所有n ≥1),且a 4=54,则a 1=__________
3、已知n 次多项式P n (x)=a 0x n +a 1x n-1+…+a n-1x+a n ,如果有在一种算法中,计算x 0k (k=2,3,4,…,n)的值需要k-1次乘法,计算P 3(x 0)的值共需要9次运算(6次乘法,3次加法),那么计算P n (x 0)的值共需要________次运算。
下面给出一种减少运算次数的算法:P 0(x)=a 0,P k+1(x)=xP k (x)+a k+1(k=0,1,2,…,n-1),利用该算法,计算P 3(x 0)的值共需要6次运算,计算P n (x 0)的值共需要_________次运算。
4、在[1,200]内既不是2的倍数,又不是3的倍数的所有整数和为_________
5、同一个平面内有n 个圆,其中每两个圆都有两个不同交点,并且三个圆不过同一点,则这n 个圆把平面分成__________部分。