七年级上《图形认识初步》测验试卷

合集下载

七年级数学上学期第四单元几何图形初步测试卷5套带答案

七年级数学上学期第四单元几何图形初步测试卷5套带答案

第4章 单元测试题(时间100分钟 满分100分)一、选择题:(每小题3分,共30分)1.如图1所示的棱柱有( )A.4个面B.6个面C.12条棱D.15条棱C(2)A DB2.如图2,从正面看可看到△的是( )3.如图3,图中有( )A.3条直线B.3条射线C.3条线段 D.以上都不对4.下列语句正确的是( )A.如果PA=PB,那么P是线段AB的中点;B.作∠AOB的平分线CDC.连接A、B两点得直线AB;D.反向延长射线OP(O为端点)5.如图4,比较∠α、∠β、∠γ 的大小得( )A. ∠γ>∠β>∠α;B. ∠α=∠β;C. ∠γ>∠α>∠β;D. ∠β>∠α>∠γ.6.5点整时,时钟上时针与分钟之间的夹角是( )A.210°B.30°C.150°D.60°7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( )A.互余B.互补C.既不互余也不互补D.不确定8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( )A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对9.如果∠α=3∠β, ∠α=2∠θ,则必有( )2310.如图5所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为( )A.8°B.4°C.2°D.1°二、填空题:(每小题3分,共30分)11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.13.57.32°=_______°_______′_______″;27°14′24″=_____°.14.已知∠a=36°42′15″,那么∠a 的余角等于________.15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.航线铁路公路(6)A B18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……,____________cm.20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线.三、解答题:(21、24、25、26每题6分,22、23题每题8分)21.根据下列语句画图:(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC;(3)反向延长OC 得射线OD;(4)分别在射线OA、OB、OD 上画线段OE=OF=OG=2cm;(5)连接EF、EG、FG;(6)你能发现EF、EG、FG 有什么关系?∠EFG、∠EGF、∠GEF 有什么关系?22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长.23.如图,直线AB、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线.(1)求∠2和∠3的度数.(2)OF平分∠AOD吗?为什么?24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.25.测量员沿着一块地的周围测绘.从A向东走600米到B,再从B向东南(∠ABC= 135°)走500米到C,再从C向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA的长(精确到10米)和DA的方向(精确到1°).北D CA B26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.参考答案一、选择题1.D2.C3.C4.D5.C6.C7.B8.B9.C 10.B二、填空题11.12cm 12.两点之间,线段最短 13.57、19、12;27.2414. 53°17′45″ 15.同角的补角相等16.140° 17.90 18.180°;19°38′29″. 19. 20.1或4或6三、解答题21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°22.AM=7cm或3cm23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.第4章 单元测试题2检测时间:45分钟,满分:100分班级 学号 姓名 得分一、填空题:(每空2分,共46分)1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 。

2022七年级数学上册第4章图形的初步认识检测题新版华东师大版

2022七年级数学上册第4章图形的初步认识检测题新版华东师大版

七年级数学上册第4章图形的初步认识检测题新版华东师大版(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.数轴是一条( B )A.射线B.直线C.线段D.以上都是2.下列四个几何体中,是三棱柱的为( C )3.下列说法中正确的是( A )A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类4.(2022·宁波)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是( C)5.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为( A )A.-3 B.-2 C.-1 D.16.(2021·随州)如图是由4个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是( A )A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同第6题图第8题图第9题图第10题图7.下列说法错误的是( B )A .两个互余的角都是锐角B .一个角的补角大于这个角本身C .互为补角的两个角不可能都是锐角D .互为补角的两个角不可能都是钝角8.(2021·河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是( A )A .A 代表B .B 代表C .C 代表D .B 代表9.如图,已知∠AOB 是直角,∠AOC 是锐角,ON 平分∠AOC,OM 平分∠BOC,则∠MON 等于( A )A .45°B .45°+12 ∠AOC C .60°-12∠AOC D .不能计算10.如图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面积是( B )A .80-2πB .80+4πC .80D .80+6π 二、填空题(每小题3分,共15分)11.(北京中考)在如图所示的几何体中,其三视图中有长方形的是__①②__.(写出所有正确答案的序号)第11题图第12题图第13题图12.如图,已知点A ,O ,C 在同一直线上,OE 平分∠AOB,OF 平分∠BOC,则∠EOF 的度数为__90__°.13.如图,已知AB =8 cm ,BD =3 cm ,C 为AB 的中点,则线段CD 的长为__1__cm . 14.经过一点A 画直线,可以画__无数__条;过不在同一直线上三点中的任意两点画直线,一共可能画__3__条.15.(青岛中考)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走__16__个小立方块.三、解答题(共75分)16.(8分)已知平面上四点A ,B ,C ,D ,如图: (1)画直线AB ; (2)画射线AD ;(3)直线AB ,CD 相交于点E ;(4)连结AC ,BD 相交于点F.解:作图略17.(9分)如图,(1)∠AOC 是哪两个角的和; (2)∠AOB 是哪两个角的差;(3)如果∠AOB=∠COD,那么∠AOC 与∠DOB 相等吗? 解:(1)∠AOC 是∠AOB 与∠BOC 的和 (2)∠AOC 与∠BOC 的差或∠AOD 与∠BOD 的差 (3)相等.理由如下:∵∠AOB=∠COD,∴∠AOB +∠BOC=∠COD+∠BOC,即∠AOC=∠BOD18.(9分)如图,B ,C 两点把线段AD 分成2∶4∶3三部分,CD =6 cm . (1)求AD 的长;(2)若M 是AD 的中点,求线段MC 的长.解:(1)∵AB∶BC∶CD=2∶4∶3,∴CD =39 AD =13 AD ,∵CD =6,∴AD =3CD =18 cm (2)由(1)知AD =18,∵M 是AD 的中点,∴MD =12 AD =12 ×18=9(cm ),∴MC =MD -CD =9-6=3(cm )19.(9分)一个正方体六个面分别标有字母A,B,C,D,E,F,其展开图如图所示,已知:A=x2-2xy,B=A-C,C=3xy+y2,若该正方体相对两个面上的多项式的和相等,试用x,y的代数式表示多项式D,并求当x=-1,y=-2时,多项式D的值.解:由展开图可知A与C相对,B与D相对,∴B+D=A+C,又∵A=x2-2xy,B=A-C,C=3xy+y2,则D=A+C-B=A+C-(A-C)=2C=2(3xy+y2)=6xy+2y2,当x=-1,y=-2时,6xy+2y2=12+8=20,故当x=-1,y=-2时,多项式D的值是2020.(9分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,(1)求∠BOC的度数;(2)通过计算判断OE是否平分∠BOC.解:(1)∠BOC=180°-∠AOC=180°-50°=130°(2)∵OD平分∠AOC,∴∠COD=1 2∠AOC=12×50°=25°.∵∠DOE=90°,∴∠COE=90°-∠COD=90°-25°=65°,∴∠BOE=∠BOC-∠COE=130°-65°=65°,∴∠COE=∠BOE,∴OE平分∠BOC21.(10分)如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m°的角与n°的角互余.(1)①若m=50,则射线OC的方向是__北偏东40°__;②图中与∠BOE 互余的角有__∠BOS,∠EOC__,与∠BOE 互补的角有__∠BOW,∠COS__; (2)若射线OA 是∠BON 的平分线,则∠BOS 与∠AOC 是否存在确定的数量关系?如果存在,请写出你的结论以及计算过程;如果不存在,请说明理由.解:(2)∠AOC=12 ∠BOS.因为射线OA 是∠BON 的平分线,所以∠NOA=12 ∠BON.因为∠BOS+∠BON=180°,所以∠BON=180°-∠BOS.所以∠NOA=12 ∠BON =90°-12 ∠BOS.因为∠NOC+∠BOS=90°,所以∠NOC=90°-∠BOS.所以∠AOC=∠NOA-∠NOC=90°-12∠BOS-(90°-∠BOS)=12∠BOS22.(10分)如图①,已知线段AB =16 cm ,点C 为线段AB 上的一个动点(点C 不与A ,B 重合),点D ,E 分别是AC 和BC 的中点.(1)求DE 的长;(2)知识迁移:如图②,已知∠AOB=130°,过角的内部任一点C 画射线OC ,若OD ,OE 分别平分∠AOC 和∠BOC,试说明∠DOE 的大小与射线OC 的位置无关.解:(1)∵点D ,E 分别是AC 和BC 的中点,∴DC =12 AC ,CE =12 BC ,∴DE =DC +CE =12AC +12 BC =12 (AC +BC)=12 AB =12 ×16=8(cm ) (2)∵OD,OE 分别平分∠AOC 和∠BOC,∴∠DOC =12 ∠AOC,∠EOC =12 ∠BOC,∴∠DOE =∠DOC+∠EOC=12 (∠AOC+∠BOC)=12 ∠AOB=65°,∴∠DOE 为一定值,与射线OC 的位置无关23.(11分)如图①所示,将一副三角尺的直角顶点重合在点O 处. (1)①∠AOD 和∠BOC 相等吗?说明理由;②∠AOC 和∠BOD 在数量上有何关系?说明理由;(2)若将这副三角尺按图②所示摆放,三角尺的直角顶点重合在点O 处. ①∠AOD 和∠BOC 相等吗?说明理由;②∠AOC 和∠BOD 在(1)中的数量关系还成立吗?说明理由.解:(1)①相等.理由:因为∠AOD=90°+∠BOD,∠BOC=90°+∠BOD,所以∠AOD 和∠BOC相等②∠AOC+∠BOD=180°.理由:因为∠AOC+90°+∠BOD+90°=360°,所以∠AOC+∠BOD=180°(2)①相等.理由:因为∠AOD=90°-∠BOD,∠BOC=90°-∠BOD,所以∠AOD和∠BOC相等②成立.理由:因为∠AOC=90°+90°-∠BOD,所以∠AOC +∠BOD=180°。

第4章图形的初步认识单元测试卷20212022学年华东师大版七年级上册数学.docx

第4章图形的初步认识单元测试卷20212022学年华东师大版七年级上册数学.docx

2021-2022学年华东师大新版七年级上册数学《第4章图形的初步认识》单元测试卷一. 选择题1.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中A, B, C,。

中的()位置接正方形.2.下列几何体中,是圆锥的为(4.如图所示的物体是一个几何体,从正面看到的图形是(B. C. D.5.如图是一个由4个相同的正方体组成的立体图形,则它的主视图为(A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹9.把14个棱长为1的正方体在地面上堆叠如图所示的立体,然后将露出的表面部分涂成红色,那么红色部分的面积为()A. 21B. 24C. 33D. 3710.如图所示是一个三棱柱,画出它的主视图和左视图均正确的是()主视图左视图二. 填空题11 •如果一个六棱柱的一条侧棱长为5cm,那么所有侧棱之和为12.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为主视方向13.请你写出一种几何体,使得它的主视图、左视图和俯视图都一样,它是.14.若一个棱柱有30条棱,那么该棱柱有个面.15.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可).16.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走个小正方体.I上面7正面17.如图所示,在直角三角形中,以其中一条直角边所在的直线为轴旋转一周,得到几何体的体积为.(结果保留TT)18.长方体是一个立体图形,它有个面,条棱,个顶点.19.一个正〃棱柱共有15条棱,一条侧棱的长为5cm, 一条底面边长为3cm,则这个棱柱的侧面积为cnr.20.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体.三. 解答题21.画出如图图形的三视图.23.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为8cm.宽为4cm的长方形,绕它的一条边所在的直线旋转一周,求得到的圆柱体的体积是多少?24.已知一个直棱柱有8个面,它的底面边长都是5ce侧棱长都是4cm.(1)它是几棱柱?它有多少个顶点?多少条棱?(2)这个棱柱的所有侧面的面积之和是多少?25.由7个相同的小立方块搭成的几何体如图所示,(1)请画出它的三视图?(2)请计算它的表面积?(棱长为1)IF而26.如图,如图几何体是由若干棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.图①图②(1) 第1个几何体中只有2个面涂色的小立方体共有 个.第3个几何体中只有2个面涂色的小立方体共有 个.(2) 求出第100个几何体中只有2个面涂色的小立方体的块数.(3) 求出前100个几何体中只有2个面涂色的小立方体的块数的和.27. 如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱, 6个顶点,观察图形,填写下面的空. (1)四棱柱有——个面,_ ___ 条棱,_ __ 个顶点; (2)六棱柱有— —个面,_ ___ 条棱,— __ 个顶点;(3) 由此猜想”棱柱有 个面,条棱,个顶点.三棱柱四棱柱五棱柱六棱柱参考答案与试题解析一.选择题1.解:如图所示:根据立方体的展开图可知,不能选择图中A的位置接正方形.故选:A.2.解:观察可知,C选项图形是圆锥.故选:C.3.解:A、该几何体为四棱柱,不符合题意;3、该几何体为圆锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.4.解:该几何体是一个圆台,从正面看到的图形是一个等腰梯形,故选C.5.解:根据题干分析可得,从正面看到的图形是| | ..故选:A.6.解:A、圆柱的主视图和左视图都是长方形,俯视图是圆,故此选项错误;3、长方体的三视图不相同,故此选项错误;。

七年级数学人教版图形认识初步(点、线、面、体)练习题

七年级数学人教版图形认识初步(点、线、面、体)练习题

图形认识初步——点、线、面、体学习要求知道点是几何学中最基本的概念.点动成线,线动成面,面动成体.一、填空题1.面与面相交得到______线与线相交得到______圆锥的侧面和底面相交成______条线,这条线是______的(填“直”或“曲”).2.如图所示的几何体是四棱锥,它是由______个三角形和一个形组成的.3.三棱柱有______个顶点,______个面,______条棱,______条侧棱,______个侧面,侧面形状是______形,底面形状是______形.4.笔尖在纸上划过就能写出汉字,这说明了______;汽车的雨刮器摆动就能刮去挡风玻璃上的雨滴,这说明了______;长方形纸片绕它的一边旋转形成了一个圆柱体,这说明了______.二、选择题5.按组成面的侧面“平”与“曲”划分,与圆柱为同一类的几何体是( ).(A)圆锥(B)长方体(C)正方体(D)棱柱6.圆锥的侧面展开图不可能是( ).(A)小半个圆(B)半个圆(C)大半圆(D)圆7.将下面的直角梯形绕直线l旋转一周,可以得到如下图所示的立体图形的是( ).8.下列说法错误的是( ).(A)长方体、正方体都是棱柱(B)棱柱的侧棱长都相等(C)棱柱的侧面都是三角形(D)如果棱柱的底面各边长相等,那么它的各个侧面的面积一定相等综合、运用、诊断三、解答题9.如图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连.10.如图,说出下列各几何体的名称,哪些可以由平面图形的旋转得到?11.观察图中的圆柱和棱柱:(1)棱柱、圆柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线,它们是直的吗?(3)棱柱有几个顶点?经过每个顶点有几条棱?12.图(1)、(2)是否是几何体的展开平面图,先想一想,再折一折,如果是,请说出折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.(1) (2)13.已知一个长方体,它的长比宽多2cm,高比宽多1cm,而且知道这个长方体所有棱长的和为48cm,则这个长方体的长、宽、高各是多少?拓展、探究、思考14.下面有编号Ⅰ~Ⅸ的九个多面体.(1)如果我们用V表示多面体的顶点数,E表示多面体的棱数,F表示多面体的面数.请分别数一下这些多面体的V,E,F各是多少?(2)想一想,V,E,F之间有什么关系?①面数F是否随顶点数V的增大而增大?答:____________________________________________________________;②棱的数目E是否随顶点的数目V的增大而增大?答:____________________________________________________________;③V+F与E之间有何关系?答:____________________________________________________________.。

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、中午12点15分时,钟表上的时针和分针所成的角是()A.90ºB.75ºC.82.5ºD.60º2、点A (4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90° D.绕原点顺时针旋转90°3、如图,在中,将绕点逆时针旋转得到使点落在边上,连接,则的长度是()A. B. C. D.4、如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BE的长为()A.1B.2C.3D.45、如图,直线 AB 与 CD 相交于点 O , OE 平分∠AOC,且∠AOC=80°,则∠BOE 的度数为()A. B. C. D.6、如图,已知∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD=82°。

要使OD∥AC,直线OD绕点O按逆时针方向至少旋转( )度。

A.12B.18C.22D.287、能用∠α、∠AOB、∠O三种方式表示同一个角的图形是()A. B. C. D.8、如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()A. B. C. D.9、已知:如图,在等边△ABC中取点P,使得PA,PB,PC的长分别为3,4,5,将线段AP 以点A为旋转中心顺时针旋转60°得到线段AD,连接BD,下列结论:①△ABD可以由△APC绕点A顺时针旋转60°得到;②点P与点D的距离为3;③∠APB=150°;④S△APC+S△APB=6+,其中正确的结论有()A.①②④B.①③④C.①②③D.②③④10、如图所示,在正方形ABCD中,AB=4,点O在AB上,且OB=1,点P是BC上一动点,连接OP,将线段OP绕点O逆时针旋转90°得到线段OQ.要使点Q恰好落在AD 上,则BP的长是( )A.3B.2C.1D.无法确定11、有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图②所示,则旋转角∠BAD的度数为()A.15°B.30°C.45°D.60°12、某校七年级在下午3:00开展“阳光体育”活动.下午3:00这一时刻,时钟上分针与时针所夹的角等于()A.30°B.60°C.90°D.120°13、如图,将△绕点顺时针旋转到△的位置,且点恰好落在边上,则下列结论不一定成立的是()A. B. C. ∥ D. 平分14、下列说法正确的是()A.两点之间,线段最短B.若∠AOC= ∠AOB,则OC是∠AOB的平分线 C.已知A,B,C三个不同点,过其中每两点画一条直线,可以画出3条直线 D.各边都相等的多边形是正多边形15、经过圆锥顶点的截面的形状可能是()A. B. C. D.二、填空题(共10题,共计30分)16、一个角为53°,则这个角的余角是________17、如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为________cm.18、如图,∠ABC=90°,∠CBD=45°,BP平分∠ABD,则∠ABP的度数是________°.19、如图,AD∥BC,AB⊥BC于点B,AD=4,将CD绕点D逆时针旋转90°至DE,连接AE、CE,若△ADE的面积为6,则BC=________.20、如图,Rt△OA1B1是由Rt△OAB绕点O顺时针方向旋转得到的,且A、O、B1三点共线.如果∠OAB=90°,∠AOB=30°,OA= .则图中阴影部分的面积为________.(结果保留π)21、已知在中,,是的高,,则________.22、如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=30°,则∠BOE =________度,∠AOG=________度.23、已知角的余角比它的补角的还少10°,则________.24、如图,在Rt△ABC中,ABC=90°,AB=2,BC=4,点P在边BC上,联结AP,将△ABP绕着点A旋转,使得点P与边AC的中点M重合,点B的对应点是点B',延长AB'交BC于E,则EP的长等于________。

七年级上册数学第4章图形的初步认识单元练习题(含答案)

七年级上册数学第4章图形的初步认识单元练习题(含答案)

第4章图形的初步认识检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列物体的形状类似于球的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡2.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F、E. V分别表示正多而体的而数、棱数、顶点数,则有F + V — E = 2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6B.8C.12D.203.如果Na与N/?是邻补角,且/a> 很那么Z侄的余角是(A.l(Za+Z/?)B.|ZaC.|(Za-Z/?)D.不能确定4.下列四个立体图形中,主视图为圆的是()。

5.将“创建文明城市”六个字分别写在一个正方体的六个而上,这个正方体的平面展开图如所示, 那么在这个正方体中,和“创”相对的字是( A.文B.明C.城6.如图, 已知直线曲、CD 相交于点。

, ZEOC = 110% 则ZBOD 的大小C.45°D.55QD rH第6题图B.35A.25 共5页8. 下列平而图形不能够国成正方体的是(9. 过平面_匕4, B, C 三点中的任意两点作直线,可作()那么线段OB 的长度是( )二、填空题(每小题3分,共24分)11. 如图,直线CD 相交于点。

,OE 平分匕AOD,若ZBOC = 80°,贝ljZAOE = 12. 直线上的点有—个,射线上的点有—个,线段上的点有—个.13. 两条直线相交有 个交点,三条直线相交最多有 个交点,最少有 个交点.14. 如图,OM 平分ZAOB, ON 平分ZCOD.若NMON= 50。

,ZBOC = 10% 则匕4OD = 15 .如图给出的分别有射线、16.下列表面展开图的立体图形的名称分别是:A.1条B.3条C.1条或3条D.无数条10.在直线[上顺次取4、B 、 C 三点,使得= 5 cm, BC = 3 cm.如果。

是线段AC 的中点,A.2 cmB.0.5 cmC.1.5 cmD.l cmA第11题图直线、线段,其中能相交的图形有 个. 第15题图17.如图,C, D是线段上两点,若CB = 4 cm, DB = 7 cm,且D^L AC的中点,贝脂。

七年级上册几何图形的初步认识单元测试卷7

七年级上册几何图形的初步认识单元测试卷7

七年级上册几何图形的初步认识单元测试卷7一、选择题(共10小题;共50分)1. 下列说法中正确的是A. 大于直角的角叫钝角B. 小于平角的角叫钝角C. 不大于直角的角叫锐角D. 大于且小于直角的角叫锐角2. 如图,,,则等于D.3. 如图所示,,,是射线上的一个点,则图中的射线有条.A. B. C. D.4. 如图,下列角中还可以只用顶点的一个大写英文字母表示的是A. B. C. D.5. 的一半是A. B. C. D.6. 如图所示,将绕点顺时针旋转得,若点恰好落在上,且的度数为,则的度数为A. B. C. D.7. 若与互余,且,那么的度数是A. B. C. D.8. 下午点分时(如图),时钟的分针与时针所成角的度数为A. B. C. D.9. 借助一副三角尺,你能画出下面哪个度数的角A. B. C. D.10. 下列说法正确的是A. 若,则是的中点B. 若,则是的中点C. 若,则是的中点D. 若,则是的中点二、填空题(共6小题;共39分)11. 如果点在点的北偏东方向上,那么点在点的方向上.12. 如图,在四边形内找一点,使它到四边形四个顶点的距离之和最小,正确的作法是连接,交于点,则点就是要找的点,请你用所学过的数学知识解释这一道理.13. 观察下列图形,从运动的角度说说点,线,面,体之间存在的联系.从运动的角度去观察,我们发现:点动成,线动成,面动成.14. ()角的静态定义.画一画:你可以画出角的图形吗?想一想:角是怎样组成的?角的静态定义:有的组成的图形叫做.()角的动态定义.角的动态定义:角也可以看作是一条线绕着它的旋转而形成的图形.想一想:如图,射线绕点旋转,当终止位置和起始位置成一条直线时,形成角;继续旋转,和重合时,又形成角.()角的种表示方法.角用符号“”表示,和“”不同①用三个大写字母(顶点字母放到中间)表示:记作:或注意:用三个大写字母表示时,中间字母是顶点字母②用一个大写字母(顶点字母)表示:记作:注意:用一个大写字母表示时,顶点处能有一个角③用一条弧线加数字表示:记作:记作:④用一条弧线加小写希腊字母表示:记作:记作:注意:③④两种方法必须在靠近角的顶点处画上弧线和标上数字或小写希腊字母后才能使用.15. 如图,,是线段上的两点,且是线段的中点,若,,则的长为.16. 线段厘米,是的中点,是的中点,,两点间的距离是厘米.三、解答题(共8小题;共104分)17. 根据下列语句,画出图形.如图,已知平面内有四个点,,,,其中任意三点都不在同一直线上.①画直线;②连接,,相交于点;③画射线,,交于点.18. 如图,平面内有,,,四点.按下列语句画图.()画直线,射线,线段;()连接,交射线于点.19. 分析填空并进行说理.如图,已知平分,,若,,求.解:()又,,平分,()请继续完成本题说理过程.20. 一个角的倍等于它补角的一半,求这个角.21. 判断下列各角是直角、锐角还是钝角.(1周角.(2)周角.(3平角.(4平角.22. 如图所示的棱柱,该棱柱由个平面组成,有两个三角形,三个长方形,请你思考一下,该棱柱可以看做由什么图形怎样变动形成的?23. 十八世纪瑞士数学家欧拉证明了简单多面体中顶点数()、面数()、棱数()之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现顶点数()、面数()、棱数()之间存在的关系式是;(2)一个多面体的面数比顶点数大,且有条棱,则这个多面体的面数是;(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有个顶点,每个顶点处都有条棱,设该多面体外表面三角形的个数为个,八边形的个数为个,求的值.24. 如图,为直角,为锐角,且平分,平分.(1)如果,求的度数.(2)如果为任意一个锐角,你能求出的度数吗?若能,请求出来,若不能,说明为什么?答案第一部分1. D2. A 【解析】,,,故选:A.3. B 【解析】图中的射线有射线,射线,射线,射线,射线.4. C5. D6. C 【解析】,,.,..,..7. A 【解析】设,的度数分别为,,则,解得..8. B9. B10. D第二部分11. 南偏西12. 两点之间线段最短.13. 线,面,体14. 公共端点,两条射线,角,射,端点,平,周,,,,,,,15.16.第三部分17. 解:如图,18. ()如图所示,直线,射线,线段即为所求.()连接,点即为所求.19. 邻补角互补;;角平分线定义20. .21. (1)钝角.(2)直角.(3)锐角.(4)钝角.22. 可以看做由上底(三角形)向下平移而得到,也可以看做由下底(三角形)向上平移而得到.(合理即可)23. (1);;(2)(3)有个顶点,每个顶点处都有条棱,两点确定一条直线;共有条棱,那么,解得,.24. (1)因为平分,平分,所以,.所以(2)同理。

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、如图,过圆心O和圆上一点A连一条曲线,将曲线OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆成分四部分,则()A.这四部分面积不一定相等B.这四部分面积相等C.前一部分面积小于后一部分 D.不能确定2、若AB∥CD,∠CDE=∠CDF,∠ABE=∠ABF,则∠E:∠F=()A.1:2B.1:3C.3:4D.2:33、一个角的补角与其余角之比为11:2,则这个角为()A.50°B.60°C.70°D.80°4、在数轴上表示12与-3的点的距离是()A.16B.15C.9D.-155、如图,矩形ABCD中,AB=2 ,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是()A.4 +3B.2C.2 +6D.46、如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=()A.63°30′B.53°30′C.73°30′D.93°30′7、如果与互补,与互余,则与的关系是()A. B. C. D.8、将一副直角三角尺如图放置,若,则的大小为()A.165°B.155°C.145°D.160°9、下列四种说法:①因为AM=MB,所以M是AB中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB=AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB中点.其中正确的是()A.①③④B.④C.②③④D.③④10、如图,将△绕点顺时针旋转到△的位置,且点恰好落在边上,则下列结论不一定成立的是()A. B. C. ∥ D. 平分11、如图,将一副三角尺按不同的位置摆放,下列摆放方式中与互余的是()A.图①B.图②C.图③D.图④12、如图,把一个圆分成4个扇形,其中∠AOD=∠BOD=90°,∠AOC=3∠BOC,这四个扇形的面积比是()A.1:2:2:3B.3:2:2:3C.1:2:2:1D.4:2:2:313、下列说法正确的个数是()①连接两点的线中以线段最短;②两条直线相交,有且只有一个交点;③若两条直线有两个公共点,则这两条直线重合;④若AB+BC=AC,则A、B、C三点共线.A.1B.2C.3D.414、一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20°B.50°C.70°D.30°15、下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.不相交的两条直线叫做平行线C.两点确定一条直线D.两点间的距离是指连接两点间的线段二、填空题(共10题,共计30分)16、在平面上有三点,过其中任意两点画直线,可画直线的条数为________条.17、如图,直线AB和CD相交于点O,OE⊥AB,∠AOD=125°,则∠COE的度数是________度.18、当钟面上是6点30分时,时针与分针的夹角是________度.19、角度换算:26°48′=________°.20、如图,在△ABC中,∠ACB=90°,AC=BC=2 ,将△ABC绕AC的中点D逆时针旋转90°得到△A′B′C′,其中点B的运动路径为弧BB',则图中阴影部分的面积为________.21、如果∠A=36°18′,那么∠A的补角为________.22、角的补角等于________.23、平面直角坐标系中,A(1,0),B(﹣2,3),则线段AB的长为________24、如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=________.25、将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是________.三、解答题(共5题,共计25分)26、计算:27、长方体的长为20cm,宽为10cm,高为15cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?28、如图,已知∠AOB:∠BOC=3:5,OD、OE分别是∠AOB和∠BOC的平分线,若∠DOE=60°,求∠AOB和∠BOC的度数.29、已知∠α=76°,∠β=41°31′,求:(1)∠β的余角;(2)∠α的2倍与∠β的的差.30、如图,已知与互余,,BP平分.求的度数.参考答案一、单选题(共15题,共计45分)1、B2、C3、C5、B6、A7、A8、B9、C10、C11、A12、A13、D14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

七年级数学上册 图形的初步认识复习题 试题

七年级数学上册 图形的初步认识复习题  试题

第七章 图形的初步认识复习题一、选择题1、以下各图中,分别画有直线AB ,线段MN ,射线DC ,其中所给的两条线有交点的是( )2、①平角是一条直线 ②射线是直线的一半 ③射线AB 与射线BA 表示同一条射线 ④用一个扩大2倍的放大镜去看一个角,这个角会扩大2倍 ⑤两点之间,线段最短 ⑥°= 120°50׳以上说法正确的有( )3、以下说法正确的选项是〔 〕A 、作直线的垂线只能作一条B 、过一点作直线的垂线只能作一条。

C 、作直线的平行线只能作一条D 、过一点作直线的平行线只能作一条。

4、以下四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个角的是〔 〕5、假设∠A 的余角是70°,那么∠A 的补角是〔 〕 A .70° B .110° C .20° D .160°6、如图,AOC ∠和BOD ∠都是直角,假如︒=∠150AOB ,那么=∠COD 〔 〕A 、︒30B 、︒40C 、︒50D 、︒60ACBOD7、以下说法中,正确的有〔〕①过两点有且只有一条直线②连结两点的线段叫做两点的间隔③两点之间,线段最短④假设AB=BC,那么点B是线段AC的中点A.1个 B.2个 C.3个 D.4个8、平面内两两相交的6条直线,交点个数最少为m个,最多为n个,那么m+n等于〔〕A.12 B.16 C.20 D.229、M、N两点的间隔是20,有一点P,假如PM+PN=30,那么以下结论正确的选项是〔〕A.P点必在线段MN上 B.P点必在直线MN上C.P点必在直线MN外 D.P点可能在直线MN外,也可能在直线MN 上10、赵师傅透过放大5倍的放大镜从正上方看30°的角,那么通过放大镜他看到的角等于〔〕度。

A.30° B.90° C.150° D.180°11、甲看乙的方向为南偏西25°,那么乙看甲的方向是〔〕A.北偏东75° B.南偏东75° C.北偏东25° D.北偏西25°12、甲从O点出发,沿北偏西30°走了50米到达A点,乙也从O点出发,沿南偏东35°方向走了80米到达B点,那么∠AOB为〔〕A.65° B.115° C.175° D.185°13、一条铁路上有10个站,那么一共需要制 ( ) 种火车票。

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、已知A、B、C都是直线l上的点,且AB=5cm,BC=3cm,则AC=()A.8cmB.2cmC.4cmD.8cm或者2cm2、如图,以O为顶点且小于180º的角有()A.7个B.8个C.9个D.10个3、下列四个图中,能用、、三种方法表示同一个角的是()A. B. C. D.4、如图,将三角板的直角顶点放在直尺的一边上,若,则的度数为()A. B. C. D.5、如图是一个三级台阶,它的每一级的长,宽,高分别为100cm,15cm和10cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度为( )A.115cmB.125cmC.135cmD.145cm6、如图,在等边△ABC内有一点D,AD=4,BD=3,CD=5,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则四边形ADCE的面积为()A.12B.C.D.7、如图,按照上北下南,左西右东的规定画出东南西北的十字线,其中点A位于点O的( )A.北偏西65°方向B.北偏东65°方向C.南偏东35°方向D.南偏西65°方向8、如图,直线AB、CD相交于点O,∠DOF=90°,OF平分∠AOE,若∠BOD=32°,则∠EOF 的度数为()A.32°B.48°C.58°D.64°9、已知∠α=35°,则∠α的补角的度数是()A.55°B.65°C.145°D.165°10、如图,∠AOC,∠BOD都是直角,∠AOD:∠AOB=3:1,则∠BOC的度数是()A.22.5°B.45°C.90°D.135°11、下列四个角中,最有可能与70°角互补的角是()A. B. C. D.12、如图,∠AOB=∠COD,则∠AOC与∠DOB的大小关系是()A.∠AOC>∠DOBB.∠AOC<∠DOBC.∠AOC=∠DOBD.∠AOC与∠DOB无法比较大小13、小明将一个三角尺绕它的一条直角边所在直线旋转一周,可以得到的几何体是()A.圆柱B.球C.圆锥D.直角三角形14、如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在斜边AB上,连接BB′,则∠C′B′B的度数为()A.40°B.50°C.70°D.20°15、如图,△ABC中,将△ABC绕点A顺时针旋转40°后,得到△AB′C′,且C′在边BC 上,则∠AC′C的度数为()A.50°B.60°C.70°D.80°二、填空题(共10题,共计30分)16、如图,将绕点逆时针旋转,得到,这时点恰好在同一直线上,则的度数为________.17、在平面直角坐标系xOy中,已知A(3,0),B(2,﹣2),将线段OA绕点O逆时针旋转,设旋转角为α(0°<α<135°).记点A的对应点为A1,若点A1与点B的距离为,则α=________.18、已知线段AB=m,C是AB上一点,D、E分别是线段AC、BC中点,则DE= ________ m19、分别以正方形的各边为直径向其内部作半圆得到的图形如图所示.将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是________20、钟表时间是2时15分时,时针与分针的夹角是________.21、在墙壁上固定一根横放的木条,则至少需要两枚钉子,这是因为________22、如图,已知是等腰三角形,点D在AC边上,将绕点A逆时针旋转45°得到,且点D′、D、B三点在同一条直线上,则的度数是________.23、32.48°=________度________分________秒.24、工人师傅在砌墙时,先在两端各固定一点,中间拉紧一条细线,然后沿着细线砌墙就能砌直.运用的数学原理:________.25、钟表上的指针随时间的变化而移动,这可以看作是数学上的________ .三、解答题(共5题,共计25分)26、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?27、如图,已知AC=3AB,BC=12,点D 是线段AC的中点,求BD的长度.28、如图,将Rt△ABC绕直角顶点C顺时针方向旋转38°得Rt△A′B′C,若AC⊥A′B′,求∠ABC的度数.29、如图,己知O为直线AE上的一点,OD平分∠COE,OB平分∠AOC,且∠COD:∠BOC=2:3,求∠AOB和∠COE的度数。

七年级数学上册《几何图形初步》单元测试卷(含答案解析)

七年级数学上册《几何图形初步》单元测试卷(含答案解析)

七年级数学上册《几何图形初步》单元测试卷(含答案解析)一、单选题(本大题共15小题,共45分)1.如图,将正方体的平面展开图重新折成正方体后,“奋”字对面的字是()A. 者B. 乐C. 的D. 园2.一枚六个面分别标有1−6个点的骰子,将它抛掷三次得到不同的结果,看到的情形如图所示,则图中写有“?”一面上的点数是()A. 6B. 2C. 3D. 13.已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是()A. ①B. ②C. ③D. ④4.观察下图,把左边的图形绕着给定直线旋转一周后可能形成的几何体是()A. B.C. D.5.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.6.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB=80,BC=60,则MN的长为()A. 10B. 70C. 10或70D. 30或707.已知线段AB=8,延长线段AB至C,使得BC=12AB,延长线段BA至D,使得AD=14AB,则下列判断正确的是()A. BC=12AD B. BD=3BC C. BD=4AD D. AC=6AD8.下列作图语句中,正确的是()A. 画直线AB=6cmB. 延长线段AB到CC. 延长射线OA到BD. 作直线使之经过A,B,C三点9.如图给出的分别有射线,直线,线段,其中不能相交的图形是()A. B.C. D.10.如图,现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,可以为()A. 过一点有无数条直线B. 两点之间线段的长度,叫做这两点之间的距离C. 两点确定一条直线D. 两点之间,线段最短11.若∠α=5.12°,则∠α用度、分、秒表示为()A. 5°12′B. 5°7′12′′C. 5°7′2′′D. 5°10′2′′12.下列图形中,能用∠α,∠O,∠AOB三种方式正确表示同一个角的图形是()A. B. C. D.13.按图1~图4的步骤作图,下列结论错误的是()∠AOB=∠AOP B. ∠AOP=∠BOPA. 12C. 2∠BOP=∠AOBD. ∠BOP=2∠AOP14.如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=20°,则∠AOB=()A. 40°B. 50°C. 90°D. 80°15.如图,准确表示小岛A相对于灯塔O的位置是()A. 北偏东60°B. 距灯塔2km处C. 北偏东30°且距灯塔2km处D. 北偏东60°且距灯塔2km处二、填空题(本大题共5小题,共15分)16.如图,一个正方块的六个面分别标有A、B、C、D、E、F,从三个不同方向看到的情况如图所示,则A的对面应该是 ______.17.如图,已知点A、B、C、D、在同一条直线上,AB=5,AC=2,点D是线段BC的中点,则BD=______.18.时钟指示2点25分,它的时针与分针所成的锐角是 ______°.19.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角,若∠1=25°,那么∠AOB的度数是 ______°.20.在一次夏令营活动中,小明同学从营地A点出发,要到C地去,先沿北偏东70°方向走了500m到达B地,然后再沿北偏西20°方向走了500m到达目的地C,此时小明在营地A的______方向.三、解答题(本大题共5小题,共40分)21.如图所示的是一个长方体的表面展开图,每个面上都标注了字母(字母朝外),回答下列问题:(1)如果面A在长方体的底部放置,那么哪一个面会在它的上面?(2)如果面F在前面,从左面看是面B,那么哪一个面会在上面?(3)从右面看是面C,面E在左面,那么哪一个面会在上面?22.如图,已知线段AB=14,AP=8,P是OB的中点,求AO的长.AC,D,E分别为AC,AB的中点,求线段DE的23.如图,点C是线段AB上一点,AC=12,CB=23长.24.如图∠AOC为直角,OC是∠BOD的平分线,且∠AOB=28°,求∠BOD的度数.25.如图,点A、O、B在同一条直线上,∠AOD=∠EOC=90°,∠BOC:∠AOE=4:1,求∠COD的度数.参考答案和解析1.【答案】B;【解析】解:由题意,将正方体的平面展开图重新折成正方体后,“斗”字对面的是“的”字,“奋”字对面的字是“乐”字,“者”字对面的是“园”字,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.【答案】A;【解析】解:根据图形可知,与点数1相邻的面的点数有2、3、4、5,∴点数1与6是相对面,对比第一个和第三个图,可知写有“?”的面与点数1是相对面,故写有“?”一面上的点数是6.故选:A.根据与1个点数相邻的面的点数有2、3、4、5可知1个点数的对面是6个点数,再根据1与2、3相邻,从而得解.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相邻的面上找出一个与另外4个相邻的数是解答该题的关键.3.【答案】A;【解析】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体.故选:A.由平面图形的折叠及正方体的表面展开图的特点解题.此题主要考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.4.【答案】D;【解析】根据面动成体的原理以及空间想象力即可解.考查学生立体图形的空间想象能力及分析问题,解决问题的能力.解:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.故选D.5.【答案】D;【解析】该题考查的是点线面的认识有关知识,根据面动成体的原理:一个直角三角形绕它的最长边旋转一周,得到的是两个同底且相连的圆锥.解:A.圆柱是由一长方形绕其一边长旋转而成的;B.圆锥是由一直角三角形绕其直角边旋转而成的;C.该几何体是由直角梯形绕其下底旋转而成的;D.该几何体是由直角三角形绕其斜边旋转而成的.故选D.6.【答案】C;【解析】解:(1)当C在线段AB延长线上时,如图1,∵M、N分别为AB、BC的中点,∴BM=12AB=40,BN=12BC=30;∴MN=BM+BN=40+30=70.(2)当C在AB上时,如图2,同理可知BM=40,BN=30,∴MN=BM−BN=40−30=10;所以MN=70或10,故选:C.根据题意画出图形,再根据图形求解即可.此题主要考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.【解析】解:如图所示:∵AB=8,BC=12AB,∴BC=4,∵AD=14AB,∴AD=2,∴AC=AB+BC=12,BD=AD+AB=10,∴BC=2AD,BD=2.5BC,BD=5AD,AC=6AD.故选:D.根据AB=8,由线段的倍分关系求出BC,AD的长,进一步得到AC,BD的长,依此即可求解.该题考查了两点之间的距离的应用,主要考查学生的理解能力和计算能力,解此题的关键是求出BC,AD,AC,BD的长.8.【答案】B;【解析】这道题主要考查的是直线、射线、线段的特点,掌握直线、射线、线段的特点是解答该题的关键.根据直线向两端无限延伸,两点确定一条直线,射线向一端无限延伸可判断A、C、D是否正确;根据线段的特点可判断B是否正确.解:A.直线向两端无限延伸,无限长,故A错误;B.正确;C. 因为射线无限长,故C错误;D.如果A、B、C三点不在同一直线上,不能作直线使之经过A,B,C三点,过D错误.故选B.9.【答案】B;【解析】解:A.由图中直线AB和射线CD的位置以及直线、射线的意义可得,直线AB与射线CD 能相交,因此A不符合题意;B. 由图中线段AB和线段CD的位置以及线段的意义可知,线段AB与线段CD不相交,故B符合题意;C. 由图中直线a和直线b的位置以及直线的意义可得,直线a与直线b能相交,因此C不符合题意;D. 由图中直线AB和直线CD的位置以及直线的意义可得,直线AB与直线CD能相交,因此D不符合题意;故选:B.根据直线、射线、线段的意义逐项进行判断即可.此题主要考查直线、射线、线段的意义,理解直线、射线、线段的意义是解决问题的关键.【解析】解:现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,两点之间线段最短.故选:D.根据线段的性质,直线的性质,可得答案.此题主要考查了线段的性质,熟记性质并能灵活应用是解题关键.11.【答案】B;【解析】解:∠α=5.12°=5°+0.12×60′=5°+7′+0.2×60′′=5°7′12′′.故选:B.利用度分秒之间的换算关系进行计算即可求解.此题主要考查了度分秒的换算,关键是掌握1°=60′,1′=60′′.12.【答案】C;【解析】解:A、不能表示为∠O,故本选项错误;B、不能表示为∠O,故本选项错误;C、能用∠α,∠O,∠AOB三种方式表示,故本选项正确;D、不能表示为∠O,故本选项错误.故选:C.根据角的表示方法解答即可.此题主要考查了角的概念,主要考查了角的表示方法,同一个顶点处有不止一个角时,一定不能用一个大写字母表示角.13.【答案】D;【解析】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=12∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.根据角平分线的定义对各选项进行逐一分析即可.此题主要考查的是角平分线的定义.解答该题的关键是掌握角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.14.【答案】D;【解析】解:∵OC是∠AOB的平分线,∴∠AOC=∠COB;∵OD是∠AOC的平分线,∴∠AOD=∠COD;∵∠COD=20°,∴∠AOC=40°,∴∠AOB=80°.故选D .两次利用角平分线的性质计算.本题是角的平分线与对顶角的性质的考查,角平分线的性质是将两个角分成相等的两个角.15.【答案】D;【解析】解:由方向角的定义以及平面内位置的确定方法可知,小岛A 在灯塔O 的北偏东60°且距灯塔2km 处,故选:D.根据平面内,位置的表示方法以及方向角的定义可得答案.此题主要考查方向角,理解方向角的定义以及平面内位置的确定方法是解决问题的关键.16.【答案】C;【解析】解:由图可知,A 相邻的字母有D 、E 、B 、F ,所以A 对面的字母是C.故答案为:C.观察三个正方体,与A 相邻的字母有D 、E 、B 、F ,从而确定出A 对面的字母是C.此题主要考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解答该题的关键.17.【答案】32;【解析】解:∵AB =5,AC =2,∴BC =AB −AC =3,∵点D 是线段AC 的中点, ∴BD =12AC =32.故答案为:32. 先求出线段BC 的长,再由中点得出BD 的长.此题主要考查了两点间的距离,能计算出BC 的长是解答该题的关键.18.【答案】77.5;【解析】解:2时25分的时候,分针指向5,时针在2−3之间,周角为360°,平均分成12份,每格的度数为360°÷12=30°,时针1个小时走30°,每分钟走0.5°,25分钟走0.5°×25=12.5°,∴此时它的时针和分针所成的锐角为90°−12.5°=77.5°,故答案为:77.5.先计算出每个大格的度数是30°,再用90°减去时针走过的度数,即为时针和分针所成的锐角的度数.此题主要考查了钟面角,角度的计算,求出时针所走的度数是解答该题的关键.19.【答案】25;【解析】解:∵点O 在直线AE 上,∴∠AOE =180°.∵OC 平分∠AOE ,∴∠AOC=1∠AOE=90°.2∴∠AOB+∠BOC=90°.∵∠DOB是直角,∴∠DOB=∠BOC+∠COD=90°.∴∠AOB=∠1=25°.故答案为:25.∠AOE=90°.由∠DOB 由点O在直线AE上,得∠AOE=180°.由OC平分∠AOE,得∠AOC=12是直角,根据同角的余角相等得∠AOB=∠COD,从而解决此题.此题主要考查平角的定义、余角的性质以及角平分线的定义,熟练掌握平角的定义、余角的性质以及角平分线的定义是解决本题的关键.20.【答案】北偏东25°;【解析】解:∵小明A点沿北偏东70°的方向走到B,∴∠BAD=70°,∵B点沿北偏西20°的方向走到C,∴∠EBC=20°,又∵∠BAF=90°−∠DAB=90°−70°=20°,∴∠1=90°−20°=70°,∴∠ABC=180°−∠1−∠CBE=180°−70°−20°=90°.∴ΔABC是等腰直角三角形,∵AB=500m,BC=500m,∴∠CAB=45°,∴∠DAC=∠DAB−∠CAB=70°−45°=25°,∴小明在营地A的北偏东25°方向.故答案为:北偏东25°.先根据∠DAB=70°,∠CBE=20°判断出ΔABC的形状,求出∠DAC的度数即可.此题主要考查的是方向角的概念,解答此类题需要从运动的角度,再结合三角函数的知识求解.21.【答案】解:(1)根据“相间、Z端是对面”可知,“A”与“F”相对,“B”与“D”相对,“C”与“E“相对,所以面A在长方体的底部,那么F个面会在它的上面;(2)若面F在前面,左面是面B,则“A”在后面,“D”在右面,此时“C”在上面,“E”在下面,或“E”在上面,“C”在下面,答:如果面F在前面,从左面看是面B,那么“C”面或“E”面会在上面;(3)从右面看是面C,面E在左面,则“B”面或“D”面在上面.;【解析】根据长方体表面展开图的特征进行判断即可.此题主要考查长方体的展开与折叠,掌握长方体表面展开图的特征是解决问题的关键.22.【答案】解:因为AB=14,AP=8,所以BP=AB-AP=6.因为P是OB的中点,所以OP=BP=6,所以AO=AP-OP=8-6=2.;【解析】由线段的和差可求解BP的长,结合中点的定义可求OP的长,进而可求解.此题主要考查两点间的距离,求解OP的长是解答该题的关键.23.【答案】解:∵AC=12,CB=23AC,∴CB=AC+CB=20,∵D,E分别为AC,AB的中点,∴AD=12AC=6,AE=12AB=10,∴DE=AE-AD=10-6=4.;【解析】根据题意AC=12,CB=23AC,可得CB=AC+CB,由已知条件D,E分别为AC,AB的中点,AD=12AC,AE=12AB,即DE=AE−AD,代入计算即可得出答案.此题主要考查了两点间的距离,熟练应用两点间的距离计算方法进行求解是解决本题的关键.24.【答案】解:∵∠AOB=28°,∠AOC为直角,∴∠BOC=∠AOC-∠AOB=90°-28°=62°,∵OC是∠BOD的平分线,∴∠BOD=2∠BOC=124°.;【解析】首先由∠AOB=28°,∠AOC为直角,即可推出∠BOC=62°,然后根据角平分线的性质即可推出∠BOD=2∠BOC=124°.这道题主要考查角平分线的性质,角的计算,直角的定义,关键在于推出∠BOC的度数.25.【答案】解:设∠AOE=x,则∠BOC=4x.∵∠EOC=90°,∠EOC+∠AOE+∠BOC=180°,∴90°+x+4x=180°,∴x=18°.∴∠BOC=4x=72°.又∵∠AOD=90°,∴∠COD=180°-∠AOD-∠BOC=180°-90°-72°=18°.;【解析】根据补角的定义以及角的和差关系解决此题.此题主要考查补角的定义以及角的和差关系,熟练掌握补角的定义以及角的和差关系是解决本题额关键.。

2024年七年级数学上册第二章几何图形的初步认识复习题及答案解析周测(2.1~2.4)

2024年七年级数学上册第二章几何图形的初步认识复习题及答案解析周测(2.1~2.4)

线段 BC 的中点, CD =6,则线段 AD 的长为(
A. 6
B. 4
C. 2
C
)
D. 3
【解析】因为 D 是线段 BC 的中点, CD =6,所以 BC =2 CD =12.


因为 AC = AB ,所以 AC = BC =4.


所以 AD = CD - AC =6-4=2.
1
2
3
4
5
6
7
D. 点 C 可能在直线 AB 上,也可能在直线 AB 外
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
填空题
选择题
周测(2.1~2.4)
解答题
【解析】根据题意画出图形,如图,因为 AB =8, AC =5, BC =3,
所以从图中我们可以发现 AC + BC = AB ,所以点 C 在线段 AB 上.

中点的有(
A
)
A. 1个
B. 2个
C. 3个
D. 4个
1
2
3
4
其中能判断 P 是线段 AB 的
5
6
7
8
9
10
11
12
13
14
15
16
17
18
填空题
选择题
周测(2.1~2.4)
解答题
【解析】如图所示.
因为 AP = BP ,所以 P 是线段 AB 的中点,故①正确;

当点 P 在点 B 右侧时,即点P'所在位置,此时BP'= AB ,但点P'不是

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、下列命题是真命题的个数为()①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A.2B.3C.4D.52、如图,在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°3、△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2.则下列说法正确的是()A.A1的坐标为(3,1) B. =3 C.B2C=2 D.∠AC2O=45°4、下图是我们常用的一副三角尺.用一副三角尺可以拼出的角度是A.70°B.135°C.140°D.55°5、等边三角形绕着它的中心旋转一周,可与原图形重合的次数是()A.1次B.2次C.3次D.4次6、在数轴上点、所表示的数分别为-2和5,点C在数轴上,且点C到点A、B的距离之和为13,则点C所表示的数为()A.-5B.8C.-5或8D.3或-87、如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A.15°B.20°C.25°D.30°8、将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()9、如图,直线与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△,则点的坐标是()A.(,4)B.(4,)C.(,3)D.(+2,)10、甲、乙、丙、丁四个学生在判断时钟的分针和时针互相垂直的时刻,每个人说两个时刻,说对的是()A.甲说3点和3点半B.乙说6点1刻和6点3刻C.丙说9点和12点1刻D.丁说3点和9点11、把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.90°B.100°C.105°D.120°12、如图所示的正方形中,点在边上,把绕点顺时针旋转得到,.旋转角的度数是()13、对于平面图形上的任意两点P,Q,如果经过某种变换得到的新图形上的对应点P1,Q1,下列变换中不一定保证PQ=P1Q1的是()A.平移B.旋转C.翻折D.位似14、如图,该图形绕点O按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.216°15、下列语句正确的是()A.一条直线可以看成一个平角B.周角是一条射线C.角是由一条射线旋转而成的D.角是由公共端点的两条射线组成的图形二、填空题(共10题,共计30分)16、在平面直角坐标系中,已知点在第二象限,那么点在第________象限.17、边长为2的正方形ABCD与边长为2 的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上,将正方形ABCD绕点A逆时针旋转如图(2),线段DG 与线段BE相交,交点为H,则△GHE与△BHD面积之和的最大值为________.18、完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)∴________(同角的补角相等)①∴________(内错角相等,两直线平行)②∴∠ADE=∠3(________)③∵∠3=∠B(________)④∴________(等量代换)⑤∴DE∥BC(________)⑥∴∠AED=∠C(________)⑦19、如图,中,,,在以的中点为坐标原点,所在直线为轴建立的平面直角坐标系中,将绕点顺时针旋转,使点旋转至轴的正半轴上的点处,若,则图中阴影部分面积为________.20、如图,网络格上正方形小格的边长为1,图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A′B′和点P′,则在1区~4区中,点P′所在的单位正方形区域是________(选填区域名称).21、一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D 在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是________.22、如图,一幅三角尺有公共的顶点,若40°,则________°.23、如图,△ABC中,∠ACB=90°,∠BAC=20°,点O是AB的中点,将OB绕点O顺时针旋转α角时(0°<α<180°),得到OP,当△ACP为等腰三角形时,α的值为________24、将一副三角板如图放置,若∠AOD=20°,则∠BOC的大小为________.25、在直角坐标系中,A(2,8)绕y轴上一点旋转90°后对应点A'正好在x轴上,那么对应点A'的坐标为________.三、解答题(共5题,共计25分)26、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?27、如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O于Q,过Q的⊙O的切线交OA的延长线于R.求证:RP=RQ.28、如图,图中能用一个大写字母表示的角有几个?分别把它们表示出来.29、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?30、如图所示,OE,OD分别平分∠AOB和∠BOC,且∠AOB=90°,如果∠BOC=40°,求∠EOD的度数.参考答案一、单选题(共15题,共计45分)1、B2、C3、D4、B5、C6、C7、B8、B9、A10、D11、D12、B13、D14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

2020年华师大版七年级数学上册 图形的初步认识 单元测试卷一(含答案)

2020年华师大版七年级数学上册 图形的初步认识 单元测试卷一(含答案)

2020年华师大版七年级数学上册图形的初步认识单元测试卷一一、选择题(每小题3分,共30分)1.下列物体的形状类似于球的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡2.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用分别表示正多面体的面数、棱数、顶点数,则有,现有一个正多面体共有12条棱,6个顶点,则它的面数等于()A.6B.8C.12D.203.如果与是邻补角,且,那么的余角是()A. B. C. D.不能确定4.下列四个立体图形中,主视图为圆的是()A.B.C.D.5.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创”相对的字是()A.文B.明C.城D.市6.如图,已知直线相交于点,平分,,则的大小为()A. B. C. D.7.圆柱的侧面展开图可能是()8.下列平面图形不能够围成正方体的是()9.过平面上三点中的任意两点作直线,可作( )A.1条B.3条C.1条或3条D.无数条10.在直线上顺次取三点,使得,,如果是线段的中点,那么线段的长度是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,直线相交于点,平分,若则____.12.直线上的点有____个,射线上的点有____个,线段上的点有____个.13.两条直线相交有____个交点,三条直线相交最多有____个交点,最少有____个交点.14.如图,平分平分若则 __.15.如图给出的分别有射线、直线、线段,其中能相交的图形有个.DA BCba①②③④A BDDCB第15题图A B DC16.下列表面展开图的立体图形的名称分别是:______、______、______、______.17.如图,是线段上两点,若,,且是的中点,则_____.18.由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为______.三、解答题(共46分)19.(6分)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).20.(6分)如图是一个长方体的表面展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果面在长方体的底部,那么哪一个面会在上面?(2)如果面在前面,面在左面,那么哪一个面会在上面?(字母朝外)第17题图A BD C第19题图21.(6分)如图,线段,线段,分别是线段的中点,求线段的长.22.(6分)如图,直线相交于点,平分,求∠2和∠3的度数.23.(7分)已知:如图,是直角,,是的平分线,是的平分线.(1)求的大小.(2)当锐角的大小发生改变时,的大小是否发生改变?为什么?第21题图A EBC F D24.(7分)如图,已知点是线段的中点,点是线段的中点,点是线段的中点.(1)若线段,求线段的长.(2)若线段,求线段的长.25.(8分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数()、面数()、棱数()之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数()面数()棱数()四面体 4 4长方体8 6 12正八面体8 12正十二面体20 12 30你发现顶点数()、面数()、棱数()之间存在的关系式是______;(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是______;(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为个,八边形的个数为个,求的值.参考答案1.C 解析:根据生活常识可知乒乓球是球体.故选C.2.B 解析:因为正多面体共有12条棱,6个顶点,所以,所以.故选B.3.C 解析:与是邻补角,所以.所以的余角是,故选C.4.B 解析:A.主视图是正方形,故此选项错误;B.主视图是圆,故此选项正确;C.主视图是三角形,故此选项错误;D.主视图是长方形,故此选项错误.5.B 解析:结合展开图可知,与“创”相对的字是“明”.故选B.6.D 解析:因为平分所以所以故选D.7.B 解析:圆柱的侧面展开图是长方形,故选B.8.B 解析:利用自己的空间想象能力或者自己动手实践一下,可知答案选B.9.C 解析:当三点共线时,可以作1条直线;当三点不共线时,可以作3条直线.10.D 解析:因为是在直线上顺次取三点,所以.因为是线段的中点,所以所以. 故选D.11.解析:因为,所以.因为平分,所以.12.无数无数无数解析:直线、射线、线段都是由无数个点组成的.13.1 3 1解析:两条直线相交有且只有1个交点;三条直线两两相交且不交于一点时,有3个交点;当三条直线交于同一点时,有1个交点.14. 90°解析:因为平分,平分,所以因为所以即.所以.15.2 解析:①③能相交,②④不能相交.16.圆柱圆锥四棱锥三棱柱17.解析:因为点是线段的中点,所以.因为,,所以,所以.18.4 解析:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,还可能两行都是两层.所以图中的小正方体最少块,最多块.19.解:答案不唯一,如图.第19题答图20.解:(1)因为面“”与面“”相对,所以面在长方体的底部时,面在上面.(2)由图可知,如果面在前面,面在左面,那么“”面在下面.由图可知,面“”与面“”相对,所以面会在上面.21.解:因为线段,线段,所以所以又因为分别是线段的中点,所以所以所以答:线段的长为.22.解:因为为直线,所以所以因为与互补,所以因为平分,所以23.解:(1)因为是直角,,所以因为是的平分线,是的平分线,所以所以(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.因为又,所以24.解:(1)因为点是线段的中点,点是线段的中点,所以,,所以.(2)因为点是线段的中点,所以.因为点是线段的中点,点是线段的中点,所以,所以.25.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:.多面体顶点数()面数()棱数()四面体 4 4 6长方体8 6 12正八面体 6 8 12正十二面体20 12 30(2)由题意得:,解得.(3)因为有24个顶点,每个顶点处都有3条棱,两点确定一条直线,所以共有棱,那么,解得,所以.。

2020学年浙教版七年级上册数学第六章图形初步认识单元测试卷(含答案)

2020学年浙教版七年级上册数学第六章图形初步认识单元测试卷(含答案)

2020学年浙教版七上数学第六章单元测试卷(含答案)一、单选题1.下列列举的物体中,与乒乓球的形状类似的是()A.铅笔B.西瓜C.音箱D.茶杯2.关于直线,下列说法正确的是()A.可以量长度B.有两个端点C.可以用两个小写字母来表示D.没有端点3.已知线段AB,在BA的延长线上取一点C,使CA=3AB,则线段CA与线段CB之比为()A.3︰4B.2︰3C.3︰5D.1︰24.如果∠ 1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠ 3B.∠1=180°-∠ 3C.∠1=90°+∠ 3D.以上都不对5.下列结论中,不正确的是()A.两点确定一条直线B.两点之间,直线最短C.等角的余角相等D.等角的补角相等6.一天,妈妈问儿子今天打球时间有多长.儿子淘气地说:“我打球时钟表的时针转动了60°.”那么,据此你判断儿子打球所用的时间应是()A.30分钟B.60分钟C.90分钟D.120分钟7.若∠a=79°25′,则∠a的补角是()A.100°35′B.11°35′C.100°75′D.101°458.平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n等于()A.36B.37C.38D.399.两个角的和与这两个角的差互补,则这两个角().A.一个是锐角,一个是钝角;B.都是钝角;C.都是直角;D.必有一个是直角10.如图,C、D是线段AB上两点,M、N分别是线段AD、BC的中点,下列结论:①若AD=BM,则AB=3BD;②若AC=BD,则AM=BN;③AC-BD=2(MC-DN);④2MN=AB-CD.其中正确的结论是()A.①②③B.③④C.①②④D.①②③④二、填空题11.钟表的时间为2时整,时针与分针所夹的角是________ 度.12.15°=________ 平角;周角=________ °。

七年级数学上册 第3章 图形的初步认识 单元测试卷(华师版 2024年秋)

七年级数学上册 第3章 图形的初步认识 单元测试卷(华师版 2024年秋)

七年级数学上册第3章图形的初步认识单元测试卷(华师版2024年秋)一、选择题(每题3分,共24分)题序12345678答案1.下列实物中,能抽象出圆锥的是()2.高速公路是指专供汽车高速行驶的公路.高速公路在建设过程中,通常要从大山中开挖隧道穿过(如图),把道路取直以缩短路程.其中的数学原理是() A.两点之间线段最短B.两点确定一条直线C.平面内经过一点有无数条直线D.以上说法都不对(第2题)(第3题)3.轩轩同学带领自己的学习小组成员预习了“点和线”这一节的内容后,对如图展开了讨论,下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段4.我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.如图所示的几何体是可以形成“牟合方盖”的一种模型,由两个圆柱分别从纵、横两个方向嵌入一个正方体,该模型从正面看到的形状是()(第4题)(第5题)(第6题) 5.如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA成90°角,则射线OB的方位是()A.北偏西30°B.南偏东30°C.东偏南60°D.南偏东60°6.小明用如图所示的纸折成一个正方体盒子,里面装入礼物,与其他三个大小一样的正方体空盒子混在一起,根据观察,礼物所在的盒子可能是()7.如图,一支笔正好与一把直尺平靠放在一起,小明发现笔尖(点A)正好对着直尺刻度约为5.6cm处,另一端(点B)正好对着直尺刻度约为20.6cm处.则这支笔的中点对应的刻度约为()A.15cm B.7.5cm C.13.1cm D.12.1cm(第7题)8.如图,∠AOB=∠COD=90°,对于结论Ⅰ和Ⅱ,下列判断正确的是()结论Ⅰ:∠AOC=∠BOD;结论Ⅱ:∠AOD是∠BOC的补角.(第8题)A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对、Ⅱ对D.Ⅰ对、Ⅱ不对二、填空题(每题3分,共18分)9.35平角是________角.(填“锐”“直”或“钝”)10.从一个十三边形的某个顶点出发,分别连结这个顶点与其余各顶点,可以得到_______________________________________个三角形.11.6.26°=______°______′______″.12.一个角的余角比这个角的补角的15大10°,则这个角的度数为________.13.如图,OP,OQ分别是∠AOB,∠BOC的平分线,如果∠POQ=52°26′,那么∠AOC=________________________________________.(第13题)(第14题)14.如图,线段AB=14,C为线段AB上一点,AC=8,M为线段AB的中点,若D为射线AB上一点,N是线段CD的中点,且MN=10,则A、D两点间的距离为________.三、解答题(15题8分,16~20题每题10分,共58分)15.如图,已知平面内四个点A,B,C,D,用直尺、圆规按要求作出相应的图形.(不写作法,保留作图痕迹)(1)画直线BC和射线AB;(2)连结AC,并在射线AB上作线段AE,使得AE=2AC;(3)在射线AB上确定一点P,使得PC+PD的和最小.(第15题)16.如图是由一些棱长都为1的小正方体组合成的简单几何体.(1)画出该几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加________个小正方体.(第16题)17.如图,已知线段a,b和∠α,∠β.完成下列尺规作图(不写作法,保留作图痕迹,标明字母):(1)求作线段OM,使OM=a-b;(2)求作点P,使得∠PAB=∠α,∠PBA=∠β.(第17题)18.小军和小红分别以直角梯形的上底所在直线和下底所在直线为轴,将梯形旋转一周,得到甲,乙两个立体图形.(第18题)(1)你同意________的说法;(2)甲、乙两个立体图形的体积比是多少?19.如图,点C,D是线段AB上两点,AC BC=32,D为AB的中点.(第19题)(1)若AB=30,求线段CD的长;(2)若E为AC的中点,ED=5,求线段AB的长.20.综合与探究.旧知回顾:(1)如图a,线段AB=20cm,C为线段AB上的一个动点,点D,E分别是AC,BC的中点.①若AC=8cm,则线段DE的长为________cm;②设AC=m cm,则线段DE的长为________cm.知识迁移:(2)我们发现角的很多规律和线段一样,如图b,若∠AOB=120°,OC是∠AOB内部的一条射线,射线OM平分∠AOC,射线ON平分∠BOC,求∠MON的度数.拓展探究:(3)已知∠COD在∠AOB内的位置如图c所示,∠AOB=α,∠COD=30°,且∠DOM=2∠AOM,∠CON=2∠BON,求∠MON的度数.(用含α的代数式表示)(第20题)答案一、1.D 2.A 3.B4.B5.D6.B7.C8.A 二、9.钝10.1111.6;15;3612.55°13.104°52′14.26三、15.解:(1)如图所示,直线BC 和射线AB 即为所求.(2)如图所示,线段AC ,线段AE 即为所求.(3)如图所示,点P 即为所求.(第15题)(第16题)16.解:(1)如图所示.(2)317.解:(1)如图①所示,线段OM 即为所求.(第17题)(2)如图②所示,点P 即为所求.(第17题)18.解:(1)小红(2)甲的体积:π×32×6-13π×32×(6-3)=54π-9π=45π(cm 3),乙的体积:π×32×3+13π×32×(6-3)=27π+9π=36π(cm 3),所以(45π)(36π)=54,即甲,乙两个立体图形的体积比为54.19.解:(1)因为AB =30,D 为AB 的中点,所以AD =12AB =15.因为AC BC =32,所以AC =35AB =18,所以CD =AC -AD =3.(2)因为D 为AB 的中点,所以AD =12AB ,因为AC BC =32,所以AC =35AB .因为E 为AC 的中点,所以AE =12AC =310AB ,所以DE =AD -AE =12AB -310AB =5,所以AB =25.20.解:(1)①10②10(2)因为射线OM 平分∠AOC ,射线ON 平分∠BOC ,所以∠MOC =12∠AOC ,∠CON =12∠BOC ,所以∠MON =∠MOC +∠CON =12(∠AOC +∠BOC )=12∠AOB .因为∠AOB =120°,所以∠MON =60°,即∠MON 的度数为60°.(3)因为∠DOM =2∠AOM ,∠CON =2∠BON ,所以易得∠DOM =23∠AOD ,∠CON =23∠BOC .因为∠AOB =α,∠COD =30°,所以∠MON =∠DOM +∠CON +∠COD =23∠AOD +23∠BOC +23∠COD +13∠COD =23(∠AOD +∠BOC +∠COD )+13∠COD =23∠AOB +13∠COD =23α+13×30°=23α+10°,即∠MON 的度数为23α+10°.。

华师版七年级数学上册 第3章 图形的初步认识 单元测试卷(2024年秋)

华师版七年级数学上册 第3章 图形的初步认识 单元测试卷(2024年秋)

华师版七年级数学上册第3章图形的初步认识单元测试卷(2024年秋)一、选择题(每题3分,共30分)1.下列各组图形中,都是平面图形的是()A.三角形、圆、球、圆锥B.长方体、正方体、圆柱、球C.长方形、三角形、正方形、圆D.扇形、长方形、三棱柱、圆锥2.[2024·河南周口一模]《九章算术》中“堑堵”的立体图形如图所示,它的左视图为()A B C D3.[情境题航空航天]“力箭一号”(ZK-1A)运载火箭在酒泉卫星发射中心采用“一箭六星”的方式,成功将六颗卫星送入预定轨道,首次飞行任务取得圆满成功.把卫星看成点,则卫星在预定轨道飞行留下的痕迹体现了() A.点动成线B.线动成面C.面动成体D.面面相交成线4.下列说法中,正确的是()A.两点确定一条直线B.两条射线组成的图形叫做角C.两点之间直线最短D.若AB=BC,则点B为AC的中点5.若∠A=40°,则∠A的余角为()A.30°B.40°C.50°D.140°6.[母题教材P163习题T6]如图,∠1=60°,则点A在点B的() A.北偏东60°B.南偏东60°C.南偏西60°D.南偏西30°7.[2023·清华附中模拟]已知线段AB=15cm,点C是直线AB上一点,BC=5cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.10cm B.5cm C.10cm或5cm D.7.5cm 8.已知∠1=28°24',∠2=28.24°,∠3=28.4°,则下列说法中,正确的是()A.∠1=∠2<∠3B.∠1=∠3>∠2C.∠1<∠2=∠3D.∠1=∠2>∠3 9.[2024·山西晋城一模]如图是由几个相同的小正方体搭成的几何体的三视图,则这个几何体的小正方体的个数是()(第9题)A.4B.5C.6D.7 10.[2023·青岛]一个不透明正方体的六个面上分别标有数字1,2,3,4,5,6,其展开图如图①所示.在一张不透明的桌子上,按图②方式将三个这样的正方体搭成一个几何体,则该几何体能看得到的面上数字之和最小是()(第10题)A.31B.32C.33D.34二、填空题(每题3分,共24分)11.[2023·西工大附中月考]七棱柱有个面,个顶点.12.在校园中的一条大路两旁种植树木(树木种在一条直线上),确定了两棵树的位置就能确定一排树的位置,这利用了我们所学过的数学知识是.13.三条直线两两相交,最少有个交点,最多有个交点.14.[2024·重庆一中期中]如图,当钟表指示9:20时,时针和分针的夹角(小于180°)的度数是.(第14题)15.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB =.(第15题)16.如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=.(第16题)17.如图,某海域有A,B,O三个小岛,在小岛O处观测到小岛A在其北偏东62°的方向上,观测到小岛B在其南偏东38°12'的方向上,则∠AOB的补角等于.(第17题)18.[新考向知识情境化]往返于甲、乙两地的客车,中途停靠5个车站(来回票价一样),且任意两站之间的票价都不同,共有种不同的票价,需准备种车票.三、解答题(19~21题每题10分,其余每题12分,共66分)19.[母题教材P150练习T4]已知线段a,b,利用尺规,求作一条线段AB,使AB=a-2b.(不写作法,保留作图痕迹)20.点A,B,C,D的位置如图,按下列要求画出图形:(1)画直线AB,直线CD,它们相交于点E;(2)连结AC,连结BD,它们相交于点O;(3)画射线AD,射线BC,它们相交于点F.21.如图,已知线段AB=4.8cm,点M为AB的中点,点P在MB上,N为PB的中点,且NB=0.8cm,求AP的长.22.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB =∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)若射线OE平分∠COD,求∠AOE的度数.23.如图是某种长方体产品的展开图,高为3cm.(1)求每件这种产品的体积;(2)请为厂家设计一种包装纸箱,使每箱能装5件这种产品,要求没有空隙且要使该纸箱所用材料尽可能少(纸箱的厚度不计,表面积尽可能小),求此包装纸箱的表面积.24.[2024·重庆一中期中]平面上顺时针排列射线OA,OB,OC,OD,∠BOC =30°,∠COD=12∠AOB,射线OM,ON分别平分∠AOB,∠AOD(题目中所出现的角均小于180°).(1)如图①,若∠AOD=10°,则∠AOM=,∠CON=;(2)如图②,探究∠MON与∠BON的数量关系,并说明理由;(3)在(2)的条件下,若∠BON=5°,将∠AOB绕点O以每秒2°的速度顺时针旋转,同时将∠COD绕点O以每秒3°的速度逆时针旋转,若旋转时间为t 秒(0<t<90),当∠MON=5°时,直接写出t的值.参考答案一、1.C【点拨】平面图形有三角形、圆、长方形、正方形、扇形等;立体图形有球、圆锥、长方体、正方体、圆柱、三棱柱等,则C中全是平面图形,故选C.2.D3.A4.A【点拨】两点确定一条直线,A正确;由同一个点射出的两条射线组成的图形叫做角,B错误;两点之间线段最短,C错误;若AB=BC,B有可能是AC的中点,也有可能A,B,C不在同一条直线上,如图,D错误.故选A.5.C6.C7.D【点拨】如图①,MN=15-52+52=7.5(cm);如图②,MN=15+52-52=7.5(cm).故选D.8.B【点拨】24'60=0.4°,所以∠1=28.4°=∠3>∠2,故选B.9.C【点拨】综合三视图可知,这个几何体的底层有4个小正方体,第二层有2个小正方体,如下图所示,正方形内的数字表示该位置的小正方体数量.10.B【点拨】由正方体表面展开图的“相间、Z端是对面”可知,“1”与“3”,“2”与“4”,“5”与“6”是对面,因此要使图②中几何体能看得到的面上数字之和最小,最右边的那个正方体所能看到的4个面的数字为1,2,3,5,最上边的那个正方体所能看到的5个面的数字为1,2,3,4,5,左下角的那个正方体所能看到的3个面的数字为1,2,3,所以该几何体能看得到的面上数字之和最小为11+15+6=32.二、11.9;1412.两点确定一条直线13.1;3【点拨】如图①,最少有1个交点;如图②,最多有3个交点.14.160°【点拨】根据时钟上一大格是30°,时针1分钟转0.5°进行计算即可解答.15.4【点拨】因为点C是线段AD的中点,CD=1,所以AD=2CD=2.因为点D是线段AB的中点,所以AB=2AD=4.16.155°【点拨】因为OD平分∠AOC,∠AOC=50°,所以∠BOD=∠AOB -∠AOD=∠AOB12∠AOC=180°-50°2=155°.17.100°12'【点拨】由题图可知∠AOB的补角为180°-∠AOB=62°+38°12'=100°12'.18.21;42【点拨】如图,甲、乙两地的车站分别用A,G表示,中途的五个车站分别用B,C,D,E,F表示,用AB表示起点为A,终点为B的车票票价,故有以下不同票价:AB,AC,AD,AE,AF,AG,BC,BD,BE,BF,BG,CD,CE,CF,CG,DE,DF,DG,EF,EG,FG,共21种,来回车票不同,则需准备21×2=42(种)车票.三、19.【解】如图,线段AB就是所求的线段.20.【解】如图.21.【解】方法一因为N为PB的中点,NB=0.8cm,所以PB=2NB=1.6cm.所以AP=AB-PB=4.8-1.6=3.2(cm).方法二因为N是PB的中点,NB=0.8cm,所以PB=2NB=1.6cm.因为M为AB的中点,AB=4.8cm,所以AM=MB=12AB=2.4cm.又因为MP=MB-PB=2.4-1.6=0.8(cm),所以AP=AM+MP=2.4+0.8=3.2(cm).22.【解】(1)北偏东70°(2)因为∠AOB=40°+15°=55°,∠AOB=∠AOC,所以∠AOC=55°,所以∠BOC=110°.因为射线OD是OB的反向延长线,所以∠BOD=180°.所以∠COD=∠BOD-∠BOC=70°.又因为OE平分∠COD,所以∠COE=35°.所以∠AOE=∠AOC+∠COE=90°.23.【解】(1)长方体的高为3cm,则长方体的宽为12-2×3=6(cm),长12×(25-3-6)=8(cm).根据题意,可得每件这种产品的体积为8×6×3=144(cm3).(2)由(1)可知该产品的高为3cm,宽为6cm,长为8cm,所以装5件这种产品,要使纸箱所用的材料尽可能少,应该尽量使6cm×8cm的面重叠在一起,所以用规格为15cm×6cm×8cm的包装纸箱符合要求.所以包装纸箱的表面积为2×(8×6+8×15+6×15)=516(cm2).24.【解】(1)40°;45°(2)∠MON-∠BON=30°.理由如下:因为∠COD=12∠AOB,射线OM平分∠AOB,所以∠COD=∠AOM.因为射线ON平分∠AOD,所以∠AON=∠NOD,所以∠AOM+∠MON=∠NOB+∠BOC+∠COD.因为∠BOC=30°,所以∠MON=∠NOB+30°.所以∠MON-∠BON=30°.(3)t=12秒或t=16秒或t=84秒或t=88秒【点拨】因为∠MON-∠BON =30°,∠BON=5°,所以∠MON=35°,所以∠COD=∠AOM=∠BOM=40°,所以∠AOB=80°.因为∠BOC=30°,所以∠AOD=80°+40°+30°=150°.因为将∠AOB绕点O以每秒2°的速度顺时针旋转,所以∠AOB度数恒定,即∠AOM=40°恒定.分以下两种情况讨论:情况一:在OA,OD相遇前,因为射线ON平分∠AOD,所以∠AON12∠AOD=12(150°-2t°-3t°)=75°-2.5t°.因为∠AOM=40°,∠MON=5°,①若OM,ON未相遇,则∠MON=∠AON-∠AOM=75°-2.5t°-40°=5°,解得t=12.②若OM,ON相遇后,则∠MON=∠AOM-∠AON=40°-(75°-2.5t°)=5°,解得t=16.情况二:在OA,OD相遇后,此时∠AOD=360°-(3t°-150°)-2t°=510°-5t°,所以∠AON12∠AOD=255°-2.5t°.①若OM,ON未第二次相遇,则∠MON=∠AON-∠AOM=255°-2.5t°-40°=5°,解得t=84.②若OM,ON第二次相遇后,则∠MON=∠AOM-∠AON=40°-(255°-2.5t°)=5°,解得t=88.综上所述,t=12秒或t=16秒或t=84秒或t=88秒.。

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、如图,王虎使一长为4cm,宽为3cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为A→A1→A2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A翻滚到A2位置时共走过的路径长为()A.10cmB.4πcmC.D.2、将六个边长相同的正三角形密铺成一个正六边形,下列说法正确的是()A.正六边形可看作是其中一个正三角形绕中心依次旋转60°,120°,180°,240°,300°得到的B.正六边形可看作是其中一个正三角形经过平移得到的 C.正六边形可看作是其中一个正三角形通过三次轴对称得到的 D.以上说法都有错误3、如图,直线y=-x+4与x轴,y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是()A.(3,4)B.(4,5)C.(7,4)D.(7,3)4、下列结论中,错误的是()A.两点确定一条直线B.两点之间,直线最短C.等角的余角相等 D.等角的补角相等5、将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图①.在图②中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图①的状态,那么按上述规则连续完成2013次变换后,骰子朝上一面的点数是()A.6B.5C.3D.26、把弯曲的道路改直,能够缩短行程,其道理用数学知识解释应是()A.两点确定一条直线B.垂线段最短C.线段可以比较大小D.两点之间,线段最短7、钟表在3点半时,它的时针与分针所成锐角是()A.70 ºB.85 ºC.75 ºD.90 º8、下列命题正确的是()A.两个相等的角一定是对顶角B.两条直线被第三条直线所截,同旁内角互补C.两个锐角的和是锐角D.连接直线外一点与直线上各点的所有线段中,垂线段最短9、如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°10、如图,将30°的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB,EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③∠BED=30°;④ED=2AB.其中正确的是()A.①②③B.①②④C.②③④D.①②③④11、如图所示,甲、乙之间有四条路可走,那么最短线路的序号是()A.①B.②C.③D.④12、如图,将矩形绕点顺时针旋转到矩形的位置,旋转角为(),若,则的大小是()A. B. C. D.13、平面内两个正六边形有一边AB重合在一起,将左侧的正六边形绕平面内的某一点,旋转一定的角度后能与右侧的正六边形完全重合,平面内这样的旋转中心有()个.A.1B.3C.5D.无数14、下列说法正确的是()A.由不在同一直线上的几条线段首尾顺次相连所组成的封闭图形叫多边形 B.一条弧和经过弧的两条半径围成的图形叫做扇形 C.三角形是最简单的多边形 D.圆的一部分是扇形15、如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.125°D.135°二、填空题(共10题,共计30分)16、已知,,的角平分线和的角平分线的反向延长线交于点P,且,则________度.17、一个角的度数是,则它的补角的度数为________.18、一块手表上午9点45分,时针分针所夹角的度数为________.19、把48.5°用度分秒表示为________.20、将长方形ABCD纸片按如图所示方式折叠,使得,其中EF,EG为折痕,则________度.21、如图,OA⊥OB于点O,OA=4,⊙A的半径是2,将OB绕点O按顺时针方向旋转,当OB与⊙A相切时,OB旋转的角度为________.22、如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,则∠MON的度数为________.23、如图所示,在Rt△ABC中,,,,将三角形绕着BC的中点O逆时针旋转,点A的对应点为E,则图中阴影部分的面积为________.24、如图,把绕点A逆时针旋转,得到,点恰好落在边上,连接,则________度.25、如图,点P是等边△ABC外一点,AP= 2,BP= 3,则PC的最大值为________三、解答题(共5题,共计25分)26、计算:①96°﹣18°26′59″②83°46′+52°39′16″③20°30′×8④105°24′15″÷327、已知:如图,,求证:AD∥BC28、如图,在三角形中,于点,点在边上,且.请你说明与互为余角的理由.29、如图所示,AB为一条直线,OC是∠AOD的平分线,OE在∠BOD内,∠AOC=30°,∠BOE=2∠DOE,求∠BOE的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遵义市十一中《图形认识初步》测验试卷
一、填空题(每题3分,共30分) 1.圆柱的侧面展开后的是 ;
2.若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和

6,x=_ ___, y=______.
3.已知α∠与β∠互余,且40α=∠15’,则α∠的余角为
. 4.如图,若是
中点,是


,_________
5.俯视图为圆的立体图形可能是6.要在墙上固定一根木条,至是 。

7. ⑴
° ; ⑵89.小明每天下午5:3010. 二、选择题(每题4分,共32分) 1.如果与互补,与互余,与
的关系是(A )
=
(B )
(C )
(D )以上都不对
2. 对于直线,线段,射线,在下列各图中能相交的是
( )
3.下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个的是( )
.如图,,
,点B 、O 、D 在同一直线上,
则的度数为( ) )
B )
(C )
(D )
( ) O 的 方向上.( ). (B )北偏西65° (D )南偏西65° l 旋转一周, 可以得到右图所示的
立体图形的是( )
1
2 3 x y
D
C B A
8. 下图中, 是正方体的展开图是(
)
三、作图题:(6分)
1.根据下列要求画图:
(1)连接线段AB ;(2)画射线OA ,射线OB ; (3)在线段AB 上取一点C ,在射线OA 上 取一点D (点C 、D 不与点A 重合),画直 线CD ,使直线CD 与射线OB 交于点E 。

四、解答题(共32分)
1.如图,D 是AB 的中点, E 是BC 的中点,BE=5
1
AC=2cm,线段DE 的长,
求线段DE 的长. (8分)
2.如图,∠AOD=∠BOC=90°,∠COD=42°,求∠AOC 、∠AOB 的度数. (8分)
O
C
A
D
B
3.如图,点A 、O 、E 在同一直线上,∠AOB=40°,∠EOD=28°46’,OD 平分∠COE , 求∠COB 的度数(8分)
4.如下图,在已知角内画射线,画1条射线,图中共有 个角;画2条射线,图中共有 个角;画3条射线,图中共有 个角,
求画n 条射线所得的角的个数..。

(8分)
A
O
E
B
C
D
A · B
·
O
·
A
B
C
D。

相关文档
最新文档