高中数学试题:三角函数单元复习题(三)
高中数学试题三角函数单元测试题
nC.y = 2cos(2x + 4 )x nD.y = 2cos (2 + 4)4.函数y = 2sin(3x —;)图象的两条相邻对称轴之间的距离是姓名: 班级: 考场: 一、选择题(本大题共 10小题,每小题5分,共 1•下列函数中,最小正周期为 A.y = sin2x C.y = sin 2x + cos2x 三角函数单元测试题座位号: n 的偶函数是 50分) xB.y = cos2 _ 1 — tan 2x D.y =i r tan 2; 2 .设函数 y = cos(sinx),贝U A.它的定义域是[—1,C.它的值域是[—cos1, 3.把函数y = cosx 的图象上的所有点的横坐标缩小到原来的一半, 1 : cosl ] B.它是偶函数D.它不是周期函数 纵坐标扩大到原来的两倍, n 然后把图象向左平移 4个单位.则所得图象表示的函数的解析式为 A.y = 2sin2x B.y =— 2sin2x 5. 6.2n B.孑若sin a+ cos a= m ,且一,'2 < m v — 1,贝U a 角所在象限是A.第一象限B.第二象限C.第三象限D.第四象限C. n4 n D 4T3 n函数y = |cotx| • nx (0v x < — 且x f)的图象是(7. cos'x设y= ,则下列结论中正确的是1 + sinxA. y有最大值也有最小值C.y有最小值但无最大值B.y有最大值但无最小值D.y既无最大值又无最小值函数y= sin (n —2x)的单调增区间是3 n nA. : k n—V , k n+~ : (k€ Z)8 8n 5 nB. :k T T" , k nr V 】(k€ Z)8 8n16. 关于函数f(x)= 4sin(2x + 3 )(x € R)有下列命题:①由f(X 1) = f(x 2)= 0可得X 1 — X 2必是n 的整数倍;n②y = f(x)的表达式可改为 y = 4cos(2x — §);③y = f(x)的图象关于点(一n , 0)对称; ④y = f(x)的图象关于直线 x =— n 对称.6其中正确的命题的序号是 ______________ .三、解答题(本大题共 5小题,共70分•解答应写出文字说明、证明过程或演算步骤)17. (本小题满分12分)如图为函数 y = Asin( 3x+Q (A >0, w >0)的图象的一部分,试求该 函数的一个解析式•18. (本小题满分 14分)已知函数 y = (sinx + cosx)2 + 2cos 2x.(x € R)(1) 当y 取得最大值时,求自变量x 的取值集合.⑵该函数图象可由y = sinx(x € R)的图象经过怎样的平移和伸缩n C. [ k n — 8 ,k 灶 3n : (k € Z)D. : k 计 3n, k n+ ¥ : (k € Z)9 .已知 0w x < n 1且一2 v a v 0,那么函数 f(x)= cos 2x — 2asinx — 1的最小值是A.2a + 1B.2a — 1C. — 2a — 1D.2a10.求使函数 y = sin(2x + B )+寸3 cos(2x + ®为奇函数,且在[0,才 值为 ]上是增函数的 B 的一个” 5 n A 亍二、填空题(本大题共r 4 n 2 n B. 5C. §6小题,每小题5分,共30分)11 .函数 _ cosxy = 1 + 2cosx 的值域是12.函数 ,cosxy= lg (1 + tanx )的定义域是 ----------------- x , y €[ 0, n ,且满足 |sinx|= 2cosy — 2,则 13. 如果14. ____________________ 已知函数y = 2cosx , x €[ 0, 2n ]和y = 2,则它们的图象所围成的一个封闭的平面图形 的面积是15. ____________________________________________ 函数 y = sinx + cosx + sin2x 的值域x =变换得至U?19. (本小题满分14分)已知函数f(x) = log 1 (sinx—cosx)2(1 )求它的定义域和值域;(2)求它的单调减区间;(3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的一个周期20. (本小题满分15分)某村欲修建一横断面为等腰梯形的水渠(如图),为降低成本,必须尽量减少水与水渠壁的接触面•若水渠横断面面积设计为定值的倾斜角a应为多少时,方能使修建的成本最低?21. (本小题满分15分)已知函数f(x)= sin(3x+枷3>0, 0W皆n是R上的偶函数,其图3 n n象关于点M(~4 , 0)对称,且在区间]o, 2 ]上是单调函数,求 $和3的值.5 n 5 n — 5 n —2 nsin (3 + 0)= 0•若取 0=— y ,贝y y = 3 sin(2x — — )=— 3 sin(2x —§ ),它与y = •. 3 sin(2x —扌)的图象关于x 轴对称,故求解错误!因此,将点的坐标代入函数 y = J 3 sin(2x + 0)后,如何确定 0,要看该点在曲线上的位置 •如:M 在上升的曲线上,就相当于 五 2 n点法”作图中的第一个点,故 亍+ 0= 0;而N 点在下降的曲线上,因此相当于 五点法”作图中的第三个点,故5n +0= n,由上可得0的值均为一手.18. (本小题满分 14分)已知函数 y = (sinx + cosx)2 + 2cos 2x.(x € R)(1)当y 取得最大值时,求自变量x 的取值集合•⑵该函数图象可由y = sinx(x € R)的图象经过怎样的平移和伸缩变换得到? 【解】 y = 1 + sin2x + 2cos 2x = sin2x + cos2x + 2 = .2 sin(2x + 才)+ 2.n(1)要使y 取得最大值,则sin(2x + [ )= 1. 即卩:2x+ ; = 2k n x = k nF : (k € Z)4 2 8•••所求自变量的取值集合是 {x | x = k n+n , k € Z}.8三角函数单元测试题答案一、 选择题(本大题共 1. D 2. B 3. B 二、 填空题(本大题共 10小题,每小题 4. A 5. C 6.6小题,每小题 5分,共50分) C 7. C 8. D 9. C 10. C5分,共30分)11.(-汽 3 八[1,12.n t{x|—4 + 2k n< X V 2k n 或 2k n<X V 0 + 2k *k € Z)}13. x = 0 或 n y = 0 14. 4 n三、解答题(本大题共17.(本小题满分12 函数的一个解析式 【解】 由图可得:A = '3 , T = 2 | MN | =15. {y |— 4 w y w 1 + .;2 }16 .②③70分•解答应写出文字说明、证明过程或演算步骤)3 > 0)的图象的一部分,试求该5小题,共 分)如图为函数 y = Asin( 3x+沏(A > 0,从而 3= 2j n = 2,故 y = ,'3 sin(2x + 0) 将 M (n , 0)代入得 sin (¥ + 0) = 0 取 0= —守 得 y = .'3 sin(2x — ¥ 【评注】本题若将N (5n , 0) 代入 y = 3 sin(2x+ 妨则可得:(2) 变换的步骤是:, - , _ n n①把函数y= sinx的图象向左平移4个单位,得到函数y= sin(x+& )的图象;1 n②将所得的图象上各点的横坐标缩短到原来的2倍(纵坐标不变),得函数y= sin(2x+4 )的图象;③再将所得的图象上各点的纵坐标伸长到原来的-'2倍(横坐标不变),得函数y= ;2nsin(2x+ 4 )的图象;④最后将所得的图象向上平移2个单位,就得到y=p2sin(2x+ n )+2的图象.【说明】以上变换步骤不唯一!19. (本小题满分14分)已知函数f(x) = log 1(sinx—cosx)2(1 )求它的定义域和值域;(2)求它的单调减区间;(3) 判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的一个周期【分析】研究复合函数的性质(定义域、值域、单调性、奇偶性、周期性)应同时考虑内层函数与外层函数各自的特性以及它们的相互制约关系【解】(1 )由题意得sinx —cosx>0,即承sin(x —;)>0n n 5 n从而得2k nV x — 4 V 2k n+ n所以函数的定义域为(2k n+ 4 , 2k n+匚)(k€ Z)T 0 V sin(x—< 1,二0V sinx—cosx w返1 1即有log1 (sinx—cosx) > log 1 .'2 = —•故函数的值域是[— 2 , +m).2 2n n(2)••• sinx—cosx= ,'2 sin (x—4 )在f(x)的定义域上的单调递增区间为( 2k n^4 , 2k n3 n n 3 n+ —) (k€ Z),函数f(x)的递减区间为(2k 灶 4 , 2k n+ — ) (k€ Z).⑶•/ f(x)的定义域在数轴上对应的点不关于原点对称, •••函数f(x)是非奇非偶函数.(4) f(x+ 2 n = log 1[ sin(x+ 2 n—cos(x+ 2 "]= log 1(sinx —cosx) = f(x).2 2•函数f(x)是周期函数,2 n是它的一个周期20. (本小题满分15分)某村欲修建一横断面为等腰梯形的水渠(如图) ,为降低成本,必须尽量减少水与水渠壁的接触面•若水渠横断面面积设计为定值的倾斜角a应为多少时,方能使修建的成本最低?【分析】本题中水与水渠壁的接触面最小,即是修建的成本最低,而水与水渠壁的接触面最小,实际上是使水渠横断面的周长最小.【解】设水渠横断面的周长为y,则:3 1 3 X3(y—2x sn a) X+ 2X硏=m即:y = m + 3 2i cos a (0 V aV 90 °.3 sin a ' ‘(0 ° aV 90 °最小,T tsin a+ cos a= 2.2 1• sin( a+ 0 =——,(其中0 由tan 0=7 , 0€ (0 °90 °p t2+1 t2由一:W 1 得:t2>3 t> .3.t2+ 1当且仅当t = ;3,即tan片龙3,即卩0= 30°寸,不等式取等号,此时3=60°【答】水渠侧壁的倾斜角a= 60 °寸,修建成本最低.21. (本小题满分15分)已知函数f(x) = sin( 3x+ 0)( 3>0, 0w皆n是R上的偶函数,其图象关于点M (34?, 0)对称,且在区间]0,才]上是单调函数,求0和3的值.【解】由f(x)是偶函数,得f(x) = f( —x)即sin( 3X+ 0) = sin( — 3x+ 0)•••—cos 0sin 3x= cos 0sin 3x对任意x 者E成立.且3> 0,二cos ©= 0,依题设0w 皆n 二由f(x)的图象关于点M (3^ , 0)对称,得,3 n 3 n 3 n取x=0,得f(- )= —f(4),••• fq )= 03 n 3 3n •-f(7 )= sin(丁n 33n+ 2 )= cos 4 = 0,又3> 03 3n_n 4 = 22k= 0, 1, 2,…,3= 3(2k+ 1), k= 0, 1, 2,…当k = 0时,23=3,f(x)= sin £ x + )在区间]0,n】上是减函数;当k = 1时,n ‘3= 2, f(x)= sin(2x+ 3 )在区间]0,彳]上是减函数;3>乎,f(x) = sin(3x+ )在区间]0, n2】上不是单调函数;欲减少水与水渠壁的接触面,只要使水渠横断面周长y最小,即要使2 —cosa t=sin asin( a+ 30°) = 1 a2 所以,3= 3或3= 2.。
高中数学三角函数专项(含答案)
高中数学三角函数专项(含答案)一、填空题1.如图,点C 为某沿海城市的高速公路出入口,直线BD 为海岸线,512BAC π∠=,BD AB ⊥,BC 是以A 为圆心,半径为1km 的圆弧型小路.该市拟修建一条从C 通往海岸的观光专线CP PQ -(新建道路PQ ,对道路CP 进行翻新),其中P 为BC 上异于B C ,的一点,PQ 与AB 平行,设012PAB θθ5π⎛⎫∠=<<⎪⎝⎭,新建道路PQ 的单位成本是翻新道路CP 的单位成本的2倍.要使观光专线CP PQ -的修建总成本最低,则θ的值为____________.2.设1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF =,若23cos 5AF B ∠=,则椭圆E 的离心率为___________.3.方程12sin 01x xπ-=-,[2,4]x m m ∈--+(m ∈Z )的所有根的和等于2024,则满足条件的整数m 的值是________4.如图所示,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥爬行一周后回到点P 处,若该小虫爬行的最短路程为43的体积为___________.5.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠=则四面体ABCD 体积的最大值为___________.6.法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC 中,角60A =,以,,AB BC AC 为边向外作三个等边三角形,其外接圆圆心依次为123,,O O O ,若三角形123O O O 3ABC 的周长最小值为___________7.在ABC 中,7AB =3BC =1cos 7BAC ∠=,动点D 在ABC 所在平面内且2π3BDC ∠=.给出下列三个结论:①BCD △3②线段AD 的长度只有最小值,无最大值,且最小值为1;③动点D 的轨迹的长度为8π3.其中正确结论的序号为______.8.已知三棱锥S ABC -中,SA SB SC ==,ABC 是边长为4的正三角形,点E ,F 分别是SC ,BC 的中点,D 是AC 上的一点,且EF SD ⊥,若3FD =,则DE =___________. 9.平行六面体1111ABCD A B C D -的各棱长均相等,1160BAD DAA A AB ∠=∠=∠=,直线1AC ⋂平面1A BD E =,则异面直线1D E 与AD 所成角的余弦值为_________.10.1643年法国数学家费马曾提出了一个著名的几何问题:已知一个三角形,求作一点,使其到这个三角形的三个顶点的距离之和为最小.它的答案是:当三角形的三个角均小于120°时,所求的点为三角形的正等角中心(即该点与三角形的三个顶点的连线段两两成角120°),该点称为费马点.已知ABC 中,其中60A ∠=︒,1BC =,P 为费马点,则PB PC PA +-的取值范围是__________.二、单选题11.若方程x 2 +2x +m 2 +3m = m cos(x +1) + 7有且仅有1个实数根,则实数m 的值为( ) A .2B .-2C .4D .-412.已知函数()()sin cos sin cos 0f x x x x x ωωωωω=++->,则下列结论错误的是( )①1ω=时,函数()f x 图象关于π4x =对称;②函数()f x 的最小值为-2;③若函数()f x 在π,04⎡⎤-⎢⎥⎣⎦上单调递增,则(]03ω∈,;④1x ,2x 为两个不相等的实数,若()()124f x f x +=且12x x -的最小值为π,则2ω=. A .②③B .②④C .①③④D .②③④13.已知函数()132,f x x x R =∈,若当02πθ≤≤时,(sin )(1)0f m f m θ+->恒成立,则实数m 的取值范围是( ) A .0,1 B .,0C .1,D .(),1-∞14.已知双曲线22413y x -=的左右焦点分别为1F ,2F ,点M 是双曲线右支上一点,满足120MF MF →→⋅=,点N 是线段12F F 上一点,满足112F N F F λ→→=.现将12MF F △沿MN 折成直二面角12F MN F --,若使折叠后点1F ,2F 距离最小,则λ=( )A .15B .25C .35D .4515.已知函数()3sin()(0,||)f x x ωϕωϕπ=+><,(4)(2)6f f =-,且()f x 在[2,4]上单调.设函数()()1g x f x =-,且()g x 的定义域为[5,8]-,则()g x 的所有零点之和等于( ) A .0B .4C .12D .1616.已知函数()*()cos 3f x x πωω⎛⎫=+∈ ⎪⎝⎭N ,若函数()f x 图象的相邻两对称轴之间的距离至少为4π,且在区间3(,)2ππ上存在最大值,则ω的取值个数为( ) A .4B .3C .2D .117.在三棱锥A BCD -中,2,AC AD AB CD BC BD ======接球的半径为( ) ABCD.18.已知函数()2sin 1,022sin 1,02x x f x x x ππ⎧-≥⎪⎪=⎨⎪--<⎪⎩,()11x g x x -=+,则关于x 的方程()()f x g x =在区间[]8,6-上的所有实根之和为( ) A .10-B .8-C .6-D .4-19.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是( )A .212+B .3C .312+D .220.在ABC 中,BAC ∠的平分线交BC 于点,2,6D BD DC BC ==,则ABC ∆的面积的最大值为( ) A .6B .62C .12D .122三、解答题21.在海岸A 处,发现北偏东45︒方向,距离A 为31-海里的B 处有一艘走私船,在A 处北偏西75︒方向,距离A 为2海里的C 处有一艘缉私艇奉命以103海里/时的速度追截走私船,此时,走私船正以10海里/时的速度从B 处向北偏东30方向逃窜.(1)问C 船与B 船相距多少海里?C 船在B 船的什么方向? (2)问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间.22.如图,四边形ABCD 是某市中心一边长为4百米的正方形地块的平面示意图. 现计划在该地块上划分四个完全相同的直角三角形(即Rt ,Rt ,Rt ABF BCG CDH 和Rt DAE ),且在这四个直角三角形区域内进行绿化,中间的小正方形修建成市民健身广场,为了方便市民到达健身广场,拟修建4条路,AE ,BF ,CG DH . 已知在直角三角形内进行绿化每1万平方米的费用为10a 元,中间小正方形修建广场每1万平方米的费用为13a 元,修路每1百米的费用为a 元,其中a 为正常数.设FAB θ∠=,0,4πθ⎛⎫∈ ⎪⎝⎭.(1)用θ表示该工程的总造价S ;(2)当cos θ为何值时,该工程的总造价最低?23.已知函数 f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1,a ∈R . (1)写出函数 f (x )的最小正周期(不必写出过程); (2)求函数 f (x )的最大值;(3)当a =1时,若函数 f (x )在区间(0,k π)(k ∈N*)上恰有2015个零点,求k 的值.24.已知()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中0>ω,()f x a b =⋅,且函数()f x 在12x π=处取得最大值.(1)求ω的最小值,并求出此时函数()f x 的解析式和最小正周期; (2)在(1)的条件下,先将()y f x =的图像上的所有点向右平移4π个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),然后将所得图像上所有的点向下平移32个单位,得到函数y g x 的图像.若在区间5,33ππ⎡⎤⎢⎥⎣⎦上,方程()210g x a +-=有两个不相等的实数根,求实数a 的取值范围;(3)在(1)的条件下,已知点P 是函数()y h x =图像上的任意一点,点Q 为函数()y f x =图像上的一点,点3,64A π⎛⎫- ⎪ ⎪⎝⎭,且满足12OP OQ OA =+,求()104h x +≥的解集. 25.如图,甲、乙两个企业的用电负荷量y 关于投产持续时间t (单位:小时)的关系()y f t =均近似地满足函数()sin()(0,0,0)f t A t b A ωϕωϕπ=++>><<.(1)根据图象,求函数()f t 的解析式;(2)为使任意时刻两企业用电负荷量之和不超过9,现采用错峰用电的方式,让企业乙比企业甲推迟(0)m m >小时投产,求m 的最小值.26.已知(3cos ,sin ),(sin ,0),0a x x b x ωωωω==>,设()(),f x a b b k k R =+⋅+∈. (1)若()f x 图象中相邻两条对称轴间的距离不小于2π,求ω的取值范围; (2)若()f x 的最小正周期为π,且当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最大值是12,求()f x 的解析式,并说明如何由sin y x =的图象变换得到()y f x =的图象. 27.已知函数 2()sin 2cos 1f x x m x =--- [0,]2x π∈()1若()f x 的最小值为 - 3,求m 的值; ()2当2m =时,若对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立,求实数a 的取值范围.28.如图,半圆的直径2AB =,O 为圆心,C ,D 为半圆上的点.(Ⅰ)请你为C 点确定位置,使ABC ∆的周长最大,并说明理由; (Ⅱ)已知AD DC =,设ABD θ∠=,当θ为何值时, (ⅰ)四边形ABCD 的周长最大,最大值是多少? (ⅱ)四边形ABCD 的面积最大,最大值是多少29.已知函数22()sin 22sin 26144f x x t x t t ππ⎛⎫⎛⎫=---+-+ ⎪ ⎪⎝⎭⎝⎭,,242x ππ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,最小值为()g t .(1)求当1t =时,求8f π⎛⎫⎪⎝⎭的值;(2)求()g t 的表达式; (3)当112t -≤≤时,要使关于t 的方程2()9g t k t =-有一个实数根,求实数k 的取值范围. 30.已知函数2()2cos 23cos f x x x x =+. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若()f x 在区间,6m π⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,求m 的取值范围.【参考答案】一、填空题1.6π22 3.1008或100941282π53(21)+ 6.6 7.①③879.5610.⎫⎪⎪⎣⎭二、单选题 11.A 12.B 13.D 14.C 15.C 16.C 17.A 18.B 19.D 20.C 三、解答题21.(1)=BC C 船在B 船的正西方向;(2)缉私艇沿东偏北30才能最快追上走私船. 【解析】(1)在ABC 中根据余弦定理计算BC ,再利用正弦定理计算ABC ∠即可得出方位; (2)在BCD △中,利用正弦定理计算BCD ∠,再计算BD 得出追击时间. 【详解】解:(1)由题意可知1=AB ,2AC =,120BAC ∠=︒, 在ABC 中,由余弦定理得:2222cos1206BC AB AC AB AC =+-︒=,BC ∴,由正弦定理得:sin sin AC BCABC BAC=∠∠,即2sin ABC∠解得:sin 2ABC ∠=, 45ABC ∴∠=︒,C ∴船在B 船的正西方向.(2)由(1)知=BC 120DBC ∠=︒,设t 小时后缉私艇在D 处追上走私船,则10BD t =,CD =,在BCD △10sin tBCD∠, 解得:1sin 2BCD ∠=, 30BCD ∴∠=︒,BCD ∴△是等腰三角形,10t ∴=,即t =∴缉私艇沿东偏北30【点睛】本题考查了正余弦定理解三角形,以及解三角形的实际应用,考查转化能力和运算能力,属于中档题.22.(1)()16(13sin 6sin cos )S a θθθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭;(2)当3cos 4θ=时,()16()S af θθ=取得最小值 【解析】(1)根据题意可知4sin BF θ=,4cos AF θ=,进而求得Rt ABFS 与EFGH S 正方形再求得总造价S 即可.(2)由(1)有()16(13sin 6sin cos )S a θθθθ=+-,再求导分析函数的单调性与最值即可.【详解】(1)在Rt ABF 中,FAB θ∠=,4AB =,所以4sin BF θ=,4cos AF θ=. 由于Rt ,Rt ,Rt ABF BCG CDH 和Rt DAE 是四个完全相同的直角三角形,所以4sin AE BF CG DH θ====,4(cos sin )EF FG GH HE θθ====-,所以Rt114cos 4sin 8sin cos 22ABFS AF BF θθθθ=⋅⋅=⨯⨯=, 2224(cos sin )16(12sin cos )EFGH S EF θθθθ==-=-正方形.所以()48sin cos 1016(12sin cos )1344sin S a a a θθθθθθ=⨯⨯+-⨯+⨯⨯16[20sin cos (12sin cos )13sin ]a θθθθθ=+-⨯+ 16(13sin 6sin cos )a θθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭. (2)由(1)记()13sin 6sin cos f θθθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭.则22232()cos 6(cos sin )12cos cos 612(cos )(cos )43f θθθθθθθθ'=--=-++=--+. 令()0f θ'=,因为0,4πθ⎛⎫∈ ⎪⎝⎭,所以3cos 4θ=或2cos 3θ=-(舍).记03cos 4θ=,所以当0(0,)θθ∈时,()0f θ'<,()f θ单调递减;当0(,)4πθθ∈时,()0f θ'>,()f θ单调递增. 所以当3cos 4θ=时,()f θ取得极小值,也是最小值, 又0a >,所以当3cos 4θ=时,()16()S af θθ=取得最小值. 【点睛】本题主要考查了三角函数在几何中的运用,同时也考查了求导分析函数最值的方法,属于难题. 23.(1)最小正周期为π.(2)见解析(3)k =1008. 【解析】(1)由题意结合周期函数的定义直接求解即可;(2)令t ,t ∈[1,则当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()2f x t at t μ==-,当,2x π⎛⎤∈π ⎥⎝⎦时,()()22f x v t t at ==+-,易知()()t v t μ≤,分类比较()1v 、v的大小即可得解;(3)转化条件得当且仅当sin2x =0时,f (x )=0,则x ∈(0,π]时,f (x )有且仅有两个零点,结合函数的周期即可得解. 【详解】(1)函数 f (x )的最小正周期为π. (2)∵f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1=sin2x ﹣1=(sin2x +1),令t =t ∈[1],当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()(21f x t at t t μ==-≤≤,当,2x π⎛⎤∈π ⎥⎝⎦时,()()(221f x v t t at t ==+-≤≤,∵()()()2222220t v t at t t at t μ-=--+-=-+≤即()()t v t μ≤.∴()()(){}max max max 1,f x v t v v ==,∵()11v a =-,v,∴当1a ≤-()f x 最大值为1a -;当1a >-()f x .(3)当a =1时,f (x )sin 21x -,若f (x )=0sin 21x =+即22sin 22sin 2sin x x x =+,∴当且仅当sin2x =0时,f (x )=0,∴x ∈(0,π]时,f (x )有且仅有两个零点分别为2π,π, ∴2015=2×1007+1, ∴k =1008. 【点睛】本题考查了三角函数的综合问题,考查了分类讨论思想和转化化归思想,属于难题.24.(1)ω的最小值为1,()sin 23f x x π⎛⎫=+ ⎪⎝⎭,T π=,(2)104a <≤(3)原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【解析】 【分析】(1)先将()f x 化成正弦型,然后利用()f x 在12x π=处取得最大值求出ω,然后即可得到()f x 的解析式和周期(2)先根据图象的变换得到()sin 6x y g x π⎛⎫-= ⎝=⎪⎭,然后画出()g x 在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象,条件转化为()g x 的图象与直线12y a =-有两个交点即可(3)利用坐标的对应关系式,求出()h x 的函数的关系式,进一步利用三角不等式的应用求出结果. 【详解】 (1)因为()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭所以()32sin cos 3f x a b x x πωω⎛⎫=⋅=++ ⎪⎝⎭212sin cos sin cos 2x x x x x x ωωωωωω⎛⎫== ⎪ ⎪⎝⎭11cos 21sin 2sin 22222x x x x ωωωω-=+=+sin 23x πω⎛⎫=+ ⎪⎝⎭因为()f x 在12x π=处取得最大值.所以22,1232k k Z πππωπ⨯+=+∈,即121,k k Z ω=+∈当0k =时ω的最小值为1此时()sin 23f x x π⎛⎫=+ ⎪⎝⎭,T π=(2)将()y f x =的图像上的所有的点向右平移4π个单位得到的函数为sin 2sin 2436y x x πππ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再把所得图像上所有的点的横坐标伸长为原来的2倍(纵坐标不变)得到的函数为sin 6y x π⎛⎫=- ⎪⎝⎭,然后将所得图像上所有的点向下平移32个单位,得到函数()sin 6x y g x π⎛⎫-= ⎝=⎪⎭()sin 6g x x π⎛⎫=- ⎪⎝⎭在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象为:方程()210g x a +-=有两个不相等的实数根等价于()g x 的图象 与直线12y a =-有两个交点 所以11212a ≤-<,解得104a <≤(3)设(),P x y ,()00,Q x y因为点3,6A π⎛ ⎝⎭,且满足12OP OQ OA =+ 所以00126132x x y y π⎧=+⎪⎪⎨⎪=⎪⎩002332x x y y π⎧=-⎪⎪⎨⎪=⎪⎩因为点()00,Q x y 为函数()y f x =图像上的一点 所以332sin 2233y x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭即1()sin 423y h x x π⎛⎫==- ⎪⎝⎭因为()104h x +≥,所以1sin 432x π⎛⎫-≥- ⎪⎝⎭所以7242,636k x k k Z πππππ-≤-≤+∈ 所以3,22428k k x k Z ππππ+≤≤+∈ 所以原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【点睛】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,平面向量的数量积的应用,三角不等式的解法及应用,主要考查学生的运算能力和转换能力,属于中档题.25.(1)()sin 462f t t ππ⎛⎫=++ ⎪⎝⎭;(2)4【解析】 【分析】 (1)由212T πω==,得ω,由53A b b A +=⎧⎨-=⎩,得A ,b ,代入(0,5),求得ϕ,从而即可得到本题答案;(2)由题,得()()cos ()cos 8966f t m f t t m t ππ⎡⎤⎛⎫++=+++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立,等价于cos ()cos 166t m t ππ⎡⎤⎛⎫++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立,然后利用和差公式展开,结合辅助角公式,逐步转化,即可得到本题答案. 【详解】(1)解:由图知212T πω==,6πω∴=又53A b b A +=⎧⎨-=⎩,可得41b A =⎧⎨=⎩()sin 46f t t πϕ⎛⎫∴=++ ⎪⎝⎭,代入(0,5),得22k πϕπ=+,又0ϕπ<<,2πϕ∴=所求为()sin 462f t t ππ⎛⎫=++ ⎪⎝⎭(2)设乙投产持续时间为t 小时,则甲的投产持续时间为()t m +小时,由诱导公式,企业乙用电负荷量随持续时间t 变化的关系式为:()sin 4cos 4626f t t t πππ⎛⎫=++=+ ⎪⎝⎭同理,企业甲用电负荷量变化关系式为:()cos ()46f t m t m π⎡⎤+=++⎢⎥⎣⎦两企业用电负荷量之和()()cos ()cos 866f t m f t t m t ππ⎡⎤⎛⎫++=+++ ⎪⎢⎥⎣⎦⎝⎭,0t ≥依题意,有()()cos ()cos 8966f t m f t t m t ππ⎡⎤⎛⎫++=+++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立即cos ()cos 166t m t ππ⎡⎤⎛⎫++≤⎪⎢⎥⎣⎦⎝⎭恒成立 展开有cos 1cos sin sin 16666m t m t ππππ⎡⎤⎛⎫⎛⎫⎛⎫+-≤ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦恒成立cos 1cos sin sin cos 66666m t m t A t πππππϕ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦其中,A =cos 16cos m Aπϕ⎛⎫+ ⎪⎝⎭=,sin 6sin m A πϕ=1A ∴=≤整理得:1cos 62m π⎛⎫≤- ⎪⎝⎭解得2422363k m k πππππ⎛⎫+≤≤+ ⎪⎝⎭即124128k m +≤≤+ 取0k =得:48m ≤≤ m ∴的最小值为4.【点睛】本题主要考查根据三角函数的图象求出其解析式,以及三角函数的实际应用,主要考查学生的分析问题和解决问题的能力,以及计算能力,难度较大.26.(1)01ω<≤;(2)()sin 26f x x π⎛⎫=- ⎪⎝⎭;平移变换过程见解析.【解析】 【分析】(1)根据平面向量的坐标运算,表示出()f x 的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于2π及周期公式,即可求得ω的取值范围; (2)根据最小正周期,求得ω的值.代入解析式,结合正弦函数的图象、性质与()f x 的最大值是12,即可求得()f x 的解析式.再根据三角函数图象平移变换,即可描述变换过程.【详解】∵(3cos ,sin ),(sin ,0)a x x b x ωωω== ∴(3cos sin ,sin )a b xx x ωωω+=+∴2()()3sin cos sin f x a b b k x x x k ωωω=+⋅+=++ 1cos21122cos2222x x k x x k ωωωω-=++=-++ 1sin 262x k πω⎛⎫=-++ ⎪⎝⎭(1)由题意可知222T ππω=≥, ∴1ω≤ 又0>ω, ∴01ω<≤(2)∵T πω=, ∴1ω=∴1()sin 262f x x k π⎛⎫=-++ ⎪⎝⎭∵,66x ππ⎡⎤∈-⎢⎥⎣⎦,∴2,626x πππ⎡⎤-∈-⎢⎥⎣⎦∴当266x ππ-=即6x π=时max 11()sin 16622f x f k k ππ⎛⎫==++=+= ⎪⎝⎭∴12k =-∴()sin 26f x x π⎛⎫=- ⎪⎝⎭将sin y x =图象上所有点向右平移6π个单位,得到sin 6y x π⎛⎫=- ⎪⎝⎭的图象;再将得到的图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象(或将sin y x =图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 2y x =的图象;再将得到的图象上所有点向右平移12π个单位,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象) 【点睛】本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.27.(1)1m =;(2)13[,)8a ∈+∞【解析】 【分析】(1)将函数化为2()cos 2cos 2f x x m x =--,设cos [0,1]t x =∈,将函数转化为二次函数,利用二次函数在给定的闭区间上的最值问题的解法求解.(2) 对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立, 等价于12max1()()24f x f x a -≤-,然后求出函数()f x 的最值即可解决.【详解】(1)2()cos 2cos 2f x x m x =--,[0,]2x π∈令 cos [0,1]t x =∈, 设222()22()2g t t mt t m m =--=---,①0m <,则min g(0)2()3g t ==-≠-,②01m ≤≤,则2min )3(2t m g =--=-,∴1m =± ∴1m =③1m ,则min g(1)21()3g m t ==--=-,∴1m =.(舍) 综上所述:1m =.(2)对任意12,[0,]2x x π∈都有()()12124f x f x a -≤-恒成立,等价于12max1()()24f x f x a -≤-,2m =,∴2g()(2)6t t =--,[0,1]t ∈max ()g(0)2f x ==-,min ()g(1)5f x ==-12max ()(25)()3f x f x =---=- ∴ 1234a -≥,∴ 138a ≥, 综上所述:13[,)8a ∈+∞.【点睛】本题考查三角函数中的二次“型”的最值问题,和双参恒成立问题,属于中档题. 28.(Ⅰ)点C 是半圆的中点,理由见解析; (Ⅱ)(ⅰ)6πθ=时,最大值5(ⅱ)6πθ=时,最大面积是334【解析】(Ⅰ)设BC a =,AC b =,AB c =,法一:依题意有222+=a b c ,再利用基本不等式求得2a b c +,从而得出结论;法二:由点C 在半圆上,AB 是直径,利用三角函数求出cos a c α=⋅,sin b c α=⋅,再利用三角函数的性质求出结论;(Ⅱ)(ⅰ)利用三角函数值表示四边形ABCD 的周长p ,再求p 的最大值;(ⅱ)利用三角函数值表示出四边形ABCD 的面积s ,再结合基本不等式求s 的最大值. 【详解】(Ⅰ)点C 在半圆中点位置时,ABC ∆周长最大.理由如下: 法一:因为点C 在半圆上,且AB 是圆的直径, 所以2ACB π∠=,即ABC ∆是直角三角形,设BC a =,AC b =,AB c =,显然a ,b ,c 均为正数,则222+=a b c , 因为222a b ab +≥,当且仅当a b =时等号成立,所以()()2222222a b a b ab a b +≥++=+,所以()2222a b a b c +≤+=, 所以ABC ∆的周长为()21222a b c c ++≤+=+,当且仅当a b =时等号成立,即ABC ∆为等腰直角三角形时,周长取得最大值,此时点C 是半圆的中点. 法二:因为点C 在半圆上,且AB 是圆的直径, 所以2ACB π∠=,即ABC ∆是直角三角形,设BC a =,AC b =,AB c =,02ABC παα⎛⎫∠=<< ⎪⎝⎭,则cos a c α=⋅,sin b c α=⋅,a b c ++cos sin c c c αα=⋅+⋅+()2cos sin 2αα=++22sin 24πα⎛⎫=++ ⎪⎝⎭,因为02πα<<,所以3444πππα<+<, 所以当42ππα+=,即4πα=时, ABC ∆周长取得最大值222+,此时点C 是半圆的中点.(Ⅱ)(ⅰ)因为AD DC =,所以ABD DBC θ∠=∠=, 所以sin AD DC AB θ==⋅,cos2CB AB θ=⋅, 设四边形ABCD 的周长为p , 则p AD DC CB AB =+++2sin cos22AB AB θθ=++()2214sin 212sin 254sin 2θθθ⎛⎫=+-+=-- ⎪⎝⎭,显然0,4πθ⎛⎫∈ ⎪⎝⎭,所以当6πθ=时,p 取得最大值5;(ⅱ)过O 作OE BC ⊥于E ,设四边形ABCD 的面积为s ,四边形AOCD 的面积为1s ,BOC ∆的面积为2s ,则 121122s s s AC OD BC OE =+=⋅+⋅11sin 21cos 2sin 222AB AB θθθ=⋅+⋅ sin 2cos2sin 2θθθ=+⋅()sin 21cos2θθ=+, 所以()222sin 21cos2s θθ=+()()221cos 21cos 2θθ=-+()()31cos21cos2θθ=-+()()331cos 21cos 23θθ=-+()()()2231cos 21cos 211cos 232θθθ-++⎡⎤≤+⎢⎥⎣⎦()()()231cos 21cos 211cos 232θθθ-++⎡⎤=+⎢⎥⎣⎦()()()2231cos 21cos 21cos 21232θθθ⨯-++⎡⎤++⎢⎥≤⎢⎥⎢⎥⎢⎥⎣⎦()()()431cos 21cos 221cos 2134θθθ-++++⎡⎤=⎢⎥⎣⎦413273216⎛⎫==⎪⎝⎭; 当且仅当()31cos21cos2θθ-=+,即1cos 22θ=时,等号成立, 显然04πθ⎛⎫∈ ⎪⎝⎭,,所以202πθ⎛⎫∈ ⎪⎝⎭,,所以此时6πθ=,所以当6πθ=时,s =,即四边形ABCD【点睛】本题考查解三角形的应用问题,考查三角函数与基本不等式的应用,需要学生具备一定的计算分析能力,属于中档题.29.(1)4-(2)22515421()611282(1)t t t g t t t t t t ⎧⎛⎫-+<- ⎪⎪⎝⎭⎪⎪⎛⎫=-+-≤≤⎨ ⎪⎝⎭⎪⎪-+>⎪⎩(3)--22∞⋃+∞(,)(,) 【解析】 【分析】(1)直接代入计算得解;(2)先求出1sin(2)[,1]42x π-∈-,再对t 分三种情况讨论,结合二次函数求出()g t 的表达式;(3)令2()()9h t g t k t =-+,即2()(6)t 10h t k =-++有一个实数根,利用一次函数性质分析得解. 【详解】(1)当1t =时,2()sin 22sin 2444f x x t x ππ⎛⎫⎛⎫=---- ⎪ ⎪⎝⎭⎝⎭,所以48f π⎛⎫=- ⎪⎝⎭. (2)因为[,]242x ∈ππ,所以32[,]464x πππ-∈-,所以1sin(2)[,1]42x π-∈- 2()[sin(2)]614f x x t t π=---+([,]242x ∈ππ)当12t <-时,则当1sin(2)42x π-=-时,2min 5[()]54f x t t =-+当112t -≤≤时,则当sin(2)4x t π-=时,min [()]61f x t =-+ 当1t >时,则当sin(2)14x π-=时,2min [()]82f x t t =-+故22515421()611282(1)t t t g t t t t t t ⎧⎛⎫-+<- ⎪⎪⎝⎭⎪⎪⎛⎫=-+-≤≤⎨ ⎪⎝⎭⎪⎪-+>⎪⎩ (3)当112t -≤≤时,()61g t t =-+,令2()()9h t g t k t =-+即2()(6)t 10h t k =-++ 欲使2()9g t kt =-有一个实根,则只需1()02(1)0h h ⎧-≤⎪⎨⎪≥⎩或1()02(1)0h h ⎧-≥⎪⎨⎪≤⎩ 解得-2k ≤或2k ≥.所以k 的范围:--22∞⋃+∞(,)(,). 【点睛】本题主要考查三角函数的范围的计算,考查二次函数的最值的求法和方程的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.30.(Ⅰ) (),,36ππππ⎡⎤-+∈⎢⎥⎣⎦k k k Z (Ⅱ) 62ππ≤≤m【解析】 【分析】(Ⅰ)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数()f x 化为π2sin 216x ⎛⎫++ ⎪⎝⎭,利用正弦函数的单调性解不等式,可得到函数()f x 的递增区间;(Ⅱ) 要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,,可得7 2266m πππ≤+≤,从而可得结果.【详解】(Ⅰ)()22f x cos x =+πcos212sin 216x x x ⎛⎫=+=++ ⎪⎝⎭,由()222,262k x k k Z πππππ-≤+≤+∈得(),36k x k k Z ππππ-≤≤+∈所以,()f x 的单调递增区间是(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(Ⅱ)由(Ⅰ)知()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭.因为π,6x m ⎡⎤∈-⎢⎥⎣⎦,所以π2,2666x m ππ⎡⎤+∈-+⎢⎥⎣⎦.要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,. 所以72266m πππ≤+≤,即62m ππ≤≤. 【点睛】本题主要考查二倍角公式、辅助角公式的应用以及三角函数的单调性、三角函数的值域,属于中档题. 函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间.。
高中数学三角函数专项训练(含答案)
高中数学三角函数专项训练(含答案)一、填空题1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .角B 为钝角.设△ABC 的面积为S ,若()2224bS a b c a =+-,则sin A +sin C 的最大值是____________.2.如图,在ABC 中,1cos 3BAC ∠=-,2AC =,D 是边BC 上的点,且2BD DC =,AD DC =,则AB 等于______.3.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠=则四面体ABCD 体积的最大值为___________.4.已知函数23tan ,,,2332()63233,,33x x f x x ππππππ⎧⎛⎤⎛⎫∈-⋃ ⎪⎪⎥⎝⎦⎝⎭⎪=⎨⎛⎤⎪+∈ ⎥⎪⎝⎦⎩若()f x 在区间D 上的最大值存在,记该最大值为{}K D ,则满足等式{[0,)}3{[,2]}K a K a a =⋅的实数a 的取值集合是___________. 5.在ABC 中,角A 、B 、C 的对边a 、b 、c 为三个连续偶数且2C A =,则b =__________.6.△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .7.已知ABC 为等边三角形,点G 是ABC 的重心.过点G 的直线l 与线段AB 交于点D ,与线段AC 交于点E .设AD AB λ=,AE AC μ=,则11λμ+=__________;ADE 与ABC 周长之比的取值范围为__________.8.已知向量a 与b 的夹角为θ,27sin θ=||4a b -=,向量,c a c b --的夹角为2π,||23c a -=,则a c ⋅的最大值是___________.9.已知空间单位向量1e ,2e ,3e ,4e ,1234123421+=+=+++=e e e e e e e e ,则13⋅e e 的最大值是___________.10.已知函数()2log ,0,0x x f x x x >⎧=⎨-≤⎩,函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()()2g x g x π+=;③当[]0,x π∈时,()sin .g x x =则函数()()y f x g x =-在区间[]4,4ππ-上零点的个数为__________个.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-12 12.若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为( ) A .4B .8C .12D .1613.已知双曲线22413y x -=的左右焦点分别为1F ,2F ,点M 是双曲线右支上一点,满足120MF MF →→⋅=,点N 是线段12F F 上一点,满足112F N F F λ→→=.现将12MF F △沿MN 折成直二面角12F MN F --,若使折叠后点1F ,2F 距离最小,则λ=( )A .15B .25C .35D .4514.已知函数()sin sin()f x x x π=+,现给出如下结论:①()f x 是奇函数;②()f x 是周期函数;③()f x 在区间(0,)π上有三个零点;④()f x 的最大值为2.其中所有正确结论的编号为( ) A .①③B .②③C .②④D .①④15.已知F 是椭圆2221(1)x y a a +=>的左焦点,A 是该椭圆的右顶点,过点F 的直线l (不与x 轴重合)与该椭圆相交于点M ,N .记MAN α∠=,设该椭圆的离心率为e ,下列结论正确的是( )A .当01e <<时,2πα<B .当0e <<2πα>C .当12e <<时,23πα>D 1e <<时,34πα> 16.已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<-17.如图,长方形ABCD 中,AB =1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14B .23C .151- D .51- 18.已知函数()3sin()(0,||)f x x ωϕωϕπ=+><,(4)(2)6f f =-,且()f x 在[2,4]上单调.设函数()()1g x f x =-,且()g x 的定义域为[5,8]-,则()g x 的所有零点之和等于( ) A .0B .4C .12D .1619.在锐角ABC 中,三内角,,A B C 的对边分别为,,a b c ,且2sin a b C =,则tan tan tan A B C ++的最小值为( )A .2B .4C .6D .820.函数()cos(1)x f x e ax x x =+--,当0x >时,()0f x >恒成立,则a 的取值范围为( ) A .()0,∞+B .()1,e -+∞C .(),e -∞D .(),e +∞三、解答题21.在推导很多三角恒等变换公式时,我们可以利用平面向量的有关知识来研究,在一定程度上可以简化推理过程.如我们就可以利用平面向量来推导两角差的余弦公式:cos()cos cos sin sin αβαβαβ-=+ 具体过程如下:如图,在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角αβ,.它们的终边与单位圆O 的交点分别为A ,B .则(cos ,sin ),(cos ,sin )OA OB ααββ→→== 由向量数量积的坐标表示,有: cos cos sin sin OA OB αβαβ→→⋅=+设,OA OB →→的夹角为θ,则||||cos cos cos cos sin sin OA OB OA OB θθαβαβ→→→→⋅=⋅==+另一方面,由图3.1—3(1)可知,2k απβθ=++;由图可知,2k απβθ=+-.于是2,k k Z αβπθ-=±∈.所以cos()cos αβθ-=,也有cos()cos cos sin sin αβαβαβ-=+, 所以,对于任意角,αβ有:cos()cos cos sin sin αβαβαβ-=+(()C αβ-)此公式给出了任意角,αβ的正弦、余弦值与其差角αβ-的余弦值之间的关系,称为差角的余弦公式,简记作()C αβ-.有了公式()C αβ-以后,我们只要知道cos ,cos ,sin ,sin αβαβ的值,就可以求得cos()αβ-的值了.阅读以上材料,利用下图单位圆及相关数据(图中M 是AB 的中点),采取类似方法(用其他方法解答正确同等给分)解决下列问题: (1)判断1OC OMOM→→→=是否正确?(不需要证明)(2)证明:sin sin 2sincos22αβαβαβ+-+=(3)利用以上结论求函数()sin 2sin(2)3f x x x π=++的单调区间.22.已知函数()cos f x x x =,()sin g x x =,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)求证:()()f x g x ≤;(2)若()ax g x bx <<在0,2π⎛⎫⎪⎝⎭上恒成立,求a 的最大值与b 的最小值.23.将函数()sin 2g x x =3向左平移4π个单位长度,得到函数()y f x =的图象,设函数()()()h x f x g x =+. (1)对函数()h x 的解析式;(2)若对任意,,2παβπ⎡⎤∈⎢⎥⎣⎦,不等式()()a h h b αβ≤-≤恒成立,求b a -的最小值;(3)若26x h t π⎛⎫-= ⎪⎝⎭在[)0,2π内有两个不同的解1x ,2x ,求()12cos x x -的值(用含t 的式子表示).24.函数()()sin tan f x x ω=,其中0ω≠.(1)讨论()f x 的奇偶性;(2)1ω=时,求证:()f x 的最小正周期是π;(3)()1.50,1.57ω∈,当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,求满足条件的ω的个数,说明理由.25.已知ABC ∆的外接圆...,内角A ,B ,C 的对边分别为a ,b ,c ,又向量()sin sin ,m A C b a =--,sin sin n A C B ⎛⎫=+ ⎪ ⎪⎝⎭,且m n ⊥. (1)求角C ;(2)求三角形ABC 的面积S 的最大值并求此时ABC ∆的周长.26.已知(1,sin )a x =,(1,cos )b x =,(0,1)e =,且(cos sin )x x -∈. (1)若()//a e b +,求sin cos x x 的值;(2)设()()f x a b me a b =⋅+⋅-,m R ∈,若()f x 的最大值为12-,求实数m 的值.27.已知函数())23cos sin cos 0f x x x x ωωωω=+>的最小正周期为π.将函数()y f x =的图象上各点的横坐标变为原来的4倍,纵坐标变为原来的2倍,得到函数()y g x =的图象.(1)求ω的值及函数()g x 的解析式; (2)求()g x 的单调递增区间及对称中心28.已知函数()()()24sin sin cos sin cos sin 142x f x x x x x x π⎛⎫=+++-- ⎪⎝⎭.(1)求函数()f x 的最小正周期; (2)若函数()()()12122g x f x af x af x a π⎡⎤⎛⎫=+---- ⎪⎢⎥⎝⎭⎣⎦在,42ππ⎡⎤-⎢⎥⎣⎦的最大值为2,求实数a 的值.29.已知向量33cos ,sin 22a x x ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,且0,2x π⎡⎤∈⎢⎥⎣⎦(1)求a ·b 及||a b +;(2)若3()||2f x a b a b =⋅-+,求()f x 的最小值30.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,S 为ABC 的面积,()222sin SB C a c +=-. (1)证明:2A C =;(2)若2b =,且ABC 为锐角三角形,求S 的取值范围.【参考答案】一、填空题1.982.33 4.47,912ππ⎧⎫⎨⎬⎩⎭ 5.1067. 3 21,32⎡⎢⎣⎦8.259 10.6二、单选题 11.A 12.B 13.C 14.A 15.A 16.C 17.A 18.C 19.D 20.B 三、解答题21.(1)正确;(2)见解析;(3)单调递增区间为,()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,()f x 的单调递减区间为2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【解析】【分析】 (1) 因为对1||n n →→是n →方向上的单位向量,又1OC →=且OM →与OC→共线,即可判断出正确;(2)在OAM ∆中, ||||coscos22OM OA βαβα→→--=⋅=,又1OC OMOM→→→=,表示出OC →,OM →的坐标,由纵坐标对应相等化简即可证得结论; 即sin sin 2sincos22αβαβαβ+-+=(3)由(2)结论化简可得222233()sin 2sin 22sin cos 23226x x x x f x x x x ππππ⎛⎫⎛⎫++-+ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭=++==+ ⎪ ⎪⎝⎭⎝⎭借助正弦型函数的性质即可求得结果. 【详解】(1) 因为对于非零向量1,||n n n →→→是n →方向上的单位向量,又1OC →=且OM →与OC→共线,所以1OC OMOM→→→=正确;(2) 因为M 为AB 的中点,则OM AB ⊥,从而在OAM ∆中, ||||coscos22OM OA βαβα→→--=⋅=,又1OC OMOM→→→=,又cos ,sin 22OC αβαβ→++⎛⎫= ⎪⎝⎭,cos cos sin sin 22OM αβαβ→++⎛⎫=⎪⎝⎭,所以1sin sin sin22cos 2αβαββα++⎛⎫=⎪-⎝⎭, 即sin sin 2sincos22αβαβαβ+-+=(3)因为222233()sin 2sin 22sin cos 23226x x x x f x x x x ππππ⎛⎫⎛⎫++-+ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭=++==+ ⎪ ⎪⎝⎭⎝⎭令222262k x k πππππ-+≤+≤+,解得: 36k x k ππππ-+≤≤+所以()f x 的单调递增区间为,()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦令3222262k x k πππππ+≤+≤+,解得: 263k x k ππππ+≤≤+ 所以()f x 的单调递减区间为2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【点睛】本题考查向量在证明三角恒等式中的应用,考查类比推理,考查正弦型函数的单调性,难度较难.22.(1)答案见解析;(2)a 最大值为2π,b 的最小值为1. 【解析】 【分析】(1)构建函数()cos sin h x x x x =-,通过导数研究函数()h x 在0,2π⎡⎤⎢⎥⎣⎦单调性并计算最值,可得结果.(2)构造函数()sin M x x cx =-,通过分类讨论的方法,0c ≤,1c ≥和01c <<,利用导数判断函数()M x 的单调性,并计算最值比较,可得结果. 【详解】(1)由()()()cos sin h x f x g x x x x =-=- 所以()'cos sin cos sin h x x x x x x x =--=-. 又0,2x π⎡⎤∈⎢⎥⎣⎦,()'sin 0h x x x =-≤,所以()h x 在区间上0,2π⎡⎤⎢⎥⎣⎦单调递减.从而()()00h x h ≤=,()()f x g x ≤. (2)当0x >时,“()ax g x <”等价于“sin 0x ax ->” “()g x bx <”等价于“sin 0x bx -<”.令()sin M x x cx =-,则()'cos M x x c =-,当0c ≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当1c ≥时,因为对任意0,2x π⎛⎫∈ ⎪⎝⎭,()'cos 0M x x c =-<,所以()M x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减.从而()()00M x M <=对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当01c <<时,存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,使得()'cos 0M x x c =-=.()M x 与()'M x 在区间0,2π⎛⎫⎪⎝⎭上的情况如下:因为M x 在区间00,x 上是增函数, 所以()()000M x M >=.进一步,“()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立”当且仅当1022M c ππ⎛⎫=-≥ ⎪⎝⎭,即20c π<≤,综上所述: 当且仅当2c π≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立; 当且仅当1c ≥时,()0M x <对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.所以,若()ax g x bx <<对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立,则a 最大值为2π,b 的最小值为1. 【点睛】本题考查导数的综合应用,关键在于构建函数,化繁为简,同时掌握分类讨论的思想,考验分析问题的能力以及计算能力,属中档题.23.(1)()2sin 23h x x π⎛⎫=+ ⎪⎝⎭(2)4;(3)()212cos 12tx x -=-【解析】(1)将()g x⇒2y x =;再向左平移4π个单位长度⇒()24f x x π⎛⎫=+ ⎪⎝⎭,最后代入()h x ,得答案;(2)对()h x 在,2x ππ⎡⎤∈⎢⎥⎣⎦,由内到外求出值域,因为()()a h h b αβ≤-≤恒成立,所以max b m ≥,min a m ≤,整理得答案;(3)表示26x h π⎛⎫- ⎪⎝⎭并化简,由1x ,2x 是2sin x t =在[)0,2π内有两个不同的解,所以12x x π+=或123x x π+=,因需求()12cos x x -,所以分别表示12x x -并代入,利用诱导公式和二倍角公式化简,将式子中22sin x 换成t 得答案. 【详解】(1)将函数()sin 2g x x =得到函数2y x =的图象,再将2y x =的图象向左平移4π个单位长度得到函数()y f x =,所以()224f x x x π⎛⎫=+= ⎪⎝⎭,又()()()h x f x g x =+,所以()sin 222sin 23h x x x x π⎛⎫==+ ⎪⎝⎭;(2)当,2x ππ⎡⎤∈⎢⎥⎣⎦时,472,333x πππ⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭,所以sin 21,3x π⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦,所以2sin 22,3x π⎛⎫⎡+∈- ⎪⎣⎝⎭, 令()()m h h αβ=-,因为()()a h h b αβ≤-≤恒成立,所以max 2b m ≥=,min 2a m ≤=-2a -≥所以4b a -≥即b a -的最小值为4;(3)法一:因为2sin 22sin 26263x x h x πππ⎡⎤⎛⎫⎛⎫-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以1x ,2x 是2sin x t =在[)0,2π内有两个不同的解, 所以12x x π+=或123x x π+=, 所以1222x x x π-=-或12232x x x π-=-所以()()22212221cos 2sin 12sin 1122t x x x x -=-=-=-;法二:①当t >0时,不妨设12x x <,则有1202x x ππ<<<<,所以1cos x =2cos x = ②当0t <时,不妨设12x x <,则有1232x x πππ<<<<2,所以1cos x 2cos x =③当0=t 时,显然有10x =,2x π=,所以()2121212cos cos cos sin sin 12t x x x x x x -=+=-.【点睛】本题考查了由三角函数图像的伸缩平移变换表示解析式,给定定义域求三角函数值域,不等式恒成立问题,还考查了函数零点问题,充分体现了数学中转化与划归思想,属于难题. 24.(1)奇函数;(2)见解析;(3)ω的个数为198个,见解析. 【解析】(1)根据奇偶函数的定义进行判断即可; (2)根据最小正周期公式进行验证即可;(3)利用函数的图象和不等式的性质可以求出满足条件的ω的个数.【详解】(1)()sin[tan()]sin(tan )sin(tan )()f x x x x f x ωωω-=-=-=-=-,所以函数()f x 是奇函数;(2)()sin[tan()]sin(tan )()f x x x f x ππ+=+==,所以()f x 的最小正周期是π;(3)因为当0x >时,()111122g x x x ⎛⎫=+≥⨯ ⎪⎝⎭,(当且仅当1x =时取等号),所以当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,只能()sin tan 1x ω=,即tan 22k πωπ=+,因为(1.50, 1.57)ω∈,所以2(tan1.50,tan1.57)2k ππ+∈,因此1.99199.6k <<,2,3,4,,199k =⋯,因此满足条件的ω的个数为198个, 当0x >时,也是一样的,因为两个函数是奇函数都关于原点对称,所以当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,满足条件的ω的个数为198.【点睛】本题考查了函数奇偶性和周期性,考查了三角奇函数的性质,考查了基本不等式的应用,考查了数学运算能力.25.(1) 3C π=. (2) max S =【解析】 【分析】(1)由0m n m n ⊥⇒⋅=,利用坐标表示化简,结合余弦定理求角C (2)利用(1)中222c a b ab =+-,应用正弦定理和基本不等式,即可求出面积的最大值,此时三角形为正三角即可求周长. 【详解】(1)∵0m n m n ⊥⇒⋅=,∴()())sin sin sin sin sin 0A C A C b a B -+-=,且2R =)22022a c b a R R ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭, 化简得:222c a b ab =+-.由余弦定理:2222cos c a b ab C =+-,∴12cos 1cos 2C C =⇒=,∵0C π<<,∴3C π=.(2)∵()22222sin 6a b ab c R C +-===,∴2262a b ab ab ab ab =+-≥-=(当且仅当a b =时取“=”)1sin 2S ab C ==≤所以,max S =ABC ∆为正三角形,此时三角形的周长为 【点睛】本题主要考查了利用数量积判断两个平面向量的垂直关系,正弦定理,余弦定理,基本不等式,属于中档题. 26.(1)0 (2)32【解析】 【分析】(1)通过()//a e b +可以算出()(1,sin 1)//1,cos cos sin 1x x x x +⇒=+,移项、两边平方即可算出结果.(2)通过向量的运算,解出()()f x a b me a b =⋅+⋅-,再通过最大值根的分布,求出m 的值. 【详解】(1)通过()//a e b +可以算出()(1,sin 1)//1,cos cos sin 1x x x x +⇒=+, 即2cos sin 1(cos sin )112sin cos 1sin cos 0x x x x x x x x -=⇒-=⇒-=⇒= 故答案为0.(2)()1sin cos (sin cos )f x x x m x x =++-,设()cos sin x x t t ⎡-=∈⎣,22112sin cos sin cos 2t x x t x x --=⇒=,22113()()1222t g t f x mt t mt -==+-=--+,即213(),22g t t mt t ⎡=--+∈⎣的最大值为12-; ①当11m m -≤⇒≥-时,max 1313()(1)2222g x g m m ==--+=-⇒=(满足条件);②当11m m <-≤⇒<-时,222max 1311()()22222g x g m m m m =-=-++=-⇒=-(舍);③当m m -><max 131()22222g x g m ==-⨯-=-⇒=(舍)故答案为32m = 【点睛】当式子中同时出现sin cos ,sin cos ,sin cos x x x x x x +-时,常常可以利用换元法,把sin cos x x 用sin cos ,sin cos x x x x +-进行表示,但计算过程中也要注意自变量的取值范围;二次函数最值一定要注意对称轴是否在规定区间范围内,再讨论最后的结果.27.(1)1ω=,()2sin()23x g x π=+;(2)单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,对称中心为2(2,0)()3k k ππ-∈Z . 【解析】 【分析】(1)整理()f x 可得:()sin(2)3f x x πω=+,利用其最小正周期为π即可求得:1ω=,即可求得:()sin(2)3f x x π=+,再利用函数图象平移规律可得:()2sin()23x g x π=+,问题得解. (2)令222232x k k πππππ-≤+≤+,k Z ∈,解不等式即可求得()g x 的单调递增区间;令23x k ππ+=,k Z ∈,解方程即可求得()g x 的对称中心的横坐标,问题得解. 【详解】解:(1)1()2sin 2sin(2)23f x x x x πωωω=+=+, 由22ππω=,得1ω=. 所以()sin(2)3f x x π=+.于是()y g x =图象对应的解析式为()2sin()23x g x π=+.(2)由222232x k k πππππ-≤+≤+,k Z ∈得 54433k x k ππππ-≤≤+,k Z ∈ 所以函数()g x 的单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 由23x k ππ+=,解得22()3x k k ππ=-∈Z . 所以()g x 的对称中心为2(2,0)()3k k ππ-∈Z . 【点睛】本题主要考查了二倍角公式、两角和的正弦公式应用及三角函数性质,考查方程思想及转化能力、计算能力,属于中档题. 28.(1) 2T π=;(2)2a =-或6a = 【解析】 【分析】(1)根据二倍角公式进行整理化简可得()2sin f x x =,从而可得最小正周期;(2)将()g x通过换元的方式变为21112y t at a =-+--,1t ≤;讨论对称轴的具体位置,分别求解最大值,从而建立方程求得a 的值. 【详解】(1)()2221cos sin cos sin 12f x x x x x π⎡⎤⎛⎫=-++-- ⎪⎢⎥⎝⎭⎣⎦()222sin sin 12sin 12sin x x x x =++--= ∴最小正周期2T π=(2)()1sin2sin cos 12g x a x a x x a =+---令sin cos x x t -=,则()22sin 21sin cos 1x x x t =--=-22221111122242a a y t at a t at a t a ⎛⎫∴=-+--=-+-=--+- ⎪⎝⎭sin cos 4t x x x π⎛⎫=-=- ⎪⎝⎭由42x ππ-≤≤得244x πππ-≤-≤1t ≤①当2a<a <-当t =max 122y a ⎫=--⎪⎭由1222a ⎫--=⎪⎭,解得()817a ==->-)②当12a≤,即2a -≤时 当2a t =时,2max 142a y a =- 由21242a a -=得2280a a --=,解得2a =-或4a =(舍去) ③当12a>,即2a >时 当1t =时,max 12a y =-,由122a-=,解得6a = 综上,2a =-或6a = 【点睛】本题考查正弦型函数最小正周期的求解、利用二次函数性质求解与三角函数有关的值域问题,解题关键是通过换元的方式将所求函数转化为二次函数的形式,再利用对称轴的位置进行讨论;易错点是忽略了换元后自变量的取值范围. 29.(1)见解析; (2)178-. 【解析】 【分析】(1)运用向量数量积的坐标表示,求出a ·b ; 运用平面向量的坐标运算公式求出a b +,然后求出模.(2)根据上(1)求出函数()f x 的解析式,配方,利用二次函数的性质求出最小值.【详解】(1)33cos cos sin sin cos22222x xa b x x x ⋅=⋅-⋅=cos a b ⎛+= ⎝ =∵0,2x π⎡⎤∈⎢⎥⎣⎦∴cos 0x ∴2cos a b x +=(2)()cos23cos f x x x =- 223172cos 13cos 2cos 48x x x ⎛⎫=--=-- ⎪⎝⎭∵0,2x π⎡⎤∈⎢⎥⎣⎦∴0cos 1x ∴()min 317cos 48x f x ==-【点睛】本题考查了平面向量数量积的坐标表示,以及平面向量的坐标加法运算公式.重点是二次函数求最小值问题.30.(1)见解析;(2)2⎫⎪⎪⎝⎭【解析】 【分析】(1)利用三角形面积公式表示S ,结合余弦定理和正弦定理,建立三角函数等式,证明结论,即可.(2)结合三角形ABC 为锐角三角形,判定tanC 的范围,利用tanC 表示面积,结合S 的单调性,计算范围,即可. 【详解】(1)证明:由()222sin S B C a c +=-,即222sin SA a c =-,22sin sin bc A A a c∴=-,sin 0A ≠,22a c bc ∴-=, 2222cos abc bc A =+-,2222cos a c b bc A ∴-=-, 22cos b bc A bc ∴-=,2cos b c A c ∴-=,sin 2sin cos sin B C A C ∴-=,()sin 2sin cos sin A C C A C ∴+-=,sin cos cos sin sin A C A C C ∴-=, ()sin sin A C C ∴-=,A ,B ,()0,C π∈,2A C ∴=.(2)解:2A C =,3B C π∴=-,sin sin3B C ∴=.sin sin a b A B =且2b =, 2sin2sin3Ca C∴=,()212sin2sin 2sin2sin 2tan2tan 4tan 4sin 32sin 2sin2cos cos2sin tan2tan 3tan tan tan C C C C C C C S ab C C C C C C C C C CC C∴======+++--,ABC 为锐角三角形,20,230,20,2A C B C C ππππ⎧⎛⎫=∈ ⎪⎪⎝⎭⎪⎪⎛⎫∴=-∈⎨ ⎪⎝⎭⎪⎪⎛⎫∈⎪⎪⎝⎭⎩,,64C ππ⎛⎫∴∈ ⎪⎝⎭,tan C ⎫∴∈⎪⎪⎝⎭, 43tan tan S CC=-为增函数, 2S ⎫∴∈⎪⎪⎝⎭.【点睛】考查了正弦定理,考查了余弦定理,考查了三角形面积公式,考查了函数单调性判定,难度偏难.。
高考数学三角函数单选题专题复习题(含答案)
高考数学三角函数单选题专题复习题1.如图,阴影部分的月牙形边缘都是圆弧,两段圆弧分别是ABC △的外接圆和以AB 为直径的圆的一部分,若2π3ACB ∠=,1AC BC ==,则该月牙形的面积为()A.3π424+ B.3π424- C.1π424+ D.33π48-2.已知11sin 22M x x ⎧⎫=-≤≤⎨⎩⎭,πππ,,0,463N ⎧⎫=--⎨⎬⎩⎭,则M N = ()A.π,06⎧⎫-⎨⎬⎩⎭B.π,04⎧⎫-⎨⎬⎩⎭C.ππ,0,63⎧⎫-⎨⎬⎩⎭ D.ππ,,046⎧⎫--⎨⎬⎩⎭3.某海湾的海潮高低水位之差可达到15米,在该海湾某一固定点,大海水深d (单位:m )与午夜后的时间t (单位:h )之间的关系为()104co πs 3d t t =+,则下午5点时刻该固定点的水位变化的速度为()A.3B.6πC.6π-D.π-4.已知π,(0,2αβ∈,且cossin22tan cos sin 22ββαββ+=-,则2αβ-=()A.π8B.π4C.π2D.π5.函数cos y x =和sin y x =在下列哪个区间上都是单调递减的()A.π,π2⎡⎤⎢⎥⎣⎦B.π0,2⎡⎤⎢⎥⎣⎦C.π,02⎡⎤-⎢⎥⎣⎦D.ππ,2⎡⎤--⎢⎥⎣⎦6.若角α的终边在直线y x =上,则角α的取值集合为()A.{}36045,k k αα=⋅︒+︒∈Z ∣ B.{}360135,k k αα=⋅︒+︒∈Z ∣C.{}180135,k k αα=⋅︒-︒∈Z ∣ D.{}18045,k k αα=⋅︒-︒∈Z ∣7.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象与直线y =的相邻两个交点的距离分别为π4和3π4,若π13f ⎛⎫= ⎪⎝⎭,则()f x 解析式为()A.()π2sin 26f x x ⎛⎫=- ⎪⎝⎭ B.()π2sin 3f x x ⎛⎫=- ⎪⎝⎭C.()π2sin 6f x x ⎛⎫=+⎪⎝⎭D.()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭8.函数π32cos 23y x ⎛⎫=--- ⎪⎝⎭的单调递增区间是()A.()2πππ,π36k k k ⎡⎤--∈⎢⎥⎣⎦Z B.()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z C.()π4π2π,2π33k k k ⎡⎤++∈⎢⎥⎣⎦Z D.()ππ2π,2π36k k k ⎡⎤-+∈⎢⎥⎣⎦Z 9.把函数()y f x =的图象上各点向右平移π6个单位,再把横坐标缩短到原来的12倍,再把纵坐标伸长到原来的32倍,所得图象的解析式是π3sin 23y x ⎛⎫=+ ⎪⎝⎭,则()f x 的解析式是()A.()2cos f x x =-B.()2sin f x x =C.()2cos f x x= D.()2sin f x x=-10.已知4πtan 3a =,2πsin 3b =,17πcos 4c ⎛⎫=- ⎪⎝⎭,则()A.a c b>> B.a b c >> C.b c a>> D.a c b>>11.下列是函数()πtan 214f x x ⎛⎫=++ ⎪⎝⎭的对称中心的是()A.π,08⎛⎫- ⎪⎝⎭B.π,02⎛⎫ ⎪⎝⎭C.()0,1 D.π,18⎛⎫ ⎪⎝⎭12.已知π3sin 35x ⎛⎫+= ⎪⎝⎭,则7πcos 6x ⎛⎫- ⎪⎝⎭等于()A.35-B.45C.35-D.45-13.若tan 2α=,则cos 21sin 2αα=+()A.34B.12C.13-D.35-14.若()sin 20α-︒=,则()sin 250α+︒=()A.18B.18-C.78-D.7815.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =和()y g x =恰有一个交点.则a =()A.-1B.12C.1D.216.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是()A.4π B.2π C.34π D.π17.某著名的公式是i e cos x x isinx =+,则3i e 在复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限18.若函数()2sin f x x =存在1x ,2x ,⋅⋅⋅,n x 满足120πn x x x n ≤<<⋅⋅⋅<≤,n +∉N ,且()()()()()()122312024m m f x f x f x f x f x f x --+-+⋅⋅⋅+-=,()2,m m +≥∈N ,则满足条件的实数m 的最小值为()A.506B.507C.508D.50919.已知函数π()sin()(0,06,||2f x A x b A ωϕωϕ=++>≤≤<的部分图象如图所示,则()f x =()A.π2sin(316x ++ B.π3sin(3)6x + C.π2sin(16x ++ D.π2sin(5)13x ++20.已知函数π1()sin(262f x x =--的定义域为[,]()m n m n <,值域为3[,0]2-,则n m-的取值范围是()A.π[,π]3B.π2π[,33C.[π2,2π3D.π[,π]2参考答案题号12345678910答案A A A C A C D B C B 题号11121314151617181920答案DACDDABBAB。
高三复习高中数学三角函数基础过关习题(有答案)
高三复习高中数学三角函数基础过关习题(有答案)高三复习高中数学三角函数基础过关习题一、填空题1. sin(π/4)的值是____。
2. tan(π/3)的值是____。
3. cos(2π/3)的值是____。
4. sin^2(π/6) + cos^2(π/6)的值是____。
5. sin(2π/3)的值是____。
二、选择题1. 若tanθ = 3,且θ的范围是(0, π),则sinθ的值是:A. -3/√10B. 3/√10C. -10/3D. 10/32. 若sinα = -1/2,且α的范围是(π/2, π),则cosα的值是:A. -√3/2B. -√2/2C. 1/2D. √2/23. 一个角θ的终边过点P(-2, -2),则sinθ的值是:A. -√2/2B. √2/2C. -2/√2D. 2/√24. 若sinx = -1/2,且x的范围是[π, 3π/2],则cosx的值是:A. 1/2B. -1/2C. √2/2D. -√2/25. 若sinθ = cosθ,且θ的范围是[0, π/2],则θ的值是:A. π/4B. π/6C. π/3D. π/2三、解答题1. 求下列三角函数的值:(a) sin(-π/4)(b) cos(7π/6)2. 已知三角形ABC中,∠A=60°,BC=4,AC=6,求AB 的长度。
3. 已知tanθ = 3/4,且θ的范围是(0, π/2),求cosθ的值。
4. 若sinα = -1/√10,且α的范围是(π/2, π),求cos(2α)的值。
5. 已知sinx = 2/√5,且x的范围是[π/2, π],求cos(2x)的值。
参考答案:一、填空题1. sqrt(2)/22. sqrt(3)3. -1/24. 15. sqrt(3)/2二、选择题1. B2. A3. D4. B5. A三、解答题1.(a) sin(-π/4) = -sin(π/4) = -sqrt(2)/2(b) cos(7π/6) = cos(π/6) = sqrt(3)/22. 根据余弦定理,有AB^2 = AC^2 + BC^2 - 2 * AC * BC * cos∠A= 6^2 + 4^2 - 2 * 6 * 4 * cos60°= 36 + 16 - 48 * 1/2= 20所以AB = sqrt(20) = 2 * sqrt(5)3. 根据正切函数的定义,有tanθ = 3/4 = opposite/adjacent假设opposite = 3x,adjacent = 4x,则x > 0则根据勾股定理,有sqrt(opposite^2 + adjacent^2) = sqrt((3x)^2 +(4x)^2) = 5x所以cosθ = adjacent/hypotenuse = 4x/5x = 4/54. 根据余弦函数的定义,有cosα = sqrt(1 - sin^2α) = sqrt(1 - (-1/√10)^2) = sqrt(1 - 1/10) = sqrt(9/10) = 3/√10所以cos(2α) = cos^2α - sin^2α = (3/√10)^2 - (-1/√10)^2 = 9/10 - 1/10 = 8/10 = 4/55. sinx = 2/√5 = 2 * √5/5,且x的范围是[π/2, π],则可得到一个特解x = 2π/3cos(2x) = cos^2x - sin^2x = (cosx)^2 - (sinx)^2 = (√(1 - (sinx)^2))^2 - (sinx)^2 = 1 - (sinx)^2 - (sinx)^2 = 1 - 2 * (sinx)^2= 1 - 2 * (2 * √5/5)^2 = 1 - 2 * (4/5) = 1 - 8/5 = -3/5。
高中数学三角函数练习题
高中数学三角函数练习题高中数学三角函数练习题高中数学中,三角函数是一个重要的知识点。
它不仅在数学中有广泛的应用,还在物理、工程等领域中发挥着重要作用。
为了提高学生对三角函数的理解和应用能力,老师经常布置一些练习题。
下面我们就来看一些高中数学三角函数练习题。
练习题1:已知角A的弧度为π/6,求sinA和cosA的值。
解析:根据三角函数的定义,sinA等于对边与斜边的比值,cosA等于邻边与斜边的比值。
角A的弧度为π/6,可以通过画一个等边三角形来求解。
由于等边三角形的三个角都是60度,所以角A的对边和邻边都是1,斜边是2。
因此,sinA等于1/2,cosA等于√3/2。
练习题2:已知sinB=3/5,求cosB的值。
解析:根据三角函数的定义,sinB等于对边与斜边的比值,cosB等于邻边与斜边的比值。
已知sinB=3/5,可以通过勾股定理求解。
假设对边为3x,斜边为5x,邻边为4x。
根据勾股定理,3x^2+4x^2=5x^2,化简得到x=1。
因此,cosB等于4/5。
练习题3:已知tanC=4/3,求sinC和cosC的值。
解析:根据三角函数的定义,tanC等于对边与邻边的比值,sinC等于对边与斜边的比值,cosC等于邻边与斜边的比值。
已知tanC=4/3,可以通过勾股定理求解。
假设对边为4x,邻边为3x,斜边为5x。
根据勾股定理,4x^2+3x^2=25x^2,化简得到x=1。
因此,sinC等于4/5,cosC等于3/5。
练习题4:已知sinD=1/√2,求D的度数。
解析:根据三角函数的定义,sinD等于对边与斜边的比值。
已知sinD=1/√2,可以通过特殊角的值来求解。
特殊角30度的sin值是1/2,特殊角45度的sin 值是1/√2。
因此,D的度数可以是30度或45度。
练习题5:已知cosE=-1/2,求E的度数。
解析:根据三角函数的定义,cosE等于邻边与斜边的比值。
已知cosE=-1/2,可以通过特殊角的值来求解。
高中数学三角函数专项练习(三)
高中数学三角函数专项练习(三)一、单选题1.已知1F 为椭圆2222:1(0)x y C a b a b+=>>左焦点,直线l 过椭圆的中心且与椭圆交于A ,B 两点.若以AB 为直径的圆过1F ,且1124F AB ππ≤∠≤,则椭圆C 的离心率的取值范围是().A .26,23⎡⎤⎢⎥⎣⎦B .2,12⎡⎫⎪⎢⎪⎣⎭C .20,3⎛⎤⎥⎝⎦D .12,23⎡⎤⎢⎥⎣⎦2.如图,已知OPQ 是半径为2,圆心角为75°的扇形,点A ,B ,C 分别是半径OP ,OQ 及扇形弧上的三个动点(不同于O ,P ,Q 三点),则ABC 周长的最小值是A .61+B .62+C .2612+D .2622+3.已知函数()()sin 0,0,2f x A x A πωφωφ⎛⎫=+>>< ⎪⎝⎭,在一个周期内图像如图所示,若()()12f x f x =,且125,,126x x ππ⎡⎤∈⎢⎥⎣⎦,12x x ≠,则()12f x x +=A 3B .2C .3D .2-4.已知函数()sin()(0,0)f x x ωϕωϕπ=+>≤≤是R 上的偶函数,其图象关于点3(,0)4M π对称,且在区间0,2π⎡⎤⎢⎣⎦上是单调函数,则ω的值是A .23B .2C .23或2D .无法确定5.已知函数()()ππsin (00)23f x x ωϕωϕ=+><<-,,为f (x )的一个零点,x π6=为f (x )图象的一条对称轴,且f (x )在(0,π)上有且仅有7个零点,下述结论正确的是()A .π6ϕ=B .f (x )的最小正周期为4πC .5ω=D .f (x )在(0,π42)上单调递增6.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =⋅.若对于任意实数,不等式2(2sin 2)x B ++2sin 14B π⎤⎛⎫+⋅+ ⎪⎥⎭⎦≥⎝恒成立,则实数t 的取值范围为A .(,1][1,)-∞-+∞B .(,1)(1,)-∞-+∞C .(1]-⋃D .[1]- 7.求4cos50tan 40︒-︒的值()A .1B .3CD8.已知抛物线28y x =的焦点为F ,11(,)A x y ,22(,)B x y 是抛物线上的两个动点,若124x x ++=,则AFB ∠的最大值为A .2πB .23πC .34πD .56π9.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是()A .12+B C .1+D .2二、填空题10.已知函数()()()sin 0f x x ωϕω=+>,π2ϕ≤,下述五个结论:①若π5ϕ=,且()f x 在[]0,2π有且仅有5个零点,则()f x 在()0,2π有且仅有3个极大值点;②若π4ϕ=,且()f x 在[]0,2π有且仅有4个零点,则()f x 在[]0,2π有且仅有3个极小值点;③若π5ϕ=,且()f x 在[]0,2π有且仅有5个零点,则()f x 在π0,10⎛⎫ ⎪⎝⎭上单调递增;④若π4ϕ=,且()f x 在[]0,2π有且仅有4个零点,则ω的范围是1519,88⎡⎫⎪⎢⎣⎭;⑤若()f x 的图象关于π4x =对称,π4x =-为它的一个零点,且在π5π,1836⎛⎫⎪⎝⎭上单调,则ω的最大值为11.其中所有正确结论的编号是________.11.已知()cos(2)f x x ϕ=+,其中[)0,2ϕπ∈,若63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值,则ϕ=________.12.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,点P 在椭圆上且同时满足:①12F F P 是等腰三角形;②12F F P 是钝角三角形;③线段12F F 为12F F P 的腰;④椭圆C 上恰好有4个不同的点P .则椭圆C 的离心率的取值范围是______.13.已知向量a 与b 的夹角为θ,sin θ=||4a b -= ,向量,c a c b -- 的夹角为2π,||c a -=a c ⋅的最大值是___________.14.sin()sin()sin(2)1633πππααα++-=++,若[0,]2πα∈,则α=_________.15.已知a,b,c 分别是锐角△ABC 的内角A,B,C 的对边,且b=2,()24c a a -=-,则sinA-2cosC 的取值范围是________.16.函数2()2cos (0)2xf x x ωωω=->,已知()f x 在区间2(,)33ππ-恰有三个零点,则ω的范围为_______.17.已知函数()cos sin 2f x x x =,下列结论中正确的序号是__________.①()y f x =的图象关于点()π,0中心对称,②()y f x =的图象关于π2x =对称,③()f x 的最大值为2,④()f x 既是奇函数,又是周期函数.18.已知函数,且是它的最大值(其中为常数,且),给出下列结论:①为偶函数;②函数的图象关于点对称;③是函数的最小值;④函数的图象在轴右侧与直线的交点按横坐标从小到大依次记为,则,其中正确的是_________.(写出所有正确结论的序号)19.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知222sin sin sin sin sin A C B A C +=+,若ABC 则当a c +的值最小时ABC 的周长为____________.三、解答题20.如图,设直线1l :0x =,2l :340x y -=.点A 的坐标为()31,4a a ⎛⎫>⎪⎝⎭.过点A 的直线l 的斜率为k ,且与1l ,2l 分别交于点M ,N (M ,N 的纵坐标均为正数).(1)求实数k 的取值范围;(2)设1a =,求MON ∆面积的最小值;(3)是否存在实数a ,使得11OM ON+的值与k 无关?若存在,求出所有这样的实数a ;若不存在,说明理由.21.已知函数()sin()(0,0,)2f x A x A πωϕωϕ=+>><的图象与x 轴的交点中相邻两个交点的距离是2π,当3x π=-时()f x 取得最小值2-.(1)求函数()f x 的解析式;(2)求函数()f x 在区间0,2π⎡⎤⎢⎣⎦的最大值和最小值;(3)若函数13()()25g x f x =-的零点为θ,求cos(2)3πθ-.22.(15分)在一个六角形体育馆的一角MAN 内,用长为a 的围栏设置一个运动器材存储区域(如图所示),已知0120A ∠=,B 是墙角线AM 上的一点,C 是墙角线AN 上的一点.(1)若20BC a ==,求存储区域面积的最大值;(2)若10AB AC ==,在折线MBCN 内选一点D,使20BD DC +=,求四边形存储区域DBAC 的最大面积.23.如图,半径为1的扇形中心角为,一个矩形的一边在扇形的半径上,求此矩形的最大面积.24.已知AD 是沿海东西走向的全长L 千米的高速公路,小岛B 位于D 的正北方,且距离12DL 千米.赴B 旅行的游客从A 点出发坐旅游大巴至C 点后换成快艇至岛B .已知旅游大巴的平均速度为v 千米每小时,快艇的平均速度为45v 千米每小时,换乘点C 设在从A 至B 用时最少处.(1)求A 、C 间的距离(用L 表示)(2)每日上午6时起,每隔6Lv小时有一辆旅游大巴发车至C 点,即发快艇且忽略换乘时间.若某日6时,有一风圈半径为15L 千米的七级台风,其中心位于C 点正北x 千米的洋面E 点,并以上15v 千米每小时的速度垂直斜面BC 移动.为使快艇不至于进入台风风圈,若该日只发了7趟车,求CE 的距离x 的取值范围.25.某地拟规划种植一批芍药,为了美观,将种植区域(区域Ⅰ)设计成半径为1km 的扇形EAF ,中心角42EAF ππθθ⎛⎫∠=<< ⎪⎝⎭.为方便观赏,增加收入,在种植区域外围规划观赏区(区域Ⅱ)和休闲区(区域Ⅲ),并将外围区域按如图所示的方案扩建成正方形ABCD ,其中点E ,F 分别在边BC 和CD 上.已知种植区、观赏区和休闲区每平方千米的年收入分别是10万元、20万元、20万元.(1)要使观赏区的年收入不低于5万元,求θ的最大值;(2)试问:当θ为多少时,年总收入最大?26.在平面直角坐标系xOy 中,已知点1,22P ⎫⎪⎪⎝⎭,将向量OP绕原点O 按逆时针方向旋转x 弧度得到向量OQ.(1)若4x π=,求点Q 坐标;(2)已知函数()·f x OP OQ = ,且()·3f f παα⎛⎫- ⎪⎝⎭,若()0,απ∈,求α的值.27.已知△ABC 中,函数3()cos()sin()2f x x A x π=+⋅-的最大值为14.(1)求∠A 的大小;(2)若1()2(())4g x f x =+,方程24[()][()]10g x m g x -+=在[,]33x ππ∈-内有两个不同的解,求实数m 取值范围.28.图1是某高架桥箱梁的横截面,它由上部路面和下部支撑箱两部分组成.如图2,路面宽度10m AB =,下部支撑箱CDEF 为等腰梯形(CD EF >),且AC BD =.为了保证承重能力与稳定性,需下部支撑箱的面积为28m ,高度为2m 且2m 3m EF ≤≤,若路面AB .侧边CF 和DE ,底部EF 的造价分别为4a 千元/m ,5a 千元/m ,6a 千元/m (a 为正常数),DCF θ∠=.(1)试用θ表示箱梁的总造价y (千元);(2)试确定cos θ的值,使总造价最低?并求最低总造价.29.在ABC 中,角,,A B C 所对的边分别为,,a b c ,且满足cos 2a cC b b=-(1)求角B ;(2)若ABC AC 边上的中线长为2,求ABC 的面积参考答案1.A 【分析】设1F AB θ∠=,由以AB 为直径的圆过1F ,可得1|||||AO BO OF c ===,即|2AB c =,运用直径所对的圆周角为直角,以及锐角三角函数的定义,以及辅助角公式,结合离心率公式可得所求范围.【详解】解:设1F AB θ∠=,则124ππθ≤≤由以AB 为直径的圆过1F ,可得1|||||AO BO OF c ===,即||2AB c =在直角三角形1F AB 中,12cos AF c θ=,12sin BF c θ=由椭圆的对称性可得1122cos 2sin 2sin 4AF BF a c c c πθθθ⎛⎫+==+=+ ⎪⎝⎭即有14c e a πθ==⎛⎫+ ⎪⎝⎭.由124ππθ≤≤42πθ⎛⎫+∈ ⎪⎝⎭⎣,则23e ∈⎣⎦.故选:A .【点睛】本题考查了椭圆的定义性质,考查了三角函数的值域.本题难点是不能由性质得到,a c 的方程,若采用设直线方程、交点坐标找关于,a c 的方程,计算量很大.对于12sin(),[,]y A x x x x ωϕ=+∈求值域时,常用换元法,令t x ωϕ=+,结合正弦函数图像即可求出函数值域.2.B 【分析】先根据对称性将边BC ,边AC 转移,再根据三角形三边在一直线上时周长最小的思路即可解.答.【详解】作点C 关于线段OQ ,OP 的对称点C 1,C 2.连接CC 1,CC 2,如图:则1212ABC C C B BA AC C C ∆=++,又12C C = 而12122()C OC C OQ QOC COP POC QOC POC ∠=∠+∠+∠+∠=∠+∠2150QOP ︒=∠=,12C C ∴====故选:B 【点睛】本题主要考查数形结合,余弦定理的运用,解题关键是:三边转成一线时三角形周长最小,属于难题.3.A 【详解】由图象得,332,,244A T T ππω==⇒==,因为(2()2sin(21233f f x x πππϕ=⇒=⇒=+,()()12f x f x =,且125,,126x x ππ⎡⎤∈⎢⎥⎣⎦12127()212x x f x x π+⇒=⇒+= A.4.C 【分析】根据()f x 为偶函数及0ϕπ≤≤可得2ϕπ=,再由对称中心3(,0)4M π可得()221,3k k N ω=+∈,结合函数的单调性可得ω的值.【详解】由()f x 是偶函数,得()()f x f x -=,即sin()sin()x x ωϕωϕ-+=+,所以cos sin cos sin x x ϕωϕω-=对任意x 都成立,且0>ω,所以得cos 0ϕ=.依题设0ϕπ≤≤,所以解得2ϕπ=,故()cos f x x ω=.因为()f x 的图象关于点3(,0)4M π对称,π3ππ42k ω=+,k ∈N .所以()221,3k k N ω+=∈.又()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调函数,所以1222ππω⨯≥,故02ω<≤.故23ω=或2ω=.故选:C .【点睛】一般地,我们研究()sin y A ωx φ=+的图像和性质时,通常用复合函数的方法来讨论,比如求函数的对称轴、对称中心时,可以由sin y u =的对称轴或对称中心得到相应的对称轴或对称中心(也就是整体法),对于含参数的此类函数的单调性问题,我们可借助图象特征把参数的范围归结为周期的范围问题,必要时需结合函数单调区间的一般形式来讨论(基本方法).5.D 【分析】根据()f x 的零点和对称轴,可以推出ω为奇数,再结合()f x 在(0)π,上有且仅有7个零点,推出ω的值,进而推出ϕ的值以及函数()f x 单调性.【详解】π3-为()f x 的一个零点,x π6=为f (x )图象的一条对称轴,所以1+=62k ππωϕπ⨯+且2+=3k πωϕπ-⨯,12,k k Z∈将两式相减得:12=2()121k k k ω-+=+,k Z ∈.设t x ωϕ=+,当(0,)x π∈时(,)t ϕωπϕ∈+,()f x 在(0,π)上有且仅有7个零点,即sin y t =在(,)t ϕωπϕ∈+上有且仅有7个零点,又π02ϕ<<所以7+8πωπϕπ<≤,即78πϕωππϕ-<≤-又π02ϕ<<,21k ω=+,所以7ω=,再由x π6=为f (x )图象的一条对称轴有:7+=,62k k Zππϕπ⨯+∈所以2=3k πϕπ-,由π02ϕ<<,所以=3πϕ.则()sin(7)3f x x π=+,则由272,232k x k k Z πππππ-+≤+≤+∈.得522,427427k k x k Z ππππ-+≤≤∈,所以()f x 在522[],427427k k k Z ππππ-++∈上单调递增.所以()f x 在(0,)42π上单调递增.故选:D 【点睛】本题考查了正弦函数的奇偶性和对称性,考查了正弦型函数的单调性,考查分析和解决问题的能力和计算能力,属于难题.6.A 【分析】2sin sin sin B A C =⋅化角为边,由余弦定理求出B 角的取值范围,设4m B π⎛⎫=+ ⎪⎝⎭,则2sin 21B m =-,并确定m 的取值范围,再由关于x 的一元二次不等式恒成立,0∆≤,求出,m t 间的不等量关系,利用m 的取值范围,即可求出结果.【详解】在ABC 中,由正弦定理及2sin sin sin B A C =⋅,得2b ac =,由余弦定理,得2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=,又因为(0,)B π∈,所以03B π<≤,记4m B π⎛⎫=+ ⎪⎝⎭,则2sin 21B m =-.因为03B π<≤,所以74412B πππ<+≤,从而1m <所以22(2sin 2)sin14x B B π⎤⎛⎫+++⋅+ ⎪⎥⎭⎦≥⎝可化为()2221()1x m tm +++≥,即,()2222242120x m x m t m m +++++≥恒成立,所以依题有()()22222441420m m t m m +-++≤,化简得221t m ≥,即得221t m ≥恒成立,又由22111212m m<⇒≤<≤,得211t t ≥⇒≥或1t ≤-.故选:A.【点睛】本题以一元二次不等式恒成立为背景,考查三角形边角互化、余弦定理求角的范围、以及同角间的三角函数关系,考查不等式的关系,是一道较难的综合题.7.D 【解析】【分析】化切为弦,通分后变形,利用两角和的正弦及余弦求解.【详解】解:sin 404sin 40cos 40sin 404cos50tan 404sin 40cos 40cos 40︒︒︒-︒︒-︒=︒-=()12cos10cos102cos10sin 30102sin 80sin 4022cos 40cos 40cos 40︒-︒-︒︒-︒+︒︒-︒===︒1sin102cos 40⎫︒-︒⎪⎝⎭==︒故选:D .【点睛】本题考查三角函数的求值,考查了两角和与差的三角函数的应用,是中档题.8.B 【分析】利用余弦定理,结合基本不等式,即可求出AFB ∠的最大值.【详解】因为124x x ++=,124AF BF x x +=++,所以AF BF +=,在AFB ∆中,由余弦定理得:22222()2cos 22AF BF ABAF BF AF BF ABAFB AF BFAF BF+-+-⋅-∠==⋅⋅22241331122AB AB AB AF BF AF BF --=⋅⋅,又AF BF +=≥所以213AF BF AB ⋅≤,所以22113cos 11223ABAFB AB ∠≥=-⨯,所以AFB ∠的最大值为23π,故选B.【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,基本不等式,在解题的过程中,对题的条件进行正确转化是解题的关键,属于中档题目.9.D 【分析】设1x α=,1y α,[)0,2απ∈,则2121x x y y -+-()22221222x y x y αααα=-+=-+再放缩可得其大于等于()22122x y αα-+结合已知条件,利用辅助角公式化简即可求最值.【详解】设1x α=,1y α,[)0,2απ∈则有212122x x y y x y αα-+-=-+-()221222x y αα=-+-()22122x y αα≥-+-()22122x y αα≥-+18sin )2αα=-+184sin 224πα⎛⎫=-+≥ ⎪⎝⎭当且仅当2sin 140x παα⎧⎛⎫+= ⎪⎪⎝⎭⎨⎪-=⎩时取最小值,即4πα=,此时()2,1P ,()2,3Q ,2121x x y y -+-的最小值是2,故选:D.【点睛】本题解题的关键点是将椭圆上的点()11,P x y 用参数表示,代入所求的表达式,再利用不等式放缩配成222x y +这个整体,即可转化为三角函数求最值.10.①③④【分析】画出()f x 的大致图象,即可判断①②;对于③,由题可得<1229510ω≤,当100πx ⎛⎫∈ ⎪⎝⎭,时,55105ππππx ωω<+<+,所以491051002ππππω+<<,故判断③;对于④,由4254ππππω+<≤得ω范围,故可判断④;对于⑤,由题知2()21πT k Z k =∈+,又()f x 在51836ππ⎛⎫⎪⎝⎭,上单调,所以6πT ≥,112k ≤,将5k =,4k =代入验证即可.【详解】①若π5ϕ=,()f x 在[02]π,上有5个零点,可画出大致图象,由图3可知,()f x 在(02)π,有且仅有3个极大值点,故①正确;②若π4ϕ=,且()f x 在[02]π,有且仅有4个零点,同样由图可知()f x 在[02]π,有且仅有2个极小值点,故②错误;③若π5ϕ=,由()f x 在[02]π,上有5个零点,得2429255πππ<ωω≤,即<1229510ω≤,当100πx ⎛⎫∈ ⎪⎝⎭,时,55105ππππx ωω<+<+,所以491051002ππππω+<<,所以()f x 在001π⎛⎫ ⎪⎝⎭,上单调递增,故③正确;④若π4ϕ=,因为02x π≤≤,∴02x πωω≤≤,∴2444πππx πωω++≤≤,因为()f x 在[02]π,有且仅有4个零点,所以4254ππππω+<≤,所以151988ω<≤,所以④正确;⑤若()f x 的图象关于π4x =对称,π4x =-为它的零点,则224πkT T =+(k Z ∈,T 为周期),得2()21πT k Z k =∈+,又()f x 在51836ππ⎛⎫⎪⎝⎭,上单调,所以6πT ≥,112k ≤,又当5k =时,11ω=,π4ϕ=-,()f x 在51836ππ⎛⎫⎪⎝⎭,上不单调;当4k =时,9ω=,π4ϕ=,()f x 在51836ππ⎛⎫⎪⎝⎭,上单调,满足题意,故ω的最大值为9,故⑤不正确.故答案为:①③④【点睛】本题考查三角函数的图象与性质,考查函数的零点与极值相关概念,考查了数形结合的思想,考查学生的逻辑推理与运算求解能力.11.2π【详解】()()2cos 2,,cos cos 6333f x x f f ππππϕϕϕ⎛⎫⎛⎫⎛⎫⎛⎫=+=∴+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,22,33k k Z ππϕϕπ∴+=++∈,此时无法求得ϕ;或22,33k k Z ππϕϕπ+=--+∈,2k k Z πϕπ⇒=-+∈,[)0,2,2πϕπϕ∈∴= 或32π,当2ϕπ=时,()cos 222f x x sin x π⎛⎫=+=- ⎪⎝⎭,此时sin 2x 在区间,63ππ⎛⎫⎪⎝⎭上有最大值,()2f x sin x =-有最小值,没有最大值,满足题意,当32πϕ=时,()3cos 222f x x sin x π⎛⎫=+= ⎪⎝⎭,此时在区间,63ππ⎛⎫ ⎪⎝⎭上()f x 有最大值,不满足题意,2πϕ∴=,故答案为2π.【方法点睛】本题主要考查三角函数的图象和性质、数形结合思想及分类讨论思想.属于难题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.12.113⎛⎫ ⎪⎝⎭【分析】由已知12F F P 是以12F F 为腰的等腰三角形,即点P 在以1F 为圆心,2c 为半径的圆上,结合圆与椭圆有两个交点,及12PF F ∠为钝角,结合余弦定理建立关于,a c 的不等式,解不等式即可求得结果.【详解】如图,根据椭圆的对称性知,点P 及关于x 轴,y 轴,原点对称的其它3点,即为椭圆C 满足条件的4个不同的点.根据题意可知12F F P 是以12F F ,1F P 为两腰的等腰三角形,故1122F F F P c ==,即点P 在以1F 为圆心,12F F 为半径的圆上,由题知以1F 为圆心,2c 为半径的圆与椭圆有两个交点,即可存在两个满足条件的等腰12F F P ,此时必有11F P AF >,即2c a c >-,即3a c <,所以离心率13e >;又12PF F ∠为钝角,则12os 0c PF F <∠,利用余弦定理知2221122||||||F P F F F P <+,即222(2)(2)(22)c c a c <+-,整理得2220c ac a +-<,两边同除以2a 得,2210e e +-<,解得:01e <<综上,可知椭圆C 的离心率的取值范围是1213e <<-故答案为:1,213⎛⎫- ⎪⎝⎭【点睛】关键点点睛:本题考查椭圆的基本性质,及椭圆离心率的取值范围,解题关键是找到关于,a c 的不等关系,本题中12F F P 是以12F F 为腰的等腰三角形,结合圆与椭圆有两个交点,及12PF F ∠为钝角,建立关于,a c 的不等式,解不等式求得结果,考查了学生的运算求解能力,逻辑推理能力.属于中档题.13.25【分析】根据题意作出图形,根据正弦定理可求出7OP .记线段AC 的中点为M ,AB 的中点N ,在Rt PAN △中,可求出3cos 77PAB PAN ∠=∠=,从而可求出3cos cos 627PAM PAB π⎛⎫∠=∠+= ⎪⎝⎭PAM △中,根据余弦定理求出27PM =,从而可求出221254a c OA OC OM CA =⋅=⋅≤- .【详解】如图,作圆P ,使得274,sin 7AB AOB =∠=,且点O 在优弧AB 上,点C 满足,23AC BC AC ⊥=则,,OA a OB b OC c ===,符合题意.记线段AC 的中点为M ,在OAB 中,由正弦定理,得172sin AB OP AOB=⋅∠,取AB 的中点N ,连接PN ,在Rt PAN △中,PA OP =,2AN =,所以cosPAB PAN ∠=∠=,所以cos cos6PAM PAB π⎛⎫∠=∠+= ⎝⎭,在PAM △中,由余弦定理,得2222cos 7PM PA AM PA AM PAM ∠=+-⋅=,且OM OP PM ≤+=因为2OA OC OM += ,OA OC CA -=uu r uuu r uu r,所以,1122OA OM CA OC OM CA =+=- ,所以22111224a c OA OC OM CA OM CA OM CA ⎛⎫⎛⎫=--=- ⎪⎪⎝⎭⋅=⎭⎝⋅ 2325OM =≤- ,当且仅当点P 在线段OM 上时,等号成立所以a c ⋅的最大值是25.故答案为:25.14.π12【详解】ππππsin cos 3266sin ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,令ππcos 66sin t αα⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,平方得2π216sin t α⎛⎫+=- ⎪⎝⎭,因为0,2πα⎡⎤∈⎢⎣⎦,所以ππ64α++∈5π11π01212t ⎡⎤>⎢⎣⎦,,,所以220t t -=,解得t =11)2±=,t =,π12α=.故答案为π12.15.⎛ ⎝⎭【解析】由题得b 2-c 2=a 2,即a 2+c 2-b 2,则cos B ==2,所以B=6π.由,得32A ππ<<.因为sinA -2cosC =sinA +2cos(B +A )=sinA +21(cos sin )22A A -,所以2A <,故sinA -2cosC的取值范围为.16.7(3,2【解析】【分析】化简得到()216f x sin x πω⎛⎫=-- ⎪⎝⎭,令t6x πω=-,即12sint =恰有三个实根,分成两类分别讨论即可得到ω的范围.【详解】由题意可得()22cos12126xf x x x cos x sin x ωπωωωω⎛⎫=-=--=-- ⎪⎝⎭,令t6x πω=-,即12sint =恰有三个实根,三根为:①()52221666k k k ππππππ++++,,;()()5522121666k k k ππππππ+++++②,,,k Z ∈∵0ω>,∴263636x πππππωωω⎛⎫-∈--- ⎪⎝⎭,∴()()()521263662521216366k k k k πππππππππππωπ⎧++-≤--<+⎪⎪⇒⎨⎪++<-≤++⎪⎩,无解;,或()()5636122636691352332122226366k k k k k k k k ππππωπωπππππωπωπ⎧--<≤--+≤--<+⎧⎪⎪⎪⇒⎨⎨+<≤+⎪⎪++<-≤++⎩⎪⎩,,,当k=-1时,解得ω的范围为73,2⎛⎤ ⎥⎝⎦故答案为:73,2⎛⎤⎥⎝⎦【点睛】(1)研究函数()sin y A x ωϕ=+时,要把x ωϕ+看为一个整体,并结合函数sin y x =的性质求解,在研究单调性时要注意ω的符号对单调性的影响。
高中数学三角函数专题复习(内附类型题以及历年高考真题含答案免费)
1.已知 tanx=2,求 sinx , cosx 的值.解: 因为 tan x = Sin X =2,又 sin 2x + cos 2x=1 , cosxsin x = 2cosx联立得丿2 2 ,sin x +cos x =1sin x -cosx _2 sin x cosx所以 sinx — cosx=2(sinx + cosx),22得到sinx= — 3cosx ,又sin x + cos x=1,联立方程组,解得3+10sin,COSX = -〒0- C ——3 所以 sin xcosx — 10法二:因为叱叱=2,sin x cosx所以 sinx — cosx=2(sinx + cosx),所以(sinx — cosx)2=4(sinx + cosx)2, 所以 1 — 2sin xcosx=4 + 8sin xcosx ,3所以有 sinxcosx — ■10求证:tan 2x sin 2x=tan 2x — sin 2x . I.F , [ ]22 2 22 2 2 22证明:法一:右边=tan' x — sin x=tan x — (tan x cos x)=tan x(1 — cos x)=tan x sin x , 法二:左边 =ta n 2x sin 2x=ta n 2x(1 — cos 2x)=ta n 2x — ta n 2x cos 2 x=ta n 2x — si n 2x ,问题得证.sinx =2.5解这个方程组得cosx =245sin x = --------- i 靠 cosx I 5tan(-120)cos(210)sin(-480)2 .求——tan(-690 ') sin(-150 丨 cos(330 )的值.解:原式tan( -120 180 )cos(18030 )sin( -360 -120 )o~tan(-720 30o )sin(-150 )cos(360 -30 )tan 60 (-cos30 )(-sin 120) 弋 3 tan30(—sin150 )cos303.卄 sin x - cosx右sin x cosx=2,,求 sinxcosx 的值. 解:法一:因为 3110 sinx 10- 尿,cosx4.问题得证.3 x =84[0 2兀]0x2 f(x)x1如sin(2 ■ 6)[-?,1], y [1 2]2(1)y sin x cosx+2(1)y=si n 2x t=cosx t(2)y 2sin xcosx[- 2, 2]cosx 2 [-1,1],2 cos x cosx (2)y 2sin xcosx (sinx2= (cos 2x cosx) 3 cosx)一 (t 2t) 3-(t 丄)2213 +— 4(sinx cosx)=(s in xy =t 2 -t -1,y=As in( + )( (6 0)(2, 2) 匚=4T=164、2 = . 2 sin(- 2)84f(x)=cos x f(x) 一 sinxcosx)20)© =一842sinxcosx sin x(si nx cosx) t=sinxcosx= 42 sin((2「2)..y _2 sin(_ x ).48 4()xwy f(x)42222f(x)=cos x 2sinxcosx sin4x (cos x sin x)(cos x sin x)_ 2= (cos x -sin x) -sin 2x =cos2x -sin 2xsin2x-2x) - - 2 sin(2x -;))x 可Og](2x--)%-丄]4 4 4x=0 f(x)tan - 21 cos 日 +sin 日cos : -sin -2 si n 2°—si n B . cos 日+2cos 2 &1 + si n 日 (1)cos ,Sinn _ cos^ cos 日 +si ne . sin 日1 ------ cos :-1十¥ =」—2逅;1 - tan v 1_22 2sinsin rcos v 2cos r2 2sin sin vcos v 2 cos 二2 2sin cos 二2 si nr sin 二 22=COS d COSdsin -彳1cos 二说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到) 程简化。
高中数学三角函数练习题
高中数学三角函数练习题【题目一】1. 证明正弦函数是奇函数。
解析:由正弦函数的定义可知,对于任意角度 x,有 sin(-x) = -sin(x)。
因此,正弦函数是奇函数。
2. 证明余弦函数是偶函数。
解析:对于任意角度 x,有 cos(-x) = cos(x)。
因此,余弦函数是偶函数。
3. 求解三角方程 sin(x) = 0 的全部解。
解析:由 sin(x) = 0,可得x = kπ,其中 k 为整数。
4. 求解三角方程 cos(2x) = 1 的全部解。
解析:由 cos(2x) = 1,可得2x = 2kπ,其中 k 为整数。
解得x = kπ,其中 k 为整数。
【题目二】1. 如果在一个直角三角形中,已知两个边的长度分别为 3 和 4,求解第三边的长度。
解析:根据勾股定理,直角三角形的斜边长度可以通过已知两个边的长度计算得出。
即 c^2 = a^2 + b^2,其中 c 为斜边长度,a 为直角边长度3,b 为直角边长度4。
代入数值计算可得 c^2 = 9 + 16 = 25,即c = 5。
2. 已知一个角的正弦值为 0.6,求解该角的大小。
解析:正弦函数的定义为 sin(x) = 对边/斜边。
已知正弦值为 0.6,则对边长度与斜边长度的比值为 0.6。
假设对边长度为 3x,斜边长度为 5x(取倍数关系),则有 3x/5x = 0.6,解得 x = 0.6。
因此,对边长度为 3 × 0.6 = 1.8,斜边长度为 5 × 0.6 = 3。
根据三角函数的性质,可以求得该角的大小为 sin^(-1)(0.6) ≈ 0.64 弧度或约 36.87°。
3. 已知一条船从A 码头出发,船上的指南针指示船的航向是120°,航行了1000米,到达 B 码头。
如果将船的航向变为 60°,航行相同的距离,求此时船与 B 码头的水平距离。
解析:首先,将船的航向改为 60°,即向右偏转。
高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)
1.tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.假设,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求以下函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,那么,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,那么]2,2[-∈t 那么,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y 7.假设函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)假设],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)假设]2π,0[∈x ,那么]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 2tan =θ,求〔1〕θθθθsin cos sin cos -+;〔2〕θθθθ22cos 2cos .sin sin +-的值.解:〔1〕2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点〔如果不具备,通过构造的方法得到〕,进行弦、切互化,就会使解题过程简化。
压轴题03 三角函数压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)
压轴题03三角函数压轴题题型/考向一:三角函数的图像与性质题型/考向二:三角恒等变换题型/考向三:三角函数综合应用一、三角函数的图像与性质热点一三角函数图象的变换1.沿x轴平移:由y=f(x)变为y=f(x+φ)时,“左加右减”,即φ>0,左移;φ<0,右移.沿y轴平移:由y=f(x)变为y=f(x)+k时,“上加下减”,即k>0,上移;k<0,下移.2.沿x轴伸缩:若ω>0,A>0,由y=f(x)变为y=f(ωx)时,点的纵坐标不变,横坐标变为原来的1ω倍.沿y轴伸缩:由y=f(x)变为y=Af(x)时,点的横坐标不变,纵坐标变为原来的A 倍.热点二三角函数的图象与解析式已知图象求函数y =A sin(ωx +φ)+B (A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最高点、最低点或特殊点求A ,B ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.热点三三角函数的性质1.单调性:由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )可得单调递增区间;由π2+2k π≤ωx+φ≤3π2+2k π(k ∈Z )可得单调递减区间.2.对称性:由ωx +φ=k π(k ∈Z )可得对称中心;由ωx +φ=k π+π2(k ∈Z )可得对称轴.3.奇偶性:φ=k π(k ∈Z )时,函数y =A sin(ωx +φ)为奇函数;φ=k π+π2(k ∈Z )时,函数y =A sin(ωx +φ)为偶函数.二、三角恒等变换热点一化简与求值(角)1.同角三角函数的基本关系:sin 2α+cos 2α=1,sin αcos α=tan ≠π2+k π,k ∈2.诱导公式的记忆口诀:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.3.熟记三角函数公式的两类变形:(1)和差角公式的变形;(2)倍角公式的变形.热点二三角函数恒等式的证明三角恒等式常从复杂一边向简单的一边转化,或者两边同时推出一个相同式子,有时要证等式先进行等价交换,进而证明其等价命题.○热○点○题○型一三角函数的图像与性质一、单选题1.将函数()sin cos f x x x =-的图象向左平移7π12个单位长度,得到函数()y g x =的图象,关于函数()y g x =的下列说法中错误的是()A .周期是2πB .非奇非偶函数C .图象关于点5π,03⎛⎫⎪⎝⎭中心对称D .在π0,2⎛⎫⎪⎝⎭内单调递增【答案】D【详解】()πsin cos 2sin 4f x x x x ⎛⎫=-=-⎪⎝⎭,则()7πππ2sin 2sin 1243g x x x ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭,则2πT =,故A 正确;因为()π2sin 3g x x ⎛⎫-=-+ ⎪⎝⎭,则()()()(),g x g x g x g x -≠-≠-,故函数()g x 是非奇非偶函数,故B 正确;2.数学与音乐有着紧密的关联,我们平时听到的乐音一般来说并不是纯音,而是由多种波叠加而成的复合音.如图为某段乐音的图象,则该段乐音对应的函数解析式可以为()A .11sin sin 2sin 323=++y x x xB .11sin 2sin 323y x x x=--C .11sin cos 2cos323y x x x=++D .11cos cos 2cos323y x x x=++3移()0ϕϕ>个单位长度,再向下平移1个单位长度得到函数()g x 的图象.若对于任意的1π0,4x ⎡⎤∈⎢⎥⎣⎦,总存在2π,04x ⎡⎤∈-⎢⎥⎣⎦,使得()()12f x g x =,则ϕ的值可能是()A .π6B .5π24C .π4D .2π3A.B.C .D .5.已知函数()()2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则满足()()5π605π12f x f f x f ⎛⎫- ⎪⎝⎭>⎛⎫- ⎪⎝⎭的正整数x 的最小值为()A .1B .2C .3D .4二、多选题6.已知函数2π()cos (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在ππ,2⎡⎤-⎢⎥⎣⎦上单调,且曲线()y f x =关于点π,03⎛⎫- ⎪⎝⎭对称,则()A .()f x 以2π为周期B .()f x 的图象关于直线2π3x =对称C .将()f x 的图象向右平移π3个单位长度后对应的函数为偶函数D .函数9()10y f x =+在[0,π]上有两个零点故选:BD.7.已知函数()()()sin 0,0π,f x A x b A b ωϕϕ=++><<∈R 的部分图像如图,则()A .5πb ωϕ=B .π23f ⎛⎫= ⎪⎝⎭C .将曲线()y f x =向右平移π9个单位长度得到曲线4cos 32y x =-+D .点11π,218⎛⎫-⎪⎝⎭为曲线()y f x =的一个对称中心8.已知函数()f x 的定义域为()1,1-,对任意的(),1,1x y ∈-,都有()()1f x f y f xy ⎛⎫--= ⎪-⎝⎭,且112f ⎛⎫= ⎪⎝⎭,当()0,1x ∈时,()0f x >,则()A .()f x 是偶函数B .()00f =C .当A ,B 是锐角ABC 的内角时,()()cos sin f B f A <D .当0n x >,且21112n n n x x x ++=,112x =时,()12n n f x -=【答案】BCD【详解】令0x y ==,得()00f =,故B 正确;9.已知某游乐场循环观光车路线近似为一个半径为1km 的圆,观光车从起始站点P 出发,沿图中顺时针方向行驶,记观光者从某次出发开始,行驶的时间为t 小时.A ,B 是沿途两个站点,C 是终点站,D 是该游乐场的观景点之一.已知该观光车绕行一圈的时间是固定的,且π,,6BOA OA OC OA OD ∠=⊥⊥.若要求起始站点P 无论位于站台B ,C 之间的任何位置(异于B ,C ),观光车在ππ,124t ⎛⎫∈ ⎪⎝⎭的时间内,都要至少经过两次终点站C ,则下列说法正确的是()A .该观光车绕行一周的时间小于π6B .该观光车在π0,12t ⎛⎫∈ ⎪⎝⎭内不一定会经过终点站C C .该观光车的行驶速度一定大于52km /h3D .该观光车在π0,12t ⎛⎫∈ ⎪⎝⎭内一定会经过一次观景点Ds t 于平衡位置的高度()cm h 可以田ππ2sin 24h t ⎛⎫=+ ⎪⎝⎭确定,则下列说法正确的是()A .小球运动的最高点与最低点的距离为2cmB .小球经过4s 往复运动一次C .()3,5t ∈时小球是自下往上运动D .当 6.5t =时,小球到达最低点【答案】BD【详解】小球运动的最高点与最低点的距离为()224cm --=,所以选项A 错误;因为2π4π2=,所以小球经过4s 往复运动一次,因此选项B 正确;当()3,5t ∈时,ππ7π11π,2444t ⎛⎫+∈ ⎪⎝⎭,所以是自下往上到最高点,再往下运动,因此选项C 错误;当 6.5t =时,ππ2sin 6.5224h ⎛⎫=⨯+=- ⎪⎝⎭,所以选项D 正确,故选:BD○热○点○题○型二三角恒等变换一、单选题1.已知π0,2α⎛⎫∈ ⎪⎝⎭,cos 22sin 21αα+=,则sin α=()A .15B 5C .45D 25【答案】D【详解】π0,2α⎛⎫∈ ⎪⎝⎭,cos 0,sin 0αα∴>>22cos 22sin 2cos sin 4sin cos 1αααααα+=-+= ①,又22sin cos 1αα+=②,由①②得25sin 5α=.故选:D.23,5,…,记BAC α∠=,DAC β∠=,则()cos αβ+=()A 24-B 36C 36D 24+【答案】B⎝⎭A.-B.C.9D.9 94.人脸识别技术应用在各行各业,改变着人类的生活,而所谓人脸识别,就是利用计算机分析人脸视频或者图像,并从中提取出有效的识别信息,最终判别人脸对象的身份.在人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用的测量距离的方式有曼哈顿距离和余弦距离.假设二维空间中有两个点()()1122,,,A x y B x y ,O 为坐标原点,余弦相似度similarity 为向量,OA OB夹角的余弦值,记作()cos ,A B ,余弦距离为()1cos ,A B -.已知()sin ,cos P αα,()sin ,cos Q ββ,()sin ,cos R αα-,若P ,Q 的余弦距离为13,Q ,R 的余弦距离为12,则tan tan αβ⋅=()A .7B .17C .4D .145.已知函数()()*sin cos n n n f x x x n =+∈N ,函数()4324y f x =-在3π0,8⎡⎤⎢⎥⎣⎦上的零点的个数为()A .2B .3C .4D .56.已知函数())2sin 02f x x x ωω⎛⎫=-> ⎪⎝⎭的图像如图所示,则ω的值为()A .13B .43C .16D .76二、多选题7.已知函数2()sin cos f x x x x =-+,则下列说法正确的是()A .π()sin(2)3f x x =-B .函数()f x 的最小正周期为πC .函数()f x 的对称轴方程为()5ππZ 12x k k =+∈D .函数()f x 的图象可由sin 2y x =的图象向右平移π6个单位长度得到【答案】ABD中所示的建筑对应的黄金三角形,它的底角正好是顶角的两倍,且它的底与腰之比为黄金分割比(黄金分割比=).在顶角为BAC ∠的黄金ABC 中,D 为BC 边上的中点,则()A .cos 342AD AC︒=B .cos 27sin 27cos 27sin 27AD CD ︒+︒=︒-︒C .AB在ACACD .cos BAC ∠是方程324231x x x +-=的一个实根则AB在AC 上的投影向量为设cos x θ=,则()()222212121x x x x x -=--+-,整理得324231x x x +-=,D 正确.故选:ABD9.已知()cos 4cos 3f θθθ=+,且1θ,2θ,3θ是()f θ在()0,π内的三个不同零点,则()A .{}123π,,7∈θθθB .123π++=θθθC .1231cos cos cos 8θθθ=-D .1231cos cos cos 2θθθ++=民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长”.荣昌折扇平面图为下图的扇形COD ,其中2π3COD ∠=,33OC OA ==,动点P 在 CD 上(含端点),连结OP 交扇形OAB 的弧 AB 于点Q ,且OQ xOC yOD =+,则下列说法正确的是()A .若y x =,则23x y +=B .若2y x =,则0OA OP ⋅=C .2AB PQ ⋅≥-D .112PA PB ⋅≥则13(1,0),(3,0),(,),(22A C B D --设()2πcos ,sin ,0,3Q θθθ⎡⎤∈⎢⎥⎣⎦,则由OQ xOC yOD =+ 可得cos θ=○热○点○题○型三三角函数综合应用1.已知函数2()cos 2cos 1f x x x x =-+.(1)求函数()f x 的最小正周期及单调递增区间;(2)求函数()f x 在区间5ππ[,]126-的值域;2.已知2,1,cos ,cos 2m x n x x ⎛⎫=-=+ ⎪⎝⎭,设函数()f x m n =⋅.(1)当π5π,1212x ⎡⎤∈-⎢⎥⎣⎦时,分别求函数()f x 取得最大值和最小值时x 的值;(2)设ABC 的内角,,A B C 的对应边分别是,,,a b c 且a =,6,12A b f ⎛⎫==- ⎪⎝⎭,求c 的值.3.已知函数()()21cos cos 02f x x x x ωωωω=+->.(1)若1ω=,求函数()f x 的最小正周期;(2)若()y f x =图象在0,4π⎛⎫ ⎪⎝⎭内有且仅有一条对称轴,求8f π⎛⎫⎪⎝⎭的取值范围.4.已知函数()()2sin f x x ωϕ=+(0ω>,2ϕ<)的部分图象如图所示.(1)求()f x 的解析式,并求()f x 的单调递增区间;(2)若对任意π,3x t ⎡⎤∈⎢⎥⎣⎦,都有()π116f x f x ⎛⎫--≤ ⎪⎝⎭,求实数t 的取值范围.结合图像可知:5ππ7π4666t ≤-<,解得所以实数t 的取值范围为ππ,43⎡⎫⎪⎢⎣⎭.5.若实数,,且满足,则称、是“余弦相关”的.(1)若2x π=,求出所有与之“余弦相关”的实数y ;(2)若实数x 、y 是“余弦相关”的,求x 的取值范围;(3)若不相等的两个实数x 、y 是“余弦相关”的,求证:存在实数z ,使得x 、z 为“余弦相关”的,y 、z 也为“余弦相关”的.【答案】(2)由()cos cos cos x y x y +=+得cos cos sin sin cos cos x y x y x y -=+,()1sin sin cos cos cos x y x y x +-=-,()cos y x ϕ+=-,故cos x -≤,222cos cos x x ≤-,11cos x -≤≤,))121arccos ,arccos x π⎡⎤∈-⎣⎦(3)证明:先证明3x y ππ≤+≤,反证法,假设x y π+<,则由余弦函数的单调性可知()cos cos x y x +≤,()0cos cos cos y x y x ∴=+-≤,2y π∴≥,同理2x π≥,相加得x y π+≥,与假设矛盾,故x y π+≥.[]2202,,x y πππ--∈Q ,且()()()()()2222cos cos cos cos cos cos x y x y x y x y ππππ⎡⎤-+-=+=+=-+-⎣⎦故22,x y ππ--也是余弦相关的,()()22x y πππ∴-+-≥,即3x y π+≤.记()3,z x y π=-+则[]02,z π∈.()()3cos cos cos x z y y π+=-=-,()()()3cos cos cos cos cos cos cos cos cos cos x z x x y x x y x x y y π+=+--=-+=-+=-()cos cos cos x z x z ∴+=+,故x 、z 为“余弦相关”的;同理y 、z 也为“余弦相关”的。
2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)
试卷第 4 页,共 4 页
1.C
参考答案:
【解析】运用诱导公式,结合特殊角的三角函数值即可化简求解..
【详解】 cos
150
cos150 cos(1800 300 ) cos 300
3, 2
故选:C.
【点睛】关键点点睛:该题考查的是有关三角函数化简求值问题,正确解题的关键是熟练应 用诱导公式以及熟记特殊角三角函数值. 2.A
答案第 2 页,共 12 页
【详解】 f (x) sin x cos
2
sin( x
π 4
)
,因为
x
a
,
b
,所以
x
π 4
a
π 4
,
b
π 4
,因
为 1
2
sin( x
π 4
)
2 ,所以
2 2
sin( x
π 4
)
1.
正弦函数
y
sin
x
在一个周期
π 2
,
3π 2
内,要满足上式,则
x
π 4
π 4
f
x
sin x
的图象过点
1 3
,1
,若
f
x 在2, a 内有
5
个
零点,则 a 的取值范围为______.
四、解答题
17.在① sin
6 3
,②
tan 2
2 tan 4 0 这两个条件中任选一个,补充到下面的
问题中,并解答.
已知角 a 是第一象限角,且___________.
(1)求 tan 的值;
S1 S2
2
1 2
可求得
高中数学专题考案(3)三角板块第1课三角函数公式
数学三角板块 第1课 三角函数公式题型示例 若A -B =6π,tan A -tan B =332,则cosA ·cos B = . 解 tan(A -B )=⇒=∙+-33tan tan 1tan tan BA B A (1+tan A ·tan B )·⇒=332331+⇒=∙∙2cos cos sin sin BA B Acos A ·cos B +sin A ·sin B =2cos A ·cos B cos A ·cos B =21cos(A -B )= 43. 答案 43 点评 “化切为弦”是三角变换的常用方法.若把1+BA BA cos cos sin sin ∙∙=2化为BA B A cos cos sin sin ∙∙=1⇒cos A ·cos B =sin A ·sin B ,解题便陷入困境,不易求解.一、选择题 (9×3′=27′)1.tan 15°+cot 15°等于 ( ) A.2 B.2+3 C.4 D.3342.当x ≠2πk (k ∈Z )时,xx x x cot cos tan sin ++的值是 ( )A.恒正B.恒负C.非负D.无法确定3.若cot α=2,则sin 2α+sin 2α的值是 ( ) A.1 B.-1 C.2 D.以上都不对4.若△ABC 为锐角三角形,则下列不等式中一定能成立的是 ( )A. log cos CB A sin cos >0 B.log cosC B A cos cos >0 C.log sin C BA sin sin >0 D.log sin CB A cos sin >05.设tan α=71,tan β=31,α、β均为锐角,则α+2β的值是 ( )A.4πB. 43πC.45πD. 434或ππ 6.如果角θ满足条件,则θ是 ( ) A.第二象限角 B.第二或第四象限角 C.第四象限角 D.第一或第三角限角7.若cot θ=3,则cos 2θ-21sin 2θ的值是 ( )A.-65B.-54C.53D.548.若α∈[0,2π],且,2cos 2sin 2cos 12cos 1α-α=α-+α+则α的取值范围是 ( )A.[0,2π]B.[2π,π] C.[0,π] D.[π,2π] 9.在△ABC 中,若sin(4π+A )cos(A +C -43π)=1,则△ABC 为 ( ) A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等边三角形二、填空题 (5×3′=15′)10.化简α-α-α-α-4466sin cos 1sin cos 1= .11.tan20°+tan40°+3tan20°tan40°的值是 .12.若sin α+sin β=21,cos α+cos β=23,则sin(α+3π)的值为 . 13.已知α=求得,8π,2tan 2cot cos 2α-αα的值为 .14.若a ≠0,且sin x +sin y =a ,cos x +cos y =a ,则sin x +cos x = .三、解答题(2×10′+6′+10′=36′)15.已知tan α、cot α是关于x 的方程x 2-kx +k 2-3=0的两实根,且3π<α<27π, 求cos(3π+α)+sin(π+α)的值. 16.已知tan 214=⎪⎭⎫⎝⎛α+π. (1)求tan α的值; (2)求α+α-α2cos 1cos 2sin 2的值.17.已知sin α+cos β=21,求cos α+sin β的取值范围.18.已知6sin 2α+sin αcos α-2cos 2α=0,α∈[2π,π),求sin(2α+3π)的值.四、思考与讨论(12′+10′=22′)19.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π),求:(1)θ-θ+θ-θtan 1cos cot 1sin 的值; (2)m 的值; (3)方程的两根及此时θ的值. 20.设α、β、γ是锐角,且tan2tan 23γ=a ,tan β=21tan γ,求证:α、β、γ成等差数列.数学参考答案1.C tan 15°+cot 15°=tan 15°+︒︒+=︒15tan 15tan 115tan 12 .430sin 230csc 215tan 215tan 122=︒=︒=︒︒+∙=2. A x ≠2πk ,k ∈Z ,0sin 1cos 1tan sin sin 1cos cos 1tan sin 11cos 11cos sin cot cos tan sin 2>++∙=++∙=++∙=++x x x xx x x x x x x x x x x x .3.A cot α=2⇒sin α=.552cos ,552112±=α∴±=+±又由cot α=2>0知 sin α、cos α同号.∴sin2α+sin 2α=2×25555255⎪⎪⎭⎫ ⎝⎛+⨯=1. 4.A ∵A +B >2π,∴A >2π-B,cos A <cos(2π-B )=sinB ,∴0<B Asin cos <1,又0<cos C <1,∴log cos C BAsin cos >0.5.A tan β=31⇒tan 2β=43)31(13122=-⨯又71<1, 31<1,则0<α<4π,0<β<4π,∴0<α+2β<43π,又tan(α+2β)=71+437114371⨯-+=1,∴α+2β=4π. 6.B ∵sin 2θ+cos 2θ=1,∴⇒=⎪⎭⎫⎝⎛+-+⎪⎭⎫ ⎝⎛+-15245322k k k k k =0或8.k =0时,sin θ=-53,cos θ=54,θ在第四象限;k =8时,sin θ=135,cos θ=1312-,θ在第二象限.7. C cot θ=3,则tan θ=31,∴sin 2θ=533113122=⎪⎭⎫ ⎝⎛+⨯,cos 2θ=.5431131122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-cos 2θ-.53532125412sin 2122cos 12sin 21=⨯-+=θ-θ+=θ8.D α∈[0,2π], 则2α∈[0,π].,2sin 2cos 2sin 2cos 2cos 12cos 122α+α=α+α=α-+α+ 由已知得 sin2α≥0,cos 2α≤0,∴2α∈[2π,π],∴α∈[π,2π].9.C sin (4π+A )cos (A +C -43π)=1⇒sin(4π+A )=1,cos (A +C -43π)=1⇒A =4π,A +C =43π.10.23[][].23c o s s i n 2c o s s i n 3c o s s i n 2)s i n (c o s 1c o s s i n 3)s i n (c o s 1)s i n (c o s 1)c o s s i n s i n (c o s 1s i n c o s 1)s i n c o s s i n )(c o s s i n (c o s 12222222222222244224444422422=αααα=αα-α+α-αα-α+α-=α+α-αα-α+α-=α--α+αα-αα+α-=a 原式11.3 3=tan60°=⇒︒︒-︒+︒40tan 20tan 140tan 20tan tan20°+tan40°+3tan20°tan40°=3.12.21 由已知sin β=21-sin α,cos β=23-cos α, 两式平方相加得1=2-sin α-3cos α=2-2sin(α+3π),∴sin(α+3π)=21. 13.82 ααα=ααα-αα=αα-ααα=α-ααs i n 21c o s c o s 2c o s2s i n 2s i n2c o s c o s 2c o s 2s i n 2s i n 2c o s c o s 2t a n 2c o t c o s 222222 .824sin 412sin 412cos sin =π=α=αα=14.a ∵sin 2y +cos 2y =1,∴(a -sin x )2+(a -cos x )2=1,得2a 2-2a (sin x +cos x )+1=1,∴sin x +cos x =a . 15.解,13cot tan cot tan 2⎩⎨⎧=-=αα=α+αk k得k =±2,tan α=±1,又3π<α<27π,∴tan α=1,α=413π.数学(2)将所求式子化简成只含tan α的形式,再代入数便可求解.解 (1)tan .tan 1tan 1tan 4tan 1tan 4tan4αααπαπαπ-+=-+=⎪⎭⎫ ⎝⎛+ 由tan .31tan ,21tan 1tan 1,214-=α=α-α+=⎪⎭⎫⎝⎛α+π解得有(2)方法1.65213121tan cos 2cos sin 21cos 21cos cos sin 22cos 1cos 2sin 222-=--=-α=αα-α=-α+α-αα=α+α-α方法2 由(1),tan α=-31,得sin α=-31cos α. ∴sin 2α=91cos 2α,1-cos 2α=91cos 2α.∴cos 2α=109,于是cos 2α=2cos 2α-1=54,sin 2α=2sin αcos α=-32cos 2α=-53.代入得.65541109532cos 1cos 2sin 2-=+--=α+α-α点评 本题考查了两角和的正切公式,倍角的正余弦公式等一些基本三角公式,进而考查了学生灵活运用公式的能力及运算能力.17.解 设cos α+sin β=t ,则⎪⎩⎪⎨⎧=+=+tβαβαsin cos 21cos sin ①2+②2,得:2+2sin(α+β)=41+t 2,∴sin(α+β)=87212-t 由sin(α+β)∈[-1,1]得-1≤87212-t ≤1即215215≤≤-t ,从而cos α+sin β的取值范围是⎥⎦⎤⎢⎣⎡-215,215.点评 如果已知sin α+cos β=m ,cos α+sin β=n ,则两边平方出现sin 2α+cos 2α=1,sin 2β+cos 2β=1,可以求出sin(α+β)的值,同样已知sin α+sin β=m ,cos α+cos β=n 平方可求出cos(α-β)的值. 18.解 方法1 由已知得(3sin α+2cos α)(2sin α-cos α)=0⇔3sin α+2cos α=0或2sin α-cos α=0.由已知条件可知cos α≠0,所以α≠2π,即α∈ (2π,π). 于是tan α<0,∴tan α=-32.=,tan 1tan 123tan 1tan sin cos sin cos 23sin cos cos sin 222222222α+α-⨯+α+α-α+αα-α⨯+α+ααα 将tan α=-32代入上式得.3265136321321233213232sin 222+-=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛--⨯+⎪⎭⎫ ⎝⎛-+-=⎪⎭⎫ ⎝⎛π+α 方法2 由已知条件可知cos α≠0,则α≠2π,所以原式可化为6tan 2α+tan α-2=0. 即(3tan α+2)(2tan-1)=0. 又∵α∈⎪⎭⎫⎝⎛ππ,2,∴tan α<0.∴tan α=-32.下同方法1.19.解 (1)由根与系数的关系,知⎪⎪⎩⎪⎪⎨⎧=θθ+=θ+θ2cos sin 213cos sin m 原式=.213cos sin cos sin cos sin sin cos cos cos sin sin 2222+=θ+θ=θ-θθ-θ=θ-θθ+θ-θθ(2)由①式平方,得(sin θ+cos θ)2=232+,即1+2sin θcos θ=232+. ∴sin θcos θ=43.由②,得2m =43,∴m =23.(3)当m =23时,原方程为2x 2-(3+1)x +23=0,解得x 1=23,x 2=21.∴.23cos 21sin 21cos 23sin ⎪⎪⎩⎪⎪⎨⎧=θ=θ⎪⎪⎩⎪⎪⎨⎧=θ=θ或又x ∈(0,2π),∴θ=.63π=θπ或 20.解 tan β=.2tan 2tan2tan 12tan 2tan )2tan 1)(2tan 1()2tan 1(2tan 2tan 12tantan 212222α+γ=∙γ-+γ=γ+γ-γ+γ=γ-γ=γa a 再分析范围得β=2α+γ,故α、β、γ成等差数列.①②①②。
高中数学三角函数应用复习 题集附答案
高中数学三角函数应用复习题集附答案高中数学三角函数应用复习题集附答案1. 问题描述:已知角A是第一象限角,sinA = 2/3,并且cosB = -1/2,角B是第三象限角,求sin(A+B)和cos(A-B)的值。
解答:由已知条件sinA = 2/3,cosB = -1/2,可以得到以下信息:sinA的值为正,故sinA = 2/3,由此可得cosA的值。
sinA = 2/3cos^2A+sin^2A=1 (三角函数的基本关系式)cos^2A+(2/3)^2=1cos^2A+4/9=1cos^2A=5/9cosA=±√(5/9) (cosA的值可以是正或负,在第一象限cos值为正数)由cosA = ±√(5/9),可得cosB = -1/2时,sinB的值为负。
cosB = -1/2sin^2B+cos^2B=1 (三角函数的基本关系式)sin^2B+1/4=1sin^2B=3/4sinB=±√(3/4) (sinB的值可以是正或负,在第三象限sin值为负数)知道sinA、cosA和sinB的正负后,我们可以进一步求解sin(A+B)和cos(A-B)的值。
sin(A+B) = sinA*cosB + cosA*sinB= (2/3)*(-1/2) + (√(5/9))*(√(3/4))= -1/3 + (√15/18)= (√15-6)/18cos(A-B) = cosA*cosB + sinA*sinB= (√(5/9))*(-1/2) + (√(3/4))*(√(2/3))= -√(5/36) + √(6/12)= -√5/6 + √2/2= (√2-√5)/6综上所述,sin(A+B) = (√15-6)/18,cos(A-B) = (√2-√5)/6。
2. 问题描述:已知在直角三角形ABC中,∠B = 90°,sinA = 3/5,求角C的正弦值。
高中数学三角函数专题练习题及答案
高中数学三角函数专题练习题及答案1. 试计算下列各函数值:(1)tan(π/4)(2)csc(3π/2)(3)sec(0)(4)cot(5π/3)解答:(1)tan(π/4) = sin(π/4) / cos(π/4) = 1 / 1 = 1(2)csc(3π/2) = 1 / sin(3π/2) = 1 / -1 = -1(3)sec(0) = 1 / cos(0) = 1 / 1 = 1(4)cot(5π/3) = cos(5π/3) / sin(5π/3) = -1/2 / (-√3/2) = 1 / √32. 已知直角三角形中,一锐角的正弦值为1/2,则该锐角的值是多少?解答:设该锐角为θ,则sinθ = 1/2。
根据反正弦函数的定义,θ = arcsin(1/2) = π/6。
3. 在锐角三角函数中,sinx和cosx经过哪个变换可以得到cosx和sinx的值?sinx和cosx经过变换x → x + π/2可以得到cosx和sinx的值。
4. 给定cosx = -1/3,且x在第四象限,求sinx的值。
解答:根据余弦函数的定义可知,sinx = √(1 - cos²x) = √(1 - (-1/3)²) = √(1 - 1/9) = √(9/9 - 1/9) = √8/3 = (2√2)/3。
5. 已知tanx = -√3,且x在第三象限,求secx和cotx的值。
解答:根据正切函数的定义可知,secx = 1/cosx,cotx = 1/tanx。
又由于sin²x + cos²x = 1,可以得到cosx = 1/√(1 + tan²x) = 1/√(1 + (-√3)²) = 1/√(1 + 3) = 1/2。
因此,secx = 1/(1/2) = 2,cotx = 1/(-√3) = -√3/3。
6. 已知sinx + 3cosx = 0,求tanx的值。
(易错题)高中数学必修四第一章《三角函数》测试题(包含答案解析)(3)
一、选择题1.若函数()sin 2f x x =与()2cos g x x =都在区间(),a b 上单调递减,则b a -的最大值是( ) A .π4B .π3C .π2D .2π32.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (512AB BC -=)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④3.函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数()f x 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数()g x 的解析式为( )A .()sin 21g x x =-B .()sin 21g x x =+C .()sin(2)13g x x π=--D .()sin(2)13g x x π=-+4.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径长为30m ,2AM BP m ==,巨轮逆时针旋转且每12分钟转一圈,若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为( )A .30sin 30122t ππ⎛⎫-+ ⎪⎝⎭B .30sin 3062t ππ⎛⎫-+⎪⎝⎭ C .30sin 3262t ππ⎛⎫-+⎪⎝⎭D .30sin 62t ππ⎛⎫-⎪⎝⎭ 5.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++><⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 6.若函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=( ) A .34B .14C .32D .127.已知函数sin()0,0,||2y A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的图象上相邻的一个最大值点与对称中心分别为2,39π⎛⎫⎪⎝⎭,,018π⎛⎫⎪⎝⎭,则函数()f x 的单调增区间为( )A .222,3939k k ππππ⎛⎫-+ ⎪⎝⎭,k Z ∈ B .242,3939k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ C .227,318318k k ππππ⎛⎫++⎪⎝⎭,k Z ∈ D .272,318318k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ 8.函数3cos 2cos 2sin cos cos510y x x x ππ=-的递增区间是( ) A .2[,]105k k ππππ-+(k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈) C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈) 9.设函数()sin()(0,||)f x x ωϕωϕπ=+><.若5()8f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,且1108f π⎛⎫=⎪⎝⎭,()f x 在443,ππ⎛⎫-⎪⎝⎭单调,则( ) A .23ω=,12πϕ=B .23ω=,1112πϕ=- C .13ω=,1124πϕ=-D .13ω=,724πϕ= 10.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,0ϕπ≤≤)的部分图象如图所示,则()f x 的解析式是( )A .()2sin 6f x x π⎛⎫=+⎪⎝⎭B .()2sin 3f x x π⎛⎫=+⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭11.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,为了得sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移3π个单位长度 B .向右平移4π个单位长度 C .向左平移3π个单位长度D .向左平移4π个单位长度 12.函数22y cos x sinx =- 的最大值与最小值分别为( )A .3,-1B .3,-2C .2,-1D .2,-2二、填空题13.当ϕ=___________时,函数()()sin f x x ϕ=+在区间4,33ππ⎛⎫⎪⎝⎭上单调(写出一个值即可).14.“一湾如月弦初上,半壁澄波镜比明”描述的是敦煌八景之一的月牙泉.如图所示,月牙泉由两段在同一平面内的圆弧形岸连接围成.两岸连接点间距离为603米.其中外岸为半圆形,内岸圆弧所在圆的半径为60米.某游客绕着月牙泉的岸边步行一周,则该游客步行的路程为_______米.15.函数()()sin f x x ωϕ=+的部分图象如图所示,则()f x 的单调递增区间为___________.16.sin 75=______.17.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .18.关于函数()sin |||sin |f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增; ③()f x 在[],ππ-有4个零点;④()f x 的最大值为2; 其中所有正确结论的编号是_________. 19.已知将函数()sin()(06,)22f x x ππωθωθ=+<<-<<的图象向右平移3π个单位长度得到画()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则ωθ⋅=________.20.已知函数()3)cos(2)(0)f x x x ϕϕϕπ=+-+<<是定义在R 上的奇函数,则()8f π-的值为______.三、解答题21.已知()2sin 216f x x a π⎛⎫=-++⎪⎝⎭(a 为常数). (1)求()f x 的最小正周期和单调递增区间;(2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最大值为4,求a 的值. 22.如图,某公园摩天轮的半径为40m ,圆心O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在距地面最近处.(1)已知在(min)t 时点P 距离地面的高度为()sin()0,0,||2f t A t h A πωϕωϕ⎛⎫=++>>≤ ⎪⎝⎭,求2020t =时,点P 距离地面的高度;(2)当离地面(50203)m +以上时,可以看到公园的全貌,求转一圈中在点P 处有多少时间可以看到公园的全貌.23.把()cos()(0,||)2f x x πωϕωϕ=+><的图象纵坐标保持不变,横坐标变为原来的2倍得()g x 的图象,已知()g x 图象如图所示(1)求函数()f x 的解析式; (2)若()()2()6h x f x g x π=-+,求()h x 在0,2π⎡⎤⎢⎥⎣⎦上的值域. 24.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;在落潮时返回海洋.下面是某港口在某季节每天的时间和水深关系表: 时刻 2:00 5:00 8:00 11:00 14:00 17:00 20:00 23:00 水深/米7.05.03.05.07.05.03.05.0()()sin ,0,2f t A t B A πωϕωϕ⎛⎫=++>< ⎪⎝⎭来描述.(1)根据以上数据,求出函数()()sin f t A t B ωϕ=++的表达式;(2)一条货船的吃水深度(船底与水面的距离)为4.0米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?25.函数()sin()f x A x ωϕ=+(0,0,[0,2))A ωϕπ>>∈的图象如图所示:(1)求()f x 的解析式; (2)()f x 向左平移12π个单位后得到函数()g x ,求()g x 的单调递减区间;(3)若,2x ππ⎡⎤∈-⎢⎥⎣⎦且()32f x ≥,求x 的取值范围.26.已知函数()2sin 1f x x =-.(1)求函数f (x )的最大值,并求此时x 的值; (2)写出()0f x >的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意求出(),()f x g x 原点附近的单调递减区间,根据递减区间分析可得max 3π4b =,min π4a =,相减即可. 【详解】解:由题意函数()sin 2f x x =在π3π,44⎛⎫⎪⎝⎭上单调递减,函数()2cos g x x =在()0,π上单调递减, 所以则max 3π4b =,min π4a =,所以b a -的最大值为3πππ442-=. 故选:C. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.2.A解析:A 【分析】设1AB =,则2BC =,再由14圆弧分别求出,,l m n ,再逐项判断即可得正确选项. 【详解】不妨设1AB =,则2BC =,所以)12l BE π==⨯,)213ED =-=所以(32m EG π==⨯,(134CG =-=,所以())422n GI ππ==⨯=,所以(())341222m n l πππ⨯+⨯=⨯==+,故①正确;(222234m π⨯==,))2122l n ππ⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))122l n ππ⨯++==,((22332m ππ=⨯⨯-=-, 所以2m l n ≠+,故③不正确;11l nl n l n++===⋅(1132mπ==⨯,所以211m l n≠+,故④不正确;所以①②正确,故选:A【点睛】关键点点睛:本题解题的关键是读懂题意,正确求出扇形的半径,利用弧长公式求出弧长即,,l m n的值.3.D解析:D【分析】由周期求出ω,由五点法作图求出ϕ的值,可得()f x的解析式,再根据函数sin()y A xωϕ=+的图象变换规律,得出结论.【详解】根据函数()sin()(0f x xωϕω=+>,||)2πϕ<的部分函数图象,1274123πππω⋅=-,2ω∴=.再根据五点法作图,23πϕπ⨯+=,3πϕ∴=,()sin(2)3f x xπ=+.将函数()f x的图象先向右平移3π个单位长度,可得sin(2)3y xπ=-的图象.然后向上平移1个单位长度,得到函数()g x的解析式为()sin(2)13g x xπ=-+,故选:D【点睛】关键点睛:解答本题的关键在于准确地根据三角函数的图象求出三角函数sin()y A xωϕ=+的解析式,一般根据周期求出ω的值,根据最值求出A的值,根据最值点求出ϕ的值. 4.B解析:B【分析】先通过计算得出转动的角速度,然后利用三角函数模型表示在转动的过程中点B的纵坐标满足的关系式,则吊舱到底面的距离为点B的纵坐标减2.【详解】如图所示,以点M为坐标原点,以水平方向为x轴,以OM所在直线为y轴建立平面直角坐标系.因为巨轮逆时针旋转且每12分钟转一圈,则转动的角速度为6π每分钟, 经过t 分钟之后,转过的角度为6BOA t π∠=,所以,在转动的过程中,点B 的纵坐标满足:3230sin 30sin 322662y t t ππππ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭则吊舱距离地面的距离30sin 32230sin 306262h t t ππππ⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】建立三角函数模型解决实际问题的一般步骤: (1)审题:审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择合适的三角函数模型; (3)求解:对所建立的数学模型进行分析研究,从而得到结论.5.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期是π 所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭,对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误; 对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.6.C解析:C 【分析】由0,3x π⎡⎤∈⎢⎥⎣⎦计算出x ω的取值范围,可得出0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,再由函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减可得出关于ω的等式,由此可解得实数ω的值. 【详解】0ω>,当0,3x π⎡⎤∈⎢⎥⎣⎦时,0,3x πωω⎡⎤∈⎢⎥⎣⎦, 由于函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,则0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,所以,032πωπ<≤,由于函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,所以,函数()f x 在3x π=处取得最大值,则()232k k N πωππ=+∈,又032πωπ<≤,所以,32πωπ=,解得32ω=. 故选:C. 【点睛】关键点点睛:本题通过正弦型函数在区间上的单调性求参数值,解题的就是将函数在区间上的单调性转化为两个区间的包含关系,并且分析出函数()f x 的一个最大值点,进而列出关于ω的等式求解.7.A解析:A 【分析】由最大值点和对称中心的坐标可以求出()f x 的解析式,利用三角函数的性质,整体代换得出该复合函数的单调增区间. 【详解】图像上相邻的一个最大值点与对称中心分别为2,39π⎛⎫⎪⎝⎭,,018π⎛⎫⎪⎝⎭, 3A ∴=,0b =且124918T ππ=-,可得23T π=, 23Tπω∴==, 3sin(3)y x ϕ∴=+ 将2,39π⎛⎫⎪⎝⎭代入可得3sin(3)3y x ϕ=+=, 可得22,32k k Z ππϕπ+=+∈,且2πϕ<, 6πϕ∴=-,可得()3sin(3)6f x x π=-,令6232,22k x k k Z πππππ-+≤-≤+∈,可得222+9393k x k ππππ-≤≤, 故选:A.【点睛】方法点睛:根据图像求函数()sin()f x A x k ωϕ=++的解析式,根据最高点和对称中心的纵坐标可求出A 和k ,根据横坐标可求出周期T ,进而求出ω.求该函数的单调区间时,用整体代换的思想,借助正弦函数的单调区间,用解不等式的方法求复合函数的单调区间.8.C解析:C 【分析】利用三角恒等变换的公式,化简得由函数cos(2)5y x π=+,再根据余弦型函数的性质,即可求解函数的单调递增区间,得到答案. 【详解】由函数3cos 2cos2sin cos cos cos 2cos sin 2sin cos(2)510555y x x x x x x πππππ=-=-=+, 令222,5k x k k Z ππππ-+≤+≤∈,整理得3,510k x k k Z ππππ-+≤≤-+∈, 所以函数的单调递增区间为3[,],510k k k Z ππππ-+-+∈,故选C. 【点睛】本题主要考查了三角恒等变换的化简,以及三角函数的性质的应用,其中解答中根据三角恒等变换的公式,化简得到函数的解析式,再利用三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.9.A解析:A 【分析】5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,可得 58x π=时函数取得最大值,则函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调,再利用排除法可得答案. 【详解】 因为5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,则58x π=时函数取得最大值, 所以函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调, 对于A ,若23ω=,12πϕ=,可得2()sin 312f x x π⎛⎫=+ ⎪⎝⎭,5sin 182f ππ⎛⎫== ⎪⎝⎭,11sin 08f ππ⎛⎫== ⎪⎝⎭,3254412,,4,31222x x πππππππ⎛⎫⎛⎫⎡⎤∈-⇒+∈-⊆- ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦,则2()sin 312f x x π⎛⎫=+ ⎪⎝⎭在443,ππ⎛⎫- ⎪⎝⎭单调递增,故A 符合题意; 对于B ,若23ω=,1112πϕ=-,可得211()sin 312f x x π⎛⎫=- ⎪⎝⎭,5sin 1182f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故B 不符合题意; 对于C ,若13ω=,1124πϕ=-,可得111()sin 324f x x π⎛⎫=-⎪⎝⎭,5sin 1842f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故C 不符合题意; 对于D ,若13ω=,724πϕ=,可得17()sin 324f x x π⎛⎫=+ ⎪⎝⎭,113sin 0842f ππ⎛⎫==≠ ⎪⎝⎭,故D 不符合题意; 故选:A. 【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.10.D解析:D 【分析】结合图象,依次求得,,A ωϕ的值. 【详解】 由图象可知2A =,2,,22362T T πππππωω⎛⎫=--==== ⎪⎝⎭,所以()()2sin 2f x x ϕ=+,依题意0ϕπ≤≤,则2333πππϕ-≤-≤, 2sin 0,0,6333f ππππϕϕϕ⎛⎫⎛⎫-=-+=-+== ⎪ ⎪⎝⎭⎝⎭,所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭.故选:D. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++或的部分图象求函数解析式的方法:(1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.11.B解析:B 【分析】首先根据图象求函数的解析式,再根据左右平移规律判断选项. 【详解】 由图象可知37341264T T ππππ⎛⎫=--=⇒= ⎪⎝⎭, 即22ππωω=⇒=,当6x π=-时,22,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭, 解得:2,3k k Z πϕπ=+∈,2πϕ<,3πϕ∴=,()sin 23f x x π⎛⎫∴=+⎪⎝⎭, 22643x x πππ⎛⎫-=-+ ⎪⎝⎭, ∴ 要得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位. 故选:B 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.12.D解析:D 【解析】分析:将2cos x 化为21sin x -,令()sin 11x t t =-≤≤,可得关于t 的二次函数,根据t的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,22cos 2sin sin 2sin 1y x x x x =-=--+ 设()sin 11x t t =-≤≤,则()()22211211y t t t t =--+=-++-≤≤,根据二次函数性质当1t =-时,y 取最大值2,当1t =时,y 取最小值2-. 故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为2sin sin y A x B x C =++的形式,用换元法求解;另一种是将解析式化为()sin y A x k ωϕ=++的形式,根据角的范围求解.二、填空题13.(集合或中的任何一个值都行)【分析】由函数的周期和区间长度可以确定和是单调区间的端点值由此列式求值【详解】的周期是而区间的长度是个单位长度则一个周期内完整的一个单调增区间或减区间当时所以解得:或解得解析:6π(集合5{26k πϕϕπ=-+或2,}6k k Z πϕπ=+∈中的任何一个值都行 ) 【分析】由函数的周期,和区间长度可以确定3π和43π是单调区间的端点值,由此列式,求ϕ值. 【详解】()f x 的周期是2π,而区间4,33ππ⎛⎫ ⎪⎝⎭的长度是π个单位长度,则4,33ππ⎛⎫⎪⎝⎭一个周期内完整的一个单调增区间或减区间, 当433x ππ<<时,433x ππϕϕϕ+<+<+, 所以2324232k k ππϕπππϕπ⎧+=-+⎪⎪⎨⎪+=+⎪⎩ ,解得:52,6k k Z πϕπ=-+∈, 或23243232k k ππϕπππϕπ⎧+=+⎪⎪⎨⎪+=+⎪⎩,解得:26k πϕπ=+,k Z ∈,所以其中一个6π=ϕ, 故答案为:6π(集合5{26k πϕϕπ=-+或2,}6k k Z πϕπ=+∈中的任何一个值都行 ) 【点睛】关键点点睛:本题考查三角函数的性质,求参数的取值范围,本题的关键是确定3π和43π是单调区间的端点值,列式后就比较容易求解.14.【分析】如图作出月牙湖的示意图由题意可得可求的值进而由图利用扇形的弧长公式可计算得解【详解】如图是月牙湖的示意图是的中点连结可得由条件可知所以所以所以月牙泉的周长故答案为:【点睛】关键点点睛:本题的 解析:(40303)π+【分析】如图,作出月牙湖的示意图,由题意可得3sin QPO ∠=,可求,QPO QPT ∠∠的值,进而由图利用扇形的弧长公式可计算得解. 【详解】如图,是月牙湖的示意图,O 是QT 的中点,连结PO ,可得PO QT ⊥,由条件可知603QT =,60PQ = 所以3sin 2QPO ∠=,所以3QPO π∠=,23QPT π∠=,所以月牙泉的周长(260303403033l πππ=⨯+⨯=+. 故答案为:(40303π+ 【点睛】关键点点睛:本题的关键是根据实际问题抽象出图象,再根据数形结合分析问题.15.【分析】由图象知三角函数的周期结合函数图象及写出单调递增区间【详解】由图象知:∴的单调递增区间为故答案为:【点睛】思路点睛:1看图定周期特殊函数值:2结合图象由周期对称轴写出增区间解析:37[2,2],44k k k Z ++∈【分析】由图象知,三角函数的周期2T =,结合函数图象及15()()044f f ==,写出单调递增区间.【详解】 由图象知:22||T πω==, 15()()044f f ==, ∴()f x 的单调递增区间为37[2,2],44k k k Z ++∈, 故答案为:37[2,2],44k k k Z ++∈ 【点睛】 思路点睛:1、看图定周期、特殊函数值:2T =,15()()044f f ==.2、结合图象,由周期、对称轴写出增区间. 16.【解析】试题分析:将非特殊角化为特殊角的和与差是求三角函数值的一个有效方法考点:两角和的正弦 解析:【解析】 试题分析:232162sin 75sin(4530)sin 45cos30cos 45sin 3022224︒︒︒︒︒︒︒=+=+=⨯+=将非特殊角化为特殊角的和与差,是求三角函数值的一个有效方法. 考点:两角和的正弦17.【分析】由题意画出图形由两角差的正切求出的正切值然后通过求解两个直角三角形得到和的长度作差后可得答案【详解】由图可知在中在中河流的宽度等于故答案为:【点睛】本题给出实际应用问题求河流在两地的宽度着重 解析:120(31)【分析】由题意画出图形,由两角差的正切求出15︒的正切值,然后通过求解两个直角三角形得到DC 和DB 的长度,作差后可得答案. 【详解】由图可知,15DAB ∠=︒()tan 45tan 30tan15tan 4530231tan 45tan 30︒-︒︒=︒-︒==-+︒︒在Rt ADB 中,60AD =(tan156023120603DB AD ∴=⋅︒=⨯=-在Rt ADC 中,60,60DAC AD ∠=︒=tan 60603DC AD ∴=⋅︒=()()1201201BC DC DB m ∴=-=-=∴河流的宽度BC 等于)1201m故答案为:1) 【点睛】本题给出实际应用问题,求河流在,B C 两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.18.①④【分析】结合题意得出函数的奇偶性根据奇偶性研究函数在时的性质对结论逐一判断即可【详解】解:∵定义域为∴∴函数是偶函数故①对;当时∴由正弦函数的单调性可知函数在区间上单调递减故②错;当时由得根据偶解析:①④ 【分析】结合题意,得出函数的奇偶性,根据奇偶性研究函数在0x >时的性质对结论逐一判断即可. 【详解】解:∵()sin |||sin |f x x x =+,定义域为R ,∴()()sin |||sin |f x x x -=-+-sin sin ()x x f x =+=, ∴函数()f x 是偶函数,故①对;当[]0,x π∈时,()sin |||sin |f x x x =+sin sin 2sin x x x =+=, ∴由正弦函数的单调性可知,函数()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递减,故②错; 当[]0,x π∈时,由()2sin 0f x x ==得0x =,x π=,根据偶函数的图象和性质可得,()f x 在[),0π-上有1个零点x π=- , ∴()f x 在[],ππ-有3个零点,故③错;当0x ≥时,()sin |||sin |f x x x =+sin sin x x =+2sin ,sin 00,sin 0x x x ≥⎧=⎨<⎩, 根据奇偶性可得函数()f x 的图象如图,∴当sin 1x =时,函数()f x 有最大值()max 2f x =,故④对; 故答案为:①④. 【点睛】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.19.【分析】和的图象都关于对称所以①②由①②结合即可得到答案【详解】由题意因为和的图象都关于对称所以①②由①②得又所以将代入①得注意到所以所以故答案为:【点睛】本题考查正弦型函数的性质涉及到函数图象的平解析:34π-【分析】()f x 和()g x 的图象都关于4x π=对称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②结合06,22ππωθ<<-<<即可得到答案.【详解】由题意,()()sin()33g x f x x ππωωθ=-=-+,因为()f x 和()g x 的图象都关于4x π=对 称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②,得12123(),,k k k k Z ω=-∈,又06ω<<,所以3ω=,将3ω=代入①,得11,4k k Z πθπ=-∈,注意到22ππθ-<<,所以4πθ=-,所以34ωθπ⋅=-.故答案为:34π- 【点睛】本题考查正弦型函数的性质,涉及到函数图象的平移、函数的对称性,考查学生的运算求解能力,是一道中档题.20.【分析】利用辅助角公式化简根据正弦型函数为奇函数可构造方程求得进而得到解析式代入即可求得结果【详解】为上的奇函数解得:又故答案为:【点睛】本题考查根据正弦型函数的奇偶性求解参数值已知解析式求解三角函解析:【分析】利用辅助角公式化简()f x ,根据正弦型函数为奇函数可构造方程求得ϕ,进而得到()f x 解析式,代入8x π=-即可求得结果.【详解】()()()2cos 22sin 26f x x x x πϕϕϕ⎛⎫=+-+=-+ ⎪⎝⎭,()f x 为R 上的奇函数,()6k k Z πϕπ∴-=∈,解得:()6k k Z πϕπ=+∈,又0ϕπ<<,6πϕ∴=,()2sin 2f x x ∴=,2sin 84f ππ⎛⎫⎛⎫∴-=-= ⎪ ⎪⎝⎭⎝⎭故答案为:. 【点睛】本题考查根据正弦型函数的奇偶性求解参数值、已知解析式求解三角函数值的问题;关键是能够通过辅助角公式将函数化简为正弦型函数,进而利用奇偶性构造方程求得参数.三、解答题21.(1)π,5,,36k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2)2a =. 【分析】(1)利用诱导公式化简函数的解析式,再根据正弦函数的周期性和单调性求解. (2)根据0,2x π⎡⎤∈⎢⎥⎣⎦得到52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,然后利用正弦函数的性质求解. 【详解】 (1)()2sin 212sin 2166f x x a x a ππ⎛⎫⎛⎫=-++=--++ ⎪ ⎪⎝⎭⎝⎭,它的最小正周期为22ππ=. 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+, 所以函数的单调递增区间为5,,36k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . (2)因为0,2x π⎡⎤∈⎢⎥⎣⎦时, 所以52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以()f x 的最大值为42sin 16a π⎡⎤⎛⎫=-⨯-++ ⎪⎢⎥⎝⎭⎣⎦, 解得2a =. 【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式; 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2πω,y =tan(ωx +φ)的最小正周期为πω;3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质. 22.(1)70m ;(2)0.5min . 【分析】(1)根据题意,确定()sin()f t A t h ωϕ=++的表达式,代入2020t =运算即可;(2)要求()50f t >+2cos 3t π<,解不等式即可. 【详解】(1)依题意,40A =,50h =,3T =, 由23πω=得23πω=,所以2()40sin 503f t t πϕ⎛⎫=++⎪⎝⎭. 因为(0)10f =,所以sin 1ϕ=-,又||2πϕ≤,所以2πϕ=-.所以2()40sin 50(0)32f t t t ππ⎛⎫=-+≥ ⎪⎝⎭,所以2(2020)40sin 2020507032f ππ⎛⎫=⨯-+= ⎪⎝⎭.即2020t =时点P 距离地面的高度为70m .(2)由(1)知22()40sin 505040cos (0)323f t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭.令()50f t >+2cos 32t π<-, 从而()*52722N 636k t k k πππππ+<<+∈, ∴()*5733N 44k t k k +<<+∈. ∵()*751330.5N 442k k k ⎛⎫+-+==∈ ⎪⎝⎭, ∴转一圈中在点P 处有0.5min 的时间可以看到公园的全貌. 【点睛】本题考查了已知三角函数模型的应用问题,解答本题的关键是能根据题目条件,得出相应的函数模型,作出正确的示意图,然后再由三角函数中的相关知识进行求解,解题时要注意综合利用所学知识与题中的条件,是中档题. 23.(1)1()cos(2)3f x x π=-;(2)3,12⎡⎤--⎢⎥⎣⎦. 【分析】(1)由伸缩变换得1()cos()2g x x ωϕ=+,由()g x 的图像的周期为54()263T πππ=-=,解得2ω=,由()g x 图像过点(,1)3π,求得ϕ,进而得到()g x ,()f x 的解析式.(2)易得()22cos ()2cos()166h x x x ππ=----,令cos()6t x π=-,利用二次函数的性质求解. 【详解】(1)由题意1()cos()2g x x ωϕ=+, 由()g x 的图像可得:函数()g x 的周期为54()263T πππ=-=, 解得2ω=, ∴()cos )(g x x ϕ=+, 由图知()g x 图像过点(,1)3π,所以cos()13πϕ+=,则23k πϕπ=-+,k Z ∈,因为||2ϕπ<,取0k =得3πϕ=-,所以()cos()3g x x π=-,从而函数()f x 的解析式为()cos(2)3f x x π=-.(2)()()2()cos(2)2cos()636h x f x g x x x πππ=-+=---, 22cos ()2cos()166x x ππ=----,令cos()6t x π=-,由0,2x π⎡⎤∈⎢⎥⎣⎦,得,663x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1,12t ⎡⎤∈⎢⎥⎣⎦, 则22132212()22y t t t =--=--,1,12t ⎡⎤∈⎢⎥⎣⎦, 当12t =时,y 有最小值32-,此时,1cos()62x π-=,63x ππ-=,即2x π=,当1t =时有最大值1-,此时cos()16x π-=,06x π-=,即6x π=.所以函数()h x 的值域为3,12⎡⎤--⎢⎥⎣⎦. 【点睛】方法点睛:求解三角函数的值域(最值)常见到以下几种类型:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值). 24.(1)()2sin 566f t t ππ⎛⎫=++⎪⎝⎭;(2)在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时. 【分析】由表格易知()()max min 7,3f t f t ==,由()()()()max minmax min,22f t f t f t f t A B -+==,求得A ,B ,再根据14212T =-=和2t =时,函数取得最大值,分别求得,ωϕ即可.(2)根据货船需要的安全水深度为6,由()2sin 5666f t t ππ⎛⎫=++≥ ⎪⎝⎭求解. 【详解】由表格可知()()max min 7,3f t f t ==,, 则()()()()max minmax min2,522f t f t f t f t A B -+====,又214212,6T T ππω=-===, 当2t =时,()22sin 2576f πϕ⎛⎫=⨯++= ⎪⎝⎭, 即sin 13πϕ⎛⎫+= ⎪⎝⎭, 所以232k ππϕπ+=+,又2πϕ<,所以6π=ϕ, 所以()2sin 566f t t ππ⎛⎫=++ ⎪⎝⎭.(2)因为货船需要的安全水深度为6,所以()2sin 5666f t t ππ⎛⎫=++≥ ⎪⎝⎭,即1sin 662t ππ⎛⎫+≥ ⎪⎝⎭, 所以5226666k t k ππππππ+≤+≤+, 即12412k t k ≤≤+, 又因为[]0,24t ∈,当0k =时,[]0,4t ∈,当1k =时,[]12,16t ∈,所以在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时. 【点睛】方法点睛:由函数y =A sin(ωx +φ)的图象或表格确定A ,ω,φ的题型,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准“零点”或“最大(小)值点”的位置.要善于抓住特殊量和特殊点.25.(1)()23f x x π⎛⎫=+⎪⎝⎭;(2),,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z ;(3){},66πππ⎡⎤-⋃⎢⎥⎣⎦. 【分析】(1)利用题中图象可知A =,44T π=,结合周期公式求得=2ω,再由3x π=代入计算得=3πϕ即得解析式;(2)根据三角函数平移的方法求得()g x ,再利用整体代入法求单调递减区间即可;(3)先由()32fx ≥可得sin 232x π⎛⎫+≥ ⎪⎝⎭,再由,2x ππ⎡⎤∈-⎢⎥⎣⎦得到23x π+的前提范围,结合正弦函数性质得到不等式中23x π+的范围,再计算x 范围即可.【详解】解:(1)由题中图象可知:A =,741234T πππ=-=, 2T ππω∴==,即2ω=,又由图象知,3x π=时,223k πϕππ⋅+=+,即23k πϕπ=+,k Z ∈,又02ϕπ≤<,∴=3πϕ,()23f x x π⎛⎫∴=+ ⎪⎝⎭;(2)()f x 向左平移12π个单位后得到函数()g x ,故()2221232g x x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由余弦函数性质知,令222,k x k k Z πππ≤≤+∈,得减区间,,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z , ∴()g x 的单调递减区间为,,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z ;(3)由题意知:()3232fx x π⎛⎫=+≥ ⎪⎝⎭,即sin 23x π⎛⎫+≥ ⎪⎝⎭,由,2x ππ⎡⎤∈-⎢⎥⎣⎦,知[]0,x π∈,2,2333x ππππ⎡⎤+∈+⎢⎥⎣⎦,由正弦函数图象性质可知,22333x πππ≤+≤或2233x πππ+=+ 即06x π≤≤或x =π,又,2x ππ⎡⎤∈-⎢⎥⎣⎦,得x 的取值范围为{},66x πππ⎡⎤∈-⋃⎢⎥⎣⎦.【点睛】 方法点睛:求三角函数()()sin f x A x b ωϕ=++性质问题时,通常利用整体代入法求解单调性、对称性,最值等性质,或者整体法求三角不等式的解. 26.(1)最大值1,2,2x k k Z ππ=+∈;(2)5{|22,}66x k x k k Z ππππ+≤≤+∈. 【分析】(1)当sin 1x =时,函数取最大值得解; (2)根据三角函数的图象解不等式得解集. 【详解】(1)当sin 1x =即2,2x k k Z ππ=+∈时,()2111max f x =⨯-=;(2)由题得1sin 2x >,所以不等式的解集为5{|22,}66x k x k k Z ππππ+≤≤+∈. 【点睛】关键点睛:解答这类题的关键是熟练掌握三角函数的图象和性质,再灵活利用其解题.。
完整版)高中三角函数测试题及答案
完整版)高中三角函数测试题及答案高一数学必修4第一章三角函数单元测试班级:__________ 姓名:__________ 座号:__________评分:__________一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
(48分)1、已知$A=\{\text{第一象限角}\}$,$B=\{\text{锐角}\}$,$C=\{\text{小于90°的角}\}$,那么$A$、$B$、$C$ 关系是()A.$B=A\cap C$B.$B\cup C=C$C.$A\cap D$D.$A=B=C$2、将分针拨慢5分钟,则分钟转过的弧度数是A。
$\frac{\pi}{3}\sin\alpha-\frac{2}{3}\cos\alpha$ B。
$-\frac{\pi}{3}$C。
$\frac{\pi}{6}$D。
$-\frac{\pi}{6}$3、已知 $\tan\alpha=-5$,那么 $\tan\alpha$ 的值为A。
2B。
$\frac{1}{6164}$C。
$-\frac{1}{6164}$D。
$-\frac{2}{3}$4、已知角 $\alpha$ 的余弦线是单位长度的有向线段,那么角 $\alpha$ 的终边()A。
在 $x$ 轴上B。
在直线 $y=x$ 上C。
在 $y$ 轴上D。
在直线 $y=x$ 或 $y=-x$ 上5、若 $f(\cos x)=\cos 2x$,则 $f(\sin 15^\circ)$ 等于()A。
$-\frac{2}{3}$B。
$\frac{3}{2}$C。
$\frac{1}{2}$D。
$-\frac{1}{2}$6、要得到 $y=3\sin(2x+\frac{\pi}{4})$ 的图象只需将$y=3\sin 2x$ 的图象A。
向左平移 $\frac{\pi}{4}$ 个单位B。
向右平移 $\frac{\pi}{4}$ 个单位C。
高中数学数学必修四第一章三角函数单元测试题--经典
中学数学必修四第一章三角函数一、选择题(60分)1.将-300o 化为弧度为( ) A .-43π;B .-53π;C .-76π;D .-74π; 2.假如点)cos 2,cos (sin θθθP 位于第三象限,那么角θ所在象限是( ) A.第一象限 B.其次象限 C.第三象限 D.第四象限3.下列选项中叙述正确的是 ( )A .三角形的内角是第一象限角或其次象限角B .锐角是第一象限的角C .其次象限的角比第一象限的角大D .终边不同的角同一三角函数值不相等 4.下列函数中为偶函数的是( )A .sin ||y x =B .2sin y x =C .sin y x =-D .sin 1y x =+ 5已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,假如0,0,||2A πωϕ>><,则( )C.6πϕ=A.4=AB.1ω=6.函数3sin(2)6y x π=+的单调递减区间( )A5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈B .511,1212k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈D .2,63k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈7.已知α是三角形的一个内角,且32cos sin =+αα,则这个三角形( ) A .锐角三角形 B .钝角三角形C .不等腰的直角三角形D .等腰直角三角形8.)2cos()2sin(21++-ππ等于 ( )A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos29.若角α的终边落在直线y =2x 上,则sin α的值为( ) A. 15± B. 55±C. 255±D. 12± 10.函数y=cos 2x –3cosx+2的最小值是 () A .2B .0C .41D .611.假如α在第三象限,则2α必定在()A .第一或其次象限B .第一或第三象限C .第三或第四象限D .其次或第四象 12.已知函数)sin(φϖ+=x A y 在同一周期内,当3π=x 时有最大值2,当x=0时有最小值-2,那么函数的解析式为( )A .x y 23sin 2=B .)23sin(2π+=x y C .)23sin(2π-=x y D .x y 3sin 21=二.填空题(20分)14、已知角α的终边经过点P(3,3),则与α终边相同的角的集合是______ 13.1tan 、2tan 、3tan 的大小依次是 14.函数()lg 1tan y x =-的定义域是 .16.函数sin(2)6y x π=-+的单调递减区间是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,选择题:1、下列说法中错误的是 ( )A .零向量没有方向B .零向量与任何向量平行C .零向量的长度为零D .零向量的方向是任意的2、下列命题正确的是 ( )A. 若→a 、→b 都是单位向量,则 →a =→bB . 若=, 则A 、B 、C 、D 四点构成平行四边形 C. 若两向量→a 、→b 相等,则它们是始点、终点都相同的向量D. 与是两平行向量3、下列命题正确的是 ( )A 、若→a ∥→b ,且→b ∥→c ,则→a ∥→c 。
B 、两个有共同起点且相等的向量,其终点可能不同。
C 、向量的长度与向量的长度相等 ,D 、若非零向量AB 与是共线向量,则A 、B 、C 、D 四点共线。
4.下列函数中,最小正周期为π的偶函数是 ( )A.y =sin2xB.y =cos x2C.y =sin2x +cos2xD.y =1-tan 2x 1+tan 2x5.设函数y =cos(sin x ),则 ( )A.它的定义域是[-1,1]B.它是偶函数C.它的值域是[-cos1,cos1]D.它不是周期函数 6.把函数y =cos x 的图象上的所有点的横坐标缩小到原来的一半,纵坐标扩大到原来的两倍,然后把图象向左平移π4 个单位.则所得图象表示的函数的解析式为 ( )A.y =2sin2xB.y =-2sin2xC.y =2cos(2x +π4)D.y =2cos(x 2 +π4)7.函数y =2sin(3x -π4)图象的两条相邻对称轴之间的距离是 ( )A. π3B.2π3C.πD.4π38.若sin α+cos α=m ,且- 2 ≤m <-1,则α角所在象限是 ( )A.第一象限B.第二象限C.第三象限D.第四象限 9.函数y =|1/tanx|·sin x (0<x ≤3π2且x ≠π)的图象是 ( )10.设y =cos 2x1+sin x,则下列结论中正确的是 ( )A.y 有最大值也有最小值B.y 有最大值但无最小值C.y 有最小值但无最大值D.y 既无最大值又无最小值 11.函数y =sin (π4-2x )的单调增区间是 ( )A.[kπ-3π8 ,kπ+π8 ](k ∈Z )B.[kπ+π8 ,kπ+5π8 ](k ∈Z )C.[kπ-π8 ,kπ+3π8 ](k ∈Z )D.[kπ+3π8 ,kπ+7π8 ](k ∈Z )12.已知0≤x ≤π,且-12<a <0,那么函数f (x )=cos 2x -2a sin x -1的最小值是 ( )A.2a +1B.2a -1C.-2a -1D.2a13.求使函数y =sin(2x +θ)+ 3 cos(2x +θ)为奇函数,且在[0,π4 ]上是增函数的θ的一个值为 ( ) A. 5π3B.4π3 C. 2π3D. π314若ABCD 是正方形,E 是CD 的中点,且=,=,则= ()A .12b a +B .12b a - C.21+ D.21-二、填空题11.函数y =cos x1+2cos x 的值域是_____________.12.函数y =cos xlg (1+tan x )的定义域是_____________.13.如果x ,y ∈[0,π],且满足|sin x |=2cos y -2,则x =___________,y =___________. 14.已知函数y =2cos x ,x ∈[0,2π]和y =2,则它们的图象所围成的一个封闭的平面图形的面积是_____________三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)如图为函数y =A sin(ωx +φ)(A >0,ω>0)的图象的一部分,试求该函数的一个解析式.22设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x .(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)画出函数)(x f y =在区间],0[π上的图像。
21. (本小题满分15分)已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4 ,0)对称,且在区间[0,π2 ]上是单调函数,求φ和ω的值.22、(本小题满分14分)已知()()()()22log 4log 1log 5log 21,0,1a a a a x y xy a a +++=+->≠且,求8log y x的值。
22、(本小题满分14分)已知()()()()22log 4log 1log 5log 21,0,1a a a a x y xy a a +++=+->≠且,求8log y x的值。
解:原方程可变形为: ()()()22log 41log 521a a x y xy ⎡⎤+∙+=-⎡⎤⎣⎦⎣⎦ -------------2分可得:()()()2241521x y xy +∙+=-222241090x y x y xy ++-+=-----------------------5分得:()()222269440x y xy x y xy -+++-= 即:()()22320xy x y -+-=--------------------------9分易知:32xy x y=⎧⎨=⎩ ------------------------------------10分所以:12y x = ---------------------------------------12分故881log log 32y x ==- -------------------------------14分三角函数单元复习题(三)答案一、选择题(本大题共10小题,每小题5分,共50分) ADCD B B A C D C B二、填空题(本大题共6小题,每小题5分,共30分) 1112b a -12.(-∞,13 ]∪[1,+∞) 13.{x |-π4 +2kπ<x <2kπ或2kπ<x <π2 +2kπ(k ∈Z )}14.x =0或π,y =0 15.4π 15.{y |-54≤y ≤1+ 2 } 16.②③三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17、解:(1)()()()lg(2)lg(2)h x f x g x x x =+=++-由 20()20x f x x +>⎧=⎨->⎩得22x -<< 所以,()h x 的定义域是(-2,2)()f x 的定义域关于原点对称()()()lg(2)lg(2)()()()h x f x g x x x g x f x h x -=-+-=-++=+=()h x ∴为偶函数17.(本小题满分12分)如图为函数y =A sin(ωx +φ)(A >0,ω>0)的图象的一部分,试求该函数的一个解析式.【解】 由图可得:A = 3 ,T =2|MN |=π. 从而ω=2πT =2,故y = 3 sin(2x +φ)将M (π3 ,0)代入得sin(2π3 +φ)=0取φ=-2π3 得y = 3 sin(2x -2π3)【评注】 本题若将N (5π6,0)代入y = 3 sin(2x +φ)则可得:sin(5π3 +φ)=0.若取φ=-5π3 ,则y = 3 sin(2x -5π3 )=- 3 sin(2x -2π3 ),它与y = 3 sin(2x -π3 )的图象关于x 轴对称,故求解错误!因此,将点的坐标代入函数y = 3sin(2x +φ)后,如何确定φ,要看该点在曲线上的位置.如:M 在上升的曲线上,就相当于“五点法”作图中的第一个点,故2π3 +φ=0;而N 点在下降的曲线上,因此相当于“五点法”作图中的第三个点,故5π3 +φ=π,由上可得φ的值均为-2π3.18.(本小题满分14分)已知函数y =(sin x +cos x )2+2cos 2x .(x ∈R )(1)当y 取得最大值时,求自变量x 的取值集合. (2)该函数图象可由y =sin x (x ∈R )的图象经过怎样的平移和伸缩变换得到?【解】 y =1+sin2x +2cos 2x =sin2x +cos2x +2= 2 sin(2x +π4 )+2.(1)要使y 取得最大值,则sin(2x +π4 )=1.即:2x +π4 =2kπ+π2 x =kπ+π8 (k ∈Z )∴所求自变量的取值集合是{x |x =kπ+π8 ,k ∈Z }.(2)变换的步骤是:①把函数y =sin x 的图象向左平移π4 个单位,得到函数y =sin(x +π4)的图象;②将所得的图象上各点的横坐标缩短到原来的12 倍(纵坐标不变),得函数y =sin(2x +π4 )的图象;③再将所得的图象上各点的纵坐标伸长到原来的 2 倍(横坐标不变),得函数 y = 2 sin(2x +π4)的图象;④最后将所得的图象向上平移2个单位,就得到 y = 2 sin(2x +π4 )+2的图象.【说明】 以上变换步骤不唯一!19.(本小题满分14分)已知函数f (x )=21log (sin x -cos x )(1)求它的定义域和值域;(2)求它的单调减区间;(3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的一个周期. 【分析】 研究复合函数的性质(定义域、值域、单调性、奇偶性、周期性)应同时考虑内层函数与外层函数各自的特性以及它们的相互制约关系.【解】 (1)由题意得sin x -cos x >0,即 2 sin(x -π4)>0从而得2kπ<x -π4 <2kπ+π,所以函数的定义域为(2kπ+π4 ,2kπ+5π4 )(k ∈Z )∵0<sin(x -π4 )≤1,∴0<sin x -cos x ≤ 2即有21log (sin x -cos x )≥21log 2 =-12 .故函数的值域是[-12,(2)∵sin x -cos x = 2 sin (x -π4 )在f (x )的定义域上的单调递增区间为(2kπ+π4,2kπ+3π4 )(k ∈Z ),函数f (x )的递减区间为(2kπ+π4 ,2kπ+3π4 )(k ∈Z ). (3)∵f (x )的定义域在数轴上对应的点不关于原点对称, ∴函数f (x )是非奇非偶函数.(4)f (x +2π)=21log [sin(x +2π)-cos(x +2π)]=21log (sin x -cos x )=f (x ).∴函数f (x )是周期函数,2π是它的一个周期. 20.(本小题满分15分)某村欲修建一横断面为等腰梯形的水渠(如图),为降低成本,必须尽量减少水与水渠壁的接触面.若水渠横断面面积设计为定值 m ,渠深3米,则水渠侧壁的倾斜角α应为多少时,方能使修建的成本最低?【分析】 本题中水与水渠壁的接触面最小,即是修建的 成本最低,而水与水渠壁的接触面最小,实际上是使水渠横断 面的周长最小【解】 设水渠横断面的周长为y ,则:(y -2×3sin α )×3+2×12 ·3×32tan α =m即:y =m3 +3·2-cos αsin α(0°<α<90°).欲减少水与水渠壁的接触面,只要使水渠横断面周长y 最小,即要使t =2-cos αsin α(0°<α<90°)最小,∵t sin α+cos α=2.∴sin(α+φ)=2t 2+1,(其中φ由tan φ=1t ,φ∈(0°,90°))由2t 2+1≤1得:t 2≥3⇒t ≥ 3当且仅当t = 3 ,即tan φ=33,即φ=30°时,不等式取等号,此时sin(α+30°)=1⇒α=60°.【答】 水渠侧壁的倾斜角α=60°时,修建成本最低.21. (本小题满分15分)已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4 ,0)对称,且在区间[0,π2 ]上是单调函数,求φ和ω的值.【解】 由f (x )是偶函数,得f (x )=f (-x )即sin(ωx +φ)=sin(-ωx +φ) ∴-cos φsin ωx =cos φsin ωx 对任意x 都成立. 且ω>0,∴cos φ=0,依题设0≤φ≤π,∴φ=π2由f (x )的图象关于点M (3π4,0)对称,得,取x =0,得f (3π4 )=-f (3π4 ),∴f (3π4 )=0∴f (3π4 )=sin(3ωπ4 +π2 )=cos 3ωπ4=0,又ω>0 ∴3ωπ4 =π2 +kπ,k =0,1,2,…,ω=23 (2k +1),k =0,1,2,… 当k =0时,ω=23 ,f (x )=sin(23 x +π2 )在区间[0,π2 ]上是减函数;当k =1时,ω=2,f (x )=sin(2x +π2 )在区间[0,π2 ]上是减函数;当k ≥2时,ω≥103 ,f (x )=sin(ωx +π2 )在区间[0,π2 ]上不是单调函数;所以,ω=23 或ω=2.。