高中数学必修一函数图像变换

合集下载

高中数学第10讲 函数图像及其变换(教案)新人教版必修1

高中数学第10讲  函数图像及其变换(教案)新人教版必修1

函数图像与变换教学目标:掌握常见函数图像及其性质〔高考要求B 〕,熟悉常见的函数图像〔平移、对称、翻折〕变换〔高考要求B 〕.教学重难点:掌握常见函数图像及其性质,会用“平移、对称、翻折〞等手段进行函数图像变换。

教学过程:一.知识要点:1.常见函数图像及其性质: 〔1〕平移变换:①y =f (x ) →y =f (x ±a )(a >0)图象横向 平移a 个单位,〔左+右—〕. ②y =f (x ) →y =f (x )±b (b >0)图象纵向 平移b 个单位,(上+下—)③假设将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; ④假设将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.〔2〕对称变换:①y =f (x ) →y =f (-x )图象关于y 轴对称; 假设f (-x )=f (x ),那么函数自身的图象关于y 轴对称.②y =f (x ) →y =-f (x )图象关于x 轴对称.③y =f (x ) →y =-f (-x )图象关于原点对称; 假设f (-x )=-f (x ),那么函数自身的图象关于原点对称.④y =f (x ) →y =f -1(x )图象关于直线y =x 对称.⑤y =f (x ) →y =-f -1(-x )图象关于直线y =-x 对称. ⑥y =f (x ) →y =f (2a -x )图象关于直线x =a 对称; ⑦y =f (x ) →y =2b -f (x )图象关于直线y =b 对称. ⑧y =f (x ) →y =2b -f (2a -x )图象关于点(a ,b )对称.假设f (x )=f (2a -x )(或f (a +x )=f (a -x ))那么函数自身的图象关于直线x =a 对称.假设函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=〔3〕翻折变换主要有①y =f (x ) →y =f (|x |)的图象在y 轴右侧(x >0)的部分与y =f (x )的图象相同,在y 轴左侧部分与其右侧部分关于y 轴对称.②y =f (x ) →y =|f (x )|的图象在x 轴上方部分与y =f (x )的图象相同,其他部分图象为y =f (x )图象下方部分关于x 轴的对称图形. 二.基础练习:1.假设把函数f (x )的图象作平移变换,使图象上的点P (1,0)变换成点Q (2,-1), 那么函数y =f (x )的图象经此变换后所得图象的函数解析式为 ( A )A.y =f (x -1)-1B.y =f (x +1)-1C.y =f (x -1)+1D.y =f (x +1)+12.函数y =f (x )的图象如图2—3,那么以下函数所对应的图象中,不正确的选项是( B ) A.y =|f (x )| B.y =f (|x |) C.y =f (-x )D.y =-f (x )解:y =f (|x |)是偶函数,图象关于y 轴对称.3.设函数y =2x 的图象为C ,某函数的图象C ′与C 关于直线x =2对称,那么这个函数是y =24-x 解∵y =f (x )的图象与y =f (4-x )的图象关于直线x =2对称,设f (x )=2x ,那么f (4-x )=24-x y =f (x )的定义域是R ,且f (x -1)=f (1-x ),那么f (x )的图象有对称轴 直线x =0 解: 设x -1=t ,那么f (t )=f (-t ),函数为偶函数,关于y 轴对称.5.函数y =12--x x的图象关于点(1,-1)_对称.解:y =12--x x =-1+11-x ,y =12--x x 的图象是由y =x 1的图象先右移1个单位,再下移1个单位而得到,故对称点为(1,-1). 三.例题精讲:例1.(1)函数y=||x xa x(0<a <1)的图象的大致形状是 〔 D 〕(2).〔2009·某某模拟〕定义运算,)()(⎩⎨⎧>≤=⊗b a bb a a b a 那么函数f(x)=x21⊗的图象是 ( A )(3).函数y=f(x)的图象如图①所示,y=g(x)的图象如图②所示,那么函数y=f(x)·g(x)的图象可能是图中的〔 C 〕例2. 作出以下函数的图象.〔1〕.f (x )=x 2-2|x |+1 〔2〕f (x )=x 2-2|x |+1〔3〕f (x )=|x 2-1|〔4〕f (x )=x 2+2x +1 〔5〕y=112--x x ;〔6〕y=)21(|x|.〔7〕〔2〕y=|log 21〔1-x 〕|; (8)y=21(lgx+|lgx|);例3.〔1〕定义在R 上的函数y =f (x )、y =f (-x )、y =-f (x )、y =-f (-x )的图象重合,它们的值域为__{0}.[解析] 函数y =f (x )与y =f (-x )的图象重合,说明函数y =f (x )的图象关于y 轴对称;y =f (x )与y =-f (x )图象重合,说明y =f (x )的图象关于x 轴对称;y =f (x )与y =-f (-x )的图象重合,说明y =f (xy =f (x )上任一点(x ,y ),那么也有点(-x ,y )、(x ,-y )、(-x ,-y );根据函数的定图2—3义,对于任一x ∈R,只能有惟一的y 与之对应,从而y =-y ,即y =0,故函数的值域为{0}. 〔2〕函数f (x )定义域为R ,那么以下命题中①y =f (x )为偶函数,那么y =f (x +2)的图象关于y 轴对称. ②y =f (x +2)为偶函数,那么y =f (x )关于直线x =2对称.③假设f (x -2)=f (2-x ),那么y =f (x )关于直线x =2对称. ④y =f (x —2)和y =f (2-x )的图象关于x =2对称.其中正确命题序号有_②④_(填上所有正确命题序号).[解析] ①y =f (x )是偶函数,而f (x +2)是将f (x )的图象向左平移2个单位得到的,那么对称轴左移2个单位为x =-2,所以f (x +2)图象关于直线x =-2对称.②y =f (x +2)为偶函数,那么f (x +2)=f (2-x ),所以y =f (x )图象关于直线x =2对称. ③令x -2=t ,那么2-x =-t ,得f (t )=f (-t ),y =f (x )的图象关于y 轴对称.④f (x )与f (-x )的图象关于y 轴对称,将f (x )与f (-x )的图象分别向右平移2个单位, 分别得到f (x -2)与f (2-x )的图象,对称轴右移2个单位为直线x =2. 例4.设f (x )是定义在R 上的奇函数,且f (x +2)=-f (x ),又当-1≤x ≤1时,f(x)=x 3. (1)证明直线x =1是函数f (x )的图象的一条对称轴;(2)当x ∈[1,5]时,求f (x )的解析式. [解] (1)设(x 0,y 0)是f (x )的图象上任意一点,它关于x =1对称的点为(x 1,y 1),那么y 0=y 1,x 0=2-x 1,∴y 1=f (2-x 1)=-f (-x 1)=f (x 1)∴(x 1,y 1)也在y =f (x )的图象上,命题成立.(2)∵f (x )的图象关于x =1对称,故当1≤x ≤3时,f (x )=(2-x )3又当3<x ≤5时,-1<x -4≤1,此时f (x )=(x -4)3∴f (x )=⎪⎩⎪⎨⎧≤<-≤≤-)53(,)4()31(,)2(33x x x x 例5.设函数f(x)=x 2-2|x|-1 (-3≤x ≤3).〔1〕证明:f(x)是偶函数;〔2〕画出函数的图象; 〔3〕指出函数f(x)的单调区间;〔4〕求函数的值域.〔1〕证明f(-x)=(-x)2-2|-x|-1=x 2-2|x|-1=f(x),即f(-x)=f(x),∴f(x)是偶函数.〔2〕解 当x ≥0时,f(x)=x 2-2x-1=(x-1)2-2,当x <0时,f(x)=x 2+2x-1=(x+1)2-2,即f(x)=,)03(2)1()30(2)1(22⎩⎨⎧<≤--+≤≤--x x x x根据二次函数的作图方法,可得函数图象如下图. 〔3〕解 函数f(x)的单调区间为[-3,-1〕,[-1,0〕,[0,1〕,[1,3]. f 〔x 〕在区间[-3,-1〕和[0,1〕上为减函数,在[-1,0〕,[1,3]上为增函数.〔4〕解 当x ≥0时,函数f(x)=(x-1)2-2的最小值为-2,最大值为f(3)=2; 当x <0时,函数f(x)=(x+1)2-2的最小值为-2,最大值为f(-3)=2; 故函数f(x)的值域为[-2,2].例6.作函数y =x + 1x 的图象.扩展:y =a x + bx〔a >0,b >0〕的图像.例7.〔1〕函数y=f(x)的定义域为R ,且当x ∈R 时f(m+x)=f(m-x)恒成立. 求证:y=f(x)的图象关于直线x=m 对称;〔2〕假设函数y=log 2|ax-1|的图象的对称轴是x=2,求非零实数a 的值. 〔1〕证明 设P 〔x 0,y 0〕是y=f(x)图象上任意一点,那么y 0=f(x 0).又设P 点关于x=m 的对称点为P ′,那么P ′的坐标为〔2m-x 0,y 0〕.由f(m+x)=f(m-x),得f(2m-x 0)=f [m+(m-x 0)]=f [m-(m-x 0)]=f(x 0)=y 0.即),-(200y x m P '在y=f(x)图象上,∴y=f 〔x 〕的图象关于直线x=m 对称.〔2〕解 ∵对定义域内的任意x,有f(2-x)=f(2+x)恒成立.∴|a 〔2-x 〕-1|=|a 〔2+x 〕-1|恒成立,即|-ax+(2a-1)|=|ax+(2a-1)|恒成立.又a ≠0,∴2a-1=0,得a=21.自我检测1.〔2008·全国Ⅱ理,3〕函数f(x)=x1-x 的图象关于 坐标原点对称2.作出以下函数的图象.〔1〕y=2-2x;〔2〕y=112+-x x .〔3〕y =⎩⎪⎨⎪⎧x +1 x ≤112 〔5-x 〕 1<x ≤34-x x >33.f(x)=[][],1,0,10,1,12⎩⎨⎧∈+-∈+x x x x 那么f(x-1)的图象是 4.假设函数f(x)=3+log 2x 的图象与g(x)的图象关于 y=x 对称,那么函数g(x)= 2x-35. 函数y=f(x)与函数y=g(x)的图象如图,那么函数y=f(x)·g(x)的图象可能是 〔 A 〕6.设a >1,实数x,y 满足|x|-log a y1=0,那么y 关于x 的函数的图象形状大致是 ( B )2(-x)<x+1成立的x 的取值X 围是.答案 〔-1,0〕8.设f(x)是定义在R 上奇函数,在〔0,21〕上单调递减,且f(x)=f(-x-1).给出以下四个结论:①函数f(x)的图象关于直线x=21对称;②f(x)在(21,1)上单调递增;③对任意的x ∈Z ,都有f(x)=0;④函数y=f )2(x -π的图象是中心对称图形,且对称中心为()0,2π.其中正确命题的序号是.答案 ①②③④9.当x ∈(1,2)时,不等式(x-1)2<log a x 恒成立,那么a 的取值X 围为.答案 (1,2]10.要得到)3lg(x y -=的图像,只需作x y lg =关于_y __轴对称的图像,再向__右__平移3个单位而得到11.函数()lg(2)1f x x x=⋅+-的图象与x轴的交点个数有__2__个12.如假设函数(21)y f x=-是偶函数,那么函数(2)y f x=的对称轴方程是_12x=-__。

函数图像和变换解读

函数图像和变换解读

函数图像及其变换师大学附属外国语中学 庆兵函数是整个高中数学的重点和难点,高中阶段对函数性质的研究往往是通过研究函数图像及其变换得到的,所以函数图像及其变换也就成为高考的固定考点。

历年高考考试大纲中都明确要求,学生要“会运用函数图像理解和研究函数的性质”,并且与前几年比较可以发现,近几年高考对于函数图像方面的考查已经不再局限于对几个常见函数本身的单一的考查,而是结合函数的运算,更为深刻地考查函数与函数、函数与方程、函数与不等式、函数与其他学科或现实生活等方面的联系。

这就要求我们不仅要熟练掌握一些基本函数的图像特征及函数图像变换的几种常见方法,而且要会灵活运用。

下面笔者就结合近几年的一些高考试题,谈一些函数图像及其变换和应用方面的问题,希望能引起正在忙于备考的高三教师和学子们的重视,并给他们带来一些启发。

(一)平移变换及其应用:函数00)(y x x f y +-=的图像可以看作是由函数)(x f y =的图像先向左0(x >0)或向右(0x <0)平移||0x 个单位,再向上0(y >0)或向下(0y <0)平移||0y 个单位得到。

如:例1、(2008理11)方程0122=-+x x 的解可视为函数2+=x y 的图象与函数xy 1=的图象交点的横坐标。

若方程044=-+ax x 的各个实根)4(,,,21≤k k x x x x 所对应的点),,2,1)(4,(k i x x i i =均在直线x y =的同侧,则实数a 的取值围是 。

(图一) (图二)分析:由题意,方程044=-+ax x 的解可视为函数a x y +=3的图象与函数xy 4=的图象交点的横坐标。

这些交点可以看作是由函数3x y =的图象经过上下平移得到,由图(1)可知,函数3x y =与函数xy 4=的图象分别交于点P 、Q ,且点P 在直线上方,点Q 在直线x4=下方,要使得方程044=-+ax x 的各个实根)4(,,,21≤k k x x x x 所对应的点),,2,1)(4,(k i x x ii =均在直线x y =的同侧,只须将函数3x y =图像上下平移,将点Q 移至函数x y 4=图像与直线x y =交点A )2,2(--左侧或将点P 移至函数xy 4=图像与直线x y =交点B )2,2(右侧即可。

高中数学教案:掌握函数的图像变换规律

高中数学教案:掌握函数的图像变换规律

高中数学教案:掌握函数的图像变换规律1. 引言在高中数学课程中,函数是一个核心概念。

了解和熟练运用函数的图像变换规律对于学生在解决实际问题、深入理解数学概念方面至关重要。

本篇教案将详细介绍函数的图像变换规律,并提供一些实际示例来帮助学生更好地掌握这一内容。

2. 基础知识回顾在开始讲解函数的图像变换规律之前,我们先来回顾一些基础知识。

请确保学生已经掌握以下概念: - 函数的定义 - 函数的定义域和值域 - 常见的基本函数及其图像(如线性函数、二次函数等)3. 图像平移与拉伸3.1 平移在讲解平移之前,我们先引入一些新的概念:平移向量。

平移向量可以描述一个点或者一幅图像从原位置沿着某个向量方向移动所产生的新位置。

对于一个将点(x, y)平移到(x+a, y+b)的平移,我们可以用以下式子表示:f(x) -> f(x-a) + b通过这个公式,我们可以让学生探索不同平移向量对于函数图像的影响,从而理解函数的平移规律。

3.2 拉伸与压缩接下来,讲解拉伸和压缩。

当我们将函数图像在横轴方向或者纵轴方向上进行拉伸或压缩时,函数的形状会发生相应变化。

这种变化可以用以下数学表示式来描述:f(x) -> a * f(k * x)其中,a表示纵向拉伸或压缩的倍数(a > 0),k表示横向拉伸或压缩的倍数(k > 0)。

4. 图像反射与翻转4.1 反射讲解完图像平移与拉伸后,我们引入反射的概念。

对于一个函数图像进行反射时,每个点关于某个坐标轴会产生对称点。

具体来说: - 关于x轴反射:原始函数 y = f(x) 的图像关于x轴反射后得到新函数 y = -f(x) - 关于y轴反射:原始函数 y = f(x) 的图像关于y轴反射后得到新函数 y = f(-x)4.2 翻转除了反射之外,我们还可以通过翻转来改变函数图像。

主要有两种翻转方式:- 水平翻转:将原始函数 y = f(x) 的图像向左或向右进行平移得到新函数 y = f(-x) - 垂直翻转:将原始函数 y = f(x) 的图像上下翻转得到新函数 y = -f(x)5. 综合练习和实践为了帮助学生更好地理解和应用函数的图像变换规律,我们提供一些综合练习和实践的题目,涵盖了平移、拉伸、反射和翻转等各种情况。

用十张动态图片总结高中数学函数图像变换问题

用十张动态图片总结高中数学函数图像变换问题
用十张动态图片总结高中数学函数图像变换问题
风雨送春归,飞雪迎春到。已是悬崖百丈冰,犹有花枝俏。” 高中数学的函数本身很抽象,函数的图像也是重中之重,而函数图像变换令很多人苦不堪言, 本文对所有函数图像变换进行总结归纳,用动态的形式展现函数图像变换之奥妙,看到以下函 数图像动态变换过程,有助于学生理解图像变换之精髓!
去左翻右: 要得到函数y=f(|x|)的图象,可先做出y=f(x)的图象,去掉y轴左侧部分,再根据y=f(|x|) 是偶函数的特点,将y分)。
五、反函数变换
y=f(x)与其反函数y=f-1(x)的图像关于y=x对称。
高中数学
一、平移变换
上+下将函数y=f(x)的图像向上平移a个单位,即可得到y=f(x)+a的图像。 将函数y=f(x)的图像向下平移a个单位,即可得到y=f(x)-a的图像。
左+右将函数y=f(x)的图像向左平移a个单位,即可得到y=f(x+a)的图像。 将函数y=f(x)的图像向右平移a个单位,即可得到y=f(x-a)的图像。
二、伸缩变换
横坐标伸缩 将函数y=f(x)的图像上各点横坐标变来原来的1/a,纵坐标不变,即可得到y=f(ax)的图像。 (a>1时缩短,0<a<1时伸长)
纵坐标伸缩 将函数y=f(x)的图像上各点纵坐标变来原来的A倍,横坐标不变,即可得到y=Af(x)的图 像。(A>1时伸长,0<A<1时缩短)
三、对称变换
将函数y=f(x)的图像关于x轴对称,得到y=-f(x)的图像。
将函数y=f(x)的图像关于y轴对称,得到y=f(-x)的图像。
将函数y=f(x)的图像关于原点对称,得到y=-f(-x)的图像。
四、翻折变换

高中数学中的函数与图像对称性质与图形变换

高中数学中的函数与图像对称性质与图形变换

高中数学中的函数与图像对称性质与图形变换在高中数学中,函数与图像的对称性质以及图形的变换是非常重要的概念。

这些概念不仅有助于我们理解数学中的抽象概念,还有助于我们解决实际问题。

本文将探讨函数与图像的对称性质以及图形的变换,并分析其在数学中的应用。

函数与图像的对称性质是指函数图像在某个特定操作下的不变性。

常见的对称性质包括轴对称和中心对称。

轴对称是指函数图像关于某条直线对称,而中心对称是指函数图像关于某个点对称。

这些对称性质在数学中的应用非常广泛。

例如,在解方程时,我们可以利用函数图像的对称性质来简化问题。

另外,在几何学中,对称性质也是研究图形性质的重要工具。

图形的变换是指将一个图形按照一定规则进行移动、旋转、翻转等操作,从而得到一个新的图形。

常见的图形变换包括平移、旋转和翻转。

平移是指将图形沿着平行于坐标轴的方向进行移动,旋转是指将图形按照一定角度进行旋转,翻转是指将图形关于某条直线进行镜像。

这些图形变换在数学中有着广泛的应用。

例如,在几何学中,我们可以利用图形变换来证明两个图形是否全等。

此外,在计算机图形学中,图形变换也是生成动画和模拟现实世界的重要工具。

函数与图像的对称性质和图形变换之间存在着密切的联系。

例如,我们可以利用函数图像的对称性质来进行图形变换。

具体而言,如果一个函数图像关于某条直线对称,那么我们可以通过将函数图像沿着该直线进行翻转来得到一个新的函数图像。

同样地,如果一个函数图像关于某个点对称,那么我们可以通过将函数图像沿着该点进行旋转180度来得到一个新的函数图像。

这些图形变换不仅可以帮助我们理解函数与图像的对称性质,还可以帮助我们解决实际问题。

除了函数与图像的对称性质和图形变换,高中数学中还涉及到其他一些与对称性质和图形变换相关的概念。

例如,我们可以通过函数的奇偶性来判断函数图像的对称性质。

具体而言,如果一个函数满足$f(-x)=-f(x)$,那么它是奇函数,其图像关于原点对称;如果一个函数满足$f(-x)=f(x)$,那么它是偶函数,其图像关于y轴对称。

高中数学人教A版必修1《函数的图象变换》PPT

高中数学人教A版必修1《函数的图象变换》PPT

例:作出下列函数的图象. (1)y=12|x|;(2)y=|log2(x+1)|;(3)y=2xx--11.
分析:作函数图象的方法有:列表描点法(列表, 描点,连线)和图象变换法(平移变换、对称变换、 翻折变换)
解析:(1)作出 y=12x 的图象,保留 y=12x 图象中 x≥0 部分,加上 y=12x 的图象中 x>0 部分关于 y 轴的对称部分,
答案:A
课堂总结:
本节课从特殊到一般的思路学习函数图 象的三种变换(平移变换、对称变换、翻 折变换)及其应用。利用图象变换解题, 关键是理清图象变换的过程,掌握好基本 初等函数的图象及变换的实质(要通过具 体的实例作为载体来理解掌握三种变换)。 在后续的学习中我们将进一步学习它的应 用。
谢谢!!!
翻折到y轴左侧,便得到g(x) x2 2 | x | f (| x |)的图象,
(2)画函数h(x) | x2 2x |的图象,并说由函数
f (x) x2 2x的图象怎样变换而得到?
解析:h(
x)
x2
x
2
2x (x 2x (0
0或x x
2) 2)
保留f (x) x2 2x图象在x轴上方部分,把位于x轴下
5
f (x) x2
4
3
2
h(x) x2 - 2
1
又h(x) f (x) 2
-4 -3 -2 -1 o 1 2 3 4 x
g (x) x2 2的图象是由f (x) x2的图象向上平移2个单位得到, h(x) x2 - 2的图象是由f (x) x2的图象向下平移2个单位得到。
平移变换—竖直平移
A.向右平行移动 2 个单位长度 B.向右平行移动 1 个单位长度 C.向左平行移动 2 个单位长度 D.向左平行移动 1 个单位长度

高中数学《函数图象的变换》课件

高中数学《函数图象的变换》课件
将y = f(x)在 x 轴上方的图 象保留,下方的图象以 x 轴为对 称轴翻折到上方可得到 y =|f(x)| 的图象.(保上方,下方翻上方)
翻折变换
y = f(x) 的图象
y =|f( x )| 的图象
将y = f(x)在 x 轴上方的图 象保留,下方的图象以 x 轴 为对称轴翻折到上方可得到 y =|f(x)|的图象.
平移变换
左上 右下 平平 移移
对称变换
关关关 于于于 x y原 轴轴点
翻折变换
上左 下右 翻翻 折折
归纳总结
平 y = f(x) 左移 h (h>0) y = f(x + h)
移 的图象 个 单 位
的图象
变 换
y = f(x) 右移 h (h>0) y = f(x - h)
的图象 个 单 位
的图象
问题与思考——复习
1、在同一坐标系中作下列函数 的图象,并说明每组两函数图象间的 关系.
(1) y = |log2x| (2) y = x2 - 2x,y = |x2 - 2x|
yy= log2 x
o
o
1
x
1
x
将 y = log2x 在 x 轴上方的图象保留, 下方的图象以 x 轴为对称轴翻折到上方可
翻 的图象 折 变 换
y =f( |x| ) 的图象

谢 谢
翻折变换
问题与思考:
2、在同一坐标系中作下列函数 的图象,并说明每组两函数图象间的 关系.
(1) y = 2x,y = 2|x| (2) y = x2 - 2x,y = |x|2 - 2|x|
y
y
y = 2x 11
o x
y = 2|x| 1

高中数学三角函数图像的性质及变换规律

高中数学三角函数图像的性质及变换规律

高中数学三角函数图像的性质及变换规律三角函数是高中数学中重要的内容之一,它们的图像性质及变换规律是我们学习和应用三角函数的基础。

在本文中,我将详细介绍正弦函数、余弦函数和正切函数的图像性质,并讨论它们的平移、伸缩和翻转变换规律。

一、正弦函数的图像性质及变换规律正弦函数的图像是一条连续的波浪线,它的周期是2π,振幅为1。

正弦函数的图像在原点处有一个特殊点,即(0, 0),称为正弦函数的零点。

正弦函数的图像在每个周期内呈现对称性,即关于y轴对称。

下面我们来看一个具体的例子:求解方程sin(x) = 0.5在区间[0, 2π]内的解。

首先,我们可以通过观察正弦函数的图像,知道sin(x) = 0.5有两个解,一个在第一象限,一个在第二象限。

我们可以通过求解sin(x) = 0.5的解析解来验证这一点。

sin(x) = 0.5的解析解为x = π/6 + 2πn和x = 5π/6 + 2πn,其中n为整数。

在区间[0, 2π]内,满足sin(x) = 0.5的解为x = π/6和x = 5π/6。

这个例子说明了正弦函数的图像性质,以及如何通过观察图像来快速得到方程的解。

二、余弦函数的图像性质及变换规律余弦函数的图像也是一条连续的波浪线,它的周期也是2π,振幅为1。

余弦函数的图像在原点处有一个特殊点,即(0, 1),称为余弦函数的最大值点。

余弦函数的图像在每个周期内呈现对称性,即关于y轴对称。

下面我们来看一个具体的例子:求解方程cos(x) = -0.5在区间[0, 2π]内的解。

根据余弦函数的图像性质,我们可以知道cos(x) = -0.5有两个解,一个在第二象限,一个在第三象限。

我们可以通过求解cos(x) = -0.5的解析解来验证这一点。

cos(x) = -0.5的解析解为x = 2π/3 + 2πn和x = 4π/3 + 2πn,其中n为整数。

在区间[0, 2π]内,满足cos(x) = -0.5的解为x = 2π/3和x = 4π/3。

高中数学教案:函数图像的变换及性质

高中数学教案:函数图像的变换及性质

高中数学教案:函数图像的变换及性质一、引言在高中数学教学中,函数图像的变换及性质是学习函数的重要内容之一。

理解函数图像的变换规律和性质,有助于学生更好地理解函数的概念、掌握函数的运算和图像的变化规律,进一步提高数学思维和解题能力。

本教案将介绍函数图像的平移、伸缩和翻转等变换,并探究函数的奇偶性、周期性和单调性等性质。

二、函数图像的平移1. 平移的概念与特点平移是指保持图形形状不变,仅仅改变位置的变换方式。

在函数图像中,平移可以通过改变函数的自变量(x)和因变量(y)的关系来实现。

平移有平行于x轴的水平平移和平行于y轴的垂直平移两种形式。

2. 平移的公式与例题水平平移的公式为f(x ± a),其中a表示平移的距离和方向。

垂直平移的公式为f(x) ± a,其中a表示平移的距离和方向。

例如,对于函数y = x²-1,向右平移2个单位的函数表达式为y = (x-2)²-1。

三、函数图像的伸缩1. 伸缩的概念与特点伸缩是指通过改变图形的尺寸,保持图形形状与轴线关系不变的变换方式。

在函数图像中,伸缩可以通过改变函数的自变量(x)或因变量(y)的比例系数来实现。

伸缩有水平方向的横向伸缩和垂直方向的纵向伸缩两种形式。

2. 伸缩的公式与例题横向伸缩的公式为f(kx),其中k表示伸缩的比例系数。

纵向伸缩的公式为kf(x),其中k表示伸缩的比例系数。

例如,对于函数y = x²-1,横向伸缩2倍的函数表达式为y = (1/2)x²-1,纵向伸缩2倍的函数表达式为y = 2(x²-1)。

四、函数图像的翻转1. 翻转的概念与特点翻转是指通过改变图形的方向,保持图形形状不变的变换方式。

在函数图像中,翻转可以通过改变函数的自变量(x)或因变量(y)的正负号来实现。

翻转有水平方向的左右翻转和垂直方向的上下翻转两种形式。

2. 翻转的公式与例题左右翻转的公式为f(-x),即将函数关于y轴翻转。

高中数学图像变化规律教案

高中数学图像变化规律教案

高中数学图像变化规律教案一、教学目标1. 理解函数图像变化的基本概念,包括平移、伸缩、对称等。

2. 掌握常见函数图像的特点及其变化规律。

3. 能够根据函数表达式判断图像的变化类型。

4. 培养学生的空间想象能力和逻辑推理能力。

二、教学内容与过程1. 引入新课- 通过展示几个典型的函数图像,让学生观察它们的特点。

- 提问:这些图像有哪些共同点和不同点?它们是如何变化的?- 引出本节课的主题:函数图像的变化规律。

2. 讲授新知- 平移规律:解释水平平移和垂直平移的概念,举例说明平移对函数图像的影响。

- 伸缩规律:讲解横向伸缩和纵向伸缩的区别,以及它们对图像的具体影响。

- 对称规律:介绍轴对称和中心对称的概念,并通过实例加深理解。

3. 案例分析- 选取几个具有代表性的例子,如线性函数、二次函数等,分析它们的图像变化规律。

- 引导学生通过观察和比较,总结出图像变化的一般规律。

4. 互动探究- 分组讨论:给出几个函数表达式,让学生尝试预测它们的图像变化。

- 实际操作:使用数学软件或图纸,让学生绘制出这些函数的图像,验证自己的预测。

5. 总结归纳- 回顾本节课所学的内容,强调每种变化规律的特点。

- 提示学生如何在实际问题中应用这些规律。

6. 布置作业- 提供几个练习题,要求学生独立完成,以巩固所学知识。

- 鼓励学生在生活中寻找相关现象,加深对函数图像变化规律的理解。

三、教学方法与手段- 采用启发式教学,激发学生的思考兴趣。

- 结合多媒体教学工具,直观展示图像变化过程。

- 通过实际操作和讨论,增强学生的参与感和实践能力。

四、评价方式- 课堂提问,检验学生对知识点的掌握情况。

- 作业批改,了解学生的学习效果和存在的问题。

- 定期测试,全面评估学生的学习成果。

高中数学:131《三角函数图像的变换》课件必修

高中数学:131《三角函数图像的变换》课件必修
这些操作包括平移、伸缩、翻折和旋转等,可以单独或组合使用。
变换的目的是为了更好地理解三角函数的性质,解决实际问题,以及进行图像处理 等。
变换的种类和特点
01
02
03
04
平移变换
将图像沿x轴或y轴方向移动 ,保持图像形状不变。
伸缩变换
通过改变x轴和y轴的比例来 改变图像的大小,可以横向或
纵向伸缩。
翻折变换
利用伸缩变换的性质求解函数的极值
例如,利用正弦函数的伸缩性质,可以求解y=sin(3x)在x=π/9处的极小值为1。
利用对称变换的性质求解函数的对称轴或对称中心
例如,利用正弦函数的对称性质,可以求解y=sin(x)的对称轴为x=kπ+π/2,k∈Z。
变换在实际问题中的应用
物理学中的应用
三角函数图像的综合变换在物理学中有广泛的应用,如振 动和波动现象、交流电等。通过变换可以更好地理解物理 现象和解决实际问题。
x轴缩短为原来的1/2,则图像的 周期变为原来的2倍。
01
03
02 04
总结词:影响相位
详细描述:沿x轴伸缩不仅改变 了图像的周期,还会影响函数的 相位。例如,将x轴缩短为原来 的1/2,相当于将相位滞后了π。
沿y轴伸缩
总结词:改变振幅
详细描述:沿y轴伸缩是 指保持x轴不变,通过改 变y轴的长度来改变整个 图像的振幅。例如,将y 轴放大为原来的2倍,则 图像的振幅变为原来的2 倍。
翻折变换
旋转变换
$y = -f(-x)$ 或 $y = f(x)$,前者表示沿x 轴翻折,后者表示沿y轴翻折。
$x = xcostheta - ysintheta$ 和 $y = xsintheta + ycostheta$,其中$theta$为 旋转角度。

高中数学 函数图像的对称变换新人教A版必修1

高中数学 函数图像的对称变换新人教A版必修1

学案7 函数图像的对称变换一、课前准备: 【自主梳理】1、(1)函数()y f x =-与()y f x =的图像关于 对称; (2)函数()y f x =-与()y f x =的图像关于 对称; (3)函数()y f x =--与()y f x =的图像关于 对称.2、奇函数的图像关于 对称,偶函数图像关于 对称.3、(1)若对于函数()y f x =定义域内的任意x 都有()()f a x f b x +=-,则()y f x =的图像关于直线 对称.(2)若对于函数()y f x =定义域内的任意x 都有()2()f a x b f a x +=--,则()y f x =的图像关于点 对称.4、对0a >且1a ≠,函数xy a =和函数log a y x =的图象关于直线 对称.5、要得到()y f x =的图像,可将()y f x =的图像在x 轴下方的部分以 为轴翻折到x 轴上方,其余部分不变.6、要得到()y f x =的图像,可将()y f x =,[)0,x ∈+∞的部分作出,再利用偶函数的图像关于 的对称性,作出(),0x ∈-∞时的图像. 【自我检测】23、函数xy e =-的图象与函数 的图象关于坐标原点对称. 4、将函数1()2x f x +=的图象向右平移一个单位得曲线C ,曲线C '与曲线C 关于直线y x=对称,则C '的解析式为 .5、设函数()y f x =的定义域为R ,则函数(1)y f x =-与(1)y f x =-的图像的关系为关 于 对称.6、若函数()f x 对一切实数x 都有(2)(2)f x f x +=-,且方程()0f x =恰好有四个不同实根,求这些实根之和为 .二、课堂活动: 【例1】填空题:(1(2)对于定义在R 上的函数()f x ,有下列命题,其中正确的序号为 . ①若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;②若对x R ∈,有(1)(1)f x f x +=-,则()y f x =的图象关于直线1x =对称;③若函数(1)f x -的图象关于直线1x =对称,则函数()f x 是偶函数;④函数(1)y f x =+与函数(1)y f x =-的图象关于直线1x =对称.(3)将曲线lg y x =向左平移1个单位,再向下平移2个单位得到曲线C .如果曲线C '与C 关于原点对称,则曲线C '所对应的函数式是 .(4)当1a >时,已知1x ,2x 分别是方程1xx a +=-和log 1a x x +=-解,则12x x +的值为 .【例2】作出下列函数的图象:(1)12log ()y x =-;(2)12xy ⎛⎫=- ⎪⎝⎭;(3)2log y x =;(4)21y x =-.【例3】(1)将函数12log y x =的图象沿x 轴向右平移1个单位,得图象C ,图象C '与C 关于原点对称,图象C ''与C '关于直线y x =对称,求C ''对应的函数解析式; (2)已知函数()y f x =的定义域为R ,并且满足(2)(2)f x f x +=-.①证明函数()y f x =的图象关于直线2x =对称;②若()f x 又是偶函数,且[]0,2x ∈时,()21f x x =-,求[]4,0x ∈-时()f x 的表达式.三、课后作业1、函数3(1)1y x =++的对称中心是 .2、如果函数()y f x =的图象与函数32y x =-的图象关于坐标原点对称,则()f x = .3、设()3x af x +=,若要使()f x 的图象关于y 轴对称,则a = .4、已知函数()sin 2cos2 ()f x a x x a R =+∈图象的一条对称轴方程为12x π=,则a = .5、已知函数2()f x x bx c =-+,(0)3f =,且(1)(1)f x f x +=-,则()xf b 与()xf c 的大小关系为 .6、函数321x y x +=-+在(),a -∞上单调递减,则实数a 的范围为 . 7、若函数()y f x =的图象过点()1,1,则(4)f x -的图象一定过点 . 8、定义在R 上的函数()f x 的图象关于点3,04⎛⎫-⎪⎝⎭成中心对称,对任意实数x 都有3()()02f x f x ++=且(1)1f -=,(0)2f =-,则(0)(1)(2)(2009)f f f f ++++= .9、设函数2()sin()2cos 1468x xf x πππ=--+. (1)求()f x 的最小正周期;(2)若函数()y g x =与()y f x =的图像关于直线1x =对称,求当4[0,]3x ∈时()y g x =的最大值.10、设曲线C 的方程是3y x x =-,将C 沿x 轴、y 轴正方向分别平移t 、s (0)t ≠个单位长度后得到曲线1C . (1)写出曲线1C 的方程;(2)证明曲线C 与1C 关于点(,)22t s A 对称;(3)如果曲线C 与1C 有且仅有一个公共点,证明:34t s t =-.四、纠错分析学案7 函数图像的对称变换参考答案【自我检测】1.原点 2.x 轴 3.xy e -= 4.2log y x = 5.直线1x = 6.8 【例1】(1)必要不充分条件 (2)①③ (3)lg(1)2y x =--++ (4)1- 【例2】(1)作12log y x =的图象关于y 轴的对称图形.(2)作12xy ⎛⎫= ⎪⎝⎭的图象关于x 轴的对称图形.(3)作2log y x =的图象及它关于y 轴的对称图形.(4)作21y x =-的图形,并将x 轴下方的部分翻折到x 轴上方.(图略) 【例3】(1)21x y =--(2)①证明:设()00,P x y 是函数()y f x =的图象上任意一点,则00()y f x =.点P 关于直线2x =的对称点P '的坐标应为()004,x y -. ∵[][]00000(4)2(2)2(2)()f x f x f x f x y -=+-=--==. ∴点P '也在函数()y f x =的图象上. ∴函数()y f x =的图象关于直线2x =对称.②解析:由()21f x x =-,[]0,2x ∈及()f x 为偶函数,得()()21f x f x x =-=--,[]2,0x ∈-;当[]2,4x ∈时,由()f x 图象关于2x =对称,用4x -代入()21f x x =-,得()(4)()24127f x f x x x -==--=-+,[]2,4x ∈,再由()f x 为偶函数,得()27f x x =+,[]4,2x ∈--.故[](]27 , 4,2()2 1 , 2,0x x f x x x +∈--⎧⎪=⎨--∈-⎪⎩.课后作业:1.()1,1- 2.23x -- 3.0 45.()()xxf b f c ≤ 6.(],1-∞- 7.()3,1 8.09.解:(1)()f x =sincoscossincos46464x x x πππππ--3cos 424x x ππ-sin()43x ππ-故()f x 的最小正周期为T =24ππ =8.(2)在()y g x =的图象上任取一点(,())x g x ,它关于1x =的对称点(2,())x g x - . 由题设条件,点(2,())x g x -在()y f x =的图象上,从而()(2)sin[(2)]43g x f x x ππ=-=--sin[]243x πππ--cos()43x ππ+ 当304x ≤≤时,23433x ππππ≤+≤,因此()y g x =在区间4[0,]3上的最大值为max 3g π==10.解:(1)曲线1C 的方程为3()()y x t x t s =---+;(2)证明:在曲线C 上任意取一点111(,)B x y ,设222(,)B x y 是1B 关于点A 的对称点,则有1212,2222x x t y y s++==,∴1212,x t x y s y =-=-代入曲线C 的方程, 得22,x y 的方程:3222()()s y t x t x -=---即3222()()y x t x t s =---+,可知点222(,)B x y 在曲线1C 上. 反过来,同样证明,在曲线1C 上的点A 的对称点在曲线C 上. 因此,曲线C 与1C 关于点A 对称.(3)证明:因为曲线C 与1C 有且仅有一个公共点,∴方程组33()()y x xy x t x t s⎧=-⎪⎨=---+⎪⎩有且仅有一组解, 消去y ,整理得22333()0tx t x t t s -+--=,这个关于x 的一元二次方程有且仅有一个根,∴43912()0t t t t s ∆=---=,即得3(44)0t t t s --=,因为0t ≠,所以34t s t =-.。

高中数学必修一12.图形变换

高中数学必修一12.图形变换

函数的图像(1)平移变换①水平平移:y =f (x )的图象向左平移a (a >0)个单位长度,得到________的图象;y =f (x -a )(a >0)的图象可由y =f (x )的图象向________平移a 个单位长度而得到.②竖直平移:y =f (x )的图象向上平移b (b >0)个单位长度,得到________的图象;y =f (x )-b (b >0)的图象可由y =f (x )的图象向________平移b 个单位长度而得到.总之,对于平移变换,记忆口诀为“左加右减,上加下减”. (2)对称变换①y =f (-x ),y =-f (x ),y =-f (-x )三个函数的图象与y =f (x )的图象分别关于 、 、 对称;②若对定义域内的一切x 均有f (m +x )=f (m -x ),则y =f (x )的图象关于直线 对称. (3)伸缩变换①要得到y =Af (x )(A >0)的图象,可将y =f (x )的图象上每点的纵坐标伸(A >1时)或缩(A <1时)到原来的__________;②要得到y =f (ax )(a >0)的图象,可将y =f (x )的图象上每点的横坐标伸(a <1时)或缩(a >1时)到原来的__________.(4)翻折变换①y =|f (x )|的图象作法:作出y =f (x )的图象,将图象位于x 轴下方的部分以x 轴为对称轴翻折到x 轴上方,上方的部分不变;②y =f (|x |)的图象作法:作出y =f (x )在y 轴右边的图象,以y 轴为对称轴将其翻折到左边得y =f (|x |)在y 轴左边的图象,右边的部分不变.(5)有关对称①类奇函数 ②类偶函数 y=f(x)关于(a,0)对称 y=f(x)关于x=a 对称⟺y=f(x+a)为奇函数 ⟺y=f(x+a)为偶函数 ⟺f(a+x)= -f(a-x) ⟺f(a+x)= f(a-x) ⟺f(x)=-f(2a-x) ⟺f(x)= f(2a-x)③对于函数)(x f y =(R x ∈),()()f a+x f b -x =恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数()f a+x 与)(x b f y -= 的图象关于直线x=2b a- 对称. ④对于函数)(x f y =(R x ∈), ()()f a+x f b -x =-恒成立,则函数)(x f 的对称中心是(2a b +,0),两个函数()f a+x 与()y f b -x =-的图象关于直线(2b a -,0)对称.练习题1.函数y =1-1x -1的图象是( )2.为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度3.若函数f (x )=ax -2x -1的图象关于点(1,1)对称,则实数a =________4.(2013·北京)函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( )A .e x +1 B .e x -1 C .e-x +1D .e-x -15.若将函数y =f (x )的图象向左平移2个单位,再沿y 轴对折,得到y =lg(x +1)的图象,则f (x )=________.6.下列函数的图像中,经过平移或翻折后不能与函数y =log 2x 的图像重合的函数是( )A.y =2xB.y =log 12x C.y =4x2D.y =log 21x+17.把函数y =log 2(x -1)的图象上各点的横坐标缩短到原来的12倍,再向右平移12个单位长度所得图象的函数式为( )A .y =log 2(2x +1)B .y =log 2(2x +2)C .y =log 2(2x -1)D .y =log 2(2x -2)8.(1)已知函数)(x f 是R 上的增函数,A(0 ,-1) ,B (3,1)是其图象上的两点,那么|)1( x f |<1的解集的补集是( )A .(-1 ,2)B .(1 ,4)C .(-∞,-1)∪[4 ,+∞)D .(-∞,-1] ∪[2 ,+∞)(2). 若直线y=2a 与函数y=|a x -1|(a >0且a≠1)的图象有两个公共点,则a 的取值范围是______.9.已知f (x )=|2x -1|,当a <b <c 时,有f (a )>f (c )>f (b ),则必有( )A .a <0,b <0,c <0B .a <0,b >0,c >0C .2-a <2c D .1<2a +2c <210.已知图①中的图象对应的函数为y =f (x ),则图②中的图象对应的函数可能为( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)11..已知a >0且a ≠1,函数f (x )=log a (x +x 2+b )在区间(-∞,+∞)上既是奇函数又是增函数,则函数g (x )=log a ||x |-b |的图象是( )12. 若函数)0()(2≠++=a c bx ax x f 的定义域R ,如方程)(,)(R k k x f ∈=最多只有两个根,则实数a 、b 、c 满足( )A .,042≥-ac b B .042≤-ac b C .,02b c R a∈-≥ D .,2bc R a ∈-≤0 13.(2016·全国甲卷)已知函数f (x )(x ∈R)满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A .0B .mC .2mD .4m14.设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为________.15.已知定义域为R 的奇函数()f x 满足()()13f x f x +=-,当(]0,2x ∈时,()24f x x =-+,则函数()()y f x a a R =-∈在区间[]4,8-上的零点个数最多时,所有零点之和为 .16、已知函数满足,关于轴对称,当时,,则下列结论中正确的是( )A .B .C .D . 17.(2015·安徽)函数f (x )=ax +b(x +c )2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <018.已知函数f (x )=x |x -2|,则不等式f (2-x )≤f (1)的解集为________.19.已知y =f(x)与y =g(x)的图象如右图:则F(x)=f(x)·g(x)的图象可能是下图中的( )20.(2013·四川)函数y =x 33x -1的图象大致是( )()f x )2()2(-=+x f x f (2)y f x =-y )2,0(∈x 22()log f x x =(4.5)(7)(6.5)f f f <<(7)(4.5)(6.5)f f f <<(7)(6.5)(4.5)f f f <<(4.5)(6.5)(7)f f f <<21.已知函数f(x)的定义域为[a,b],函数y=f(x)的图像如下图所示,则函数f(|x|)的图像大致是()log x(ab≠0,|a|≠|b|)在同一直角坐标系中的图像22.(湖南高考题)函数y=ax2+bx与y=ba可能是()答案 D23.(2016·全国乙卷)函数y=2x2-e|x|在[-2,2]的图象大致为()24.已知函数21(0)2x f(x)x e x =+-< 与2()ln()g x x x+a =+的图象上存在关于y 轴对称的点 ,则a 的取值范围( )A . 1(,)e -∞ B .(,)e -∞ C .1(,)e e- D .1(,)e e - 25.关于x 的方程x +lgx =3,x +10x =3的根分别为α,β,则α+β是( ) A.3 B.4 C.5D.626.(1)若不等式2x -log a x<0在x ∈(0,12)时恒成立,则实数a 的取值范围是(2) 当时,不等式(其中且)恒成立,则的取值范围为A. B. C. D.(3)当1(0,)2x ∈时,不等式4log xa x <恒成立,则实数a 的取值范围是27.(海南高考题)用min{a ,b ,c}表示a ,b ,c 三个数中的最小值.设f(x)=min{2x ,x +2,10-x}(x ≥0),则f(x)的最大值为( )A.4B.5C.6D.728. 设表示三者中较小的一个,若函数,则当时,的值域是( ) A. B.C.D.。

高一数学必修一函数图像知识点总结

高一数学必修一函数图像知识点总结

高一数学必修一函数图像知识点总结函数图像是高中数学中的重要内容之一,它是数学与实际问题相结合的桥梁。

在高一数学必修一中,我们学习了函数图像的基本概念、性质和绘制方法。

下面将对这些知识点进行总结。

一、函数图像的基本概念函数是一种特殊的关系,它把一个集合中的每个元素都对应到另一个集合中的唯一元素。

函数图像是函数在坐标系中的表示,横坐标表示自变量,纵坐标表示因变量。

函数图像可以用来描述实际问题中的变化规律,比如温度随时间的变化、销售额随月份的变化等。

二、函数图像的性质1. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。

通过观察函数图像可以确定函数的定义域和值域。

2. 奇偶性:如果函数满足$f(x) = f(-x)$,则称该函数为偶函数;如果函数满足$f(x) = -f(-x)$,则称该函数为奇函数。

通过观察函数图像可以确定函数的奇偶性。

3. 单调性:如果函数在定义域上递增,那么称该函数为递增函数;如果函数在定义域上递减,那么称该函数为递减函数。

通过观察函数图像可以确定函数的单调性。

4. 最值和极值:函数的最大值和最小值称为最值,函数的极大值和极小值称为极值。

通过观察函数图像可以确定函数的最值和极值。

三、函数图像的绘制方法1. 函数关系式法:如果已知函数的关系式,可以根据关系式中的变量值来绘制函数图像。

比如,已知函数$y = 2x + 1$,可以取不同的$x$值计算对应的$y$值,然后将这些点连成一条直线。

2. 函数性质法:如果已知函数的性质,可以根据性质来绘制函数图像。

比如,已知函数是偶函数,且在定义域上递增,可以根据这些性质来确定函数的图像形状。

3. 函数变换法:通过对已知函数进行平移、伸缩、翻转等变换,可以得到新的函数图像。

比如,对函数$y = x^2$进行平移变换,可以得到函数$y = (x-2)^2$的图像,它在$x$轴上向右平移了2个单位。

四、常见函数图像1. 一次函数:一次函数的图像是一条直线,可以表示为$y = kx + b$,其中$k$为斜率,$b$为截距。

高中数学:数学符号变化与函数图像的变化(一)

高中数学:数学符号变化与函数图像的变化(一)

高中数学:数学符号变化与函数图像的变化(一)
主要内容
目录:
函数y=2x+6-x
函数 y=2x+6-x 的图像
主要内容:
本文主要介绍函数y=2x+6-x 的定义域、值域、单调性、凸凹性及极限等性质,通过导数知识计算出函数的单调区间和凸凹区间,并简要画出函数图像示意图。

※.函数的定义域
函数y=2x+6-x 中含有根式,则有:6-x ≥0,即x ≤6,函数的定义域为:(-∞,6]。

※.函数的单调性
由函数导数知识判断单调性步骤为: y=2x+6-x ,对函数自变量求导,得:
dy dx =2-126-x
, 令dy dx =0,则:2*26-x -1=0,即:x 0=9516
,此时有:
(1)当x ∈(-∞,9516)时,dy dx
>0,此时函数y 为增函数; (2)当x ∈[9516,6]时, dy dx
≤0,此时函数y 为减函数。

※.函数的极限与极值
根据函数的单调性可知,
lim(x →-∞)2x+6-x =-∞,
y max =f(9516)=2*9516+6-1*9516
=12.125. 故函数的值域为:(-∞,12.125]。

※.函数的凸凹性
∵dy dx =2-126-x
∴d 2y dx 2=-12*(-12)*(-1)*1(6-x )
3 =-14*1(6-x )3
<0. 即函数y 在定义域上为凸函数。

※ .函数的五点图表
※.函数的示意图
y=2x+6-x。

高中数学函数的图像变换教学案

高中数学函数的图像变换教学案

象相同; 当 f ( x) 0 时,函数 y | f ( x) |的图象与函数 y f ( x)( f ( x) 0) 的图象关于 x 轴
对称 .
因此:函数 y | f ( x) |的图象可由函数 y f (x) 的图象变换得到,即 y f ( x) 在 x 轴
上方的图象不变,在 x 轴下方的图象作关于 x 轴对称的图象后,就得到 y | f ( x) |的 图象 .
四、 回顾反思 本节课我们主要研究了函数图象的对称变换,要求我们能根据变换作出函数的图
象,从而研究函数的性质,同样要注意“数形结合”的数学思想 . 课后作业 1、作出下列函数的图象: ⑴ y x3 x ; ⑵ y | x 1| 2 | x 3| ;⑶ y |2 x 2 5x 3| .
|x|
2、写出下列函数的单调区间:⑴ y | 2 x x2 |; ⑵ y 2 | x | x2 .
2. 1.4 函数的图像变换
教学目标 1.会根据解析式画出函数的图象; 2.能通过比较函数的图象掌握函数图象的变换(对称变换) ;. 教学重点与难点
本节课的重点是根据解析式画出函数图象,教学难点 是函数图象的变换 . 一、 问题情景
函数的解析式与函数的图象从“数”与“形”两方面体现函数的基本问题,是 研究函数性质的主要方面,我们要能够根据函数的解析式作出函数的图象,通过解析 式的关系研究图象的变换,同时也要能够通过图象来确定函数解析式 . 二、 学生活动、建构数学
因此:函数 y f (| x |) 的图象可由函数 y f ( x) 的图象变换得到, 即 y f (x) 在 y 轴
右方的图象不变,再在 y 轴左方作出 y f ( x)( x 0) 关于 y 轴对称的图象,就得到
y f (| x |) 的图象 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档