概率统计第三四章复习题

合集下载

概率论与数理统计练习册题目

概率论与数理统计练习册题目

第一章 概率论的基本概念习题一 随机试验、随机事件一、判断题1.()A B B A =⋃- ( )2.C B A C B A =⋃ ( )3.()φ=B A AB ( )4.若C B C A ⋃=⋃,则B A = ( )5.若B A ⊂,则AB A = ( )6.若A C AB ⊂=,φ,则φ=BC ( )7.袋中有1个白球,3个红球,今随机取出3个,则(1)事件“含有红球”为必然事件; ( )(2)事件“不含白球”为不可能事件; ( )(3)事件“含有白球”为随机事件; ( )8.互斥事件必为互逆事件 ( )二、填空题1. 一次掷两颗骰子,(1)若观察两颗骰子各自出现的点数搭配情况,这个随机试验的样本空间为 ;(2)若观察两颗骰子的点数之和,则这个随机试验的样本空间为 。

2.化简事件()()()=⋃⋃⋃B A B A B A 。

3.设A,B,C 为三事件,用A,B,C 交并补关系表示下列事件:(1)A 不发生,B 与C 都发生可表示为 ;(2)A 与B 都不发生,而C 发生可表示为 ;(3)A 发生,但B 与C 可能发生也可能不发生可表示为 ;(4)A,B,C 都发生或不发生可表示为 ;(5)A,B,C 中至少有一个发生可表示为 ;(6)A,B,C 中至多有一个发生可表示为 ;(7)A,B,C 中恰有一个发生可表示为 ;(8)A,B,C 中至少有两个发生可表示为 ;(9)A,B,C 中至多有两个发生可表示为 ;(10)A,B,C 中恰有两个发生可表示为 ;三、选择题1.对飞机进行两次射击,每次射一弹,设A 表示“恰有一弹击中飞机”,B 表示“至少有一弹击中飞机”,C 表示“两弹都击中飞机”,D 表示“两弹都没击中飞机”,则下列说法中错误的是( )。

A 、A 与D 是互不相容的B 、A 与C 是相容的C 、B 与C 是相容的D 、B 与D 是相互对应的事件2.下列关系中能导出“A 发生则B 与C 同时发生”的有( )A 、A ABC =;B 、AC B A =⋃⋃; C 、A BC ⊂ ;D 、C B A ⊂⊂四、写出下列随机试验的样本空间1.记录一个小班一次数学考试的平均分数(设以百分制记分);2.一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球;3.某人射击一个目标,若击中目标,射击就停止,记录射击的次数。

《概率论与数理统计》分章复习题

《概率论与数理统计》分章复习题

第一章 随机事件与概率一、 选择题1、以A 表示甲种产品畅销,乙种产品滞销,则A 为( ).(A) 甲种产品滞销,乙种产品畅销 (B) 甲、乙产品均畅销(C) 甲种产品滞销 (D) 甲产品滞销或乙产品畅销2、设A 、B 、C 为三个事件,则A 、B 、C 中至少有一个发生的事件可以表示为( ).(A)ABC (B) A B C ⋂⋂ (C) A B C ⋃⋃ (D) ABC3、已知事件B A ,满足A B =Ω(其中Ω是样本空间),则下列式( )是错的. (A) B A = (B ) Φ=B A (C) B A ⊂ (D ) A B ⊂4、设A 、B 、C 为三个事件,则A 、B 、C 中至少有一个不发生的事件可以表示为( )。

(A)ABC (B )ABC (C) A B C ⋃⋃ (D ) ABC5、假设事件,A B 满足(|)1P B A =,则( ).(A) A 是必然事件 (B) (|)0P B A = (C)A B ⊃ (D)A B ⊂6、设()0P AB =, 则有( ).(A) A 和B 不相容 (B) A 和B 独立 (C) P(A)=0或P(B)=0 (D) P(A-B)=P(A)7、设A 和B 是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是(). (A )A 与B 不相容 (B )A 与B 相容(C )()()()P AB P A P B = (D )()()P A B P A -=8、设A B ⊂,则下面正确的等式是( ). (A) )(1)(A P AB P -= (B) )()()(A P B P A B P -=-(C) )()|(B P A B P = (D) )()|(A P B A P =9、事件,A B 为对立事件,则下列式子不成立的是( ).(A)()0P AB = (B )()0P AB = (C)()1P A B ⋃= (D )()1P A B ⋃=10、对于任意两个事件,A B ,下列式子成立的是( ).(A) ()()()P A B P A P B -=- (B ) ()()()()P A B P A P B P AB -=-+(C) ()()()P A B P A P AB -=- (D ) ()()()P A B P A P AB -=+11、设事件B A ,满足1)(=B A P , 则有( ).(A )A 是必然事件 (B )B 是必然事件(C )A B φ⋂=(空集) (D ))()(B P A P ≥ 12、设,A B 为两随机事件,且B A ⊂,则下列式子正确的是( ).(A )()()P A B P A ⋃=; (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -13、设,A B 为任意两个事件,0)(,>⊂B P B A ,则下式成立的为( )(A )B)|()(A P A P < (B )B)|()(A P A P ≤(C )B)|()(A P A P > (D )B)|()(A P A P ≥14、设A 和B 相互独立,()0.6P A =,()0.4P B =,则()P A B =( )(A )0.4 (B )0.6 (C )0.24 (D )0.515、设 (),(),(),P A c P B b P A B a ==⋃= 则 ()P AB 为 ( ).(A) a b - (B ) c b - (C) (1)a b - (D ) b a -16、设A ,B 互不相容,且()0,()0P A P B >>,则必有( ). (A) 0)(>A B P (B ))()(A P B A P = (C) )()()(B P A P AB P = (D ) 0)(=B A P17、设,A B 相互独立,且()0.82P A B ⋃=,()0.3P B =,则()P A =( )。

《概率论与数理统计》复习题

《概率论与数理统计》复习题

《概率论与数理统计》复习题第一章:随机事件及其概率1.某射手向一目标射击两次,Ai表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1AB.A1A2C.A1A2D.A1A22.设A,B为两个互不相容事件,则下列各式错误的是()..A.P(AB)=0C.P(AB)=P(A)P(B)B.P(A∪B)=P(A)+P(B)D.P(B-A)=P(B)13.设事件A,B相互独立,且P(A)=,P(B)>0,则P(A|B)=()3A.1141B.C.D.1551534.已知P(A)=0.4,P(B)=0.5,且AB,则P(A|B)=()A.0B.0.4C.0.8D.15.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为()A.0.20B.0.30C.0.38D.0.573126.设A,B为两事件,已知P(A)=,P(A|B)=,P(B|A),则P (B)=()335A.1234B.C.D.55557.设随机事件A与B互不相容,且P(A)=0.2,P(A∪B)=0.6,则P(B)=________.8.设A,B为两个随机事件,且A与B相互独立,P(A)=0.3,P(B)=0.4,则P(AB)=__________.9.10件同类产品中有1件次品,现从中不放回地接连取2件产品,则在第一次取得正品的条件下,第二次取得次品的概率是________.10.某工厂一班组共有男工6人、女工4人,从中任选2名代表,则其中恰有1名女工的概率为________11.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为_________.12.一医生对某种疾病能正确确诊的概率为0.3,当诊断正确时,他能治愈的概率为0.8。

若未被确诊,病人能自然痊愈的概率为0.1。

①求病人能够痊愈的概率;②若某病人已经痊愈,问他是被医生确诊的概率是多少?第二章:随机变量及其分布1.下列函数中可作为某随机变量的概率密度的是()100,某100,A.某2某1000,10,某0,B.某0,某0131,某,D.222其他0,1,0某2,C.0,其他2.设随机变量某在[-1,2]上服从均匀分布,则随机变量某的概率密度f(某)为()1,1某2;A.f(某)30,其他.1,1某2;C.f(某)0,其他.3,1某2;B.f(某)0,其他.1,1某2;D.f(某)30,其他.13.设随机变量某~B3,,则P{某1}=()3A.181926B.C.D.272727274.设随机变量某在区间[2,4]上服从均匀分布,则P{2C.P{2.55.设离散型随机变量某的分布律如右,B.P{1.5某-101则常数C=_________.P2C0.4CA某2,0某1;6.设随机变量某的概率密度f(某)则常数A=_________.其他,0,某1;0,0.2,1某0;7.设离散型随机变量某的分布函数为F(某)=0.3,0某1;0.6,1某2;某2,1,8.设连续型随机变量某的分布函数为则P{某>1}=_________.0,某0,ππF(某)in某,0某,其概率密度为f(某),则f()=________.62π1,某,29.设随机变量某~N(2,22),则P{某≤0}=___________。

概率论与数理统计第三、四章答案

概率论与数理统计第三、四章答案

第三章 习题参考答案1.计算习题二第2题中随机变量的期望值。

解:由习题二第2题计算结果0112{0}={1}=33p p p p ξξ====,得12201333E ξ=⨯+⨯= 一般对0-1分布的随机变量ξ有{1}E p p ξξ===2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。

解:方法一:先按定义计算长的数学期望290.3300.5310.229.9E ξ=⨯+⨯+⨯=和宽的数学期望190.3200.4210.320E η=⨯+⨯+⨯=再利用数学期望的性质计算周长的数学期望(22)229.922099.8E E ζξη=+=⨯+⨯=方法二:利用习题二地30题的计算结果(见下表),按定义计算周长的数学期望960.09980.271000.351020.231040.0698.8E ξ=⨯+⨯+⨯+⨯+⨯=3.对习题二第31题,(1)计算圆半径的期望值;(2)(2)E R π是否等于2ER π?(3)能否用2()ER π来计算远面积的期望值,如果不能用,又该如何计算?其结果是什么?解(1)100.1110.4120.3130.211.6ER =⨯+⨯+⨯+⨯=(2)由数学期望的性质有(2)223.2E R ER πππ==(3)因为22()()E R E R ππ≠,所以不能用2()E R π来计算圆面积的期望值。

利用随机变量函数的期望公式可求得222222()()(100.1110.4120.3130.2)135.4E R E R ππππ==⨯+⨯+⨯+⨯= 或者由习题二第31题计算结果,按求圆面积的数学期望1000.11210.41440.31690.2)135.4E ηπππ=⨯+⨯+⨯+⨯=4. 连续随机变量ξ的概率密度为,01(,0)()0,a kx x k a x ϕ⎧<<>=⎨⎩其它又知0.75E ξ= ,求k 和a 的值 解 由1010()11324a a kx dx kx dx a k E kx x dx a ϕξ+∞-∞===+=⋅==+⎰⎰⎰解得 2,3a k ==5.计算服从拉普拉斯分布的随机变量的期望和方差(参看习题二第16题)。

概率论与数理统计:第二章、第三章和第四章(1)

概率论与数理统计:第二章、第三章和第四章(1)

概率论与数理统计 第二章和第三章-、选择题1. 设随机变量,独立同分布,且的分布函数为,则的分布函数为( A ).(A) (B) (C) (D) 2. 设与为两个分布函数,其相应的概率密度函数与是连续函数,则必为概率密度的是 ( D ).(A) (B)(C) (D)3. 设随机变量,记,则( B ).(A) 随着的增加而增加 (B) 随着的增加而增加 (C) 随着的增加而减少 (D) 随着的增加而减少4. 设随机变量服从正态分布,服从正态分布,且,则必有( A ).(A)(B) (C) (D)二、填空题1. 设二维随机变量服从正态分布,则. 答案:2. 设随机变量服从参数为的指数分布,为常数且大于零,则.答案:3. 设随机变量服从参数为的泊松分布,则.X Y X F(x)Z=max{X,Y}2F (x)F(x)F(y)21-[1-F(x)][1-F(x)][1-F(y)]1F ()x 2F ()x 1()f x 2()f x 12()()f x f x 122()()f x F x 212()()f x F x 1212()()()()f x F x F x f x +2X~N(,) (0)μσσ>2p=P(X +)μσ≤p μp σp μp σX 211N(,)μσY 222N(,)μσ12P(|X-|<1)>P(|Y-|<1)μμ12<σσ12σσ>12<μμ12μμ>(X,Y)N(1,0;1,1;0)P{XY-Y<0}=12X 1a P{Y a+1|Y>a}=≤11e --X 12P{X=E(X )}=答案:4. 设随机变量与相互独立,且他们均服从区间上的均匀分布,则.答案:三、综合题(每题10分)1. 设袋中有个红球,个黑球与个白球,现有放回地从袋中取两次,每次取一球,以,,分别表示两次取球所取得的红球、黑球与白球的个数. (I) 求; (II) 求二维随机变量的概率分布(即联合分布律).解: (I).................... (5 分) (II) 与的可能取值均为, .................... (7 分), , , 故的概率分布为.................... (10 分)112e -X Y [0, 3]P(max{X,Y}1)=≤19123X Y Z P{X=1|Z=0}(X,Y)12212P{X=1,Z=0}466P{X=1|Z=0}=P{Z=0}912C ⨯==⎛⎫⎪⎝⎭X Y 0,1,2331P{X=0, Y=0}=664⨯=12231P{X=0, Y=1}=C 663⨯=221P{X=0, Y=2}=69⎛⎫= ⎪⎝⎭12131P{X=1, Y=0}=C 666⨯=12121P{X=1, Y=1}=C 669⨯=211P{X=2, Y=0}=636⎛⎫= ⎪⎝⎭(X,Y)2. 设二维随机变量的概率密度如下,试求.解:.................... (4 分).................... (8 分).................... (10 分)第四章-、选择题1. 设随机变量,,且相关系数,则( D ).(A) (B) (C) (D)2. 设随机变量与相互独立,且与存在,记,,则为( B ).(A ) (B) (C) (D)3. 设随机变量与不相关,且,,,则为( D ).(A ) (B) (C) (D)4. 设随机变量的分布函数为,其中为标准正态分布的分布函数,则为( C ).(X,Y)P{X>2Y}{2,01,010,(,)x y x y f x y --<<<<=其它x>2yP{X>2Y}=f(x,y)dxdy ⎰⎰120=dx (2)xx y dy --⎰⎰12057=()824x x dx -=⎰X~N(0,1)Y~N(1,4)XY 1ρ=P(Y=-2X-1)=1P(Y=2X-1)=1P(Y=-2X+1)=1P(Y=2X+1)=1X Y EX EY U=max{X,Y}V=max{X,Y}E(UV)EU EV ⋅EX EY ⋅EU EY ⋅EX EV ⋅X Y E(X)=2E(Y)=1D(X)=3E[X(X+Y-2)]-33-55X x-1F(x)=0.3(x)+0.7()2ΦΦ(x)ΦE(X)(A ) (B) (C) (D)5. 设连续型随机变量与相互独立且方差均存在,与的概率密度函数分别为与,随机变量的概率密度为,随机变量,则( D ).(A ) (B) (C) (D)二、填空题1. 已知正常男性成人血液中,每一毫升白细胞数平均是,均方差是,利用切比雪夫不等式估计每毫升白细胞数在之间的概率. 答案:2. 设二维随机变量服从正态分布,则. 答案:三、综合题(每题10分)1. 设A 和B 是试验E 的两个事件,且,,并定义随机变量,如下:,,试证明若随机变量与不相关,则与必定相互独立。

概率论与数理统计复习题答案

概率论与数理统计复习题答案

第一章 随机事件及其概率复习题一. 单选1. D2. A3. B4. C5. B6. D7. A8. B9. C 10. A. 二. 填空1. 0.9,2. 11(1)n p --, 3. 0.8, 4. 7/8, 5. 1/6, 6. 1/3, 7. 13/18, 1/2, 8. 0.863, 0.435, 9. 0.06, 10. 0.75. 三.计算与证明 1. 解: 6106610!()10104!P P A ==, 6668()0.810P B ==.2. 解:(1)4134411111(12)C P +=-=0.0372;(2)4124412!110.4271;12128!P P =-=-=(3)4132234444444666610.1004;0.1004.77C C C C P P +++=-===或3.解: ,0()()0,()0.ABC AB P ABC P AB P ABC ⊂∴≤≤=∴=则A ,B ,C 至少发生一个的概率为()()()()()()()()111115000.625.44416168P A B C P A P B P C P AB P BC P AC P ABC =++---+=++---+==A ,B ,C 全不发生的概率为3()()1()0.375.8P A B C P A B C P A B C =⋃⋃=-⋃⋃==4.解:设A 表示任意取出一个产品是次品,123,,B B B 分别表示取出一、二、三车间生产的产品,则(1)由全概率公式得112233()()(|)()(|)()(|)0.450.050.350.040.20.020.0405;P A P B P A B P B P A B P B P A B =++=⨯+⨯+⨯=(2) 由贝叶斯公式得 111()(|)0.450.05(|)0.556.()0.0405P B P A B P B A P A ⨯===5.解:设12,A A 分别表示第一、第二次取出的零件是一等品,12,B B 分别表示取出第一、第二箱中的零件,则 (1)由全概率公式得1111212()()(|)()(|)0.50.20.50.60.4;P A P B P A B P B P A B =+=⨯+⨯=21121122122111()()(|)()(|)(2)(|)()()11091817()2504930290.4856.0.4P A A P B P A A B P B P A A B P A A P A P A +==⨯⨯+⨯==6.证明:{()}()()()()P A B C P AC BC P AC P BC P ABC ⋃=⋃=+- =()()()()()()()P A P C P B P C P A P B P C +- =(()()())()()()P A P B P AB P C P A B P C =+-=⋃ 故 A B ⋃与C 独立.第二章随机变量及其分布复习题一 选择题1. B2. B3. C4. D5. C 二 填空题 1.22(),0,1,2,;!kP X k e k k -=== 0.592.27193. ,1,21π==B A2111,,21x R xπ∈+4.,65,61 分布律:X -1 1 2P 616221三 解答题1. 解: X 的分布律为 X 1 2 3 4 P643764196476412. 解: X 的分布律为 1(),1,2,3,.k P X k q p k -=== 3. 解:设X 表示两次调整之间生产的合格品数,则X 的分布律为1()(1),0,1,2,.k P X k p p k -==-=4. 解: X 的概率分布为55()0.250.75,0,1,2,3,4,5.k k k P X k C k -=== 设A 表示“5道选择题至少答对两题”,则()1(0)(1)0.3672.P A P X P X =-=-==5. 解:1)一天中必须有油船转走意味着“X .>3”242(3)0.143;!kk P X ek ∞-=>==∑(查泊松分布表)2) 设设备增加到一天能为y 艘油船服务,才能使到达港口的90%的油船可以得到服务.则21212()0.910.9!20.1,15 4.!kk y kk y P X y ek ey y k ∞-=+∞-=+≤≥⇒-≥⇒≤+≥⇒≥∑∑反查泊松分布表得6. 解:21)()()31()31(3131=+=+⇒>=<⎰⎰∞dx b ax dx b ax X P X P47,23=-=⇒b a7.170170170:1)()0.01()()0.99666170(2.33)0.99 2.33184.6X h h P X h P h h ---≥<⇒<=Φ≥-Φ≈⇒≥⇒≥解查表得2)(182)P X ≥=1821701()1(2)0.02,6--Φ=-Φ≈设A 表示“100个男子中与车门碰头人数不多于2个”676.002.098.002.098.098.0)(2982100991100100=++=C C A P .8. 解:(1) X 的分布函数为 1,02()11,02xx e x F x e x -⎧-∞<≤⎪⎪=⎨⎪-<<+∞⎪⎩011(2)(1)(0)2211(1)(0),22xxP Y P X e dx P Y P X e dx ∞--∞==>===-=≤==⎰⎰故Y 的概率分布律为 Y -1 1P 1/2 1/2Y 的分布函数为 0,11(),1121,1Y y F y y y <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩ 第三章 多维随机变量及其分布复习题1. 解:()1由X 和Y 相互独立可知()()(),P X i Y j P X i P Y j =====,i =1,2,3; 0j =,1,2.则X 和Y 的联合概率分布为YX0 1 212311218 124 16 14 11211218124()2()()313P X Y P X Y +≠=-+=()()()()11,22,13,0P X Y P X Y P X Y =-==+==+==111951124412248⎛⎫=-++=-=⎪⎝⎭. 2. 解:由二维联合概率分布律及其性质可知:0.40.11a b +++=,即0.5a b += ()*()00.4P X a ==+, ()1P Y =0.1a =+()()10,1P X Y P X Y +====()1,00.5P X Y a b +===+=则由随机事件{0}X =与{1}X Y +=相互独立可得: ()()()01P X X Y =⋂+=()1P Y ==0.1a =+()()01P X P X Y ==+=()()()0.40.50.4a a b a =++=+,即 0.10.5(0.4a a +=+可得:0.2a =,再有()*式得:0.3b =.3. 解:由题意可知(),X Y 的可能取值为()0,0,()0,1,()1,0,()1,1, 则(),X Y 的联合分布律为()0,0P X Y ==()()P A B P A B ==⋃()1P A B =-⋃()()()()1P A P B P AB =-+-1111211461233⎛⎫=-+-=-= ⎪⎝⎭()0,1P X Y ==()()()P AB P B P AB ==-11161212=-=()()()()1,0P X Y P A B P A P AB ====- ()()11,112P X Y P AB ====即YX0 1123 112161124. 解:由题意知Y 的密度函数为(),00,y Y e y f y -⎧>=⎨⎩其他,()12,X X 的可能取值为()0,0,()0,1,()1,0,()1,1,则()12,X X 的联合分布律为()()120,01,2P X X P Y Y ===≤≤()1P Y =≤111y e dy e --==-⎰()()()120,11,20P X X P Y Y P φ===≤>==()()()2121211,01,212y P X X P Y Y P Y e dy ee---===>≤=<≤==-⎰()()()21221,11,22yP X X P Y Y P Y e dy e +∞--===>>=>==⎰,即:2X1X0 1111e -- 012ee--- 2e-5. 解:()1由题意记区域G 的面积为()A G ,则()()1216A G x x dx =-=⎰,所以()()()6,,,0,,x y G f x y x y G∈⎧⎪=⎨∉⎪⎩()2 关于X的边缘密度函数为()()22666,01,0,x x X dy x x x f x f x y dy +∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其他关于Y 的边缘密度函数为()()()66,01,0,yy Y dx y y y f y f x y dx +∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其他()3 不独立. 因为当01,01x y ≤≤≤≤时()()(),X Y fx y f x f y ≠.6. 解:()1关于X 的边缘密度函数为()()2012,01,0,x X dy x x f x f x y dy +∞-∞⎧=<<⎪==⎨⎪⎩⎰⎰其他关于Y 的边缘密度函数为()()1211,022,0,y Y y dx y f y f x y dx +∞-∞⎧=-<<⎪==⎨⎪⎩⎰⎰其他 ()2()112211,,22P X Y fx y dxdy -∞-∞⎛⎫<<=⎪⎝⎭⎰⎰111222002131(1).216y dy dx y dy ==-=⎰⎰⎰第四章 随机变量的数字特征复习题一 选择题B D B D C二 填空题1.18.4 2.1 3.0.9 4.6三 计算题 1.解:⎰+∞∞-dx x f )(=⎰20axdx +42()2621bx c dx a b c +=++=⎰242433222856()()()()6233233a b c E X xf x dx xaxdx x bx c dx xx x a b c +∞-∞==++=++=++=⎰⎰⎰P( 1<x<3)=⎰21axdx +⎰+32)(dx c bx =23a+25b+c=43∴11,,144a b c ==-=2解: E(Z)=21E(X)+31E(Y)=67, Cov(X,Y)= X YρDX DY =1,D(Z)=41D(X)+91D(Y)+31cov(X,Y)=3637Cov(X,Z)= cov(X,2X+3Y )= 21D(X)+31cov(X,Y)=65第七章 参数估计复习题1.解 似然函数为 12222221111()(,)2(2)nii i x x n ni ni i L f x e eσσσσπσπσ=--==∑===∏∏,取对数 221122ln ()ln(2)ln 2ln 22nniii i xxL n n n σπσπσσσ===--=---∑∑令2122ln ()022nii xd n L d σσσσ==-+=∑,解得2σ的极大似然估计值为221ˆxσ=.2.解 记12m in(,,...,)n n X X X X *=,此时θ的似然函数等价于1,()0,ni i x n n n e x L x θθθθ=-+**⎧∑⎪≤=⎨⎪>⎩所以只有当n x θ*≤时,才有可能使()L θ取到最大值.又()L θ对n x θ*≤的θ是增函数,故当n x θ*=取到其最大值.即()m ax ()n L x L θθ*>=所以θ的极大似然估计值为 12ˆmin(,,...,)n n x x x x θ*==.3.解 由于[,1]X U θθ+ ,故总体的期望为212E X θ+=,从而得到方程ˆ21,2X θ+= 解得 1ˆ2X θ=-.所以θ的矩估计量为 1ˆ2X θ=-.又111ˆ()()()222E E X E X E X θθ=-=-=-= ,故1ˆ2X θ=-是θ的无偏估计量.4.证明2221122111ˆ[()]()1(2)nniii i ni i i E E XE X nnEX EX nσμμμμ====-=-=-+∑∑∑2222211(2)ni nμσμμσ==+-+=∑故2ˆσ是2σ的无偏估计量。

概率第四章考研真题及解答

概率第四章考研真题及解答

第4章 统计估值1. (1994年、数学三、选择)设),,,(21n X X X 是来自总体),(2N 的简单随机样本,X 是样本均值,记22121)(11 i i X X n S ,22122)(1 i i X X n S ,22123)(11 i i X n S ,22124)(1 i i X n S 则服从自由度1 n 的t 分布的随机变量是 T ( )。

A .11n S X B .12n S X C .nS X 3D .nS X 4[答案:选B ]当2212)(11 i i X X n S 时,服从自由度1 n 的t 分布的随机变量应为T nSX A 、由222121)(11S X X n S i i ,111n SX n S X T 而不是nSX TB 、由212221221)(111)(1S nn X X n n n X X n S n i ii i nSX n SX n S X T nn1112。

2. (1997年、数学三、填空)设随机变量Y X ,相互独立,均服从)3,0(2N 分布且91,,X X 与91,,Y Y 分别是来自总体Y X ,的简单随机样本,则统计量292191Y Y X X U服从参数为( )的( )分布。

[答案:参数为(9)的(t )分布]由Y X ,相互独立,均服从)3,0(2N 分布,又91,,X X 与91,,Y Y 分别来自总体Y X ,,可知91,,X X 与91,,Y Y 之间均相互独立,均服从分布)3,0(2N 因而)39,0(~291N X i i ,)1,0(~9191N X X i i ,)1,0(~3N Y i ,)9(~32912 i i Y ,且 9191i i X X 与 9123i i Y 相互独立,因而292191912919123919191Y Y X X Y XXi ii ii Y i ii服从参数为9的t 分布。

3. (1998年、数学三、填空)设),,,(4321X X X X 是取自正态总体)2,0(~2N X 的简单随机样本且 Y 243221)43()2(X X b X X a ,则 a ( ), b ( )时,统计量Y 服从2分布,其自由度为( )。

概率论与数理统计第三、四章答案

概率论与数理统计第三、四章答案

概率论与数理统计第三、四章答案第三章 习题参考答案1.计算习题二第2题中随机变量的期望值。

解:由习题二第2题计算结果112{0}={1}=33pp p p ξξ====,得12201333E ξ=⨯+⨯=一般对0-1分布的随机变量ξ有{1}E p p ξξ===2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。

解:方法一:先按定义计算长的数学期望290.3300.5310.229.9E ξ=⨯+⨯+⨯=和宽的数学期望190.3200.4210.320E η=⨯+⨯+⨯=再利用数学期望的性质计算周长的数学期望(22)229.922099.8E E ζξη=+=⨯+⨯=方法二:利用习题二地30题的计算结果(见下表),按定义计算周长的数学期望ξ96 98 100 102 104p0.090.270.350.230.06960.09980.271000.351020.231040.0698.8E ξ=⨯+⨯+⨯+⨯+⨯=3.对习题二第31题,(1)计算圆半径的期望值;(2)(2)E R π是否等于2ER π?(3)能否用2()ER π来计算远面积的期望值,如果不能22||201()2x x D E x e dx x e dx ξξ+∞+∞---∞===⎰⎰20|22x x x e xe dx +∞-+∞-=-+=⎰6题目略解 (1)15辆车的里程均值为1274(9050150)91.33153++⋅⋅⋅+=≈ (2) 记ξ为从188辆汽车中任取一辆记录的里程数,则ξ的分布表如下表所示(a=188)ξ10 30 50 70 90 110 130 150 170p 5/a11/a 16/a 25/a 34/a 46/a 33/a 16/a 2/a故51124520103017096.1718818818847E ξ=⨯+⨯+⋅⋅⋅+⨯=≈ 7题目略解 记ξ为种子甲的每公顷产量,η为种子乙的每公顷产量,则45000.1248000.3851000.454000.14944E ξ=⨯+⨯+⨯+⨯= 45000.2348000.2451000.354000.234959E η=⨯+⨯+⨯+⨯=8.一个螺丝钉的重量是随机变量,期望值10g,标准差为1g,100个一盒的同型号螺丝钉重量的期望值和标准差个为多少(假设每个螺丝钉的重量都部首其他螺丝钉重量的影响)?解 设i ξ为一盒中第i 个螺丝钉的重量(1,2,,100)i =⋅⋅⋅,则 题设条件为101,i i E g D g ξξ==且12100,,,ξξξ⋅⋅⋅相互独立。

概率论与数理统计复习题

概率论与数理统计复习题

概率论与数理统计复习题(一)判断题第一章 随机事件与概率 1.写出下列随机试验的样本空间(1) 一枚硬币掷三次,观察硬币字面朝上的次数,样本空间为S={}0,123,,. √ (2)袋中有编号为1、2、3的3个球,从中随机取2个,样本空间为{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}S = . ╳2. 袋中有编号为1、2、3、4、5的5个球,从中随机取一个.设A =(取到1、2、3号球),B =(取到奇数号球),C =(取到3、4、5号球),D =(取到4、5号球),E =(取到2号球),则(1)A B +=(取到1、1、2、3、3、5号球);╳ (2)\A B E ≠(取到2号球); ╳ (3)CD = (取到1、2、3、4、5号球); ╳ (4)\C D = (取到3号球); √ (5)A D +=(取到1、2、3、4、5号球); √ (6)AD =(取到1、2、3、4、5号球). ╳ 3. 甲、乙二人打靶,每人射击一次,设A ,B 分别为甲、乙命中目标,用A 、B 事件的关系式表示下列事件,则(1)(甲没命中目标)AB = ; ╳ (2)(甲没命中目标)A = ; √ (3)(甲、乙均命中目标)A B =+; ╳ (4)(甲、乙均命中目标)AB = . √ 4.一批产品中有3件次品,从这批产品中任取5件检查,设i A =(5件中恰有i 件次品),i=0,1,2,3 叙述下列事件,则(1)0A =(5件中恰有0件次品)=(5件中没有次品);√(2)0A =(5件中恰有1件次品); ╳(3)0A =(5件中至少有1件次品); √ (4)3A =(5件中最多有2件次品); ╳ (5)23A A + =(5件中至少有3件次品); ╳ (6)23A A + =(5件中至少有2件次品). √ 5.指出下列命题中哪些成立,哪些不成立(1)B A A B A +≠+;╳(2)A B AB AB AB +=++ ;√(3)AB A B A -=-;√(4)A B AB -≠;╳ (5)ABC A B C =;╳ (6)ABC A B C =++ . √6. 袋中有编号为1、2、3、4、5的5个球,从中随机取一个.设A =(取到1、2、3号球),B =(取到奇数号球),C =(取到3、4、5号球),D =(取到4、5号球),E =(取到2号球),则(1)3()5P A =; √ (2)4()()()5P B E P B P E +=+= ; √ (3)4()()()5P A E P A P E +=+= ;╳ (4)3()()5P A E P A +== ; √(5) ()()()P A B P A P B +=+; ╳ (6)4()5P A B += . √7.(1)设事件A 、B 互斥,2.0)(=A P , )(B P = ,则 5.0)(=+B A P . √ (2) 设事件A 、B 互斥,2.0)(=A P ,5.0)(=+B A P 则)(B P = . ╳(3) 设()0.5P A =,()0.4P B =,()0.7P A B +=, 则()0.2P AB = . √ 8. 设事件,()0.5,A B P A ⊃=()0.2P B = ,则(1)(\)()()0.3P A B P A P B =-= ;√ (2)()()()0.7P A B P A P B +=+= ; ╳ (3)()()0.5P A B P A +== ;√ (4)()0.5P AB = ; ╳ (5)()0.2P AB =; √(6)(\)()()0.3P B A P B P A =-= . √9. 箱中有2件次品与3件正品,一次取出两个,则 (1)恰取出2件次品的概率为251C ;√ (2)恰取出2件次品的概率为251A ; ╳ (3)恰取出1件次品1件正品的概率为112325C C C ; √ (4)恰取出1件次品1件正品的概率为112325C C A . ╳10.上中下三本一套的书随机放在书架上,则 (1)恰好按上中下顺序放好的概率为3311321A =⨯⨯;√ (2)恰好按上中下顺序放好的概率为13; ╳ (3)上下两本放在一起的概率为3322A ⨯ ; √(4)上下两本放在一起的概率为332A . ╳ 11. 若111(),(),()234P A P B P AB === 则 (1) 1()2P B A = √ (2) 2()3P B A = ╳(3) 3()4P A B = √ (4) ()()P A B P A = ╳12. 已知10只电子元件中有2只是次品,在其中取2次,每次任取一只,作不放回抽样,则(1)(P 第一次取到正品8)10= √ (2)(P 第一次取到次品12110)C C = ╳(3)(P 第一次取到正品,第二次取到次品1182210)C C A = ; √ (4)(P 第一次取到正品,第二次取到次品1182210)C C C = ; ╳ (5)(P 第一次取到正品,第二次取到次品82)109=⨯ ; √ (6)(P 一次取到正品,一次取到次品82)109=⨯. ╳13.设甲袋中有6只红球,4只白球,乙袋中有7只红球,3只白球,现在从甲袋中随机取一球,放入乙袋,再从乙袋中随机取一球,则(1)两次都取到红球的概率为⨯681011;√ (2)两次都取到红球的概率为⨯671010; ╳ (3)已知从甲袋取到红球,从乙袋中取到红球的概率为710 ; ╳(4)已知从甲袋取到白球,从乙袋中取到红球的概率为⨯371011. ╳14.某人打靶,命中率为,则下列事件的概率为(1)第一枪没打中的概率为;√ (2)第二枪没打中的概率为; √ (3)第二枪没打中的概率为 ;╳(4)第一枪与第二枪全打中的概率为0.20.20.4+= . ╳ (5)第一枪与第二枪全打中的概率为0.20.20.04⨯= √ (6)第三枪第一次打中的概率为20.80.2⨯. √15 .几点概率思想(1)概率是刻画随机事件发生可能性大小的指标;√ (2)随机现象是没有规律的现象; ╳(3)随机现象的确定性指的是频率稳定性,也称统计规律性;√(4)频率稳定性指的是随着试验次数的增多,事件发生的频率接近一个常数;√ (5)实际推断原理为:一次试验小概率事件一般不会发生;√ (6)实际推断原理为:一次试验小概率事件一定不会发生. ╳第二章 随机变量及其分布16.随机变量X 的分布律为1231133p ⎛⎫⎪ ⎪ ⎪⎝⎭,则(1)13p = ;√ (2)23p = ╳17.在6只同类产品中有2只次品,4只正品.从中每次取一只,共取5次,每次取出产品立即放回,再取下一只,设X 为5次中取出的次品数,则(1)第3次取到次品的概率为0. ╳ (2)第3次取到次品的概率为13. √ (3)5次中恰取到2只次品的概率{}2522512233P X C -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭√(4)5次中恰取到2只次品的概率{}25212233P X -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭╳(5)最少取到1只次品的概率{}0505121133P X C ⎛⎫⎛⎫≥=- ⎪ ⎪⎝⎭⎝⎭√(6)最少取到1只次品的概率{}141512133P X C ⎛⎫⎛⎫≥= ⎪ ⎪⎝⎭⎝⎭╳ 18.某交通路口一个月内发生交通事故的次数X 服从参数为3的泊松分布(3)P ,则(1)该交通路口一个月内发生3次交通事故的概率{}31P X ==. ╳(2)该交通路口一个月内发生2次交通事故的概率{}23322!e P X -==. √(3)该交通路口一个月内最多发生1次交通事故的概率{}13311!e P X -==. ╳(4)该交通路口一个月内最多发生1次交通事故的概率为{}{}031333010!1!e e P X P X --=+==+. √19. 袋中有2个红球3个白球,从中随机取一个球,当取到红球令1X =,取到白球令0X =,则 (1)称X 为服从01-分布. √ (2)X 为连续型随机变量. ╳(3)X 的分布律为103255⎛⎫ ⎪ ⎪ ⎪⎝⎭. ╳ (4)X 的分布律为102355⎛⎫⎪⎪ ⎪⎝⎭. √ 20. 设随机变量X 的分布函数为⎪⎩⎪⎨⎧=1310)(x F 1100≥<≤<x x x ,则 (1)X 的分布律为⎪⎪⎭⎫⎝⎛323110. √ (2)X 的分布律为012133⎛⎫⎪ ⎪⎝⎭ ╳ (3){0.5}0P X ≤= ╳ (4)1{0.5}3P X ≤=√ (5){0.5}0P X ==√ (6)1{0.5}3P X == ╳(7)2{0.5 1.5}3P X <≤= √ (8){0.5 1.5}1P X <≤= ╳21.设随机变量X 的概率密度01()0Ax x f x ≤≤⎧=⎨⎩其它 , 则(1)常数A =2 . √ (2)常数A =1 . ╳ (3)由积分21Ax dx =⎰可以计算常数A. ╳ (4)由积分1Ax dx +∞-∞=⎰可以计算常数A. ╳(5) 由积分11Axdx =⎰可以计算常数A. √22.设随机变量X 的概率密度⎩⎨⎧=02)(x x f 其它10≤≤x , 则 (1)1{01}2P X xdx <<=⎰√ (2) 10.5{0.51}2P X xdx <<=⎰ √(3)2{02}2P X xdx <<=⎰╳ (4) 0.5{0.5}2P X xdx +∞>=⎰ ╳23.设随机变量X 的分布函数200()0111x F x xx x <⎧⎪=≤≤⎨⎪>⎩,则X 的概率密度 (1)201()0xx f x <<⎧=⎨⎩其它 √ (2)201()0x x f x ⎧<<=⎨⎩其它╳(3)()2f x x x R =∈ ╳ (4)00()20111x f x xx x <⎧⎪=≤≤⎨⎪>⎩╳ 24.公共汽车站每隔10分钟有一辆汽车通过,乘客随机到车站等车,则 (1)乘客候车时间不超过5分钟的概率为12;√ (2)乘客候车时间超过5分钟的概率为12√ (3)乘客候车时间不超过3分钟的概率为310;√(4)乘客候车时间超过3分钟的概率为310. ╳25. 随机变量~(0,1)X N 则 (1){}102P X ≥=√ (2) {}102P X ≤= √ (3) {}{}00P X P X ≥=≤ √ (4){}{}00P X P X ≥≠≤ ╳ 26. 随机变量)2,3(~2N X 则(1){}52≤<X P =)2/1()1(Φ+Φ ╳ (2) {}104≤<-X P =2)5.3(Φ–1 √ 27. 设01~0.40.6X ⎛⎫⎪⎝⎭,则(1)2Y X =的分布律为020.40.6⎛⎫ ⎪⎝⎭ √ (2)21Y X =+的分布律为130.40.6⎛⎫ ⎪⎝⎭√ 28.设随机变量X 的概率密度为⎩⎨⎧=02)(xx f 其它10<<x ,则X e Y =的概率密度为(1)⎩⎨⎧<<=其它01ln )(e y y y f Y ╳ (2)2ln 1()0Y yy e yf y ⎧<<⎪=⎨⎪⎩其它√第三章多维随机变量及其分布29.设二维随机变量(X ,Y )的分布函数为F x y (,),则(1){}2,1≤≤Y X P = F (1,2) √ (2){}1123131213P X Y F F F -<≤<≤=---,(,)(,)(,) ╳ 30. 设二维随机变量(X ,Y )的分布律为(1)Y 的边缘分布律为012020404...⎛⎫⎪⎝⎭╳ (2)X ,Y 不独立 ╳(3)(X ,Y )的分布函数在116(,.)点的值1610(.,)F = ╳(4)20016{,}.P X Y === √ (5)概率1012{}.P X Y +== ╳(6)Z X Y =-的分布律为101201203204016....-⎛⎫⎪⎝⎭√(7)072().E XY = √ (8)相关系数0XY ρ≠ ╳ 31. 设二维随机变量(X ,Y )的分布律为则 (1){}Y X M ,max =的分布律为⎪⎪⎭⎫⎝⎛167163166210 √(2){}Y X N ,min =的分布律为⎪⎪⎭⎫⎝⎛--167163166012√第四章 随机变量的数字特征32.设随机变量X 的分布律为⎪⎪⎭⎫ ⎝⎛-41212116121610311 则(1))(X E =31 √(2))(2X E = 4/55/]21)2/1(0)1[(22222=++++- ╳ (3)X 的方差D (X )=7297 √33.设随机变量X 的概率密度⎪⎩⎪⎨⎧-=02)(x xx f 其它2110≤<≤≤x x则(1) )(X E =1 √ (2))(X E =⎰⎰-+211)2(dx x dx x ╳(3))()(22X E X E -=61 √ (4)X 的方差61)(≠X D ╳34.一批产品中有一、二、三等品,等外品及废品五种,分别占产品总数的70%,10%,10%,6%,4%。

概率论与数理统计习题及答案----第3章习题详解

概率论与数理统计习题及答案----第3章习题详解

概率论与数理统计习题及答案----第3章习题详解习题三1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律.【解】X和Y的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和Y的联合分布律如表:f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}.【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12(2) 由定义,有(,)(,)d d yx F x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3){01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e)0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰ 5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ; (2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}.【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3)11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y<<=⎰⎰⎰⎰如图 1.542127d (6)d .832x x y y =--=⎰⎰(4)24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y+≤+≤=⎰⎰⎰⎰如图b 240212d (6)d .83xx x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他所以(,),()()XY f x y X Y f x f y g 独立5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他.(2)5()(,)d d 25e d d y y xDP Y X f x y x y x y-≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xyx x y x-==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e,0,0,(,)(,)0,x y x yF x yf x yx y-+⎧>>∂==⎨∂∂⎩其他.8.设二维随机变量(X,Y)的概率密度为f(x,y)= 4.8(2),01,0,0,.y x x y x-≤≤≤≤⎧⎨⎩其他求边缘概率密度.【解】()(,)dXf x f x y y+∞-∞=⎰x24.8(2)d 2.4(2),01,=0,.0,y x y x x x⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他()(,)dYf y f x y x+∞-∞=⎰12y4.8(2)d 2.4(34),01,=0,.0,y x x y y y y⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图题9图9.设二维随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<-.,0,,其他e yxy求边缘概率密度.【解】()(,)dXf x f x y y+∞-∞=⎰e d e,0,=0,.0,y xxy x+∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他()(,)dYf y f x y x+∞-∞=⎰e d e,0,=0,.0,y yxx y y--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧≤≤.,0,1,22其他yxycx(1)试确定常数c;(2)求边缘概率密度.【解】(1)(,)d d(,)d dDf x y x y f x y x y+∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c==⎰⎰得214c=.(2) ()(,)dXf x f x y y+∞-∞=⎰212422121(1),11,d840,0,.xx x xx y y⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他()(,)dYf y f x y x+∞-∞=⎰5227d,01,420,0,.yyx y x y y-⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他11.设随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<<.,0,10,,1其他xxy求条件概率密度f Y|X(y|x),f X|Y(x|y).题11图【解】()(,)dXf x f x y y+∞-∞=⎰1d2,01,0,.xxy x x-⎧=<<⎪=⎨⎪⎩⎰其他111d1,10,()(,)d1d1,01,0,.yY yx y yf y f x y x x y y-+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y XXy xf x yf y x xf x⎧<<⎪==⎨⎪⎩其他|1,1,1(,)1(|),1,()10,.X YYy xyf x yf x y y xf y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X,最大的号码为Y.(1)求X与Y的联合概率分布;(2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表 345 {}i P X x =1 3511C 10=3522C 10= 3533C 10= 610 2 0 3511C 10=3522C 10= 310 30 02511C 10=110{}i P Y y =110310610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠===g 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03 (1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立? 【解】(1)X 和Y 的边缘分布如下表2 5 8P {Y=y i }YX XYX Y0.4 0.15 0.30 0.350.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38(2) 因{2}{0.4}0.20.8P X P Y ===⨯g 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率. 【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他;21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩g 独立其他题14图(2) 方程220aXa Y ++=有实根的条件是 2(2)40X Y ∆=-≥故X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 212[(1)(0)]0.1445.x y x yπ-==Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}ZXF z P Z z P z Y =≤=≤(1) 当z ≤0时,()0ZF z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zxy zF z x y y x x y x y +∞≥==⎰⎰⎰⎰33610231010=d 2z zy yzy +∞⎛⎫-=⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y xx y x y +∞≥==⎰⎰⎰⎰336231010101=d 12y yzy z +∞⎛⎫-=- ⎪⎝⎭⎰即11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<g g g44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ==17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,…. 证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数, 所以{}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U于是{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑g()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .0{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki k i n i k i n k ii kk n ki k n k P X i P Y k i n n p q p q i k i n n p q i k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑g方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn,Y =μ1′+μ2′+…+μn ′,X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.19.设随机变量(X ,Y )的分布律为0 1 2 3 4 50 1 2 30 0.01 0.03 0.05 0.07 0.090.01 0.02 0.04 0.05 0.06 0.080.01 0.03 0.05 0.05 0.05 0.060.01 0.02 0.04 0.06 0.06 0.05 (1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律.【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑X Y{3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑(2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i ====<+≤= 1{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑0,1,2,3,4,5i =所以V 的分布律为V =max(X ,Y ) 0 12345P 0 0.04 0.16 0.28 0.24 0.28(3){}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k i k i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3,i =于是 U =min(X ,Y ) 0 1 2 3 P0.28 0.30 0.25 0.17 (4)类似上述过程,有W =X +Y 0 1 2345678P0 0.00.00.10.10.20.10.10.02 63 94 9 25 20.雷达的圆形屏幕半径为R,设目标出现点(X,Y)在屏幕上服从均匀分布.(1)求P{Y>0|Y>X};(2)设M=max{X,Y},求P{M>0}.题20图【解】因(X,Y)的联合概率密度为22221,,(,)π0,.x y Rf x y R⎧+≤⎪=⎨⎪⎩其他(1){0,}{0|}{}P Y Y XP Y Y XP Y X>>>>=>(,)d(,)dyy xy xf x yf x yσσ>>>=⎰⎰⎰⎰π2π/405π42π/401d dπ1d dπRRr rRr rRθθ=⎰⎰⎰⎰3/83;1/24==(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y>=>=-≤131{0,0}1(,)d1.44xyP X Y f x yσ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D由曲线y=1/x及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,求(X,Y)关于X 的边缘概率密度在x=2处的值为多少?题21图【解】区域D的面积为22e e0111d ln 2.S x xx===⎰(X,Y)的联合密度函数为211,1e,0,(,)20,.x yf x y x⎧≤≤<≤⎪=⎨⎪⎩其他(X,Y)关于X的边缘密度函数为1/211d,1e,()220,.xXy xf x x⎧=≤≤⎪=⎨⎪⎩⎰其他所以1(2).4Xf=22.设随机变量X和Y相互独立,下表列出了二维随机变量(X,Y)联合分布律及关于X 和Y的边缘分布律中的部分数值.试将其余数值填入表中的空白处.y 1 y 2 y 3 P {X =x i }=p i x 1 x 21/8 1/8P {Y =y j }=p j 1/6 1【解】因21{}{,}jjiji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+==从而11111{,}.6824P X x Y y ===-= 而X 与Y 独立,故{}{}{,}ijiiP X x P Y y P X x Y y =====g ,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x === 又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y === 同理21{},2P Y y == 223{,}8P X x Y y ===YX又31{}1jj P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故1y 2y 3y {}i iP X x P ==1x 124 18 112 14 2x18 38 14 34{}j jP Y y p ==161213123.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.YX【解】(1){|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=L .(2){,}{}{|}P X n Y m P X n P Y m X n ======ge C (1),,0,1,2,.!mmn mnnp p n m n n n λλ--=-≤≤=g L24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩推得1{max{,}1}9P X Y ≤=.26. 设二维随机变量(X ,Y )的概率分布为-1 01-1 0 1a 00.20.1 b0.20 0.1c其中a ,b ,c 为常数,且X 的数学期望E (X )= -0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求: (1) a ,b ,c 的值;XY(2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4.由()0.2E X =-,可得0.1a c -+=-.再由{0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===. (2) Z 的可能取值为-2,-1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为Z -2 -1 01 2P 0.2 0.1 0.30.3 0.1(3)====++=++=. {}{0}0.10.20.10.10.20.4 P X Z P Y b。

概率论与数理统计练习册复习题和自测题解答

概率论与数理统计练习册复习题和自测题解答
7、设两个相互独立的事件A和B都不发生的概率为1/9,A发生B不发生 的概率与B发生A不发生的概率相等,求P(A)。
解:由 得到
8、一射手对同一目标独立的进行4次射击,若至少命中一次的概率为 80/81,求该射手的命中率。 解:设命中率为p,则有 9、设有来自三个地区的各10名,15名,和25名考生的报名表,其中女 生的报名表分别为3份,7份和5份,随机地取一个地区的报名表,从中 先后抽取两份。 (1)求先抽到的一份是女生表的概率; (2)已知后抽到的一份是男生表,求先抽到的一份是女生表的概率。 解:-取第i个地区;(i=1,2);B-第i份取到女生的报名表(i= 1,2,3)
则利润 要使得达到最大值,即当时
第四章 自测题
6、某流水生产线上每个产品不合格的概率p,各产品合格与否相互独 立,当出现一个不合格产品时即停机检修,设开机后第一次停机时已生 产了的产品个数为X,求X的数学期望和方差。 解:
7、设随机变量X的概率密度函数为 (1)求,; (2)求与的协方差,并问与是否相关? (3)问与是否独立?为什么? 解:1)
9、某型号的高射炮,每门命中敌机的概率为0.4,现若干门炮同时射 击,欲以99%的把握击中敌机,问至少要配置几门高射炮? 解:由解得
10、一居民区间有6部户用电话,平均每小时每用户用6分钟,而且各用 户是否用电话是相互独立的。求(1)刚好有2户用电话的概率;(2) 至少有2户用电话的概率;(3)最多有2户用电话的概率。 解:A-用户使用电话
1) 2) 3)
第一章 自测题
1、 设在一次实验中,事件A发生的概率为p,现进行n次独立重复试 验,则A至少发生一次的概率是多少?事件A至多发生一次的概率 是多少?
解: 2、三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑 球3个白球,第三个箱子中有3个黑球5个白球。现随机地取一箱,再从 这个箱子中取出一球,求这个球为白球的概率。若已知取出的一球为白 球,此球属于第二个箱子的概率是多少?

概率论与数理统计第四章测试题

概率论与数理统计第四章测试题

第4章随机变量得数字特征一、选择题1.设两个相互独立得随机变量X与Y得方差分别为4与2,则随机变量3X-2Y得方差就是(A) 8 (B) 16 (C) 28 (D) 442.若随机变量与得协方差,则以下结论正确得就是( )(A) 与相互独立(B) D(X+Y)=DX+DY(C) D(X-Y)=DX-DY (D) D(XY)=DXDY3.设随机变量与相互独立,且,则( )(A) (B)(C) (D)4.设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X-Y不相关得充要条件为(A) EX=EY (B) E(X2)- (EX)2= E(Y2)- (EY)2(C) E(X2)= E(Y2) (D) E(X2)+(EX)2= E(Y2)+ (EY)25.设、就是两个相互独立得随机变量且都服从于,则得数学期望( ) (A) (B) 0 (C) (D)6.设、就是相互独立且在上服从于均匀分布得随机变量,则( )(A) (B) (C) (D)7.设随机变量与得方差存在且不等于0,则D(X+Y)=DX+DY就是X与Y( )(A) 不相关得充分条件,但不就是必要条件(B) 独立得充分条件,但不就是必要条件(C) 不相关得充分必要条件(D) 独立得充分必要条件8.若离散型随机变量得分布列为,则( )(A) 2 (B) 0 (C) ln2 (D) 不存在9.将一枚硬币重复掷n次,以X与Y分别表示正面向上与反面向上得次数,则X与Y得相关系数等于(A)-1 (B)0 (C) (D)110.设随机变量X与Y独立同分布,具有方差>0,则随机变量U=X+Y与V=X-Y(A)独立(B) 不独立(C) 相关(D) 不相关11.随机变量X得方差存在,且E(X)=μ,则对于任意常数C,必有。

(A)E(X-C)2=E(X2)-C2(B)E(X-C)2=E(X-μ)2(C)E(X-C)2< E(X-μ)2(D)E(X-C)2≥ E(X-μ)212.设X~U(a,b), E(X)=3, D(X)=, 则P(1<X<3) =( )(A)0 (B) (C) (D)二、填空题1.设表示10次独立重复射击命中目标得次数,每次命中目标得概率为0、4,则2.设一次试验成功得概率为,进行了100次独立重复试验,当时,成功得次数得标准差得值最大,其最大值为3.设随机变量X在区间[-1,2]上服从均匀分布,随机变量,则得方差DY=4.,,,则,5.设随机变量服从于参数为得泊松分布,且已知,则6.设(X,Y)得概率分布为:则=。

《概率论与数理统计》分章复习题

《概率论与数理统计》分章复习题

第一章 随机事件与概率一、 选择题1、以A 表示甲种产品畅销,乙种产品滞销,则A 为( ).(A) 甲种产品滞销,乙种产品畅销 (B) 甲、乙产品均畅销(C) 甲种产品滞销 (D) 甲产品滞销或乙产品畅销2、设A 、B 、C 为三个事件,则A 、B 、C 中至少有一个发生的事件可以表示为( ).(A)ABC (B) A B C ⋂⋂ (C) A B C ⋃⋃ (D) ABC3、已知事件B A ,满足A B =Ω(其中Ω是样本空间),则下列式( )是错的. (A) B A = (B ) Φ=B A (C) B A ⊂ (D ) A B ⊂4、设A 、B 、C 为三个事件,则A 、B 、C 中至少有一个不发生的事件可以表示为( ).(A)ABC (B )ABC (C) A B C ⋃⋃ (D ) ABC5、假设事件,A B 满足(|)1P B A =,则( ).(A) A 是必然事件 (B) (|)0P B A = (C)A B ⊃ (D)A B ⊂6、设()0P AB =, 则有( ).(A) A 和B 不相容 (B) A 和B 独立 (C) P(A)=0或P(B)=0 (D) P(A-B)=P(A)7、设A 和B 是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是( ).(A )A 与B 不相容 (B )A 与B 相容(C )()()()P AB P A P B = (D )()()P A B P A -=8、设A B ⊂,则下面正确的等式是( ). (A) )(1)(A P AB P -= (B) )()()(A P B P A B P -=-(C) )()|(B P A B P = (D) )()|(A P B A P =9、事件,A B 为对立事件,则下列式子不成立的是( ).(A)()0P AB = (B )()0P AB = (C)()1P A B ⋃= (D ) ()1P A B ⋃=10、对于任意两个事件,A B ,下列式子成立的是( ).(A) ()()()P A B P A P B -=- (B ) ()()()()P A B P A P B P AB -=-+(C) ()()()P A B P A P AB -=- (D ) ()()()P A B P A P AB -=+11、设事件B A ,满足1)(=B A P , 则有( ).(A )A 是必然事件 (B )B 是必然事件 (C )A B φ⋂=(空集)(D ))()(B P A P ≥12、设,A B 为两随机事件,且B A ⊂,则下列式子正确的是( ).(A )()()P A B P A ⋃=; (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -13、设,A B 为任意两个事件,0)(,>⊂B P B A ,则下式成立的为( ).(A )B)|()(A P A P < (B )B)|()(A P A P ≤(C )B)|()(A P A P > (D )B)|()(A P A P ≥14、设A 和B 相互独立,()0.6P A =,()0.4P B =,则()P A B =( )(A )0.4 (B )0.6 (C )0.24 (D )0.515、设 (),(),(),P A c P B b P A B a ==⋃= 则 ()P AB 为 ( ).(A) a b - (B ) c b - (C) (1)a b - (D ) b a -16、设A ,B 互不相容,且()0,()0P A P B >>,则必有( ). (A) 0)(>A B P (B ))()(A P B A P = (C) )()()(B P A P AB P = (D ) 0)(=B A P17、设,A B 相互独立,且()0.82P A B ⋃=,()0.3P B =,则()P A =( )。

第三章试题答案概率论与数理统计

第三章试题答案概率论与数理统计

第三章历年考题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设二维随机变量(X ,Y )的分布律为, 则P {X +Y =0}=( ) A.0.2答案:CYX -1 0 1 0 1度为⎩⎨⎧<<-<<-=,,;y ,x ,c )y ,x (f 其他01111 则常数c=( )A.41B.21答案:A律为设p ij =P{X=i,Y=j}i,j=0,1,则下列各式中错误..的是( ) A .p 00<p 01 B .p 10<p 11 C .p 00<p 11D .p 10<p 01答案:DY X 0 1 0 1,律为 YX0 1 20 01 2 0则P{X=Y}=( ) A . B . C . D .答案:A5.设随机变量(X ,Y )的联合概率密度为f(x,y)=.;0y ,0x ,0,e Ae y 2x 其它>>⎪⎩⎪⎨⎧--则A=( )A.21B.1C.23答案:D6.设二维随机变量(X 、Y )的联合分布为( )则P{XY=0}=( ) A. 41B.125C.43答案:C7.已知X ,Y 的联合概率分布如题6表所示 X -10 2YX0 5 0 4161 231 41Y 0 0 1/6 5/12 1/3 1/12 0 0 1 1/3 0 0题6表F (x,y )为其联合分布函数,则F (0,31)=( )A .0B .121C .61D .41答案:D8.设二维随机变量(X ,Y )的联合概率密度为f(x,y)=⎪⎩⎪⎨⎧>>+-其它00,0)(y x e y x则P (X ≥Y )=( ) A .41 B .21C .32D .43 答案:B9.设随机变量X 与Y 独立同分布,它们取-1,1两个值的概率分别为41,43,则{}=-=1XY P ( )A .161B .163C .41D .83答案:D10.设三维随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F ( ) A .0B .)(x F XC .)(y F YD .1答案:B11.设二维随机变量(X,Y)的联合分布函数为F(x,y). 其联合概率分布为()Y0 1 2X-10 0 02 0则F(0,1)=A.0.2 答案:B12.设二维随机变量(X,Y)的联合概率密度为f(x,y)=⎩⎨⎧≤≤≤≤+.,0;1y 0,2x 0),y x (k 其它则k=( )A.41B.31C.21D.32答案:B13.设二维随机变量(X ,Y )的分布律为 Y X1 231 2101103102101102101则P{XY=2}=( )A .51B .103C .21D .53答案:C14.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧≤≤≤≤=,,0;10,10,4),(其他y x xy y x f 则当0≤y ≤1时,(X ,Y )关于Y 的边缘概率密度为f Y ( y )= ( )A .x 21B .2xC .y 21D .2y答案:D15.设随机变量X ,Y 相互独立,其联合分布为则有( )A .92,91==βαB .91,92==βαC .32,31==βαD .31,32==βα答案:B 因为91,92==βα31)91(91}1{}2{}1,2{3131********αβα+=======----=+Y P X P Y X P 解方程组即得15. .设二维随机变量(X ,Y )的联合概率密度为⎩⎨⎧>>=+-;,0,0,0,2),()2(其它y x e y x f y x 则P{X<Y}=( )A .41B .31C .32 D .43答案:B15. .设二维随机变量(X ,Y )的联合概率密度为f(x,y)=⎩⎨⎧>>+-其它0y ,0x e )y x (则P (X ≥Y )=( )A .41B .21C .32 D .43 答案:B二、填空题(本大题共15小题,每空2分,共30分)请在每小题的空格中填上正确答案。

数学与应用数学概率统计复习题(2011级)有答案.

数学与应用数学概率统计复习题(2011级)有答案.

第一章 复习题一 选择题1.设1(|)(|)4P A B P B A ==,2()3P A =,则( ) (A) A 与B 独立,且5()12P A B = (B) A 与B 独立,且()()P A P B =(C) A 与B 不独立,且7()12P A B = (D) A 与B 不独立,且(|)(|)P A B P A B =2.设,,A B C 是三个相互独立的随机事件,且0()()1P AC P C <<<,则在下列给定的四对事件中不相互独立的是( )(A) A B 与C (B) AC 与C (C) A B -与C (D) AB 与C3.设0()1P A <<,0()1P B <<,(|)(|)1P A B P A B +=,那么下列肯定正确的选项是( ) (A) A 与B 相互独立 (B) A 与B 相互对立 (C) A 与B 互不相容 (D) A 与B 互不对立4.对于事件A 和B ,满足(|)1P B A =的充分条件是( ) (A) A 是必然事件 (B) (|)0P B A = (C) A B ⊃ (D) A B ⊂5.设,,A B C 为随机事件,()0P ABC =,且01p <<,则一定有( ) (A)()()()()P ABC P A P B P C = (B)(()|)(|)(|)P A B C P A C P B C =+(C)()()()()P AB C P A P B P C =++ (D)(()|)(|)(|)P A B C P A C P B C =+6.设,,A B C 三个事件两两独立,则,,A B C 相互独立的充分必要条件是( )(A)A 与BC 独立 (B)AB 与A C 独立 (C)AB 与AC 独立 (D)A B 与A C 独立 7.对于任意二事件A 和B ,与A B B =不等价的是( ) (A)A B ⊂ (B)B A ⊂ (C)AB =∅ (D)AB =∅8.设当事件A 与B 同时发生时事件C 也发生,则下列肯定正确的选项是( )(A)()()P C P AB = (B)()()P C P A B = (C)()()()1P C P A P B ≤+- (D)()()()1P C P A P B ≥+- 9.设A 和B 是任意两个概率不为0的互不相容的事件,则下列结论中肯定正确的是( ) (A)A 与B 不相容 (B) A 与B 相容 (C)()()()P AB P A P B = (D)()()P A B P A -= 10.若二事A 和B 同时出现的概率()0P AB =,则下列肯定正确的选项是( )(A) A 和B 不相容 (B)AB 是不可能事件 (C) AB 未必是不可能事件 (D)()0P A =或()0P B = 11.设A 和B 为二随机事件,且B A ⊂,则下列肯定正确的选项是( )(A)()()P A B P A = (B)()()P AB P A = (C)(|)()P B A P B = (D)()()()P B A P B P A -=- 12.对于任意两个事件A 和B ,其对立的充要条件为( ) (A) A 和B 至少必有一个发生 (B) A 和B 不同时发生 (C) A 和B 至少必有一个发生,且A 和B 至少必有一个不发生 (D) A 和B 至少必有一个不发生13.设事件A 和B 满足条件AB AB =,则下列肯定正确的选项是( ) (A)A B =Φ(B) A B =Ω (C) A B A = (D) A B B =14.设A 和B 是任意事件且A B ⊂,()0P B >,则下列选项必然成立的是( )(A) ()(|)P A P A B < (B) ()(|)P A P A B ≤ (C) ()(|)P A P A B > (D) ()(|)P A P A B ≥ 15.对于任意二事件A 和B ,( )(A)若AB ≠Φ,则A 和B 一定独立 (B) 若AB ≠Φ,则A 和B 有可能独立 (C)若AB =Φ,则A 和B 一定独立 (D) 若AB =Φ,则A 和B 一定不独立 16.设随机事件A 与B 互不相容,则下列结论中肯定正确的是(A) A 与B 互不相容 (B) A 与B 相容 (C) ()()()P AB P A P B = (D) ()()P A B P A -=17.设A 和B 是两个随机事件,且0()1P A <<,()0P B >,(|)(|)P B A P B A =,则必有( ) (A)(|)(|)P A B P A B = (B)(|)(|)P A B P A B ≠ (C)()()()P AB P A P B = (D) ()()()P AB P A P B ≠ 18.设A 与B 互为对立事件,且()0,()0P A P B >>, 则下列各式中错误的是( ) (A) ()1()P A P B =- (B)()()()P AB P A P B = (C) ()1P AB = (D) ()1P A B = 19.设()0,0()1P A P B ><<,且A 和B 二事件互斥,下列关系式正确的是( )(A)()(|)P B P B A = (B)P AB P A P B ()=()() (C)()(|)1()P A P A B P B =- (D)()1()P B P A =-20.设A 和B 为随机事件,且()0,(|)1P B P A B >=,则必有( )(A)()()P A B P A > (B)()()P A B P B > (C) ()()P A B P A = (D) ()()P A B P B =二 填空题1.口袋中有7个白球和3个黑球,从中任取两个,则取到的两个球颜色相同的概率等于______________。

概率论与数理统计第三四章习题

概率论与数理统计第三四章习题

. 第三、四章练习题 一、 填空题1. 设随机变量函数X 和Y 具有联合概率密度⎪⎩⎪⎨⎧<<<<=其他020,4081),(y x y x f ,则P{Y X <}= ;2. 已知离散型随机变量X 与Y 相互独立,且{0}{0}0.3P X P Y ====,{1}{1}0.7P X P Y ====,则{1}P X Y +== ,{}P X Y == ;3. 设随机变量~(,)X b n p ,且5.0)(=X E , 45.0)(=X D ,则=n ,=p ;4. 若~(2)X π,则(22)D X += ;5. 已知随机变量~(2,4)X N ,~(1,3)Y N ,X 与Y 相互独立,则32X Y -服从的分布为 ;6. 已知()1E X =-,()3D X =,则2(31)E X -= ;7. 设~(10,0.6)X N ,~(1,2)Y N ,且X 与Y 相互独立,则=)(XYE ,=-)3(Y XD ; 8. 设随机变量X 在区间(0,2)上服从均匀分布,且21Y X =+,则()E Y=, ()D Y=;9. 设随机变量X 与Y 的方差分别为()25D X =,()16D Y =,相关系数0.4XY ρ=,则()D X Y += ;10. 若随机变量X 与Y 相互独立,则相关系数XY ρ= .二、 判断题1. 设X 为随机变量,C 为常数,则()()D X C D X C +=+;2. 设X 为随机变量,C 为常数,则()()E X C E X C +=+;3. 若随机变量,X Y 相互独立,则,X Y 一定不相关;4. 设随机变量X 和Y 都服从标准正态分布,则Y X +一定服从正态分布;5. 若X 与Y 相互独立,则cov()0X Y =,;6. 已知随机变量~(0,1)X U ,2Y X =,则随机变量X 与Y 不相关;7. 已知随机变量~(1,1)X U -,2Y X =,则随机变量X 与Y 不相关;8. 随机变量X 和Y 的联合分布决定X 和Y 的边缘分布.三、 计算题1. 设(,)X Y 的概率密度为, 01,0(,)0, cxy x y xf x y ≤≤≤≤⎧=⎨⎩其他,求(1)c 的值;(2)两个边缘概率密度;(3)说明,X Y 是否相互独立;(4)条件概率密度()X Y f x y .2. 二维随机变量(,)X Y 的概率密度为(2),0,0(,)0,x y Ae x y f x y -+⎧>>=⎨⎩其他,求:(1)系数A ;(2),X Y 的边缘概率密度函数;(3)问,X Y 是否独立;(4)Z X Y =+的概率密度.3. 某射手有5发子弹,射击一次命中率为0.9,如果他命中目标就停止射击,不命中就一直射到 用完5发子弹,求所用子弹数X 的分布律、数学期望和方差.4. 设二维随机变量(,)X Y 的分布律为(见右表),已知()1E Y =,试求:(1)常数,αλ;(2)()E X .5. 设连续型随机变量X 的分布函数为381, 2,()0, 2x F x x x ⎧⎪-≥=⎨⎪<⎩.,求X 的期望与方差.6. 按节气出售的某种节令商品,每售出1kg 可获利10元,过了节气可将剩余的这种商品全部处理,每处理1kg 净亏损2元.设某商店在节令内这种商品的销售量X (单位:kg )服从(20,40)内的均匀分布.为使商店获得利润Y 的数学期望最大,问该商店的进货量t 应为多少?。

概率论与数理统计期末复习20题及解答

概率论与数理统计期末复习20题及解答

概率论与数理统计期末复习20题及解答【第一章】 随机事件与概率1、甲袋中有4个白球3个黑球,乙袋中有2个白球3个黑球,先从甲袋中任取一球放入乙袋, 再从乙袋中任取一球返还甲袋. 求经此换球过程后甲袋中黑球数增加的概率.2、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求此人拨号不超过两次而接通所需电话的概率.3、已知将1,0两字符之一输入信道时输出的也是字符0或1,且输出结果为原字符的概率为)10(<<αα. 假设该信道传输各字符时是独立工作的. 现以等概率从“101”,“010”这两个字符串中任取一个输入信道.求输出结果恰为“000”的概率.4、试卷中的一道选择题有4个答案可供选择,其中只有1个答案是正确的.某考生如果会做这道题,则一定能选出正确答案;若该考生不会做这道题,则不妨随机选取一个答案.设该考生会做这道题的概率为85.0.(1)求该考生选出此题正确答案的概率;(2)已知该考生做对了此题,求该考生确实会做这道题的概率.【第二章】 随机变量及其分布5、设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.(1)求系数A 及B ;(2)求X 落在区间)1,1(-内的概率;(3)求X 的概率密度.6、设随机变量X 的概率密度为⎩⎨⎧≤≤=其它,0,10,)(x ax x f ,求:(1)常数a ;(2))5.15.0(<<X P ;(3)X 的分布函数)(x F .7、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<+=.,0;1,1),1(),(其它y x xy A y x f 求:(1)系数A ;(2)X 的边缘概率密度)(x f X ;(3)概率)(2X Y P ≤.8、设二维随机变量),(Y X 的概率密度为⎩⎨⎧<<<<=.,0;20,10,1),(其它x y x y x f求:(1)),(Y X 的边缘概率密度)(x f X ,)(y f Y ;(2)概率)1,21(≤≤Y X P ;(3)判断X ,Y 是否相互独立.9、设X 和Y 是两个相互独立的随机变量,]2.0,0[~U X ,Y 的概率密度函数为⎩⎨⎧≤>=-.0,0,0,5)(5y y e y f y Y(1)求X 和Y 的联合概率密度),(y x f ;(2)求概率)(X Y P ≤.【第三章】数字特征10、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤+-=,,0,21,)2(,10,)()(其它x x a x b x b a x f ,已知21)(=X E ,求:(1)b a ,的值;(2))32(+X E .11、设随机变量X 的概率密度为⎩⎨⎧≤>=-.0,0,0,)(2x x Ae x f x 求:(1)常数A ;(2))(X E 和)(X D .12、设),(Y X 的联合概率分布如下:XY1104/14/12/10(1)求Y X ,的数学期望)(X E ,)(Y E ,方差)(X D ,)(Y D .(2)求Y X ,的协方差),cov(Y X 与相关系数),(Y X R .【第四章】正态分布13、假设某大学学生在一次概率论与数理统计统考中的考试成绩X (百分制)近似服从正态分布,已知满分为100分平均成绩为75分,95分以上的人数占考生总数的2.3%.(1)试估计本次考试的不及格率(低于60分为不及格);(2)试估计本次考试成绩在65分至85分之间的考生人数占考生总数的比例. [已知9332.0)5.1(,8413.0)1(≈≈ΦΦ,9772.0)2(=Φ]14、两台机床分别加工生产轴与轴衬.设随机变量X (单位:mm )表示轴的直径,随机变量Y (单位:mm )表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴 衬的内径与轴的直径之差在3~1mm 之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率.[已知9772.0)2(≈Φ]【第五章】 数理统计基本知识15、设总体)1,0(~N X ,521,,,X X X 是来自该总体的简单随机样本,求常数0>k 使)3(~)2(25242321t XX X X X k T +++=.16、设总体)5 ,40(~2N X ,从该总体中抽取容量为64的样本,求概率)1|40(|<-X P .【第六章】参数估计17、设总体X 的概率密度为⎩⎨⎧≥=--,,0,2,);()2(其它x e x f x λλλ其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本,n x x x ,,,21 为样本观测值.(1)求参数λ的矩估计量.(2)求参数λ的最大似然估计量.18、设总体X 的概率密度为⎪⎩⎪⎨⎧≤>=-,0,0;0,e 1);(2x x x xf x λλλ 其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本, n x x x ,,,21 为样本观测值.(1)求参数λ的最大似然估计量.(2)你得到的估计量是不是参数λ的无偏估计,请说明理由.【第七章】假设检验19、矩形的宽与长之比为618.0(黄金分割)时将给人们视觉上的和谐美感. 某工艺品厂生产矩形裱画专用框架. 根据该厂制定的技术标准,一批合格产品的宽与长之比必须服从均值为618.00=μ的正态分布. 现从该厂某日生产的一批产品中随机抽取25个样品,测得其宽与长之比的平均值为,646.0=x 样本标准差为093.0=s . 试问在显著性水平05.0=α水平上能否认为这批产品是合格品?20、已知某种口服药存在使服用者收缩压(高压)增高的副作用. 临床统计表明,在服用此药的人群中收缩压的增高值服从均值为220=μ(单位:mmHg ,毫米汞柱)的正态分布. 现在研制了一种新的替代药品,并对一批志愿者进行了临床试验. 现从该批志愿者中随机抽取16人测量收缩压增高值,计算得到样本均值)mmHg (5.19=x ,样本标准差)mmHg (2.5=s . 试问这组临床试验的样本数据能否支持“新的替代药品比原药品副作用小”这一结论 (取显著性水平05.0=α).解答部分【第一章】 随机事件与概率1、甲袋中有4个白球3个黑球,乙袋中有2个白球3个黑球,先从甲袋中任取一球放入乙袋, 再从乙袋中任取一球返还甲袋. 求经此换球过程后甲袋中黑球数增加的概率.【解】设A 表示“从甲袋移往乙袋的是白球”,B 表示“从乙袋返还甲袋的是黑球”,C 表示“经此换球过程后甲袋中黑球数增加”,则AB C =, 又2163)(,74)(===A B P A P ,于是由概率乘法定理得所求概率为 )()(AB P C P =)()(A B P A P ==722174=⋅.2、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求此人拨号不超过两次而接通所需电话的概率.【解】 设i A 表示“此人第i 次拨号能拨通所需电话” )2,1(=i ,A 表示“此人拨号不超过两次而接通所需电话”,则211A A A A +=,由概率加法定理与乘法定理得所求概率为)()()()(211211A A P A P A A A P A P +=+=)()()(1211A A P A P A P +=2.091109101=⋅+=.3、已知将1,0两字符之一输入信道时输出的也是字符0或1,且输出结果为原字符的概率为)10(<<αα. 假设该信道传输各字符时是独立工作的. 现以等概率从“101”,“010”这两个字符串中任取一个输入信道.求输出结果恰为“000”的概率.【解】设:1A 输入的是“101”,:2A 输入的是“010”,:B 输出的是“000”,则2/1)(1=A P ,2/1)(2=A P ,αα21)1()(-=A B P ,)1()(22αα-=A B P ,从而由全概率公式得)()()()()(2211A B P A P A B P A P B P +=)1(21)1(2122αααα-+-=)1(21αα-=.4、试卷中的一道选择题有4个答案可供选择,其中只有1个答案是正确的.某考生如果会做这道题,则一定能选出正确答案;若该考生不会做这道题,则不妨随机选取一个答案.设该考生会做这道题的概率为85.0.(1)求该考生选出此题正确答案的概率;(2)已知该考生做对了此题,求该考生确实会做这道题的概率.【解】设A 表示“该考生会解这道题”,B 表示“该考生选出正确答案”,则85.0)(=A P ,2.0)(=A P ,1)(=A B P ,25.0)(=A B P .(1)由全概率公式得)()()()()(A B P A P A B P A P B P +=25.02.0185.0⨯+⨯=9.0=.(2)由贝叶斯公式得944.018179.0185.0)()()()(≈=⨯==B P A B P A P B A P .【第二章】 随机变量及其分布5、设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.(1)求系数A 及B ;(2)求X 落在区间)1,1(-内的概率;(3)求X 的概率密度.【解】(1)由分布函数的性质可知0)2()(lim )(=-⋅+==-∞-∞→πB A x F F x ,12)(lim )(=⋅+==+∞+∞→πB A x F F x ,由此解得 π1,21==B A . (2)X 的分布函数为)(arctan 121)(+∞<<-∞+=x x x F π, 于是所求概率为21))1arctan(121()1arctan 121()1()1()11(=-+-+=--=<<-ππF F X P .(3)X 的概率密度为)1(1)()(2x x F x f +='=π.6、设随机变量X 的概率密度为⎩⎨⎧≤≤=其它,0,10,)(x ax x f ,求:(1)常数a ;(2))5.15.0(<<X P ;(3)X 的分布函数)(x F .【解】(1)由概率密度的性质可知⎰∞+∞-dx x f )(121===⎰aaxdx , 由此得2=a .(2) )5.15.0(<<X P 75.000212/122/3112/1=+=+=⎰⎰x dx xdx .(3)当0<x 时,有00)(==⎰∞-xdx x F ;当10<≤x 时,有20020)(x xdx dx x F x=+=⎰⎰∞-;当1≥x 时,有1020)(1100=++=⎰⎰⎰∞-xdx xdx dx x F .所以,X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(2x x x x x F7、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<+=.,0;1,1),1(),(其它y x xy A y x f 求:(1)系数A ;(2)X 的边缘概率密度)(x f X ;(3)概率)(2X Y P ≤.【解】(1)由联合概率密度的性质可知=⎰⎰+∞∞-+∞∞-dxdy y x f ),(14)1(1111==+⎰⎰--A dy xy A dx ,由此得41=A . (2)当11<<-x 时,有=)(x f X =⎰+∞∞-dy y x f ),(214111=+⎰-dy xy ; 当1-≤x 或1≥x 时,显然有0)(=x f X .所以X 的边缘概率密度⎩⎨⎧<<-=.,0;11,2/1)(其它x x f X(3))(2X Y P ≤⎰⎰≤=2),(x y dxdy y x f dy xy dx x ⎰⎰--+=211141dx x x x )1221(412511+-+=⎰-32=.8、设二维随机变量),(Y X 的概率密度为⎩⎨⎧<<<<=.,0;20,10,1),(其它x y x y x f求:(1)),(Y X 的边缘概率密度)(x f X ,)(y f Y ;(2)概率)1,21(≤≤Y X P ;(3)判断X ,Y 是否相互独立.【解】(1)当10<<x 时,有x dy dy y x f x f xX 2),()(20⎰⎰===+∞∞-;当0≤x 或1≥x 时,显然有0)(=x f X .于是X 的边缘概率密度为⎩⎨⎧<<=.,0;10,2)(其它x x x f X 当20<<y 时,有⎰⎰-===+∞∞-1221),()(y Y ydx dx y x f y f ; 当0≤y 或2≥y 时,显然有0)(=y f Y .于是Y 的边缘概率密度为⎪⎩⎪⎨⎧<<-=.,0;20,21)(其它y y y f Y(2)⎰⎰⎰⎰===≤≤∞-∞2/12/102/11-41),()}1,21{(y dx dy dx y x f dy Y X P .(3)容易验证)()(),(y f x f y x f Y X ≠,故X 与Y 不独立.9、设X 和Y 是两个相互独立的随机变量,]2.0,0[~U X ,Y 的概率密度函数为⎩⎨⎧≤>=-.0,0,0,5)(5y y e y f y Y(2)求X 和Y 的联合概率密度),(y x f ;(2)求概率)(X Y P ≤.【解】(1)由题意知,X 的概率密度函数为⎩⎨⎧<<=.,0;2.00,5)(其它x x f X因为X 和Y 相互独立,故X 和Y 的联合概率密度⎩⎨⎧><<==-.,0;0,2.00,25)()(),(5其它y x e y f x f y x f y Y X(2)12.005052.00)1(525),()(---≤=-===≤⎰⎰⎰⎰⎰e dx e dy e dx dxdy y x f X Y P x x y xy .【第三章】数字特征10、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤+-=,,0,21,)2(,10,)()(其它x x a x b x b a x f ,已知21)(=X E ,求:(1)b a ,的值;(2))32(+X E . 【解】(1)由概率密度的性质可知=⎰∞+∞-dx x f )(12)2(])[(2110=+=-++-⎰⎰ba dx x a dxb x b a ; 又dx x xf X E ⎰∞+∞-=)()(.216)2(])[(2110=+=-++-=⎰⎰b a dx x x a xdx b x b a联立方程组⎪⎩⎪⎨⎧=+=+,216,12b a b a 解得41=a ,23=b . (2) 由数学期望的性质,有432123)(2)32(=+⋅=+=+X E X E . 11、设随机变量X 的概率密度为⎩⎨⎧≤>=-.0,0,0,)(2x x Ae x f x求:(1)常数A ;(2))(X E 和)(X D .【解】(1)由概率密度的性质可知=⎰∞+∞-dx x f )(122==⎰∞+-Adx Ae x , 由此得2=A .(2)由数学期望公式得⎰⎰∞++∞-=-=⋅=0022212)(dt te dx ex X E t tx x21)2(Γ21==. 由于⎰∞+-⋅=02222)(dx ex X E xdt e t t tx ⎰+∞-==0224121!241)3(Γ41=⋅==,故利用方差计算公式得41)21(21)]([)()(222=-=-=X E X E X D .12、设),(Y X 的联合概率分布如下:XY1104/14/12/10(1)求Y X ,的数学期望)(X E ,)(Y E ,方差)(X D ,)(Y D .(2)求Y X ,的协方差),cov(Y X 与相 关系数),(Y X R .【解】 由),(Y X 的联合概率分布知Y X ,服从"10"-分布:4/1)0(==X P ,4/3)1(==X P , 2/1)0(==Y P ,2/1)1(==Y P ,由"10"-分布的期望与方差公式得16/3)4/11(4/3)(,4/3)(=-⨯==X D X E , 4/1)2/11(2/1)(,2/1)(=-⨯==Y D Y E ,由),(Y X 的联合概率分布知2/14/1114/1010104/100)(=⨯⨯+⨯⨯+⨯⨯+⨯⨯=XY E ,从而8/12/14/32/1)()()(),cov(=⨯-=-=Y E X E XY E Y X ,=),(Y X R 334/116/38/1)()(),cov(==Y D X D Y X .【第四章】正态分布13、假设某大学学生在一次概率论与数理统计统考中的考试成绩X (百分制)近似服从正态分布,已知满分为100分平均成绩为75分,95分以上的人数占考生总数的2.3%.(1)试估计本次考试的不及格率(低于60分为不及格);(2)试估计本次考试成绩在65分至85分之间的考生人数占考生总数的比例. [已知9332.0)5.1(,8413.0)1(≈≈ΦΦ,9772.0)2(=Φ]【解】 由题意,可设X 近似服从正态分布),75(2σN .已知%3.2)95(=≥X P ,即%3.2)20(1)7595(1)95(1)95(=-=--=<-=≥σΦσΦX P X P ,由此得977.0)20(=σΦ,于是220≈σ,10≈σ,从而近似有)10,75(~2N X .(1)0668.09332.01)5.1(1)5.1()107560()60(=-≈-=-=-=<ΦΦΦX P , 由此可知,本次考试的不及格率约为%68.6.(2))107565()107585()8565(---=≤≤ΦΦX P 6826.018413.021)1(2)1()1(=-⨯≈-=--=ΦΦΦ,由此可知,成绩在65分至85分之间的考生人数约占考生总数的%26.68.14、两台机床分别加工生产轴与轴衬.设随机变量X (单位:mm )表示轴的直径,随机变量Y (单位:mm )表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴 衬的内径与轴的直径之差在3~1mm 之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率.[已知9772.0)2(≈Φ]【解】 设X Y Z -=,由X 与Y 的独立性及独立正态变量的线性组合的性质可知,)4.03.0,5052(~22+--=N X Y Z , 即)5.0,2(~2N Z .于是所求概率为)2()2()5.021()5.023()31(--=---=≤≤ΦΦΦΦZ P .9544.019772.021)2(2=-⨯≈-=Φ【第五章】 数理统计基本知识15、设总体)1,0(~N X ,521,,,X X X 是来自该总体的简单随机样本,求常数0>k 使)3(~)2(25242321t X X X X X k T +++=.【解】 由)1,0(~N X 知)5,0(~221N X X +,于是)1,0(~5221N X X +,又由2χ分布的定义知)3(~2252423χX X X ++,所以)3(~2533/)(5/)2(2524232125242321t X X X X X X X X X X T +++⋅=+++=,比较可得53=k .16、设总体)5 ,40(~2N X ,从该总体中抽取容量为64的样本,求概率)1|40(|<-X P . 【解】 由题设40=μ,5=σ,64=n ,于是)1,0(~8540N X nX u -=-=σμ从而)58|8/540(|)1|40(|<-=<-X P X P .8904.019452.021)6.1(2)58|(|=-⨯≈-=<=Φu P【第六章】参数估计17、设总体X 的概率密度为⎩⎨⎧≥=--,,0,2,);()2(其它x e x f x λλλ其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本,n x x x ,,,21 为样本观测值.(1)求参数λ的矩估计量.(2)求参数λ的最大似然估计量. 【解】(1)21)2(),()(02)2(2+=+===-+∞=---+∞+∞∞-⎰⎰⎰λλλλλλdt e t dx ex dx x xf X E t tx x ,令)(X E X =,即21+=λX ,解得参数λ的矩估计量为21-=∧X λ. (2)样本似然函数为∑====--=--=∏∏ni i i n x nni x n i i eex f L 1)2(1)2(1),()(λλλλλλ,上式两边取对数得∑--==ni i n X n L 1)2(ln )(ln λλλ,上式两边对λ求导并令导数为零得=λλd L d )(ln 0)2(1=∑--=n i i n x nλ, 解得2121-=∑-==x nx nni i λ,从而参数λ的最大似然估计量为 21-=∧X λ. 18、设总体X 的概率密度为⎪⎩⎪⎨⎧≤>=-,0,0;0,e 1);(2x x x xf x λλλ 其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本, n x x x ,,,21 为样本观测值. (1)求参数λ的最大似然估计量.(2)你得到的估计量是不是参数λ的无偏估计,请说明理由. 【解】(1)样本似然函数为,e1e1),()(1121211∏∏∏=-=-=∑⋅====n i x inni x i n i i ni iixx x f L λλλλλλ上式两边取对数得∑∑==-+-=ni i ni i x x n L 111ln ln 2)(ln λλλ, 求导数得∑=+-=ni i x n L d d 1212)(ln λλλλ, 令0)(ln =λλL d d解得2211x x n n i i==∑=λ,于是参数λ的极大似然估计量为 221ˆ1X X n n i i ==∑=λ. (2)dx x X E x λλ/202e 1)(-+∞⎰=dx x x λλ/20e )(-+∞⎰=dx t t t x -∞+=⎰=e 02λλλΓλ2)3(==, λλλ=⋅====221)(21)(21)2()ˆ(X E X E X E E , 于是221ˆ1X X n ni i ==∑=λ是λ的无偏估计.【第七章】假设检验19、矩形的宽与长之比为618.0(黄金分割)时将给人们视觉上的和谐美感. 某工艺品厂生产矩形裱画专用框架. 根据该厂制定的技术标准,一批合格产品的宽与长之比必须服从均值为618.00=μ的正态分布. 现从该厂某日生产的一批产品中随机抽取25个样品,测得其宽与长之比的平均值为,646.0=x 样本标准差为093.0=s . 试问在显著性水平05.0=α水平上能否认为这批产品是合格品?【解】由题意,待检验的假设为0H : 618.00==μμ; 1H : 618.0≠μ.因为σ未知,所以检验统计量为)24(~)618.0(525/618.0/0t S X S X n S X t -=-=-=μ, 关于0H 的拒绝域为 06.2)24()1(||025.02/==->t n t t α. 现在646.0=x ,093.0=s ,所以统计量t 的观测值为505.1093.0)618.0646.0(5=-=t . 因为)24(06.2505.1||025.0t t =<=,即t 的观测值不在拒绝域内,从而接受..原假设,即可以认为这批产品是合格品.20、已知某种口服药存在使服用者收缩压(高压)增高的副作用. 临床统计表明,在服用此药的人群中收缩压的增高值服从均值为220=μ(单位:mmHg ,毫米汞柱)的正态分布. 现在研制了一种新的替代药品,并对一批志愿者进行了临床试验. 现从该批志愿者中随机抽取16人测量收缩压增高值,计算得到样本均值)mmHg (5.19=x ,样本标准差)mmHg (2.5=s . 试问这组临床试验的样本数据能否支持“新的替代药品比原药品副作用小”这一结论 (取显著性水平05.0=α).【解】由题意,待检验的假设为0H : 220==μμ; 1H : 22<μ.因为σ未知,所以取统计量)15(~)22(4/0t S X nS X t -=-=μ, 且关于0H 的拒绝域为 753.1)15()1(05.0-=-=--<t n t t α. 现在5.19=x ,2.5=s ,所以统计量t 的观测值为923.12.5)225.19(4-≈-=t . 因为)15(753.1923.105.0t t -=-<-≈,即t 的观测值在拒绝域内,从而拒绝..原假设,即认为这次试验支持“新的替代药品比原药品副作用小”这一结论.。

人大概率统计期末复习题-第三章

人大概率统计期末复习题-第三章

第3章 随机向量练习题1、设一个袋子中装有3个红色、2个白色、3个蓝色球,从袋中任取两个球,记X 为取到的红球数,Y 为取到的白球数,求(1)(X ,Y )的联合分布;(2)关于X 、Y 的边缘分布律。

(1)2,1,0,,),(282323====--j i C C C C j Y i X P ji j i(2)2、将一枚均匀的硬币连续掷三次,以随机变量X 表示三次中出现正面的次数,随机变量Y 表示三次中出现正面的次数与反面的次数的差的绝对值,求随机向量(X ,Y )的联合分布以及关于X 、Y 的边缘分布。

并判断X 与Y 的独立性。

不独立3、设随机变量X 与Y 相互独立、同分布,P ( X = i ) = 1 / 3,i = 1,2,3。

又设 ξ = max ( X , Y ),η = min ( X , Y ),写出(ξ,η)的联合分布列,并判断 ξ与 η 的独立性。

不独立4、将一枚均匀的骰子掷两次,记X 为掷出的偶数点的次数,Y 为掷出3点或6点的次数。

求(1)(X ,Y )的联合分布;(2)X 与Y 是否相互独立;(3)Z = X - Y 的分布列和分布函数。

(1)(2)相互独立;(3) ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤--<≤--<=221100112219/89/536/736/10)(z z z z z z z F Z5、设二维离散型随机变量的联合分布为 求(1)X 、Y 的边缘分布;、(2)cov ( X , Y ) ; (3)P ( Y = 1 | X < 2 ) 。

(1)(2)1 / 2 ;(3)4 / 56、某箱装有100件产品,其中一、二和三等品分别为80件、10件和 10件,先从箱中随机抽取一件产品,记 ⎩⎨⎧=其它等品若取到i ,0,1i X (i = 1,2,3),试求:(1)随机变量X 1 与X 2 的联合分布与边缘分布;(2)随机变量X 1 与X 2 的相关系数 21X X ρ;(3)D ( X 1 - X 2 )、D ( X 1 + X 2 ) 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三、四章练习题
一、 选择题
1. 设()~1,1X N ,概率密度为()f x ,则( )正确.
A) ()()000.5P X P X ≤=≥= B) ()()110.5P X P X ≤=≥= C) ()()(),,f x f x x =-∈-∞+∞ D)
()()()1,,F x F x x =--∈-∞+∞
2. 已知随机变量X ,Y ,则( )是正确的
A. ()()()Y E X E Y X E +=+
B. ()()()Y D X D Y X D +=+
C. ()()()Y E X E XY E =
D. ()()()Y D X D XY D = 3. 设,X Y 是两个随机变量,则有( )正确.
().,A R X Y X Y 是和的相关矩 ().,B R X Y X Y **是和的相关矩
().,C R X Y 的绝对值可以大于一
().,1D X Y Y
b X a
R X Y =+=
和存在线性关系的充要条件 4. 如果X 与Y 不相关,则( ).
()()().A D X Y D X D Y +=+
()()().B D X Y D X D Y -=-
()()().C D XY D X D Y =
.D X Y 与相互立
5. 设(),X Y 都是服从二维正态分布的随机变量,则X Y 与不相关是X Y 与相互独立的 ( ).
.A 充分条件
.B 必要条件 .C 充要条件 .D 既不充分又不必要
6. 如,X Y 满足()()D X Y D X Y +=-,则必有( )正确. .a X Y 与独立 .b X Y 与不相关
().0c D Y = ()().0d D X D Y ⋅=
7. 已知随机变量X 满足()5
26
P X EX -<=
, 则( )
().23A D X ≥
().103B D X ≤ ().23C D X ≤
().103D D X ≥
8. 随机变量()~0,1X N , 21Y X =-, 则Y 服从 ( )
().0,1A N
().1,4B N -
().1,3C N -
().1,1D N -
9.设()2~,X N μσ,其中0σ>,则随着σ的增大,概率()P X μ
σ-<(
).
A) 单调增大 B)单调减小 C)保持不变 D)增减不定
10.两个随机变量X 与Y 相互独立,且()~0,1X N ,()~1,1Y N ,则( )正确.
()1
.02
A P X Y +≤=
()1.12
B P X Y +≤=
()1.02
C P X Y -≤=
()1.12
D P X Y -≤=
11. 设()~3,X B p ,且()()12P X P X ===,则p 为( ).
A) 0.5 B) 0.6 C) 0.7 D) 0.8
12. 如果随机变量X 与Y 不相关,则下列选项中错误的是( ).
()()().A E XY E X E Y =⋅ ()()().B D X Y D X D
Y
-=+ ()()().C D XY D X D Y =
()()().D D X Y D X D Y +=+
13. 若存在常数(),0a b a ≠,使得Y aX b =+,则(),R X Y 为( ). ().1.1..,1a A B C D R X Y a
-<
二、 填空题
1. 设()~1,4X N -,且()10.8413Φ=,()20.9772Φ=,()30.9987Φ=,则
()5P X >-=_________,()3P X <=____________,()4P X ==________.
2.设随机变量()2~2,X N σ,且()24P X <<=0.3,则()0P X <= .
3.已知随机变量X ~1(100,)2
B ,则随机变量23Y X =+的数学期望()E Y =
4.设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则()2E X =
5.设随机变量X 服从[1,3]上的均匀分布,则1E X ⎛⎫
⎪⎝⎭
= 。

6. 设()4D X =,()9D Y =,(),R X Y =0.5,则()23D X Y -=
7. 设随机变量X ,Y 相互独立,且()3D X =,()6D Y =,则()2D X Y -= 8.设随机变量()~0,1X N ,则()0Φ= . 9. 随机变量
~(10000,0.01)
X B ,则用切比雪夫不等式估计
(
0.010.01)10000
X
P -< 。

三、计算题
1. 已知随机变量()~,X B n p ,且()
2.4E X =,() 1.44D X =,求二项分布中的参数n 及p 的值. 2.设随机变量
X
的概率密度为
201()0ax bx c x f x ⎧++<<=⎨

其他,已知
()0.5E X =,()0.15D X =,求c b a ,,
的值。

3.设随机变量X 的密度函数为
(),02,240,ax x f x cx b x ⎧<<⎪⎪
=+≤≤⎨⎪⎪⎩
其它,己知()2=X E ,
()13P X <<=
3
4
,
求,,a b c 的值。

4.设随机变量X 的数学期望为()E X ,方差为()D X 。

证明对任意常数C ,都有()2()E X C D X -≥。

5. 设随机变量X 的概率密度为
01()2120x x f x x x <≤⎧⎪
=-<<⎨⎪⎩
其他,求()E X ,()D X .
6. 某餐厅每天接待300名顾客,设每位顾客的消费额(元)服从[20,
80]上的均匀分布,顾客的消费额相互独立。

试求;1)该餐厅的
日平均营业额;2)每天平均有几位顾客的消费额超过40元? 7.设随机变量
X
,Y 相互独立,且概率密度函数分别为:
()201
0 x x f x ≤≤⎧=⎨
⎩其他,()(5)50
y e y f y --⎧>=⎨⎩其他
,求()E XY .
8. 设二维随机变量()Y X ,
的联合概率密度为()()⎪⎩⎪⎨⎧≤≤≤≤+=其它
y x y x y x f 0,
20,2081
,
()()()()()()Y D X D Y E X E ,2,1求 ()()Y X ,cov 3 ()()Y X R ,4
9.设二维随机变量()Y X ,的联合分布列为:
求:1)()()Y E X E , 2)()()Y D X D , 3)()Y X ,cov 4)()Y X
R ,,()Y X D +,X 与Y 是否相互独立。

10. 设离散随机变量X 的分布律为
求()X E ,()532+X E ,()X D 。

11. 某地抽样调查结果表明,考生的外语成绩(百分制)近似服从正
态分布,平均成绩为72分,96分以上的考生占考生总数的2.3%,试求考生成绩在60分至84分之间的概率.()977.02=Φ
12. 100名战士举行一次射击练习,每人每次射击的命中率均为0.8;
每人至多射4次,但若中靶,则不再射击,且各次射击互不影响;试问应为战士们准备多少发子弹为宜?
13. 设随机变量X 和Y 的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角
形区域上服从均匀分布,求随机变量Y
=的方差。

X
Z+。

相关文档
最新文档