【真卷】2017-2018年江苏省盐城市东台市八年级(上)数学期中试卷带答案(b卷)

合集下载

2017-2018学年八年级数学上学期期中考试原(含答案)

2017-2018学年八年级数学上学期期中考试原(含答案)

2017-2018学年上学期期中原创卷A卷八年级数学(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:人教版第11~13章。

第Ⅰ卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C .四边形的内角和与外角和相等D .角是轴对称图形6.如图,ABC BAD △≌△,点A 和点B ,点C 和点D 是对应点.如果AB =6厘米,BD =5厘米,AD =4厘米,那么BC 的长是 A .6 cmB .5 cmC .4 cmD .不能确定7.如图,ABC △中,AB AC =,点D 在AC 边上,且BD BC AD ==,则A ∠的度数为 A .36°B .45°C .54°D .72°8.如图,在ABC △中,∠BAC =56°,∠ABC =74°,BP 、CP 分别平分∠ABC 和∠ACB ,则∠BPC =A .102°B .112°C .115°D .118°9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',,11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36 cm,BC =24 cm, 2120cm ABC S =△,DE 长是A .4 cmB . 4.8 cmC . 5 cmD .无法确定12.使两个直角三角形全等的条件是A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 13.如图,已知40AOB ∠=︒,在AOB ∠的两边OA OB 、上分别存在点Q 、点P ,过点Q 作直线QR OB ∥,当OP QP =时,∠PQR 的度数是 A .60°B .80°C .100°D .120°14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 215.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.17.一个四边形,截一刀后得到的新多边形的内角和为__________. 18.若等腰三角形的一个角为80︒,则顶角为__________.19.已知点A (2a +3b ,−2)和A '(−1,3a +b )关于y 轴对称,则a +b 的值为__________.20.如图,ABC △中,90C ∠=︒,60BAC ∠=︒,AD 是角平分线,若8BD =,则CD 等于__________.21.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是ABC △的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.23.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.24.(本题满分8分)已知:如图,在ABC △中, D 为BC 上的一点, AD 平分EDC ∠,且E B ∠=∠, DE DC =.求证: AB AC =.25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△; (2)线段CC ′被直线l ; (3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.27.(本小题满分9分)如图,在Rt ABC △中,∠A =90°,AB=AC=4 cm ,若O 是BC 的中点,动点M 在AB 上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.△边AB上一动点(不与A,B重合)分别过点A,B向直线CD作垂28.(本小题满分9分)已知点D是ABC线,垂足分别为E,F,O为边AB的中点.(1)如图1,当点D与点O重合时,AE与BF的位置关系是____________,OE与OF的数量关系是__________;(2)如图2,当点D在线段AB上不与点O重合时,试判断OE与OF的数量关系,并给予证明;(3)如图3,当点D在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.(备注:直角三角形中,斜边上的中线等于斜边的一半)2017-2018学年上学期期中原创卷A卷八年级数学答案一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm【答案】B2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D【答案】C△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.【答案】D4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形【答案】B5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C.四边形的内角和与外角和相等D.角是轴对称图形【答案】A△≌△,点A和点B,点C和点D是对应点.如果AB=6厘米,BD=5厘米,AD=4厘米,6.如图,ABC BAD那么BC的长是A.6 cm B.5 cm C.4 cm D.不能确定【答案】B解:∵△ABC≌△BAD,对应为点A对点B,点C对点D,∴AC=BD∵BD=5cm(已知)∴AC=5cm故选B.7.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A为A.36° B.45° C.54° D.72°【答案】A∵BD=BC=AD,AC=AB,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°∵∠A+∠C+∠ABC=180°∴x+2x+2x= 180,∴x=36,∴∠A=36° .故选B .△中,∠BAC=56°,∠ABC=74°,BP、CP分别平分∠ABC和∠ACB,则∠BPC= 8.如图,在ABCA.102°B.112°C.115°D.118°【答案】D∵∠BAC=56°,∠A+∠ABC+∠ACB= 180°,∴∠ABC+∠ACB2=62°∵BP 、CP 分别平分∠ABC 和∠ACB , ∴∠BPC +∠ABC+∠ACB2= 180°∴∠BPC=118° .9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个【答案】A10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',, 【答案】C11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36cm ,BC =24cm ,2120cm ABC S =△,DE 长是( )A .4 cmB . 4.8 cmC . 5 cmD .无法确定【答案】A12.使两个直角三角形全等的条件是( )A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 【答案】D13.如图,已知∠AOB=40°,在∠AOB 的两边OA 、OB 上分别存在点Q 、点P ,过点Q 作直线QR ∥OB ,当OP=QP 时,∠PQR ∠的度数是( ) A .60°B .80°C .100°D .120°【答案】C14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 2【答案】B15.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC【答案】B第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.【答案】117°解:∵∠1是OABC 的外角,且∠B=45°,∠C=72° ∴∠1=∠A+∠B=45°+72°=117° . 故答案为: 117°17.一个四边形,截一刀后得到的新多边形的内角和为__________.【答案】180°或360°或540°解:∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和为180°或360°或540°故答案为:180°或360°或540°18.若等腰三角形的一个角为80 ,则顶角为__________.【答案】80°或20°解:(1 )当80°的角是顶角时,顶角是80°;(2 )当80°的角是底角时,顶角的度数是:180°-80°- 80°= 100°- 80°=20°综上,可得等腰三角形的顶角是20°或80°故选:C.19.已知点A(2a+3b,−2)和A'(−1,3a+b)关于y轴对称,则a+b的值为__________.【答案】0解:∵点A( 2a+3b,−2 )和点A′ (−1 ,3a+b )关于y轴对称∴2a+3b=1,3a+b=−2∴2 ( 2a+3b ) +3a+b=1×2+ (−2 ) =0∴a+b=020.如图,△ABC中,∠C =90°,∠BAC=60°,AD是角平分线,若BD=8,则CD等于__________.【答案】4解:∵∠C=90°,∠BAC=60°∴∠B=30°∵AD是角平分线∴∠DAB=∠CAD=∠B=30°∴AD=BD=8∴CD=12AB=4 故答案为:421.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.【答案】4解:根据垂线段最短,当DP ⊥BC 的时候, DP 的长度最小,∵BD ⊥CD ,即∠BDC=90°,又∠A=90°∴∠A=∠BDC ,又∠ADB=∠C∴∠ABD=∠CBD ,又DA ⊥BA , DP ⊥BC∴AD=DP ,又AD=4∴DP=4故答案为: 4三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是△ABC 的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.【答案】解: ∵ (b −3)2≥0,|c −4|≥0且(b −3)2 +|c −4|=0 ,∴(b −3)2=0,|c −4|=0,∴b =3 , c =4∵4−3<a <4+3且a 为奇数,∴a =3或5当a =3时,△ABC 的周长是3+4+3=10当a =5时,△ABC 的周长是3+4+5=1223.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.【答案】解:设∠1=5x °,∠2=7x °,在△ABE 中,∠B =180°−∠A −∠2=180°−100°−7x °=80°−7x °在△CDE 中,∠CDE =180°−∠C −∠1−∠2=180°−75°−5x °−7x °=105°− 12x °, ∵AB//CD ,∴∠B=∠CDE ,∴80°−7x°=105°− 12x°解得:x =5,∴∠B =80°−7x °=45°24.(本题满分8分)已知:如图,在△ABC 中, D 为BC 上的一点, AD 平分∠EDC ,且E B ∠=∠, DE DC =.求证: AB AC =.【答案】证明:∵AD 平分∠EDC∴∠ADE=∠ADC ,在△AED 和△ACD 中{DE =DC∠ADE =∠ADC AD =AD∴△AED ≌△ACD ( SAS )∴∠C=∠E又∵∠E=∠B∴∠C=∠B∴AB=AC25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△;(2)线段CC ′被直线l ;(3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.【答案】( 1 )无(2)垂直平分(3) 3(4)无26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.【答案】解: ∵∠BCE=∠ACD=90°∴∠3+∠4=∠4+∠5∴∠3=∠5在△ABC 和△DEC 中,{∠l =∠D∠3=∠5BC =CE∴△ABC ≌△DEC ( AAS ),∴AC=CD ;(2 ) ∵∠ACD=90°,AC=CD ,∴∠2=∠D=45°∵AE=AC∴∠4=∠6=67.5°∴∠DEC=180°-∠6=112.5°.27.(本小题满分9分)如图,在Rt ABC△中,∠A=90°,AB=AC=4 cm,若O是BC的中点,动点M在AB上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.【答案】解:(1)连接OA∵∠A=90°,AB=AC又∵O是BC的中点∴OA=OB=OC,(直角三角形中,斜边上的中线是斜边的一半)∴∠CAO=∠BAO=45°在△ONA和△OMB中{OA=OB∠CAO=∠BAO AN=BM∴△ONA≌△OMB ( SAS)∴OM=ON ( 全等三角形的对应边相等)(2)不变,理由如下:由上知△ONA≌△OMB∴S△ONA=S△OMB∴S四边形ANOM=S△ONA+S△OMA=S△OMB+S△OMA=S△OAB∴S四边形ANOM=S△OAB=12S△ABC=4(cm2)28.(本小题满分9分)已知点D 是ABC △边AB 上一动点(不与A ,B 重合)分别过点A ,B 向直线CD 作垂线,垂足分别为E ,F ,O 为边AB 的中点.(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是____________,OE 与OF 的数量关系是__________;(2)如图2,当点D 在线段AB 上不与点O 重合时,试判断OE 与OF 的数量关系,并给予证明;(3)如图3,当点D 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路. (备注:直角三角形中,斜边上的中线等于斜边的一半)【答案】解:(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是AE//BF , OE 与OF 的数量关系是OE=OF ,理由是:∵O 为AB 的中点∴AQ=BO∵AE ⊥CO, BF ⊥CO∴AE//BF ,∠AEO=∠BFO=90°在△AEO 和△BFO 中{∠AOE =∠BOF∠AEO =∠BFO AO =BO∴△AEO ≌△BFO ,∴OE=OF ,故答案:AE//BF ;OE=OF(2)OE=OF证明:延长EO 交BF 于M∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO 和△BMO 中{∠AOE =∠BOM∠AEO =∠BMO AO =BO∴△AEO ≌△BMO∴EO=MO∵∠BFE=90°∴OE=OF(3)当点D在线段BA(或AB)的延长线上时,此时(2)中的结论成立,证明:延长EO交FB于M,∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO和△BMO中{∠AOE=∠BOM∠AEO=∠BMOAO=BO∴△AEO≌△BMO∴EO=DO∵∠BFE=90°∴OE=OF。

2017-2018学年度第一学期期中八年级数学试卷及答案

2017-2018学年度第一学期期中八年级数学试卷及答案

2017-2018学年度第一学期八年级期中考试数学试题参考答案(人教版)1-6 A A B B C D 7-12 C D B A C B 13-14 A B15.(2,4)16.30. 17.SSS 18.140°;719.解:∵∠2是△ADB的一个外角,∴∠2=∠1+∠B,∵∠1=∠B,∴∠2=2∠1,∵∠2=∠C,∴∠C=2∠1,∴∠BAC=180°-3∠1∵∠BAC=63°,∴∠1=39°,∴∠CAD=24°.20.解:(1)点A1(-2,1.5)变换为(5,1.5),A1(-2,1.5)不是不动点;A2(1.5,0)变换为(1.5,0),A2(1.5,0)是不动点;(2)A1(a,-3)变换为(3-a,-3),由不动点,得a=3-a.解得a=1.5.21.解:上面证明过程不正确;错在第一步.正确过程如下:在△BEC中,∵BE=CE∴∠EBC=∠ECB又∵∠ABE=∠ACE∴∠ABC=∠ACB∴AB=AC.在△AEB和△AEC中,AE=AE,BE=CE,AB=AC,∴△AEB≌△AEC(SSS)∴∠BAE=∠CAE.22.解:设这个外角的度数是x°,则(5-2)×180-(180-x)+x=600,解得x=120.故这个外角的度数是120°.23.解:如图1所示:从A到B的路径AMNB最短;【思考】如图2所示:从A到B的路径AMENFB最短;【进一步的思考】如图3所示:从A到B的路径AMNGHFEB最短;【拓展】如图3所示:从A到B的路径AMNEFB最短.24.(1)证明:如图1中,在l上截取F A=DB,连接CD、CF.∵△ABC为等腰直角三角形,∠ACB=90°,BD⊥l,∴AC=BC,∠BDA=90°,∴∠CBD+∠CAD=360°-∠BDA-∠ACB=180°,∵∠CAF+∠CAD=180°,∴∠CBD=∠CAF,∴△CBD≌△CAF(SAS),∴CD=CF,∵CE⊥l,∴DE=EF=12DF=12(DA+F A)=12(DA+DB),∴DA+DB=2DE,图2中有结论:DA-DB=2DE,图3中有结论:DB-DA=2DE.25. 解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB-BN=12-2t,∵三角形△AMN是等边三角形,∴t=12-2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∵CM=y-12,NB=36-2y,∴y-12=36-2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N运动的时间为16秒.。

2017—2018学年部分学校八年级(上)期中考试数学试卷参考答案

2017—2018学年部分学校八年级(上)期中考试数学试卷参考答案

G
A
B y E F O D x
(2)过 A 作 AD⊥AE 交 EF 延长线于 D
过 D 作 DK⊥x 轴于 K ∵∠FEA=45°,∴AE=AD ∴可证△AEG≌△DAK,∴D(1,3) 设 F(0,y) ∵S 梯形 EGKD=S 梯形 EGOF+S 梯形 FOKD 1 1 1 (3 4) 7 ( y 4) 6 (3 y) 2 2 2 22 y 7 22 F (0, ) 7
2017-2018 学年部分学校八年级(上)期中考试 数学参考答案
一、选择题 (30 分)
1 2 3 4 5 6 7 8 9 10
C
B
C
D
B
C
B
C
A
A
二、填空题 (18 分) 11. 14. 班 级

5 80
12. 15.
八 (5,0)
13. 16.
SSS 12 或 6
17、(8 分) 解:设∠A=x 度,则∠B=2x 度,∠C=x-20° 在△ABC 中,∠A+∠B+∠C=180° ∴x+2x+x-20=180° ∴x=50° 即∠A=50°
∴△ABO≌△AEO(ASA) ∴AB=AE,∵AB=AD,AC=AE,∴AC=AD,
C
(3 )
40°或 20°
E
24、(12 分)
y F O x
(1)过 E 点作 EG⊥x 轴于 G
∵B(0,-4),E(-6,4),∴OB=EG=4 在△AEG 和△ABO 中 EGA BOA 90 EAG BAO EG BO ∴△AEG≌△ABO(AAS),∴AE=AB ∴A 为 BE 中点
A D

初中数学盐城市东台市八年级上期中数学考试卷含答案.docx

初中数学盐城市东台市八年级上期中数学考试卷含答案.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()A.10:05 B.20:01 C.20:10 D.10:02试题2:下面所给的交通标志图中是轴对称图形的是()A. B. C.D.试题3:下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5 B.6、8、10 C.5、12、13 D.2、3、4试题4:如果x2=49,那么x等于()评卷人得分A.7 B.﹣7 C.7或﹣7 D.49或﹣49试题5:已知△ABC的三边长分别为5,13,12,则△ABC的面积为()A.30 B.60 C.78 D.不能确定试题6:在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A. B. C. D.试题7:如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm,B的边长为5cm,C的边长为5cm,则正方形D的边长为()A.cm B.4cm C.cm D.3cm试题8:如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF 的长为()A. B. C. D.试题9:在Rt△ABC中,∠ACB=90°,D是AB的中点,CD=4cm,则AB= cm.试题10:16的平方根是.试题11:已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为.试题12:已知直角三角形的两边的长分别是3和4,则第三边长为.试题13:某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为.试题14:一个直角三角形的斜边比直角边大2,另一直角边为6,则斜边长为.试题15:一个正数的平方根是2x+1和1﹣3x,这个正数是.试题16:如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是(只添一个条件即可).试题17:如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.试题18:如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是.试题19:如图,在四边形ABCD中,∠A=90°,AB=3,BC=12,CD=13,AD=4,求四边形ABCD的面积.试题20:如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.试题21:如图,△ABC中,∠B=90°,BC=8,BC上一点D,使BD:CD=3:5.(1)若AD平分∠BAC,求点D到AC边的距离;(2)若点D恰好在AC边的垂直平分线上,求AB的长.试题22:如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.试题23:已知△ABC中,AB=AC,CD⊥AB于D.(1)若∠A=40°,求∠DCB的度数;(2)若AB=5,CD=3,求BC.试题24:如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.(1)如图(1),当折痕的另一端F在AB边上且AE=4时,求AF的长(2)如图(2),当折痕的另一端F在AD边上且BG=10时,①求证:EF=EG.②求AF的长.试题25:已知,ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直线BC于F点,G为EF的中点,延长CG与AB交于点H.(1)若E在边AC上.①试说明DE=DF;②试说明CG=GH;(2)若AE=6,CH=10,求边AC的长.试题1答案:B【考点】镜面对称.【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:由图分析可得题中所给的“10:05”与“20:01”成轴对称,这时的时间应是20:01.故选:B.【点评】本题考查了镜面反射的原理与性质.解决此类题应认真观察,注意技巧.试题2答案:A【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.试题3答案:D【考点】勾股定理的逆定理.【分析】求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+32=52,能构成直角三角形,故此选项错误;B、62+82=102,能构成直角三角形,故此选项错误;C、52+122=132,能构成直角三角形,故此选项错误;D、22+32≠42,不能构成直角三角形,故此选项正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.试题4答案:C【考点】平方根.【分析】根据平方根的定义解答即可.【解答】解:∵x2=49,∴x等于±7.故选:C.【点评】此题主要考查了平方根的性质,注意此题首先利用了=|a|,然后要注意区分平方根、算术平方根的概念.试题5答案:A【考点】勾股定理的逆定理;三角形的面积.【分析】本题考查了勾股定理的逆定理和三角形的面积公式.【解答】解:∵52+122=132,∴三角形为直角三角形,∵长为5,12的边为直角边,∴三角形的面积=×5×12=30.故选:A.【点评】本题需要学生根据勾股定理的逆定理和三角形的面积公式结合求解.试题6答案:A【考点】勾股定理;点到直线的距离;三角形的面积.【分析】根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.【解答】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选A【点评】此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定理是解本题的关键.试题7答案:A【考点】勾股定理.【分析】根据勾股定理的几何意义,S A+S B+S C+S D=S最大正方形.【解答】解:设正方形D的边长为x.则6×6+5×5+5×5+x2=100;解得x=.故选A.【点评】此题貌似复杂,只要找到切入点,根据勾股定理的几何意义即可列方程解答.试题8答案:D【考点】矩形的性质;翻折变换(折叠问题).【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.试题9答案:8 cm.【考点】直角三角形斜边上的中线.【分析】由于直角三角形斜边上的中线等于斜边的一半,已知了中线CD的长,即可求出斜边的长.【解答】解:∵D是斜边AB的中点,∴CD是斜边AB上的中线;故AB=2CD=8cm.【点评】此题主要考查的是直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.试题10答案:±4 .【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.试题11答案:40°或100°.【考点】等腰三角形的性质;三角形内角和定理.【分析】首先知有两种情况(顶角是40°和底角是40°时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.【解答】解:△ABC,AB=AC.有两种情况:(1)顶角∠A=40°,(2)当底角是40°时,∵AB=AC,∴∠B=∠C=40°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣40°﹣40°=100°,∴这个等腰三角形的顶角为40°和100°.故答案为:40°或100°.【点评】本题考查了等腰三角形的性质和三角形的内角和定理的理解和掌握,能对有的问题正确地进行分类讨论.试题12答案:5或.【考点】勾股定理.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.【点评】此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.试题13答案:10 .【考点】勾股定理.【分析】直接利用直角三角形的性质得出斜边长的平方为100,进而得出答案.【解答】解:∵一个直角三角形的三边长的平方和为200,∴斜边长的平方为100,则斜边长为:10.故答案为:10.【点评】此题主要考查了勾股定理的性质,正确得出斜边的平方是解题关键.试题14答案:10 .【考点】勾股定理.【分析】设斜边为x,根据勾股定理列方程即可解答.【解答】解:设斜边为x,则x2=(x﹣2)2+62解得x=10.【点评】勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方.试题15答案:25 .【考点】平方根.【分析】直接利用平方根的定义得出2x+1+1﹣3x=0,进而求出答案.【解答】解:∵一个正数的平方根是2x+1和1﹣3x,∴2x+1+1﹣3x=0,解得:x=2,故2x+1=5,则这个正数是:52=25.故答案为:25.【点评】此题主要考查了平方根,正确得出x的值是解题关键.试题16答案:CD=BD【考点】全等三角形的判定.【分析】由已知条件具备一角一边分别对应相等,还缺少一个条件,可添加DB=DC,利用SAS判定其全等.【解答】解:需添加的一个条件是:CD=BD,理由:∵∠1=∠2,∴∠ADC=∠ADB,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).故答案为:CD=BD.【点评】本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.试题17答案:76 .【考点】勾股定理;正方形的性质.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=76,故答案是:76.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.试题18答案:36 .【考点】角平分线的性质.【分析】过点O作OE⊥AB于E,作OF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得OE=OD=OF,然后根据三角形的面积列式计算即可得解.【解答】解:如图,过点O作OE⊥AB于E,作OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD=OF=4,∴△ABC的面积=×18×4=36.故答案为:36.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.试题19答案:【考点】勾股定理的逆定理;勾股定理.【分析】先根据勾股定理求出BD的长度,再根据勾股定理的逆定理判断出△BCD的形状,再利用三角形的面积公式求解即可.【解答】解:连接BD∵∠A=90°,AB=3,AD=4,∴BD===5,在△BCD中,BD2+BC2=25+144=169=CD2,∴△BCD是直角三角形,∴S四边形ABCD=AB•AD+BD•BC,=×3×4+×5×12,=36.答:四边形ABCD的面积是36.【点评】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△BCD的形状是解答此题的关键.试题20答案:【考点】全等三角形的判定.【分析】利用∠1=∠2,即可得出∠ABE=∠CBF,再利用全等三角形的判定SAS得出即可.【解答】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,在△ABE与△CBF中,,∴△ABE≌△CBF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.试题21答案:【考点】勾股定理;角平分线的性质;线段垂直平分线的性质.【分析】(1)先根据BC=8,BD:CD=3:5得出BD=3,CD=5,过点D作DH⊥AC于点H,根据角平分线的性质可得出结论;(2)根据D恰好在AC边的垂直平分线上得出AD=CD=5,在Rt△ABD中根据勾股定理即可得出AB的长.【解答】解:(1)∵BC=8,BD:CD=3:5,∴BD=3,CD=5.过点D作DH⊥AC于点H,∵AD平分∠BAC,∠B=90°,∴DH=BD=3,即点D到AC边的距离是3;(2)∵点D恰好在AC边的垂直平分线上,∴AD=CD=5,在Rt△ABD中,∵AD=5,BD=3,∴AB==4.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.试题22答案:【考点】利用轴对称设计图案.【分析】作简单平面图形轴对称后的图形,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.【解答】解:如图所示:【点评】解答此题要明确轴对称的性质,并据此构造出轴对称图形,然后将对称部分涂黑,即为所求.试题23答案:【考点】等腰三角形的性质.【分析】(1)在△ABC中,AB=AC,∠A=40°,利用等腰三角形的性质求出∠B的度数,在Rt△CBD中,求出∠DCB的度数;(2)在Rt△CDA中,利用勾股定理求出AD的长,然后求出BD的长,最后在Rt△CBD中,利用勾股定理求出CB的长度.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠B=×(180°﹣40°)=70°,又∵CD⊥AB于D,∴在Rt△CBD中,∠DCB=90°﹣∠B=20°,(2)在Rt△CDA中,∵AC=AB=5,CD=3,∴AD==4,∴BD=AB﹣AD=5﹣4=1,在Rt△CBD中,BC==.【点评】本题主要考查等腰三角形的性质,勾股定理的知识点,解答本题的关键是熟练掌握勾股定理去求边长,此题难度不大.试题24答案:【考点】几何变换综合题.【分析】(1)根据翻折的性质可得BF=EF,然后用AF表示出EF,在Rt△AEF中,利用勾股定理列出方程求解即可;(2)①根据翻折的性质可得∠BGF=∠EGF,再根据两直线平行,内错角相等可得∠BGF=∠EFG,从而得到∠EGF=∠EFG,再根据等角对等边证明即可;②根据翻折的性质可得EG=BG,HE=AB,FH=AF,然后在Rt△EFH中,利用勾股定理列式计算即可得解.【解答】(1)解:如图1,∵纸片折叠后顶点B落在边AD上的E点处,∴BF=EF,∵AB=8,∴EF=8﹣AF,在Rt△AEF中,AE2+AF2=EF2,即42+AF2=(8﹣AF)2,解得AF=3;(2)如图2,①证明:∵纸片折叠后顶点B落在边AD上的E点处,∴∠BGF=∠EGF,∵长方形纸片ABCD的边AD∥BC,∴∠BGF=∠EFG,∴∠EGF=∠EFG,∴EF=EG;②解:∵纸片折叠后顶点B落在边AD上的E点处,∴EG=BG=10,HE=AB=8,FH=AF,∴EF=EG=10,在Rt△EFH中,FH===6,∴AF=FH=6.【点评】本题考查了翻折变换的性质,勾股定理的应用,相似三角形的判定与性质,熟记翻折前后两个图形能够重合得到相等的线段和角是解题的关键.试题25答案:【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)①连接CD,由直角三角形斜边上的中线性质得出CD=AD=BD,CD⊥AB,证出∠EDA=∠CDF,由ASA证明△ADE ≌△CDF,即可得出结论;②连接CD、DG,由直角三角形斜边上的中线性质得出CG=EG=FG,DG=EG=FG,得出CG=DG,因此∠GCD=∠GDC,由角的互余关系得出∠GHD=∠HDG,证出GH=GD,即可得出结论;(2)分两种情况:①当E在线段AC上时,CG=GH=EG=GF,得出CH=EF=10,由(1)得出AE=CF=6,由勾股定理得出CE,即可得出结论;②当E在线段CA延长线上时,AC=EC﹣AE=8﹣6=2;即可得出结果.【解答】(1)①证明:连接CD,如图1所示:∵∠ACB=90°,AC=BC,D为AB的中点,∴CD=AD=BD,CD⊥AB,∠EDA+∠EDC=90°,∠DCF=∠DAE=45°,∵DF⊥DE,∴∠EDF=∠EDC+∠CDF=90°,∴∠EDA=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴DE=DF;②证明:连接DG,如图2所示:∵∠ACB=90°,G为EF的中点,∴CG=EG=FG,∵∠EDF=90°,G为EF的中点,∴DG=EG=FG,∴CG=DG,∴∠GCD=∠GDC,∵CD⊥AB,∴∠CDH=90°,∴∠GHD+∠GCD=90°,∠HDG+∠GDC=90°,∴∠GHD=∠HDG,∴GH=GD,∴CG=GH;(2)解:分两种情况:①当E在线段AC上时,CG=GH=EG=GF,∴CH=EF=10,由(1)①知:△ADE≌△CDF,∴AE=CF=6,在Rt△ECF中,由勾股定理得:CE===8,∴AC=AE+EC=6+8=14;②当E在线段CA延长线上时,如图3所示:AC=EC﹣AE=8﹣6=2,综上所述,AC=14或2.【点评】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形斜边上的中线性质、勾股定理、等腰三角形的判定等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。

江苏省东台市八年级上学期数学期中考试试卷

江苏省东台市八年级上学期数学期中考试试卷

八年级上学期数学期中考试试卷一、单选题1.下列图形中,不是轴对称图形的是()A. B. C. D.2.根据下列已知条件,能够画出唯一△ABC 的是()A. AB=6,BC=5,∠A=50°B. AB=5,BC=6,AC=13C. ∠A=50°,∠B=80°,AB=8D. ∠A=40°,∠B=50°,∠C=90°3.的平方根是()A. 4B. -4C. ±4D. ±24.下列命题中,假命题的是()A. 在△ABC中,若∠B+∠C=∠A,则△ABC是直角三角形B. 在△ABC中,若a2=(b+c)(b﹣c),则△ABC是直角三角形C. 在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形D. 在△ABC中,若a=32,b=42,c=52,则△ABC是直角三角形5.等腰三角形一边长为5,另一边长为2,则此三角形的周长为()A. 9或12B. 12C. 9D. 106.如图,△ABC≌△ADE,点E在BC边上,∠AED=80°,则∠CAE的度数为()A. 80°B. 60°C. 40°D. 20°7.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=5,CF=3,则BD的长是()A. 2B. 1.5C. 1D. 0.58.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC中点,若点D 在直线BC上运动,连接OE,则在点D运动过程中,则OE的最小值是()A. B. 1 C. D. 2二、填空题9.在△ABC中,∠A=40°,当∠B=________时,△ABC是等腰三角形.10.如果一个正数的两个平方根分别为2m+1和2-m,则这个数是________.11.在一个直角三角形中,已知一条直角边是3cm,斜边上的中线为2.5cm,则这个直角三角形的面积为________cm2.12.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ABO=∠DCO.能判定△ABC≌△DCB的是________.(填正确答案的序号)13.如图,在∠AOB的两边上,分别取OM = ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则△OPM≌△OPN,从而得到OP平分∠AOB,其判定三角形全等的依据是________.14.如图,已知△ABC是等边三角形,点B、C、D、F在同一直线上,CD=CE,DF=DG,则∠F=________°.15.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE=3,CD=4,ED=5,则FG的长为________.16.如图所示,在4×4的方格中每个小正方形的边长是单位1,小正方形的顶点称为格点.现有格点A、B,在方格中任意找一点C(必须是格点),使△ABC成为等腰三角形.这样的格点有________个.17.如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=3cm,则AC=________cm.18.如图,∠C=90°,AC=6,BC=8,∠ABC和∠BAC的角平分线的交点是点D,则△ABD的面积为________.三、解答题19.如图,在长度为1个单位长度的小正方形组成的网格图中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)三角形ABC的面积为________;(3)在直线l上找一点P,使PB+PC的长最短.20.如图,点E、F分别为线段AC上的两个点,且DE⊥AC于点E,BF⊥AC于点F,若AB=CD,AE=CF,BD交AC于点M.求证:(1)AB∥CD;(2)点M是线段EF的中点.21.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,∠ACD=80°,求∠DEC的度数.22.如图,四边形ABCD中,∠BAD=90°,∠DCB=90°,E、F分别是BD、AC的中点.(1)请你猜想EF与AC的位置关系,并给予证明;(2)若∠ABC=45°,AC=16时,求EF的长.23.如图,OA⊥OB,OA=45海里,OB=15海里,有一海岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向海岛O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.24.如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)若∠1=55°,求∠2、∠3的度数;(2)若AB=12,AD=18,求△BC′F的面积.25.如图,△ABC中,CD为AB边上的高,AD=8,CD=4,BD=3.动点P从点A出发,沿射线AB运动,速度为1个单位/秒,运动时间为t秒.(1)当t为何值时,△PDC≌△BDC;(2)当t为何值时,△PBC是等腰三角形?26.如图,△ABC中,∠ACB=90°,AC=8cm,BC=6cm.点P从A点出发沿A→C→B路径以每秒1cm的运动速度向终点B运动;同时点Q从B点出发沿B→C→A路径以每秒vcm的速度向终点A运动.分别过P和Q 作PE⊥AB于E,QF⊥AB于F.(1)设运动时间为t秒,当t=________时,直线BP平分△ABC的面积.(2)当Q在BC边上运动时(t>0),且v=1时,连接AQ、连接BP,线段AQ与BP可能相等吗?若能,求出t的值;若不能,请说明理由.(3)当Q的速度v为多少时,存在某一时刻(或时间段)可以使得△PAE与△QBF全等.答案解析部分一、单选题1.【答案】A【解析】【解答】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故答案为:A.【分析】轴对称图形:一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;据此逐一判断即可.2.【答案】C【解析】【解答】选项A,已知AB、BC 和BC 的对角,不能画出唯一三角形;选项B,∵AB+BC=5+6=11<AC,∴不能画出△ABC;选项C,已知两角和夹边,能画出唯一△ABC;选项D,根据∠A=40°,∠B=50°,∠C=90°不能画出唯一三角形.故选C.【分析】根据全等三角形的判定方法依次判断各项后即可解答.3.【答案】D【解析】【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】∵(±2)2=4,∴的平方根是±2.故选D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根4.【答案】D【解析】【解答】解:A、在△ABC中,若∠B+∠C=∠A,∠A=90°,则△ABC是直角三角形,正确不符合题意;B、在△ABC中,若a2=(b+c)(b﹣c),则△ABC是直角三角形,正确不符合题意;C、在△ABC中,若∠A:∠B:∠C=1:2:3,∴∠A=90°,正确不符合题意;D、在△ABC中,若a=32,b=42,c=52,∵,则△ABC不是直角三角形,错误符合题意;故答案为:D.【分析】根据三角形的内角和,勾股定理的逆定理分别进先判断即可.5.【答案】B【解析】【解答】解:当5为等腰三角形的腰长时,2为底边,此时等腰三角形三边长分别为5,5,2,周长为5+5+2=12;当5为等腰三角形的底边时,腰长为2,此时等腰三角形三边长分别为5,2,2,∵5>2+2,∴不能组成三角形,综上这个等腰三角形的周长为12.故答案为:B.【分析】分两种情况:①当5为等腰三角形的腰长时,②当5为等腰三角形的底边时,利用等腰三角形的性质及三角形三边关系分别解答即可.6.【答案】D【解析】【解答】解:∵△ABC≌△ADE,∠AED=80°,∴∠C=∠AED=80°,AE=AC,∴∠AEC=∠C=80°,∴∠CAE=180°﹣∠C﹣∠AEC=180°﹣80°﹣80°=20°,故答案为:D.【分析】根据全等三角形的性质可得∠C=∠AED=80°,AE=AC,利用等腰三角形的性质可得∠AEC=∠C =80°,利用三角形内角和求出∠CAE=180°﹣∠C﹣∠AEC即可.7.【答案】A【解析】【解答】解:∵FC∥AB,∴∠A=∠ECF,∠F=∠EDA,∵DE=FE,∴△ADE≌△CEF(AAS),∴AD=CF,∵AB=5,CF=3,∴BD=AB-AD=AB-CF=5-3=2;故答案为:A.【分析】利用平行线的性质可得∠A=∠ECF,∠F=∠EDA,根据AAS可证△ADE≌△CEF,可得AD=CF,利用BD=AB-AD=AB-CF即可求出结论.8.【答案】C【解析】【解答】解:设Q为AB的中点,连接DQ,如图所示:∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,∵AB=AC=4,点O为AC的中点,∴AQ=AO,∵AD=AE,∴△AQD≌△AOE(SAS),∴QD=OE,∵点D在直线BC上运动,∴当QD⊥BC时,QD最小,∵△ABC是等腰直角三角形,∴∠B=45°,∴△QBD是等腰直角三角形,∴,∵,∴,∴线段OE的最小值为;故答案为:C.【分析】设Q为AB的中点,连接DQ,如图所示,根据SAS可证△AQD≌△AOE,可得QD=OE,当QD⊥BC 时,QD最小,易得△QBD是等腰直角三角形,可得,据此求出QD的值即可.二、填空题9.【答案】40°或70°或100°【解析】【解答】①∠B=∠A=40°,此时∠C=100°,符合题意;②∠B=∠C= =70°,符合题意;③∠A=∠C=40°,此时∠B=100°,符合题意;故填40°或70°或100°【分析】根据等腰三角形的性质分情况讨论即可求解.10.【答案】25【解析】【解答】解:由题意得:,解得:,∴,∴这个数为:;故答案为25.【分析】根据平方根的意义可得,据此求出m的值,从而求出结论.11.【答案】6【解析】【解答】解:由直角三角形斜边上的中线为2.5cm,结合直角三角形斜边中线定理可得斜边长为:5cm,因为一条直角边为3cm,所以可得另一条直角边为:cm,则有:;故答案为6.【分析】根据直角三角形斜边中线定理,可求出斜边长,再利用勾股定理求出另一条直角边长,利用三角形面积公式计算即得.12.【答案】①③④【解析】【解答】解:能判定△ABC≌△DCB的是①③④,理由是:①∵在△ABC和△DCB中,∴△ABC≌△DCB(SAS);③∵在△ABC和△DCB中,∴△ABC≌△DCB(AAS);④∵∠ABC=∠DCB,∠ABO=∠DCO,∴∠DBC=∠ACB,在△ABC和△DCB中,∴△ABC≌△DCB(ASA),故答案为:①③④.【分析】①AB=CD,可根据SAS可证△ABC≌△DCB;②AC=DB,可;③∠A=∠D,可根据AAS 可证△ABC≌△DCB;④∠ABO=∠DCO,可根据ASA可证△ABC≌△DCB,利用②无法判断△ABC≌△DCB;据此判断即可.13.【答案】HL【解析】【解答】∵PM⊥OA,PN⊥OB,∴在Rt△PMO和Rt△PNO中,,∴Rt△PMO≌Rt△PNO(HL);故答案为HL.【分析】根据HL可证Rt△PMO≌Rt△PNO.14.【答案】15【解析】【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∵CD=CE,DF=DG,∴∠EDC=∠ECD,∠F=∠DGF,∴∠ACB=2∠EDC,∠EDC=2∠F,∴∠ACB=4∠F,∴∠F=15°;故答案为15.【分析】根据等边三角形的性质可得∠ACB=60°,利用等边对等角可得∠EDC=∠ECD,∠F=∠DGF,根据三角形外角的性质可得∠ACB=2∠EDC,∠EDC=2∠F,从而可得∠ACB=4∠F=60°,从而求出结论.15.【答案】2【解析】【解答】解:∵ED∥BC,∴∠EGB=∠GBC,∵BG平分∠ABC,∴∠ABG=∠GBC,∴∠ABG=∠EGB,∴BE=EG,同理可得DF=DC,∵BE=3,ED=5,∴GD=ED-EG=5-3=2,∴FG=FD-DG=4-2=2;故答案为2.【分析】根据平行线的性质可得∠EGB=∠GBC,利用家平分线的定义可得∠ABG=∠GBC,从而得出∠ABG=∠EGB,由等角对等边可得BE=EG,同理可得DF=DC,从而求出GD=ED-EG=5-3=2,由FG=FD-DG即可求出结论.16.【答案】8【解析】【解答】如图所示只有C点在这8个点的位置,A、B、C三点为顶点才能构成等腰三角形,∴满足条件的格点有:8个.故答案为:8.【分析】根据等腰三角形的性质和网格图的特征可求解.17.【答案】7【解析】【解答】解:∵MN是线段BC的垂直平分线,∴CD=BD,∵△ADB的周长是10cm,∴AD+BD+AB=10cm,∴AD+CD+AB=10cm,∴AC+AB=10cm,∵AB=3cm,∴AC=7cm,故答案为:7.【分析】根据线段的垂直平分线可得CD=BD,由AD+CD+AB=AD+BD+AB=10cm,从而可得AC+AB=10cm,据此即可求出AC的长.18.【答案】10【解析】【解答】解:连接CD,过点D作DE⊥AC于点E,DF⊥BC于点F,DH⊥AB于点H,如图所示:∵AD平分∠CAB,∴DE=DH,同理可得DF=DH,∴DE=DF=DH,∵AC=6,BC=8,∠C=90°,∴,∴,∴DH=2,∴;故答案为10.【分析】连接CD,过点D作DE⊥AC于点E,DF⊥BC于点F,DH⊥AB于点H,根据角平分线的性质可得DE=DF=DH,在Rt△ABC中,利用勾股定理求出AB=10,利用,可求出DH=2,根据即可求出结论.三、解答题19.【答案】(1)解:分别作B、C关于直线l的对称点,如图所示:(2)3(3)解:由(1)可得:点C与点关于直线对称,连接PC、,如图所示:∴,∵,∴要使BP+PC为最短,则需B、P、三点共线即可,即为的长,∴,即PB+PC的长最短为.【解析】【解答】解:(2)由网格图可得:;故答案为3;【分析】(1)根据轴对称的性质,分别作B、C关于直线l的对称点,然后顺次连接即可;(2)利用割补法进行解答即可;(3)连接PC、,要使BP+PC为最短,则需B、P、三点共线即可,即为的长,利用勾股定理求值即可.20.【答案】(1)证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE.在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴∠BAF=∠DCE,∴AB∥CD;(2)证明:∵Rt△ABF≌Rt△CDE,∴DE=BF,在△DEM和△BFM中,,∴△DEM≌△BFM(AAS),∴MB=MD.即点M是线段EF的中点.【解析】【分析】(1)根据HL可证Rt△ABF≌Rt△CDE,可得∠BAF=∠DCE,利用内错角相等,两直线平行进先判断即可;(2)由Rt△ABF≌Rt△CDE可得DE=BF,根据AAS可证△DEM≌△BFM,可得MB=MD,据此判断即可.21.【答案】(1)证明:如图,∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ABC和△DEC中,∴△ABC≌△DEC(AAS),∴AC=CD;(2)解:∵∠ACD=80°,AC=CD,∴∠2=∠D=50°,∵AE=AC,∴∠4=∠6=65°,∴∠DEC=180°-∠6=115°.【解析】【分析】(1)根据同角的余角相等可得∠3=∠5,根据AAS可证△ABC≌△DEC,可得AC=CD;(2)根据等腰三角形的性质及三角形的内角和可得∠2=∠D=50°,由AE=AC,可得∠4=∠6=65°,根据邻补角的定义即可求出∠DEC=180°-∠6=115°.22.【答案】(1)解:EF⊥AC,理由如下:连接AE、CE,如图所示:∵∠BAD=90°,∠DCB=90°,点E是BD的中点,∴,∴AE=CE,∴△AEC是等腰三角形,∵点F是AC的中点,∴EF⊥AC;(2)解:由(1)可得:△AEC是等腰三角形,AE=BE,BE=EC,∴∠ABE=∠BAE,∠EBC=∠ECB,∴∠AED=2∠ABE,∠DEC=2∠EBC,∵∠ABC=45°=∠ABE+∠EBC,∴∠AEC=∠AED +∠DEC=2∠ABC=90°,∴△AEC是等腰直角三角形,∴AC=2EF,∵AC=16,∴EF=8.【解析】【分析】(1)EF⊥AC,理由如下,连接AE、CE,如图所示,根据直角三角形的性质可得AE=CE,利用等腰三角形三线合一的性质可得EF⊥AC;(2)先求出△AEC是等腰直角三角形,从而可得AC=2EF=16,据此求出EF的长.23.【答案】(1)解:连接AB,分别以点A、B为圆心,大于AB长的一半为半径画弧,交于两点,然后连接这两个点,交OA于点C,则C即为所求;如图所示:(2)解:连接BC,如图所示:由(1)及OB=15海里,OA=45海里,可设AC=BC=x,则有OC=45-x,在Rt△BOC中,,即,解得:,即BC=25海里.【解析】【分析】(1)连接AB,分别以点A、B为圆心,大于AB长的一半为半径画弧,交于两点,然后连接这两个点,交OA于点C,则C即为所求;(2)连接BC,可设AC=BC=x,则有OC=45-x,在Rt△BOC中,可得,即24.【答案】(1)解:∵四边形ABCD是矩形,∴AD∥BC,∴∠1=∠2,∵∠1=55°,由折叠的性质可得∠BEF=∠2,∴∠2=∠BEF=∠1=55°,∵∠3+∠2+∠BEF=180°,∴∠3=70°;(2)解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠C=90°,由折叠的性质可得:,,,设,则有BF=18-x,则有:在Rt△中,,即,解得:,∴.【解析】【分析】(1)根据矩形的性质可得AD∥BC,可得∠1=∠2,利用折叠的性质可得∠BEF=∠2∠1=55°,由∠3+∠2+∠BEF=180°即可求出结论;(2)根据矩形的性质可得AB=CD,AD=BC,∠C=90°,由折叠的性质可得:,,设,则有BF=18-x,在Rt△中,利用勾股定理可得,据此求出x的值,利用25.【答案】(1)解:∵△PDC≌△BDC,∴PD=BD=3,即8﹣t=3,解得t=5(秒);或点P与B重合,此时t=11,综上所述,满足条件的t的值为5或11;(2)解:∵CD=4,BD=3,CD⊥AB,当BC=CP时,且CD⊥AB,∴PD=BD=3,可得8﹣t=3,解得t=5(秒);当BC=BP=5,可得11﹣t=5,解得t=6(秒);当CP=BP时,可得CP2=PD2+CD2,∴BP2=(BP﹣3)2+16,∴t=【解析】【分析】(1)根据全等三角形的性质可得PD=BD=3,即得8﹣t=3,求出t=5;当点P与B重合,此时t=11,从而求出结论;(2)先利用勾股定理求出BC=5,分三种情况①当BC=CP时且CD⊥AB,②当BC=BP=5,③当CP=BP时据此分别解答即可.26.【答案】(1)4(2)解:假设可能相等.则有82+(6﹣t)2=62+(8﹣t)2,解得t=0,不符合题意,所以当Q在BC边上运动时(t>0),且v=1时、线段AQ与BP不可能相等.(3)解:①当点Q在线段BC上时,在Rt△AEP和Rt△BFQ中,∵∠AEP=∠BFQ=90°,∠C=90°,∴∠A+∠B=90°,∠B+∠BQF=90°,∴∠A=∠BQF,∴当PA=BQ时,△AEP≌△FQB,∴当v=1cm/s时,0<t≤6时,△PAE与△QBF全等.②当P,Q在AC边上相遇时,且PA=PB时,△PAE与△QBF全等.设此时PA=PB=x,在Rt△PBC中,∵PB2=PC2+BC2,∴x2=(8﹣x)2+62,∵当P,Q在AC边上相遇,可得解得∴当v=cm/s时.t=时,△PAE与△QBF全等.【解析】【解答】解:(1)当AP=PC时,直线BP平分△ABC的面积.此时t=4.故答案为4.【分析】(1)根据直线BP平分△ABC的面积进行解答即可;(2)假设AQ=BP,利用勾股定理构建方程,进行解答并检验即可;(3)分两种情况,①当点Q在线段BC上时,②当P,Q在AC边上相遇时,且PA=PB时,△PAE 与△QBF全等,据此分别解答即可.。

2017-2018学年第一学期期中考试八年级数学试题及答案

2017-2018学年第一学期期中考试八年级数学试题及答案

2017-2018学年第一学期八年级 数学(上) 参考答案及评分标准一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.> 18.3 19.2 20.8三、解答题(本大题共6个小题,共56分.解答应写出相应的文字说明或解题步骤)21.(1)解:原式=yx 2- ……………(4分) 21.(2)解:原式=2)1()1()111(a a a a a a +-∙++-+ ……………(2分) =2)1()1(11a a a +-∙+- =21-a ……………(4分) 21.(3)解:据题意得:x ﹣2=22=4,∴ x =6, ……………(1分)2y ﹣11=(﹣3)3=﹣27,∴ y =﹣8, ……………(2分)则x 2+y 2=62+(﹣8)2=36+64=100, ………………(3分)∴ x 2+y 2的平方根为±10. …………………(4分)22.解:(1)二, …………………(2分)a-24; …………………(4分) (2)由题意得,aa a -++222=2, 即a-24=2, …………………(5分) 解得:a =0, …………………(7分)经检验,a =0是原方程的解,∴ 当a =0时,原代数式的值等于2. …………………(8分)23.如图1,作出∠B =∠β得3分;作出边BC =a 得2分;作出边AC =b 和A ′C =b 共得3分,少一种情况扣1分.24.(1)命题一,命题二; …………………(4分) (2)命题一: 条件是①AB=AC ,②AD=AE ,③∠1=∠2,结论是④BD=CE .证明:∵∠1=∠2∴∠BAD=∠CAE ,又AB=AC ,AD=AE ,∴△ABD ≌△ACE (SAS ) …………………(8分)∴BD=CE .…………………(9分)或:命题二:条件是①AB=AC ,②AD=AE ,④BD=CE ,结论是③∠1=∠2.证明:∵AB=AC ,AD=AE ,BD=CE ,∴△ABD ≌△ACE (SSS ),…………………(8分)∴∠BAD=∠CAE ,∴∠1=∠2.…………………(9分)25.解:(1)设第一次购进衬衫x 件. 根据题意得:48000217600=-xx .…………………(4分) 解得:x =200.…………………(6分)经检验:x =200是原方程的解.答:该服装店第一次购进衬衫一共200件.…………………(7分)(2)盈利;…………………(8分)盈利=58×(200+400)﹣(17600+8000)=9200(元)…………………(9分) 答:该服装店这笔生意一共盈利9200元.26.(1)△ABE ≌△ACE ,△ADF ≌△CDB ………………(2分)(2)CEAF =2 …………………(3分) 证明:如图2,∵AE 平分∠DAC ,图2 A′ β b图1 A C B ba∴∠CAE =∠BAE ,∵AE ⊥CE ,∴∠AEC =∠AEB =90°,在△AEC 和△AEB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠BAECAE AE AE AEBAEC∴△AEC ≌△AEB (ASA ),∴CE =BE ,即CB =2CE ,…………………(5分)∵∠ADC =90°,∴∠ADF=∠CDB =90°,∴∠B +∠DCB =90°,∵∠B +∠DAF =90°,∴∠DAF =∠DCB ,在△ADF 和△CDB 中,⎪⎩⎪⎨⎧∠=∠=∠︒=∠=∠DCBDAF CD AD CDB ADF 90,∴△ADF ≌△CDB (ASA ),∴AF =CB =2CE ,即CE AF=2. …………………(7分)(3)等于; ……………(8分)辅助线如图3, …………………(9分)作法:过点P 作PG ⊥DC 交CE 的延长线于点G ,交DC 于点B . ………………(10分) 或:过点P 作PG ∥AD 交CE 的延长线于点G ,交DC 于点B . 或:延长CE 到点G ,使CE =GE ,连接PG 交DC 于点B . (说明:其它作法正确均给分)D CE 图3 G。

江苏省盐城市 八年级(上)期中数学试卷(含答案)

江苏省盐城市  八年级(上)期中数学试卷(含答案)

八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.下列图形中,是轴对称图形的是()A. B.C. D.2.下列四组线段中,可以构成直角三角形的是()A. 4,5,6B. 3,4,5C. 2,3,4D. 1,2,33.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A. 30∘B. 40∘C. 50∘D. 60∘4.等腰三角形两边分别为3和7,那么它的周长为()A. 10B. 13C. 17D. 13或175.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A. ∠A=∠DB. AB=DCC. ∠ACB=∠DBCD. AC=BD6.如图,AC=AD,BC=BD,则下列判断正确的是()A. AB垂直平分CDB. CD垂直平分ABC. AB与CD互相垂直平分D. CD平分∠ACB7.与三角形三个顶点距离相等的点,是这个三角形的()A. 三条中线的交点B. 三条角平分线的交点C. 三条高的交点D. 三边的垂直平分线的交点8.如图,△ABC中,AB=5,AC=4,BO,CO分别平分∠ABC,∠ACB,过点O作直线平行于BC,交AB、AC于D、E,则△ADE的周长为()A. 8B. 9C. 10D. 12二、填空题(本大题共10小题,共30.0分)9.等腰△ABC中,若∠A=100°,则∠B= ______ .10.如图,要使四边形木架不变形,至少要钉上______ 根木条.11.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若AB=4,则CD= ______ .12.已知一个三角形的三边分别是6cm、8cm、10cm,则这个三角形的面积是______ .13.如图,一块三角形玻璃裂成①②两块,现需配一块同样的玻璃,为方便起见,只需带上碎片______ 即可.14.如图,已知AB∥CF,E为DF的中点,若AB=7cm,CF=4cm,则BD= ______ cm.15.如图,△ABC中,∠C=90°,AB的垂直平分线交BC于D,如果∠B=35°,则∠CAD=______ °.16.如图,CD⊥AB于D,BE⊥AC于E,BE与CD交于O,OB=OC,则图中全等三角形共有______ 对.17.如图,以直角三角形各边向外作正方形,其中两个正方形的面积为225和144,则正方形A的面积为______ .18.如图,将长方形纸片ABCD沿EF折叠后,点C,D分别落在点C′,D′处,若∠AFE=68°,则∠C′EF= ______ °.三、解答题(本大题共10小题,共96.0分)19.如图,在8×8的正方形网格中,每个小正方形的边长都是1,已知△ABC的三个顶点在格点上.(1)画出△ABC关于直线l对称的△A1B1C1.(2)△ABC ______ 直角三角形(填“是”或“不是”).20.如图,点B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.21.已知:如图,∠EAC是△ABC的一个外角,AD平分∠EAC,AD∥BC.求证:△ABC是等腰三角形.22.如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,求∠ABD的度数.23.某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80m,BC=60m.线段CD是一条水渠,且D点在边AB上,已知水渠的造价为1000元/m,问:当水渠的造价最低时,CD长为多少米?最低造价是多少元?24.如图,△ABC中,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)如果BC=8,求△DAF的周长.(2)如果∠BAC=110°,求∠DAF的度数.25.已知:如图,△ABC中,AB=AC,点D是BC的中点,AB平分∠DAE,BE⊥AE,垂足为E,(1)求证:AD=AE.(2)若BE∥AC,试判断△ABC的形状,并说明理由.26.如图,在△ABC中,∠ACB=90°,AC=BC,AD⊥CE于D,BE⊥CE于E.(1)求证:△ADC≌△CEB;(2)若AD=10cm,DE=6cm,求线段BE的长.27.如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边△CDE,连接AE.(1)求证:△ACE≌△BCD;(2)判断AE与BC的位置关系,并说明理由.28.如图1,△ABC中,∠C=90°,AB=20cm,BC=12cm,若动点P从点C开始,沿着C→A→B的路径运动,且速度为每秒1cm,设点P运动的时间为t秒.(1)当t=5秒时,求△ABP的周长.(2)当t为几秒时,PC=PB;(3)当t为几秒时,BP平分∠ABC.答案和解析1.【答案】C【解析】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.直接根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】B【解析】解:A、∵42+52≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;B、∵32+42=52,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;C、∵22+32≠42,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵12+22≠32,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选:B.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.【答案】D【解析】解:∵∠B=90°,∠1=30°,∴∠3=90°-∠1=90°-30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选D.根据直角三角形两锐角互余求出∠3,再利用“HL”证明Rt△ABC和Rt△ADC 全等,根据全等三角形对应角相等可得∠2=∠3.本题考查了全等三角形的判定与性质,直角三角形两锐角互余的性质,熟练掌握三角形全等的判定方法是解题的关键.4.【答案】C【解析】解:(1)当7是底边时,3+3<7,不能构成三角形;(2)当3是底边时,可以构成三角形,周长=7+7+3=17.故选C.因为题目的已知条件底边和腰没有确定,所以分两种情况讨论.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.【答案】D【解析】解:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;故选:D.本题要判定△ABC≌△DCB,已知∠ABC=∠DCB,BC是公共边,具备了一组边对应相等,一组角对应相等,故添加AB=CD、∠ACB=∠DBC、∠A=∠D后可分别根据SAS、ASA、AAS能判定△ABC≌△DCB,而添加AC=BD后则不能.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.【答案】A【解析】解:在△ABC与△BDC中,,∴△ABC≌△ABD,∴∠CAB=∠DAB,∴AB垂直平分CD,故选A.根据全等三角形的性质得到∠CAB=∠DAB,根据等腰三角形的性质即刻得到结论.本题考查了线段垂直平分线的性质,全等三角形的判断和性质,熟练掌握线段垂直平分线的性质是解题的关键.7.【答案】D【解析】解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.此题考查了线段垂直平分线的性质;题目比较简单,只要熟知线段垂直平分线的性质即可.分别思考,两两满足条件是解答本题的关键.8.【答案】B【解析】解:∵BO平分∠ABC,∴∠DBO=∠OBC,∵DE∥BC,∴∠DOB=∠OBC,∴∠DBO=∠DOB,∴DB=DO.同理可得:EC=EO.∴AD+AE+DE=AD+AE+DO+EO=AD+AE+DB+EC=AB+AC=5+4=9,即三角形ADE的周长为9.故选B.欲求△ADE的周长,根据已知可利用平行线的性质及等腰三角形的性质、角平分线的定义求解.本题综合考查等腰三角形的判定与性质,平行线的性质及角平分线的定义等知识;证明三角形是等腰三角形是解题的关键.9.【答案】40°【解析】解:分两种情况讨论:当∠A=100°为顶角时,∠B==40°;当∠A=100°为底角时,∠B为底角时∠B=∠A=100°,100°+100°=200°>180°,不能构成三角形,此种情况不存在.故答案为:40°.本题要分两种情况讨论:当∠A=100°为顶角;当∠A=100°为底角时,则∠B为底角时或顶角.然后求出∠B.本题考查的是等腰三角形的性质,熟知等腰三角形的两个底角相等是解答此题的关键.10.【答案】1【解析】解:根据三角形具有稳定性,在四边形的对角线上添加一根木条即可.故答案为:1当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,而四边形不具有稳定性.本题主要考查了三角形的稳定性,解题时注意:三角形具有稳定性,这一特性主要应用在实际生活中.11.【答案】2【解析】解:如图,∵D是AB的中点,∴CD=AB=2.故填空答案:2.根据直角三角形斜边上的中线等于斜边的一半即可求出CD.此题主要是运用了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.12.【答案】24cm2【解析】解:∵62+82=102,∴此三角形是直角三角形,∴此直角三角形的面积为:×6×8=24(cm2).故答案为:24cm2.先利用勾股定理的逆定理判断出三角形的形状,再利用三角形的面积公式即可求出其面积.本题考查了勾股定理的逆定理,能够根据具体数据运用勾股定理的逆定理判定该三角形是一个直角三角形是解决此类问题的关键.13.【答案】②【解析】解:只需带上碎片②即可.理由:碎片②中,可以测量出三角形的两边以及夹角的大小,三角形的形状即可确定.故答案为②.根据全等三角形的判定方法“SAS”即可判定.本题考查全等三角形的应用,灵活运用所学知识是解题的关键,属于基础题,中考常考题型.14.【答案】3【解析】解:∵AB∥FC,∴∠ADE=∠EFC,∵E是DF的中点,∴DE=EF,在△ADE与△CFE中,,∴△ADE≌△CFE(ASA),∴AD=CF=4cm,∴BD=AB-AD=7-4=3(cm).故答案为:3.根据平行的性质求得内错角相等,根据ASA得出△ADE≌△CFE,从而得出AD=CF,已知AB,CF的长,即可得出BD的长.本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定定理是解题的关键.15.【答案】20【解析】解:∵∠C=90°,∠B=35°,∴∠BAC=55°,∵DE是AB的垂直平分线,∴DB=DA,∴∠DAB=∠B=35°,∴∠CAD=∠BAC-∠DAB=20°,故答案为:20.根据三角形内角和定理求出∠BAC=55°,根据线段垂直平分线的性质得到DB=DA,得到∠DAB=∠B=35°,计算即可.本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握线段垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.16.【答案】4【解析】解:在△BOD和△COE中,,∴△BOD≌△COE,同理△ABO≌△ACO,△ADO≌△AEO,△ADC≌△AEB,故答案为:4.根据全等三角形的判定定理进行判断即可.本题考查的是全等三角形的判定,掌握三角形全等的判定定理是解题的关键.17.【答案】81【解析】解:如图,∵∠CBD=90°,CD2=225,BC2=144,∴BD2=CD2-BC2=81,∴正方形A的面积为81,故答案为:81.根据正方形可以计算斜边和一条直角边,则另一条直角边根据勾股定理就可以计算出来.本题考查了勾股定理的运用,考查了正方形面积的计算,本题中解直角△BCD是解题的关键.18.【答案】68【解析】解:∵AD∥BC,∴∠AFE=∠FEC=68°,∵将长方形纸片ABCD沿EF折叠后,点C,D分别落在点C′,D′处,∴∠C′EF=∠FEC=68°,故答案为:68.根据平行线的性质得到∠AFE=∠FEC=68°,然后根据折叠的性质即刻得到结论.本题考查了平行线的性质,翻折变换的性质,邻补角定义的应用,熟记折叠的性质是解题的关键.19.【答案】是【解析】解:(1)如图所示:△A1B1C1,即为所求;(2)∵AB2=12+22=5,BC2=22+42=20,AB2=25,∴AB2+BC2=AB2,∴△ABC是直角三角形.故答案为:是.(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)利用勾股定理逆定理得出答案.此题主要考查了轴对称变换以及勾股定理逆定理,正确得出对应点位置是解题关键.20.【答案】证明:∵BE=CF,∴BC=EF,--------------------------(2分)在△ABC和△DEF中,AB=DE,AC=DF,BC=EF,----------------------------(4分)∴△ABC≌△DEF(SSS).------------------(6分)【解析】根据BE=CF得到BC=EF,然后利用SSS判定定理证明△ABC≌△DEF即可.本题主要考查三角形全等的判定;要牢固掌握并灵活运用这些知识.21.【答案】证明:∵AD平分∠CAE,∴∠EAD=∠CAD,∵AD∥BC,∴∠EAD=∠B,∠CAD=∠C,∴∠B=∠C,∴AB=AC.故△ABC是等腰三角形.【解析】根据角平分线的定义可得∠EAD=∠CAD,再根据平行线的性质可得∠EAD=∠B,∠CAD=∠C,然后求出∠B=∠C,再根据等角对等边即可得证.本题考查了等腰三角形的判定,角平分线的定义,平行线的性质,比较简单熟记性质是解题的关键.22.【答案】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=70°,∵BD=BC,∴∠C=∠BDC=70°,∴∠CBD=40°,∴∠ABD=30.【解析】根据等腰三角形的性质得到∠ABC=∠C=70°,∠C=∠BDC=70°,由三角形的内角和得到∠CBD=40°,于是得到结论.本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.23.【答案】解:当CD为斜边上的高时,CD最短,从而水渠造价最低,∵∠ACB=90°,AC=80米,BC=60米,∴AB=√AC2+BC2=√602+802=100米,∵CD•AB=AC•BC,即CD•100=80×60,∴CD=48米,∴在Rt△ACD中,AC=80,CD=48,∴AD=√AC2−CD2=√802−482=64米,所以,CD长为48米,水渠的造价最低,其最低造价为48000元.【解析】当CD为斜边上的高时,CD最短,从而水渠造价最低,根据已知条件可将CD 的长求出,在Rt△ACD中运用勾股定理可将AD边求出.此题考查勾股定理的应用,本题的关键是确定D点的位置,在运算过程中多次用到勾股定理.24.【答案】解:(1)∵DE、FG分别为AB、AC的垂直平分线,∴DA=DB,FA=FC,∴△DAF的周长=AD+DF+AF=BD+DF+FC=BC=8;(2)∵∠BAC=110°,∴∠B+∠C=70°,∵DA=DB,FA=FC,∴∠BAD=∠B,∠CAF=∠C,∴∠BAD+∠CAF=70°,∴∠DAF=110°-70°=40°.【解析】(1)根据线段垂直平分线的性质得到DA=DB,FA=FC,根据三角形的周长公式计算即可;(2)根据三角形内角和定理得到∠B+∠C=70°,根据线段垂直平分线的性质得到DA=DB,FA=FC,得到∠BAD=∠B,∠CAF=∠C,计算即可.本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握线段垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.25.【答案】(1)证明:∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠ADB=90°,∵AE⊥AB,∴∠E=90°=∠ADB,∵AB平分∠DAE,∴∠BAD=∠BAE,在△ADB和△AEB中,{∠ADB=∠E∠BAD=∠BAE AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE;(2)△ABC是等边三角形.理由:∵BE∥AC,∴∠EAC=90°,∵AB=AC,点D是BC的中点,∴∠BAE=∠BAD=∠CAD=30°,∴∠BAC=∠BAD+∠CAD=60°,∴△ABC是等边三角形.【解析】(1)由边角关系求证△ADB≌△AEB即可;(2)由题中条件可得∠BAC=60°,进而可得△ABC为等边三角形.本题考查了等边三角形的判定,等腰三角形的性质,全等三角形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键.26.【答案】证明:∵∠E=∠CDA=∠ACB=90°,∴∠BCE+∠ACD=90°,∠BCE+∠CBE=90°,∴∠CBE=∠ACD,在:△ADC与△CEB中,{∠CBE=∠ACD ∠E=∠CDABC=AC,∴△ADC≌△CEB;(2)∵△ADC≌△CEB,∴BE=CD,AD=CE,∴AD-BE=CE-CD=DE,∵AD=10cm,DE=6cm,∴BE=4cm.【解析】(1)根据判断出∠CBE=∠ACD,根据AAS推出△BCE≌△CAD;(2)根据全等三角形的性质得出BE=CD,AD=CE,即可推出答案.本题考查了全等三角形的性质和判定的应用,解此题的关键是推出△BCE≌△CAD,注意:全等三角形的对应边相等.27.【答案】(1)证明:∵△ABC,△DCE为等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=∠B=60°,∴∠ACE=∠BCD,在∠ACE和△BCD中,{AC=BC∠ACE=∠BCD EC=DC,∴△ACE≌△BCD(SAS),(2)解:结论:AE∥BC.理由:∵△ACE≌△BCD,∴∠EAC=∠DBC=60°,∵∠ACB=∠DBC=60°,∴∠EAC=∠ACB=60°,∴AE∥BC.【解析】(1)只要证明∠ACE=∠BCD,根据SAS即可证明.(2)结论:AE∥BC.只要证明∠CAE=∠ACB=60°即可.本题考查等边三角形的性质、全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形,学会利用全等三角形的性质解决问题,属于中考常考题型.28.【答案】解:(1)如图1,∵∠C=90°,AB=20cm,BC=12cm,∴AC=16cm,∵点P的速度为每秒1cm,∴出发5秒时,CP=5cm,AP=11cm,∵∠C=90°,∴Rt△BCP中,BP=13cm,∴△ABP的周长为:AP+PB+AB=44cm;(2)当点P在AC边上时,PB>PC;如图,当点P在AB边上时,若BP=CP,则∠PCB=∠B,∵∠ACP+∠PCB=90°,∠B+∠A=90°,∴∠ACP=∠A,∴PA=PC,∴PA=PB=10cm,∴点P的运动路程=AC+AP=26cm,∴t=26÷1=26s,∴当t为26秒时,PC=PB;(3)如图,过点P作PD⊥AB于点D,∵BP平分∠ABC,∴PD=PC,在Rt△BPD和Rt△BPC中,BP=BP,{PC=PD∴Rt△BPD≌Rt△BPC(HL),∴BD=BC=12cm,∴AD=20-12=8cm,设PC=xcm,则PD=xcm,AP=(16-x)cm,在Rt△APD中,PD2+AD2=AP2,即x2+82=(16-x)2,解得x=6,∴当t=6秒时,BP平分∠ABC.【解析】(1)根据勾股定理求得AC=16cm,根据运动的速度和时间求得CP=5cm,AP=11cm,最后根据勾股定理得到BP=13cm,即可得到△ABP的周长为:AP+PB+AB=44cm;(2)根据BP=CP,则∠PCB=∠B,进而得出PA=PB=10cm,故点P的运动路程=AC+AP=26cm,最后根据t=26÷1=26s,得到当t为26秒时,PC=PB;(3)过点P作PD⊥AB于点D,判定Rt△BPD≌Rt△BPC(HL),得到BD=BC=12cm,AD=20-12=8cm,再设PC=xcm,则PD=xcm,AP=(16-x)cm,在Rt△APD中,根据勾股定理得到PD2+AD2=AP2,即x2+82=(16-x)2,解得x=6,即可得到当t=6秒时,BP平分∠ABC.本题属于三角形综合题,主要考查了勾股定理,等腰三角形的性质,全等三角形的判定与性质以及角平分线的性质的综合应用,解决第(3)问的关键是作辅助线构造直角三角形,运用勾股定理列出方程进行求解.解题时注意方程思想的运用.。

2017-2018年江苏省盐城市东台市第五联盟八年级(上)数学期中试卷及参考答案

2017-2018年江苏省盐城市东台市第五联盟八年级(上)数学期中试卷及参考答案

2017-2018学年江苏省盐城市东台市第五联盟八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.(3.00分)在以下四个银行标志中,属于轴对称图形的是()A.B.C.D.2.(3.00分)64的立方根是()A.4 B.±4 C.8 D.±83.(3.00分)若等腰三角形的两边长分别为3cm和6cm,则该等腰三角形的周长是()A.9cm B.12cm C.12cm或15cm D.15cm4.(3.00分)如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.1945.(3.00分)下列三条线段能构成直角三角形的是()A.1cm,2cm,3cm B.2cm,4cm,5cm C.6cm,8cm,10cm D.6.(3.00分)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP7.(3.00分)如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°8.(3.00分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共有10小题,每小题3分,共30分.)9.(3.00分)16的平方根是.10.(3.00分)在等腰三角形ABC中,∠A=120°,则∠C=.11.(3.00分)如图,AD是△ABC的角平分线,如果再具备条件,就可以根据“ASA”得到△ABD≌△ACD.12.(3.00分)已知直角三角形的两边的长分别是3和4,则第三边长为.13.(3.00分)如图,用直尺和圆规作一个角的平分线,是运用了“全等三角形的对应角相等”这一性质,由作图所得条件,判定三角形全等运用的方法是.14.(3.00分)一个正数的平方根是2x+1和1﹣3x,这个正数是.15.(3.00分)如图,已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD,连接DE,则∠BDE=°.16.(3.00分)如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长应不超过米.17.(3.00分)如图,在Rt△ABC中,∠ACB=90°,以AC为边的正方形面积为12,中线CD的长度为2,则BC的长度为.18.(3.00分)如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD ⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.三、解答题(本大题共有7小题,共66分.)19.(10.00分)(1)计算﹣(1+)0+(2)解方程(x﹣1)3=﹣27.20.(8.00分)已知3x+1的平方根为±2,2y﹣1的立方根为3,求2x+y的平方根.21.(10.00分)已知:如图,AB∥ED,AB=DE,点F,点C在AD上,AF=DC.(1)求证:△ABC≌△DEF;(2)求证:BC∥EF.22.(8.00分)如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)四边形ACBB′的面积为.23.(8.00分)学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.24.(10.00分)小王剪了两张直角三角形纸片,进行了如下的操作:(1)如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE,若AC=6cm,BC=8cm,求CD的长.(2)如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=6cm,BC=8cm,求CD的长.25.(12.00分)如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?2017-2018学年江苏省盐城市东台市第五联盟八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.)1.(3.00分)在以下四个银行标志中,属于轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.2.(3.00分)64的立方根是()A.4 B.±4 C.8 D.±8【解答】解:∵4的立方等于64,∴64的立方根等于4.故选:A.3.(3.00分)若等腰三角形的两边长分别为3cm和6cm,则该等腰三角形的周长是()A.9cm B.12cm C.12cm或15cm D.15cm【解答】解:底边为3cm,腰长为6cm,这个三角形的周长是3+6+6=15cm,底边为6cm,腰长为3cm,3+3=6,不能以6cm为底构成三角形,故该等腰三角形的周长是15cm.故选:D.4.(3.00分)如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.194【解答】解:由题可知,在直角三角形中,斜边的平方=169,一直角边的平方=25,根据勾股定理知,另一直角边平方=169﹣25=144,即字母B所代表的正方形的面积是144.故选:C.5.(3.00分)下列三条线段能构成直角三角形的是()A.1cm,2cm,3cm B.2cm,4cm,5cm C.6cm,8cm,10cm D.【解答】解:A、不能,因为12+22=5≠42=16,故不能构成直角三角形;B、不能,因为22+42=20≠52=25,故不能构成直角三角形;C、能,因为62+82=100=102,故能构成直角三角形;D、不能,因为()2+()2=7≠()2=5,故不能构成直角三角形.故选:C.6.(3.00分)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP【解答】解:∵OP平分∠AOB,PA⊥OA,PB⊥OB∴PA=PB∴△OPA≌△OPB∴∠APO=∠BPO,OA=OB∴A、B、C项正确设PO与AB相交于E∵OA=OB,∠AOP=∠BOP,OE=OE∴△AOE≌△BOE∴∠AEO=∠BEO=90°∴OP垂直AB而不能得到AB平分OP故D不成立故选:D.7.(3.00分)如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°【解答】解:∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°,故选:A.8.(3.00分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB 的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.二、填空题(本大题共有10小题,每小题3分,共30分.)9.(3.00分)16的平方根是±4.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.10.(3.00分)在等腰三角形ABC中,∠A=120°,则∠C=30°.【解答】解:∵等腰△ABC中,∠A=120°,∴∠A为顶角,∴∠C=(180°﹣∠A)=(180°﹣120°)=30°.故答案为:30°.11.(3.00分)如图,AD是△ABC的角平分线,如果再具备条件AD⊥BC,就可以根据“ASA”得到△ABD≌△ACD.【解答】解:∵AD是∠BAC角平分线,∴∠BAD=∠CAD,且△ABD与△ACD有一条公共边AD,根据“ASA”可知需提供∠BDA=∠CDA即可,∵∠BDA+∠CDA=180°,∴条件可写AD⊥BC,∠BDA=∠CDA,∠BDA=90°或∠CDA=90°.故答案为:AD⊥BC12.(3.00分)已知直角三角形的两边的长分别是3和4,则第三边长为5或.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.13.(3.00分)如图,用直尺和圆规作一个角的平分线,是运用了“全等三角形的对应角相等”这一性质,由作图所得条件,判定三角形全等运用的方法是SSS.【解答】解:如图,由作法得OE=OF,DE=DF,而OD=OD,则可根据“SSS”判定△ODE≌△ODF,所以∠DOE=∠DOF,所以OD平分∠AOB.14.(3.00分)一个正数的平方根是2x+1和1﹣3x,这个正数是25.【解答】解:∵一个正数的平方根是2x+1和1﹣3x,∴2x+1+1﹣3x=0,解得:x=2,故2x+1=5,则这个正数是:52=25.故答案为:25.15.(3.00分)如图,已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD,连接DE,则∠BDE=120°.【解答】解:∵△ABC为等边三角形,BD为中线,∴∠BDC=90°,∠ACB=60°∴∠ACE=180°﹣∠ACB=180°﹣60°=120°,∵CE=CD,∴∠CDE=∠CED=30°,∴∠BDE=∠BDC+∠CDE=90°+30°=120°,故答案为:120.16.(3.00分)如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长应不超过4米.【解答】解:连接OA,交⊙O于E点,在Rt△OAB中,OB=6,AB=8,所以OA==10;又OE=OB=6,所以AE=OA﹣OE=4.因此选用的绳子应该不大于4,故答案为4.17.(3.00分)如图,在Rt△ABC中,∠ACB=90°,以AC为边的正方形面积为12,中线CD的长度为2,则BC的长度为2.【解答】解:∵以AC为边的正方形面积为12,∴AC==2,∵∠ACB=90°,∴AB=2CD=4,∴BC==2;故答案为:2.18.(3.00分)如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD ⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为108度.【解答】解:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.故答案为:108.三、解答题(本大题共有7小题,共66分.)19.(10.00分)(1)计算﹣(1+)0+(2)解方程(x﹣1)3=﹣27.【解答】解:(1)﹣(1+)0+=﹣2﹣1+2=﹣1;(2 )(x﹣1)3=﹣27x﹣1=﹣3x=﹣2.20.(8.00分)已知3x+1的平方根为±2,2y﹣1的立方根为3,求2x+y的平方根.【解答】解:∵3x+1的平方根为±2,2y﹣1的立方根为3,∴3x+1=4,2y﹣1=27,∴x=1,y=14,∴2x+y=16,∴2x+y的平方根为±4.21.(10.00分)已知:如图,AB∥ED,AB=DE,点F,点C在AD上,AF=DC.(1)求证:△ABC≌△DEF;(2)求证:BC∥EF.【解答】(1)证明:∵AB∥ED,∴∠A=∠D,∵AF=DC,∴AF+FC=DC+FC,即AC=DF,在△ABC≌△DEF中,,∴△ABC≌△DEF(SAS);(2)证明:∵△ABC≌△DEF,∴∠ACB=∠DFE,则BC∥EF.22.(8.00分)如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)四边形ACBB′的面积为7.【解答】解:(1)如图,△AB′C′即为所求;(2)四边形ACBB′的面积=S △ABB′+S △ABC =×2×4+2×4﹣×2×2﹣×2×1﹣×1×4=4+8﹣2﹣1﹣2=7.故答案为:7.23.(8.00分)学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.【解答】解:设旗杆的高为x 米,则绳子长为x +1米,由勾股定理得,(x +1)2=x 2+52,解得,x=12米.答:旗杆的高度是12米.24.(10.00分)小王剪了两张直角三角形纸片,进行了如下的操作:(1)如图1,将Rt △ABC 沿某条直线折叠,使斜边的两个端点A 与B 重合,折痕为DE ,若AC=6cm ,BC=8cm ,求CD 的长.(2)如图2,小王拿出另一张Rt △ABC 纸片,将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,若AC=6cm ,BC=8cm ,求CD 的长.【解答】解:(1)由折叠可知,AD=BD,设CD=x,则AD=BD=8﹣x,∵∠C=90°,AC=6,∴62+x2=(8﹣x)2,∴x=,∴CD=;(2)在Rt△ABC中,AC=6,BC=8,∴AB==10,由折叠可知,AE=AC=6,CD=ED,∠ADE=∠C=90°,∴BE=10﹣6=4,设CD=x,则DE=x,BD=8﹣x,∴x2+42=(8﹣x)2,∴x=3,∴CD=3.25.(12.00分)如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.。

【精品】2017-2018年江苏省盐城市东台市第二联盟八年级(上)期中数学试卷带答案

【精品】2017-2018年江苏省盐城市东台市第二联盟八年级(上)期中数学试卷带答案

2017-2018学年江苏省盐城市东台市第二联盟八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2.00分)如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个 B.2个 C.3个 D.4个2.(2.00分)16的平方根是()A.4 B.±4 C.D.±3.(2.00分)与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点 B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点4.(2.00分)在,﹣,0.,,,(﹣1)0,﹣,0.1010010001…等数中,无理数的个数为()A.1 B.2 C.3 D.45.(2.00分)下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,126.(2.00分)已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或187.(2.00分)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④8.(2.00分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE9.(2.00分)如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是()A.21 B.18 C.13 D.1510.(2.00分)如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2017m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处二、填空题(本大题共8小题,每小题2分,共16分)11.(2.00分)的算术平方根是.12.(2.00分)由四舍五入法得到的近似数2.30×104,它是精确到位.13.(2.00分)已知等腰三角形的一个内角等于50°,则它的底角是°.14.(2.00分)若一正数的两个平方根分别是2a﹣1与2a+5,则这个正数等于.15.(2.00分)已知△ABC的三边长a、b、c满足+|b﹣2|+(c﹣)2=0,则△ABC一定是三角形.16.(2.00分)如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE ∥BC,分别交AB、AC于点D、E.若AB=4,AC=3,则△ADE的周长是.17.(2.00分)如图,DE是△ABC中AC边上的垂直平分线,若BC=9,AB=11,则△EBC的周长为.18.(2.00分)如图,E为正方形ABCD边AB上一点,BE=3AE=3,P为对角线BD 上一个动点,则PA+PE的最小值是.三、解答题19.(6.00分)计算:(1)(2)()2﹣﹣.20.(6.00分)求下列各式中x的值:(1)9x2=16;(2)(x﹣1)3+27=0.21.(6.00分)已知5x﹣1的平方根是±3,4x+2y+1的立方根是1,求4x﹣2y的平方根.22.(6.00分)如图,△ABO≌△CDO,点E、F在线段AC上,且AF=CE.求证:FD=BE.23.(6.00分)下面网格图中,每个小正方形的边长均为1,每个小格的顶点叫做格点.(1)请在图1中,画一个格点正方形,使它的面积等于10;(2)请在图2、图3中,分别画两个不全等的直角三角形,使它的三边长都是无理数.24.(8.00分)已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)若每平方米草皮需要200元,问要多少投入?(2)若BE⊥DC,垂足为E,求BE的长.25.(8.00分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.26.(8.00分)中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B 处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.27.(10.00分)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒4cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.2017-2018学年江苏省盐城市东台市第二联盟八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2.00分)如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个 B.2个 C.3个 D.4个【解答】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.2.(2.00分)16的平方根是()A.4 B.±4 C.D.±【解答】解:∵±4的平方是16,∴16的平方根是±4.故选:B.3.(2.00分)与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点 B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点【解答】解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.4.(2.00分)在,﹣,0.,,,(﹣1)0,﹣,0.1010010001…等数中,无理数的个数为()A.1 B.2 C.3 D.4【解答】解:无理数为:,﹣,,0.1010010001…;故选:D.5.(2.00分)下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,12【解答】解:A、∵62+82=102=100,∴能构成直角三角形;B、52+122=132=169,∴能构成直角三角形;C、92+402=412=1681,∴能构成直角三角形;D、∵72+92≠122,∴不能构成直角三角形.故选:D.6.(2.00分)已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或18【解答】解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选:C.7.(2.00分)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④【解答】解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选:C.8.(2.00分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故选:B.9.(2.00分)如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是()A.21 B.18 C.13 D.15【解答】解:∵CD⊥AB,F为BC的中点,∴DF=BC=×8=4,∵BE⊥AC,F为BC的中点,∴EF=BC=×8=4,∴△DEF的周长=DE+EF+DF=5+4+4=13.故选:C.10.(2.00分)如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2017m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处【解答】解:∵两个全等的等边三角形的边长为1m,∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6m,∵2017÷6=336…1,行走了336圈,回到第一个点,∴行走2017m停下,则这个微型机器人停在B点.故选:B.二、填空题(本大题共8小题,每小题2分,共16分)11.(2.00分)的算术平方根是.【解答】解:∵=3,∴的算术平方根是.故答案为:.12.(2.00分)由四舍五入法得到的近似数2.30×104,它是精确到百位.【解答】解:近似数2.30×104精确到百位.故答案为百.13.(2.00分)已知等腰三角形的一个内角等于50°,则它的底角是50°或65°°.【解答】解:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故答案是:50°或65°.14.(2.00分)若一正数的两个平方根分别是2a﹣1与2a+5,则这个正数等于9.【解答】解:∵一正数的两个平方根分别是2a﹣1与2a+5,∴2a﹣1+2a+5=0,解得a=﹣1,∴2a﹣1=﹣2﹣1=﹣3,∴这个正数等于(﹣3)2=9.故答案为:9.15.(2.00分)已知△ABC的三边长a、b、c满足+|b﹣2|+(c﹣)2=0,则△ABC一定是直角三角形.【解答】解:∵△ABC的三边长a、b、c满足满足+|b﹣2|+(c﹣)2=0,∴a﹣1=0,b﹣2=0,c﹣=0,∴a=1,b=2,c=,∵12+22=()2,∴△ABC一定是直角三角形.故答案为:直角.16.(2.00分)如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE ∥BC,分别交AB、AC于点D、E.若AB=4,AC=3,则△ADE的周长是7.【解答】解:∵DE∥BC,∴∠DOB=∠OBC,∵BO平分∠ABC,∴∠DBO=∠OBC,∴∠DBO=∠DOB,∴DO=BD,同理可得EO=EC,∴AD+DE+AE=AD+DO+OE+AE=AD+BD+EC+AE=AB+AC=4+3=7,即△ADE的周长为7,故答案为:7.17.(2.00分)如图,DE是△ABC中AC边上的垂直平分线,若BC=9,AB=11,则△EBC的周长为20.【解答】解:∵DE是AC边上的垂直平分线,∴EA=EC,∴△EBC的周长=BC+BE+EC=BC+BE+EA=BC+AB=20.故答案为:20.18.(2.00分)如图,E为正方形ABCD边AB上一点,BE=3AE=3,P为对角线BD 上一个动点,则PA+PE的最小值是5.【解答】解:连接EC.∵BE=3AE=3,∴AB=4,则BC=AB=4,在直角△BCE中,CE===5.故答案是:5.三、解答题19.(6.00分)计算:(1)(2)()2﹣﹣.【解答】解:(1)原式==;(2)原式=4+3﹣10=﹣3.20.(6.00分)求下列各式中x的值:(1)9x2=16;(2)(x﹣1)3+27=0.【解答】解:(1)9x2=16,x2=,x=±;(2)(x﹣1)3+27=0.x﹣1=﹣3,21.(6.00分)已知5x﹣1的平方根是±3,4x+2y+1的立方根是1,求4x﹣2y的平方根.【解答】解:∵5x﹣1的算术平方根为3,∴5x﹣1=9,∴x=2,∵4x+2y+1的立方根是1,∴4x+2y+1=1,∴y=﹣4,∴4x﹣2y=4×2﹣2×(﹣4)=16,∴4x﹣2y的平方根是±4.22.(6.00分)如图,△ABO≌△CDO,点E、F在线段AC上,且AF=CE.求证:FD=BE.【解答】证明:∵△ABO≌△CDO,∴OA=OC,OB=OD,∴OA﹣AF=OC﹣CE,又AF=CE,∴FO=OE,在△OFD和△OEB中,,∴△OFD≌△OEB,∴FD=BE.23.(6.00分)下面网格图中,每个小正方形的边长均为1,每个小格的顶点叫(1)请在图1中,画一个格点正方形,使它的面积等于10;(2)请在图2、图3中,分别画两个不全等的直角三角形,使它的三边长都是无理数.【解答】解:(1)如图1所示;(2)如图2、3所示:24.(8.00分)已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)若每平方米草皮需要200元,问要多少投入?(2)若BE⊥DC,垂足为E,求BE的长.【解答】(1)解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,即∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC,=×4×3+×12×5=36.所以需费用36×200=7200(元).(2)作BE⊥CD,垂足为E,在Rt△DBC中,由于BD•BC=CD•BE,即BE==.25.(8.00分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4,∵AC=20,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.26.(8.00分)中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B 处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.【解答】解:(1)作AB的垂直平分线与OA交于点C;(2)设BC为x海里,则CA也为x海里,∵∠O=90°,∴在Rt△OBC中,BO2+OC2=BC2,即:152+(45﹣x)2=x2,解得:x=25,答:我国渔政船行驶的航程BC的长为25海里.27.(10.00分)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒4cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.【解答】解:(1)∵△ABC中,∠ACB=90°,AB=10cm,BC=6cm,∴由勾股定理得AC==8,如图,连接BP,当PA=PB时,PA=PB=4t,PC=8﹣4t,在Rt△PCB中,PC2+CB2=PB2,即(8﹣4t)2+62=(4t)2,解得:t=,∴当t=时,PA=PB;(2)如图1,过P作PE⊥AB,又∵点P恰好在∠BAC的角平分线上,且∠C=90°,AB=10cm,BC=6cm,∴CP=EP,∴△ACP≌△AEP(HL),∴AC=8cm=AE,BE=2,设CP=x,则BP=6﹣x,PE=x,∴Rt△BEP中,BE2+PE2=BP2,即22+x2=(6﹣x)2解得x=,∴CP=,∴CA+CP=8+=,∴t=÷4=(s);当点P沿折线A﹣C﹣B﹣A运动到点A时,点P也在∠BAC的角平分线上,此时,t=(10+8+6)÷4=6(s);综上,若点P恰好在∠BAC的角平分线上,t的值为s或6s;(3)①如图2,当CP=CB时,△BCP为等腰三角形,若点P在CA上,则4t=8﹣6,解得t=(s);②如图3,当BP=BC=6时,△BCP为等腰三角形,∴AC+CB+BP=8+6+6=20,∴t=20÷4=5(s);③如图4,若点P在AB上,CP=CB=6,作CD⊥AB于D,则根据面积法求得CD=4.8,在Rt△BCD中,由勾股定理得,BD=3.6,∴PB=2BD=7.2,∴CA+CB+BP=8+6+7.2=21.2,此时t=21.2÷4=5.3(s);④如图5,当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,则D为BC的中点,∴PD为△ABC的中位线,∴AP=BP=AB=5,∴AC+CB+BP=8+6+5=19,∴t=19÷4=(s);综上所述,t为s或5.3s或5s或s时,△BCP为等腰三角形.。

【真卷】2017-2018年江苏省盐城市东台市八年级上学期数学期末试卷及答案

【真卷】2017-2018年江苏省盐城市东台市八年级上学期数学期末试卷及答案

2017-2018学年江苏省盐城市东台市八年级(上)期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.(3分)下列四种汽车标志中,不是轴对称图形的是()A.B.C.D.2.(3分)点(2,﹣3)关于y轴对称的点的坐标是()A.(﹣2,3)B.(﹣2,﹣3)C.(2,3)D.(2,﹣3)3.(3分)下列各数中,是无理数的为()A.3.B.3.1 415 926C.D.π4.(3分)下列选项中,与数轴上的点一一对应的是()A.实数B.有理数C.正整数和0D.无理数5.(3分)下列各组数中,不能作为直角三角形的三边长的是()A.1,2,3B.5,4,3C.17,8,15D.1,2,6.(3分)到三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三条中线的交点C.三条高所在直线的交点D.三边的垂直平分线的交点7.(3分)下列关于一次函数y=﹣2x+3的结论中,正确的是()A.图象经过点(3,0)B.图象经过第二、三、四象限C.y随x增大而增大D.当x>时,y<08.(3分)如图,在正方形网格中,每个小正方形的边长都为1,点A、B都是格点(小正方形的顶点叫做格点),若△ABC为等腰三角形,且△ABC的面积为1,则满足条件的格点C有()A.0个B.2个C.4个D.8个二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9.(3分)4的平方根是.10.(3分)比较大小:4.(填“>”、“=”或“<”)11.(3分)已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是.12.(3分)将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为.13.(3分)如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有种.14.(3分)我市市域面积约为16972平方公里,数据16972用四舍五入法精确到千位,并用科学记数法表示为.15.(3分)若一次函数y=k1x+b1与y=k2x+b2的图象相交于点(2,3),则方程组的解是.16.(3分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式2x+m<﹣x﹣2<0的解集为.三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:(1)(﹣1)2018+;(2)﹣.18.(6分)求x的值:(1)4x2=81;(2)2(x﹣1)3=54.19.(6分)已知:如图,AC与BD相交于点O,AC⊥BC,AD⊥BD,垂足分别为点C、D,且AC=BD.求证:OA=OB.20.(6分)已知:y+2与x﹣3成正比例,且当x=5时,y=2.(1)求y与x之间的函数表达式;(2)当y=4时,x的值是多少?21.(6分)尺规作图:如图,在△ABC中,AB=AC,试作出下列图形:(不写作法,保留作图痕迹)(1)△ABC的角平分线AD;(2)AC边的中点E.22.(6分)已知:如图,在边长为1的小正方形网格中,△ABC的顶点都在格点上,建立适当的平面直角坐标系xOy,使得点A、B的坐标分别为(2,3)、(3,2).(1)画出平面直角坐标系;(2)若点P是y轴上的一个动点,则PA+PC的最小值为.(直接写出结果)23.(8分)已知:如图,在△ABC中,AB=13,AC=20,BC=21,AD⊥BC,垂足为点D.(1)求BD、CD的长;(2)求△ABC的面积.24.(8分)某天放学后,小红步行,小丽骑自行车沿同一条笔直的马路到图书馆看书,图中线段OA、BC分别表示小红、小丽离开学校的路程s(米)与小红所用的时间t(分钟)的函数关系,根据图象解答下列问题:(1)小丽比小红迟出发分钟,小红步行的速度是米/分钟;(直接写出结果)(2)两人在路上相距不超过200米的时间有多少分钟?25.(10分)已知:如图①,△ABC是等边三角形,点D、E分别在边AB、BC上,且BD=BE,连接DE.(1)求证:DE∥AC;(2)将图①中的△BDE绕点B顺时针旋转,使得点A、D、E在同一条直线上,如图②,求∠AEC的度数;(3)在(2)的条件下,如图③,连接CD,过点D作DM⊥BE于点M,在线段BM上取点N,使得∠DNE+∠DCE=180°.求证:EN﹣EC=2MN.26.(10分)已知:如图,一次函数y=x+3的图象分别与x轴、y轴相交于点A、B,且与经过点C(2,0)的一次函数y=kx+b的图象相交于点D,点D的横坐标为4,直线CD与y轴相交于点E.(1)直线CD的函数表达式为;(直接写出结果)(2)点Q为线段DE上的一个动点,连接BQ.①若直线BQ将△BDE的面积分为1:2两部分,试求点Q的坐标;②点Q是否存在某个位置,将△BQD沿着直线BQ翻折,使得点D恰好落在直线AB下方的坐标轴上?若存在,求点Q的坐标;若不存在,请说明理由.2017-2018学年江苏省盐城市东台市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.(3分)下列四种汽车标志中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误.故选:C.2.(3分)点(2,﹣3)关于y轴对称的点的坐标是()A.(﹣2,3)B.(﹣2,﹣3)C.(2,3)D.(2,﹣3)【解答】解:点(2,﹣3)关于y轴对称的点的坐标是:(﹣2,﹣3).故选:B.3.(3分)下列各数中,是无理数的为()A.3.B.3.1 415 926C.D.π【解答】解:3.,3.1415926,是有理数,π是无理数,故选:D.4.(3分)下列选项中,与数轴上的点一一对应的是()A.实数B.有理数C.正整数和0D.无理数【解答】解:与数轴上的点一一对应的是实数,故选:A.5.(3分)下列各组数中,不能作为直角三角形的三边长的是()A.1,2,3B.5,4,3C.17,8,15D.1,2,【解答】解:A、12+22≠32,不符合勾股定理的逆定理,故正确;B、32+42=52,符合勾股定理的逆定理,故错误;C、82+152=172,符合勾股定理的逆定理,故错误;D、12+()2=22,符合勾股定理的逆定理,故错误.故选:A.6.(3分)到三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三条中线的交点C.三条高所在直线的交点D.三边的垂直平分线的交点【解答】解:∵线段垂直平分线上的点到两端点的距离相等∴到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:D.7.(3分)下列关于一次函数y=﹣2x+3的结论中,正确的是()A.图象经过点(3,0)B.图象经过第二、三、四象限C.y随x增大而增大D.当x>时,y<0【解答】解:A、图象经过点(,0),故原题说法错误;B、图象经过第二、一、四象限,故原题说法错误;C、y随x增大而减小,故原题说法错误;D、当x>时,y<0,故原题说法正确;故选:D.8.(3分)如图,在正方形网格中,每个小正方形的边长都为1,点A、B都是格点(小正方形的顶点叫做格点),若△ABC为等腰三角形,且△ABC的面积为1,则满足条件的格点C有()A.0个B.2个C.4个D.8个【解答】解:如图所示:因为△ABC为等腰三角形,且△ABC的面积为1,所以满足条件的格点C有4个,故选:C.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9.(3分)4的平方根是±2.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.10.(3分)比较大小:<4.(填“>”、“=”或“<”)【解答】解:∵4=,<,∴<4;故答案为:<.11.(3分)已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是5.【解答】解:在直角三角形中,两直角边长分别为6和8,则斜边长==10,∴斜边中线长为×10=5,故答案为5.12.(3分)将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为y=2x+1.【解答】解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4﹣3=2x+1;故答案为:y=2x+1.13.(3分)如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有3种.【解答】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.14.(3分)我市市域面积约为16972平方公里,数据16972用四舍五入法精确到千位,并用科学记数法表示为 1.7×104.【解答】解:数据16972用四舍五入法精确到千位,用科学记数法表示为1.7×104,故答案为:1.7×104.15.(3分)若一次函数y=k1x+b1与y=k2x+b2的图象相交于点(2,3),则方程组的解是..【解答】解:∵一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P(﹣2,3),∴方程组组的解是.故答案为.16.(3分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:(1)(﹣1)2018+;(2)﹣.【解答】解:(1)(﹣1)2018+=1+5=6;(2)﹣=2﹣(﹣2)=4.18.(6分)求x的值:(1)4x2=81;(2)2(x﹣1)3=54.【解答】解:(1)4x2=81x2=,解得:x=±;(2)(x﹣1)3=27,x﹣1=3,解得:x=4.19.(6分)已知:如图,AC与BD相交于点O,AC⊥BC,AD⊥BD,垂足分别为点C、D,且AC=BD.求证:OA=OB.【解答】证明:∵AC⊥BC,AD⊥BD,∴∠C=∠D=90°.在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD,∴∠ABD=∠CAB,∴OA=OB.20.(6分)已知:y+2与x﹣3成正比例,且当x=5时,y=2.(1)求y与x之间的函数表达式;(2)当y=4时,x的值是多少?【解答】解:(1)设y+2=k(x﹣3),把x=5,y=2代入得:2+2=k(5﹣3),解得k=2,则y+2=2(x﹣3),即y与x之间的函数关系式为y=2x﹣8;(2)把y=4代入y=2x﹣8得:2x﹣8=4,解得x=6.21.(6分)尺规作图:如图,在△ABC中,AB=AC,试作出下列图形:(不写作法,保留作图痕迹)(1)△ABC的角平分线AD;(2)AC边的中点E.【解答】解:(1)作图如下,线段AD就是△ABC的角平分线.(2)如图所示,点E就是AC边的中点.22.(6分)已知:如图,在边长为1的小正方形网格中,△ABC的顶点都在格点上,建立适当的平面直角坐标系xOy,使得点A、B的坐标分别为(2,3)、(3,2).(1)画出平面直角坐标系;(2)若点P是y轴上的一个动点,则PA+PC的最小值为3.(直接写出结果)【解答】解:(1)平面直角坐标系的画法如下图所示:(2)作当C关于y轴的对称点C′,连接AC′交y轴于P,此时PA+PC的值最小,最小值=AC′==3.故答案为3.23.(8分)已知:如图,在△ABC中,AB=13,AC=20,BC=21,AD⊥BC,垂足为点D.(1)求BD、CD的长;(2)求△ABC的面积.【解答】解:(1)设BD=x,则CD=21﹣x.∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ABD中,由勾股定理,得AD2=AB2﹣BD2.∴AD2=132﹣x2.在Rt△ACD中,由勾股定理,得AD2=AC2﹣CD2.∴AD2=202﹣(21﹣x)2.∴132﹣x2=202﹣(21﹣x)2.解得x=5,即BD=5.∴CD=21﹣x=21﹣5=16.(2)在Rt△ABD中,由勾股定理,得AD===12.=BC•AD=×21×12=126.∴S△ABC24.(8分)某天放学后,小红步行,小丽骑自行车沿同一条笔直的马路到图书馆看书,图中线段OA、BC分别表示小红、小丽离开学校的路程s(米)与小红所用的时间t(分钟)的函数关系,根据图象解答下列问题:(1)小丽比小红迟出发5分钟,小红步行的速度是100米/分钟;(直接写出结果)(2)两人在路上相距不超过200米的时间有多少分钟?【解答】解:(1)小丽比小红迟出发5分钟;小红步行的速度为2000÷20=100(米/分钟).故答案为:5;100.(2)由图象知A(20,2000),B(5,0),C(15,2000).设线段OA的函数表达式为s=kt(k≠0),把A(20,2000)代入s=kt,得:2000=20k,解得:k=100,∴线段OA的函数表达式为s=100t(0≤t≤20);设线段BC的函数表达式为s=mt+n(m≠0),把B(5,0),C(15,2000)代入s=mt+n,得:,解得:,∴线段BC的函数表达式为s=200t﹣1000(5≤t≤15).若两人相遇前相距200米,则100t﹣(200t﹣1000)=200,解得:t=8;若两人相遇后相距200米,则(200t﹣1000)﹣100t=200,解得:t=12.∴12﹣8=4(分钟).答:两人在路上相距不超过200米的时间有4分钟.25.(10分)已知:如图①,△ABC是等边三角形,点D、E分别在边AB、BC上,且BD=BE,连接DE.(1)求证:DE∥AC;(2)将图①中的△BDE绕点B顺时针旋转,使得点A、D、E在同一条直线上,如图②,求∠AEC的度数;(3)在(2)的条件下,如图③,连接CD,过点D作DM⊥BE于点M,在线段BM上取点N,使得∠DNE+∠DCE=180°.求证:EN﹣EC=2MN.【解答】解:(1)证明:如图①中,∵△ABC是等边三角形,∴∠B=∠C=60°.又∵BD=BE,∴△BDE是等边三角形,∴∠BED=60°,∴∠C=∠BED,∴DE∥AC.(2)如图2中,∵△ABC、△BDE都是等边三角形,∴BA=BC,BD=BE,∠ABC=∠DBE=∠BDE=∠BED=60°,∴∠ABD=∠CEB,在△ABD和△CBE中,,∴△ABD≌△CBE,∴∠CEB=∠ADB,∵∠ADB=180°﹣∠BDE=180°﹣60°=120°,∴∠CEB=120°,∴∠AEC=∠CEB﹣∠BED=120°﹣60°=60°.(3)证明:如图3中,∵∠DNE+∠DCE=180°,∠DNE+∠DNB=180°,∴∠DCE=∠DNB.由(1)知△BDE是等边三角形,∴BD=ED,∠DBE=60°,由(2)知∠AEC=60°,∴∠DBE=∠AEC,在△BDN和△EDC中,,∴△BDN≌△EDC,∴BN=CE,∵DB=DE,DM⊥BE,∴BM=EM,即BN+MN=EN﹣MN,∴CE+MN=EN﹣MN,∴EN﹣EC=2MN.26.(10分)已知:如图,一次函数y=x+3的图象分别与x轴、y轴相交于点A、B,且与经过点C(2,0)的一次函数y=kx+b的图象相交于点D,点D的横坐标为4,直线CD与y轴相交于点E.(1)直线CD的函数表达式为y=3x﹣6;(直接写出结果)(2)点Q为线段DE上的一个动点,连接BQ.①若直线BQ将△BDE的面积分为1:2两部分,试求点Q的坐标;②点Q是否存在某个位置,将△BQD沿着直线BQ翻折,使得点D恰好落在直线AB下方的坐标轴上?若存在,求点Q的坐标;若不存在,请说明理由.【解答】解:(1)由题意:D(4,6),C(2,0),设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=3x﹣6.故答案为y=3x﹣6.(2)①∵直线BQ将△BDE的面积分为1:2两部分,∴S=S△BDE或S△BEQ=S△BDE.△BEQ在y=x+3中,当x=0时,y=3;当x=4时,y=6.∴B(0,3),D(4,6).在y=3x﹣6中,当x=0时,y=﹣6.∴E(0,﹣6).∴BE=9.如图1中,过点D作DH⊥y轴于点H,则DH=4.∴S=BE•DH=×9×4=18.△BDE=×18=6或S△BEQ=×18=12.∴S△BEQ设Q(t,3t﹣6),由题意知t>0.过点Q作QM⊥y轴于点M,则QM=t.∴×9×t=6或×9×t=12.解得t=或.当t=时,3t﹣6=﹣2;当t=时3t﹣6=2.∴Q的坐标为(,﹣2)或(,2).②当点D落在x正半轴上(记为点D1)时,如图2中.由(2)知B(0,3),D(4,6),∴BH=BO=3.由翻折得BD=BD1.在△Rt△DHB和Rt△D1OB中,,∴Rt△DHB≌Rt△D1OB.∴∠DBH=∠D1BO.由翻折得∠DBQ=∠D1BQ.∴∠HBQ=∠OBQ=90°.∴BQ∥x轴.∴点Q的纵坐标为3.在y=3x﹣6中,当y=3时,x=3.∴Q(3,3),当点D落在y负半轴上(记为点D2)时,如图3中.过点Q作QM⊥BD,QN⊥OB,垂足分别为点M、N.由翻折得∠DBQ=∠D2BQ.∴QM=QN.由(2)知S=18,即S△BQD+S△BQE=18.△BDE∴BD•QM+BE•QN=18.在Rt△BDH中,由勾股定理,得BD===5.∴×5•QN+×9•QN=18.解得QN=.∴点Q的横坐标为.在y=3x﹣6中,当x=时,y=.∴Q(,).综合知,点Q的坐标为(3,3)或(,).附赠:初中数学易错题填空专题一、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是____ _____。

江苏省东台市2017-2018学年八年级第一学期期中数学试卷3

江苏省东台市2017-2018学年八年级第一学期期中数学试卷3

江苏省东台市2017-2018学年八年级数学上学期期中题试卷总分:120分 考试时间:100分钟一、选择题(本题共有8小题,每小题3分,共24分)1.下列图形中,轴对称图形的个数为( ▲ )A. 4个B. 3个C. 2个D. 1个2.下列说法正确的是( ▲ )A .1=± 1B .1 的立方根是±1C .一个数的算术平方根一定是正数D .9 的平方根是±3 3. 下列式子中无意义的是( ▲ )A.B.D.4.以下列各组数为三角形的三条边长:① 1,2,3;②9,40,41,3,2;④1.5,2.5,2 .其中能构成直角三角形的有( ▲ )A .1组B .2组C .3组D .4组5.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3如上,且l 1,l 2之间的距离为1,l 2,l 3之间的距离为2,则AC 的长是( ▲ )ABCD . 5第8题6.如图,点D 为△ABC 边AB 的中点,将△ABC 沿经过点D 的直线折叠,使点A 刚好落在BC 边上的点F 处,若∠B=46°,则∠BDF 的度数为( ▲ )A .88°B .86°C .84°D .82°第5题 AB CD F 第6题第7题7.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=3,则CE2+CF2的值为(▲)A.36 B.9 C.6 D.188、如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.其中正确的结论的个数是(▲)A.2个B.3个C.4个D.5个二、填空题(本大题共10小题,每小题3分,共30分)9.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=25°,则∠2的度数为▲ .(第9题)(第10题)(第11题)10.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=▲ .11.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是▲ .(填上一个条件即可)12.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是▲ .13.如图,点D在边BC上,DE⊥AB,DF⊥BC,垂足分别为点E、D,BD=CF,BE=CD.若∠AFD=140°,则∠EDF=▲ .14.如图,∠BAC=100°,若MP和NQ分别垂直平分AB和AC,则∠PAQ=▲ .(第12题)(第13题)(第14题)(第15题)15.如图,AB//CD,O为∠BAC、∠ACD的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于▲ .。

江苏省东台市2017-2018学年八年级数学上学期(期中)试题

江苏省东台市2017-2018学年八年级数学上学期(期中)试题

江苏省东台市2017-2018学年八年级数学上学期(期中)试题(时间100分钟 总分100分) 一、选择题(每题3分,共24分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是………………( )A. B. C. D.2.下列条件中,不能判定两个三角形全等的是……………………………………………( ) A .两角一边对应相等B .两边一角对应相等C .直角边和一个锐角对应相等D .三边对应相等3.正方形ABCD 内有一点P ,使△PAB 、△PBC 、△PCD 、△PDA 都是等腰三角形,那么具有这样性质的点P 共有……………………………………………………………………………( ) A .9个B .7个C .5个D .4个4.如图,OA =OB ,∠A =∠B .有下列三个结论:①△AOD ≌△BOC ,②△ACE ≌△BDE ,③点E 在∠O 的平分线上.其中,正确的结论………………………………………………( ) A .只有①B .只有②C .只有①和②D .①②③OEDB 第6题第4题cba43215.在下列的四组线段中,不能组成直角三角形的是………………………………………( ) A .a =8,b =15,c =17 B .a =34 ,b =54 ,c =1C .a =14,b =48,c =49D .a =9,b =40,c =416.如图,已知1号、4号两个正方形的面积之和为7,2号、3号两个正方形的面积之和为4,则a 、b 、c 三个正方形的面积之和为…………………………………………………………( ) A .11B .15C .10D .227.若一个自然数的算术平方根是a ,,则比它大1的数的算术平方根是…………………( ) A .a +1B .a 2+1C .a +1D .a 2+18.由四舍五入得到的近似数8.01×104,精确到…………………………………………( ) A .10000B .100C .0.01D .0.0001二、填空题(12题4分,其余每空3分,共31分)9.16 的平方根是 ,立方根等于本身的数是 .10.一个数的算术平方根为2m -6,它的平方根为±(2-m ),这个数是: .11.在△ABC 中,AB =AC ,∠BAC =90°,D 是BC 的中点,BC =8cm ,则AD = cm ,△ABC 的面积是 cm 2. 12.等腰三角形一腰上的高与另一腰的夹角为50°,则其底角为 . 13.如图,AB ∥FC ,DE =EF ,AB =15,CF =8,则BD = .B AF ED C BA第15题第14题第13题5m3mC ′A′14.如图,在平面上将△ABC 绕点B 旋转到△A ′BC ′的位置时,AA ′∥BC ,∠ABC =70°,则∠CBC ′= °. 15.如图,楼梯的长为5m ,高为3m ,计划在楼梯表面铺地毯,地毯的长度至少需要 m .16.如图,一个长方体纸箱,长是6,宽和高都是4,一只蚂蚁从顶点A 沿纸箱表面爬到顶点B ,它所走的最短路线的长是 . 三、解答题(共45分) 17.(6分)求下列各式中的x : (1)x 3-2=6; (2)(2x )2=0.25.18.(4分)已知3+ 3 =a +b ,其中a 是整数,| b |<1.求(a -b )的值.19.(3分)在数轴上画出表示10 的点. 20.(2分)用直尺圆规在直线l 上作点P ,使直线l 平分∠APB .BO21.(4分)已知:如图,D 是△ABC 边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .22.(4分)如图,将直角三角形纸片ABC 折叠,使直角顶点C 落在斜边中点D 的位置,EF 是折痕.已知DE =15,DF =20,求AB 的长.E DCBAFEDCBA23.(4分)如图,已知:∠AOB =90°,OE 是∠AOB 的平分线,P 是OE 上一动点,PC ⊥PD ,C 、D 分别在OA 、OB 上.求证:PC =PD .24.(9分)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF . (1)证明△ABG ≌△AFG ; (2)求BG 的长; (3)求△FGC 的面积.POEDCA FGE D CBA25.(9分)在△ABC 中,AB =AC ,点D 在直线BC 上(不与点B 、C 重合),线段AD 绕A 点逆时针方向旋转∠BAC 的大小,得线段AE ,连接DE 、CE .探索∠BCE 与∠BAC 的大小关系,并加以证明.八年级期中数学试卷参考答案 一、选择题 1.A2.B 3.C 4.D5.C 6.B 7.D 8.B二、填空题9.±2;0,±1 ;10.4;11.4,16;12.70°,20°;13.7; 14.40;15.12; 16.10; 三、解答题17.(1)x =2;(2)x =±14 ;18.5― 3 ,7― 3 ; 19.(略); 20.(略); 21.(略); 22.48; 23.(略);24.(1)略,(2)3,(3)3.6;AB CABCABC25.(略)三种情况各2分.。

江苏省盐城市东台市八年级数学上学期第二次质量检测(1

江苏省盐城市东台市八年级数学上学期第二次质量检测(1

2017/2018学年度第一学期第二次质量检测八年级数学试题说明:1.分值 120分 时间 100分钟2.请将答案写在答题纸上.否则不得分一、选择题 (本大题共有8小题,每小题3分,共24分) 1.在平面直角坐标系中,点P (-3,2)所在象限为 (▲)A .第一象限B .第二象限C .第三象限D .第四象限 2.实数10的整数部分是 (▲)DA .2B .3C .4D .53.若点A 的坐标为(6,3)O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到OA ′,则点A ′的坐标是(▲) A 、(3,﹣6) B 、(﹣3,6) C 、(﹣3,﹣6) D 、(3,6) 4.在平面直角坐标系中,已知直线y =-43x +3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是(▲)(A )(0,3) (B )(0,4) (C )(0,43) (D )( 0,34)5. 在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是和﹣1,则点C 所对应的实数是(▲)A 、1+3B 、2+3C 、23-1D 、23+16.已知一次函数y=mx+n ﹣2的图象如图所示,则m 、n 的取值范围是(▲)A 、m >0,n <2B 、m >0,n >2C 、m <0,n >2D 、m <0,n <27.如图所示,四边形ABCD 中,DC ∥AB ,BC=1,AB=AC=AD=2.则BD 的长为 (▲)A. 14B. 15C. 23D. 328.甲、乙两同学同时从400m 环形跑道上的同一点出犮,同向而行.甲的速度为6m/s ,乙的速度为4m/s .设经过x (单位:s )后,跑道上此两人间的较短部分的长度为y (单位:m ).则y 与x (0≤x ≤300)之间的函数关系可用图象表示为(▲)学校________ 班级_________ 考试号___________ 姓名__________…………………………………………密………………………………………封………………………………………………………线………………………………CA 、B 、C 、D 、二、填空题(本大题共有10小题,每小题3分,共30分) 9.16的平方根是__▲__10.比较大小215- ▲ 0.5 11.在平面直角坐标系中,若点M (1,3)与点N (x ,3)之间的距离是5,则x 的值是___▲___.12.Rt △ABC 中.a=3 b=4 则c=_▲_13 .地球上的海洋面积约为361 000 000km 2,精确到10 000 000km 2约是 ▲ km 214下列实数:3.1415926…,64,364-,0.2121121112….39,0.303030…, —11,3625.其中无理数有 ▲ 个. 15、右图是轰炸机群在同平面一个飞行队形,如果最后两架轰炸机的坐标分别是A (-2,1)和B (-2,-3),那么第一架轰炸机C 的坐标是 ▲ 。

江苏省盐城市八年级数学上学期期中试题(扫描版)苏科版(2021学年)

江苏省盐城市八年级数学上学期期中试题(扫描版)苏科版(2021学年)

江苏省盐城市2017-2018学年八年级数学上学期期中试题(扫描版) 苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省盐城市2017-2018学年八年级数学上学期期中试题(扫描版)苏科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省盐城市2017-2018学年八年级数学上学期期中试题(扫描版) 苏科版的全部内容。

江苏省盐城市2017-2018学年八年级数学上学期期中试题以上就是本文的全部内容,可以编辑修改。

高尔基说过:“书是人类进步的阶梯。

”我希望各位朋友能借助这个阶梯不断进步。

物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。

很多人已经不再如饥似渴地追逐一篇文档了,但只要你依然有着这样一份小小的坚持,你就会不断成长进步,当纷繁复杂的世界牵引着我们疲于向外追逐的时候,阅读一文或者做一道题却让我们静下心来,回归自我。

用学习来激活我们的想象力和思维,建立我们的信仰,从而保有我们纯粹的精神世界,抵御外部世界的袭扰。

The above is the whole content of this article, Gorky said:"the book is the ladder of human progress." I hope you can make progress with thehelp of this ladder. Material lif e is extremely rich, science and technology are developi ng rapidly, all of which gradually change the way of people'sstudy and leisure. Many people are no longer eager to pursuea document, but as long as you still have such a small persistence, you will continue to grow and progress. When the complex world leads usto chase out, reading an article or doin g a problem makes us calm down and return toourselves. With learning,we can activate our imagination and thinking,establish our belief, keep our pure spiritual world and resistthe attack of the externalworld.。

江苏省东台市2017_2018学年八年级数学上学期12月月考试题苏科版

江苏省东台市2017_2018学年八年级数学上学期12月月考试题苏科版

江苏省东台市第五联盟2017-2018学年八年级数学上学期12月月考试题满分:120分 考试时间:100分钟一、选一选,比比谁细心(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,把这个正确的选项填在下面表格的相应位置)1.在平面直角坐标系中,点P (﹣2,1)在( )A .第一象限B .第二象限C .第三象限D .第四象限2.在实数0、π、722、3、﹣4、3.1010010001中,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个3.△ABC 中,∠A,∠B,∠C 的对边分别记为a ,b ,c ,由下列条件不能判定△ABC 为直角三角形的是( )A .∠A:∠B:∠C=l:2:3B .三边长为a ,b ,c 的值为1,2,3C .三边长为a ,b ,c 的值为11,2,4D .a 2=(c+b )(c ﹣b )4. 将直线y=-2x 向下平移两个单位,所得的直线是( )A.y=-2x-2B. y=-2x+2C.y=-2(x-2)D. y=-2(x+2) 5 直线y=(2k-1)x+k-1(k 是常数)总经过的一个点是( )A. (1,1)B.(-21, 21)C.(0,-1)D. (-21,-21) 6.记max{x ,y}表示x ,y 两个数中的最大值,例如max{1,2}=2,max{7,7}=7,则关于x 的一次函数y=max{2x ,x+1}可以表示为( )A .y=2xB .y=x+1C .y=⎩⎨⎧≥+)1(1)1(2x x x <xD .y=⎩⎨⎧≤+)1(1)1(2x x x >x 二、填一填,看看谁仔细(本大题共10小题,每小题3分,共30分)7.点P (﹣1,2)关于y 轴对称的点的坐标为______.8.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是______.9.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.若AB=5cm,BC=3cm,则△PBC的周长=______.第9题第15题第16题10.已知a<19<b,且a,b为两个连续整数,则a+b= .11.近似数3.16×104精确到______位.12.直线y=3x﹣9与坐标轴围成的三角形面积为______.13. 已知一次函数y=(k-1)x k+3,则k= .14. 若一个正数的两个平方根是2a+3和-a-1,则这个正数是 .15.如图,在△ABC中,AB=AC,BC=8,AF⊥BC于点F,BE⊥AC于点E,且点D是AB的中点,△DEF 的周长是14,则AB= .16.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=2,CN=3,则MN的长为.三、解答题(本大题共有8小题,共72分.解答时应写出文字说明、推理过程或演算步骤)17.(8分)(1)计算:2)5(-+327-+20170.(2)已知:(x+1)2﹣9=0,求x的值;18.(8分)如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.(1)试判断△BDE的形状,并说明理由;(2)若AB=4,AD=8,求△BDE的面积.19. (8分)如图,在∆ABC中,∠ABC=45°,AD,BE是∆ABC的高,AD,BE相交于点F。

八年级数学上学期期中试题

八年级数学上学期期中试题

江苏省东台市2017-2018学年八年级数学上学期期中试题分值:120分 考试时间:100分钟 考试形式:闭卷一、选择题(本大题共有8小题,每小题3分,共18分、在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填在答题纸上、)1。

如图中序号(1)(2)(3)(4)对应的四个三角形,都是△A BC这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是( ▲ )A 、(1)B 、(2)C 。

(3) D、(4)2、不能使两个直角三角形全等的条件是 ( ▲ )A 、一条直角边和它的对角对应相等B 、斜边和一条直角边对应相等 C、斜边和一锐角对应相等ﻩ D 、两个锐角对应相等 3、已知等腰三角形的两条边长分别是2和4,则它的周长是( ▲ ) B 、 8或10C 、 10D 。

无法确定4。

如图,已知△ABC ,A B=AC ,若以点B为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( ▲ )A、AE =EC B 、A E=B E C 。

∠EBC =∠B AC D 、∠EBC=∠ABE 5、满足下列条件的△A BC 不是直角三角形的是( ▲ ) A 、BC =8,A C=15,A B=17 B 、BC :AC :AB =3:4:5C 、∠A +∠B=∠CD 、∠A :∠B :∠C=3:4:5 6、如图,∠MON =90º,长方形A BCD 的顶点B、C 分别在边OM 、ON上,当B 在边OM 上运动时,C随之在边ON 上运动,若CD =5,BC =24,运动过程中,点D 到点O的最大距离为 ( ▲ ) B、25 C 。

二、填空题(本大题共10小题,每小题3分,共30分) 7、正方形有_________条对称轴。

8。

等腰三角形的顶角为76°,则底角等于__________、9。

小明从镜子中看到对面电子钟如图所示,这时的时刻应是 、10、如图,已知在△ABC 中,DE是BC 的垂直平分线,垂足为E ,交AC于点D,若AB =6,AC =9,则△A BD的周长是 、(10) (11) (14)11、如图,在四边形A BC D中,A B∥CD,连结BD 请添加一个适当的条件___________,使△ABD ≌△CDB (只需写一个)、12、若直角三角形两直角边长分别是5cm,12cm,则它斜边上的高是 cm2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年江苏省盐城市东台市八年级(上)期中数学试卷(B卷)一、选择题(共6小题,每小题2分,满分12分)1.(2.00分)下列图形与如图所示的图形全等的是()A.B.C.D.2.(2.00分)下列图形对称轴最多的是()A.正方形B.等边三角形C.等腰三角形D.线段3.(2.00分)如图,△ABC≌△BAD,A和B,C和D是对应顶点,如果AB=5,BD=6,AD=4,那么BC等于()A.4 B.6 C.5 D.无法确定4.(2.00分)由线段a、b、c组成的三角形不是直角三角形的是()A.a=7,b=24,c=25 B.a=,b=4,c=5C.a=,b=1,c= D.a=,b=,c=5.(2.00分)《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()A.x2﹣6=(10﹣x)2B.x2﹣62=(10﹣x)2C.x2+6=(10﹣x)2 D.x2+62=(10﹣x)26.(2.00分)如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB′=∠ACB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是()A.1个 B.2个 C.3个 D.4个二、填空题(共10小题,每小题2分,满分20分)7.(2.00分)等腰三角形的一个内角为40°,则顶角的度数为.8.(2.00分)如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需米.9.(2.00分)室内墙壁上挂一平面镜,明敏在平面镜内看到他背后墙上的时钟如图,则这时的实际时间是.10.(2.00分)已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为三角形.11.(2.00分)在△ABC中,AB=AC,CD=CB,若∠ACD=42°,则∠BAC=°.12.(2.00分)如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.13.(2.00分)如图,某人将一块正五边形玻璃打碎成四块,现要到玻璃店配一块完全一样的玻璃,那么最省事的方法是带块.14.(2.00分)如图,小明要测量水池的宽AB,但没有足够长的绳子,聪明的他想了如下办法:现在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,则DE的长度就是AB的长,理由是根据(用简写形式即可),可以得到△ABC≌△DCE,从而由全等三角形的对应边相等得出结论.15.(2.00分)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则△ABC的面积为.16.(2.00分)如图,Rt△ABC中,∠C=90°,∠A=30°,点D,E分别在边AC,AB上,点D与点A,点C都不重合,点F在边CB的延长线上,且AE=ED=BF,连接DF交AB于点G.若BC=4,则线段EG的长为.三、解答题(共11小题,满分88分)17.(7.00分)小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到底面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度.18.(7.00分)已知,如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.19.(7.00分)如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE 与DE的大小与位置关系,并证明你的结论.20.(8.00分)已知:四边形ABCD中,AC⊥BC,AB=17,BC=8,CD=12,DA=9;(1)求AC的长;(2)求四边形ABCD的面积.21.(8.00分)如图,△ABC.(1)用尺规作图作出A点关于BC的对称点D(保留作图痕迹);(2)在(1)的情况下,连接CD、AD,若AB=5,AC=AD=8,求BC的长.22.(8.00分)如图:在△ABC,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.23.(8.00分)如图,已知∠A=∠D,有下列五个条件:①AE=DE,②BE=CE,③AB=DC,④∠ABC=∠DCB,⑤AC=BD,能证明△ABC与△DCB全等的条件有几个?并选择其中一个进行证明.24.(8.00分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.25.(8.00分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE、DE、DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BCD的度数.26.(8.00分)如图,在正方形网格上有一个△ABC.(1)画出△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.27.(11.00分)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF 的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD 的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.2017-2018学年江苏省盐城市东台市八年级(上)期中数学试卷(B卷)参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2.00分)下列图形与如图所示的图形全等的是()A.B.C.D.【解答】解:与如图所示的图形全等的是D,故选:D.2.(2.00分)下列图形对称轴最多的是()A.正方形B.等边三角形C.等腰三角形D.线段【解答】解:A、有4条对称轴,即两条对角线所在的直线和两组对边的垂直平分线;B、有3条对称轴,即各边的垂直平分线;C、有1条对称轴,即底边的垂直平分线;D、有2条对称轴.故选:A.3.(2.00分)如图,△ABC≌△BAD,A和B,C和D是对应顶点,如果AB=5,BD=6,AD=4,那么BC等于()A.4 B.6 C.5 D.无法确定【解答】解:∵△ABC≌△BAD,∴BC=AD,∵AD=4,∴BC=4.故选:A.4.(2.00分)由线段a、b、c组成的三角形不是直角三角形的是()A.a=7,b=24,c=25 B.a=,b=4,c=5C.a=,b=1,c= D.a=,b=,c=【解答】解:解:A、72+242=252,符合勾股定理的逆定理,是直角三角形;B、42+52=()2,符合勾股定理的逆定理,是直角三角形;C、12+()2=()2,符合勾股定理的逆定理,是直角三角形;D、()2+()2≠()2,不符合勾股定理的逆定理,不是直角三角形.故选:D.5.(2.00分)《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()A.x2﹣6=(10﹣x)2B.x2﹣62=(10﹣x)2C.x2+6=(10﹣x)2 D.x2+62=(10﹣x)2【解答】解:如图,设折断处离地面的高度为x尺,则AB=10﹣x,BC=6,在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10﹣x)2.故选:D.6.(2.00分)如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB′=∠ACB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:①②③为条件,根据SAS,可判定△BCA≌△B′CA′;可得结论④;①②④为条件,根据SSS,可判定△BCA≌△B′CA′;可得结论③;①③④为条件,SSA不能证明△BCA≌△B′CA′.②③④为条件,SSA不能证明△BCA≌△B′CA′.最多可以构成正确结论2个.故选:B.二、填空题(共10小题,每小题2分,满分20分)7.(2.00分)等腰三角形的一个内角为40°,则顶角的度数为100°或40°.【解答】解:当这个角是顶角时,则顶角的度数为40°,当这个角是底角时,则顶角的度数180°﹣40°×2=100°,故其顶角的度数为100°或40°.故填100°或40°.8.(2.00分)如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需7米.【解答】解:将楼梯表面向下和右平移,则地毯的总长=两直角边的和,已知AB=5米,AC=3米,且在直角△ABC中,AB为斜边,则BC==4米,则AC+BC=3米+4米=7米.故答案为:7.9.(2.00分)室内墙壁上挂一平面镜,明敏在平面镜内看到他背后墙上的时钟如图,则这时的实际时间是3:40.【解答】解:根据镜面对称的性质,分析可得题中所显示的时刻与3:40成轴对称,所以此时实际时刻为:3:40.故答案为:3:40.10.(2.00分)已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为直角三角形.【解答】解:∵a+b=10,ab=18,c=8,∴(a+b)2﹣2ab=100﹣36=64,c2=64,∴a2+b2=c2,∴此三角形是直角三角形.故答案为:直角.11.(2.00分)在△ABC中,AB=AC,CD=CB,若∠ACD=42°,则∠BAC=32°.【解答】解:设∠BAC=x,则∠BDC=42°+x.∵CD=CB,∴∠B=∠BDC=42°+x.∵AB=AC,∴∠ACB=∠B=42°+x,∴∠BCD=∠ACB﹣∠ACD=x,∴∠ADC=∠B+∠BCD=42°+x+x=42°+2x.∵∠ADC+∠BDC=180°,∴42°+2x+42°+x=180°,解得x=32°,所以∠BAC═32°.故答案为32.12.(2.00分)如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.【解答】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.13.(2.00分)如图,某人将一块正五边形玻璃打碎成四块,现要到玻璃店配一块完全一样的玻璃,那么最省事的方法是带①块.【解答】解:带①去,能够测量出此正五边形的内角的度数,以及边长,所以可以配一块完全一样的玻璃,带②③去,只能够测量出正五边形的内角的度数,不能够量出边长的长度,所以不可以配一块完全一样的玻璃;带④去,既不能测量出正五边形的内角的度数,也不能够量出边长的长度,所以不可以配一块完全一样的玻璃.所以最省事的方法是带①去.故答案为①.14.(2.00分)如图,小明要测量水池的宽AB,但没有足够长的绳子,聪明的他想了如下办法:现在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,则DE的长度就是AB的长,理由是根据边角边(或SAS)(用简写形式即可),可以得到△ABC≌△DCE,从而由全等三角形的对应边相等得出结论.【解答】解:在△ABC和△DCE中∵,∴△ABC≌△DCE(SAS).故答案为:边角边(或SAS).15.(2.00分)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则△ABC的面积为+1.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=,在Rt△ADC中,DC===1,∴BC=+1.∴△ABC的面积=AC•BC=+1;故答案为:+1.16.(2.00分)如图,Rt△ABC中,∠C=90°,∠A=30°,点D,E分别在边AC,AB上,点D与点A,点C都不重合,点F在边CB的延长线上,且AE=ED=BF,连接DF交AB于点G.若BC=4,则线段EG的长为4.【解答】解:作DH∥CB交AB于H.∵∠C=90°,∠A=30°,∴∠ABC=60°,∵DH∥BC,∴∠AHD=∠ABC=60°,∠DHG=∠FBG,∵EA=ED,∴∠A=∠EDA=30°,∴∠HED=∠A+∠EDA=60°,∴△EDH是等边三角形,∴ED=EH=EA=DH=BF,在△DHG和△FBG中,,∴△DHG≌△FBG,∴BG=HG,∵HE=EA,∴EG=AB=BC=4.故答案为4.三、解答题(共11小题,满分88分)17.(7.00分)小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到底面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度.【解答】解:设旗杆的高度为x米,则绳长为(x+1)米,根据题意得:(x+1)2=x2+52,即2x﹣24=0,解得:x=12.答:旗杆的高度是12米.18.(7.00分)已知,如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.【解答】证明:在等边△ABC中,AB=CA,∠BAC=∠ACB=60°,∴∠EAB=∠DCA=120°.在△EAB和△DCA中,,∴△EAB≌△DCA(SAS),∴AD=BE.19.(7.00分)如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE 与DE的大小与位置关系,并证明你的结论.【解答】解:CE=DE,CE⊥DE.理由如下:∵AC⊥AB,DB⊥AB,∴∠A=∠B=90°,在△ACE和△BED中,∵,∴△ACE≌△BED(SAS),∴CE=DE,∠C=∠BED,∵∠C+∠AEC=90°,∴∠BED+∠AEC=90°,∴∠CED=180°﹣90°=90°,∴CE⊥DE.20.(8.00分)已知:四边形ABCD中,AC⊥BC,AB=17,BC=8,CD=12,DA=9;(1)求AC的长;(2)求四边形ABCD的面积.【解答】解:(1)∵AC⊥BC,AB=17,BC=8,∴AC===15;(2)∵122+92=152,∴CD2+AD2=AC2,∴∠D=90°,∴四边形ABCD的面积为:×8×15+12×9=60+54=114.21.(8.00分)如图,△ABC.(1)用尺规作图作出A点关于BC的对称点D(保留作图痕迹);(2)在(1)的情况下,连接CD、AD,若AB=5,AC=AD=8,求BC的长.【解答】解:(1)如图点D即为所求的点.(2)由题意CA=CD=AD=8,AD⊥BC∴△ACD是等边三角形,AE=DE=4,在Rt△ABE中,BE==3,在Rt△ACE中,EC==4,∴BC=BE+EC=3+4.22.(8.00分)如图:在△ABC,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.【解答】证明:∵BD⊥AC于D,CE⊥AB于E,∴∠AEC=∠ADB=90°,在△ABD和△ACE中,∴△ABD≌△ACE(AAS),∴AE=AD,在Rt△AEF和Rt△ADF中,∴Rt△AEF≌Rt△ADF(HL),∴EF=DF,∴AF平分∠BAC.23.(8.00分)如图,已知∠A=∠D,有下列五个条件:①AE=DE,②BE=CE,③AB=DC,④∠ABC=∠DCB,⑤AC=BD,能证明△ABC与△DCB全等的条件有几个?并选择其中一个进行证明.【解答】解:共4个:①或②或③或④.若选①AE=DE,则证明如下:在△ABE和△DCE中,,∴AB=DC,BE=CE,∴DE+BE=AE+CE,∴BD=AC,在△ABC和△DCB中,,∴△ABC≌△DCB(SSS);若选②BE=CE,则证明如下:证明:∵BE=CE∴∠EBC=∠ECB,在△ABC与△DCB中:,∴△ABC≌△DCB(AAS);若选③AB=DC,则证明如下:在△ABE和△DCE中,,∴△ABE≌△DCE(AAS),∴BE=CE,∴∠EBC=∠ECB,在△ABC与△DCB中:,∴△ABC≌△DCB(AAS);若选④∠ABC=∠DCB,则证明如下:证明:在△ABC与△DCB中:,∴△ABC≌△DCB(AAS);若选⑤AC=BD,如图所示(AB∥CD),△ABC与△DCB不全等,综上所述,能证明△ABC与△DCB全等的条件有4个.24.(8.00分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.【解答】解:(1)三边分别为:3、4、5 (如图1);(2)三边分别为:、2、(如图2);(3)画一个边长为的正方形(如图3).25.(8.00分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE、DE、DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BCD的度数.【解答】(1)证明:∵∠ABC=90°,D为AB延长线上一点,∴∠ABE=∠CBD=90°,…(1分)在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);…(2分)(2)解:∵AB=CB,∠ABC=90°,∴△ABC为等腰直角三角形,∴∠CAB=45°,…(3分)又∵∠CAE=30°,∴∠BAE=∠CAB﹣∠CAE=15°.…(4分)∵△ABE≌△CBD,∴∠BCD=∠BAE=15°.…(5分)26.(8.00分)如图,在正方形网格上有一个△ABC.(1)画出△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.【解答】解:(1)如图所示:△DEF即为所求;(2)△ABC的面积:4×5﹣×4×1﹣×5×3﹣×4×1=20﹣2﹣7.5﹣2=8.5.27.(11.00分)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF 的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD 的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.【解答】解:(1)△CDF是等腰直角三角形,理由如下:∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,∴∠FCD=45°,∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF,∴∠APD=∠FCD=45°.。

相关文档
最新文档