1)井身结构设计(szl)
井身结构设计的内容
井身结构设计的内容
《井身结构设计的内容》
嘿,咱今天来聊聊井身结构设计。
你知道吗,井身结构设计就像是给一口井打造一个完美的“家”。
这可不是一件简单的事儿呢!就拿我之前看到过的一口井来说吧。
那是在一个大工地里,我好奇地凑过去看他们在干嘛。
原来他们正在设计那口井的结构。
他们先得考虑井的深度啊,这可不能随便乱来。
得根据实际需求,要够深才能达到想要的资源,但又不能太深了,不然成本太高啦,这中间的分寸得把握好。
就好像你做饭放盐一样,少了没味道,多了咸得慌。
然后呢,还要设计井筒的直径,这也有讲究的呀。
得让井里面能有足够的空间来运作,但又不能太大了,不然多浪费材料和成本呀。
我看着他们在那仔细地测量、计算,就像在给井量身定制一套衣服一样,要合适,要舒服。
还有啊,井壁的强度也很重要呢。
要是不结实,那可不行,说不定哪天就塌了。
那可就像盖房子,墙要是不牢固,那可危险啦。
他们得选用合适的材料,让井壁坚固无比,能够承受各种压力和考验。
最后还有一些细节呢,比如井口的设计,要方便使用,还要保证安全。
就像我们家里的门一样,得开关方便,还不能有隐患。
总之,井身结构设计这事儿真不简单,每一个环节都得精心考虑,从深度到直径,从强度到细节。
只有这样,才能打造出一口完美的井,让它好好地为我们服务。
我看着那口正在设计中的井,仿佛看到了它未来发挥大作用的样子,真的很神奇啊!这就是井身结构设计的内容,看似普通却蕴含着大大的智慧呢!。
井身结构设计
井身结构设计一、套管的分类作用1、表层套管主要用途:封隔地表浅水层及浅部疏松和复杂地层;安装井口、悬挂和支撑后续各层套管。
下深位置:根据钻井的目的层深度和地表状况而定,一般为上百米甚至上千米。
2、生产套管(油层套管)主要用途:用以保护生产层,提供油气生产通道。
下深位置:由目的层位置及完井方式而定。
3、中间套管(技术套管)在表层套管和生产套管之间由于技术要求下入的套管,可以是一层、两层或更多层。
主要用来封隔不同地层压力层系或易漏、易塌、易卡等井下复杂地层。
4、尾管(衬管)是在已下入一层技术套管后采用,即在裸眼井段下套管、注水泥,而套管柱不延伸到井口。
减轻下套管时钻机的负荷和固井后套管头负荷;节省套管和水泥。
一般在深井和超深井。
二、井身结构设计的原则1、有效地保护油气层;2、有效避免漏、喷、塌、卡等井下复杂事故的发生,保证安全、快速钻进;3、钻下部地层采用重钻井液时产生的井内压力,不致压裂上层套管鞋处最薄弱的裸露地层;4、下套管过程中,井内钻井液液柱压力和地层压力间的压差不致于压差卡套管;5、当实际地层压力超过预测值而发生井涌时,在一定压力范围内,具有压井处理溢流的能力。
三、井身结构设计的基础数据•地层岩性剖面、地层孔隙压力剖面、地层破裂压力剖面、地层坍塌压力剖面。
•6个设计系数:抽吸压力系数Sb;0.024 ~0.048 g/cm3激动压力系数Sg;0.024 ~0.048 g/cm3压裂安全系数Sf;0.03 ~0.06 g/cm3井涌允量Sk;:0.05 ~0.08 g/cm3压差允值∆p;∆P N: 15~18 MPa ,∆P A:21~23 MPa 四、井身结构设计方法套管层次和下入深度设计的实质是确定两相邻套管下入深度之差,它取决于裸眼井段的长度。
在这裸眼井段中,应使钻进过程中及井涌压井时不会压裂地层而发生井漏,并在钻进和下套管时不发生压差卡钻事故。
设计前必须有所设计地区的地层压力剖面和破裂压力剖面图,图中纵坐标表示深度,横坐标表示地层孔隙压力和破裂压力梯度,皆以等效密度表示。
东北石油大学-石油工程-钻井工程课程设计
东北石油大学石油工程钻井工程课程设计东北石油大学课程设计任务书课程:石油工程课程设计题目:钻井工程设计专业:石油工程姓名:张皖学号:10011312主要内容、基本要求、主要参考资料等:1、设计主要内容:根据已有的基础数据,利用所学的专业知识,完成一口井的钻井工程相关参数的计算,最终确定出钻井、完井技术措施。
主要包括井身结构、钻具组合、钻井液、钻井参数设计和完井设计。
2、设计要求:要求学生选择一口井的基础数据,在教师的指导下独立地完成设计任务,最终以设计报告的形式完成专题设计,设计报告的具体内容如下:(1)井身结构设计;(2)套管强度设计;(3)钻柱设计;(4)钻井液设计;(5)钻井水力参数设计;(6)注水泥设计;(7)设计结果;(8)参考文献;设计报告采用统一格式打印,要求图表清晰、语言流畅、书写规范、论据充分、说服力强,达到工程设计的基本要求。
3、主要参考资料:王常斌等,《石油工程设计》,东北石油大学校内自编教材陈涛平等,《石油工程》,石油工业出版社,2000《钻井手册(甲方)》编写组,《钻井手册》,石油工程出版社,1990完成期限2014年6月10日指导教师陈涛平专业负责人陈涛平2014 年 6 月10 日目录前言 (1)第1章设计资料的收集.............................................................. 错误!未定义书签。
1.1预设计井基本参数.......................................................... 错误!未定义书签。
1.2 邻井基本参数................................................................. 错误!未定义书签。
第2章井身结构设计.. (6)2.1钻井液压力体系 (6)2.2井身结构的设计 (7)2.3井身结构设计结果 (9)第3章套管柱强度设计 (10)3.1套管柱设计计算的相关公式 (10)3.2表层套管柱设计.............................................................. 错误!未定义书签。
《井身结构设计》课件
井身材料
常用井身材料包括钢筋混凝 土、混凝土、钢和玻璃钢等。
井身结构设计的目的
提高井身稳定性
井身结构设计的目的是为了提高 井身的稳定性,确保石油井的平 稳生产。
降低事故风险
合理的井身结构设计可以减少石 油井事故的概率,保障工人的生 命安全。
提高生产效率
通过优化井身结构设计,可以提 高石油井的生产效率,降低维护 成本。
1
基础工程
进行基础开挖、标出基坑轮廓线、安置钢筋骨架等。
2
混凝土浇筑
进行钢筋模板组装、浇筑混凝土等。
3
砼强度与养护
根据测量计算、检验、养护高强度混凝土的质量。
预应力混凝土结构井的施工
预应力钢筋制作
预应力混凝土井筒需要应用预应 力钢筋,进行钢筋的制作和预应 力张拉。
施工工艺
构件之间的连接
进行预制整体与预制分段两种工 艺,将预制件安装到已完成地基 的基础上,进行钢束拉紧与固定。
井身结构设计实例分享
பைடு நூலகம்
1
长江三峡水电站井身设计
针对高水压和高岸坡等复杂工况,设计了多层钢筋混凝土结构的井身,确保水电 站的正常运行。
2
渤海海洋油田厂房井身设计
针对海洋环境的复杂性,设计高强度钢结构井身,提高了设施稳定性和运行效率。
3
南海油田纯海上井身设计
针对纯海上井身不稳定等特点,设计了预制单元式混凝土井身结构,解决了海上 施工难度大的问题。
井身结构的安全性检查
1 验收检查
在施工完成后,进行对井身结构的检查,确认是否符合设计要求。
2 日常检查
对井身结构进行日常管护与维修,确保井身结构的稳定性和安全性。
3 保护检查
井身结构设计
井身结构设计摘要:井深结构设计是钻井工程的基础设计。
它的主要任务是确定导管的下入层次,下入深度,水泥浆返深,水泥环厚度及钻头尺寸。
基础设计的质量是关系到油气井能否安全、优质、高速和经济钻达目的层及保护储层防止损害的重要措施。
由于地区及钻井目的层的不同,钻井工艺技术水平的高低,不同地区井身结构设计变化较大。
选择井身结构的客观依据是底层岩性特征、底层压力、地层破裂压力。
正确的井身结构设计决定整个油田的开采。
本文基于课本所学的基本内容,对井身结构做一个大致的程序设计。
井身结构设计的内容:1、确定套管的下入层次2、下入深度3、水泥浆返深4、水泥环厚度5、钻头尺寸井身结构设计的基础参数包括地质方面的数据和工程等数据1.地质方面数据(1)岩性剖面及故障提示;(2)地层压力梯度剖面;(3)地层破裂压力梯度剖面。
2.工程数据,以当量钻井液密度表示;单位g/cm3:如美国墨西(1)抽汲压力系数Sw=0.06。
我国中原油田Sw=0.015~0.049。
湾地区采用Sw,以当量钻井液密度表示,单位g/cm3。
(2)激动压力系数Sg由计算的激动压力用(2-58)进行计算,美国墨西湾地区取Sg=0.06, Sg我国中原油田Sg=0.015~0.049。
(3)地层压裂安全增值S,以当量钻井液密度表示,单位g/cm3。
fSf是考虑地层破裂压力检测误差而附加的,此值与地层破裂压力检测精度有关,可由地区统计资料确定。
美国油田Sf取值0.024,我国中原油田取值为0.02~0.03。
4)溢流条件Sk以当量钻井液密度表示,单位g/cm3。
由于地层压力检测误差,溢流压井时,限定地层压力增加值Sk。
此值由地区压力检测精度和统计数据确定。
美国油田一般取Sk=0.06。
我国中原油田取值为0.05~0.10。
(5)压差允值PN (Pa)裸眼中,钻井液柱压力与地层孔隙压力的差值过大,除使机械钻速降低外,而且也是造成压差卡钻的直接原因,这会使下套管过程中,发生卡套管事故,使已钻成的井眼无法进行固井和完井工作。
井身结构设计
井身结构设计是钻井方案的核心,直接成本占钻井总成本的20%以上,同时与 周期有关的钻井成本亦即确定。
19% 41%
23% 5% 6% 2% 4%
服务费用 套管及附件 钻具 水泥及添加剂 钻井液 钻前工程费用 钻机费用
7%
服务费用
21%
套管及附件
钻具
52%
水泥及添加剂
钻井液
6%
最大套铣钻具 (mm)
177.80
177.80
198.76 207.01
10.16 10.80ຫໍສະໝຸດ 244.48 250.83
177.80 200.00
224.41
10.04
266.7
215.90
220.5 252.73 247.9
11.99 10.16 12.58
266.7 298.45 298.45
212.73 244.48 238.13
•主要特征:借助相关领域的发展,井 身结构设计采用了数量化方法。
• 提出了以满足防止套管鞋处地层压 裂和避免压差卡钻为主要依据,满足 工程必封点为约束条件的设计思想;
• 确定了以四条压力剖面为根据,从 下而上确定下入深度,再由约束条件 进行调节的设计方法,用图解或解析 的数量化方法,实现了井身结构设计 方法实质性的飞跃;
ρm≥ρpmax+ Sb +△ρ (ρmax-ρpmin)×Hpmin×0.0098≤△P ρemax+ Sg + Sf ≤ρfmin ρemax+ Sf + Sk ×Hpmax/ Hc1≤ρfc1
防井涌 防卡钻 防漏 防关井井漏
钻井工程设计方法-井身结构
依据压力剖面,以保证钻进套管 以下的井段时的最大井内压力梯 度不压裂最薄弱的裸露地层(一 般为套管鞋处)为原则,从全井 最大地层压力梯度处开始,由下 向上确定套管的层次(技术套管 和表层套管)和各层套管的下入 深度。
井身结构设计
•2.工程数据
(2)激动压力系数Sg,以当量钻井液密度表示,单位g/cm3。 Sg由计算的激动压力用(2-58)进行计算,美国墨西湾地 区取Sg=0.06,我国中原油田Sg=0.015~0.049。
(3)地层压裂安全增值Sf,以当量钻井液密度表示,单位 g/cm3。
Sf是考虑地层破裂压力检测误差而附加的,此值与地层 破裂压力检测精度有关,可由地区统计资料确定。美国 油田Sf取值0.024,我国中原油田取值为0.02~0.03。
•地层压力和地层破裂压力的数据一般是离散的,是由若干个压 力梯度和深度数据的离散点构成。为了求得连续的地层压力和 地层破裂压力梯度剖面,拟合曲线是不适用的,但可依靠线性 插值的方法。在线性插值中,认为离散的两邻点间压力梯度变 化规律为一直线。
•对任意深度H求线性插值的步骤:
•设自上而下顺序为i的点具有深度为Hi,地层压力梯度为GPi, 地层破裂压力梯度为Gfi,而其上部相邻点的序号为i-1,相邻 的地层压力梯度为GPi-1,地层破裂压力梯度为Gfi-1,则在深度 区间Hi~Hi-1内任意深度H有:
m P Sw
钻至某一井深Hx时,发生一个大小为Sk的溢流,停泵关闭防
喷器,立管压力读数为Psd
Psd 0.00981 Sk H
关井后井内有效液柱压力平衡方程为PmE=Pm+Psd
0.00981 mE H 0.00981 H ( P Sw ) 0.00981 Sk H x
mE
P
Sw
Hx H
井身结构设计原理—液体压力体系的当
量梯度分布
Pm Pm 0.0981 mH m
Gm Gm 0.0981 m
•非密封液柱体系 的压力分布和当
量梯度分布
井深结构设计
井身结构包括套管层次和下入深度以及井眼尺寸(钻头尺寸)与套管尺寸的配合。
井身结构设计是钻井工程设计的基础。
一、套管柱类型(1) 表层套管;(2) 中间套管(技术套管)(3) 生产套管(油层套管)(4) 尾管。
二、井眼中压力体系在裸眼井段中存在着地层孔隙压力、泥浆液柱压力、地层破裂压力。
三个压力体系必须同时满足于以下情况:p m f p p p ≥≥ (1-1) 式中 f p -地层的破裂压力,MPa ;m p -钻井液的液柱压力,MPa ;p p -地层孔隙压力,MPa 。
即泥浆液柱压力应稍大于孔隙压力以防止井涌,但必须小于破裂压力以防止压裂地层发生井漏。
由于在非密闭的洗井液压力体系中(即不关封井器憋回压时),压力随井深是呈线性变化的,所以使用压力梯度概念是较方便的。
式(1-1)可写成:p m t G G G ≥≥ (1-2)式中 t G -破裂压力梯度,MPa/m ;m G -液柱压力梯度,MPa/m ;p G -孔隙压力梯度,MPa/m 。
一、井身结设计所需基础资料(一) 地质资料(1) 岩性剖面及事故提示(2) 地层压力数据(3) 地层破裂压力数据(二) 工程资料(1) 抽吸压力与激动压允许值(g b S S 与)各油田应根据各自的情况来确定。
(2) 地层压裂安全增值(f S )。
该值是为了避免将上层套管鞋处地层压裂的安全增值,它与预测破裂压力值的精度有关,可以根据该地区的统计数据来确定。
以等效密度表示g/cm 3。
美国现场将f S 取值为0.024,中原油田取值为0.03。
(3) 井涌条件允许值(k S )。
此值是衡量井涌的大小,用泥浆等效密度差表示(用于压井计算,另一种计量方法是以进入井眼的流体的总体积来表示,多用于报警)。
美国现场取值为0.06。
该值可由各油田根据出现井涌的数据统计和分析后得出。
中源油田将k S 值定为0.06~0.14。
(4) 压差允值(a N P P ∆∆与)。
裸眼中,泥浆液柱压力与地层孔隙压力的差值过大,除使机械钻速降低外,而且也是造成压差钻的直接原因,这会使下套管过程中,发生卡套管事故,使已钻成的井眼无法进行地固井和完井工作。
井身结构设计
第二章 井身结构设计井身结构设计是钻井工程的基础设计。
它的主要任务是确定套管的下入层次、下入深度、水泥浆返深、水泥环厚度、生产套管尺寸及钻头尺寸。
基础设计的质量是关系到油气井能否安全、优质、高速和经济钻达目的层及保护储层防止损害的重要措施。
由于地区及钻探目的层的不同,钻井工艺技术水平的高低,国内外各油田井身结构设计变化较大。
选择井身结构的客观依据是地层岩性特征、地层压力、地层破裂压力。
主观条件是钻头、钻井工艺技术水平等。
井身结构设计应满足以下主要原则:1.能有效地保护储集层;2.避免产生井漏、井塌、卡钻等井下复杂情况和事故。
为安全、优质、高速和经济钻井创造条件;3.当实际地层压力超过预测值发生溢流时,在一定范围内,具有处理溢流的能力。
本章着重阐明地下各种压力概念及评价方法,井身结构设计原理、方法、步骤及应用。
第一节 地层压力理论及预测方法地层压力理论和评价技术对天然气及石油勘探开发有着重要意义。
钻井工程设计、施工中,地层压力、破裂压力、井眼坍塌压力是合理钻井密度设计;井身结构设计;平衡压力钻井;欠平衡压力钻井及油气井压力控制的基础。
一、几个基本概念1.静液柱压力静液柱压力是由液柱自身重量产生的压力,其大小等于液体的密度乘以重力加速度与液柱垂直深度的乘积,即0.00981h P H r = (2-1)式中:P h ——静液柱压力,MPa ;——液柱密度,g/cm 3; H ——液柱垂直高度,m 。
静液柱压力的大小取决于液柱垂直高度H 和液体密度,钻井工程中,井愈深,静液柱压力越大。
2.压力梯度指用单位高度(或深度)的液柱压力来表示液柱压力随高度(或深度)的变化。
ρ00981.0==HP G hh (2-2) 式中:G h ——液柱压力梯度,MPa/m ; P h ——液柱压力,MPa ; H ——液柱垂直高度,m 。
石油工程中压力梯度也常采用当量密度来表示,即HP h00981.0=ρ (2-3)式中:——当量密度梯度,g/cm 3; 3.有效密度钻井流体在流动或被激励过程中有效地作用在井内的总压力为有效液柱压力,其等效(或当量)密度定义为有效密度。
井身结构设计与固井
执行情况回顾
定期对安全保障措施的执行情况进行回顾和总结,分析存在的问题和不足,提出改进措 施和建议。
持续改进方向和目标设定
持续改进方向
根据风险评估和安全保障措施执行情况 ,明确井身结构设计与固井过程中需要 持续改进的方向和重点。
压力监测
实时监测注浆过程中的压力变 化,确保注浆过程平稳、安全 。
异常情况处理
对注浆过程中出现的异常情况 ,如漏失、气窜等,及时采取
有效措施进行处理。
顶替效率提升措施实施
优化顶替流态
通过调整顶替液的性能、流量等参数,优化 顶替流态,提高顶替效率。
增加顶替排量
在保证安全的前提下,适当增加顶替排量, 提高顶替速度和效率。
VS
目标设定
设定明确、可量化的改进目标,包括降低 风险等级、提高安全保障措施的有效性等 ,为持续改进提供明确的方向和动力。
THANKS FOR WATCHING
感谢您的观看
材料准备
根据设计要求,准备好所需的 水泥、添加剂等材料,并对其
进行质量检验。
施工方案制定
根据井身结构、地质条件等因 素,制定详细的施工方案和应
急预案。
注水泥浆过程监控
水泥浆性能监控
实时监测水泥浆的密度、流动 性、失水量等性能指标,确保
其符合设计要求。
注浆速度控制
根据井深、井径等因素,合理 控制注浆速度,避免出现注浆 不均、堵管等问题。
井身结构的重要性
井身结构设计的合理与否直接影 响到钻井施工安全、速度和成本 ,以及后续油气开采的效率和效 益。
设计原则与规范要求
设计原则
井身结构图模版课件
Envato Elements:提供丰富的PPT 模版,支持在线编辑和下载,部分模 版需要付费
PPT模板网:提供丰富的PPT模版,支 持在线编辑和下载,部分模版需要付 费
Canva:提供丰富的PPT模版,支持在 线编辑和下载,部分模版需要付费
井身结构图的绘制方法
确定井身结构图 的尺寸和比例
绘制井身结构图 的基本框架
标注井身结构图 的主要参数
绘制井身结构图 的辅助线
绘制井身结构图 的细节部分
检查井身结构图 的准确性和完整
性
井身结构图的分析与解读
井身结构图的组成:包括井筒、套管、油管、水泥环、地层等
井身结构图的作用:展示井身结构,便于理解和分析井身情况
锐普PPT:提供丰富的PPT模版,支持 在线编辑和下载,部分模版需要付费
专业定制的PPT模版服务推荐
专业团队:拥有专业的设计团队, 可以根据客户需求定制PPT模版
质量保证:保证PPT模版的质量 和美观度,让客户满意
添加标题
添加标题
添加标题
添加标题
定制服务:提供一对一的定制服 务,满足客户的个性化需求
预览效果:预览PPT的效果,如有需要, 进行修改和完善
05
PPT模版常见问题 及解决方案
PPT模版无法打开或显示问题
原因:文件损坏、版本不兼容、软件故障等 解决方案:尝试修复文件、更新软件、更换版本等 预防措施:定期备份文件、使用正版软件、及时更新等 注意事项:不要随意修改文件、避免使用盗版软件等
Google Slides:提供多种PPT模版,免费使用 Canva:提供丰富的PPT模版,免费下载使用 PPT模板网:提供大量的PPT模版,免费下载使用 优品PPT:提供丰富的PPT模版,免费下载使用 PPT:提供丰富的PPT模版,免费下载使用
井身结构设计
第一章 井身结构设计
第二节 地层破裂压力预测方法
1、地层破裂压力定义:在井下一定深度出露的地 层,承受液体压力的能力是有限的。当液体压力达 到某一数值时会使地层破裂,这个液体压力称为地 层破裂压力。
地震波法预测地层压力计算方法主要有等 效深度法,Fillipone法、R比值法。
2020/11/13
第二节 地层破裂压力预测方法
第一章 井身结构设计
在采油作业上,20世纪40年代就利用水力压裂 地层达到增产的目的,但对钻井工程不希望地层破 裂,因为容易发生井漏,造成井下复杂事故。因此 了解地层的破裂压力对合理的油井设计和钻井施工 都十分重要。
三、地层压力预测方法 钻速法--随钻监测 测井法--钻后评价 地球物理方法--钻前预测
目前应用某一种方法是很难准确评价一个地区或 区块的地层压力,往往需要采用多种方法进行综合 分析和解释。
dc指数法、声波时差法、地震法。
2020/11/13
第一章 井身结构设计
第一节 地层压力理论及预测技术
1、dc指数法
在正常地层压力情况下,如岩性和钻井条件不变,机械钻 速随井深的增加而下降。当钻入压力过渡带之后,由于压差 减小,岩石孔隙度增大,机械钻速反而加快。 dc指数则正是 利用这种差异预报异常高压。
宾汉在不考虑水力因素的影响下建立了钻速方程;根据室
内及油田钻井试验 ,再进行合理的假设,采用统一的单位可
得d指数(钻压)表达式:
2020/11/13
第一章 井身结构设计
井深结构设计
井身结构包括套管层次和下入深度以及井眼尺寸(钻头尺寸)与套管尺寸的配合。
井身结构设计是钻井工程设计的基础。
一、套管柱类型(1) 表层套管;(2) 中间套管(技术套管)(3) 生产套管(油层套管)(4) 尾管。
二、井眼中压力体系在裸眼井段中存在着地层孔隙压力、泥浆液柱压力、地层破裂压力。
三个压力体系必须同时满足于以下情况:p m f p p p ≥≥ (1-1) 式中 f p -地层的破裂压力,MPa ;m p -钻井液的液柱压力,MPa ;p p -地层孔隙压力,MPa 。
即泥浆液柱压力应稍大于孔隙压力以防止井涌,但必须小于破裂压力以防止压裂地层发生井漏。
由于在非密闭的洗井液压力体系中(即不关封井器憋回压时),压力随井深是呈线性变化的,所以使用压力梯度概念是较方便的。
式(1-1)可写成:p m t G G G ≥≥ (1-2)式中 t G -破裂压力梯度,MPa/m ;m G -液柱压力梯度,MPa/m ;p G -孔隙压力梯度,MPa/m 。
一、井身结设计所需基础资料(一) 地质资料(1) 岩性剖面及事故提示(2) 地层压力数据(3) 地层破裂压力数据(二) 工程资料(1) 抽吸压力与激动压允许值(g b S S 与)各油田应根据各自的情况来确定。
(2) 地层压裂安全增值(f S )。
该值是为了避免将上层套管鞋处地层压裂的安全增值,它与预测破裂压力值的精度有关,可以根据该地区的统计数据来确定。
以等效密度表示g/cm 3。
美国现场将f S 取值为0.024,中原油田取值为0.03。
(3) 井涌条件允许值(k S )。
此值是衡量井涌的大小,用泥浆等效密度差表示(用于压井计算,另一种计量方法是以进入井眼的流体的总体积来表示,多用于报警)。
美国现场取值为0.06。
该值可由各油田根据出现井涌的数据统计和分析后得出。
中源油田将k S 值定为0.06~0.14。
(4) 压差允值(a N P P ∆∆与)。
裸眼中,泥浆液柱压力与地层孔隙压力的差值过大,除使机械钻速降低外,而且也是造成压差钻的直接原因,这会使下套管过程中,发生卡套管事故,使已钻成的井眼无法进行地固井和完井工作。
井身结构设计
一、井身结构设计
一、井身结构 设计的任务
套管下入层次 每层套管的下入深度 各层套管相应的井眼尺寸(钻头尺寸) 各层套管外的水泥返深
➢ 确定井身结构的主要依据 钻井地质设计(地层压力、地层
破裂压力、地层坍塌压力、完井方 式)、复杂地层深度、地表水源情 况、钻井技术水平和采、试油、气 的技术要求等。。
✓ 井身结构设计的原则 (1)有效地保护油气层; (2)有效地避免漏、喷、塌、卡等井下复杂事故,保证安全、 快速钻井; (3)当发生井涌时,具有压井处理溢流的能力; (4)钻下部高压地层时,井内液柱压力不会压漏上层套管鞋处 的裸露地层。 (5)下套管过程中,不产生压差卡套管现象。 (6)对于压力不清楚或复杂深探井,套管设计应留有余量。 (7)同一裸眼井段,尽量不存在两个压力体系。 (8)地质预告有浅气层的井,应用套管封住。
➢ 裸眼井段应满足的力学平衡条件
在裸眼井段中存在着地层孔隙压力、钻井液液柱压力、地层破裂压力。
(1)防井涌
ρdmax≥ρpmax+ Sb (抽汲压力系数)
(2)防压差卡钻 0.00981 Dpmin (ρdmax-ρpmin) ≤ △P(△PN、△PA)
(3)防井漏 ρdmax+ Sg(激动压力系数)+ Sf(压裂安全系数)≤ρfmin
Dpmin — 最小地层孔隙压力所处的井深,m;
ρfmin — 裸眼井段最小地层破裂压力的当量钻液密度,g/cm3
Dc1 — 套管下入深度,m;
ρfc1 — 套管鞋处地层破裂压力的当量钻井液密度, g/cm3;
四、井身结构设计方法及步骤
下→上,内→外 五、设计举例
某井设计井深为4400m,地层压力梯度和地
第二章第四节 井身结构设计1PPT课件
▪ ΔPN(ΔPa)
Gf Gp
当量泥浆密度
井身结构设计
1、正常作业时(起下钻、钻进): 起钻: 最大钻井液密度:某一层套管的钻进井段中所用的最大钻井液密
度应不小于和该井段中的最大地层压力梯度当量密度与最大抽吸 压力梯度当量密度之和。
ma x PmaxSw
ρmax:某层套管的钻进井段中所使用的最大钻井液密度,g/cm3; ρpmax该井段的最大地层压力梯度, g/cm3; Sw:考虑到上提钻柱时抽吸作用使井底压力降低,为了平衡地层压力
井底压力随作业不同而变化: (1)静止状态,井底压力=环形空间静液压力; (2)正常循环时,井底压力=环形空间静液压力+环形空间压力损失; (3)用旋转防喷器循环钻井液时,井底压力=环形空间静液压力+环形空间压力损
失+旋转防喷器的回压, (4)循环出气涌时,井底压力=环形空间静液压力十环形空间压力损失+节流器压
压力的差值过大.除使机械钻速降低外,而且也 是造成压差卡钻的直接原因,这会使下套管过程 中,发生卡套管事故。)。
套管层次和下入深度确定
考虑的因素
地层压力剖面
地层破裂压力剖面
工程参数(必封点确定)
正常作业:抽吸压力系
数地层Sw压、裂激安动全压增力值系S数f Sg、井深
出现井涌:抽吸压力系 数Sw、地层压裂安全增 值Sf、考虑液流情况下 地层压力增加值 SK
Sk
pa 0.00981H x
关井后井内压力平衡方程 pmE pm pa
mEH (p Sw)H Sk Hx
mE p
Sw Sk
Hx H
x
井身结构设计
井身结构设计关键参数
1井身结构设计szl
❖1)不减小井径,有利于构建直筒式 井身结构;
❖2)经济性好,有长期效益;
❖3)与提高钻井液工艺技术水平法一 起,为首先考虑的处理复杂地层和 优化井身结构的方法。
❖3 下套管并注水泥固井法
❖ 3.1发展概况和工艺简介
是钻最早使用且用得最多的加固 复杂地层的方法。
❖ 3.2套管的类型和作用
上述2方面决定了油气层与井眼连 通方式-完井方法。
❖3)钻井地层特性:指喷、裂、漏、 缩径、塌、卡等复杂地层特性;
❖4)钻井液工艺技术水平及要求;
❖5)钻井工艺技术水平及要求;
❖6)固井工艺技术水平及要求。
上述4方面决定了钻井处理复杂 地层的方法-非目的层段的井身结 构形式。
❖7现代井身结构设计内容
水泥返深: 地面
扩眼段:Φ…mm×…m
二开:
井眼外径:Φ……㎜ 钻达井深:……m 套管外径:Φ……㎜ 套管下深:……m 水泥返深: ……m
❖作业要求:
1)用小4号宋体字写,A4纸输出; 2)讲完本章时完成,先课上交流,再
上交。
第一章 井身结构设计
第一节 绪论
❖1井身结构实例
王西7斜井井身结构示意图
❖ 根据套管的功用可将其分为导管;表层 套管;中间套管(尾管),亦称技术套管; 生产套管(尾管),亦称油层套管(图7-1)。
1)导管及其作用:是最早下入井内的 一层临时性管子。导管的作用是在 钻表层井眼时将钻井液从地表引导 到钻井装置平面上来,这一层管柱 其长度变化较大,在坚硬的岩层中 仅用10~20m,而在沼泽地区则可能 上百米。
❖ 2)钻井起下钻和下套管过程中,井内钻 井液柱的压力和地层压力之间的压力差, 不致产生压差卡钻杆和套管的现象等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
井身结构; 2)经济性好,有长期效益; 3)与提高钻井液工艺技术水平法一 起,为首先考虑的处理复杂地层和 优化井身结构的方法。
3
下套管并注水泥固井法
3.1发展概况和工艺简介
是钻井最早使用且用得最多的加固 复杂地层的方法。 3.2套管的类型和作用 根据套管的功用可将其分为导管;表层 套管;中间套管(尾管),亦称技术套管; 生产套管(尾管),亦称油层套管(图7-1)。
第二节 钻井处理复杂地层和 优化井身结构的方法
1
提高钻井液工艺技术水平法 1.1 概述 1.2 措施 1)优选钻井液体系; 2)改善钻井液性能,提高钻井液的携岩 和悬岩能力,提高其护壁能力以形成薄 而致密的滤饼等; 3)加强钻井液的固控和管理等。
1.3
方法特点 (注:与下套管注水泥固井法相比) 1)工艺简单; 2)不减小井径,有利于构建直筒式井身 结构; 3)经济性好,有长期效益; 4)可靠性需要实践检验; 5)为首先考虑的处理复杂地层和优化井 身结构的方法。
1)导管及其作用:是最早下入井内的 一层临时性管子。导管的作用是在 钻表层井眼时将钻井液从地表引导 到钻井装置平面上来,这一层管柱 其长度变化较大,在坚硬的岩层中 仅用10~20m,而在沼泽地区则可能 上百米。
2
提高钻井工艺技术水平法
2.1
概述 2.2 措施 1)提高人员素质,严格、规范管理; 2)建立钻井时间观念,在保证安全和质 量的前提下,加快钻速; 3)采用合适的钻井方法, 如改转盘钻为 井下动力钻或顶驱钻、复合钻,改钻杆 钻为套管钻等(举例展开)。
2.3方法特点
(注:与下套管注水泥固井法相比)
完井工程
2011
开课必做
课程介绍:名称/性质/学时/周学时/结课时间。 成绩评定方法:平时20%,结课考试80%。 平时成绩评定方法:1)考勤和课堂纪律;2) 课堂提问;3)作业。 结课考试:时间/题型/题量/分值/考后要求。 答疑:时间和地点。
绪论
完井工程定义:指从钻开油气层到
6井身结构设计应考虑的因素
1)油气藏特性;
2)采油工艺技术水平及要求;
上述2方面决定了油气层与井眼连 通方式-完井方法。
3)4)钻井液工艺技术水平及要求; 5)钻井工艺技术水平及要求; 6)固井工艺技术水平及要求。 上述4方面决定了钻井处理复杂 地层的方法-非目的层段的井身结 构形式。
面面构成一个系统,再根据系统工程的 原理及方法,由压力平衡关系(钻井液压 力、地层孔隙压力、地层破裂压力和盐 岩蠕变压力)、工程约束条件(垮塌井段、 漏失井段和套管挤毁井段)、事故发生概 率等相关因素,采用风险决策技术和优 化技术,进行合理井身结构设计。
对比:常规井身结构设计是一种系统局
部优化方法,而解决复杂地质情况的井 身结构设计方法则是系统全面优化方法。 现状:由于复杂地质情况在不同的构造、 井别将有不同的表现,针对实际情况影 响因素将有不同的取舍,因此,很难找 到一种统一的、适应面极广的井身结构 设计方法,这也是国内外同类研究工作 至今未能成果的主要原因。
完钻交井的工艺和技术。是联系钻 井与采油生产的一个关键环节。 完井工程的基本工艺过程:确定完 井的井底结构-完井方法、确定井 身结构、钻开生产层、保护油气层、 完井电测、固井、使井眼与产层连 通、试油、安装井底和井口。
完井工程的主要内容:1)以油气层
的地质结构、岩石力学性质和物性 为基础,研究储集层与井眼的最佳 连通方式,为油气井的稳产、高产 创造最优的条件;2)保护油气层。 课程内容:介绍井身结构设计方法、 固井和完井等的工艺技术。
1)提出了以满足工程必封点为主要条件
的井身结构设计思想; 2)确定了三段式(表层套管\技术套管\生 产套管)的井身结构基本形式; 3)确定了由API制定的尺寸(钻头尺寸、 套管尺寸、油管尺寸)配合规范,统一了 管材、工具配套标准; 意义:使得井身结构设计从无序到有序、 从杂乱到标淮,开创了一个基本良性循 环的局面。
取得的成果:
1)提出了以满足防止套管鞋处地层压裂
和避免压差卡钻为量化依据,满足必封 点约束条件的设计思想; 2)确定了以两条压力剖面为根据,从下 而上(先生产套管,后技术套管,再表层 套管)用图解或解析的数量化方法确定下 人深度,再由必封点约束条件进行调节 的设计方法。
意义:这一阶段发展的数量化设计
第一章 井身结构设计
大作业一:一口井井身结构设计 1基本数据
1)井号:广斜-1井; 2)井别:开发井; 3)井型:定向井; 4)设计井深:3525米; 5)完井方法:射孔完井; 6)完钻原则:钻穿潜43油组留足口袋完钻.
2设计地层剖面
地层时代 界 系 组 段 层 第四系平原组 上第三系广华寺组 荆河镇组 潜一段 潜二段 潜三段 41 新 生 界 下 第 潜 三 江 系 组 41下 40 潜 四 上 40中 40下 42 42下 43 潜4下
3)对一个油田或区块而言,井身结
构设计常常不能一次完成。随着对 地层情况的更多了解,钻井、钻井 液和固井工艺技术水平的提高,井 身结构应逐步简化和优化。
9
井身结构设计的发展
9.1经验积累阶段(1900~1960)
特点:井不深(3000m左右),地层情况还
不太复杂,井身结构设计靠实践中积累 的经验来做。 任务:为适应工业化大生产的需要,有 关井身结构设计的研究工作主要面临规 范化、标准化问题。 取得的主要成果有:
7现代井身结构设计内容
(注:与传统的不同) 1)油气层与井眼连通方式选择-目 的层段井身结构形式; 2)钻井必封段确定和封固/处理方法 优选-非目的层段井身结构形式; 3)整个井筒的总体结构尺寸选配。
实例-王西7斜井: 1)选用射孔法完井; 2)用扩眼法和下套管注水泥的方法处理
设计地层/m 深度 90 930 1760 2170 2570 3070 3120 3160 3180 3330 3380 3410 3450 3500 3525 厚度 90 840 830 410 400 500 50 40 20 150 50 30 40 50 (25)
岩性简述 黄色粘土\砾石\流砂层 杂色粘土岩\砾状砂岩\砂砾岩 灰、绿灰色泥岩底部夹油页岩 膏岩韵律层段及砂泥岩互层段 盐岩、油浸泥岩、石膏质泥岩、泥岩组成的韵律层 灰色泥岩夹粉砂岩\盐岩\油浸泥岩\泥岩 灰色泥岩夹粉砂岩 盐岩、油浸泥岩、泥岩组成的韵律层段 盐岩、油浸泥岩、泥岩组成的韵律层段 盐岩、油浸泥岩、泥岩组成的韵律层段 盐岩、油浸泥岩、泥岩组成的韵律层段 灰色泥岩夹粉砂岩 盐岩、油浸泥岩、泥岩组成的韵律层段 灰色泥岩夹粉砂岩 盐岩、油浸泥岩、泥岩组成的韵律层段
4
井身结构设计意义
是整个钻井设计的基础,关系到钻井工
程的整体效益,直接影响油井的质量和 寿命。
5
井身结构设计原则 在满足设计目的的前提条件下,井 身结构越简单越好,总体尺寸越小 越好,全井的建井成本越低越好。
小结:合理的井身结构应能保证一
口井顺利钻达预定的井深,保证钻 进过程的安全;有利于防止钻进中 的产层污染;有利于采油工程长期 安全、顺利地生产。并能花费最少 的费用。
的钻井液正常钻进时产生的井内压力不 致压裂上层套管鞋处及以下最薄弱的裸 露地层; 2)钻井起下钻和下套管过程中,井内钻 井液柱的压力和地层压力之间的压力差, 不致产生压差卡钻杆和套管的现象等。
3.2满足完井工程的要求
有利于保护油气层。
3.3满足采油工程的要求
有利于长期安全、有效、顺利地生产。
广斜-1井井身结构示意图
一开: 井眼外径:Φ……㎜ 钻达井深:……m 套管外径:Φ……㎜ 套管下深:……m 水泥返深: 地面
扩眼段:Φ…mm×…m
二开: 井眼外径:Φ……㎜ 钻达井深:……m 套管外径:Φ……㎜ 套管下深:……m 水泥返深: ……m
作业要求:
1)用小4号宋体字写,A4纸输出; 2)讲完本章时完成,先课上交流,再 上交。
Φ244.5×800m
二开 井眼外径:Φ215.9㎜ 钻达井深:3320m 套管外径:Φ139.7㎜ 套管下深:3215m 水泥返深: 2500m
8井身结构设计特点
1)影响因素多,且难以完全量化,
设计方法在较大程度上还需要现场 经验; 2)一口井在开钻之前,必须在现有 工艺技术水平条件下完成井身结构 设计。
方法,不但使井身结构设计与相关 领域的研究成果紧密联系,同时也 为今后钻井工程设计的程序化、智 能化提供了一个良好的开端。
9.3系统工程阶段(198O~)
问题的提出:1980年以来,随着世界围
内常规油气藏探明储量的锐减,非常规 油气藏(恶劣地面环境,复杂地质情况, 低压、低渗、稠油等)的勘探开发开始。 这给钻井工程出了不少难题,特别是对 于复杂地质情况,由井身结构诱发的钻 井事故屡见不鲜,这就要求其设计要有 新的发展。
注:1)井深为垂深,井深、厚度单位为米; 2)平原组、广华寺组、荆河镇组防垮、 防缩径,潜江组防垮、防卡。 3井身结构设计说明 1)该区块无高压地层,无地层压裂问题; 2)表层套管应封过疏松且含地下水的第四 系平原组;
3)上第三系广华寺组易缩径,根据经验, 可采用扩眼方法处理,扩眼段钻头直径 应至少比二开钻头直径大1~2级; 4)油层套管甲方要求外径139.7mm,下深 3574m; 5)造斜点井深2900m; 6)要求详细阐述设计过程,并给出如下设 计结果图:
2井身结构概念
全井井筒的总体结构和框架结构。
3井身结构设计目的
满足钻井工程、完井工程和采油工程的
要求。
3.1满足钻井工程的要求
应避免较严重的漏、喷、塌、卡、裂等
井下复杂情况的发生,为安全、优质、 快速和低成本钻井创造条件。