非相干光学处理习题
中山大学信息光学习题课后答案--习题4-5-6作业
习 题 44.1 尺寸为a b ⨯的不透明矩形屏被单位振幅的单色平面波垂直照明,求出紧靠零后的平面上透射光场的角谱。
4.2 采用单位振幅的单色平面波垂直照明具有下述透过率函数的孔径,求菲涅耳衍射图样在孔径轴上的强度分布:(1) 00(,)t x y = (2) 001,(,)0,a t x y ⎧⎪≤=⎨⎪⎩其它4.3 余弦型振幅光栅的复振幅透过率为:00()cos(2/)t x a b x d π=+式中,d 为光栅的周期,0a b >>。
观察平面与光栅相距z 。
当z 分别取下述值时,确定单色平面波垂直照明光栅,在观察平面上产生的强度分布。
(1) 22r d z z λ== (2) 22r z d z λ== (3) 242r z d z λ== 式中:r z 为泰伯距离。
4.4 参看下图,用向P 点会聚的单色球面波照明孔径∑。
P 点位于孔径后面距离为z 的观察平面上,坐标为(0,)b 。
假定观察平面相对孔径的位置是在菲涅耳区内,证明观察平面上强度分布是以P 点为中心的孔径的夫琅禾费衍射图样。
4.5 方向余弦为cos ,cos αβ,振幅为A 的倾斜单色平面波照明一个半径为a 的圆孔。
观察平面位于夫琅禾费区,与孔径相距为z 。
求衍射图样的强度分布。
4.6 环形孔径的外径为2a ,内径为2a ε(01)ε<<。
其透射率可以表示为:001,()0,a r a t r ε≤≤⎧=⎨⎩其他度分布。
4.7 下图所示孔径由两个相同的圆孔构成。
它们的半径都为a ,中心距离为d ()d a >>。
采用单位振幅的单色平面波垂直照明孔径,求出相距孔径为z 的观察平面上夫琅禾费衍射图样的强度分布并画出沿y 方向截面图。
4.8 参看下图,边长为2a 的正方形孔径内再放置一个边长为a 的正方形掩模,其中心落在(,)x y ''点。
采用单位振幅的单色平面波垂直照射,求出与它相距为z 的观察平面上夫琅禾费射图样的光场分布。
相干成像与非相干成像的比较
光学信息处理
第三章
Transfer Function of Optical Imaging System
光学成像系统的传递函数
§ 6. 相干成像与非相干成像的比较
a.截止频率
相 干: Hc (,)=F{hi(xi,yi)}
非相干:
ℋ (,)=
2
jφ )
x 1 .92
x 1 .92
由于相位差的影响,应具体问题具体分析,不能瑞利判据来表述分辨 率。
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
§ 6. 相干成像与非相干成像的比较
相干成像与非相干成像由于照明方式有本质的不同,是不 能直接进行比较的! 这里主要是从量上进行对比,以加深对几个同名参数的 理解与记忆!
§ 6. 相干成像与非相干成像的比较
b.像的强度谱
例题:物体的复振幅透过率为:t1 ( x )
cos
2
x b
当此物通过一横向放大率为1的光学系统成像,系统的出瞳是半径为
di b
ห้องสมุดไป่ตู้
a
2di b
的圆孔, di 为出瞳到像面的距离,试问对该物体成像,是采用相干照明好还是
非相干照明好?
在相干照明下:
c
a di
§ 6. 相干成像与非相干成像的比较
c.分辨率
非相干: I( x ) [ 2J1( x 1.92 ) ] 2 [ 2J1( x 1.92 ) ] 2
x 1.92
x 1.92
可以用瑞利判据: σ 1 .22 λ d i
D
相 干:
I( x )
[ 2 J 1 ( x 1 .92 ) ] [ 2 J 1 ( x 1 .92 ) ] exp(
物理光学第4章习题答案
• 因此,这个衍射屏具有类似透镜的性质。
• (2)对于因子exp(iar2 ):a= - k/2f1,
• 得f1 = - k/2a= -π/aλ< 0,发散;
• 对于因子 exp(-iar2): a= k/2f2,
• 得f2 = k/2a=π/aλ> 0,汇聚;
• 对于因子1/2,1/2=1/2*e0, • 可得 f3 = ∞。
•
=∫±L (A/2i)*( ei2πu0x – e -i2πu0x )
•
*exp(-i2πux)dx
•
=∫±L (A/2i)*[ ei2π(u0-u)x – e -i2π(u0+u)x ] dx
•
=(A/4 π) *[(1/u-u0) *ei2π(u0-u)x - (1/u+u0)
*ei2π(u0+u)x ] |±L
S
D
2
sin
cos
2
而
cos l'v
D
故
S
D
2
c
os1
l ' v
v
2
2
D D D
光瞳的面积为:
SD
2
D 2
2
因此得到沿v轴的光学传递函数为:
可见沿v轴的截止频率为:
vm a x
D
l'
(2)再来计算沿u轴的光学传递函数。 在ξ轴上分开λl’u的两个光瞳的重叠面积,如下图所示:
最后得到强度分布
I (x) (x) 2
=cos2
2
u0
x
1 2
(1
cos
4
u0 x)
可见,像面上的强度分布仍是一正弦式分布,但空间频率为物分布的2倍。
(第十章)非相干光学处理1
(
)
10.2 基于衍射的非相干空间滤波系统
可得到式(10.2.11)的对称表达式 ∞ ∞ λ ff y λ ffx λ ff y λ ffx Hi fx , f y =∫ ∫ P′ ξ ′ + ,η′ + ,η′ P′ ξ ′ dξ dη 2 2 2 2 ∞ ∞
(
)
(10.2.12)
10.2 基于衍射的非相干空间滤波系统
非相干空间滤波系统是基本的非相干成像系统,它使用光学传 递函数来进行非相干空间滤波,其操作依靠衍射理论.图 10.2.1是一个用自发光物体的非相干空间滤波系统. S为自发光物,P(x,y)为光瞳透明物片,设物面的强度分布为 Io(x,y),成像面的强度分布为Ii(x,y),由衍射理论可知,其成 像规律遵从以下的强度卷积积分 P(x,y) Io(x,y) S f1 f2 Ii(x,y)
Chapter 10
第十章
InCoherent
Optical Information Processing
非相干光学信息处理
非相干光学处理是指采用非相干光照明的信息处理方法,系统 传递和处理的基本物理量是光场的强度分布.
10.1 光处理与非相干光处理的比较
相干光处理系统存在的不足
(1)相干光处理要求输出分布以波前复振幅的形式,这一要 求排除了阴极射线管或发光二极管阵列作为输出器件的使用. 这就要求把输入图像制成透明片,然后用激光照明. (2) 相干噪声和散斑噪声问题 在光学系统中(如透镜,反射镜和分束器等)不可避免地存在一 些缺陷,如:气泡,擦痕及尘埃,指印或霉斑等.当用相干光照明 时,这些缺陷将产生衍射,而这些衍射波之间又会互相干涉,从而 形成一系列杂乱条纹与图像重叠在一起,无法分开,这就是所谓相 干噪声.
信息光学习题答案及解析
信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。
1.2 证明)()ex p()(2x comb x j x comb x comb +=⎪⎭⎫ ⎝⎛π证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等。
1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。
于是)()()(sin x comb n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x ≤0时,如图题1.1(a)所示, ⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示, ⎰+-=-+-=13612131)1)(1()(xx x d x x g ααα 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g 1.5 计算下列一维卷积。
(完整word版)光电子课后习题答案汇总
第一章1.光电子器件按功能分为哪几类?每类大致包括哪些器件?光电子器件按功能分为光源器件、光传输器件、光控制器件、光探测器件、光存储器件、光显示器件。
光源器件分为相干光源和非相干光源。
相干光源主要包括激光器和非线性光学器件等。
非相干光源包括照明光源、显示光源和信息处理用光源等。
光传输器件分为光学元件(如棱镜、透镜、光栅、分束器等等)、光波导和光纤等。
光控制器件包括调制器、偏转器、光开关、光双稳器件、光路由器等。
光探测器件分为光电导型探测器、光伏型探测器、热伏型探测器等。
光存储器件分为光盘(包括CD.VCD.DVD.LD等)、光驱、光盘塔等。
光显示器件包括CRT、液晶显示器、等离子显示器、LED显示。
2. 谈谈你对光电子技术的理解。
光电子技术主要研究物质中的电子相互作用及能量相互转换的相关技术, 以光源激光化, 传输波导(光纤)化, 手段电子化, 现代电子学中的理论模式和电子学处理方法光学化为特征, 是一门新兴的综合性交叉学科。
⒌据你了解, 继阴极射线管显示(CRT)之后, 哪几类光电显示器件代表的技术有可能发展成为未来显示技术的主体?等离子体显示(PDP), 液晶显示(LCD), 场致发射显示(EL), LED显示。
第二章: 光学基础知识与光场传播规律⒈ 填空题⑴ 光的基本属性是光具有波粒二象性, 光粒子性的典型现象有光的吸收、发射以及光电效应等;光波动性的典型体现有光的干涉、衍射、偏振等。
⑵ 两束光相干的条件是频率相同、振动方向相同、相位差恒定;最典型的干涉装置有杨氏双缝干涉、迈克耳孙干涉仪;两束光相长干涉的条件是 , 为光程差。
⑶两列同频平面简谐波振幅分别为 、 , 位相差为 , 则其干涉光强为 , 两列波干涉相长的条件为⑷波长λ的光经过孔径D 的小孔在焦距f 处的衍射爱里斑半径为1.22f D λ。
⒉ 在玻璃( 2.25,1)r r εμ==上涂一种透明的介质膜以消除红外线(0.75)m λμ=的反射。
南开考研光学专业习题与解答第三章
第三章 光的干涉例题3.1 菲涅耳双面镜干涉装置.双面镜M 1和M 2的夹角是20角分,准单色缝光源S 对M 1和M 2成两个虚的相干光源S 1和S 2, S 到双面镜交线的距离L 1=10厘米,接收屏幕与双面镜交线的距离L 2=100厘米,光源所发光的波长λ=600纳米.试问屏幕上干涉条纹间距是多少?解:由菲涅耳双面镜干涉装置条纹间距公式ϕλ1212)(L L L x +=∆,式中 弧度0058.01803,1000,10010,60021=⨯=====πϕλmm L mm cm L nm 代入上式,得 mm x 57.0=∆.3.2 将焦距为 50厘米的薄正透镜从正中切去宽度为a 的部分,再将剩下的两半粘接在一起, 形成一块比累对切透镜,如计算题 3.2图所示. 在透镜一侧的对称轴上放置一个波长为600纳米的单色点光源,另一侧远方的垂轴屏幕上出现干涉直条纹 ,测得条纹间距为5.0毫米,且沿轴向移动屏幕时条纹间距不变,求a .解:在比累对切装置中,若将屏幕前后移动干涉条纹间距不变,则干涉区是有一定夹角的两平行光波干涉场,干涉条纹间距公式)2/sin(2/θλ=∆x ,θ为两相干光束夹角. 点光源S位于比累对切透镜的焦平面上.比累对切透镜中心不是透镜的节点.对于下半透镜,节点在O1点,对于上半透镜,节点在O 2点(计算题3.2解图),O1O2的距离即为切去部分的长度a .由几何光学作图法,可以画出光束经比累透镜上下两部分折射后的平行光束.根据图中的几何关系有,sin f a '=θ).(6.05.010600500sin 6mm x f f a =⨯⨯=∆'='=-λθ计算题3.2图3.3 将杨氏双缝干涉装置照明光源波长为λ,S 2缝覆盖以厚度为h ,折射率为n 的透明介质薄膜(计算题3.3图),使零级干涉条纹移至原来的第K级明条纹处,试问介质薄膜的厚度h 是多少?解:如计算题 3.3图所示,S2缝盖以透明介质片,介质片产生附加光程差为h n )1(-=∆因为零级明条纹移至原来第K级明条纹处,在原K 级明条纹处,)1(21h n r r -=-λk r r =-12,因此有1--=n k h λ. 介质片厚度应为正值,因此K为负值,零级条纹应在屏幕的下方.3.4 如计算题3.4图所示的杨氏干涉装置.双孔屏S 1S 2右侧10厘米远处放置一枚焦距为10厘米的薄凸透镜L ,L 的光轴与干涉装置的对称轴重合.在L 的右侧10厘米远处又放置一垂轴屏幕.已知双孔间距d=0.02毫米,且用λ=500纳米的光照明.试计算题3.4图计算题3.3图解:杨氏双孔恰在透镜L的焦平面上,自双孔发出的相干光,经过透镜拐折后,变为夹角为α的两束平行光(计算题3.4解图a ).两束平行光的夹角为f d '=/α.今将两束平行光波场表示在计算题3.4图(b)中.两相干光波为平面波,K1、K2分别表示两波的传播方向,在干涉场中,两平面波波峰与波峰相重和波谷与波谷相重的点为相干加强的点.在三维空间中,这些点形成一组等间距、平行于两相干光束夹角平分面的平面.计算题3.4解图(b )中,屏幕上A和B点就是相干加强的点,是干涉明条纹的中心,显然,AB两倍于条纹间距.由图中的几何关系,得条纹间距)(5.210002.0105002/sin 26mm f d x =⨯⨯='=≈=∆-λαλαλ.3.5 在计算题3.4中,将透镜L 向左移近双孔2厘米,则屏幕上的条纹间距是多少?解法一:如计算题3.5解图(a )所示,若无透镜L,屏幕上P点光强由r 1和r 2的光程差来决定.加透镜后,r 1和r 2拐折了,不在P点会聚了.双孔屏和屏幕被透镜隔开在两个不同的光学空间.P点的光强由另外两光线R1和R 2的光程差决定.R1和R 2应分别发自S1和S2.怎样确定R1和R 2?R1和R 2会聚于P点,必来自P的共轭点P'.用薄透镜成象公式求出P'点的位置.这里物距12-=s 厘米,焦距10='f 厘米,代入成象公式计算题3.4解图(a )计算题3.4解图(b),1011211=--'s 解得60='s 厘米, 垂轴放大率1260-='=s s β.设P和P'点到光轴的距离分别为h 和h ',则,5h h h -=='β因此,P'在L左60厘米、光轴下-5h 处(计算题3.5解图a ).相干光束必从P'出发,分别过S1和S2,经L拐折后会聚到P点.双孔前面光程分别为[R'1]和[R'2],双孔后光程分别为[R1]和[R2].R1和R2是实际的光线,[R1]和[R2]称为实光程,[R'1]和[R'2]为虚光线的光程,称为虚光程.在近轴情况下,共轭点P、P'之间的光线等光程,因此有 ],[][][][2211R R R R +'=+'][][][][1212R R R R -='-'. 即双孔右实光线光程差正好等于左边虚光线的光程差的负值.我们可以把对实光程差的讨论,用对虚光程差的讨论来代替.或者说,我们把屏幕成象在双孔屏所在的光学空间,在屏幕的像面形成虚干涉.虚干涉条纹间距为3.12.0520105006=⨯⨯=''='∆-d L x λ(毫米).屏幕上实干涉与其像面上的虚干涉条纹共轭.因此,干涉条纹间距为26.053.15=='∆=∆x x (毫米).解法二将双孔变换到屏幕所在的光学空间,由透镜成象公式求出双孔屏的位置.,101811=--'s40-='s 厘米,计算题3.5解图a5840=--=β. 双孔的像S'1和S'2(计算题 3.5解图b )间距为12.055=⨯=='d d 毫米,524012=+='L 厘米,虚光源在屏幕上产生实干涉.屏幕上条纹间距为26.01520105006=⨯⨯=''=∆-d L x λ(毫米).3.6 菲涅耳双面镜的夹角为20角分,缝光源离双面镜交线10厘米,接收屏幕与光源的双像连线平行,屏幕距离双镜交线210厘米,光波波长600纳米,试求 (1) 屏幕上干涉条纹的间距;(2) 屏幕上可以看到几个干涉条纹?(3) 如果光源到两镜交线的距离增大一倍,干涉条纹有什么变化? (4) 如果光源与两镜交线距离不变,只是在横向有一小的位移δx ,干涉条纹有什么变化?(5) 如果使屏幕上干涉条纹可见度不为零,缝光源的最大宽度为多少?※※※解:(1)双面镜夹角20=α角分18031π⨯=弧度,1001=L 毫米,21002=L 毫米,屏幕上条纹间距为100)1803/(2)2100100(106002)(6121⨯⨯⨯+⨯⨯=+=∆-παλL L L x 13.1≈(毫米)(2)屏幕上干涉区宽度为222L L l αθ=≈∆,屏幕上的干涉条纹条数为22≈∆∆≈∆xlN 条. (3)由于21L L <<,当1L 增加一倍时,条纹间距计算题3.5解图L'=52cm12122)(L L L x ⋅+=∆αλ,分子中21212L L L L +≈+,条纹间距将减少为原来的一半,干涉区干涉条纹数 增加一倍.44≈∆N 条.(4)如计算题3.6图所示,当光源S移动δs 时,双像也作相应地移动,双像S 1、S 2连线的垂直平分线与屏幕交点O (原点,零级干涉条纹处)在屏幕上移动δx .由几何关系,21L xL sδδ=,由于光源的移动是横向的,移动时L 1、L 2和α都不变,因此条纹间距不变,屏幕上干涉图样只作平移,移动的距离为12L L sx δδ=. (5)设光源宽度为b ,边缘光源点在屏幕上的干涉图样彼此错开δx ,当δx 与干涉条纹的宽度∆x 一样大时,干涉条纹会因非相干叠加而消失,干涉也就消失.就是说,当x x ∆=δ时,干涉消失.此时有112122)(L L L b L L αλ+=,αλαλ22)(221≈⋅+=L L L b .S d 计算题3.6解图αλ2=b 是光源的极限宽度,αλ2<b 干涉可见度不为零. 3.7 透镜表面通常覆盖一层氟化镁(MgF 2)(n=1.38)透明薄膜,为的是利用干涉来降低玻璃表面的反射.为使波长为632.8纳米的激光毫不反射地透过,这覆盖层至少有多厚?解 从实际出发,可以认为光垂直入射于透镜表面.当某种波长的光在氟化镁薄 膜上下表面的反射相干相消时,我们认为该波长的光毫不反射地透过.薄膜干 涉光程差公式2/cos 222λ±=∆i d n ,相干相消满足λλ)2/1(2/cos 222+=±k i d n ,式中02=i ,1cos 2=i ,由于氟化镁膜上表面是折射率为1.0的空气,下表面是玻璃,玻璃折射率大于氟化镁的折射率,所以光程差公式中无2/λ±一项,上式可简化为λ)2/1(22+=k d n ,计算膜最小厚度,取k=0,得膜最小厚度46210146.138.14108.6324--⨯=⨯⨯==n d λ(毫米).3.8 焦距为30厘米的薄透镜沿一条直径切成L 1和L 2两半,将这两半彼此移开8.0厘米的距离(如计算题3.7图).位于光轴上的光源S 波长为500纳米,到L 1的距离是 60厘米,S '1和S '2 为光源形成的两个像. (1) 在图上标出相干光束的交叠区,(2) 在干涉区垂轴放置一屏幕,屏幕上干涉条纹的形状怎样? (3) 在两像连线中点垂轴放置屏幕,屏幕上条纹间距为多少?解 (1) 题中的干涉装置称为梅斯林干涉装置.光源点S经梅斯林透镜形成两个实象点S'1和S '2.干涉区如计算题3.8解图(a )所示,是像空间成像光束的交计算题3.8图n =计算题3.7解图叠区.(2) 将干涉区放大,如计算题3.8解图(b )建立坐标系.光源S 的像S'1(0,0,-a)和S '2(0,0,a)相距2a ,屏幕垂轴放置,P为干涉场中屏幕上任意一点,它是光线1'和2'的交点.以S '2为圆心,以2a 为半径作圆弧,交光线1'于S'1,交光线2'于Q,可认为光源S到S'1和Q点等光程,因此,1'和2'两光线到达P点,在P点的光程差为 ][2211S P S Q P S QP P S '-'-'=-'=∆2/12222/1222])[(2])[(y x z a a y x z a ++-+-+++=不同的P点将有不同的光程差,光程差为常数的点的轨迹方程为2/12222/1222])[(])[(y x z a y x z a ++++++-=+∆=a 2常数.这是一个以S'1和S '2为焦点的椭球方程,因此等光程差的轨迹是以S'1和S '2为焦点的旋转椭球面族.以垂直于光轴放置的屏幕截这些椭球面族,则得到以光轴为圆心、半圆形的、不定域的干涉条纹.(x,y )计算题3.8解图c计算题3.8解图b(3)以焦距30厘米,物距分别为60-厘米和)860(+-厘米,代入薄透镜成像公式,计算出两像距分别为60厘米和53.68厘米.两像点相距2a=1.68厘米,故干涉区在光轴的下方.若屏幕在两像点连线中垂面上,如计算题3.8解图c 所示,P 为屏幕上任意一点,相干光1' 和2' 在P 点的光程差为a r r a r QP P S 22)2(1211-=--=-'=∆, 因2/1222/12221)1()(ay x a a y x r ++=++=,在透镜孔径1s D '<<,222y x a +>>时,ay x a a y x a r 2)211(222221++≈+++= ,故1'和2'在P 点的相位差为]2)2(2[2222a ay x a -++=∆=λπλπδay x 222+=λπ.当λk ay x =+22时( ,2,1=k ),πδk 2=,该点是相干加强的点,为明条纹的中心.因此明条纹满足λka y x =+22,( ,2,1=k )令λρka =2,则222ρ=+y x .上式为标准的圆方程,k ∝ρ.由中心向外,条纹的半径分别为λρa =1,λρa 22=,……条纹间距为λρρρa k k k k ⋅-+=-=∆+)1(1.3.9 用钠光灯做杨氏干涉实验,光源宽度被限制为2毫米,双缝屏到光源的距离D=2.5米.为了使屏幕上获得可见度较好的干涉条纹,双缝间距选多少合适? 解 取钠光波长3.589=λ纳米.已知光源的宽度b =2毫米,相干孔径角被λθ≤b 式限制.即bλθ≤.由计算题3.9解图所示,要想得到可见度不为零的干涉条纹,双孔间距必需在上式孔径角所限制的范围内,即bD d λ<, 因此,双缝间距为736.02105.2103.58936=⨯⨯=<-b D d λ(毫米). 若想得到可见度较好的干涉条纹,光源上边缘光源点在屏幕上的光程差的差要小于或等于四分之一光源波长.即4λθ≤b ,或184.04=⋅≤bDd λ(毫米). 此种情况下,屏幕上干涉条纹可见度可达0.9以上.3.10 观察肥皂水薄膜(n=1.33)的反射光呈绿色(λ=500纳米),且这时法线和视线间角度为0145=i ,问膜最薄的厚度是多少?若垂直注视,将呈现何色? 解 入射到肥皂水薄膜表面光线的入射角为450,可求出光在膜内的折射角2i .由折射定律,20sin 33.145sin 0.1i ⨯=⨯,解出0212.32=i ,8470.0cos 2=i . 由于光在空气中的肥皂水膜上表面反射时有π的相位变化,在其下表面反射时无π的相位变化,因此光程差中要计入半波突变.对于相干加强的500纳米的绿光,应满足λλk i d n =-2/cos 222.题意求最薄厚度,应取0=k ,以各值代入上式,得8470.033.121210500cos 212622⨯⨯⋅⨯=⋅=-i n d λ41011.1-⨯=(毫米).同一厚度的肥皂水膜,若眼改微微垂直注视,则1cos 2=i ,此时看到的相干加计算题3.9解图强的波长λ'应满足λλ''='-k d n 2/22,将 2,1,0='k 代入上式发现,仅当0='k 时λ'才落在可见光范围内,以0='k 代入,求得3.590='λ纳米,为深黄色的光.可见,从不同方向观看,可以呈现不同颜色,这一现象也表现在一些鸟的羽毛薄膜上.有时从不同方向观看羽毛,颜色不同,这是一种薄膜干涉现象.3.11 如计算题3.11图所示,两平板玻璃在一边相连接,在与此边距离20厘米处夹一直径为0.05毫米的细丝,以构成空气楔.若用波长为589纳米的钠黄光垂直照射,相邻暗条纹间隔为多宽?这一实验有何意义?解 两玻璃板之间形成一尖劈空气隙,劈角4105.220005.0-⨯=÷=α弧度.经空气隙上下表面反射的光形成等厚干涉,由条纹间距公式18.1105.2210589246=⨯⨯⨯==∆--αλx (毫米).从上式可以看出,劈角愈小,条纹间距越大,越容易数出干涉条纹的条数.因为每相临两个等厚干涉条纹对应的厚度差等于半个波长,数出条纹数可以计算出细丝的直径.干涉条纹数越少,丝越细.因此,此实验可以做精密测量用.3.12 在牛顿环实验中,平凸透镜的凸面曲率半径为5米,透镜直径为20毫米,在钠光的垂直照射下(λ=589纳米),能产生多少个干涉条纹?要是把整个装置浸入n=1.33的水中,又会看见多少条纹?解 牛顿环实验装置产生等厚圆条纹.条纹半径公式为λkR r k =.式中k 是干涉圆条纹的序数.透镜的直径为20毫米,对应的干涉条纹序数为3410589105106322≈⨯⨯⨯==-λR r k k 条. 若装置放入水中,波长应为n /λλ=',看到的条纹数为452≈=''λR n r k k 条.计算题3.11图3.13 光学冷加工抛光过程中,经常用“看光圈”的办法检查工件的质量是否符合设计要求.如计算题3.13图所示,将标准件平凸透镜的球面放在工件平凹透镜的凹面之上,用来检验凹面的曲率.此时,凸面和凹面之间形成一空气层.在光线照射下,可以看到环状干涉条纹.试证明由中央外数第k 个明环的半径k r 和凸面半径R 1、凹面半径R 2以及波长λ之间的关系为12212)21(R R R R k r k --=λ.解 如计算题3.13解图所示,平凸透镜和平凹透镜之间形成空气隙,设A点处形成 k 级明条纹,明条纹半径为r k ,该处对应的空气膜厚度为d k .由图中几何关系得211221)(d R r R k -+=,将上式展开,并消去无穷小量21d ,得1212R r d k =, 同理可得2222R r d k =. K 级明条纹对应的膜厚为)11(221221R R r d d d k k -⋅=-=,k 级明条纹满足光程差公式λλk d k =+2/2.将k d 代入,整理得计算题3.13图 计算题3.13解图d12212)21(R R R R k r k --=λ.3.14 机加工中常常要用块规来校对长度.计算题3.14图中,块规G 1的长度是标准的,G 2是要校准的块规,两块块规的两个端面经过磨平抛光.G 1 和G 2的长度不等,在它们的上面盖以透明的平板玻璃G ,G 与G 1、 G 2之间形成空气隙,当用单色光照明G 的表面时,可产生干涉条纹.(1) 设所用光波波长为500纳米,图中,间距l =5厘米,观察到等间距的干涉条纹,条纹间距为0.5毫米.试求块规的高度差.怎样判断它们之中哪个长?(2) 如果G 和 G 1间干涉条纹间距是0.5毫米,G和G 2间干涉条纹间距是0.3毫米,则说明什么问题?解 (1)在玻璃平板G与块规之间形成尖劈形状的空气隙(计算题3.14解图a ),劈角α与产生的干涉条纹间距之间的关系为αλ2=∆x , 因此块规G 1、G 2之间的高度差为26105.25.021*******--⨯=⨯⨯⨯=∆==∆x l l h λα(毫米).轻轻压玻璃板G,G1和G2中短者与G 之间夹角变小,干涉条纹变疏;长者与G之间夹角变大,条纹变密(计算题3.14解图b).(2)在不加压力于G的情况下,若与G1、G2间干涉条纹间距不同,说明G1G2的上表面不严格平行,两表面空气劈角不等劈角差为2)11(1212λαααx x ∆-∆=-=∆计算题3.14图计算题3.14解图(a )(b )46103.3210500)5.013.01(--⨯=⨯⨯-=(弧度)3.15 若用钠光灯(λ1=589.0纳米,λ2=589.6纳米)照明迈克尔孙干涉仪,首先调整干涉仪,得最清晰的干涉条纹,然后移动M 1,干涉图样为什么逐渐变得模糊?问第一次干涉条纹消失时,M 1由原来位置移动了多少距离?解 迈可耳孙干涉仪双光束干涉,可以等效为空气中的空气膜的干涉.空气膜折射率为1.0.取视场中心,则0.10cos cos 2==i .今以λ1=589.0纳米和λ2=589.6纳米钠双线照明.设在空气膜厚度为d 1时,对λ1和λ2,干涉条纹中心都为明条纹,前者级次为1k ,后者级次为m k -1.视场中心同时满足 1112λk d =,(1)211)m k (d 2λ-=.(2)由于两谱线波长相差很小,所以它们干涉条纹宽度分布规律基本上一样.即在两者干涉图样中心都是亮条纹时,其他亮条纹也重合得很好.使得视场中干涉条纹看起来很清晰. 今逐渐移动M1,增加等效空气膜厚度d ,视场中心两种波长的干涉条纹各自以不同的速度外冒,由于两套干涉条纹非相干叠加的结果,使得视场中条纹可见度越来越坏,直至条纹完全消失.此时两套干涉图样恰好是一个的极大与另一个的极小相重合.因此有 1222λk d =,(3)222)21(2λ--=m k d .(4)代入已知量解上面四个方程,求得M 1移动的距离1447.012=-=∆d d d (毫米).3.16 用水银蓝光(λ =435.8纳米)扩展光源照明迈克耳孙干涉仪,在视场中获得整20个干涉圆条纹.现在使M1远离M'2,使d 逐渐加大,由视场中心冒出500个条 纹后,视场内等倾圆条纹变为40个.试求此干涉装置的视场角、开始时的间距d 1和最后的间距d 2.解 计算题3.16解图中,M1是圆形反射镜, M'2是圆形反射镜M2的像,二者等效为空气 膜面.它们对观察透镜中心的张角22i 是视场角.当M1和M'2的起始间距为d 1时,对于视场中心 和边缘,分别有λ中k d =12,1 '2计算题3.16解图λ)20(cos 221-=中k i d .间距由d 1增加到d 2的过程中,冒出500个条纹,则此时对中心和边缘有 λ)500(22+=中k d ,λ)40500(cos 222-+=中k i d .已知λ=435.8纳米,解上面四方程,可得0226.16=i ,500=中k , 109.01=d 毫米,218.02=d 毫米.3.17 用迈克耳孙干涉仪作精密测长,光源为632.8纳米的氦氖激光,其谱线宽度为10-4纳米,光电转换接收系统的灵敏度可达到1/10个条纹,求这台仪器的测长精度和测长量程.解 迈克耳孙干涉仪的测长精度由接收系统的灵敏度来决定.由于干涉条纹每变化一个,长度就变化半个波长.接收系统灵敏度可达到1/10个条纹,因此测长精度为64.312101=⋅=λδl (纳米). 一次测长量程m l 由相干长度0l 来决定.2212120≈∆⋅==λλl l m (米).3.18 我们大致知道某谱线的能量分布在600~600.018纳米范围内,并且其中包含很多细结构,最细结构的波长间隔为6×10-4纳米.试设计一标准具,用它可以研究这一谱线的全部结构.解 由于要分析的谱线能量在600~600.018纳米范围内,要求所设计的标准具(即d 固定的法布里-珀罗干涉仪)自由光谱范围应为018.022==∆dλλ自(纳米).由此计算出标准具反射面之间距离最大应为10018.02600222=⨯=≤自λλd (毫米). 所得最大的干涉级次为λdk m 2=.因最细结构的波长间隔为6×10-4纳米,此为要求的最小可分辨波长间隔.由此求出对标准具分辨本领的要求.即64101106600⨯=⨯=∆=-辨λλR .又因21r rk R m-=π,将k m 代入可求得反射面的振幅反射比为r ≥0.95.因此,要分析能量分布在600~600.018纳米范围内,最细结构的波长间隔为6×10-4纳米的谱线,标准具d 最大为10 毫米,反射面 r ≥0.95.3.19 设法-珀腔腔长5厘米,照明的扩展光源波长为600纳米,试求(1) 所得到的等倾干涉圆条纹中心的级次是多少?(2) 设光强反射率为0.98,在倾角10附近干涉环的半角宽度是多少? (3) 如果用这个法-珀腔分辨谱线,其色分辨本领有多高:(4) 如果用这个法-珀腔对白光进行选频,透射最强的谱线有几条?每条谱线的宽度为多少?(5) 由于热胀冷缩,引起腔长的改变量为510-(相对值),则谱线的漂移量为多少?解 (1)法布里-珀罗干涉仪透射光相干加强的件是 λk i nd =cos 2,对于干涉圆条纹中心,0.1cos =i ,上式为 λk nd =2,其中0.1=n ,5=d 厘米,600=λ纳米,代入上式,得干涉条纹中心级次56107.1106005022⨯≈⨯⨯==-λdk . (2)k 级亮环的半角宽度公式98.098.011sin 502106001sin 20622/0ππλ∆-⋅⨯⨯⨯=-⋅=-r r d i k I6102.2-⨯=(弧度)54.0''≈.可见亮环非常细锐. (3)分辨本领72106.21⨯=-=r rk R π,可分辨的最小波长间隔:57103.2106.2600-⨯=⨯==Rλδλ(纳米) (4)用白光做光源进行选频,相邻两极大的波长间隔32110025.32-=∆⨯==∆dk λλ(纳米)。
中科大信息光学习题解答
傅里叶变换透镜 率关系 h f 。
频谱面上能够获得有线性特征的位置与空间频
普通透镜和傅里叶透镜对平行光输入在后焦面上光点的位置差
y ' ftgu f sin u 1 3 fu 称频谱畸变。 2
普通透镜只有在 u 很小时才符合傅里叶变换透镜的要求。 要专门设 计消除球差和慧差,适当保留畸变以抵消频谱畸变。
H (, )
P( x, y) P( x d , y d )dxdy
i i
P( x, y)dxdy
由自相关性质(p16) ,如果
r ( x, y )
R ff ( x, y ) R ff (0,0)
f
(α x,β γ ) f (α ,β )dα dβ
5. 在 4F 系统中,输入物面的透过率为
t t 0 t1 cos 2 f 0 x ,
以单色平行光垂直照明, =0.63m,
f’=200mm, f0 =400lp/mm, t0=0.6, t1 =0.3,
问频谱面上衍射图案的主要特征: 几个衍射斑? 衍射斑沿什么方向分 布? 各级衍射斑对应的衍射角 sin =? 各级衍射中心强度与零级衍 射斑之比. (1)在不加滤波器的情况下,求输出图象光强分布. (2)如用黑纸作空间滤波器挡住零级斑,求输出图象光强分布. (3)如用黑纸挡掉+1 级斑,求输出图象光强分布. 6. 在图示 4F 系统中, <1>被处理物面最大尺寸和最高空间频率为多大?(设频谱面与物面同 尺寸) <2>付里叶变换镜头的焦距和通光直径为多大? <3>欲将光栅常数 0.1mm 的二维光栅处理成一维光栅。给出空间滤波 器的形状和尺寸。 <4>说明针孔滤波器作用并计算其大小。
14相干传递与非相干传递函数
显然,不同方位上的截止频率不相同,在 x, y 轴方向上,系统 的截止频率 f a d i 。系统的最大截止频率在与 x 轴成 45°角方向上
相干传递函数计算问题举例
如图表示两个相干成像系统,所用透镜的焦距都相同。单透镜系统中 光阑直径为 D ,双透镜系统为了获得相同的截止频率,光阑直径 a 应等于多大(相对于 D 写出关系式)?
非相干照明的特点
非相干照明时物面上各点的振幅和相位随时间变化的方式是彼此 独立、统计无关的。 虽然物面上每一点通过系统后仍可得到一个对应的复振幅分布, 但由于物面的照明是非相干的,应该先由这些复振幅分布分别求 出对应的强度分布,然后将这些强度分布叠加(非相干叠加)而 得到像面强度分布。 在传播时光的非相干叠加对于强度是线性的,因此非相干成像系 统是强度的线性系统。 在等晕区光学系统成像是空不变的,故非相干成像系统是强度的 线性空不变系统。
系统的本征函数:余弦函数
物强度分布、像的强度分布与强度点扩散函数是非负实函数,余 弦函数是这种系统的本征函数 即强度余弦分量在通过系统后仍为同频率的余弦输出,其对比度 和相位的变化决定于系统传递函数的模和辐角。 OTF唯一的影响是改变这些基元的对比度和相对相位。 一个余弦输入的光强分布 I g ( ~ ,~ ) a bcos[ π( f x ~ f y ~ ) φ g ( f x , f y )] x y x y 通过非相干光学系统成像后得到的输出光强分布为
h ( x ,y ) exp[ j π(
I i i I i i
f x xi f y y i )] dxi dyi
i i
h ( x ,y ) dx dy
非相干成像系统的光学传递函数
归一化频谱也满足公式 A f x , f y AI f x , f y H f x , f y
第三章习题解答及参考答案
(
)
①
2 式中 m 为整数。令 u = αr ,显然上式是 u 的周期函数,周期为 2π ,故可展开成傅里 ∞ 1 1 + sgn (cos u ) = ∑ Cn e inu 2 2 n = −∞
叶级数:
其中,
Cn =
1 2π
∫
π 2
−π 2
e −inu du =
sin (nπ 2) nπ
②
遂有:
∞ 1 1 sin (nπ 2 ) inαr 2 e + sgn cos αr 2 = ∑ 2 2 nπ n= −∞
②
σ ( f x ,0 ) 2λd i =1− f x = 1− f x f0 σ0 l
l l ≤ λd i f x ≤ (见附图3 - 4(b)) 4 2
2 1 l l σ ( f x ,0 ) = (l − λd i f x ) l − = − λd i l f x 2 2 2
λd ;两个一级分量与中央亮斑 L
附图 3-2
习题[3-2]图示
附图 3-3
归一化强度分布
[3-3]
将面积为 10 mm × 10 mm 的透射物体置于一傅里叶变换透镜的前焦面上作频谱分析。
用波长 λ = 0.5 µ m 的单色平面波垂直照明,要求在频谱面上测得的强度在频率 140 线/mm 以下能准确代表物体的功率谱。并要求频率为 140 线/mm 与 20 线/mm 在频谱面上的间隔为 30mm,问该透镜的焦距和口径各为多少? 解:取面积为10mm ×10mm 的透射物体的对角线方向为 x 轴。因要求在 140 线/mm 以下的 空间频率成分不受到有限孔径的渐晕效应的影响,故透镜的口径 D 应满足条件:
非相干成像系统分析及光学传递函数
一、非相干系统的成像和光学传递函数(OTF)二、OTF的求法第五节非相干成像系统分析及光学传递函数一、非相干系统的成像和光学传递函数(OTF)1、非相干系统的成像2、光学传递函数(OTF)得:这里:① 用归一化的物象频谱表示物象对应的各(u,v)分量的对比度② 一般情况下,|H(u,v)|——对比传递函数(MTF),表示物象分布中同一(u,v)分量对比度变化φ(u,v) ——相位传递函数(PTF),表示物象分布中同一(u,v)分量的相移二、OTF的求法1、利用OTF与CTF的自相关关系,由* 卷积,相关,自相关,傅里叶变换自相关定理:∙卷积积分:∙相关积分:∙自相关积分:∙傅里叶变换自相关定理:设 G(u,v)是函数g(x,y)的频谱函数,则有F{g(x,y)★g(x,y)} = |G(u,v)|²或 F{|g(x,y)|²} = G(u,v)★G(u,v)由前面讨论知:利用傅里叶变换自相关定理,有上式表明,非相干成像系统传递函数是相干传递函数的自相关积分。
对于衍射受限系统,可由光瞳函数直接计算求取光学传递函数因为, Hc(u,v) = P(λl'u, λl'v)代入前面 Hc(u,v)H(u,v) 表式, 则得:2、图解法求取OTF据计算式:分母:为光瞳的总面积;分子:中心在原点与中心偏离 (-λl'u, -λl'v) 的两个光瞳的重叠面积于是:(对计算式的数学处理)例:图解法求圆孔的OTF及截止频率直径为D的圆形孔径(如图)光瞳总面积: S总 =π(D/2)²重叠面积:2(扇形面积-三角形面积)由此可知(见图):。
信息光学非相干光学处理
大量旳光学仪器是采用非相干光或自然光或白光光源,如 摄影机、望远镜、显微镜、投影仪、制版设备等。有必要研究非 相干处理措施。因为非相干照明下光场分布用光强分布表达,所 以输入函数和脉冲响应函数都是非负实函数。与相干照明系统相 比,非相干系统没有相干噪声。仍有研究价值。
10.1相干与非相干光学处理
相干与非相干光学处理
将透明片作为一种线性系统旳输入, 用相干光照明,因为 输入图像中每一点旳复振幅在输出面上会产生相应旳输出,这些 输出旳集合(叠加)构成输出图像。
U (x, y) Ui (x, y)
i
人眼、感光胶片、CCD等感知旳是光强信息。即合成振幅旳绝对
值平方。
I (x, y) | U (x, y) |2 | Ui (x, y) |2
先考虑f(x,y)上一种单位强度旳点光源在P平面上旳脉冲响应。
在几何光学近似下,离焦面Δ处旳旳分布即为h(x,y)
旳一种缩小旳倒像,其投影中心坐标
a 1 ( / 2 f ) x, b 1 ( / 2 f ) y
考虑到投影时h(x,y)旳方向将发 生几何反射,于是 f (x,y)上旳一点在
离焦面Δ上产生一种h 旳缩小图像
i
Ui (x, y) |2 Ui (x, y)U * j (x, y)
i
i j
Ii
U
iHale Waihona Puke (x,y)U
* j
(
x,
y)
i
i j
用完全非相干光照明,输入面上各点旳光强在输出面产生相
应旳光强输出,因为这些输出是互不有关旳,所以总旳图像输出
是各光点光强输出旳叠加。因为各点振动旳随机性,其振幅和相
发出光经L1后变成平行光, 把第一张胶片f (x , y)投影 到h上,经过L2把光束会
非相干光的检测与变换
光学信息技术原理及应用课后重点习题答案
第一章 习题解答1.1 已知不变线性系统的输入为()()x x g com b = ,系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。
因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comb y x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ 1.4给定一个不变线性系统,输入函数为有限延伸的三角波 ()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 非相干光学处理 习题
[8-1]试讨论相干光学处理,非相干光处理和白光光学处理的特点和局限性。
[8-2]就已经介绍的数种假彩色编码方法:半色调屏调制,空间滤波图像反转和位相调制假彩色编码,说明每种方法的特点,讨论在每种方法中图像密度信息转变成彩色信息的过程,处理的实时性以及彩色化效果。
[8-3]图X8-1为一投影式非相干光卷积运算装置,由光源S 和散射板D 产生的非相干光照明,),(y x m 和),(y x O 是两张透明图片,在平面P 上可以探测到),(y x m 和),(y x O 的卷积。
(1)写出此装置的系统点扩散函数。
(2)写出P 平面上光强分布的表达式。
(3)若),(y x m 的空间宽度为1l ,),(y x O 的空间宽度为2l ,求卷积的空间宽度。
图X8-1 习题[8-3]图示
[8-4]参看图X8-2,要设计一个“散焦”的空间滤波系统,使得它的传递函数的第一个零点落在的cm /0线f 频率上。
假定要进行滤波的数据放在一个直径为L 的圆形透镜前面距离2f 处,问所要求的“误聚焦距离”∆为多少()0f L f 用、和表示?对于010/cm f =线, 10cm f =和cm 2=L ,∆的数值是多少?
图X8-2 散焦滤波系统
[8-5]用一个单透镜系统对图像进行调制假彩色编码,如图X8-3所示。
已知调制物m O 的光栅空间频率为100线/mm ,物离透镜的距离为20cm ,图像的几何尺度为6cm ×6cm ,试问透镜的孔径至少应多大,才能保证在频谱面上可进行成功的滤波操作?设工作波长范围为650.0~444.4nm 。
图X8-3 习题[8-5]图示。