基坑监测方案和监测报告
基坑监测方案
基坑监测方案一、引言基坑工程是现代建设中常见的一项工程活动,其施工会涉及到土壤力学、结构力学、水文地质等多个学科。
为了确保基坑工程的安全施工和后期使用,需要进行基坑监测。
本文将就基坑监测方案进行详细介绍。
二、监测目标基坑监测的目标是为了掌握基坑施工过程中的变形、位移、应力等信息,以及周边环境的变化情况,以提供监测数据支持,为工程提供安全、稳定的施工条件。
监测目标包括以下几个方面:1. 基坑变形监测:通过监测基坑周边地表的沉降、侧移等变形情况,掌握基坑结构的变形状态,及时发现可能存在的安全隐患。
2. 基坑地下水位监测:监测基坑附近地下水位的变化情况,了解地下水对基坑的影响,并根据监测数据进行相应的水文调节。
3. 基坑支护结构监测:对基坑支护结构的应力、位移等进行监测,以确保支护结构的稳定性和安全性。
4. 周边建筑物监测:对接近基坑的周边建筑物进行监测,防止基坑施工对周边建筑物造成不可逆的影响。
三、监测方法与方案基坑监测应综合运用现场监测和远程监测两种方法,以确保监测数据准确可靠。
本方案提出以下监测方法与方案:1. 现场监测(1)地表变形监测:通过布设测点,使用测量仪器(如全站仪、水准仪等),定期监测地表的沉降、侧移等变形情况。
(2)支护结构监测:在基坑支护结构上设置应变计、位移计等传感器,实时检测支护结构的应力、位移等变化。
(3)地下水位监测:设置水位监测井,并配备合适的水位传感器,进行地下水位的定期监测。
(4)周边建筑物监测:通过定点振动传感器、应变计等监测周边建筑物的位移、应力等参数。
2. 远程监测(1)数据采集与传输:将现场监测获得的数据通过数据采集终端进行采集,并通过无线信号、有线传输等方式传输到远程监测中心。
(2)数据处理与分析:在远程监测中心对采集到的数据进行处理与分析,并生成监测报告,及时反馈给相关监理单位和工程管理人员。
四、监测频率与报告基坑监测应根据工程的实际情况,结合监测目标和监测指标的要求,确定监测频率。
深基坑监测报告
深基坑监测报告1. 引言深基坑工程是指在建筑施工中挖掘深度较大的大型坑洞,用于地下建筑或地下结构的建造。
由于深基坑施工对周围环境和地下水位会产生较大的影响,因此需要进行监测和评估,以确保施工安全和项目顺利进行。
本报告旨在对某深基坑工程的监测结果进行分析和总结。
2. 监测目标和方法2.1 监测目标本次深基坑监测主要关注以下几个方面: - 坑壁位移:监测坑壁的水平和垂直位移,以评估土体的稳定性。
- 地下水位:监测地下水位的变化,以确保施工期间地下水的控制。
- 周边建筑物变形:监测周边建筑物的变形,以避免对周围环境造成不可逆的损害。
2.2 监测方法 - 坑壁位移监测:采用测斜仪对深基坑周边的地表进行定期监测,以获取土体位移的数据。
- 地下水位监测:在深基坑周围设置水位监测井,通过定期测量水位来评估地下水的变化情况。
- 建筑物变形监测:采用全站仪对周边建筑物进行定期测量,以获取建筑物变形的数据。
3. 监测结果分析3.1 坑壁位移根据测斜仪的监测数据分析,深基坑的坑壁水平位移整体趋势较小,变化范围在正负1毫米之间。
垂直位移方面,坑壁在施工初期有一定的下沉,但施工后逐渐趋于稳定。
整体而言,坑壁的位移变化在可接受范围内,土体稳定性较好。
3.2 地下水位通过水位监测井的数据分析,地下水位在深基坑施工期间有一定的上升趋势,但在合理控制范围内。
通过采取相应的降水措施,地下水位得到了有效控制。
在施工结束后,地下水位逐渐恢复到原有水平。
3.3 建筑物变形通过全站仪的测量数据分析,周边建筑物的变形情况较小,变化范围在正负2毫米之间。
建筑物的变形主要受到深基坑施工活动的影响,但没有出现明显的破坏性变形。
施工过程中,根据监测结果及时采取了相应的补偿措施,确保了周边建筑物的稳定性。
4. 结论与建议4.1 结论根据本次深基坑监测的结果分析,可以得出以下结论: - 深基坑的土体位移变化在可接受范围内,土体稳定性较好。
- 地下水位在施工期间得到了有效控制,未对周围环境造成不可逆的影响。
基坑监测总结报告
基坑监测总结报告一、引言基坑监测是在建筑施工中非常重要的一项工作,其目的是为了及时掌握基坑的变形情况,保证施工的安全性和稳定性。
本报告总结了一次基坑监测的过程和结果,并对监测数据进行了分析和评价。
二、监测目标和方法本次基坑监测的目标是掌握基坑的变形情况,特别是地下水位的变化和基坑的沉降情况。
监测方法主要包括以下几方面:1.地下水位监测:利用水位计定时定点采集地下水位数据,并进行记录和分析。
2.基坑侧壁变形监测:采用全站仪进行基坑的侧壁变形监测,包括侧壁的位移和倾斜情况。
3.基坑底部沉降监测:利用测量水准仪定时测量基坑底部的沉降情况,并记录和分析数据。
三、监测结果根据监测数据的统计和分析,得出以下结果:1.地下水位变化较为稳定,在施工过程中水位基本保持不变。
这说明基坑附近的地下水状况相对稳定,对施工没有明显的影响。
2.基坑侧壁的变形情况较小,位移和倾斜均在设计范围内。
说明基坑的支护结构和施工工艺是合理的,满足了安全性和稳定性的要求。
3.基坑底部存在一定的沉降,但变化趋势平稳。
这可能是由于地下水位的变化和基坑开挖引起的。
然而,沉降量在合理范围内,不会对施工造成太大的影响。
四、评价和建议根据本次监测的结果,可以对施工进行评价和提出建议:1.施工工艺和支护结构的设计是合理的,能够满足基坑的安全性和稳定性要求。
因此,在后续的施工过程中可以继续使用相同的工艺和结构。
2.地下水位变化较小,对施工没有明显的影响。
因此,在后续施工中可以继续进行相同的地下水处理和排水工作。
3.基坑底部的沉降量在合理范围内,但仍需要继续监测和控制。
建议定期进行测量,并根据监测数据及时采取相应的措施。
4.在基坑施工过程中,需要加强施工人员的安全意识和培训,确保他们具备监测数据的正确使用和分析能力。
五、结论基坑监测是保证建筑施工安全性和稳定性的重要环节。
通过本次监测,我们得出了一些重要的结论和建议。
在后续的施工过程中,我们将继续对基坑进行监测,并根据监测数据调整和优化施工措施,以确保施工的顺利进行。
基坑工程监测检测方案
基坑工程监测检测方案一、前言基坑工程是城市建设中的重要组成部分,其安全施工和监测检测工作至关重要。
在建设过程中,需要对基坑工程进行监测检测,以确保施工过程中的安全以及结构稳定。
本文将针对基坑工程的监测检测方案进行详细的介绍。
二、监测检测的目的基坑工程监测检测的主要目的是为了掌握工程施工过程中的变形和变化规律,对施工现场的安全进行有效监控和控制;同时也是为了对基坑支护结构的受力进行实时监测,保证基坑支护结构的稳定性和安全性;对基坑周边环境进行监测,以保护周边建筑和地下管线的安全。
三、监测检测的内容1. 地表沉降监测:通过设置地表沉降监测点,进行实时监测,了解地表变形情况。
可以采用测量仪器,如沉降仪、倾斜仪等进行监测,并采用自动化数据采集系统进行数据存储和分析。
2. 基坑轴线监测:针对基坑的变形情况进行监测,了解基坑结构的稳定性。
可以采用全站仪、GPS等工具进行轴线监测,实时记录基坑的变形情况。
3. 支护结构受力监测:对基坑支护结构的受力情况进行监测,确保支护结构的安全性。
可以采用应变计、位移计等仪器进行实时监测。
4. 地下水位监测:对基坑附近地下水位进行监测,了解地下水位的变化情况。
可以通过长期监测和数据分析,掌握地下水位的变化规律。
5. 基坑周边环境监测:对基坑周边建筑和地下管线进行监测,确保工程施工过程中的安全。
可以采用地质雷达、声波检测等技术进行监测,确保基坑工程对周边环境的影响最小化。
四、监测检测方法1. 传统监测方法:采用常规测量仪器进行监测,如全站仪、GPS、沉降仪、倾斜仪、应变计等。
这些仪器可以准确监测基坑工程的变形情况,并且数据可以实时采集分析。
2. 自动化监测系统:采用自动化监测系统进行监测,实现数据实时采集和存储。
可以采用传感器、数据采集器、数据传输设备等进行布设,实现对基坑工程的全方位监测。
3. 遥感监测技术:利用遥感技术进行基坑工程的监测,减少人工操作和提高监测效率。
可以采用卫星遥感、无人机等技术进行监测,实现对基坑工程的大范围监测。
基坑监测报告
基坑监测报告基坑是指建筑施工中挖掘的坑洞。
因为基坑施工涉及到土体的挖掘和支护,不可避免地会对周边环境和其他建筑物产生一定的影响。
为了确保施工的安全和环保,需要对基坑的监测进行及时、准确的报告,下面就基坑监测报告进行说明。
一、监测目的和范围本次基坑监测旨在对基坑挖掘过程中的土体位移、地下水位、地下水质量以及周边建筑物的变形进行监测,以确保施工的安全与环保,并减少对周边环境的影响。
二、监测方法和设备本次监测采用了多种监测方法和设备,包括但不限于:1.土体位移监测:采用测量仪器对基坑周边的地表位移进行实时监测,以了解土体的变形情况。
2.地下水位监测:采用水位计和水文测量仪器对基坑周边的地下水位进行实时监测,以评估基坑挖掘对地下水位的影响。
3.地下水质量监测:采集地下水样品进行实验室化验,以监测基坑挖掘对地下水质量的影响。
4.建筑物变形监测:采用位移传感器对周边建筑物进行实时监测,以评估基坑挖掘对建筑物变形的影响。
三、监测结果及分析1.土体位移:根据监测数据显示,基坑挖掘过程中土体的位移呈现逐渐增加的趋势,但总体来说位移范围在安全范围内。
2.地下水位:地下水位随着基坑挖掘的深入而逐渐下降,但在设计的控制范围内,未导致周边地区的地下水严重下降。
3.地下水质量:实验室化验结果显示基坑挖掘对地下水质量影响不大,水质基本稳定。
4.建筑物变形:周边建筑物的变形量在允许范围内,未出现明显的沉降或倾斜情况。
四、处理措施和建议根据监测结果,结合现场施工情况,提出了以下建议和处理措施:1.加强土体支护:根据土体位移监测结果,加强对基坑周边土体的支护,以确保施工的安全和稳定。
2.控制地下水位:根据地下水位监测结果,合理安排抽水工程,控制地下水位,避免对周边地区的地下水资源造成过大的影响。
3.加强环境保护措施:定期监测地下水质量,加强对施工过程中产生的污水的处理和排放,避免对地下水质量的影响。
4.加强建筑物监测:继续对周边建筑物进行实时监测,发现异常情况及时处理。
基坑监测监控方案
基坑监测监控方案土方开挖施工期间,应对基坑支护结构受力和变形、周边建筑物、重要道路及地下管线等保护对象进行系统的监测。
通过监测,可以及时掌握基坑开挖过程中支护结构的实际状态及周边环境的变化情况,做到及时预报,为基坑边坡和周边环境的安全与稳定提供监控数据,防患于未然;通过监测数据与设计参数的对比,可以分析设计的正确性与合理性,科学合理地安排下一步工序,必要时及时修改设计,使设计更加合理,施工更加安全。
一、监测频率1坡顶水平位移监测:基坑开挖前3步深度在5m以内,可每2d观测一次,基坑开挖至5m以下及基坑开挖完成后一周内,每天观测一次。
基坑开挖至基底后一周后无明显位移时,可适当延长观测周期,每5~IOd 观测一次。
2、坡顶垂直位移及建筑物沉降观测:在基坑降水时和在基坑土开挖过程中应每天观测一次。
混凝土底板浇完IOd以后,可每2~3d观测一次,直至地下室顶板完工和水位恢复。
此后可每周观测一次至回填土完工。
3、当出现下列情况之一时,应进一步加强监测,缩短监测时间间隔,加密观测次数,并及时向施工、监理和设计人员报告监测结果:(1)监测项目的监测值达到报警标准;(2)基坑及周围环境中大量积水、长时间连续降雨、市政管线出现泄漏;(3)基坑附近地面荷载突然加大;(4)临近的建筑物或地面突然出现大量沉降、不均匀沉降或严重开裂。
4、当有危险事故征兆时,应连续监测。
二.监控报警1基坑及支护结构监控报警值以累计变化量和变化速率两个值控制,累计变化量的报警指标不应超过设计限制。
2、本基坑坡顶水平位移报警值设为25mm,水平位移速率报警值设为连续三日大于2mm∕d o3、周围建筑物报警值以累计变形量、变形速率、差异变形量并结合裂缝观测确定。
4、本基坑周围建筑物沉降报警值设为15mm,倾斜报警值设为IOmm,倾斜速率报警值设为连续三日大于Imm/55、当出现下列情况时,应立即报警:6、周围建筑物砌体部分出现宽度大于1.5mm的变形裂缝;7、附近地面出现宽度大于IOmm的裂缝;三、紧急预案1、基坑开挖和喷锚支护施工过程中,由于破坏了土层中的原有的应力平衡,坡面肯定会发生变形,直到达到新的平衡。
基坑工程监测方案完整版
基坑工程监测方案完整版一:(详细版)基坑工程监测方案完整版一、前言本旨在规划基坑工程的监测方案,确保施工过程中的安全和质量。
本方案详细介绍了监测的目的、内容、方法及具体实施步骤,以供参考。
二、监测目的基坑工程的监测目的是为了及时掌握基坑工程施工过程中的变形和破坏情况,预测和评估可能带来的风险,并采取相应的措施以确保工程的顺利进行。
三、监测内容1. 地面沉降监测地面沉降监测旨在记录基坑周围地面的垂直位移情况,以评估基坑开挖对周边建造物和地下管线的影响。
2. 基坑顶部水平位移监测基坑顶部水平位移监测旨在记录基坑各个部位的水平位移情况,以评估基坑结构的稳定性。
3. 地下水位监测地下水位监测旨在记录基坑周围地下水位的变化情况,以评估基坑排水系统的效果。
4. 基坑支护结构变形监测基坑支护结构变形监测旨在记录基坑支护结构的变形情况,以评估支护结构的稳定性。
五、实施步骤1. 建立监测点根据监测内容确定监测点的位置,并进行标记和记录。
2. 部署监测仪器根据监测内容选择合适的监测仪器,并按照要求进行部署和安装。
3. 数据采集和处理定期对监测仪器进行数据采集,并对数据进行处理和分析,监测报告。
4. 监测报告及时反馈及时将监测报告反馈给相关责任方,并提供相应的建议和措施。
六、附件本所涉及附件如下:1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》:指中华人民共和国建造领域的专门法律法规。
2.《施工安全管理条例》:指中华人民共和国施工领域的专门法律法规。
二:(简洁版)基坑工程监测方案完整版一、前言本为基坑工程监测方案,旨在确保工程施工过程的安全和质量。
详细介绍了监测的目的、内容、方法及实施步骤。
二、监测目的基坑工程监测的目的是为了及时掌握工程变形和破坏情况,预测风险并采取措施,确保工程顺利进行。
三、监测内容1. 地面沉降监测2. 基坑顶部水平位移监测3. 地下水位监测4. 基坑支护结构变形监测五、实施步骤1. 建立监测点2. 部署监测仪器3. 数据采集和处理4. 监测报告及时反馈六、附件1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》2.《施工安全管理条例》。
基坑监测报告
基坑监测报告随着城市建设的不断发展,越来越多的基坑项目在各地展开。
然而,基坑在施工过程中存在着诸多的安全隐患,需要进行及时、准确的监测,以确保工程的安全与顺利进行。
因此,本篇文章将从基坑监测的意义、监测内容以及最新的监测技术等方面进行论述。
一. 基坑监测的意义基坑作为城市建设中重要的施工环节,其安全性直接关系到建设者和周边居民的生命财产安全。
基坑施工过程中,地下水、地表沉降和裂缝、地下管线的变形等问题经常出现。
而这些问题如果不及时监测和处理,很可能会导致严重的后果,如建筑倒塌、人员伤亡等。
因此,通过对基坑进行监测,可以及早发现并解决问题,确保工程的稳定性和安全性。
二. 基坑监测的内容1. 地下水位监测地下水位是基坑监测中的重要指标之一。
地下水位的过高或过低都可能会对基坑的稳定性产生不利影响。
因此,在基坑施工过程中,需要通过安装水位测量设备来监测地下水位的变化情况,及时采取相应的排水措施。
2. 地表沉降和裂缝监测地表沉降和裂缝是基坑施工过程中经常出现的问题,它们与土壤的变形和沉降有关。
通过使用测量仪器对基坑周边地表进行监测,可以及时掌握地表的沉降和裂缝情况,进而采取相应的措施来防止或修补。
3. 地下管线变形监测地下管线变形是基坑施工中常见的问题之一。
施工过程中如果不注意对地下管线进行监测和保护,很可能会导致管线破裂或漏水。
因此,需要通过监测设备对地下管线进行实时监测,一旦发现问题及时处理。
三. 最新的监测技术为了更准确地监测基坑的变化情况,现代技术不断地提供了更多的监测手段和设备。
1. GPS技术GPS技术已经被广泛运用到基坑监测中。
通过在基坑边缘设置GPS监测点,可以实时测量基坑周边地表的沉降情况,为及时采取措施提供参考。
2. 自动化监测系统自动化监测系统通过安装在基坑周边的传感器和数据采集仪器,实时采集并汇总基坑的监测数据。
通过系统软件的分析处理,可以得到基坑变形的趋势图和实时曲线,方便及时判断基坑的安全状况。
基坑工程监测报告完整优秀版
基坑工程监测报告完整优秀版简介
本报告是对于基坑工程的监测情况进行分析、总结与评价的报告。
我们本次监测共计检测了 10 个点位,主要监测内容包括地表
沉降、水位变化、地下管线位移。
检测结果
地表沉降
在本次监测中,我们检测到基坑工程周边地表存在一定程度的
沉降现象。
其中,最大沉降量出现在监测点Q1 处,达到了4.5cm。
我们推测这可能与地下水位变化及土层结构有关。
水位变化
在本次监测中,我们检测到监测点 P1 处水位上升较为明显,
其中最高上升了2.3m。
经分析,这可能与周围地下管线施工有关。
地下管线位移
在本次监测中,我们检测到地下管线在施工过程中发生了一定
程度的位移。
其中,最大位移出现在监测点G1 处,达到了1.5cm。
我们认为这可能是施工过程中挖掘和填埋不当造成的。
综合评价
通过本次监测,我们对基坑工程的建设情况进行了详细评估。
我们发现,尽管地表沉降、水位变化和地下管线位移等问题存在,
但这些问题都在可控范围内。
我们向施工方提出了相关建议,希望
施工方能够及时采取措施解决上述问题,并确保基坑工程的安全施
工和顺利进行。
深基坑监测方案
深基坑监测方案深基坑监测是建设工程中非常关键的一项工作,目的是确保基坑施工的安全和稳定。
下面给出了一个深基坑监测方案的示例,以供参考。
一、监测目标:1. 监测基坑变形和沉降情况,包括水平位移、垂直变形和沉降速度等参数。
2. 监测基坑周边的地面沉降情况,包括径向沉降和破坏区域的扩展情况。
3. 监测基坑周围的建筑物和地下管线的变形情况,确保安全运营。
二、监测方法:1. 使用水平位移监测仪器对基坑周边的地面进行实时监测,记录并分析监测数据,发现任何异常变化。
2. 使用测斜仪对基坑内部的土体进行定期监测,分析土体的变形和沉降情况。
3. 使用沉降观测点和标高测量方法来监测基坑和周边地面的沉降情况。
4. 使用全站仪对基坑周边的建筑物进行定期监测,记录建筑物的变形情况。
5. 使用地下雷达和超声波探测仪对基坑周边地下管线进行定期监测,确保管线的完整性。
三、监测频率:1. 地面监测:每日监测一次,记录并分析数据。
2. 测斜监测:每周监测一次,记录并分析数据。
3. 沉降监测:每周监测一次,记录并分析数据。
4. 建筑物监测:每月监测一次,记录并分析数据。
5. 管线监测:每季度监测一次,记录并分析数据。
四、监测报告:1. 每次监测后,需要生成监测报告,记录监测数据和分析结果。
2. 每周整理一次监测报告,总结监测情况,并提出相应的建议和措施。
五、紧急预警和应急响应:1. 如果监测发现有任何异常情况,需要立即发出预警,并采取相应的紧急措施。
2. 监测人员需要有相应的培训和技能,能够在紧急情况下做出正确的应急响应。
六、监测人员:1. 由专业的监测公司派遣监测人员进行监测工作。
2. 监测人员应具备相关的专业背景和技能,能够熟练操作监测仪器设备,并能准确分析监测数据。
七、监测费用:1. 监测费用由施工单位承担,包括监测仪器设备的购买和维护,以及监测人员的人力成本。
2. 监测费用应计入工程造价。
以上是一个深基坑监测方案的示例,具体实施方案需要根据具体的工程要求进行调整和补充。
基坑支护工程监测方案
基坑支护工程监测方案一、基坑支护工程监测方案1.监测目的(1)监测基坑开挖过程中的变形情况,及时发现并处理可能存在的变形加剧或者失稳的情况。
(2)监测基坑支护结构的施工质量,及时发现并处理支护结构的裂缝、位移等问题。
(3)监测基坑开挖和支护过程中的地下水位变化情况,确保地下水位对支护结构的影响在合理范围内。
(4)监测基坑支护工程对周边建筑物、管线等的影响,确保不会对周边环境造成负面影响。
2.监测内容(1)基坑开挖过程的变形监测,包括土体沉降、支护结构位移、裂缝变化等情况。
(2)基坑支护结构施工过程的监测,包括混凝土浇筑质量、支护结构内力变化、裂缝情况等。
(3)地下水位监测,主要是为了了解地下水位的变化情况,及时调整排水和抗渗措施。
(4)周边建筑物、管线等的影响监测,主要是为了了解基坑支护工程对周边环境的影响情况。
3.监测方法(1)基坑开挖过程的变形监测,可以采用测量仪器进行实时监测,如全站仪、测斜仪、倾角仪等。
(2)基坑支护结构施工过程的监测,可以采用超声波检测仪、裂缝位移计等仪器进行实时监测。
(3)地下水位监测,可以采用水位计进行实时监测。
(4)周边建筑物、管线等的影响监测,可以采用激光测距仪、地震波等仪器进行实时监测。
4.监测频率(1)基坑开挖过程的变形监测,每天至少进行一次监测,发现异常情况要及时处理。
(2)基坑支护结构施工过程的监测,根据施工进度和情况进行不定期监测,发现问题及时处理。
(3)地下水位监测,每天至少进行一次监测,根据地下水位变化情况适时调整排水和抗渗措施。
(4)周边建筑物、管线等的影响监测,根据实际情况进行不定期监测,及时发现问题并处理。
二、监测结果处理1.监测结果的处理(1)基坑开挖过程的变形监测结果要及时分析,如发现异常情况要立即停止开挖,并做好防护措施。
(2)基坑支护结构施工过程的监测结果要及时分析,如发现支护结构存在问题要及时调整施工方案,并进行补救措施。
(3)地下水位监测结果要及时分析,根据地下水位变化情况适时调整排水和抗渗措施。
基坑支护监测方案
基坑支护监测方案基坑是指建筑施工过程中需要挖掘的大面积或深度较大的坑洞,在城市建设中广泛应用于地下室、地下停车场、地铁等工程建设中。
基坑的支护是确保施工安全和周围环境稳定的重要措施之一、而监测基坑支护的方案则是在施工过程中对支护工程进行实时监测,及时发现并修复问题,以确保工程的稳定性和安全性。
本文将介绍一个基坑支护监测方案。
一、监测内容1.地表沉降监测:通过安装沉降观测点,测量地表沉降情况,及时发现和掌握地表沉降变化的趋势和速度,以判断基坑支护工程是否存在变形和下沉情况。
2.周边建筑物位移监测:通过设置位移观测点,监测周边建筑物的位移情况,及时发现和掌握周边建筑物变位的情况,以评估基坑施工对周边建筑物的影响程度。
3.土体应力监测:通过在基坑周边和支护结构上设置应变计和应变片,实时监测土体的应力分布情况,了解土体的变形和变位情况。
4.土体测斜监测:通过设置测斜孔和监测测斜仪,监测土体的倾斜情况,及时发现和掌握土体的变形和位移情况,以评估基坑支护结构的稳定性。
5.土体水位监测:通过在基坑周边设置水位观测点,监测地下水位的变化情况,及时发现和掌握地下水位的涨落情况,以评估基坑支护结构对地下水位的影响程度。
二、监测方法1.建立监测体系:根据实际情况,确定监测点的位置和数量,合理布设监测设备,建立监测点的坐标系和标注体系,确保监测的准确性和可靠性。
2.监测设备选择:选择适合的监测设备和仪器,包括位移仪器、应变仪器、测斜仪器、水位仪器等,保证监测数据的精确性和稳定性。
3.数据采集与处理:设立数据采集终端和服务器,实现实时数据采集、传输和存储,建立数据处理平台,对监测数据进行分析和评估,及时发现异常情况并采取相应的应对措施。
4.预警机制与措施:根据监测数据的变化趋势和阈值,设置相应的预警机制,建立监测数据与预警信号的关联模型,一旦出现预警信号,及时启动应急预案,采取相应的支护修补措施,以确保施工安全。
三、监测频率与报告1.监测频率:根据具体工程的要求和施工进度,制定监测频率,一般为每周或每月进行一次,实时监测的数据可随时查看。
基坑监测总结报告
基坑监测总结报告1. 引言基坑监测是建筑工程中重要的一环,旨在确保施工过程中的安全和稳定。
本报告总结了基坑监测工作的整体情况,并提出了进一步的改进措施。
2. 监测方法2.1 现场监测设备我们在基坑工程现场使用了多种监测设备,包括测斜仪、沉降仪、超声波测量仪等。
这些设备能够帮助我们实时监测基坑周边土体的变形和沉降情况。
2.2 数据采集与处理监测设备通过传感器获取到的数据会被记录下来,并通过数据采集系统进行分析和处理。
我们采用了数据可视化的方法,将监测数据以图表的形式展示,以便更好地了解基坑施工过程中的变化趋势。
3. 监测结果分析3.1 土体变形通过分析监测数据,我们发现基坑周边土体发生了一定的变形。
变形主要集中在基坑边缘,逐渐减小向外扩散。
这是由于基坑施工中土壤的挖掘和排土导致的。
3.2 土体沉降在基坑施工过程中,土体的沉降是不可避免的。
我们观察到基坑周边土体发生了一定程度的沉降,但整体稳定性良好。
这得益于监测设备的及时反馈和施工人员的合理调整。
3.3 施工影响基坑施工对周边环境和结构物可能产生一定的影响。
通过监测数据分析,我们发现基坑施工对周边建筑物的振动影响较小,但在挖掘和回填土方过程中仍需注意施工质量。
4. 改进措施4.1 定期监测基坑监测需要持续进行,以便及时发现和解决潜在问题。
我们建议在基坑施工过程中定期进行监测,并将监测结果与设计要求进行对比,及时调整施工计划。
4.2 加强沟通基坑监测涉及多个专业领域的合作,需要加强施工人员、监测人员和设计人员之间的沟通与协调。
只有充分理解各自的需求和要求,才能确保监测工作的准确性和有效性。
4.3 引入新技术随着科技的不断发展,我们可以考虑引入一些新技术来改进基坑监测工作。
例如,使用无人机进行空中监测,或者应用更先进的传感器和数据处理算法,提高监测的精确度和效率。
5. 结论基坑监测是建筑工程中不可或缺的一项工作。
通过本次监测,我们对基坑施工过程中土体的变形和沉降情况有了更深入的了解,并提出了相应的改进措施。
基坑施工监测方案
基坑施工监测方案为了保证各部结构稳定,周边建筑物安全和工程施工顺利进行,必须选择正确的施工方法和施工工艺,并对施工过程中的各工程部位和周边环境进行监测,以监测信息验证设计,指导施工将信息化管理贯穿于施工全过程,从而使工程施工达到安全、优质、快速、低耗之目标。
1、施工监测组织基坑规模较大,施工监测十分重要,我公司将统筹组建现场监测组织。
拟由从事过这项工作,具有丰富施工经验的工程师 3 名组成现场监测室,各项目队技术室派技术人员专职参与。
组织框图为下:1.1、监测管理流程1.2、监测管理1)由项目总工程师主持,在开工前制定监测计划,并报监理工程师批准。
监测计划要纳入施工计划,各项目队在贯彻施工计划时,要按进度按要求执行监测计划,积极投入,主动配合埋设测点,按时观测,要给设点和观测留有一定的时间和空间。
2)监测室要按施工组织设计和监测计划配置必要的仪器、仪表、传感器和电脑、绘图设备等,并安排专人使用、保养、按周期校验、率定和标定。
3)监测室要制定监测工作细则和岗位职责,每一个监测人员都要熟练掌握各类仪器、仪表、传感器的性能、规格、率定指标以及操作方法,都具有数据整理和回归分析的能力。
当现场量测组发现数据变异较大,有危险趋势时,则随时作出初步整理分析,随时向工地负责人预报。
正式回归分析时要根据工程实际情况和有关规定预先设置警戒值,当发现超限时,立即报告监理工程师并报送应急措施。
4)观测点设置牢固可靠,要便于观测和采数;各点观测和采集的初始值要增加观测次数,并去掉离散大的数据,以三个以上数据取平均值;同时要按标定考虑零飘值。
日常观测读取以三个读取取平均值。
每次采集的数据和整理的资料要经复核和审核,并保证其可靠性和准确性。
5)监测工作要按招标文件《技术规范》和《建筑变形测量规程》JGJ/T8-97 执行;监测计划、监测方案、观测记录、、内业图表、监测成果和工程处理意见均应报监理工程师审查和签发,同时分类存档,以备纳入竣工文件。
基坑开挖监测方案
基坑开挖监测方案基坑开挖是现代建筑施工中常见且重要的工作环节之一。
为确保基坑开挖的安全和质量,必须进行有效的监测。
本文将探讨基坑开挖监测的方案和措施。
一、监测目标和指标基坑开挖监测的目标是为了掌握基坑开挖过程中的变形情况,及时发现和解决问题。
常见的监测指标包括土体沉降、支护结构变形、周边建筑物变形、地下水位等。
二、监测方法和技术1. 地下水位监测:利用水位计或压力计沿开挖周边设置一系列监测点,实时监测地下水位的变化。
根据监测数据可以判断土体稳定性,并采取必要的排水措施。
2. 土体沉降监测:一般采用水准仪或全站仪进行监测,设置监测点位于开挖区域内部和周边,通过对比测量数据可以判断土体沉降情况,及时采取补偿措施。
3. 支护结构变形监测:可以采用倾斜仪、应变计等监测设备,设置在支护结构上,监测其变形情况;也可以通过在支撑体上设置测点,测量支撑体变形情况,及时调整支撑结构。
4. 周边建筑物变形监测:利用全站仪或倾斜仪等测量设备,设置监测点位于周边建筑物上,监测其变形情况,判断是否受到基坑开挖的影响,做出相应的安全措施。
三、监测频率和报告监测频率应根据具体情况确定,一般在开挖前、开挖过程中和开挖后都需要进行监测。
开挖前的监测主要是为了了解周边环境的情况,制定合理的开挖方案。
开挖过程中的监测可根据开挖深度和工期确定,一般每日或每周进行一次监测。
开挖后的监测主要是为了评估开挖的影响,并做出结论和建议。
监测数据应及时记录和保存,并根据需要制作监测报告。
报告要包括监测目标、指标、方法、结果等内容,以便后续工作的参考和分析。
四、监测结果分析和处理根据监测数据,结合设计要求和标准,进行数据分析和处理。
如果监测结果超过了允许范围,需要及时采取相应的补救措施,例如加固支护结构、排除地下水等。
如果监测结果正常,也要继续进行监测,以避免因为忽视监测而造成的隐患。
在处理监测结果时,需综合考虑地质条件、工程特点、环境要求等各个因素,根据实际情况制定合理的措施和方案。
基坑监测报告
基坑监测报告一、前言。
本报告旨在对基坑施工过程中的监测数据进行分析和总结,为工程安全提供可靠的依据。
基坑工程是城市建设中常见的地下工程之一,对基坑的监测工作至关重要。
通过对基坑的监测,可以及时发现并解决地下水位变化、地表沉降、围护结构变形等问题,保障工程的安全和稳定。
本报告将对基坑监测数据进行详细分析,为工程管理和决策提供参考。
二、监测内容。
1. 地下水位监测。
地下水位是基坑工程中需要重点关注的因素之一,对基坑围护结构和地下设施的稳定性有着重要影响。
我们通过设置水位监测点,实时监测地下水位的变化情况,以及对基坑周边地下水位的影响。
2. 地表沉降监测。
基坑施工过程中,地表沉降是一个不可避免的问题。
我们通过设置沉降监测点,对基坑周边地表的沉降情况进行监测,并及时采取补偿措施,以保证周边建筑和道路的安全。
3. 围护结构变形监测。
基坑围护结构的变形情况直接关系到基坑的稳定性和安全性。
我们通过设置变形监测点,对基坑围护结构的变形情况进行实时监测,及时发现问题并进行处理。
三、监测数据分析。
通过对监测数据的分析,我们得出以下结论:1. 地下水位。
地下水位在基坑开挖过程中出现了一定的波动,但整体变化趋势较为平稳。
在基坑开挖过程中,地下水位的变化对周边建筑和地下管线没有造成明显影响。
2. 地表沉降。
基坑周边地表出现了一定程度的沉降,但在可控范围内。
我们已经采取了相应的补偿措施,保证了周边建筑和道路的安全。
3. 围护结构变形。
基坑围护结构出现了一定的变形,但变形情况在可接受范围内。
我们已经对围护结构进行了加固处理,保证了基坑的稳定性和安全性。
四、结论与建议。
通过对监测数据的分析,我们认为基坑目前的施工情况良好,各项监测数据均在可控范围内。
但我们也建议在后续的施工过程中,继续加强监测工作,及时发现并解决问题,确保基坑工程的安全和稳定。
五、致谢。
在本次基坑监测工作中,感谢所有参与监测工作的工作人员和相关部门的支持与配合。
基坑工程污染监测方案
基坑工程污染监测方案一、前言随着城市建设的不断推进,特别是高层建筑和地下工程的兴建,基坑工程的建设逐渐常见。
然而,基坑工程开挖所产生的粉尘、噪音、废水等污染物质对周围环境和人们的生活造成了一定影响,因此需要对基坑工程的污染进行监测和管理。
本文将针对基坑工程的污染监测,提出一套完善的监测方案。
二、基坑工程污染种类及监测对象1.污染种类(1)粉尘:基坑工程开挖和施工过程中,会产生大量粉尘,对周围环境和人们的健康造成直接影响。
(2)噪音:基坑工程施工过程中,机械设备、工人操作等会产生噪音,对周围的居民生活造成干扰。
(3)废水:基坑工程开挖后,地下水或者雨水会聚集在基坑内部,需要进行排水处理,排出的水含有一定的污染物,会对周围环境造成污染。
2.监测对象(1)粉尘:周围环境空气中的粉尘浓度。
(2)噪音:基坑工程周边的环境噪音。
(3)废水:基坑工程排出的废水。
三、基坑工程污染监测方案1.粉尘监测方案(1)监测点位的确定:在基坑工程周边选择合适的监测点位,人员密集区、居民区、公共场所等需要优先考虑,可以根据基坑工程周边环境的特点确定监测点位。
(2)监测设备的选择:选择合适的空气质量监测仪器,可以测量PM2.5、PM10等粉尘颗粒物的浓度。
(3)监测频率:根据施工的具体情况进行,施工高峰期需要增加监测频率。
(4)监测数据的分析:监测数据需要及时收集和分析,对达标范围内的数据,可以给予正面评价和鼓励,对超标的数据,需要及时采取相应的控制措施。
2.噪音监测方案(1)监测点位的确定:根据基坑工程周边的环境和人群居住情况,选择合适的监测点位,需要监测的区域主要包括附近的住宅区、学校、医院等公共场所。
(2)监测设备的选择:选择专业的环境噪音监测设备,可以测量环境噪音的分贝值。
(3)监测频率:噪音监测需要进行24小时连续监测,可以根据施工时间和周边环境的特点确定具体的监测频率。
(4)监测数据的分析:监测数据需要及时收集和分析,对周围环境噪音超标的情况,需要及时采取降噪措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华阳市阳光佳苑基坑工程监测方案和监测报告工程名称:华阳市阳光佳苑施工单位:中广建设集团有限公司编制日期:二零一三年七月十五目录目录 (2)1 工程概况 (3)2 监测依据 (3)3 监测项目和监测点布置 (4)4 监测的具体措施 (10)5 监测周期和频率 (13)6 监测仪器设备、技术要求与精度要求 (14)7 监测报警 (15)8 监测人员组成 (17)9 资料成果提交 (18)10 监测方案报价 (20)1 工程概况华阳市阳光佳苑工程位于东区政府对面,东临南路,南临环西路(在建),西侧为花园,距离坑边较远约54m,北侧地块空旷。
基坑东南角下面埋有管线,基坑东边离管线比较远,最近的距离管线约18m。
基坑周长约1490m,占地面积52222平方米。
拟建建筑物包括高层建筑物6栋(1#、2#、3#、4#、5#、6#栋),层数为24-30F,为框架剪力墙结构,综合商业楼为多层建筑物(7#、8#、9# 、10#栋、),层数为2-8F,为框架结构;均有地下室三层,地下室为框架结构。
本工程结构±0.000相当于与绝对标高+56.00,场地平整后自然地面标高为-3.20,B3结构标高-15.30,底板厚1800,垫层厚250,地下室开挖深度为13.5m。
根据本工程的周边环境要求,工程地质、水文地质条件及基坑开挖深度,选用人工挖孔桩+锚杆,综合确定基坑侧壁安全等级为一级,使用年限≤2年,为暂时性支护结构。
2 监测依据1、《建筑基坑支护技术规程》(JGJ120-99)2、《建筑基坑工程监测技术规范》(GB50497-2009)3、《建筑地基基础设计规范》(GB50007-2002)4、《建筑地基基础工程施工质量验收规范》(GB50202-2002)5、《工程测量规范》(GB50026-2007)6、《国家三、四等水准测量规范》(GB12897-91)7、《建筑变形测量规程》(JGJ/8-2007)8、《XXXX城市广场基坑支护设计》,KKK设计有限公司3 监测项目和监测点布置监测的目的:受工程地质条件、临近建筑物的结构性能、气候等因素的影响基坑在开挖及维护期间,必须采用信息施工法进行施工。
根据相关规范和支护设计要求,监测项目及测点布置如下:1.华阳市阳光佳苑基坑坑顶的水平位移和垂直位移监测测点布置:沿庆春城市广场基坑坑顶设置测点,共计29点。
图1 华阳市阳光佳苑基坑测点布置水平、竖向位移监测基准点埋设在基坑开挖深度3倍范围以外不受施工影响的稳定区域,本工程基坑开挖深度为12.5m,水平、竖向位移基准点布置在大于37.5m处,具体监测布置点根据实际情况进行调整。
2.周边土体深层水平位移监测测点布置:沿庆春广场基坑坑顶外侧设置测点,共计29点。
在基坑的外围各周边均布置2~10个监测点,间距20-50m,在基坑开挖一周前埋设PVC工程塑料测斜管,并通过测斜仪观测各深度处基坑的水平位移。
埋设时应注意测斜管要保持竖直,并与所测方向一致。
测斜管埋入土体深度约为1.5倍基坑开挖深度,依照现场实际情况取20m作为测斜管埋入深度。
测斜管的埋设方法如下:首先在土体上钻孔,孔径略大于测斜管外径,一般测斜管是外径Φ76,钻孔内径Φ110的孔比较合适,孔深一般要求穿出结构体3~8m比较合适,硬质基底取小值,软质基底取大值。
然后将在地面连接好的测斜管放入孔内,测斜管与钻孔之间的空隙回填细砂或水泥与膨润土拌合的灰浆,埋设就位的测斜管必须保证有一对凹槽与基坑边缘垂直。
深层水平位移监测方法:侧向位移监测在测斜管内进行。
测斜管应在测试前5天装设完毕,在3~5天内重复测量不少于3次,判明处于稳定状态后,进行测试工作,其步骤如下:①用模拟探头(预通器)检查测斜管导槽;②使测斜仪测读器处于工作状态,将测头导轮插入测斜管导槽内,缓慢地下放至管底,然后由管底自下而上沿导槽全长每隔0.5m读一次数据,记录测点深度和读数。
测读完毕后,将测头旋转180度插入同一对导槽内,以上述方法再测一次,测点深度同第一次相同。
③每一深度的正反两读数的绝对值宜相同,当读数有异常时应及时补测。
3.基坑周边道路及管线沉降观测测点布置:沿庆春广场基坑外1-3倍开挖深度范围内的道路和管线上设置测点,共计23+12=35点。
4.支护结构墙、地表裂缝观测华阳市阳光佳苑基坑周边地表,均应作可见裂缝观测。
XXXX 城市广场基坑周边地表暂只在开挖与支护至基底的工期内,每天对基坑周边地表及支护结构墙变化较大的裂缝进行观测。
裂缝监测应包括裂缝的位置、走向、长度、宽度及变化情况。
对于裂缝宽度监测可在裂缝两边分别贴埋钢钉,通过钢钉的距离来观测裂缝是否有进一步的开展。
同时在裂缝的两端做出标记用以确定裂缝的长度是否有进一步的开展趋势。
施工过程中除了对已有的裂缝进行观测外,还要重点检查有可能出现裂缝的部位,及时发现新的裂缝,并做好记录和观测标识跟踪观测华阳市阳光佳苑基坑周边地表。
通过对地表既有裂缝或因工程施工产生的裂缝开展宽度的监测,评估工程施工对周边安全及正常使用的影响程度,指导土建承包商采取正确的施工方法和相关保护措施,并为可能的法律纠纷提供证据。
裂缝监测方法如下:基坑施工前,对影响范围内的地表进行裂缝调查,用数码相机对既有裂缝进行拍照,并记录裂缝位置。
基坑施工过程中,定期施工巡查影响范围内的地表,发现新裂缝及时拍照并记录裂缝位置。
使用游标卡尺在裂缝两侧锚固水泥钉,用卡尺直接量测钢钉间距,确定裂缝开展宽度。
在不可锚固钢钉的地方,采用电子裂缝测宽仪进行监测:用电缆连接显示屏和测量探头,打开电源开关,将测量探头的两支脚放置在裂缝上,在显示屏上可看到被放大的裂缝图像,稍微转动摄像头使裂缝图像与刻度尺垂直,根据裂缝图像所占刻度线长度,读取裂缝宽度值。
5.基坑地下水位监测测点布置:华阳市阳光佳苑基坑外设置测点,共计11点。
在基坑外围四个边上各布置1-5个监测点并分别埋设水压管,水位管选用直径70mm左右硬质塑料管,管底加盖密封,防止泥砂进入管中。
中部管壁周围钻出6~8列直径为6mm左右的滤水孔,纵向孔距50~100mm。
相邻两列的孔交错排列,呈梅花状布置。
管壁外部包扎土工织物过滤层,上部管口段不打孔,以保证封孔质量。
水位管的管口要高出地表并做好防护墩台,加盖保护,以防雨水、地表水和杂物进入管内。
水位管处应有醒目标志,避免施工损坏。
水位管埋设后每隔1天测试一次水位面,观测水位面是否稳定。
当连续几天测试数据稳定后,可进行初始水位高程的测量,并及时记录测得数值。
水位管的埋设与安装方法:①成孔:水位观测孔采用清水钻进,钻头的直径为Φ130,沿铅直方向钻进。
在钻进过程中,应及时、准确地记录地层岩性及变层深度、钻进时间及初见水位等相关数据;钻孔达到设计深度后停钻,及时将钻孔清洗干净,检查钻孔的通畅情况,并做好清洗记录。
②井管加工:井管的原材料为内径Φ70、管壁厚度为2.5的PVC。
管。
为保证PVC管的透水性,在PVC管下端0~4m范围内加工蜂窝状Φ8的通孔,并包土工布滤网,井管的长度比初见水位长6.5m,③井管放置:成孔后,经校验孔深无误后吊放经加工且检验合格的内径Φ70的PVC井管,确保有滤孔端向下;水位观测孔应高出地面0.5m,在孔口设置固定测点标志,并用保护套保护;④回填砾料:在地下水位观测孔井管吊入孔后,应立即在井管的外围填粒径不大于5mm的米石;⑤洗井:在下管、回填砾料结束后,应及时采用清水进行洗井。
洗井的质量应符合现行行业标准《供水水文地质钻探与凿井操作规程》(CJJ13)的有关规定。
并做好洗井记录。
地下水位具体监测方法:地下水位观测设备采用电测水位仪,观测精度为0.5cm,其工作原理图如下图所示为:水为导体,当测头接触到地下水时,报警器发出报警信号,此时读取与测头连接的标尺刻度,此读数为水位与固定测定的垂直距离,再通过固定测点的标高及与地面的相对位置换算成从地面算起的水位埋深及水位标高。
4 监测的具体措施1.位移观测基准点距基坑最短距离大于37.5m。
2.根据现场条件,房屋竖向位移变形采用由基准点直接观测各监测点变形。
在施工现场周边的稳定处布设水准基点和平面位置基点;平面工作基点及平面位置基点采用专设强制对中固定观测墩(构造见图4),其上安置精密型强制对中盘。
图4 工作基点强制对中固定观测墩构造3.基坑周边房屋的水平观测点及水平位移观测基准点荧光膜粘贴在墙面上,房屋垂直观测点采用膨胀螺栓将观测点固定在墙体内。
4.基坑顶面观测点的建立要求:基坑周边顶面上所有观测点位置埋设观测墩,观测墩均采用方形截面,边长为400mm,且通常配置4φ16的纵向钢筋,墩中预埋强制对中固定螺杆(构造见图5),其中基坑顶面水平观测点观测墩离地高1.2m,基坑顶面垂直及水平观测点观测墩离地高0.6m。
由于现场条件限制,具体布置情况以现场布置为准。
图5 垂直及水平强制对中固定观测墩构造5.几何水准测量尽可能选择在无风、阴天作一级变形观测,观测路线布设成多个(附合)闭合路线,每次观测前作i角检核校正,其它要求按《国家三、四等水准测量规范》执行。
平面位移监测采用方向观测,方向观测中误差不大于±2.0″;监测项目在基坑开挖前应测得初始值,且不少于2次。
5 监测周期和频率监测周期从建立监测网起到土建工程做到±0.000以后,如果各种监测值无大的变化时,可结束监测,并开始编写监测报告,历时需要6-7个月的时间,具体监测周期要求为:各种监测初始值监测2次,以此为依据值;其余按《建筑基坑工程监测技术规范》(GB50497-2009)第7.0.3确定:监测项目的监测频率应综合考虑基坑类别、基坑及地下工程的不同施工阶段以及周边环境、自然条件的变化和当地经验而确定。
当监测值相对稳定时,可适当降低监测频率。
对于应测项目,在无数据异常和事故征兆的情况下,开挖后仪器监测频率可按表1确定。
表1 现场仪器监测的监测频率1 监测数据达到报警值;2 监测数据变化较大或者速率加快;3 存在勘察未发现的不良地质;4 超深、超长开挖或未及时加撑等未按设计工况施工;5 基坑及周边大量积水、长时间连续降雨、市政管道出现泄漏;6 基坑附近地面荷载突然增大或超过设计限值;7 支护结构出现开裂;8 周边地面突发较大沉降或出现严重开裂;9 邻近建筑突发较大沉降、不均匀沉降或出现严重开裂;10 基坑底部、侧壁出现管涌、渗漏或流砂等现象;11 基坑工程发生事故后重新组织施工;12 出现其他影响基坑及周边环境安全的异常情况。
当有危险事故征兆时,应实时跟踪监测。
6 监测仪器设备、技术要求与精度要求1.监测所用仪器、仪表,要求精度高,准确度好,性能和质量良好,主要监测仪器:瑞士徕卡TC1100全站仪(3″& 2mm+2ppm)及附件;苏州一光DS05精密水准仪(0.4mm/km)、2m珠峰铟钢尺及附件;HCX-1测斜仪及CXG-6076系列PVC高精度测斜管;电测水位计。