3933中文资料
比较容易发表的几个核心期刊
医学类:《山东医药》、《时珍国医国药》、《护士进修》、《中国实验方剂学杂志》《体育文化导刊》国家体育总局文史工作委员会主办(月刊)ISSN:1671-1572 CN:11-4612/G8邮发代号:82-465 中文核心期刊(2008)《体育学刊》华南理工大学;华南师范大学主办(月刊)ISSN:1006-7116 CN:44-1404/G8 邮发代号:46-232该刊被以下数据库收录:Pж(AJ) 文摘杂志(俄)(2009)中文核心期刊(2008)期刊荣誉:Caj-cd规范获奖期刊《北京体育大学学报》北京体育大学主办(月刊)ISSN:1007-3612 CN:11-3785/G8 邮发代号:80-325该刊被以下数据库收录:中国人文社会科学引文数据库(CHSSCD—2004)中文核心期刊(2008)期刊荣誉:Caj-cd规范获奖期刊《武汉体育学院学报》武汉体育学院主办(月刊)ISSN:1000-520X CN:42-1105/G8该刊被以下数据库收录:Pж(AJ) 文摘杂志(俄)(2009) 中国人文社会科学引文数据库(CHSSCD—2004)中文核心期刊(2008)期刊荣誉:Caj-cd规范获奖期刊《山东体育学院学报》山东体育学院主办(月刊)ISSN:1006-2076 CN:37-1013/G8 邮发代号:44991中文核心期刊(2008)期刊荣誉:Caj-cd规范获奖期刊《新闻爱好者》河南日报报业集团主办(半月刊)ISSN:1003-1286 CN:41-1025/G2 邮发代号:36-94中文核心期刊(2008)《成都体育学院学报》成都体育学院主办(月刊)ISSN:1001-9154 CN:51-1097/G8 邮发代号:62-100该刊被以下数据库收录:中国人文社会科学引文数据库(CHSSCD—2004)中文核心期刊(2008)期刊荣誉:Caj-cd规范获奖期刊《图书馆建设》黑龙江省图书馆;黑龙江省图书馆学会主办(月刊)ISSN:1004-325X CN:23-1331/G2 邮发代号:14-162该刊被以下数据库收录:中国人文社会科学引文数据库(CHSSCD—2004)中文核心期刊(2008)《体育科学》中国体育科学学会主办(月刊)ISSN:1000-677X CN:11-1295/G8邮发代号:2-436该刊被以下数据库收录:中国人文社会科学引文数据库(CHSSCD—2004)中文核心期刊(2008)期刊荣誉:中科双效期刊Caj-cd规范获奖期刊《商业时代》杂志是全国中文核心期刊,中国商业联合会主管,中国商业经济学会主办,被权威学术类机构认定为“全国社科类核心期刊”、“全国贸易经济类核心期刊”。
杂志介绍
杂志介绍《教育研究与实验》全国教育学类中文核心期刊、CSSCI)来源期刊(双月刊)系中华人民共和国教育部主管、华中师范大学主办。
国内刊号CN42-1041/G4;国际刊号ISSN1003-160X。
邮发代号:38-144《科技管理研究》杂志由广东省科学学与科技管理研究会主办,是全国优秀科技期刊、全国中文核心期刊、中国人文社会科学引文索引(CSSCI)来源期刊、中国学术期刊统计源期刊,国际标准刊号:ISSN 1000-7695 国内统一刊号:CN 44-1223/G3,邮发代号:46-120《社会科学家》杂志由桂林市委主管,桂林市社会科学界联合会主办,是全国中文核心期刊,中国人文社会科学核心期刊,全国旅游经济类核心期刊,中文社会科学引文索引(CSSCI)国际统一刊号ISSN1002—3240 国内统一刊号CN45—1008/C邮发代号:48-48《经济纵横》杂志由吉林省社会科学院主办,被评定为全国“综合性经济科学类”核心期刊、全国中文核心期刊、中文社会科学引文索引(CSSCI)来源期刊。
国际标准刊号:ISSN 1007-7685国内统一刊号:CN22-1054/F 邮发代号 12-97。
《统计与决策》杂志由湖北省统计局主管、湖北省统计局统计科学研究所主办,是全国中文核心期刊,全国首届优秀经济期刊,中文社会科学引文索引(CSSCI)来源期刊,国内统一刊号:CN 42-1009/C国际统一刊号:ISSN 1002-6487邮发代号:38-150《河北法学》是由中共河北省委政法委员会主管,河北政法职业学院、河北省法学会主办的法学研究专业刊物,月刊,全国中文核心期刊、中国人文社会科学核心期刊、中文社会科学引文索引(CSSCI)来源期刊,国内刊号CN 13-1023/D,国际刊号ISSN 1002-3933,邮发代号18-68。
《理论前沿》是由中共中央党校主办,全国中文核心期刊,中国人文社会科学引文索引(CSSCI)来源期刊、国际统一刊号:ISSN1007-1962 国内统一刊号 CN:11-3807/D 邮发代号:82-2《毛泽东思想研究》由四川省社会科学院主管,四川省社会科学院、四川省社会科学界联合会、中共四川省委党史研究室共同主办,系全国第一家也是目前唯一一家公开出版的研究和宣传毛泽东思想的大型学术理论刊物。
HS93-00221中文资料
Hi-Pot (Vrms) 1500 1500 1500 3000 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500
Specifications
BI P/N1 RoHS2
3
Transformer Single Single Dual Dual Dual Dual Dual Dual Dual Dual Dual Dual Quad Quad
Turns Ratio5 (±5%) Primary : Secondary 1CT:2CT 1:1 1:2 & 1:2 1CS:2.5CS & 1CS:2.5CS 1CS:2.5CS & 1CS:2.5CS 1:2.5 & 1:2.5 1:1 & 1:1 1CS:2CS & 1CS:2CS 1 split:1 split & 1 split:1 split 1CT:2 & 1CT:2 1:2 & 1:2 1CT:1CT & 1CT:1CT 1:1 1:1.26
Style 6-pin DIL 6-pin DIL 6-pin DIL 10-pin DIL 12-pin SMT 14-pin DIL 14-pin DIL 14-pin DIL 16-pin DIL 16-pin SMT 16-pin SMT 16-pin SMT 16-pin SMT 16-pin SMT 16-pin SMT 16-pin SMT 16-pin SMT 16-pin SMT 16-pin SMT 16-pin SMT 16-pin SMT 16-pin SMT 16-pin SMT 32-pin SMT 32-pin SMT 32-pin SMT 40-pin SMT 40-pin SMT 40-pin SMT 40-pin SMT 40-pin SMT 40-pin SMT 40-pin SMT 40-pin SMT 40-pin SMT 40-pinSMT 40-pin SMT 40-pin SMT
LM293中文资料_数据手册_参数
1OUT 1 1IN− 2 1IN+ 3 GND 4
8 VCC 7 2OUT 6 2IN− 5 2IN+
LM193 . . . FK PACKAGE (TOP VIEW)
NC 1OUT NC VCC NC
NC 1IN−
NC 1IN+
NCBiblioteka 3 2 1 20 194
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC 2OUT NC 2IN− NC
NC GND
NC 2IN+
NC
NC − No internal connection
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
FK package
150
°C
260
°C
Lead temperature 1,6 mm (1/16 in) from case for 60 s
J package
300
°C
Storage temperature range, Tstg
–65 to 150
°C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
M393T2863AZ3中文资料
DDR2 Registered SDRAM MODULE 240pin Registered Module based on 1Gb A-die72-bit ECCINFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,AND IS SUBJECT TO CHANGE WITHOUT NOTICE.NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDEDON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.1. For updates or additional information about Samsung products, contact your nearest Samsung office.2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similarapplications where Product failure couldresult in loss of life or personal or physical harm, or any military ordefense application, or any governmental procurement to which special terms or provisions may apply.* Samsung Electronics reserves the right to change products or specification without notice.Table of Contents1.0 DDR2 Registered DIMM Ordering Information (4)2.0 Features (4)3.0 Address Configuration (4)4.0 Pin Configurations (Front side/Back side) (5)5.0 Pin Description (6)6.0 Input/Output Function Description (7)7.0 Functional Block Diagram (8)7.1 1GB, 128Mx72 Module (M393T2863AZ3/M393T2863AZA) (8)7.2 2GB, 256Mx72 Module (M393T5663AZ3/M393T5663AZA) (9)7.3 2GB, 256Mx72 Module (M393T5660AZ3/M393T5660AZA) (10)7.4 4GB, 512Mx72 Module (M393T5168AZ0/M393T5166AZA) (11)8.0 Absolute Maximum DC Ratings (12)9.0 AC & DC Operating Conditions (12)9.1 Operating Temperature Condition (13)9.2 Input DC Logic Level (13)9.3 Input AC Logic Level (13)9.4 AC Input Test Conditions (13)10.0 IDD Specification Parameters Definition (14)11.0 Operating Current Table(1-1) (15)11.1 M393T2863AZ3/M393T2863AZA : 1GB(128Mx8 *9) Module (15)11.2 M393T5663AZ3/M393T5663AZA : 2GB(128Mx8 *18) Module (15)11.3 M393T5660AZ3/M393T5660AZA : 2GB(256Mx4 *18) Module (16)11.4 M393T5168AZ0/M393T5166AZA : 4GB(st.512Mx4 *18) Module (16)12.0 Input/Output Capacitance (17)13.0 Electrical Characteristics & AC Timing for DDR2-667/533/400 (18)13.1 Refresh Parameters by Device Density (18)13.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin (18)13.3 Timing Parameters by Speed Grade (18)14.0 Physical Dimensions (20)14.1 128Mbx8 based 128Mx72 Module(1 Rank) (M393T2863AZ3/M393T2863AZA) (20)14.2 128Mbx8/256Mbx4 based 256Mx72 Module(2/1 Ranks)(M393T5663AZ3/M393T5663AZA/ M393T5660AZ3/M393T5660AZA) (21)14.3 st.512Mbx4 based 512Mx72 Module(2 Ranks) (M393T5168AZ0/M393T5166AZA) (22)15.0 240 Pin DDR2 Registered DIMM Clock Topology (23)Revision HistoryRevision Month Year History1.0July2005 - Initial Release1.1Aug.2005 - Revised IDD Current Values1.2Sep.2005 - Revised the Ordering InformationDDR2 Registered DIMM Ordering InformationPart Number Density Organization Component Composition Number of Rank Parity Register Height M393T2863AZ3-CD5/CC1GB128Mx72128Mx8(K4T1G084QA)*9EA1X30mm M393T2863AZA-CE6/D5/CC1GB128Mx72128Mx8(K4T1G084QA)*9EA1O30mm M393T5663AZ3-CD5/CC2GB256Mx72128Mx8(K4T1G084QA)*18EA2X30mm M393T5663AZA-CE6/D5/CC2GB256Mx72128Mx8(K4T1G084QA)*18EA2O30mm M393T5660AZ3-CD5/CC2GB256Mx72256Mx4(K4T1G044QA)*18EA1X30mm M393T5660AZA-CE6/D5/CC2GB256Mx72256Mx4(K4T1G044QA)*18EA1O30mm M393T5168AZ0-CD5/CC4GB512Mx72st.512Mx4(K4T2G064QA)*18EA2X30mm M393T5166AZA-CE6/D5/CC4GB512Mx72st.512Mx4(K4T2G264QA)*18EA2O30mm Note: “Z” of Part number(11th digit) stand for Lead-free products.Note: “3” of Part number(12th digit) stand for Dummy Pad PCB products.Note: "A" of Part number(12th digit) stand for Parity Register products.Features•Performance rangeE6(DDR2-667)D5(DDR2-533)CC(DDR2-400)UnitSpeed@CL3400400400MbpsSpeed@CL4533533400MbpsSpeed@CL5667533-MbpsCL-tRCD-tRP5-5-54-4-43-3-3CK•JEDEC standard 1.8V ± 0.1V Power Supply•V DDQ = 1.8V ± 0.1V•200 MHz f CK for 400Mb/sec/pin, 267MHz f CK for 533Mb/sec/pin, 333MHz f CK for 667Mb/sec/pin•8Banks•Posted CAS•Programmable CAS Latency: 3, 4, 5•Programmable Additive Latency: 0, 1 , 2 , 3 and 4•Write Latency(WL) = Read Latency(RL) -1•Burst Length: 4 , 8(Interleave/nibble sequential)•Programmable Sequential / Interleave Burst Mode•Bi-directional Differential Data-Strobe (Single-ended data-strobe is an optional feature)•Off-Chip Driver(OCD) Impedance Adjustment•On Die Termination with selectable values(50/75/150 ohms or disable)•PASR(Partial Array Self Refresh)•Average Refresh Period 7.8us at lower than a T CASE 85°C, 3.9us at 85°C < T CASE < 95 °C- support High Temperature Self-Refresh rate enable feature•Serial presence detect with EEPROM•DDR2 SDRAM Package: 68ball FBGA - 256Mx4/128Mx8, 56ball BGA - st.512Mbx4•All of Lead-free products are compliant for RoHSNote: For detailed DDR2 SDRAM operation, please refer to Samsung’s Device operation & Timing diagram..Address ConfigurationOrganization Row Address Column Address Bank Address Auto Precharge 256Mx4(1Gb) based Module A0-A13A0-A9, A11BA0-BA2A10128Mx8(1Gb) based Module A0-A13A0-A9BA0-BA2A10NC = No Connect, RFU = Reserved for Future Use1. RESET (Pin 18) is connected to both OE of PLL and Reset of register.2. The Test pin (Pin 102) is reserved for bus analysis probes and is not connected on normal memory modules (DIMMs)3. NC/Err_Out ( Pin 55) and NC/Par_In (Pin 68) are for optional function to check address and command parity.4. CKE1,S1 Pin is used for double side Registered DIMM.Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back 1V REF 121V SS 31DQ19151V SS 61A4181V DDQ 91V SS 211DM5/DQS142V SS 122DQ432V SS 152DQ2862V DDQ 182A392DQS5212NC/DQS143DQ0123DQ533DQ24153DQ2963A2183A193DQS5213V SS 4DQ1124V SS 34DQ25154V SS 64V DD184V DD94V SS 214DQ465V SS 125DM0/DQS935V SS 155DM3/DQS12KEY95DQ42215DQ476DQS0126NC/DQS936DQS3156NC/DQS1265V SS 185CK096DQ43216V SS 7DQS0127V SS 37DQS3157V SS 66V SS 186CK097V SS 217DQ528V SS 128DQ638V SS 158DQ3067V DD 187V DD 98DQ48218DQ539DQ2129DQ739DQ26159DQ3168NC/Par_In 188A099DQ49219V SS 10DQ3130V SS 40DQ27160V SS 69V DD 189V DD 100V SS 220RFU 11V SS 131DQ1241V SS 161CB470A10/AP 190BA1101SA2221RFU 12DQ8132DQ1342CB0162CB571BA0191V DDQ 102NC(TEST)222V SS 13DQ9133V SS 43CB1163V SS 72V DDQ 192RAS 103V SS 223DM6/DQS1514V SS 134DM1/DQS1044V SS 164DM8/DQS1773WE 193S0104DQS6224NC/DQS1515DQS1135NC/DQS1045DQS8165NC/DQS1774CAS 194V DDQ 105DQS6225V SS 16DQS1136V SS 46DQS8166V SS 75V DDQ 195ODT0106V SS 226DQ5417V SS 137RFU 47V SS 167CB676S14196A13107DQ50227DQ5518RESET 138RFU 48CB2168CB777ODT1197V DD 108DQ51228V SS 19NC 139V SS 49CB3169V SS 78V DDQ 198V SS 109V SS 229DQ6020V SS 140DQ1450V SS 170V DDQ 79V SS 199DQ36110DQ56230DQ6121DQ10141DQ1551V DDQ 171CKE1480DQ32200DQ37111DQ57231V SS 22DQ11142V SS 52CKE0172V DD 81DQ33201V SS 112V SS 232DM7/DQS1623V SS 143DQ2053V DD 173NC 82V SS 202DM4/DQS13113DQS7233NC/DQS1624DQ16144DQ2154BA2174NC 83DQS4203NC/DQS13114DQS7234V SS 25DQ17145V SS 55NC/Err_Out 175V DDQ 84DQS4204V SS 115V SS 235DQ6226V SS 146DM2/DQS1156V DDQ 176A1285V SS 205DQ38116DQ58236DQ6327DQS2147NC/DQS1157A11177A986DQ34206DQ39117DQ59237V SS 28DQS2148V SS 58A7178V DD 87DQ35207V SS 118V SS 238VDDSPD 29V SS 149DQ2259V DD 179A888V SS 208DQ44119SDA 239SA030DQ18150DQ2360A5180A689DQ40209DQ45120SCL240SA190DQ41210V SS Pin Configurations (Front side/Back side)* The VDD and VDDQ pins are tied to the single power-plane on PCB.Pin Name DescriptionPin Name Description CK0Clock Inputs, positive line ODT0~ODT1On die termination CK0Clock inputs, negative line DQ0~DQ63Data Input/OutputCKE0, CKE1Clock Enables CB0~CB7Data check bits Input/Output RAS Row Address Strobe DQS0~DQS8Data strobesCAS Column Address Strobe DQS0~DQS8Data strobes, negative line WE Write Enable DM(0~8), DQS(9~17)Data Masks / Data strobes (Read)S0, S1Chip Selects DQS9~DQS17Data strobes (Read), negative line A0~A9, A11~A13Address InputsRFU Reserved for Future Use A10/AP Address Input/Autoprecharge NC No ConnectBA0~BA2DDR2 SDRAM Bank AddressTEST Memory bus test tool(Not Connect and Not Useable on DIMMs)SCL Serial Presence Detect (SPD) Clock Input V DD Core Power SDA SPD Data Input/Output V DDQ I/O Power SA0~SA2SPD addressV SS GroundPar_In Parity bit for the Address and Control bus V REF Input/Output Reference Err_Out Parity error found in the Address and Control bus V DDSPDSPD PowerRESETRegister and PLL control pinPin DescriptionSymbol Type DescriptionCK0Input Positive line of the differential pair of system clock inputs that drives input to the on-DIMM PLL.CK0Input Negative line of the differential pair of system clock inputs that drives the input to the on-DIMM PLL.CKE0~CKE1Input Activates the SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low initiates the Power Down mode, or the Self Refresh mode.S0~S1Input Enables the associated SDRAM command decoder when low and disables decoder when high. When decoder is dis-abled, new commands are ignored but previous operations continue.These input signals also disable all outputs (except CKE and ODT) of the register(s) on the DIMM when both inputs are high.ODT0~ODT1Input I/O bus impedance control signals.RAS, CAS, WE Input When sampled at the positive rising edge of the clock, CAS, RAS, and WE define the operation to be executed by the SDRAM.V REF Supply Reference voltage for SSTL_18 inputsV DDQ Supply Isolated power supply for the DDR SDRAM output buffers to provide improved noise immunity BA0~BA2Input Selects which SDRAM bank of eight is activated.A0~A9,A10/APA11~A13Input During a Bank Activate command cycle, Address defines the row address.During a Read or Write command cycle, Address defines the column address. In addition to the column address, AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is selected and BA0, BA1, BA2 defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a Precharge com-mand cycle, AP is used in conjunction with BA0, BA1, BA2 to control which bank(s) to precharge. If AP is high, all banks will be precharged regardless of the state of BA0 or BA1 or BA2. If AP is low, BA0 and BA1 and BA2 are used to define which bank to precharge.DQ0~63,CB0~CB7In/Out Data and Check Bit Input/Output pinsDM0~DM8Input Masks write data when high, issued concurrently with input data. Both DM and DQ have a write latency of one clock once the write command is registered into the SDRAM.V DD, V SS Supply Power and ground for the DDR SDRAM input buffers and core logicDQS0~DQS17In/Out Positive line of the differential data strobe for input and output data.DQS0~DQS17In/Out Negative line of the differential data strobe for input and output data.SA0~SA2Input These signals are tied at the system planar to either V SS or V DDSPD to configure the serial SPD EEPROM address range.SDA In/Out This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor must be connected from the SDA bus line to V DDSPD to act as a pullup.SCL Input This signal is used to clock data into and out of the SPD EEPROM. A resistor may be connected from the SCL bus time to V DDSPD to act as a pullup.V DDSPD Supply Serial EEPROM positive power supply (wired to a separate power pin at the connector which supports from 1.7 Volt to 3.6 Volt operation).RESET Input The RESET pin is connected to the RST pin on the register and to the OE pin on the PLL. When low, all register outputs will be driven low and the PLL clocks to the DRAMs and register(s) will be set to low level (The PLL will remain synchro-nized with the input clock )Par_In Input Parity bit for the Address and Control bus. ( “1 “ : Odd, “0 “ : Even) Err_Out Input Parity error found in the Address and Control busTEST In/Out Used by memory bus analysis tools (unused on memory DIMMs) Input/Output Function Description(populated as 1 rank of x8 DDR2 SDRAMs)1GB, 128Mx72 Module (M393T2863AZ3/M393T2863AZA)RS0DQS0DQS0DM0/DQS9NC/DQS9DM/ RDQS NU/RDQSCS DQS DQSDQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D0DQS1DQS1DM1/DQS10 NC/DQS10DM/ RDQS NU/RDQSCS DQS DQSDQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D1DQS2DQS2DM2/DQS11 NC/DQS11DM/ RDQS NU/RDQSCS DQS DQSDQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D2DQS3DQS3DM3/DQS12 NC/DQS12DM/ RDQS NU/RDQSCS DQS DQSDQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D3DQS8DQS8DM8/DQS17 NC/DQS17DM/ RDQS NU/RDQSCS DQS DQSCB0 CB1 CB2 CB3 CB4 CB5 CB6 CB7I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D8DQS4DQS4DM4/DQS13NC/DQS13DM/RDQSNU/RDQSCS DQS DQSDQ32DQ33DQ34DQ35DQ36DQ37DQ38DQ39I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D4DQS5DQS5DM5/DQS14NC/DQS14DM/RDQSNU/RDQSCS DQS DQSDQ40DQ41DQ42DQ43DQ44DQ45DQ46DQ47I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D5DQS6DQS6DM6/DQS15NC/DQS15DM/RDQSNU/RDQSCS DQS DQSDQ48DQ49DQ50DQ51DQ52DQ53DQ54DQ55I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D6DQS7DQS7DM7/DQS16NC/DQS16DM/RDQSNU/RDQSCS DQS DQSDQ56DQ57DQ58DQ59DQ60DQ61DQ62DQ63I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D7A0Serial PDA1A2SA0SA1SA2SCL SDAV SS D0 - D8V DD/V DDQ D0 - D8D0 - D8VREFV DDSPD Serial PDWPNotes :1. DQ-to-I/O wiring may be changed within a byte.2. DQ/DQS/DM/CKE/S relationships must be maintained as shown.3. Unless otherwise noted, resister values are 22 Ohms1:1REGISTERRSTS0*BA0-BA2A0-A13RASCASWECKE0ODT0RESETPCK7PCK7RSO-> CS : DDR2 SDRAMs D0-D8RBA0-RBA2 -> BA0-BA2 : DDR2 SDRAMs D0-D8RA0-RA13 -> A0-A13 : DDR2 SDRAMs D0-D8RRAS -> RAS : DDR2 SDRAMs D0-D8RCAS -> CAS : DDR2 SDRAMs D0-D8RWE -> WE : DDR2 SDRAMs D0-D8RCKE0 -> CKE : DDR2 SDRAMs D0-D8RODT0 -> ODT0 : DDR2 SDRAMs D0-D8PLLOECK0CK0RESETPCK0-PCK6, PCK8, PCK9 -> CK : DDR2 SDRAMs D0-D8PCK0-PCK6, PCK8, PCK9 -> CK : DDR2 SDRAMs D0-D8PCK7 -> CK : RegisterPCK7 -> CK : Register* S0 connects to DCS and VDD connects to CSR on the register.Functional Block DiagramSignals for Address and Command Parity Function (M393T2863AZA)V SSV SS PAR_IN C0C1PPOQERR Err_Out RegisterPAR_IN100K ohmsThe resistors on Par_In, A13, A14, A15, BA2 and the signal line of Err_Out refer to the section: "Register Options for Unused Address inputs"RS0DQS0DQS0DM0/DQS9NC/DQS9DM/RDQS NU/RDQSCS DQS DQSDQ0DQ1DQ2DQ3DQ4DQ5DQ6DQ7I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D0DQS1DQS1DM1/DQS10NC/DQS10DM/RDQS NU/RDQSCS DQS DQSDQ8DQ9DQ10DQ11DQ12DQ13DQ14DQ15I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D1DQS2DQS2DM2/DQS11NC/DQS11DM/RDQS NU/RDQSCS DQS DQSDQ16DQ17DQ18DQ19DQ20DQ21DQ22DQ23I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D2DQS3DQS3DM3/DQS12NC/DQS12DM/RDQS NU/RDQSCS DQS DQSDQ24DQ25DQ26DQ27DQ28DQ29DQ30DQ31I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D3DQS8DQS8DM8/DQS17NC/DQS17DM/RDQS NU/RDQSCS DQS DQSCB0CB1CB2CB3CB4CB5CB6CB7I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D8DQS4DQS4DM4/DQS13NC/DQS13DM/RDQS NU/RDQSCS DQS DQSDQ32DQ33DQ34DQ35DQ36DQ37DQ38DQ39I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D4DQS5DQS5DM5/DQS14NC/DQS14DM/RDQS NU/RDQSCS DQS DQSDQ40DQ41DQ42DQ43DQ44DQ45DQ46DQ47I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D5DQS6DQS6DM6/DQS15NC/DQS15DM/RDQS NU/RDQSCS DQS DQSDQ48DQ49DQ50DQ51DQ52DQ53DQ54DQ55I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D6DQS7DQS7DM7/DQS16NC/DQS16DM/RDQS NU/RDQSCS DQS DQSDQ56DQ57DQ58DQ59DQ60DQ61DQ62DQ63I/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D7DM/RDQS NU/RDQSCS DQS DQSI/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D9DM/RDQS NU/RDQSCS DQS DQSI/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D10DM/RDQS NU/RDQSCS DQS DQSI/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D11DM/RDQS NU/RDQSCS DQS DQSI/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D12DM/RDQS NU/RDQSCS DQS DQSI/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D17DM/RDQS NU/RDQSCS DQS DQSI/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D13DM/RDQS NU/RDQSCS DQS DQSI/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D14DM/RDQS NU/RDQSCS DQS DQSI/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D15DM/RDQS NU/RDQSCS DQS DQSI/O 0I/O 1I/O 2I/O 3I/O 4I/O 5I/O 6I/O 7D16RS1A0Serial PDA1A2SA0SA1SA2SCLSDAV SSD0 - D17V DD /V DDQ D0 - D17D0 - D17VREF V DDSPDSerial PD WP Notes :1. DQ-to-I/O wiring may be changed per nibble.2. Unless otherwise noted, resister values are 22 Ohms3. RS0 and RS1 alternate between the back and front sides of the DIMM1:2R E G I S T E RRSTS1*BA0-BA2A0-A13RAS CAS WE CKE0CKE1RESET**PCK7**PCK7**RS1-> CS : DDR2 SDRAMs D9-D17RBA0-RBA2 -> BA0-BA2: DDR2 SDRAMs D0-D17RA0-RA13 -> A0-A13 : DDR2 SDRAMs D0-D17RRAS -> RAS : DDR2 SDRAMs D0-D17RCAS -> CAS : DDR2 SDRAMs D0-D17RWE -> WE : DDR2 SDRAMs D0-D17RCKE0 -> CKE : DDR2 SDRAMs D0-D8RCKE1 -> CKE : DDR2 SDRAMs D9-D17P L LOECK0CK0RESETPCK0-PCK6, PCK8, PCK9 -> CK : DDR2 SDRAMs D0-D17PCK0-PCK6, PCK8, PCK9 -> CK : DDR2 SDRAMs D0-D17PCK7 -> CK : Register PCK7 -> CK : RegisterODT0ODT1RODT0 -> ODT0 : DDR2 SDRAMs D0-D8RODT1 -> ODT1 : DDR2 SDRAMs D9-D17S0*RSO-> CS : DDR2 SDRAMs D0-D8(populated as 2 rank of x8 DDR2 SDRAMs)2GB, 256Mx72 Module (M393T5663AZ3/M393T5663AZA)* S0 connects to DCS and S0 connects to CSR on a Register,S1 connects to DCS and S0 connects to CSR on another Register.** RESET, PCK7 and PCK7 connects to both Registers. Other signals connect to one of two Registers.Signals for Address and Command Parity Function (M393T5663AZA)V SS V DDPAR_IN C0C1PPO QERRRegister APAR_IN 100K ohmsThe resistors on Par_In, A13, A14, A15, BA2 and the signal line of Err_Out refer to the section: "Register Options for Unused Address inputs"V DD V DDC0C1PPO QERRErr_OutRegister BPAR_INVSSRS0DQS0DQS0DM CS DQS DQSDQ0 DQ1 DQ2 DQ3I/O 0I/O 1I/O 2I/O 3D0DM0/DQS9NC/DQS9DM CS DQS DQSDQ4DQ5DQ6DQ7I/O 0I/O 1I/O 2I/O 3D9DQS1DQS1DM CS DQS DQSDQ8 DQ9 DQ10 DQ11I/O 0I/O 1I/O 2I/O 3D1DM1/DQS10NC/DQS10DM CS DQS DQSDQ12DQ13DQ14DQ15I/O 0I/O 1I/O 2I/O 3D10DQS2DQS2DM CS DQS DQSDQ16 DQ17 DQ18 DQ19I/O 0I/O 1I/O 2I/O 3D2DM2/DQS11NC/DQS11DM CS DQS DQSDQ20DQ21DQ22DQ23I/O 0I/O 1I/O 2I/O 3D11DQS3DQS3DM CS DQS DQSDQ24 DQ25 DQ26 DQ27I/O 0I/O 1I/O 2I/O 3D3DM3/DQS12NC/DQS12DM CS DQS DQSDQ28DQ29DQ30DQ31I/O 0I/O 1I/O 2I/O 3D12DQS5DQS5DM CS DQS DQSDQ40 DQ41 DQ42 DQ43I/O 0I/O 1I/O 2I/O 3D5DM5/DQS14NC/DQS14DM CS DQS DQSDQ44DQ45DQ46DQ47I/O 0I/O 1I/O 2I/O 3D14DQS4DQS4DM CS DQS DQSDQ32 DQ33 DQ34 DQ35I/O 0I/O 1I/O 2I/O 3D4DM4/DQS13NC/DQS13DM CS DQS DQSDQ36DQ37DQ38DQ39I/O 0I/O 1I/O 2I/O 3D13DQS6DQS6DM CS DQS DQSDQ48 DQ49 DQ50 DQ51I/O 0I/O 1I/O 2I/O 3D6DM6/DQS15NC/DQS15DM CS DQS DQSDQ52DQ53DQ54DQ55I/O 0I/O 1I/O 2I/O 3D15DQS8DQS8DM CS DQS DQSCB0 CB1 CB2 CB3I/O 0I/O 1I/O 2I/O 3D8DM8/DQS17NC/DQS17DM CS DQS DQSCB4CB5CB6CB7I/O 0I/O 1I/O 2I/O 3D17DQS7DQS7DM CS DQS DQSDQ56 DQ57 DQ58 DQ59I/O 0I/O 1I/O 2I/O 3D7DM7DQS16NC/DQS16DM CS DQS DQSDQ60DQ61DQ62DQ63I/O 0I/O 1I/O 2I/O 3D16A0Serial PDA1A2SA0SA1SA2SCL SDAV SS D0 - D17V DD/V DDQ D0 - D17D0 - D17VREFV DDSPD Serial PDWPNotes :1. DQ-to-I/O wiring may be changed per nibble.2. Unless otherwise noted, resister values are 22 Ohms 1:2REGISTERRSTS0*BA0-BA2A0-A13RASCASWECKE0ODT0RESET**PCK7** PCK7**RSO-> CS : DDR2 SDRAMs D0-D17RBA0-RBA2 -> BA0-BA2 : DDR2 SDRAMs D0-D17RA0-RA13 -> A0-A13 : DDR2 SDRAMs D0-D17RRAS -> RAS : DDR2 SDRAMs D0-D17RCAS -> CAS : DDR2 SDRAMs D0-D17RWE -> WE : DDR2 SDRAMs D0-D17RCKE0 -> CKE : DDR2 SDRAMs D0-D17RODT0 -> ODT0 : DDR2 SDRAMs D0-D17PLLOECK0CK0RESETPCK0-PCK6, PCK8, PCK9 -> CK : DDR2 SDRAMs D0-D8PCK0-PCK6, PCK8, PCK9 -> CK : DDR2 SDRAMs D0-D8PCK7 -> CK : RegisterPCK7 -> CK : Register(populated as 1 rank of x4 DDR2 SDRAMs)2GB, 256Mx72 Module (M393T5660AZ3/M393T5660AZA)* S0 connects to DCS of Register1, CSR of Register2. CSR of reg-ister 1 and DCS of register 2 connects to VDD.** RESET, PCK7 and PCK7 connects to both Registers. Other sig-nals connect to one of two Registers.Signals for Address and Command Parity Function (M393T5660AZA)V SSV DDPAR_INC0C1PPOQERRRegister APAR_IN100K ohmsThe resistors on Par_In, A13, A14, A15, BA2 and thesignal line of Err_Out refer to the section: "RegisterOptions for Unused Address inputs"V DDV DDC0C1PPOQERR Err_OutRegister BPAR_IN(populated as 2 rank of x4 DDR2 SDRAMs)A0Serial PDA1A2SA0SA1SA2SCLSDAV SSD0 - D35V DD /V DDQ D0 - D35D0 - D35VREF V DDSPDSerial PD WP P L LOECK0CK0RESET PCK0-PCK6, PCK8, PCK9 -> CK : DDR2 SDRAMs D0-D35PCK0-PCK6, PCK8, PCK9 -> CK : DDR2 SDRAMs D0-D35PCK7 -> CK : Register PCK7 -> CK : Register1:2R E G I S T E RRSTS1*BA0-BA2A0-A13RAS CAS WE CKE0CKE1RESET**PCK7**PCK7**RS1-> CS : DDR2 SDRAMs D18-D35RBA0-RBA2 -> BA0-BA2 : DDR2 SDRAMs D0-D35RA0-RA13 -> A0-A13 : DDR2 SDRAMs D0-D35RRAS -> RAS : DDR2 SDRAMs D0-D35RCAS -> CAS : DDR2 SDRAMs D0-D35RWE -> WE : DDR2 SDRAMs D0-D35RCKE0 -> CKE : DDR2 SDRAMs D0-D17RCKE1 -> CKE : DDR2 SDRAMs D18-D35ODT0ODT1RODT0 -> ODT0 : DDR2 SDRAMs D0-D17RODT1 -> ODT1 : DDR2 SDRAMs D18-D35S0*RSO-> CS : DDR2 SDRAMs D0-D174GB, 512Mx72 Module (M393T5168AZ0/M393T5166AZA)* S0 connects to DCS and S0 connects to CSR on a Register,S1 connects to DCS and S0 connects to CSR on another Register.** RESET, PCK7 and PCK7 connects to both Registers. Other signals connect to one of two Registers.VSS RS0DQS0DQS0DMCSDQS DQSDQ0DQ1DQ2DQ3I/O 0I/O 1I/O 2I/O 3D0DM0/DQS9NC/DQS9DMCSDQS DQSDQ4DQ5DQ6DQ7I/O 0I/O 1I/O 2I/O 3D9DQS1DQS1DM CS DQS DQS DQ8DQ9DQ10DQ11I/O 0I/O 1I/O 2I/O 3D1DM1/DQS10NC/DQS10DM CS DQS DQS DQ12DQ13DQ14DQ15I/O 0I/O 1I/O 2I/O 3D10DQS2DQS2DM CS DQS DQS DQ16DQ17DQ18DQ19I/O 0I/O 1I/O 2I/O 3D2DM2/DQS11NC/DQS11DM CS DQS DQS DQ20DQ21DQ22DQ23I/O 0I/O 1I/O 2I/O 3D11DQS3DQS3DM CS DQS DQS DQ24DQ25DQ26DQ27I/O 0I/O 1I/O 2I/O 3D3DM3/DQS12NC/DQS12DM CS DQS DQS DQ28DQ29DQ30DQ31I/O 0I/O 1I/O 2I/O 3D12DQS5DQS5DM CS DQS DQS DQ40DQ41DQ42DQ43I/O 0I/O 1I/O 2I/O 3D5DM5/DQS14NC/DQS14DM CS DQS DQS DQ44DQ45DQ46DQ47I/O 0I/O 1I/O 2I/O 3D14DQS4DQS4DM CS DQS DQS DQ32DQ33DQ34DQ35I/O 0I/O 1I/O 2I/O 3D4DM4/DQS13NC/DQS13DM CS DQS DQS DQ36DQ37DQ38DQ39I/O 0I/O 1I/O 2I/O 3D13DQS6DQS6DM CS DQS DQS DQ48DQ49DQ50DQ51I/O 0I/O 1I/O 2I/O 3D6DM6/DQS15NC/DQS15DM CS DQS DQS DQ52DQ53DQ54DQ55I/O 0I/O 1I/O 2I/O 3D15DQS8DQS8DM CS DQS DQS CB0CB1CB2CB3I/O 0I/O 1I/O 2I/O 3D8DM8/DQS17NC/DQS17DM CS DQS DQS CB4CB5CB6CB7I/O 0I/O 1I/O 2I/O 3D17DQS7DQS7DM CS DQS DQS DQ56DQ57DQ58DQ59I/O 0I/O 1I/O 2I/O 3D7DM7DQS16NC/DQS16DM CS DQS DQS DQ60DQ61DQ62DQ63I/O 0I/O 1I/O 2I/O 3D16DM/CSDQS DQSI/O 0I/O 1I/O 2I/O 3D18DM/CS DQS DQS I/O 0I/O 1I/O 2I/O 3D19DM/CS DQS DQS I/O 0I/O 1I/O 2I/O 3D20DM CS DQS DQS I/O 0I/O 1I/O 2I/O 3D21DM CS DQS DQS I/O 0I/O 1I/O 2I/O 3D23DM CS DQS DQS I/O 0I/O 1I/O 2I/O 3D22DM CS DQS DQS I/O 0I/O 1I/O 2I/O 3D24DM CS DQS DQS I/O 0I/O 1I/O 2I/O 3D26DM CS DQS DQS I/O 0I/O 1I/O 2I/O 3D25DMCSDQS DQSI/O 0I/O 1I/O 2I/O 3D27DM CS DQS DQSI/O 0I/O 1I/O 2I/O 3D28DM CS DQS DQSI/O 0I/O 1I/O 2I/O 3D29DM CS DQS DQSI/O 0I/O 1I/O 2I/O 3D30DM CS DQS DQSI/O 0I/O 1I/O 2I/O 3D32DM CS DQS DQSI/O 0I/O 1I/O 2I/O 3D31DM CS DQS DQSI/O 0I/O 1I/O 2I/O 3D33DM CS DQS DQSI/O 0I/O 1I/O 2I/O 3D35DM CS DQS DQSI/O 0I/O 1I/O 2I/O 3D34RS1Signals for Address and Command The resistors on Par_In, A13, A14, A15, BA2and the signal line of Err_Out refer to the sec-tion: "Register Options for Unused Address inputs"PAR_INErr_Out100K ohmsV SS V DDC0C1PPO QERRRegister A1PAR_INV DD V DDC0C1PPO QERRRegister B1PAR_INV SS V DDC0C1PPO QERRRegister A2PAR_INV DD V DDC0C1PPO QERRRegister B2PAR_INParity Function (M393T5166AZA)Register A1 and A2 share the a part of Add/Cmd input signal set.Register B1 and B2 share the rest part of Add/Cmd input signal set.Recommended DC Operating Conditions (SSTL - 1.8)Note : There is no specific device V DD supply voltage requirement for SSTL-1.8 compliance. However under all conditions V DDQ must be less than or equalto V DD .1. The value of V REF may be selected by the user to provide optimum noise margin in the system. Typically the value of V REF is expected to be about 0.5 x V DDQ of the transmitting device and V REF is expected to track variations in V DDQ .2. Peak to peak AC noise on V REF may not exceed +/-2% V REF (DC).3. V TT of transmitting device must track V REF of receiving device.4. AC parameters are measured with V DD , V DDQ and V DDL tied together.Symbol ParameterRatingUnits NotesMin.Typ. Max.V DD Supply Voltage 1.7 1.8 1.9V V DDL Supply Voltage for DLL 1.7 1.8 1.9V 4V DDQ Supply Voltage for Output 1.7 1.8 1.9V 4V REF Input Reference Voltage 0.49*V DDQ 0.50*V DDQ0.51*V DDQ mV 1,2V TTTermination VoltageV REF -0.04V REFV REF +0.04V3 Note :1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2standard.Symbol ParameterRating Units Notes V DD Voltage on V DD pin relative to V SS - 1.0 V ~ 2.3 V V 1V DDQ Voltage on V DDQ pin relative to V SS - 0.5 V ~ 2.3 V V 1V DDL Voltage on V DDL pin relative to V SS - 0.5 V ~ 2.3 V V 1V IN, V OUT Voltage on any pin relative to V SS - 0.5 V ~ 2.3 V V1T STGStorage Temperature-55 to +100°C 1, 2AC & DC Operating ConditionsAbsolute Maximum DC Ratings。
SN54393中文资料
Copyright © 1988, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date.Products conform to specifications per the terms of Texas Instrumentsstandard warranty. Production processing does not necessarily includetesting of all parameters.POST OFFICE BOX 655303 • DALLAS, TEXAS 752652POST OFFICE BOX 655303 • DALLAS, TEXAS 75265POST OFFICE BOX 655303 • DALLAS, TEXAS 752654POST OFFICE BOX 655303 • DALLAS, TEXAS 75265POST OFFICE BOX 655303 • DALLAS, TEXAS 752657 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265POST OFFICE BOX 655303 • DALLAS, TEXAS 75265PACKAGING INFORMATIONOrderableDevice Status (1)Package Type Package DrawingPins Package Qty Eco Plan (2)Lead/Ball FinishMSL Peak Temp (3)7802601EA ACTIVE CDIP J 161TBD Call TI Level-NC-NC-NC 7802601FA ACTIVE CFP W 161TBD Call TI Level-NC-NC-NC 7802601FA ACTIVE CFP W 161TBD Call TI Level-NC-NC-NC JM38510/32701B2A ACTIVE LCCC FK 201TBD Call TI Level-NC-NC-NC JM38510/32701B2A ACTIVE LCCC FK 201TBD Call TI Level-NC-NC-NC JM38510/32701BEA ACTIVE CDIP J 161TBD Call TI Level-NC-NC-NC JM38510/32701BEA ACTIVE CDIP J 161TBD Call TI Level-NC-NC-NC JM38510/32702B2A ACTIVE LCCC FK 201TBD Call TI Level-NC-NC-NC JM38510/32702B2A ACTIVE LCCC FK 201TBD Call TI Level-NC-NC-NC JM38510/32702BCA ACTIVE CDIP J 141TBD Call TI Level-NC-NC-NC JM38510/32702BCA ACTIVE CDIP J 141TBD Call TI Level-NC-NC-NC JM38510/32702BDA ACTIVE CFP W 141TBD Call TI Level-NC-NC-NC JM38510/32702BDA ACTIVE CFP W 141TBD Call TI Level-NC-NC-NC JM38510/32702SCA ACTIVE CDIP J 141TBD Call TI Level-NC-NC-NC JM38510/32702SCA ACTIVE CDIP J 141TBD Call TI Level-NC-NC-NC JM38510/32702SDA ACTIVE CFP W 141TBD Call TI Level-NC-NC-NC JM38510/32702SDAACTIVE CFP W 141TBD Call TI Level-NC-NC-NC SN54393J OBSOLETE CDIP J 14TBD Call TI Call TI SN54393J OBSOLETE CDIP J 14TBD Call TI Call TISN54LS390J ACTIVE CDIP J 161TBD Call TI Level-NC-NC-NC SN54LS390J ACTIVE CDIP J 161TBD Call TI Level-NC-NC-NC SN54LS393J ACTIVE CDIP J 141TBD Call TI Level-NC-NC-NC SN54LS393J ACTIVE CDIP J 141TBD Call TI Level-NC-NC-NC SN74390N OBSOLETE PDIP N 16TBD Call TI Call TI SN74390N OBSOLETE PDIP N 16TBD Call TI Call TI SN74393N OBSOLETE PDIP N 14TBD Call TI Call TI SN74393N OBSOLETE PDIP N 14TBD Call TI Call TI SN74393N3OBSOLETE PDIP N 14TBD Call TI Call TI SN74393N3OBSOLETE PDIP N 14TBD Call TI Call TISN74LS390D ACTIVE SOIC D 1640Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM SN74LS390D ACTIVE SOIC D 1640Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM SN74LS390DE4ACTIVE SOIC D 1640Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM SN74LS390DE4ACTIVE SOIC D 1640Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM SN74LS390DR ACTIVE SOIC D 162500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM SN74LS390DR ACTIVE SOIC D 162500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM SN74LS390DRE4ACTIVE SOIC D 162500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM SN74LS390DRE4ACTIVESOICD162500Green (RoHS &CU NIPDAULevel-1-260C-UNLIMPACKAGE OPTION ADDENDUM17-Oct-2005Addendum-Page 1元器件交易网Orderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)no Sb/Br)SN74LS390N ACTIVE PDIP N1625Pb-Free(RoHS)CU NIPDAU Level-NC-NC-NCSN74LS390N ACTIVE PDIP N1625Pb-Free(RoHS)CU NIPDAU Level-NC-NC-NC SN74LS390N3OBSOLETE PDIP N16TBD Call TI Call TISN74LS390N3OBSOLETE PDIP N16TBD Call TI Call TISN74LS390NE4ACTIVE PDIP N1625Pb-Free(RoHS)CU NIPDAU Level-NC-NC-NCSN74LS390NE4ACTIVE PDIP N1625Pb-Free(RoHS)CU NIPDAU Level-NC-NC-NCSN74LS390NSR ACTIVE SO NS162000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMSN74LS390NSR ACTIVE SO NS162000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMSN74LS390NSRE4ACTIVE SO NS162000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMSN74LS390NSRE4ACTIVE SO NS162000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMSN74LS393D ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMSN74LS393D ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMSN74LS393DE4ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMSN74LS393DE4ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMSN74LS393DR ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMSN74LS393DR ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMSN74LS393DRE4ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMSN74LS393DRE4ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM SN74LS393J OBSOLETE CDIP J14TBD Call TI Call TISN74LS393J OBSOLETE CDIP J14TBD Call TI Call TISN74LS393N ACTIVE PDIP N1425Pb-Free(RoHS)CU NIPDAU Level-NC-NC-NCSN74LS393N ACTIVE PDIP N1425Pb-Free(RoHS)CU NIPDAU Level-NC-NC-NC SN74LS393N3OBSOLETE PDIP N14TBD Call TI Call TISN74LS393N3OBSOLETE PDIP N14TBD Call TI Call TISN74LS393NE4ACTIVE PDIP N1425Pb-Free(RoHS)CU NIPDAU Level-NC-NC-NCSN74LS393NE4ACTIVE PDIP N1425Pb-Free(RoHS)CU NIPDAU Level-NC-NC-NCSN74LS393NSR ACTIVE SO NS142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM SN74LS393NSR ACTIVE SO NS142000Green(RoHS&CU NIPDAU Level-1-260C-UNLIMOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)no Sb/Br)SN74LS393NSRE4ACTIVE SO NS142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMSN74LS393NSRE4ACTIVE SO NS142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM SNJ54393J OBSOLETE CDIP J14TBD Call TI Call TISNJ54393J OBSOLETE CDIP J14TBD Call TI Call TISNJ54393W OBSOLETE CFP W14TBD Call TI Call TISNJ54393W OBSOLETE CFP W14TBD Call TI Call TISNJ54LS390FK ACTIVE LCCC FK201TBD Call TI Level-NC-NC-NC SNJ54LS390FK ACTIVE LCCC FK201TBD Call TI Level-NC-NC-NC SNJ54LS390J ACTIVE CDIP J161TBD Call TI Level-NC-NC-NC SNJ54LS390J ACTIVE CDIP J161TBD Call TI Level-NC-NC-NC SNJ54LS390W ACTIVE CFP W161TBD Call TI Level-NC-NC-NC SNJ54LS390W ACTIVE CFP W161TBD Call TI Level-NC-NC-NC SNJ54LS393FK ACTIVE LCCC FK201TBD Call TI Level-NC-NC-NC SNJ54LS393FK ACTIVE LCCC FK201TBD Call TI Level-NC-NC-NC SNJ54LS393J ACTIVE CDIP J141TBD Call TI Level-NC-NC-NC SNJ54LS393J ACTIVE CDIP J141TBD Call TI Level-NC-NC-NC SNJ54LS393W ACTIVE CFP W141TBD Call TI Level-NC-NC-NC SNJ54LS393W ACTIVE CFP W141TBD Call TI Level-NC-NC-NC (1)The marketing status values are defined as follows:ACTIVE:Product device recommended for new designs.LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.PREVIEW:Device has been announced but is not in production.Samples may or may not be available.OBSOLETE:TI has discontinued the production of the device.(2)Eco Plan-The planned eco-friendly classification:Pb-Free(RoHS)or Green(RoHS&no Sb/Br)-please check /productcontent for the latest availability information and additional product content details.TBD:The Pb-Free/Green conversion plan has not been defined.Pb-Free(RoHS):TI's terms"Lead-Free"or"Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all6substances,including the requirement that lead not exceed0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.Green(RoHS&no Sb/Br):TI defines"Green"to mean Pb-Free(RoHS compatible),and free of Bromine(Br)and Antimony(Sb)based flame retardants(Br or Sb do not exceed0.1%by weight in homogeneous material)(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications,and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and belief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annual basis.元器件交易网IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,enhancements, improvements, and other changes to its products and services at any time and to discontinueany product or service without notice. Customers should obtain the latest relevant information before placingorders and should verify that such information is current and complete. All products are sold subject to TI’s termsand conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale inaccordance with TI’s standard warranty. T esting and other quality control techniques are used to the extent TIdeems necessary to support this warranty. Except where mandated by government requirements, testing of allparameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design. Customers are responsible fortheir products and applications using TI components. T o minimize the risks associated with customer productsand applications, customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or processin which TI products or services are used. Information published by TI regarding third-party products or servicesdoes not constitute a license from TI to use such products or services or a warranty or endorsement thereof.Use of such information may require a license from a third party under the patents or other intellectual propertyof the third party, or a license from TI under the patents or other intellectual property of TI.Reproduction of information in TI data books or data sheets is permissible only if reproduction is withoutalteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproductionof this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable forsuch altered documentation.Resale of TI products or services with statements different from or beyond the parameters stated by TI for thatproduct or service voids all express and any implied warranties for the associated TI product or service andis an unfair and deceptive business practice. TI is not responsible or liable for any such statements.Following are URLs where you can obtain information on other Texas Instruments products and applicationsolutions:Products ApplicationsAmplifiers Audio /audioData Converters Automotive /automotiveDSP Broadband /broadbandInterface Digital Control /digitalcontrolLogic Military /militaryPower Mgmt Optical Networking /opticalnetworkMicrocontrollers Security /securityTelephony /telephonyVideo & Imaging /videoWireless /wirelessMailing Address:Texas InstrumentsPost Office Box 655303 Dallas, Texas 75265Copyright 2005, Texas Instruments Incorporated。
0190390023;中文规格书,Datasheet资料
This document was generated on 08/13/2012PLEASE CHECK FOR LATEST PART INFORMATIONPart Number:19039-0023Status:ActiveDescription:Avikrimp™ Snap Plug Receptacle for 14-16 AWG Wire, PVC, Fits Male Plug Diameter 3.96mm, Mylar Tape CarrierDocuments:Drawing (PDF)Product Specification PS-19902-015 (PDF)Product Specification PS-19902-011 (PDF)RoHS Certificate of Compliance (PDF)Agency CertificationCSA LR18689ULE152602GeneralProduct Family Quick Disconnects Series19039CommentsFits Male Plug Dia. 3.96mm Crimp Quality Equipment YesProduct Name Avikrimp™Type Snap Receptacle UPC800753049574PhysicalBarrel Type Closed Color - Resin Natural Flammability 94V-0GenderFemale Glow-Wire Compliant No InsulationPVC Lock to Mating Part None Material - MetalBrass Material - Plating MatingTin Material - Plating Termination Tin Material - Resin PVC Net Weight 1.378/g OrientationStraightPackaging Type Adhesive Tape on Reel Plating min - Mating4.064µm Plating min - Termination 4.064µm Tab Thickness N/A Tab WidthN/ATemperature Range - Operating -40°C to +105°CTermination Interface: Style Crimp or Compression Wire Insulation Diameter 3.81mm max.Wire Size AWG 14, 16Wire Size mm²1.00 -2.50ElectricalVoltage - Maximum600V Material InfoOld Part NumberBRB-8156TReference - Drawing NumbersProduct Specification PS-19902-011, PS-19902-015Sales DrawingSD-19039-001Seriesimage - Reference onlyEU RoHSChina RoHSELV and RoHS Compliant REACH SVHC Not ReviewedLow-Halogen Status Not ReviewedNeed more information on product environmental compliance?Email productcompliance@For a multiple part number RoHS Certificate of Compliance, click herePlease visit the Contact Us section for any non-product compliance questions.Search Parts in this Series 19039SeriesApplication Tooling | FAQTooling specifications and manuals are found by selecting the products below.Crimp Height Specifications are then contained in the Application Tooling Specification document.GlobalDescription Product #Mini-Mac™Applicator0638853700This document was generated on 08/13/2012PLEASE CHECK FOR LATEST PART INFORMATION分销商库存信息: MOLEX 0190390023。
AS3933_Datasheet
AS39333D Low Frequency Wake-Up ReceiverThe AS3933 is a 3-channel low power ASK receiver that is ableto generate a wake-up upon detection of a data signal whichuses a LF carrier frequency between 15-150 kHz. The integratedcorrelator can be used for detection of a programmable 16-bitor 32-bit Manchester wake-up pattern. The device can operateusing one, two, or three active channels.The AS3933 provides a digital RSSI value for each activechannel, it supports a programmable data rate and Manchesterdecoding with clock recovery. The AS3933 offers an internalClock Generator, which is either derived from a crystal oscillatoror the internal RC oscillator. The user can decide to use theexternal clock generator instead.The programmable features of AS3933 enable to optimize itssettings for achieving a longer distance while retaining areliable wake-up generation. The sensitivity level of AS3933 canbe adjusted in presence of a strong field or in noisyenvironments.Antenna tuning is greatly simplified, as the automatic tuningfeature ensures perfect matching to the desired carrierfrequency.The device is available in 16-pin TSSOP and 16-LD QFN (4x4mm)packages, and DoW (dice on wafer).Ordering Information and Content Guide appear at end ofdatasheet.Key Benefits & FeaturesThe benefits and features of AS3933, 3D Low FrequencyWake-Up Receiver are listed below:Figure 1:Added Value of Using AS3933•Enables low power active tags•3-channel ASK wake-up receiver•Selectable carrier frequency•Carrier frequency range 15 – 150 kHz•One, two, or three channel operation•1-D, 2-D, or 3-D wake-up pattern detection•Highly resistant to false wake-ups•32-bit programmable wake-up pattern•Improved immunity to false wake-ups•Supporting doubling of wake-up pattern•Allows frequency only detection•Wake-up without pattern detection selectable•Improved range with best-in-class sensitivity •Wake-up sensitivity 80μVRMS (typ.)General DescriptionAS3933 −G eneral D escriptionApplicationsThe AS3933, 3D Low Frequency Wake-Up Receiver is ideal for Active RFID tags, Real-time location systems, Operator identification, Access control, and Wireless sensors.Figure 2:AS3933 Typical Application Diagram with Crystal Oscillator•Adjustable range•Sensitivity level adjustable •Provides tracking of false wake-ups •False wake-up counter•Ensures wake-up in a noise environment •Periodical forced wake-up supported (1s – 2h)•Extended battery life •Current consumption in 3-channel listening mode 2.3 μA (typ.)•Flexible clock configuration •RTC based 32 kHz XTAL, RC-OSC, or external clock •Operates from a 3V battery •Operating supply range 2.4V – 3.6V (TA = 25°C)•Industrial temperature range•Operation temperature range -40°C to 85°CAS3933 − General DescriptionFigure 3:AS3933 Typical Application Diagram with RC OscillatorFigure 4:AS3933 Typical Application Diagram with Clock from External SourceAS3933 −P in A ssignmentsTSSOP-16 PackageFigure 5:TSSOP Pin Assignment (Top View)Pin DescriptionFigure 6:TSSOP-16 Pin DescriptionDescriptionCS 1 Digital inputChip selectSCL2SDI interface clockS D I 3 S D I data input S D O 4Digital output / tristate SDI data output (tristate when CS is low) V CC5Supply padPositive supply voltageGN D 6Negative supplyvoltagePin AssignmentsAS3933 − Pin AssignmentsQFN-16 PackageFigure 7:QFN Pin Assignment (Top View)LF3P 7 Analog I/OInput antenna channel three LF2P 8 Input antenna channel two LF1P 9Input antenna channel oneLFN10Common ground for antenna one, two and three XIN 11 Crystal oscillator input XOUT 12 Crystal oscillator outputV SS13 Supply pad SubstrateWAKE 14Digital output Wake-up output IRQD AT 15 D ata outputCL_D AT 16Manchester recovered clockAS3933 −P in A ssignmentsPin DescriptionFigure 8:QFN-16 Pin DescriptionLF3P 1 Analog I/OInput antenna channel three LF2P 2 Input antenna channel two LF1P 3Input antenna channel oneLFN4Common ground for antenna one, two and three XIN 5 Crystal oscillator input XOUT 6 Crystal oscillator outputV SS7 Supply pad SubstrateWAKE 8Digital output Wake-up output IRQD AT 9 D ata outputCL_D AT 10Manchester recovered clock CS 11 Digital inputChip select SCL12SDI interface clockS D I 13 S D I data input S D O 14Digital output /tristateSDI data output (tristate when CS is low) V CC15Supply padPositive supply voltageGND 16 Negative supply voltageAS3933 − Pin AssignmentsDice On WaferDoW Attributes:•Wafer Diameter: 8”•Process: 0.35μm•Wafer Thickness: 725μm ± 15μm•Scribe line: 80μm•Chip Size: 2.070 x 1.700 mm•Pad Size: 85 x 85 μmFigure 9:DoW Pad AssignmentAS3933 −P in A ssignments Figure 10:DoW Pad Description and PositionUpper Side 1GND381.51532.5 2GND634.51532.5 3VCC817.51532.5 4SDO1000.51532.5 5SDI1230.51532.5 6SCL1417.51532.5Right Side1CL_DAT1902.5257.52CS1902.51365.5Bottom Side 1XIN648.3594.5 2XOUT847.594.5 3VSS1203.587.5 4WAKE1387.587.5 5DAT1569.587.5Left Side 1LFN87.5303.5 2LF1P87.5669.5 3LF2P87.51103.5 4LF3P87.51356.5AS3933 − Absolute Maximum RatingsStresses beyond those listed in Absolute Maximum Ratings maycause permanent damage to the device. These are stress ratingsonly. Functional operation of the device at these or any otherconditions beyond those indicated in Operating Conditions isnot implied. Exposure to absolute maximum rating conditionsfor extended periods may affect device reliability.Figure 11:Absolute Maximum RatingsElectrical ParametersV DD DC supply voltage-0.55VV IN Input pin voltage-0.55VI SOURCE Input current(latch up immunity)-100100mA Norm: Jedec 78Electrostatic DischargeESD Electrostatic discharge ±2kV Norm: MIL 883 E method 3015 (HBM)Continuous Power DissipationP t Total power dissipation(all supplies and outputs)0.07mWTemperature Ranges and Storage Conditions T strg Storage temperature-65150°CT body Package bodytemperature 260°CNorm: IPC/JEDEC J-STD-020The reflow peak solderingtemperature (body temperature)is specified according IPC/JEDECJ-STD-020 “Moisture/ReflowSensitivity Classification forNon-hermetic Solid State SurfaceMount Devices”.RH NC Relative Humidity(non-condensing)585%MSL Moisture Sensitivity Level 3Represents a maximum floor life time of 168hAbsolute Maximum RatingsAS3933 −E lectrical C haracteristicsFigure 12:Operating ConditionsFigure 13:DC/AC Characteristics for Digital Inputs and OutputsV DD Positive supply voltage 2.433.6VV SS Negative supplyvoltage 0 0 V T AMBAmbient temperature-4085°CCMOS InputV IH High level input voltage0.6* V DD 0.7* V DD 0.8* V DD VV IL Low level input voltage 0.12* V DD0.2* V DD0.3* V DD V I LEAKInput leakage current100nACMOS OutputV OH High level output voltage With a load current of 1mAV DD - 0.4VV OL Low level output voltageWith a load current of 1mA V SS + 0.4 V C LCapacitive loadFor a clock frequency of 1 MHz 400pFTristate CMOS OutputV OH High level output voltage With a load current of 1mAV DD - 0.4VV OL Low level output voltage With a load current of 1mAV SS + 0.4 V I OZTristate leakage currentTo V DD and V SS100nAElectrical CharacteristicsAS3933 − Electrical CharacteristicsFigure 14:Electrical System SpecificationsInput CharacteristicsR IN AC Input Impedanceat125kHz In case no antennadamper is set (R1<4>=0)2MΩF1max Maximum InputFrequency Band1150 kHzF1min Minimum InputFrequency Band195 kHzF2max Maximum InputFrequency Band295 kHzF2min Minimum InputFrequency Band265 kHzF3max Maximum InputFrequency Band365 kHzF3min Minimum InputFrequency Band340 kHzF4max Maximum InputFrequency Band440 kHzF4min Minimum InputFrequency Band423 kHzF5max Maximum InputFrequency Band523 kHzF5min Minimum InputFrequency Band515 kHzCurrent ConsumptionI1CHRC Current Consumption instandard listening modewith one active channeland RC-oscillator asClock Generator3.1 μAI2CHRC Current Consumption instandard listening modewith two active channelsand RC-oscillator asClock Generator4.6 μAAS3933 −E lectrical C haracteristicsI3CHRC Current Consumption instandard listening modewith three activechannels andRC-oscillator as ClockGenerator6.1 μAI3CHSCRC Current Consumption inscanning mode withthree active channelsand RC-oscillator asClock Generator3.1 μAI3CHOORC Current Consumption inON/OFF mode with threeactive channels andRC-oscillator as ClockGenerator11% Duty Cycle 2.3μA50% Duty Cycle 3.8I3CHXT Current Consumption instandard listening modewith three activechannels and crystaloscillator as ClockGenerator6.5 8.9 μAIDATA Current Consumption inPreamble detection /Pattern correlation / Datareceiving mode(RC-oscillator)With 125 kHz carrierfrequency and 1 kbpsdata-rate. No load on theoutput pins.8.3 12 μAIBOOST Additional currentconsumption perchannel if gain boostenabled150 nAInput SensitivitySENS1 Input Sensitivity on allchannels in the Band1With 125 kHz carrierfrequency, chip in defaultmode, 4 half bits burst + 4symbols preamble andsingle preamble detection100 μVrmsSENS1B Input Sensitivity on allchannels in the Band1with 3dB gain boostWith 125 kHz carrierfrequency, chip in defaultmode, 4 half bits burst + 4symbols preamble andsingle preamble detection80 μVrmsSENS2 Input Sensitivity on allchannels in the Band2With 90 kHz carrierfrequency, chip in defaultmode, 4 half bits burst + 4symbols preamble andsingle preamble detection100 μVrmsAS3933 − Electrical CharacteristicsSENS2B Input Sensitivity on allchannels in the Band2with 3dB gain boostWith 90 kHz carrierfrequency, chip in defaultmode, 4 half bits burst + 4symbols preamble andsingle preamble detection80 μVrmsSENS3 Input Sensitivity on allchannels in the Band3With 60 kHz carrierfrequency, chip in defaultmode, 4 half bits burst + 4symbols preamble andsingle preamble detection100 μVrmsSENS3B Input Sensitivity on allchannels in the Band3with 3dB gain boostWith 60 kHz carrierfrequency, chip in defaultmode, 4 half bits burst + 4symbols preamble andsingle preamble detection80 μVrmsSENS4B Input Sensitivity on allchannels in the Band4with 3dB gain boostWith 30 kHz carrierfrequency, chip in defaultmode, 4 half bits burst + 4symbols preamble andsingle preamble detection80 μVrmsSENS5B Input Sensitivity on allchannels in the Band5with 3dB gain boostWith 18 kHz carrierfrequency, chip in defaultmode, 4 half bits burst + 4symbols preamble andsingle preamble detection80 μVrmsChannel Settling TimeTSAMP Amplifier settling time 250 μsCrystal OscillatorFXTAL FrequencyCrystal dependent2532.768 45kHz TXTAL Start-upTime 1 s IXTAL Currentconsumption 300nAExternal Clock SourceIEXTCL Currentconsumption 0.8 μA FEXTCL Frequency2545kHzAS3933 −E lectrical C haracteristics RC OscillatorFRCNCALFrequency If no calibration isperformed2532.768 45kHzFRCCAL32 If calibration with 32.768kHz reference signal isperformed31 32.768 34.5FRCCALMAX Maximum achievablefrequency after calibration23.75FRCCALMIN Minimum achievablefrequency after calibration45TRC Start-uptime From RC enable(R1<0> = 0)1 sTCALRC Calibrationtime 65 Periods of reference clockIRC Currentconsumption 650 nALC OscillatorFLCO MIN Minimum Frequency L=47mH (Premo:SDTR1103-0108+),C=2.3nF15 kHzFLCO MAX Maximum Frequency L=7.2mH (Premo:SDTR1103-0720+), C=1nF150 kHz RPAR MIN Minimum Eq. Parallel 10 kΩTuning CapsLF1PtuningCapacitance Maximum internalcapacitance (in step of1pF) on LF1P31 pFLF2Ptuning Maximum internalcapacitance (in step of1pF) on LF2P31 pFLF3Ptuning Maximum internalcapacitance (in step of1pF) on LF3P31 pFAS3933 − Typical Operating CharacteristicsFigure 15:Sensitivity vs Voltage and TemperatureFigure 16:Sensitivity vs RSSITypical Operating CharacteristicsAS3933 −T ypical O perating C haracteristics Figure 17:RC-Oscillator Frequency vs Voltage (Calibr.)Figure 18:RC-Oscillator Frequency vs Temperature (Calibr.)AS3933 − Detailed DescriptionThe AS3933 is a three-dimensional low power low-frequency Detailed Descriptionwake-up receiver. The AS3933 is capable of detecting thepresence of an inductive coupled carrier and can extract theenvelope of the ON-OFF-Keying (OOK) modulated carrier. Incase the carrier is Manchester coded, the clock can be recoveredfrom the received signal and the data can be correlated with aprogrammed pattern. If the detected pattern corresponds tothe stored one, a wake-up signal (IRQ) is risen up. The patterncorrelation can be disabled; in this case the wake-up detectionis based only on the frequency detection.The AS3933 is made up of three independent receivingchannels, one envelop detector, one data correlator, oneManchester decoder, 19 programmable registers with the mainlogic and a Clock Generator.The digital logic can be accessed by an SPI. The Clock Generatorcan be based on a crystal oscillator, or an internal RC-oscillatoror an external clock. In case the RC-oscillator is used to improveits accuracy, a calibration can be performed.The internal LC-oscillator can deliver the antenna’s oscillationfrequency for each channel and the internal tuning capacitorbank can provide fine tuning.The Internal RC-oscillator can be calibrated either over SPI orusing the internal algorithm based on the antenna resonancefrequency.Figure 19:Block Diagram of LF Wake-Up Receiver AS3933AS3933 −D etailed D escriptionAS3933 needs the following external components:•Power supply capacitor - CBAT - 100 nF.•32.768 kHz crystal with its two pulling capacitors - XTAL and CL - (it is possible to omit these components if theinternal RC oscillator is used instead of the crystaloscillator).•One, two, or three LC resonators according to the number of used channels.In case the internal RC-oscillator is used (no crystal oscillator is mounted), the pin XIN has to be connected to the supply, while pin XOUT should stay floating. Application diagrams with and without crystal are shown in Figure2, Figure3 and Figure4. Operating ModesThe diagram in Figure20 shows how the AS3933 operates. Figure 20:Operating Modes Flow ChartAS3933 − Detailed DescriptionListening ModeIn listening mode, the chip is active and looks continuously forthe presence of the carrier on the input of all active channels.In this mode, only the active channel amplifiers and the ClockGenerator are running. In case the carrier is detected, then theRSSI measurements get started on all three channels and theresult is stored in the memory.If the three dimensional detection is not required, then it ispossible to deactivate one or more channels. In case only twochannels are required, then the deactivated channel must bethe number two; while in case only one channel is needed, thenthe active channel must be the number one.Inside the listening mode, it is possible to distinguish thefollowing three low power sub modes:Standard Listening Mode. All channels are active at the sametime.Scanning Mode (Low Power Mode 1). In this sub-mode, a timeslot T=1ms is defined and in each time slot only one channelcan be active. As shown in Figure21 when a certain time slot isover, the current active channel is switched OFF and the nextchannel becomes active and so on. If, for example all threechannels are enabled, in the first time slot the only activechannel is the number one. When the first time slot is over, thechannel one is switched OFF and the channel three becomesactive. During the third time slot, the channel two is active whilethe other two are OFF. This channel rotation starts back fromthe channel one and goes on until the presence of the carrieris detected by any channel. The Scanning mode (channelrotation) is managed internally by the AS3933 and doesn’t needany activity from the host system (MCU). As soon as one channeldetects the frequency, all three channels become immediatelyactive at the same time. The AS3933 can perform asimultaneous multidirectional evaluation (on all threechannels) of the field and evaluate which channel has thestrongest RSSI. The channel with the highest RSSI will be putthrough to the demodulator. In this way it is possible to performmultidirectional monitoring of the field with a currentconsumption of a single channel, keeping the sensitivity asgood as if all channels are active at the same time.AS3933 −D etailed D escription Figure 21:Scanning ModeON/OFF Mode (Low Power Mode 2). In this low powersub-mode the chip sets the receiving channels in polling mode;all active channels are on at the same time only for a certaintime T (where T is 1 ms). The OFF-time can be defined with thebits R4<7:6>. If, for example, R4<7:6>=11 (see Figure25) theactive channels will be 1ms ON and 8ms OFF.Figure 22:ON/OFF ModeArtificial Wake-UpFor each of these sub modes it is possible to enable a further feature called Artificial Wake-up. The Artificial Wake-up is a counter based on the used Clock Generator. Three bits define a time window (see R8<2:0>). If no activity is seen within this time window, the chip will produce an interrupt on the WAKE pin that lasts 128 μs. With this interrupt the microcontroller (μC) can get feedback on the surrounding environment (e.g. read the false wake-up register R13<7:0>) and/or take actions in order to change the setup.Preamble Detection / Pattern CorrelationThe chip can go in to this mode after detecting a LF carrier only if the data correlation is enabled (R1<1>=1). The correlator searches first for preamble bits and then for data pattern. The paragraph Wake-Up Protocol: Pattern Detection Enabled describes how the protocol can be implemented. Should the pattern correlation be disabled (R1<1>=0), the AS3933 goes directly in Data receiving mode (see paragraph Data Receiving).If the received pattern matches, then the wake-up interrupt is displayed on the WAKE output (Wake goes high) and the chip goes in Data receiving mode. If the pattern fails, then the internal wake-up (on all active channels) is terminated and no interrupt is produced.Having per default DAT_MASK disabled (R0<6>=0), the DAT pin shows the entire demodulated incoming signal (carrierburst+preamble+pattern+data).If DAT_MASK is enabled (R0<6>=1), the data will be displayed only after the generation of the WAKEUP interrupt.Note(s): It is important to note that the Manchester decoder must be enabled (R1<3>=1) for this feature.Data ReceivingAfter a successful wake-up the chip enters the data receiving mode. In this mode the chip can be retained a normal OOK receiver. The data is provided on the DAT pin and in case the Manchester decoder is enabled (see R1<3>), the recovered clock is present on the CL_DAT. It is possible to set the chip back to listening mode either with a direct command CLEAR_WAKE (see Figure29) or by using the timeout feature. This feature automatically sets the chip back to listening mode after a certain time defined by the bits R7<7:5>.System and Block SpecificationRegister OverviewFigure 23:Register Overview76543210R0PATT32DAT_MASKON_OFF MUX_123 EN_A2 EN_A3 EN_A1R1ABS_HY AGC_TLIMAGC_U D ATT_ONEN_MANCHEN_PAT2 EN_WPAT EN_XTALR2S_ABS EN_EXT_CLKG_BOOST Reserved DISPLAY_CLK S_WU1R3HY_20m HY_POS FS_SLC FS_ENV R4T_OFF R_VAL GRR5PATT2BR6PATT1BR7T_OUT T_HBITR8BAND_SEL T_AUTOR9BLOCK_AGCReservedR10n.a RSSI1 R11n.a RSSI2 R12n.a RSSI3 R13F_WAKER14RC_CAL_OKRC_CAL_KORC_OSC_TAPSR15n.a.LC_OSC_OKLC_OSC_KOn.a.R16CLOCK_GEN_DISn.a.RC_OSC_MINRC_OSC_MAXn.a LC_OSC_MUXR17n.a.CAP__CH1 R18n.a.CAP__CH2 R19n.a.CAP__CH3Register Description and Default ValuesFigure 24:Default Values of RegistersR0<7>PAT32R/W0Pattern extended to 32 bits (PAT32=0 16 bits, PAT32=1 32bits)R0<6>DAT_MASKR/W0Masks data on DAT pin before wake-up (DAT_MASK = 0→ data not masked; DAT_MASK = 1 → data masked)R0<5> ON_OFF R/W 0 ON/OFF operation mode. (Duty-cycle defined in the register R4<7:6>R0<4> MUX_123 R/W 0 Scan mode enableR0<3> EN_A2 R/W 1 Channel2enableR0<2> EN_A3 R/W 1 Channel3enableR0<1> EN_A1 R/W 1 Channel1enableR0<0> Reserved 0 ReservedR1<7> ABS_HY R/W 0 EnableD ata slicer absolute referenceR1<6> AGC_TLIM R/W 0 AGC acting only on the first carrier burstR1<5> AGC_UD R/W 1 AGCoperating in both direction (up-down) R1<4> ATT_ON R/W 0 Antenna damper enableR1<3>EN_MANCHR/W0Manchester decoder enableR1<2> EN_PAT2 R/W 0 Double wake-up pattern correlationR1<1> EN_WPAT R/W 1 CorrelatorenableR1<0> EN_XTAL R/W 1 CrystaloscillatorenableR2<7> S_ABSH R/W 0D ataslicer absolute threshold reductionR2<6> EN_EXT_CLKR/W 0 Enables external clock generatorR2<5>G_BOOST R/W03dB Amplifier Gain Boost (G_BOOST=1) R2<5>Reserved0ReservedR2<3:2>DISPLAY_CLKR/W00Set to 11 in case the clock generator's frequency isshown on pin CL_DAT.R2<1:0> S_WU1 R/W 00 Tolerance setting for the stage wake-up (see Figure37)R3<7> HY_20m R/W 0 Data slicer hysteresisif HY_20m = 0 then comparator hysteresis = 40mV if HY_20m = 1 then comparator hysteresis = 20mVR3<6> HY_POS R/W 0 Data slicer hysteresis only on positive edges (HY_POS=0, hysteresis on both edges, HY_POS=1, hysteresis only on positive edges)R3<5:3> FS_SCL R/W 100D ata slicer time constant (see Figure45)R3<2:0> FS_ENV R/W 000 Envelop detector time constant (see Figure44)R4<7:6> T_OFF R/W 00 OFF time in ON/OFF operation modeT_OFF=00 1ms T_OFF=01 2ms T_OFF=10 4ms T_OFF=11 8msR4<5:4>D_RES R/W 01 Antennadampingresistor(see Figure40) R4<3:0> GR R/W 0000 Gainreduction(see Figure39)R5<7:0> TS2 R/W 01101001 2nd Byte of wake-up patternR6<7:0> TS1 R/W 10010110 1st Byte of wake-up patternR7<7:5> T_OUT R/W 000 Automatictime-out(see Figure49)R7<4:0> T_HBIT R/W 01011 Bit rate definition (see Figure48)R8<7:5>BAND_SEL R/W000Band selection (see Figure36)R8<2:0> T_AUTO R/W 000 Artificial wake-upT_AUTO=000 No artificial wake-upT_AUTO=001 1sec T_AUTO=010 5sec T_AUTO=011 20sec T_AUTO=100 2min T_AUTO=101 15min T_AUTO=110 1hour T_AUTO=111 2hourR9<7>BLOCK_AGCR/W0Disables AGCR9<6:0> 000000ReservedR10<4:0> RSSI1 R RSSIchannel1R11<4:0> RSSI2 R RSSIchannel2R12<4:0> RSSI3 R RSSIchannel3R13<7:0> F_WAK R Falsewake-upregisterR14<7> RC_CAL_OKR Successful RC calibrationR14<6> RC_CAL_KOR Unsuccessful RC calibrationR14<5:0> RC_OSC_TAPSR RC-Oscillator taps settingR15<4> LC_OSC_OKR LC-OscillatorworkingR15<3> LC_OSC_KOR LC-Oscillator not workingR16<7> CLOCK_GEN_DISR/W 0The Clock Generator output signal displayed on CL_DATpinR16<5> RC_OSC_MINR/W 0 Sets the RC-oscillator to minimum frequencyR16<4> RC_OSC_MAXR/W 0 Sets the RC-oscillator to maximum frequencyR16<2> LC_OSC_MUX3R/W 0 Displays the resonance frequency of LF3P on DAT pinR16<1> LC_OSC_MUX2R/W 0 Displays the resonance frequency of LF2P on DAT pinR16<0> LC_OSC_MUX1R/W 0 Displays the resonance frequency of LF1P on DAT pinR17<4:0> CAPS_CH1 R/W 00000 Capacitor banks on the channel1 R18<4:0> CAPS_CH1 R/W 00000 Capacitor banks on the channel2 R19<4:0>CAPS_CH1R/W00000Capacitor banks on the channel3Serial Peripheral Interface (SPI)This 4-wire interface is used by the Microcontroller (μC) to program the AS3933. The maximum clock operation frequency of the SPI is 6MHz.Figure 25:Serial Peripheral Interface (SPI) PinsNote(s): SDO is set to tristate if CS is low. In this way more than one device can communicate on the same SDO bus.SDI Command Structure. To program the SPI the CS signal has to go high. A SPI command is made up by a two bytes serial command and the data is sampled on the falling edge of SCLK. The Figure 26 shows how the command looks like, from the MSB (B15) to LSB (B0). The command stream has to be sent to the SPI from the MSB (B15) to the LSB (B0).Figure 26:SDI Command StructureThe first two bits (B15 and B14) define the operating mode.There are three modes available (write, read, direct command) plus one spare (not used), as shown in Figure 27.CS D igital Input CMOS Chip SelectSIN D igital Input CMOS Serial Data input for writing registers, data to transmit and/or writing addresses toselect readable register SOUT D igital Output CMOSSerial Data output for received data orread value of selected registers SCLKDigital InputCMOSClock for serial data read and writeB15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B3 B2 B1 B0Figure 27:SDI Command StructureIn case a write or read command happens the next 6 bits (B13to B8) define the register address which has to be written respectively read, as shown in Figure 28.Figure 28:SDI Command Structure0 0WRITE0 1 REA D 1 0 NOT ALLOWE D 1 1 D IRECT COMMAN D0 0 0 0 0 0 R0 0 0 0 0 0 1 R1 0 0 0 0 1 0 R2 0 0 0 0 1 1 R3 0 0 0 1 0 0 R4 0 0 0 1 0 1 R5 0 0 0 1 1 0 R6 0 0 0 1 1 1 R7 0 0 1 0 0 0 R8 0 0 1 0 0 1 R9 001010R10001011R11001100R120111R130 0 1 1 1 0 R14 0 0 1 1 1 1 R15 0 1 0 0 0 0 R16 0 1 0 0 0 1R170 1 0 0 1 0 R180 1 0 0 1 1 R19The last 8 bits are the data that has to be written respectivelyread. A CS toggle high-low-high terminates the commandmode.If a direct command is sent (B15-B14=11) the bits from B13 toB8 defines the direct command while the last 8 bits are omitted.Figure29 shows all possible direct commands:Figure 29:List of Direct Commandsclear_wake 0 0 0 0 0 0reset_RSSI 0 0 0 0 0 1trim_osc 0 0 0 0 1 0clear_false 0 0 0 0 1 1preset_default 0 0 0 1 0 0Calib_RCO_LC000101All direct commands are explained below:•clear_wake: clears the wake state of the chip. In case thechip has woken up (WAKE pin is high) the chip is set backto listening mode.•reset_RSSI: resets the RSSI measurement.•Calib_RCosc: starts the trimming procedure of the internalRC oscillator (see page 29).•clear_false: resets the false wake-up register(R13<7:0>=00).•preset_default: sets all register in the default mode, asshown in Figure24.•Calib_RCO_LC: calibration of the RC-oscillator with theexternal LC tank (see page 31).Writing of Data to Addressable Registers (WRITE Mode). TheSPI is sampled at the falling edge of SCLK (as shown in thefollowing diagrams).A CS toggling high-low-high indicates the end of the WRITEcommand after register has been written. The followingexample shows a write command.。
RF3933资料
Optimum Technology Matching® AppliedGaAs HBT InGaP HBTGaAs MESFET SiGe BiCMOS Si BiCMOS SiGe HBTGaAs pHEMT Si CMOS Si BJTGaN HEMTFunctional Block DiagramRF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity™, PowerStar®, POLARIS™ TOTAL RADIO™ and UltimateBlue™ are trademarks of RFMD, LLC. BLUETOOTH is a trade-mark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2006, RF Micro Devices, Inc.Product DescriptionOrdering InformationRF IN VGQ Pin 1 (CUT)RF OUT VDQPin 2BASERF3933GaN WIDE-BAND POWER AMPLIFIERThe RF3933 is designed for commercial infrastructure, cellular and WiMAX infrastructure and general purpose broadband amplifier applica-tions. Using an advanced high power density Gallium Nitride (GaN) semi-conductor process, these high-performance amplifiers achieve high efficiency and flat gain over a broad frequency range in a single amplifier design. The RF3933 is an unmatched GaN transistor packaged in a flanged ceramic package which provides excellent thermal stability through the use of advanced heat sink and power dissipation technolo-gies. Ease of integration is accomplished through the incorporation of sim-ple, optimized matching networks external to the package that provide wideband gain and power performance in a single amplifier.FeaturesPeak Power=90W Gain=14dBAdvanced GaN HEMT Tech-nology48V OperationOptimized Evaluation Board Layout for 50Ω Operation ApplicationsCommercial Wireless Infra-structureCellular and WiMAX Infra-structureGeneral Purpose Broadband AmplifiersPublic Mobile RadiosIndustrial, Scientific and Med-icalRF3933GaN Wide-Band Power AmplifierProposed9RoHS Compliant and Pb-Free ProductPackage Style: Flanged CeramicRF3933ProposedPlease contactRFMD Technical Supportat (336) 678-5570for more information.。
中图分类号-TP
精心整理中图分类号TP自动化技术、计算机技术(依总论复分表分.)[TP-9]自动化技术经济(宜入F407.67.)TP1自动化基础理论(总论自动学与远动学入此.)TP11自动化系统理论(人机系统、联机系统理论入此.人工智能理论入TP18;系统理论入N94.)TP13自动控制理论(理论入O231;工程控制论入(.总论信息论O236;数TP15自动模拟理论(自动仿真理论)(模拟理论在自动化中的应用入此.模拟理论入N032;数学模拟入O242.1;系统仿真入TP391.9.)TP17开关电路理论(自动继电线路原理入此.)TP18人工智能理论(智能模拟理论、智能控制理论入此.智能语言、智能程序设计入TP31有关各类;智能机器人入TP242.6.)TP202+.7最佳化、自适应性(最佳化控制系统入TP273+.1;最优化数学理论入O224.)TP203结构、构造TP204材料TP205制造、装配、改装TP206调整、测试TP206+.1试验、测试技术与方法TP206+.3故障预测、诊断与排除TP207检修、维护TP21/27各种自动化元件、部件、装置、系统(可依TP20分.例:自动化系统故障的排除为TP270.6+3.)TP21自动化元件、部件(放大器入TN722;稳定器入TM44;继电器入TM58;控制器入TM571;伺服电机入TM383.4;显示器入TN873;显示理论与技术入TN27;大规模集成电路入TN47.)TP211一般自动化元件、部件TP211+.1无触点元件、部件TP211+.2机械元件、部件TP211+.3流体元件、部件(参见TP61).TP211+.31液压元件、部件TP211+.32气压元件、部件TP211+.4机电元件、部件TP211+.5电子元件、部件TP211+.51半导体元件、部件TP211+.53磁性元件、部件TP211+.6光电元件、部件TP211+.7射线元件、部件TP212/217各种自动化器件、自动化仪表(资料分类,有必要按上述观点区分时,可用组配方法组合.例:射线发TP211+.7TP212(接收元件、测量元件及此.遥感传感器入TP732.)TP212.1物理传感器TP212.11温度传感器TP212.12机械量传感器TP212.13磁性传感器TP212.14光传感器TP212.2化学传感器TP212.3生物传感器、医学传感器TP212.6智能化传感器TP212.9传感器的应用(总论入此.专论入有关各类.)TP213分配器、配电器TP214调节器、调节阀TP214+.1线性调节器TP214+.2非线性调节器TP214+.3比例调节器(有差调节器)TP214+.4积分调节器(无差调节器)TP214+.5比例积分调节器TP214+.6比例微分调节器TP214+.7程序调节器TP217+.3有源校正元件TP23自动化装置与设备(总论入此;自动机入此.专论入有关各类;自动机理论入TP301.1.)TP24机器人技术(机器人工程学入此.机器人语言入TP31.)TP241机械手TP241.2工业机械手TP241.3专用机械手(办公用、服务行业用、家庭用机械手入此.)TP242机器人(电子机器人入此.)TP242.2工业机器人TP242.3专用机器人(见TP241.3注.)TP242.6智能机器人(人工智能理论入TP18;机器人语言与编程入TP31有关各类;智能电子玩具入TS958.2+8.)TP242.6+1机器人触觉TP242.6+2机器人视觉TP242.6+3机器人听觉TP242.6+4机器人嗅觉TP249应用(总论入此.)TP27自动化系统TP271一般自动化系统TP271+.1无触点系统TP271+.2机械系统TP271+.3流体系统TP271+.31液压系统(液压射流自动控制系统入此.)TP271+.32气压系统(气压射流自动控制系统入此.)TP271+.4机电系统TP271+.5电子系统TP271+.61连续线性系统(单环(回路)系统、TP271TP271TP271TP271TP271TP271+.73断续变参数系统TP271+.74随机变参数系统TP271+.8不连续(离散、断续)系统TP271+.81采样(脉冲)系统TP271+.82数字和程序系统TP271+.83继电器系统(双位、多位系统等入此.)TP271+.9反馈系统TP272/278各种自动化系统(资料分类,如有必要按上述观点区分时,可用组配方法组合.例:液压自动控制系统的调整为TP273.06:TP271+.31.)TP272自动调节、自动调节系统(多关联与多回路自动调节系统入此.)TP273自动控制、自动控制系统(计算机控制入此.控制机入TP391.8;教学机TP273+.4模糊控制、模糊控制系统TP273+.5计算机控制、计算机控制系统(智能控制、智能控制系统入此.)TP274数据处理、数据处理系统(自动检测及其系统入此.)TP274+.1自动记录和指示系统TP274+.2数据收集和处理系统(数据处理装置入此.)TP274+.3自动分类与质量检查系统TP274+.4集中检测与巡回检测系统TP274+.5采用各种新技术的自动检测系统TP274+.51放射线检测及其设备TP274+.52红外线检测及其设备TP274+.53超声波检测及其设备TP275自动随动、自动随动系统(自动随动装置入此.参见TM921.54.)TP276自动拖动、自动拖动系统(自动拖动装置入此.参见TM921.)TP277监视、报警、故障诊断系统TP278自动生产作业线(生产过程自动化、自动化车间、自动化工厂等入此.)TP29自动化技术在各方面的应用(总论入此.专论入有关各类.办公室自动化入C931.4.)TP3计算技术、计算机技术TP3-05计算机与其他学科的关系(计算机文化、计算机心理学等入此.)TP30一般性问题TP301理论、方法(计算机原理入此.开关理论入TP17.)TP301.1自动机理论(自动机入TP23.)TP301.2形式语言理论((TP302设计与性能分析TP302.1总体设计、系统设计TP302.2逻辑设计TP302.4制图TP302.7性能分析、功能分析(可靠性、灵敏度等分析入此.)TP302.8容错技术TP303总体结构、系统结构(总论计算机硬件及其外部设备的着作入此.专论各部件的着作入TP32/38有关各类.<3版类名:结构、构造>)TP303+.1元件TP303+.2插件、机架TP303+.3电源系统(供电形式、保护系统、UPS等入此.)TP304材料TP305制造、装配、改装(计算机的大密度装配技术入此.)TP309.1计算机设备安全TP309.2数据安全TP309.3数据备份与恢复TP309.5计算机病毒与防治TP309.7加密与解密TP31计算机软件TP311程序设计、软件工程TP311.1程序设计(程序正确性理论入此.<3版类名:理论方法>)TP311.11程序设计方法TP311.12数据结构TP311.13数据库理论与系统TP311.131数据库理论(各种数据库语言和数据库管理系统入以下有关各类.)TP311.132数据库系统:按类型分(总论数据库系统入此.各种具体数据库系统入TP311.138.专用数据库见TP392注.)TP311.132.1层次数据库TP311.132.2网状数据库TP311.132.3关系数据库TP311.132.4面向对象的数据库TP311.133.1分布式数据库TP311.133.2并行数据库TP311.134.1模糊数据库TP311.134.3多媒体数据库TP311.135.1文献型数据库TP311.135.3事实型数据库TP311.135.4超文本数据库TP311.138数据库系统:按系统名称分(依数据库系统名称的前两个英文字母区分,并按字母序列排.若系统名称的前两个字母相同,则再取第三个,以此类推.例:dBASE数据库为TP311.138DB.)TP311.5软件工程TP311.51程序设计自动化TP311.52软件开发TP311.53软件维护((PCTOOLS、杀病毒等软件入此.)TP312程序语言、算法语言(依语言名称的前两位英文字母区分,并按字母序列排,若程序语言名称的前两位字母相同时,则取第三位字母,以此类推,例:ALGOL语言为TP312AL,JAVA语言为TP312JA,TP312AL排在TP312JA之前.)TP313汇编程序(汇编语言入此.)TP314编译程序、解释程序TP315管理程序、管理系统TP316操作系统TP316.1/.5操作系统:按类型分(总论入此,具体某一操作系统入TP316.6/.8.)TP316.1分时操作系统TP316.2实时操作系统(WindowsNT入TP316.86.)TP316.8网络操作系统TP316.81Unix操作系统(兼论XENIX操作系统入此.)TP316.82XENIX操作系统TP316.83NOVELL操作系统TP316.84OS/2操作系统TP316.86WindowsNT操作系统TP316.89其他TP316.9中文操作系统(CCDOS、SPDOS、UCDOS等入此.兼论汉字信息处理入TP391.12.)TP317程序包(应用软件)(通用应用软件,如购买计算机时随机带来的软件包等入此.)TP317.1办公自动化系统(总论入此,如总论OFFICE系统的着作入此.专论入有关各类.如专论OFFICE系统中字处理WORD的着作入TP317.2;专论WORD使用入TP391.12.参见C931.4.)TP317.2文字处理软件(WPS、WORD、中文之星等软件的开发、研制入此.软件的使用入TP391.12.)TP317.3表处理软件(CCED、EXCEL等软件的开发、研制入此.软件的使用入TP391.13.)TP317.4图像处理软件(图形处理软件、动画制作软件入此.例:PowerPoint.软件的使用入TP319专用应用软件(总论入此.专论入有关各类TP319:>)(解算装置入此.)TP321TP321+.1求积仪、曲线仪TP321+.2积分器TP321+.21机械积分器TP321+.22液压积分器TP321+.23气压积分器TP321+.24电气、机电积分器TP321+.3手动计算机TP321+.5电动计算机TP322分析计算机(穿孔卡片计算机)电子式分析计算机入此.)TP322+.1穿孔机TP322+.2验孔机TP322+.3分类机TP322+.5制表机TP323电子计算器TP323+.1台式计算器TP323+.2袖珍计算器TP33/38各种电子计算机(可仿TP30分.例:电子数字计算机的电源系(开关电路、门电路、放大整形电路等入此.)TP332运算器和控制器(CPU)(参见TP342.)TP332.1逻辑部件TP332.1+1寄存器(移位寄存器等入此.)TP332.1+2计数器TP332.2运算器TP332.2+1加、减法器TP332.2+2乘、除法器TP332.3控制器、控制台(监视电路、微程序设计技术入此.参见TM571.)TP333存贮器(信息存贮技术入此.参见TP343.)TP333.1内存贮器(主存贮器)总论TP333.2外存贮器(辅助存贮器)总论TP333.3磁存贮器及其驱动器(磁存贮器的制造入TQ58.<3版类名:磁存贮器>)TP333.3+1磁芯存贮器TP333.3+11单孔磁芯存贮器TP333.3+12多孔磁芯存贮器(磁通变换器、双轴磁芯存贮器等入此.TP333.3+2磁薄膜存贮器)TP333.3+21平面磁薄膜存贮器TP333.3+3磁泡存贮器TP333.3+4磁鼓存贮器TP333.3+5磁盘存贮器(包括软盘、硬盘.)TP333.3+6磁带存贮器TP333.3+7电磁继电器存贮器TP333.4光存贮器及其驱动器(光盘服务器(光盘塔)、光盘刻录器入此.<3版类名:光存贮器>)TP333.4+1磁光存贮器TP333.4+2全息存贮器TP333.4+3激光存贮器TP333.5TP333.5+1TP333.5+2金属-氧化物-半导体>)(<3版类名:随机存贮器>)TP333.93交换器TP333.95延迟线存贮器TP333.95+1水银柱延迟线存贮器TP333.95+3石英晶体延迟线存贮器TP333.95+5磁滞伸缩延迟线存贮器TP333.96虚拟存贮器TP334外部设备(参见TP334.)TP334.1/.4各种外部设备(<以下TP334.1/.4为新的体系,原资料分类改入以下类目>)TP334.1终端设备(显示器入此.参见TN873.)TP334.2输入设备(鼠标入此.)TP334.2+1图形输入设备(光笔入此.)TP334.2+2图像输入设备(自动扫描仪入此.)TP334.2分(输入设备改为输出设备).)TP334.4输入输出控制器[TP334.5]外存储器(宜入TP333.2.)TP334.7接口装置、插件(网卡、声卡、电影卡、电视卡等入此.)TP334.8打印装置(网络打印机等入此.)TP334.8+1针式打印机(卡片打印机入此.)TP334.8+2热敏打印机TP334.8+3喷墨打印机TP334.8+4激光打印机TP334.8+8各种用途打印机(票据打印机入此.)TP334.9其他TP335信息转换及其设备(信息转换技术入此.编码器入TN762;译码器入TN764.)TP335+.1模拟-数字转换设备TP335+.2文字-代码转换设备TP335+.3图形-代码转换设备TP335+.4数字-模拟转换设备TP336总线、通道TP337仿真器TP338各种电子数字计算机(以下涉及多种分类标准的计算机,入最后编列的类.例:分布式小型计算机入TP338.8.)[TP338.1]微型计算机(宜入TP36.)TP338.2小型计算机TP338.3中型计算机TP338.4大型、巨型计算机TP338.6并行计算机TP338.7陈列式计算机TP338.8分布式计算机TP34电子模拟计算(连续作用电子计算机)TP342运算放大器和控制器(参见TP332.)TP342+.1运算放大器TP342+.2运算器TP342+.21加、减法器TP342+.22乘、除法器TP342+.23平方器、开方器TP342TP342TP343TP344TP346函数发生器TP347延时器TP348各种电子模拟计算机TP348+.1微分分析器与增量计算机(数字微分分析器入TP352+.1.)TP348+.2直流电子模拟计算机TP348+.3交流电子模拟计算机TP35混合电子计算机TP352数字-模拟计算机TP352+.1数字微分分析器TP353模拟-数字计算机TP36微型计算机(仿TP331/337分,必要时再仿TP30分.例:微型计算机存贮器性能分析入TP363.027.微机软件入TP31有关各类;微机的应用入TP39有关各类.)TP381激光计算机TP382射流计算机TP383超导计算机TP384分子计算机TP387第五代计算机(智能型计算机、超智能计算机、人工智能模拟、通用推理机、数据流计算机等入此.人工智能理论入TP18;智能机器人入TP242.6.)TP389.1人工神经网络计算机(人工神经网络入TP183.)TP39计算机的应用TP391信息处理(信息加工)(总论图像处理入TN911.73.)TP391.1文字信息处理[TP391.11]汉字信息编码(宜入H127.)TP391.12汉字处理系统(参见TP317.2.)TP391.13表格处理系统(参见TP317.3.)TP391.14文字录入技术(中英文打字、汉字输入法等入此.)TP391.2翻译机(机器翻译及其理论入H085.)TP391.3检索机(机器检索、机器检索速度等入此.利用计算机进行情报检索的着作入G354.4.)TP391.4模式识别与装置(自动读版装置入此.模式识别理论入O235.参见TN919.8.)TP391.41图像识别及其装置(计算机图形学入此;计算机绘图、三维动画制作、图形识别及其装置等入此.计算机辅助图入TP391.72.<3[TP391.42]声音识别TN912.34.)TP391.43TP391.44光模式识别及其装置(((机器教学入G433.)TP391.7机器辅助技术(计算机辅助教学入G434.)TP391.72机器辅助设计(CAD)、辅助制图(总论入此.<3版类名:机器辅助设计、自动设计(CAD)>)TP391.73机器辅助技术制造(CAM)(总论入此.)TP391.75机器辅助计算(CAC)(总论入此.)TP391.76机器辅助测试(CAT)(总论入此)TP391.77机器辅助分析(CAA)TP391.8控制机(计算机控制入TP273.)TP391.9计算机仿真(总论仿真技术、系统仿真、虚拟现实等入此.自动仿真理论入TP15.<3版类名:仿真机>)TP392各种专用数据库(虚拟网理论、网络仿真理论等入此.参见TM711.)TP393.02计算机网络结构与设计(网络分析、网络拓扑等入此.)TP393.03网络互连技术[TP393.04]通信规程、通信协议(宜入TN915.04.)[TP393.05]网络设备(宜入TN915.05.)TP393.06计算机网络测试、运行TP393.07计算机网络管理(网络管理软件入此.)TP393.08计算机网络安全(防火墙技术、网络安全软件入此.)TP393.09计算机网络应用程序(网络语言入TP312.)TP393.092网络浏览器(网址资源、WWW、Netscape、主页制作等入此.)TP393.093文件传送程序(FTP)TP393.094远程登录(Telnet)(公告牌(BBS)等入此.)TP393.098电子邮件(E-mail)TP393.1/.4各种计算机网(可仿TP393.0分.例:仿真局域网为TP393.101.)TP393.1局域网(LAN)、城域网(MAN)(Novell网入此.)TP393.11以太网(高速以太网、千兆位以太网入此.)TP393.12令牌网(TP393.13DQDB网()(TN915.63.)(总论ATM(异步传输模式)网入TN915.2.)[TP393.17]无线局域网(宜入TN925.93.)TP393.18校园网、企业网(Intranet)TP393.2广域网(WAN)(<3版类名:远程网络>){TP393.3}洲际网络(<停用:4版改入TP393.4>)TP393.4国际互联网(因特网Internet入此.国家信息基础设施[信息高速公路]入TN915.<3版类名:全球网络>)TP399在其他方面的应用(总论入此.在其他科学中的应用入有关各类.如愿集中于此,可采用组配编号法.例:商业售货计算机为TP399:F716.)TP6射流技术(流控技术)(气动技术入此.)TP605制造、装配TP606调整、测试TP606+.1静态测试TP606+.2动态测试TP607检修、维护TP61/67各种射流装置(可仿TP60分.例:射流元件性能分析为TP610.2.)TP61射流元件(参见TP211+.3)TP61+1有源射流元件TP61+2无源射流元件TP61+3数字射流元件(逻辑元件)TP61+3.1附壁式射流元件TP61+3.2紊流式射流元件(紊流放大器)(管状射流元件、板状射流元件等入此.)TP61+3.3动量交换式元件TP61+4比例射流元件(模拟元件)TP61+4.1对冲元件(模拟转换元件入此.)TP61+4.3涡流元件TP61+5液压式射流元件TP62射流附件TP62+1升压器TP62+2转换器TP62+3延时器TP62+4抽负器TP63检测发信装置TP64执行机构TP65动力源TP65+1气源净化系统TP65+2气源附件TP65+2.1过滤器TP65+2.2减压阀TP65+2.3定值器TP66射流控制线路TP67射流自动控制系统(总论入此.自动控制)入TP271+.3.)TP69射流技术的应用(TP7TP701TP702TP703TP704TP705制造、装配TP706调整、测试TP707检修、维护TP72/75各种遥感及装置(可仿TP70分.例:红外遥感传感器的装配入TP732.205.)TP72遥感方式TP721依传感器接受信号的来源分TP721.1被动式遥感TP721.2主动式遥感TP722依探测的波长范围分TP722.3紫外遥感TP722.4可见光遥感TP722.5红外遥感TP722.6微波遥感TP73探测仪器及系统TP731多光谱扫描仪TP732遥感传感器(参见TP212.)(总论入此.在其他科学中的应用入有关各类.如愿集中于此.可采用组配编号法.例:气象遥感为TP79:P407.)TP8远动技术TP80一般性问题TP801理论、研究(远动学入此.)TP802设计和性能分析TP802+.1可靠性、稳定性、寿命TP802+.2精确性、误差TP802+.3灵敏度TP802+.4远动信号、信号发射、接收及转换TP802+.5作用距离TP802+.6干扰(噪声)、抗干扰TP802+.7最佳化、自适应性TP802+.8信道划分TP803结构TP804材料TP805制造、装配TP806调整、测试TP806+.1试验、测试技术与方法TP806+.3故障预测、诊断与排除TP807检修、维护TP81/87各种远动装置及系统(可仿TP80分.例:远距离测量系统的检修为TP873.07.)[TP81]远动元件、部件(宜入TP21.) TP83远动化装置TP84远程信道TP84+1有线信道(电力线载波入此.)TP84+2无线电中继信道TP87远动化系统(总论远距离调节、控制和测量系统入此.)TP871远距离调节、远距离调节系统TP872远距离控制和信号、远距离控制和信号系统TP872+.1近作用的遥控系统TP872+.2断续遥控系统TP872+.21频率制TP872+.22时间制TP872+.3连续遥控系统TP872+.31频率制TP872TP872TP873TP873TP873TP873TP873TP873+.2多路遥测系统TP873+.21频率划分制TP873+.22时间划分制TP873+.23脉码划分制TP89远动技术在各方面的应用(总论入此.专论入有关各类.)。
清热化痰法治疗快速性心律失常的Meta分析
清热化痰法治疗快速性心律失常的Meta分析李颖妃1,任雪玉1,李 星2,林 晖1,胡继强1,刘 静1,吴 旸1,王 轩1,高 群3,李 冬1,逯金金1,李 岩1,崔晓云1摘要 目的:系统评价清热化痰法治疗快速性心律失常的有效性及安全性㊂方法:计算机检索中国知网(CNKI )㊁万方数据库㊁中国生物医学文献服务系统(SinoMed )㊁维普数据库(VIP )㊁PubMed ㊁EMbase ㊁the Cochrane Library 数据库,检索时限为从建库至2022年6月1日,获取清热化痰法治疗快速性心律失常的随机对照试验文献,进行文献筛选㊁资料提取及质量分析,使用RevMan 5.4软件进行Meta 分析㊂结果:最终纳入33篇文献,Meta 分析结果显示,相比单纯西医治疗,清热化痰法治疗快速性心律失常能够提高24h 心电图疗效[RR =1.20,95%CI (1.11,1.29),P <0.00001]㊁中医症状疗效[RR =1.36,95%CI (1.29,1.43),P <0.00001],减少24h心电图室性期前收缩次数[SMD =-2.86,95%CI (-3.91,-1.81),P <0.00001],降低24h 平均心室率[SMD =-1.20,95%CI (-1.41,-1.00),P <0.00001]㊁P 波离散度[SMD =0.94,95%CI (-1.25,-0.63),P <0.00001]㊁不良事件发生率[RR =0.37,95%CI (0.23,0.60),P <0.0001],差异均有统计学意义㊂在降低最大P 波时限方面,清热化痰法治疗与单纯西医治疗效果相当[SMD =-0.49,95%CI (-1.43,0.45),P =0.31]㊂结论:现有证据表明,清热化痰法治疗快速性心律失常较单用西医治疗在24h 心电图疗效㊁中医症状疗效㊁24h 室性期前收缩次数㊁24h 平均心室率和P 波离散度方面有一定优势,且不良事件发生率较低,具有较好的安全性㊂关键词 快速性心律失常;清热化痰法;Meta 分析;随机对照试验d o i :10.12102/j.i s s n .1672-1349.2023.13.005 Meta Analysis of the Therapy for Clearing Heat and Resolving Phlegm in Treating Tachyarrhythmia LI Yingfei,REN Xueyu,LI Xing,LIN Hui,HU Jiqiang,LIU Jing,WU Yang,W ANG Xuan,GAO Qun,LI Dong,LU Jinjin,LI Yan,CUI Xiaoyun Dongfang Hospital of Beijing University of Chinese Medicine,Beijing 100078,China Corresponding Author CUI Xiaoyun,E -mail:*******************Abstract Objective:To evaluate the efficacy and safety of the therapy for clearing heat and resolving phlegm in treating tachyarrhythmia.Methods:Literature of randomized controlled trials(RCTs)of treating tachyarrhythmia with clearing heat and resolving phlegm was searched.The included literature was screened to retrieve data and quality assessment was conducted.RevMan 5.4was used for analyzing outcomes.Results:Thirty -three literatures were included,and the results of Meta -analysis showed that the therapy for clearing heat and resolving phlegm combined with western medicine was better than western medicine alone in treating tachyarrhythmia,which reflected in improved the 24hour Holter monitor curative effect(RR =1.20,95%CI 1.11-1.29,P <0.00001),traditional Chinese medicine(TCM)syndrome efficacy(RR =1.36,95%CI 1.29-1.43,P <0.00001),and reduced 24hours ventricular premature contraction(SMD =-2.86,95%CI -3.91--1.81,P <0.00001),the 24hour average ventricular rate(SMD =-1.20,95%CI -1.41--1.00,P <0.00001),the dispersion of P wave(SMD =0.94,95%CI -1.25--0.63,P <0.00001),and adverse event rate (RR =0.37,95%CI 0.23-0.60,P <0.0001).In addition,there was no obvious differences between the experimental group and control group in the maximum time limit of P wave(SMD =-0.49,95%CI -1.43-0.45,P =0.31).Conclusion:Existing research suggests that thefor clearing heat and resolving phlegm therapy was better than western medicine alone in the 24hour Holter monitor curative effect,TCM syndrome efficacy,24hours ventricular premature contraction,the 24hour average ventricular rate,and the dispersion of P wave in treating tachyarrhythmia.It also had lower risk of poor prognosis and better safety.Keywords tachyarrhythmia;therapy for clearing heat and resolving phlegm;Meta -analysis;randomized controlled experiments 心律失常指心脏冲动的节律㊁频率㊁传导速度㊁激动次序或起源部位的异常,按心率可分为缓慢性心律失常和快速性心律失常[1]㊂快速性心律失常包括过早搏动㊁心动过速(室性㊁室上性)㊁扑动㊁颤动和预激综合征等多种心律失常㊂王玉娟等[2]对2126例心律失常住院病人进行调查显示,快速性心律失常在心律失常病人中占比较高,约占57.29%㊂快速性心律失常的持续存在会导致心力衰竭等疾病,威胁病人生命健康[3]㊂快速性心律失常可归属于中医学 心悸 怔忡 范畴,虚实夹杂证多见,临床证素调查显示,虚证以气虚㊁阴虚多见,实证以痰火㊁血瘀为多见[4-5]㊂目前,随着人们基金项目 北京市科技计划项目(No.Z191100006619071)作者单位 1.北京中医药大学东方医院(北京100078);2.北京市丰台社区卫生服务中心;3.北京中医药大学东直门医院通讯作者 崔晓云,E -mail :*******************引用信息 李颖妃,任雪玉,李星,等.清热化痰法治疗快速性心律失常的Meta 分析[J ].中西医结合心脑血管病杂志,2023,21(13):2356-2364.生活条件的改善,饮食结构的变化,痰热已成为人群中的常见病理因素[6],缪灿铭等[7]报道,阴虚痰热是快速性心律失常的基本证型㊂临床研究表明,清热化痰法治疗快速性心律失常具有一定疗效[8-9]㊂目前报道中关于益气养阴活血法治疗心律失常的多见[10-12],鲜见关于清热化痰法治疗心律失常的系统评价㊂本研究通过Meta 分析评价清热化痰法治疗快速性心律失常的有效性及安全性,以期为进一步提高中医临床疗效提供参考㊂1 资料与方法1.1 检索策略通过计算机检索7个中英文数据库㊂中文数据库包括中国知网(CNKI )㊁万方数据库㊁中国生物医学文献服务系统(SinoMed )㊁维普数据库(VIP );英文数据库包括PubMed ㊁EMbase ㊁the Cochrane Library ㊂检索时限为建库至2022年6月1日,检索语种为中文或英文㊂采用主题词与自由词结合的方式进行检索,以清热 清心 化痰 痰热 痰火 快速性心律失常心动过速 房早 室早 随机 tachyarrhythmia atrial premature tachycardia ventricular premature pre-excitation syndrome qingxin placebo 等为检索词,根据不同数据库调整检索策略㊂1.2纳入标准1)研究人群:临床明确诊断为快速性心律失常的病人,病人年龄㊁性别㊁病程㊁地域及合并疾病等不限㊂2)干预措施:治疗组单用清热化痰类中药治疗或联合西医基础治疗(西药㊁运动㊁饮食㊁心理干预等),疗程至少7d,中药给药方式为口服;对照组单用西医基础治疗㊂两组西医基础治疗应保持一致,药物种类及剂型不限㊂3)结局指标:24h心电图疗效㊁中医症状疗效㊁24h心电图室性期前收缩次数㊁24h心电图平均心室率㊁P波离散度㊁P波最大时限和不良事件㊂4)研究类型:为清热化痰法治疗快速性心律失常的随机对照试验,语言为中文或英文㊂1.3排除标准1)诊断不明确或无相关结局指标的研究;2)重复发表研究(保留数据结果最完整1篇);3)数据无法有效提取的研究;4)研究对象为恶性心律失常;5)研究对象合并严重肝肾功能不全㊁恶性肿瘤㊁急性心肌梗死㊁严重心力衰竭等疾病㊂1.4文献筛选与资料提取将通过检索获取的文献导入NoteExpress软件,软件查重后,由2位研究员严格按照纳入与排除标准筛选文献㊁资料提取,再交叉核对,若遇分歧通过协商或交由第3方协助裁定㊂数据提取内容包括第一作者及发表年份㊁受试者数量㊁年龄㊁干预措施㊁疗程㊁结局指标㊂1.5偏倚风险评价采用Cochrane Reviewers Handbook5.1.0偏倚风险评估工具[12],从研究随机序列生成和随机隐藏,病人㊁研究者和结局评价者盲法,不完整结局数据,选择性报告结局及其他偏倚来源等7个方面对纳入研究进行方法学质量评估㊂由2位研究者独立评价,完成后交叉核对,意见有分歧时通过讨论协商或交由第3方裁定㊂1.6统计学处理采用Cochrane协作网提供的RevMan5.4软件对纳入的文献进行Meta分析㊂二分类变量与连续型变量分别采用相对危险度(RR)㊁标准化均方差(SMD)及95%置信区间(95%CI)作为效应指标㊂采用I2判断异质性,若I2<50%,视为轻度异质性,采用固定效应模型进行Meta分析;若50%ɤI2<75%,视为中度异质性,采用随机效应模型进行Meta分析;若I2ȡ75%,则采用随机效应模型进行Meta分析,然后寻找异质性来源,对可能产生异质性的因素进行分析㊂对纳入文献大于10篇的结局指标采用漏斗图分析纳入文献的发表偏倚㊂2结果2.1文献检索结果按照检索策略进行计算机检索,初步得到248篇文献,最终纳入33篇文献[8-9,13-43],均为中文文献,文献检索流程及结果见图1㊂图1文献检索流程图2.2纳入研究的基本特征共纳入33项研究[8-9,13-43],涉及病人2413例,其中治疗组1215例,对照组1198例㊂各研究中治疗组与对照组病人年龄㊁性别等一般资料具有可比性,研究方法中均提及 随机 分组㊂试验最大疗程56d ,最小疗程14d ㊂13项[13,15,17,19-20,23,27-30,32-33,43]研究报道了24h 心电图疗效,25项[9,14-17,19-23,25,27-28,30-33,36-43]研究报道了中医症状疗效,15项[8,14,16-20,23-26,30,34-35,43]研究报道了24h 动态心电图室性期前收缩次数,6项[9,18,23-25,36]研究报道了24h 平均心室率,3项[20,39-40]研究报道了P 波离散度,3项[20,39-40]研究报道了最大P 波时限,18项[8-9,13-14,18-21,23-25,27,30,34-36,40,43]研究报道了不良事件㊂纳入研究的基本特征见表1㊂表1 纳入研究的基本特征纳入研究样本量(例) 治疗组对照组 年龄(岁) 治疗组对照组干预措施治疗组对照组疗程(d )结局指标王冕等[8]2020212358.56ʃ6.8260.17ʃ6.53西医常规治疗+黄连温胆汤西医常规治疗14③⑦苏宝连[9]2014303073.60ʃ9.0973.17ʃ8.52西医常规治疗+清热复脉汤西医常规治疗21②④⑦睢勇等[13]2019303043.7ʃ35.445.3ʃ31.6安神定悸膏酒石酸美托洛尔片14①⑦代洪绪等[14]2021303055.19ʃ8.9856.38ʃ9.21西医常规治疗+黄连温胆汤西医常规治疗28②③安静[15]2011212166.268.1西医常规治疗+黄连温胆汤西医常规治疗28①②曹杰[16]2018303063.20ʃ10.0462.37ʃ9.44西医常规治疗+加味黄连温胆汤西医常规治疗28②③⑦张锐等[17]2020303055.85ʃ7.7357.82ʃ7.50西医常规治疗+理气化痰宁心汤西医常规治疗28①②③刘倩[18]2022353561.91ʃ5.5360.48ʃ5.98西医常规治疗+连枣汤西医常规治疗14③④⑦张克清[19]2006333063.70ʃ10.8762.30ʃ10.36西医常规治疗+络脉疏通颗粒西医常规治疗+胺碘酮28①②③⑦包培荣等[20]20093933西医常规治疗+络脉舒通颗粒西医常规治疗+胺碘酮28①②③⑤⑥⑦赵海梅[21]2007313145.12ʃ7.7243.57ʃ8.63宁心安神方普罗帕酮28②⑦苏宝连等[22]20156060西医常规治疗+清热复脉汤西医常规治疗28②李行[23]2016303061.93ʃ9.5160.50ʃ9.96西医常规治疗+清热化痰安神方西医常规治疗28①②③④⑦陈婷等[24]2021434361.35ʃ6.3161.00ʃ6.00西药常规治疗+清热化痰汤西医常规治疗28③④⑦张静等[25]2021555060.52ʃ7.0361.19ʃ7.06西医常规治疗+清心化痰方西医常规治疗28②③④⑦李旭阳[26]2020434362.5ʃ3.562.3ʃ3.3西医常规治疗+生脉散合柴胡三参汤西医常规治疗28③曾文军等[27]2017404035.25ʃ3.7135.11ʃ3.65西医常规治疗+生脉陷胸汤西医常规治疗+美托洛尔/胺碘酮30①②⑦张莹莹[28]2020383838.9ʃ4.939.0ʃ5.1西医常规治疗+生脉陷胸汤西医常规治疗+美托洛尔/胺碘酮28①②刘丽[29]20164444西医常规治疗+生脉陷胸汤西医常规治疗28①刘杏[30]2015303063.77ʃ8.5462.73ʃ8.22西医常规治疗+生脉陷胸汤西医常规治疗+美托洛尔(倍他乐克)30①②③⑦(续表) 纳入研究样本量(例) 治疗组对照组 年龄(岁) 治疗组对照组干预措施 治疗组对照组疗程(d )结局指标郑锋生[31]2016373760.3ʃ4.262.6ʃ5.1西医常规治疗+生脉陷胸汤西医常规治疗+美托洛尔/胺碘酮28②陈永亮等[32]2012202037.2ʃ5.737.6ʃ6.3心理干预治疗+稳心解郁汤心理干预治疗+美托洛尔28①②朱智德等[33]2009303055.5ʃ5.756.7ʃ7.3西医常规治疗+心律灵汤西医常规治疗+胺碘酮28①②张晓晓[34]2019464563.43ʃ6.1863.39ʃ6.22西医常规治疗+养心祛痰汤西医常规治疗30③⑦何慧敏等[35]2019313062.53ʃ4.1762.97ʃ3.59西医常规治疗+柴胡陷胸汤西医常规治疗28③⑦缪光源[36]2021302966.0ʃ5.265.0ʃ7.5西医常规治疗加黄连温胆汤合酸枣仁汤加味西医常规治疗28②④⑦陈晖等[37]20123030西医常规治疗+清热复脉汤西医常规治疗21②王丽晓[38]2020586064.5ʃ2.365.1ʃ2.1西医常规治疗+清热复脉汤西医常规治疗30②王子珂等[39]20173030西医常规治疗+清心化痰汤西医常规治疗②⑤⑥王子珂[40]2018333359.76ʃ7.7359.97ʃ7.72西医常规治疗+清心化痰汤西医常规治疗28②⑤⑥⑦刘强等[41]20111511西医常规治疗+荷丹片西医常规治疗56②梁妍等[42]2014424271.31ʃ7.91西医常规治疗加菖琥温胆汤西医常规治疗加美托洛尔30②陈晖等[43]20143030西医常规治疗+清热复脉汤西医常规治疗21①②③⑦注:①为24h 心电图疗效;②为中医症状疗效;③为24h 心电图室性期前收缩次数;④为24h 心电图平均心室率;⑤为P 波离散度;⑥为最大P 波时限;⑦为不良事件㊂2.3 纳入研究偏倚风险评价纳入33项研究中,21项[8-9,13-14,16,18,22-25,27-28,30-32,34,36,38-39,41-42]报道了随机方法,其中14项[8,13-14,16,18,24-25,27-28,31-32,34,38,41]为随机数字表法,2项[30,36]为临床病例随机表,3项[9,22-23]为统计软件随机分组法,评价为低风险;2项[39,42]按照入院顺序分组,评价为高风险;其余研究仅有 随机 字样,未报告具体方法,评价为风险不清楚㊂33项研究均未提及随机隐藏方案,评价为风险不清楚㊂33项研究均未提及研究者及受试者盲法,未设置阳性药物或安慰剂模拟对照,治疗组与对照组干预措施差异较明显,认为未能实现盲法,结局可能会受此影响,评价为高风险㊂3项[9,22,37]研究报道了试验设计为单盲,考虑为结局评价者盲法,评价为低风险;2项[30,32]研究报道了试验未设盲,评价为高风险;其余研究均未报道结局评价者盲法,评价为风险不清楚㊂6项[20,25,34-35,38,41]研究治疗组和对照组例数不同,不确定是否存在数据缺失,评价为风险不清楚;2项[8,36]研究治疗组和对照组例数不同,但报道了研究退出情况,评价为低风险;其余研究两组例数相同,认为不存在数据缺失,评价为低风险㊂所有研究均未描述是否报告预设结局指标和其他偏倚可能,评价为风险不清楚㊂纳入研究偏倚风险评价见图2㊁图3㊂图2纳入研究方法学评估各条目的占比统计图图3纳入研究各条目评估情况统计图2.4Meta分析2.4.124h心电图疗效共13项[13,15,17,19-20,23,27-30,32-33,43]研究报道了24h 心电图有效率,异质性检验显示,各研究间存在轻度异质性(P=0.17,I2=27%),采用固定效应模型合并效应量,Meta分析结果显示,治疗组24h心电图疗效优于对照组,差异有统计学意义[RR=1.20,95%CI(1.11,1.29), P<0.00001],表明与单纯西医治疗相比,联合清热化痰中药治疗可进一步改善24h心电图疗效有效率㊂详见图4㊂图4两组24h心电图疗效比较的森林图2.4.2中医症状疗效共有25项[9,14-17,19-23,25,27-28,30-33,36-43]研究报道了中医症状疗效,异质性检验显示,各研究间存在轻度异质性(P=0.03,I2=38%),采用固定效应模型合并效应量,Meta分析结果显示,治疗组中医症状疗效优于对照组,差异具有统计学意义[RR=1.36,95%CI(1.29,1.43),P<0.00001],表明与单纯西医治疗相比,联合清热化痰中药治疗有利于快速性心律失常病人的症状改善㊂详见图5㊂图5两组中医症状疗效比较的森林图2.4.324h动态心电图室性期前收缩次数共有15项[8,14,16-20,23-26,30,34-35,43]研究报道了24h动态心电图室性期前收缩次数,其中张克清[19]报道的为24h动态心电图每小时平均室性期前收缩次数,因此未纳入分析㊂14项研究的异质性检验显示,各研究间存在重度异质性(P<0.00001,I2=97%),采用随机效应模型合并效应量,Meta分析结果显示,治疗组24h动态心电图室性期前收缩次数少于对照组,差异有统计学意义[SMD=-2.86,95%CI(-3.91,-1.81),P<0.00001],表明相较单纯西医治疗,联用清热化痰中药治疗能够进一步减少室性期前收缩次数㊂详见图6㊂由于研究间存在高度异质性,需要进一步分析寻找异质性来源㊂通过逐一剔除文献进行敏感性分析,异质性未见明显降低㊂根据样本量㊁疗程等进行亚组分析,各组内异质性仍较高㊂进一步分析异质性来源,阅读文献发现各研究无明显统计学异质性,但在具体用药方面有明显差异,因此,考虑其异质性主要为干预药物不同带来的临床异质性㊂图6两组24h动态心电图室性期前收缩次数比较的森林图2.4.424h平均心室率共有6项[9,18,23-25,36]研究报道了24h平均心室率,异质性检验显示,各研究间存在轻度异质性(P=0.11, I2=40%),采用固定效应模型合并效应量,Meta分析结果显示,治疗组24h平均心室率低对照组,差异具有统计学意义[SMD=-1.20,95%CI(-1.41,-1.00), P<0.00001],表明相较单纯西医治疗,联用清热化痰中药治疗能够进一步降低快速性心律失常病人的心室率㊂详见图7㊂图7两组24h平均心室率比较的森林图2.4.5P波离散度共有3项[20,39-40]研究报道了P波离散度,异质性检验显示研究间存在轻度异质性(P=0.19,I2= 39%),采用固定效应模型合并效应量,Meta分析结果显示,治疗组P波离散度低于对照组,差异具有统计学意义[SMD=-0.94,95%CI(-1.25,-0.63),P<0.00001],表明清热化痰法可降低心房颤动病人P波离散度,且优于单纯西医治疗㊂2.4.6最大P波时限共有3项[20,39-40]研究报道了最大P波时限,异质性检验显示,各研究间存在高度异质性(P<0.0001, I2=89%),采用随机效应模型合并效应量,Meta分析结果显示,两组最大P波时限比较差异无统计学意义[SMD=-0.49,95%CI(-1.43,-0.45),P=0.31],表明清热化痰法相较单纯西医治疗在降低心房颤动病人最大P波时限方面无明显差异㊂由于研究间存在高度异质性,需要进一步分析寻找异质性来源㊂通过逐一剔除文献进行敏感性分析,发现当剔除包培荣等[20]文献后,异质性显著降低(P=0.67,I2=0%),分析数据发现,该文献中治疗组与对照组P波最大时限比较差异无统计学意义(P>0.05),其余2篇文献治疗组与对照组的数据差异具有统计学意义(P<0.05),说明此研究为异质性来源,采用固定效应模型合并效应量,Meta分析结果显示,两组最大P波时限比较差异有统计学意义[SMD=-0.97,95%CI(-1.34,-0.60),P< 0.00001]㊂2.4.7不良事件发生率共有18项[8-9,13,16,18-21,23-25,27,30,34-36,40,43]研究报道了不良事件情况,其中8项[9,18-21,25,34-35]发生了不良事件,共计73例,治疗组20例,不良事件发生率为6.67%,包含17例胃肠道不适,1例乏力,2例皮疹;对照组53例,不良事件发生率为18.66%,包含10例心动过缓,3例传导阻滞,2例QT间期延长,2例肝功指标异常,1例甲状腺功能紊乱,25例胃肠道不适,2例乏力,5例头晕,1例头痛,2例咳嗽㊂异质性检验显示,各研究间存在轻度异质性(P=0.10,I2=41%),采用固定效应模型合并效应量,Meta分析结果显示,治疗组不良事件发生率低于对照组,差异有统计学意义[RR=0.37, 95%CI(0.23,0.60),P<0.0001],表明相较单纯西医治疗,联用清热化痰中药治疗的安全性更高㊂详见图8㊂图8两组不良事件发生率比较的森林图2.5发表偏倚采用漏斗图分析发表偏倚,24h心电图疗效㊁中医症状疗效㊁24h动态心电图室性期前收缩次数漏斗图的图形对称,各研究点在轴线两侧分布具有一定对称性,提示发表偏倚可能性较小㊂详见图9~图11㊂图924h 心电图疗效的漏斗图图10中医症状疗效的漏斗图图1124h动态心电图室性期前收缩次数的漏斗图3讨论快速性心律失常临床发病率较高[44],若不积极治疗,易引发心力衰竭㊁心源性猝死等疾病[3,45]㊂目前治疗以抗心律失常药物㊁射频消融等手段为主,但单纯西医治疗具有一定的促心律失常作用[46],且存在不良反应多㊁易复发等缺点[47]㊂中西医结合治疗快速性心律失常可以在一定程度上弥补西医治疗的不足[48]㊂快速性心律失常可归属于中医学 心悸 范畴㊂‘丹溪心法㊃惊悸怔忡“云: 时作时止者,痰因火动 ;唐容川‘血证论㊃怔忡“曰: 心中有痰者,痰入心中,阻其心气,是以心跳不安 ;‘医林绳墨“云: 又有心虚而痰郁,或耳闻大声,目击异物,心为之忤,是则为惊,乃痰因火动也 ㊂这些古籍文献均指出了痰热在心悸致病中的重要作用㊂痰热扰动心神,气血不通,发为心悸㊂因此,可以清热化痰为治则,使痰热去则心律平㊂本研究纳入清热化痰法治疗快速性心律失常的随机对照试验,包括黄连温胆汤㊁生脉陷胸汤等中药干预手段,从24h心电图疗效㊁中医症状疗效㊁24h动态心电图室性期前收缩次数㊁24h心电图平均心室率㊁P波离散度㊁最大P波时限和不良事件7个方面评价其有效性和安全性㊂Meta分析结果显示:清热化痰法治疗快速性心律失常较单用西医基础治疗临床疗效更佳,可明显改善病人临床症状㊁减少室性期前收缩频数㊁降低心室率和P波离散度,且不良反应发生率较低,具有较好的安全性㊂本研究所纳入研究共涉及21首方剂㊁59味中药,出现频次前10位的分别是黄连(15次)㊁半夏(15次)㊁甘草(13次)㊁竹茹(9次)㊁枳实(9次)㊁瓜蒌(8次)㊁茯苓(8次)㊁陈皮(8次)㊁甘松(7次)㊁酸枣仁(7次),其中频次最多的中药为黄连和半夏㊂黄连味苦㊁性寒,归心㊁肝㊁胆㊁大肠经,具有清热燥湿㊁泻火解毒之效,其主要成分小檗碱被证实具有广谱的抗心律失常作用,可通过减轻心肌细胞钙超载等抑制心律失常的发生[49]㊂临床上也有证据表明黄连素可有效治疗快速性心律失常,且相比传统西医治疗安全性更高[50]㊂半夏味辛,性温,归脾㊁胃经,功擅燥湿化痰,为治各种痰证要药,数据挖掘显示,治疗痰火扰心型心悸的古今医案中半夏出现频次最高[51],现代药理学亦表明,半夏具有明显的抗心律失常作用[52]㊂可见黄连㊁半夏为清热化痰法治疗快速性心律失常中的主药㊂此外,瓜蒌㊁竹茹功擅清热化痰宁心,亦为治疗痰热型心悸的主药;酸枣仁补心养血安神,配伍可弥补清热化痰药之燥性㊂甘草补虚养心,调和诸药,而枳实㊁陈皮㊁甘松皆入脾胃经,为理气药,可见应用清热化痰法治疗快速性心律失常时多佐以行气理气㊁调和脾胃之品,体现了 脾胃为生痰之源 和固护后天之本的治疗原则㊂本研究存在的局限性:纳入的研究对象病情分级㊁结局指标的测定㊁西医基础治疗的具体用药等不完全一致,存在一定的异质性,Meta分析结果存在偏倚可能;纳入文献存在质量偏低㊁样本量不足等问题,同时对于P波离散度㊁最大P波时限结局指标纳入文献较少,影响研究的可信度;研究均未进行长期随访,难以明确其长期疗效㊂综上所述,本研究通过对公开发表清热化痰法治疗快速性心律失常的随机对照试验进行Meta分析,结果表明,清热化痰法在治疗快速性心律失常方面具有较好的疗效和安全性㊂由于纳入研究的整体质量偏低㊁样本量小,研究结果仍需进一步证实,期待未来有更多设计严谨的大样本㊁多中心㊁长周期的随机对照试验为清热化痰法治疗快速性心律失常提供更充分的循证证据㊂参考文献:[1]黄宛.临床心电图学[M].北京:人民卫生出版社,2009:1-5.[2]王玉娟,李新,刘敏,等.2018 2020年2126例心律失常住院病例特征及预后研究[J].华南预防医学,2022,48(3):333-336. [3]SOSSALLA S,VOLLMANN D.Arrhythmia-induced cardiomyopathy[J].Deutsches Arzteblatt International,2018,115(19):335-341. [4]朱浩.早搏合并症中医证型规律性研究[J].现代中西医结合杂志,2008,17(18):2768-2769.[5]李颖.室性早搏的中医证候要素分布与治疗规律研究[D].北京:北京中医药大学,2018.[6]张安玲,丁元庆.痰热体质与痰热致病多样性机理探讨[J].中国中医基础医学杂志,2013,19(8):864-866.[7]缪灿铭,安辉,林凯旋.快速型心律失常中医证型的分布特点[J].亚太传统医药,2010,6(10):48-49.[8]王冕,刘勤社,郭颖强,等.黄连温胆加减方联用酒石酸美托洛尔治疗频发室性期前收缩(痰火扰心证)的临床研究[J].中国中医急症,2020,29(2):230-232.[9]苏宝连.清热复脉汤对痰火扰心型快速型心房颤动的影响[D].福州:福建中医药大学,2014.[10]盖亭伊,李学思,胡志希,等.基于Meta分析探讨益气养阴活血法治疗室性早搏的疗效[J].中医药临床杂志,2021,33(1):107-113.[11]耿冲,安冬青,洪军.益气养阴㊁活血通络法治疗糖尿病合并心律失常的Meta分析[J].中西医结合心脑血管病杂志,2021,19(22):3931-3935.[12]HIGGINS J P,ALTMAN D G,GØTZSCHE P C,et al.TheCochrane Collaboration's tool for assessing risk of bias inrandomised trials[J].BMJ,2011,343:d5928.[13]睢勇,么传为,时敏,等.安神定悸膏治疗快速型心律失常痰火扰心证的临床观察[J].中国民间疗法,2019,27(8):36-38. [14]代洪绪,翟文姬,项聿华.黄连温胆汤加减治疗冠心病室性期前收缩(痰火扰心型)的临床观察[J].中国民间疗法,2021,29(19):40-43.[15]安静.黄连温胆汤加味治疗痰火扰心型冠心病室性期前收缩的临床观察[J].中医药学报,2011,39(4):117-118.[16]曹杰.加味黄连温胆汤治疗高血压左心室肥厚所致的室性期前收缩(痰火扰心证)患者的临床疗效及对心率震荡的影响[D].成都:成都中医药大学,2018.[17]张锐,彭筱平.理气化痰宁心汤治疗痰火扰心型室性早搏疗效观察[J].山西中医,2022,38(1):20-22.[18]刘倩.连枣汤联合胺碘酮治疗快速心律失常痰热扰心证疗效观察[J].实用中医药杂志,2022,38(4):610-612.[19]张克清.络脉舒通颗粒剂治疗冠心病快速性心律失常的临床研究[D].济南:山东中医药大学,2006.[20]包培荣,赵浩,董晓斌,等.络脉舒通颗粒剂治疗冠心病快速性心律失常的临床研究[J].环球中医药,2009,2(2):85-89. [21]赵海梅.宁心安神方治疗室性期前收缩31例临床观察[J].医学综述,2007,13(23):1890-1891.[22]苏宝连,陈晖.清热复脉汤对痰热型快速型房颤hs-CRP及APN的影响[J].内蒙古中医药,2015,34(1):9-10.[23]李行.清热化痰安神方治疗痰热扰心型快速性心律失常的临床研究[D].济南:山东中医药大学,2016.[24]陈婷,陈晓勤,唐丽萍,等.清热化痰汤对高血压左心室肥厚所致的室性期前收缩患者的临床观察[J].山西医药杂志,2021,50(23):3230-3234.[25]张静,刘盈莹.清心化痰方配合琥珀酸美托洛尔对室性早搏患者超声心动图㊁ECG指标的影响[J].四川中医,2021,39(5):73-77.[26]李旭阳.生脉散合柴胡三参汤对痰热夹瘀型稳定型心绞痛室性期前收缩病人QT离散度和心率变异性的影响[J].中西医结合心脑血管病杂志,2020,18(13):2136-2140.[27]曾文军,李海涛,高彦文.生脉陷胸汤联合西药治疗冠心病室性期前收缩气虚痰热证疗效及对心功能的影响[J].现代中西医结合杂志,2017,26(20):2192-2194.[28]张莹莹.生脉陷胸汤联合西药治疗冠心病室性期前收缩气虚痰热证疗效及对心功能的影响[J].数理医药学杂志,2020,33(10):1494-1496.[29]刘丽.生脉陷胸汤治疗冠心病室性期前收缩气虚痰热证的临床观察[J].人人健康,2016(16):131.[30]刘杏.生脉陷胸汤治疗冠心病室性期前收缩气虚痰热证的临床观察[D].长沙:湖南中医药大学,2015.[31]郑锋生.生脉陷胸汤治疗冠心病室性期前收缩气虚痰热证的临床观察[J].中外医学研究,2016,14(32):119-120.[32]陈永亮,刘建和,周小明,等.稳心解郁汤治疗功能性室性期前收缩伴抑郁症40例临床观察[J].中医药导报,2012,18(8):45-48. [33]朱智德,李成林,王庆高.心律灵汤对冠心病快速性心律失常的临床疗效[J].吉林中医药,2009,29(7):589-590.[34]张晓晓.中西医结合治疗痰火扰心型频发室性早搏46例临床观察[J].中国民族民间医药,2019,28(13):120-122.[35]何慧敏,谢海波.中西医结合治疗痰热瘀阻型冠心病合并室性期前收缩31例总结[J].湖南中医杂志,2019,35(6):4-6;18. [36]缪光源.黄连温胆汤合酸枣仁汤加味治疗阵发性心房颤动(痰火扰心证)的临床疗效观察[D].成都:成都中医药大学,2021. [37]陈晖,蔡少杭.清热复脉汤治疗痰热扰心型房颤的临床观察[J].中国老年保健医学,2012,10(4):64-65.[38]王丽晓.清热复脉汤治疗痰热扰心型房颤的临床效果观察[J].中医临床研究,2020,12(29):53-55.[39]王子珂,唐可清,王师花,等.清心化痰方预防阵发性房颤痰火扰心型的临床观察[J].世界最新医学信息文摘,2017,17(87):36-38.[40]王子珂.清心化痰方预防阵发性房颤痰热扰心型的临床研究[D].济南:山东中医药大学,2018.[41]刘强,徐智,毛威.中西医结合治疗非瓣膜性房颤疗效观察[J].北京中医药,2011,30(9):649-652.[42]梁妍,吴若晨.菖琥温胆汤治疗阵发性房颤痰火扰心型临床观察[J].陕西中医学院学报,2014,37(4):42-43.[43]陈晖,苏宝连.清热复脉汤联合美托洛尔治疗室性期前收缩的疗效观察[J].承德医学院学报,2014,31(5):384-386.[44]陈伟伟,高润霖,刘力生,等.‘中国心血管病报告2014“概要[J].中国循环杂志,2015,30(7):617-622.[45]HASSETT C E,CHO S M,SUAREZ J I.Tachyarrhythmias andneurologic complications[J].Handbook of Clinical Neurology,2021,177:151-162.[46]RUSKIN J N.The cardiac arrhythmia suppression trial(CAST)[J].The New England Journal of Medicine,1989,321(6):386-388. [47]抗心律失常药物治疗专题组.抗心律失常药物治疗建议[J].中华心血管病杂志,2001,29(6):323-336.[48]才晓晨,杨雨民.中医疗法在快速型心律失常治疗中的应用[J].山西医药杂志,2022,51(6):651-654.[49]CAI Y,XIN Q Q,LU J J,et al.A new therapeutic candidate forcardiovascular diseases:berberine[J].Frontiers in Pharmacology,2021,12:631100.[50]郭环宇.黄连素治疗室性期前收缩效果的系统评价[J].临床医学,2015,35(8):15-19.[51]毕秀敏.基于数据挖掘心悸痰火扰心证证治规律的研究[D].济南:山东中医药大学,2015.[52]张明发,沈雅琴.半夏及其炮制品对神经和循环系统的药理作用研究进展[J].抗感染药学,2017,14(9):1643-1648.(收稿日期:2022-09-20)(本文编辑郭怀印)。
ASTM标准.D3933
anodic process and is suitable for use as a cathode.Tanks should be equipped with a surface skimming device to remove surface contamination,afiltering system,and an agitation system for mixing the tank contents.5.5.4Terminals for electrical current shall be designed and positioned such that parts cannot be“burned.”5.5.5The electrical system used during a single-rack anodic process shall be adequate for producing10-V dc and maintain-ing any set voltage within61-V dc.5.5.6The electrical system used during a multiple-rack process shall be adequate for producing15-V dc and maintain-ing any set voltage within61-V dc.5.5.7Rinse tanks should be placed adjacent to processing tanks in such a manner that parts can be easily and quickly moved from one solution to another so that the parts will not become dry during successive steps of the process.5.5.8Incoming solution makeup water and rinse water shall contain not more than the“recommended upper limit”for fluoride and not more than the“highest desirable level”of dissolved chemicals based on American Chemical Society standards for deionized or distilled water,or both(1.7ppm fluoride,500ppm total dissolved solids,etc.)except that: 5.5.8.1Chloride shall not exceed25ppm.5.5.8.2pH shall be between5.5and8.0.N OTE1—Most regionally distributed potable water will meet these requirements.5.5.8.3If the above requirements cannot be met,the incom-ing water shall be deionized and maintained within the following limits:(a)Total dissolved solids shall not exceed150ppm.(b)pH shall be between5.5and8.0.6.Manufacturing6.1Parts shall be racked or suspended from frames such that they all havefirm,reliable electrical contact with the anode connections,so that the parts do not contact each other and that rinse water contacts all surfaces and drains freely.6.2Take the utmost care that the parts are not touched at any time during the entire process,such as touching of adjacent parts,the rack or supporting frame,or any other item,since the surfaces and the phosphoric acid anodic coating are susceptible to contamination or physical damage prior to the application and cure of the primer.6.3If it becomes necessary to handle or touch parts,clean white gloves should be used and contact should be limited to surfaces not to be adhesively bonded.6.4If parts become contaminated,either prior to or subse-quent to anodizing,corrective action shall be accomplished by reprocessing,beginning with alkaline cleaning.6.5To ensure solution homogeneity,agitate immediately prior to process use and after every addition of water or chemicals.N OTE2—Caution:Solutions used in this process are corrosive and toxic.Avoid breathing solution mists or vapors.Do not allow solutions to get on the eyes,on the skin,or on clothing.6.5.1Consult Industrial Hygiene for safety precautions. 6.6Control the time interval between withdrawal from processing solutions and rinsing so that there is no drying of the solution on the details.6.7Parts must be water-break-free following rinsing after alkaline cleaning,after deoxidizing,and after anodizing.7.Procedure7.1Perform the surface preparation process in a continuous operation as detailed in theflow chart,Fig.1.7.2Complete all fabrication processes,inspections,prefit, etc.before the start of the preparation cycle.7.3Complete all“hand work”before solvent cleaning. 7.4Once racked for alkaline cleaning,parts shall not be touched by anything except the applicable processing solution and rinse waters,until the parts are dried after primer applica-tion(5.2).7.5The“wet”processing steps,from alkaline cleaning through drying after phosphoric acid anodizing,should be performed in one continuous uninterrupted sequence of pro-cesses,with the parts not drying at any time until the oven drying after the rinse following phosphoric acid anodizing.7.5.1Should the parts become delayed prior to anodizing during this wet processing,hold the parts in the applicable rinse tank.7.5.2There shall be no holding of parts in the processing sequencing after anodizing.7.6Should the electric current fail or otherwise be inter-rupted during the phosphoric acid anodizing,anodizing may be continued for an additional20to25min,if the potential can be reestablished within2min.If the potential cannot be reestab-lished within2min,then rinse and reprocess starting with the deoxidizer.7.7Apply adhesive primer within72h after oven drying following the phosphoric acid anodizing.Parts should be held in a limited contamination area prior to priming and should not be handled(5.2).However,it is most desirable to prime parts as soon as possible to minimize the possibility of inadvertent contamination.7.8Rinse Requirements:7.8.1Rinsing may be by spray or immersion.Single spray or double counter-current immersion rinsing are commonly used.7.8.2Feed water to rinse operations may be direct from source water in accordance with5.5.8or from any subsequent rinse operation,except that acid rinse waters shall not be fed into alkaline rinse waters.7.8.3Final immersion rinse water after alkaline cleaning, deoxidizing,and anodizing shall not exceed1000ppm total dissolved solids above that of the incoming rinse water(5.5.8). When double independent feed or double-counter current immersion rinse is used,thefirst rinse after anodizing shall not exceed5000ppm,and the time infirst rinse shall not exceed2 min from time of starting immersion to complete withdrawal. Immersion rinse tank(s)used for anodize rinse shall be used for anodize rinse only.7.8.4Agitate immersion rinse tanks during rinsing to aid rinsing and prevent stratification.7.8.5Allowable concentration limits may exceed normal control limits for thefirst30s ofrinsing.8.Quality Assurance Provisions8.1Part Inspection During Processing —Parts should beinspected during the continuous processing,as noted in Fig.1.8.1.1Water-Break Inspection :8.1.1.1On removal from rinses,cleaned parts shall passwater-break inspection as indicated by maintenance of acontinuous film of water on the surface for not less than 30s.8.1.1.2Parts failing water-break inspection shall be repro-cessed through the applicable cleaning operation until thesurface can maintain the continuous film of water.8.1.2Phosphoric Acid Anodic Coating Inspection :8.1.2.1After anodizing and during rinsing and draining,there shall be no evidence of a water break.There shall be nostains,streaks,discoloration,or residue on surfaces of anod-ized parts after rinsing (5.5.8).8.1.2.2The anodic coating should be continuous,smooth,uniform in appearance,and when examined visually,should be free from discontinuities,such as scratches,breaks,burned areas,and areas that are not anodized.Small irregularities at points of electrical contact are acceptable.If practical,put electrical contacts in areas that will not be bended or in a trim tab that will be removed from the finished part.8.1.2.3The anodized surfaces shall pass the following polarized color change examination:(a )Illuminate the surface at a low angle using any white or near-white lamp.(b )Observe the reflected light at a low angle (0–10°)by placing a light-polarizing filter either between the light and the surface or between the surface and the observer.(c )An anodized surface shall display an“interference color,”which should change to another color when the filter is rotated 90°(for example,from purple to yellow green).(d )Rotation of the filter is necessary since some colorsmayN OTE 1—Experience has proved nonsilicated cleaners to be preferable when reprocessing might be involved.N OTE 2—A single-rack facility is one with a single anode rack between each set of cathodes.A multi-rack has two or three anode racks between each set of cathodes.FIG.1Process FlowChartbe pale and not discernible until another color is observed byrotation of the filter.(e )Different pieces of aluminum alloy anodized under thesame loads may show different colors through the polarizingfilter due to differences in alloy composition,metallurgicalcondition,and specific anodizing conditions at different posi-tions in the tank during anodizing.The colors most frequentlyseen are purple,yellow,blue,and green hues.(f )All surfaces to be adhesively bonded shall exhibit thecolor changes noted above.Abrupt differences in color of localareas,except at electrical contact points,from the backgroundcolor are not acceptable.Causes of such differences may befingerprints,abrasion,or other contamination.N OTE 3—The color change may be difficult or impossible to detect onsurfaces that have been etched by marking ink,roughened by machining,sanding,deburring,etc.,or uninspectable because of shape.In these cases,the presence of color on tool tabs or on the opposite surface,or onundisturbed surfaces,may be evidence that the surface is acceptablyanodized.(g )Parts not passing the polarized color change test shall berejected or reprocessed starting with the alkaline cleaning step.8.2Makeup and Process Control of Processing Solutions :8.2.1Alkaline Cleaner —Makeup,replenishment,and re-placement of alkaline cleaning solutions should be developedto produce effective processing.8.2.2Deoxidizer —Makeup,replenishment,and replace-ment of deoxidizer should be defined to produce effectiveprocessing.The sulfuric acid-sodium dichromate etch (MethodG for Aluminum Alloy in Practice D 2651)has been aneffective etch.8.2.3Phosphoric Acid Anodizing Solution :8.2.3.1Initial Tank Makeup(a )Fill the tank approximately three-quarters full of cleanwater (5.5.8).(b )Agitate the water and slowly add 7parts of phosphoricacid (A–A–55820,Class I,85%phosphoric acid)for each 100parts of final solution.(c )Bring mixture to operating level of the tank with cleanwater (5.5.8)and mix thoroughly.8.2.3.2Maintenance —Maintain the phosphoric acid con-centration and operating conditions as specified in Table 1.Thelevel of solution in the tank should be within the effectiveoperating level for the surface skimming equipment.8.2.3.3Qualification of Phosphoric Acid AnodizingSolution —Each freshly mixed tank of phosphoric acid anod-izing solution shall be qualified before being used for process-ing production parts.Qualification should be accomplished by processing and adhesive bonding not less than five control specimens required by the applicable adhesive bonding speci-fication.These control specimens should exceed the minimum strength and durability requirements.8.2.3.4Determination of Phosphoric Acid Concentration —Titrate a 10-mL sample of anodizing solution to a pH of 4.2with 1.0N NaOH with a correction for aluminum e the following formula:oz/gal H 3PO 451.33N a OH normality m L N a OH 20.7~g/L of A 1!(1)g/L H 3PO 459.83N a OH normality m LN a OH 20.7~g/L of A 1!(a )The aluminum content is not controlled;however,the aluminum content must be known to calculate the H 3PO 4concentration.(b )The aluminum concentration should be determined using a method confirmed by analysis of solutions of known alumi-num concentration (atomic absorption utilized to an accuracy of 5%has proven adequate).8.2.4Replenishment and Replacement of Solutions —Tank solutions shall be replenished to maintain the required concen-trations,and replaced when the solutions cannot be adequately controlled or when the solutions become contaminated to the point of no longer processing parts satisfactorily.9.Precision and Bias 9.1Precision and bias information does not exist for this guide because resources necessary for round-robin testing have not been forthcoming.9.2The precision and bias of this guide are a function of the adhesive system,surface preparation,substrate,test tempera-ture,and other factors related to test apparatus,laboratory and operator variabilities.Precision shall be reported in terms of the standard deviation of the data and the standard error of the mean.10.Keywords 10.1aluminum adhesive bonding;anodize;phosphoric acid;surface preparationThe American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,100Barr Harbor Drive,West Conshohocken,PA 19428.TABLE 1Phosphoric Acid Anodizing Solution Material/Operation Range Phosphoric acid,85%9–12weight %Temperature 19–25°C (67–77°F)Voltage,d-c 9–11(single rack)14–16(multi-rack)Anodizing time 20–25min。
TPS2393A资料
ORDERING INFORMATIONFigure 1. Live Insertion Event − V IN = −48 V EN (5 V/div)V DRAIN (20 V/div)CONTACT BOUNCEI LOAD(500 mA/div)C IRAMP = 3900pFC FLT = 0.1 µF C LOAD = 50 µFt − Time − 1 ms / div Figure 2. Live Insertion Event − V IN = −70 Vt − Time − 2.5 ms / divEN (5 V/div)V DRAIN (50 V/div)CONTACT BOUNCEI LOAD(500 mA/div)C LOAD = 100 µFFigure 3. Turn-On Into Shorted Load FLTTIME (2 V/div)V DRAIN (50 V/div)FAULT (20 V/div)I LOAD (1 A/div)C IRAMP = 3900pFC FLT = 0.047 µFt − Time − 1 ms / divFigure 4. UVLO Protection, Supply RisingRTN (5 V/div)GATE (5 V/div)C LOAD = 50µFV UVLO_Lt − Time − 5 ms / divFigure 5. UVLO Protection, Supply Falling RTN (5 V/div)GATE (5 V/div)V UVLO_HC LOAD = 50 µF R LOAD = 1 k Ωt − Time − 5 ms / divFigure 6. Insertion/Extraction Detectiont − Time − 1 ms / divRAMP (2 V/div.)Insertion DelayExtraction Delay INSB (5 V/div.)VDRAIN (20V/div.)Figure 7. Load Current Ramp Profiles C FLT = 0.33 µF C LOAD = 600 µFIRAMP (2 V/div)IRAMP 3900 pFI LOAD(500 mA/div)C IRAMP = .022 µFC IRAMP = .056 µt − Time − 10 ms / divFigure 8. Fault Retry Operationt − Time − 50 ms / divI LOAD (1 A/div)V DRAIN (50 V/div)FLTTIME (2 V/div)C IRAMP = 3900 pFC FLT = 0.047 µF C LOAD = 100 µF R LOAD = 12.5 ΩFAULT (50 V/div)PG (50 V/div)Figure 9. Fault Recovery (Large Scale View)t − Time − 50 ms / divI LOAD (1 A/div)V DRAIN (50 V/div)FLTTIME (2 V/div)C IRAMP = 3900 pF C FLT = 0.047 µF C LOAD = 100 µFFAULT (50 V/div)PG (50 V/div)Figure 10. Fault Recovery − Expanded Viewt − Time − 1 ms / divC IRAMP = 3900 pF C FLT = 0.047 µF C LOAD = 100 µFI LOAD (1 A/div)V DRAIN (50 V/div)FAULT (50 V/div)PG (50 V/div)FLTTIME (2 V/div)Figure 11. PG Output Timing, Voltage Qualified t − Time − 1 ms / divC IRAMP = 3900 pF C LOAD = 220 µFIRAMP (2 V/div)V DRAIN (20 V/div)PG (50 V/div)Figure 12. PG Output Timing, Current QualifiedC IRAMP = 6800 pF C LOAD = 50 µFIRAMP (2 V/div)V DRAIN (20 V/div)t − Time − 1 ms / divPG (50 V/div)V TH_PGPACKAGING INFORMATIONOrderable Device Status (1)Package Type Package Drawing Pins Package Qty Eco Plan (2)Lead/Ball Finish MSL Peak Temp (3)TPS2393APW ACTIVE TSSOP PW 1490Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS2393APWG4ACTIVE TSSOP PW 1490Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS2393APWR ACTIVE TSSOP PW 142000Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS2393APWRG4ACTIVETSSOPPW142000Green (RoHS &no Sb/Br)CU NIPDAULevel-1-260C-UNLIM(1)The marketing status values are defined as follows:ACTIVE:Product device recommended for new designs.LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.PREVIEW:Device has been announced but is not in production.Samples may or may not be available.OBSOLETE:TI has discontinued the production of the device.(2)Eco Plan -The planned eco-friendly classification:Pb-Free (RoHS),Pb-Free (RoHS Exempt),or Green (RoHS &no Sb/Br)-please check /productcontent for the latest availability information and additional product content details.TBD:The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS):TI's terms "Lead-Free"or "Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all 6substances,including the requirement that lead not exceed 0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt):This component has a RoHS exemption for either 1)lead-based flip-chip solder bumps used between the die and package,or 2)lead-based die adhesive used between the die and leadframe.The component is otherwise considered Pb-Free (RoHS compatible)as defined above.Green (RoHS &no Sb/Br):TI defines "Green"to mean Pb-Free (RoHS compatible),and free of Bromine (Br)and Antimony (Sb)based flame retardants (Br or Sb do not exceed 0.1%by weight in homogeneous material)(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications,and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge andbelief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annual basis.PACKAGE OPTION ADDENDUM16-Mar-2007TAPE AND REEL INFORMATION*All dimensions are nominalDevicePackage Type Package Drawing Pins SPQReel Diameter (mm)Reel Width W1(mm)A0(mm)B0(mm)K0(mm)P1(mm)W (mm)Pin1Quadrant TPS2393APWR TSSOPPW142000330.012.47.0 5.6 1.68.012.0Q1*All dimensions are nominalDevice Package Type Package Drawing Pins SPQ Length(mm)Width(mm)Height(mm) TPS2393APWR TSSOP PW142000346.0346.029.0IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements,improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right, or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use any non-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements.Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiersAudioData Converters AutomotiveDSP BroadbandClocks and Timers Digital ControlInterface MedicalLogic MilitaryPower Mgmt Optical NetworkingMicrocontrollers SecurityRFID TelephonyRF/IF and ZigBee®Solutions Video&ImagingWirelessMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2008,Texas Instruments Incorporated元器件交易网。
PC3931C-12CH资料
20 Amp Minature PCB P ower RelayFEATURES20 Amp contact capacity1 Form A, 1Form B & 1 form C contact forms available 10 mm creepage distance betw een coil and contacts 4 KV dielectric strength betwee n coil and contacts Sensitive version available Meets UL 873 spacing PC393Load Type General Use Motor 16 Amps @ 120 VAC, 240 VAC & 24 VDC All Forms UL/CUR RATINGSCHARACTERISTICSOperate Time 15 ms. Max.Release Time Insulation Resistance 5 ms. Max.1,000 megohms min, at 500VDC, 50%RH Dielectric Strength 5000 Vrms, 1 min. between coil and contacts 1000 Vrms, 1 min. between open contacts Shock Resistance 10 g, 11ms, functional; 100 g, destructive Vibration Resistance DA 1.5 mm, 10 - 55 HzPower Consumption 0.72 Watts for standard coil, 0.55 Watts for sens itive coil Ambient Temperature Range -40 to 70 C, -40 to 130 C storage Weight18.5 grams approx.1 HP @ 240VAC Sales: Call Toll Free (888)997-3933 Fax (818) 342-5296 email: pickerwest@ URL: 3220 Commander Drive, Suite 102, Carrollton, T exas 75006PC393 Rev B 3-25-04PAGE 1TV-5 RatingCONTACT DATAMaterialInitial Contact Resistance Service LifeMechanical ElectricalAgCdO (Silver Cadmium Oxide)50 milliohms max @ 1A, 6VDC 1 X 1071 X 105Operations OperationsFile # E93379All ContactsResistive 20 Amps @ 120 VAC, 277 VAC & 24 VDC ORDERING INFORMATIONExample:PC393ModelSSensitivity-1CCoil Voltage DC: 3 to 24 volts -HNil: Standard: .72 W EnclosureS: Sealed; C: Dust Cover -12H; Sensitive: .53 WContact Form 1A, 1B or 1CTV RatingTV-5Sealed, immersion cleanablePC393PC393COIL DATASales: Call Toll Free (888) 997-3933 F ax (818) 342-5296 email: pickerwest@sbc URL: 3220 Commander Drive, Suite 102, Car rollton, Texas 75006PAGE 2(29.0)1.142(26.3)1.04(13.0).512(4.0).157 Typ.Tolerances +.010 unless otherwise notedNotes:Contact Form C shownOn Contact Forms A & B Unused Pins are Omitte dDimensions in Inches (millimet ers)Side ViewEnd ViewBottom View PC Board LayoutWiring Diagram。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Data Sheet 26301.100†The A3933SEQ is a three-phase MOSFET controller for use with bipolar brushless dc motors. It drives all n-channel external power FETs, allowing system cost savings and minimizing r (DS)on power loss.The high-side drive block is implemented with bootstrap capacitors at each output to provide the floating positive supply for the gate drive.The high-side circuitry also employs a unique “intelligent” FETmonitoring circuit that ensures the gate voltages are at the proper levels before turn-on and during the ON cycle. This device is targeted for applications with motor supplies from 12 V to 28 V.Internal fixed off-time PWM current-control circuitry can be used to regulate the maximum load current to a desired value. The peak load-current limit is set by the user’s selection of an input reference voltage and external sensing resistor. The fixed off-time pulse duration is set by a user-selected external RC timing network.A power-loss braking circuit brakes the motor on an under-voltage condition. The device is configured to either coast or dynamically brake the motor when this occurs.The A3933SEQ is supplied in a 32-lead rectangular (9 x 7) plasticchip carrier (quad pack) for minimum-area, surface-mount applica-tions.3933FEATURES AND BENEFITSI Drives External N-Channel FETs I Intelligent High-Side Gate DriveI Selectable Coast or Dynamic Brake on Power Down I Adjustable Dead Time for Cross-Conduction Protection I Selectable Fast or Slow Current-Decay Modes I Internal PWM Peak Current Control I Reset/Coast InputI 120° Hall Commutation with Internal Pullup I Internal 5-V RegulatorI Low-Side Synchronous Rectification I Direction ControlI PWM Speed-Control Input I Fault-Diagnostic Output IUnder-Voltage ProtectionTHREE-PHASE POWER MOSFET CONTROLLER115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-********THREE-PHASE POWER MOSFET CONTROLLERCopyright © 1999, Allegro MicroSystems, Inc.Functional Block DiagramRECOMMENDED OPERATING CONDITIONSSupply Voltage, V BB ...................................... 15 V to 28 Vor, if V BB = V CCOUT ................................... 12 V ±10%Logic Input Voltage Range, V IN .............. -0.3 V to +4.8 V Sense Voltage Range, V SENSE ........................ -1 V to +1 V RC Resistance.......................................... 10 k Ω to 100 k ΩPWM Frequency, f PWM ....................... 20 kHz to 100 kHzLOW-SIDE Dwg. FP-045V 1 OF 3 HIGH-SIDE DRIVERSTO 1 OF 3MOTOR PHASES TO LCAP3933THREE-PHASE POWER MOSFET CONTROLLERELECTRICAL SPECIFICATIONS at T A = 25°C, V BB = V CCOUT = 12 V, C load = 1000 pF, C boot = 0.047 µF (unless noted otherwise).LimitsParameterSymbolConditionsMinTypMaxUnitsSupply CurrentQuiescent Current I BB RESET low, f PWM = 40 kHz –1619mA RESET high–1517mA Reference Voltage V LCAP4.755.0 5.25V Ref. Volt. Load Regulation ∆V LCAP(∆ILCAP)I LCAP = 0 to -2 mA –1025mV Output VoltageV CCOUTV BB = 28 V10.81213.2V Output Voltage Regulation∆V CCOUT(∆ICCOUT)V BB = 28 V, I CCOUT = 0 to -10 mA––25mV Digital Logic LevelsLogic Input Voltage V IH 2.0––V V IL ––0.8V Logic Input CurrentI IH V IH = 2 V –<1.010µA I ILV IL = 0.8 V-70–-130µA Gate DriveLow-Side Output Voltage V GLxH 9.510.511.5V V GLxL I GLx = 1 mA––0.30V High-Side Output Voltage V GHxH 9.010.511.5V V GHxL I GHx = 1 mA ––0.25V Low-Side Output t rGLx 1 V to 8 V –50–ns Switching Time t fGLx 8 V to 1 V –40–ns High-Side Output t rGHx 1 V to 8 V –100–ns Switching Time t fGHx 8 V to 1 V –100–ns DEAD Timet DEADI DEAD = 10 µA –3000–ns (Source OFF to Sink ON)I DEAD = 215 µA –180–nsContinued —NOTES: 1.Typical Data is for design information only.2.Negative current is defined as coming out of (sourcing) the specified device terminal.115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-50003933THREE-PHASE POWER MOSFET CONTROLLERELECTRICAL SPECIFICATIONS at T A = 25°C, V BB = V CCOUT = 12 V, C load = 0.001 µF, C boot = 0.047 µF (unless noted otherwise), continued.LimitsParameterSymbolConditions MinTypMaxUnitsBootstrap CapacitorBootstrap Charge Current I Cx 50100150mA Bootstrap Output Voltage V Cx Reference Sx9.510.511.5V Leakage CurrentI Cx High side switched high, Sx = V BB–1520µA Current LimitOffset Voltage V io –0±5.0mV Input bias current I SENSE ––-1.0µA RC Charge Current I RC 8509451040µA RC Voltage Threshold V RCL 1.0 1.1 1.2V V RCH 2.73.0 3.2V PWM frequency Rangef PWM Operating 20–100kHz Protection CircuitryUndervoltage Threshold UVLO Increasing V BB 9.710.210.7V Decreasing V BB 9.35–10.35V Boot-Strap Capacitor Volt.V CxSx V BB = 12 V 9.5––V High-Side Gate-Source Volt.V GHxSx – 6.3–V Fault Output VoltageV FAULT I O = 1 mA––0.8V Brake FunctionBrake Cap. Supply Current I BRKCAP V BB = 8 V, BRKSEL ≥ 2 V –30–µA Low-Side Gate VoltageV GLxHV BB = 0, BRKCAP = 8 V–6.6–VNOTES: 1.Typical Data is for design information only.2.Negative current is defined as coming out of (sourcing) the specified device terminal.3933THREE-PHASE POWER MOSFET CONTROLLERTerminalName1PGND 2RESET 3GLC 4SC 5GHC 6CC 7GLB 8SB 9GHB 10CB 11GLA 12SA 13GHA 14CA 15V CCOUT 16LCAP 17FAULT 18MODE 19V BB 20H121H322H223DIR 24BRAKE 25BRKCAP 26BRKSEL 27PWM 28RC 29SENSE 30REF 31DEAD 32AGNDRESET — A logic input used to enable the device, internally pulled up to V LCAP (+5 V). A logic HIGH will disable the device and force all gate drivers to 0 V, coasting the motor. A logic LOW allows the gate drive to follow commutation logic.This input overrides BRAKE.GLA/GLB/GLC — Low-side, gate-drive outputs for external NMOS drivers. External series-gate resistors (as close aspossible to the NMOS gate) can be used to control the slew rate seen at the power-driver gate, thereby controlling the di/dt and dv/dt of the SA/SB/SC outputs. Each output is designed and specified to drive a 1000 pF load with a rise time of 50 ns.SA/SB/SC — Directly connected to the motor, these terminals sense the voltages switched across the load. These terminals are also connected to the negative side of the bootstrap capaci-tors and are the negative supply connections for the floating high-side drive.GHA/GHB/GHC — High-side, gate-drive outputs for external NMOS drivers. External series-gate resistors (as close aspossible to the NMOS gate) can be used to control the slew rate seen at the power-driver gate, thereby controlling the di/dt and dv/dt of the SA/SB/SC outputs. Each output is designed and specified to drive a 1000 pF load with a rise time of 100 ns.CA/CB/CC — High-side connections for the bootstrap capaci-tors, positive supply for high-side gate drive. The bootstrap capacitor is charged to approximately V CCOUT when theassociated output SA/SB/SC terminal is low. When the output swings high, the voltage on this terminal rises with the output to provide the boosted gate voltage needed for n-channel power FETs.Terminal Descriptionscontinued next page115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-50003933THREE-PHASE POWER MOSFET CONTROLLERFAULT — Open-drain output to indicate fault condition; will go active high for any of the following:1 – invalid HALL input code,2 – high-side, gate-source voltage less than 7 V,3 – bootstrap capacitor not sufficiently charged, or4 – under-voltage condition detected at V CCOUT .The fault state for gate-source and bootstrap monitors are cleared at each commutation. If the motor has stalled, then the fault can only be cleared by toggling the RESET terminal or power-up sequence.MODE — A logic input to set current-decay method, internally pulled up to V LCAP (+5 V). When in slow-decay mode (logic HIGH), only the high-side FET is switched open during a PWM OFF cycle. The fast-decay mode (logic LOW) switches both the source and sink FETs.H1/H2/H3 — Hall-sensor inputs; internally pulled up to V LCAP (+5 V). Configured for 120° electrical spacing.DIR — A logic input to reverse rotation, see commutation logic table. Internally pulled up to V LCAP (+5 V).BRAKE — A logic input to short out the motor windings for a braking function. A logic HIGH will turn ON the low-side FETs, turn OFF the high-side FETs. Internally pulled up to V LCAP (+5 V). The braking torque applied will depend on the speed.BRKCAP — Connection for reservoir capacitor. This terminal is used to provide a positive power supply for the sink-drive outputs for a power-down condition. This will allow predict-able braking, if desired. A blocking diode to V CCOUT is re-quired. A 4.7 µF capacitor will provide 6.5 V gate drive for 300 ms. If a power-down braking option is not needed(BRKSEL = LOW) then this terminal should be tied to V CCOUT .BRKSEL — A logic input to enable/disable braking on power-down condition. Internally pulled up to V LCAP (+5 V). If held low, the motor will coast on a power-down condition.PWM — Speed control input, internally pulled up to V LCAP(+5 V). A logic LOW turns OFF all drivers, a logic HIGH will turn ON selected drivers as determined by H1/H2/H3 input logic. Holding the terminal high allows speed/torque control solely by the current-limit circuit via REF analog voltage command.RC — An analog input used to set the fixed off time with an external resistor (R T ) and capacitor (C T ). The t blank time is controlled by the value of the external capacitor (see Applica-tions Information). As a rule, the fixed off time should not be less than 10 µs. The resistor should be in the range of 10 k Ω to 100 k Ω.SENSE — An analog input to the current-limit comparator.A voltage representing load current appears on this terminal during ON time, when it reaches REF voltage, the comparator trips and load current decays for the fixed off-time interval.Voltage transients seen at this terminal when the drivers turn ON are ignored for time t blank .REF — An analog input to the current-limit comparator.Voltage applied here sets the peak load current.I peak = V REF /R S .V CCOUT — A regulated 12 V output; supply for low-side gate drive and bootstrap capacitor charge circuits. It is good practice to connect a decoupling capacitor from this terminal to AGND,as close to the device terminals as possible. The terminal should be shorted to V BB for 12 V applications.V BB — The A3933 supply voltage. It is good practice toconnect a decoupling capacitor from this terminal to AGND, as close to the device terminals as possible. This terminal should be shorted to V CCOUT for 12 V applications.LCAP — Connection for decoupling capacitor for the internal 5 V reference. This terminal can source no more than 2 mA.DEAD — An analog input. A resistor between DEAD and LCAP is selected to adjust turn-off to turn-on time. This delay is needed to prevent shoot-through in the external power FETs.The allowable resistor range is 20 k Ω to 430 k Ω, whichconverts to deadtime of 210 ns to 2.1 µs, using the following equation:t DEAD = (6.75 x 10-12 x R DEAD ) + (75 x 10-9).AGND — The low-level (analog) reference point for the A3933.PGND — The reference point for all low-side gate drivers.Terminal Descriptions (cont’d)3933 THREE-PHASE POWER MOSFET CONTROLLER Commutation Truth TableLogic Inputs Driver OutputsH1H2H3DIR GLA GLB GLC GHA GHB GHC SA SB SCH L H H L L H H L L H Z L H L L H L L H L H L Z H L H H L H H L L L H L L H Z L H L H H L L L L H L Z H L H H H L H L L L H Z L H L L H H L H L H L L H L Z H L H L H L L L L H L Z H H L L L L H L L L H Z L H H H L L L H L H L L H L Z L H L L L L H H L L H Z L L H H L L L H L H L Z H L L L H L H L L L H L L H ZInput LogicMODE PWM RESET Mode OperationL L L Fast decay PWM chop mode, current decayL H L Fast decay Peak current limit, selected drivers ONH L L Slow decay PWM chop mode. current decayH H L Slow decay Peak current limit, selected drivers ONX X H Coast All gate drive outputs OFF, clear fault logicBrake ControlBRAKE BRKSEL Normal Operation Under Voltage or Power Loss ConditionL L Normal run mode Coast, all gate drive outputs OFFL H Normal run mode Dynamic brake, all sink gate drives ONH L Dynamic brake, all sink gate drives ON Coast, all gate drive outputs OFFH H Dynamic brake, all sink gate drives ON Dynamic brake, all sink gate drives ONL = Low Level, H = High Level, X = Don’t Care, Z = High Impedance115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-50003933THREE-PHASE POWER MOSFET CONTROLLERApplications Informationbootstrap capacitor. When the bootstrap capacitor has been properly charged, the high side is turned back ON. The circuit will allow three faults of this type within one commutation cycle before signaling a fault and coast the motor (all gate outputs go low).2)Bootstrap Monitor. The bootstrap capacitor is charged whenever a sink-side MOSFET is ON, Sx output goes low, and the load current recirculates. This happens constantly during normal operation. A 60 µs timer is started at the beginning of this cycle and the capacitor is charged with typically 100 mA.The bootstrap capacitor voltage is clamped at approximately 87% of V CCOUT . If the capacitor is not charged to the clamp voltage in 60 µs, a fault is signaled and the motor will coast.3)Undervoltage. The internal V CCOUT regulator supplies the low-side gate driver and the bootstrap charge current. It is critical to ensure that the voltages are at a proper level before enabling any of the outputs. The undervoltage circuit is active during power up and will force a motor coast condition until V CCOUT is greater than approximately 10 V.4)Hall Invalid. Illegal codes for the HALL inputs (000 or 111) will force a fault and coast the motor.Faults are cleared at the beginning of each commutation. If a stalled motor results from a fault, the fault can only be cleared by toggling the RESET terminal or by a power-up sequence.Current Control. Internal fixed off-time PWM circuitry is implemented to limit load current to a desired value. The external sense resistor combined with the applied analog voltage to REF terminal will set the peak current level approximatelyI TRIP ≈ V REF /R S .After the peak level is reached, the sense comparator trips and the load current will decay for a fixed off time.An external resistor (R T ) and capacitor (C T ) are used to set the fixed off-time period (t off = R T x C T ). The t off should be in the range of 10 µs to 50 µs. Longer values for t off can result in audible noise problems.Torque control can be implemented by varying the REF input voltage as long as the PWM input stays high. If direct control of the torque/current is desired by PWM input, a voltage can be applied to the REF input to set an absolute maximum current limit.Bootstrap Capacitor Selection. The high-side bootstrap circuit operates on a charge-transfer principle. The gate charge (Q g ) specification of the external power MOSFET must betaken into consideration. The bootstrap capacitor must be large enough to turn on the MOSFET without losing significant gate voltage. If the bootstrap capacitor is too large, it would take too long to charge up during the off portion of the PWM cycle. The capacitor value must be selected with both of these constraints in mind.1)Minimum bootstrap capacitor value to transfer charge. The charge on the bootstrap capacitor should be 20x greater than the gate charge (Q g ) of the power MOSFET.Example: For Q g = 0.025 µC, selectC boot = 20 x Q g /10.5 V = 0.047 µF.Check for maximum V g drop at turn on: dq = C boot x dV g , where Q g = dq.dV g = dq/C boot = 0.025 µC/0.047 µF = 532 mV.2)Calculate minimum PWM “OFF” cycle with C boot = 0.047 µF.dt = r o x C boot x ln(0.036/[Q g /C boot + 0.036])where r o = 20 ohms, the equivalent internal series resistance of the bootstrap capacitor monitor circuit.The sink-side MOSFET will be held OFF for this minimum time such that the bootstrap capacitor can be recharged independently of the PWM input frequency.The above equation is valid for PWM cycles after the bootstrap capacitor has been charged once. For the first cycle after a motor phase commutates from Hi-Z to GHx ON, or during the first charging cycle at power-up, the circuit will ignore PWM signals until it has been charged.The time required to charge up at power up and at commutation change is approximately:t = C boot x 7 V/0.1 AProtection Circuitry. The A3933 will protect the external MOSFETs by shutting down the gate drive if any of the following conditions are detected:1)Gate Source Monitor (high side only). The voltage on the GHx terminals must stay 7 V higher than the source. If this voltage droops below the threshold, the high side turns OFF,and the low-side gate will turn ON in an attempt to recharge the3933 THREE-PHASE POWER MOSFET CONTROLLER Applications Information (cont’d)PWM Blank. The capacitor (C T) also serves as the means to set the blank time duration. After the off time expires, the selected gates are turned back ON. At this time, large current transients can occur during the reverse recovery time (t rr) of the intrinsic body diodes of the external MOSFETs. To prevent the current-sense comparator from thinking the current spikes are a real overcurrent event, the comparator is blanked:t blank = 1.9 x C T/(1 mA-2/R T)The user must ensure that C T is large enough to cover the current-spike duration.Load Current Recirculation. If MODE has been set for slow decay, the high-side (source) driver will turn OFF forcing the current to recirculate through the pair of sink MOSFETs. If MODE has been selected for fast decay, both the selected high-and low-side gates are turned OFF, which will force the current to recirculate through one sink MOSFET and the high-side clamp diode. Synchronous rectification (only on the low side) allows current to flow through the MOSFET, rather than the clamp diode, during the decay time. This will minimize power loss during the off period. It is important to take into account that, when switching, the intrinsic diodes will conduct during the adjustable deadtime.Braking. The A3933 will dynamically brake by forcing all sink-side MOSFETs ON. This will effectively short out the BEMF. During braking, the load current can be approximated by:I BRAKE = V BEMF/R LPower Loss Brake. The BRKCAP and BRKSEL terminals provide a power-down braking option. By applying a logic level to input BRKSEL, the system can control if the motor is dynamically braked or is allowed to coast during an undervoltage event. The reservoir capacitor on the BRKCAP terminal provides the power to hold the sink-side gates ON after supply voltage is lost. A logic high on BRKSEL will brake the motor, a logic low and it will coast.Layout. Careful consideration must be given to PCB layout when designing high-frequency, fast-switching, high-current circuits.1)The analog ground (AGND), the power ground (PGND), and the high-current return of the external MOSFETs (the negative side of the sense resistor) should return separately to the negative side of the motor supply filtering capacitor. This will minimize the effect of switching noise on the device logic and analog reference.2)Minimize stray inductances by using short, wide copper runs at the drain and source terminals of all power MOSFETs. This includes motor lead connections, the input power buss, and the common source of the low-side power MOSFETs. This will minimize voltages induced by fast switching of large load currents.3)Kelvin connect the SENSE terminal PC trace to the positive side of the sense resistor.115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-50003933THREE-PHASE POWER MOSFET CONTROLLERDimensions in Inches(controlling dimensions)Dwg. MA-006-32 in5NOTES: 1. Lead spacing tolerance is non-cumulative.2. Exact body and lead configuration at vendor’s option within limits shown3933THREE-PHASE POWER MOSFET CONTROLLERDimensions in Millimeters(for reference only)Dwg. MA-006-32 mm5201413NOTES: 1. Lead spacing tolerance is non-cumulative.2. Exact body and lead configuration at vendor’s option within limits shownThe products described here are manufactured under one or more U.S.patents or U.S. patents pending.Allegro MicroSystems, Inc. reserves the right to make, from time totime, such departures from the detail specifications as may be required topermit improvements in the performance, reliability, or manufacturabilityof its products. Before placing an order, the user is cautioned to verify thatthe information being relied upon is current.Allegro products are not authorized for use as critical components inlife-support devices or systems without express written approval.The information included herein is believed to be accurate and reliable.However, Allegro MicroSystems, Inc. assumes no responsibility for its use;nor for any infringement of patents or other rights of third parties whichmay result from its use.115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-********THREE-PHASE POWER MOSFET CONTROLLERMOTOR DRIVERS FunctionOutput Ratings*Part Number †INTEGRATED CIRCUITS FOR BRUSHLESS DC MOTORS3-Phase Power MOSFET Controller —28 V 39333-Phase Power MOSFET Controller —50 V 39323-Phase Power MOSFET Controller —50 V 76002-Phase Hall-Effect Sensor/Driver 400 mA 26 V 3626Bidirectional 3-Phase Back-EMF Controller/Driver ±600 mA 14 V 89062-Phase Hall-Effect Sensor/Driver 900 mA 14 V 36253-Phase Back-EMF Controller/Driver ±900 mA 14 V 8902–A3-Phase Controller/Drivers ±2.0 A 45 V 2936 & 2936-120INTEGRATED BRIDGE DRIVERS FOR DC AND BIPOLAR STEPPER MOTORSDual Full Bridge with Protection & Diagnostics ±500 mA 30 V 3976PWM Current-Controlled Dual Full Bridge ±650 mA 30 V 3966PWM Current-Controlled Dual Full Bridge ±650 mA 30 V 3968PWM Current-Controlled Dual Full Bridge ±750 mA 45 V 2916PWM Current-Controlled Dual Full Bridge ±750 mA 45 V 2919PWM Current-Controlled Dual Full Bridge ±750 mA 45 V 6219PWM Current-Controlled Dual Full Bridge ±800 mA 33 V 3964PWM Current-Controlled Full Bridge ±1.3 A 50 V 3953PWM Current-Controlled Dual Full Bridge ±1.5 A 45 V 2917PWM Current-Controlled Dual Full Bridge ±1.5 A 45 V 2918PWM Current-Controlled Microstepping Full Bridge ±1.5 A 50 V 3955PWM Current-Controlled Microstepping Full Bridge ±1.5 A 50 V 3957PWM Current-Controlled Dual DMOS Full Bridge ±1.5 A 50 V 3972Dual Full-Bridge Driver ±2.0 A 50 V 2998PWM Current-Controlled Full Bridge ±2.0 A 50 V 3952DMOS Full Bridge PWM Driver ±2.0 A 50 V 3958Dual DMOS Full Bridge ±2.5 A 50 V 3971UNIPOLAR STEPPER MOTOR & OTHER DRIVERSVoice-Coil Motor Driver ±500 mA 6 V 8932–A Voice-Coil Motor Driver ±800 mA 16 V 8958Unipolar Stepper-Motor Quad Drivers 1 A 46 V 7024 & 7029Unipolar Microstepper-Motor Quad Driver 1.2 A 46 V 7042Unipolar Stepper-Motor Translator/Driver 1.25 A 50 V 5804Unipolar Stepper-Motor Quad Driver 1.8 A 50 V 2540Unipolar Stepper-Motor Quad Driver 1.8 A 50 V 2544Unipolar Stepper-Motor Quad Driver 3 A 46 V 7026Unipolar Microstepper-Motor Quad Driver 3 A 46 V 7044*Current is maximum specified test condition, voltage is maximum rating. See specification for sustaining voltage limits or over-current protection voltage limits. Negative current is defined as coming out of (sourcing) the output.†Complete part number includes additional characters to indicate operating temperature range and package style.Also, see 3175, 3177, 3235, and 3275 Hall-effect sensors for use with brushless dc motors.。