相关与回归分析课后习题解答

合集下载

应用回归分析课后习题参考答案_全部版__何晓群_刘文卿

应用回归分析课后习题参考答案_全部版__何晓群_刘文卿

第一章回归分析概述1.2 回归分析与相关分析的联系与区别是什么?答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。

区别有 a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。

在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。

b.相关分析中所涉及的变量y与变量x全是随机变量。

而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。

C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。

而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。

1.3回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。

2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。

4.样本容量的个数要多于解释变量的个数,即n>p.第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

黄良文《统计学》(第2版)笔记和课后习题(含考研真题)详解 第9章 相关与回归分析 【圣才出品】

黄良文《统计学》(第2版)笔记和课后习题(含考研真题)详解 第9章  相关与回归分析 【圣才出品】
②相关系数 回归平方和与总变差的比值,称为最小二乘曲线的判定系数. 判定系数 r2 介于 0,1 之间,并把 r 称为相关系数,其计算公式为
把判定系数的平方根定义为相关系数,就是要使得当变量间正相关时,相关系数就取正 号,等于判定系数的算术平方根;当变量间负相关时,相关系数就取负号。
(2)相关关系的显著性检验 两个变量 X 和 Y 成对数据的所有可能取值构成了一个总体,称为二元总体,一般情况
3 / 40
圣才电子书 十万种考研考证电子书、题库视频学习平台

这种相关关系不是线性形式。 若变量 Y 随着 X 的增加而增加,则相关关系称为正相关;若 Y 随着 X 的增加而减少,
则相关关系称为负相关。 (1)相关关系的度量 ①总变差的平方和分解
2
设数据点为(X1,Y1),(X2,Y2),…,(XN ,YN)变量 Y 的总变差定义为 Y Y

③指数曲线:Y=abx 或 logY=loga+(logb)X ④几何曲线:Y=aXb 或 logY=loga+blogX 以上这些方程只要进行适当的变量替换,都可以转化为变量的线性形式。 (2)最小二乘法 在一组给定数据的所有拟合曲线中,若某曲线使得其偏差平方和 D12 D22 DN2 达 到最小,则称该曲线为最佳拟合曲线。 使残差平方和 D12 D22 DN2 达到最小的这一要求称为最小二乘法,因此最佳拟合 曲线也称为最小二乘曲线。特别地,最佳拟合直线称为最小二乘直线,最佳拟合二次曲线(抛 物线)称为最小二乘抛物线。 ①最小二乘直线 设接近一系列点(X1,Y1,),(X2,Y2),…,(XN,YN)的最小二乘直线方程为:
它服从自由度为 N-2 的 t 分布。 (3)分类变量间的相关系数 用这个 2 统计量可以定义两个分类变量的相关系数:

《应用回归分析》课后题标准答案

《应用回归分析》课后题标准答案

3
(5)由于 1
N
(1,
2 Lxx
)
t
1 1 2 / Lxx
(1
)
Lxx
服从自由度为 n-2 的 t 分布。因而
P
|
(
1
)
Lxx
|
t
/
2
(n
2)
1
也即: p(1 t /2
Lxx
1 1 t /2
) =1 Lxx
可得
ቤተ መጻሕፍቲ ባይዱ
1
的置信度为95%的置信区间为(7-2.353
1 3
33,7+2.353 1 3
1
第二章 一元线性回归
2.14 解答:(1)散点图为:
(2)x 与 y 之间大致呈线性关系。
(3)设回归方程为 y 0 1 x
n
xi yi n x y
1=
i 1 n
7
xi2 n(x)2
i 1
0 y 1 x 20 7 3 1
可得回归方程为 y 1 7x
2
(4)
1 n-2
1.5 回归变量的设置理论根据是什么?在回归变量设置时应注意哪些问题? 答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判 断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。应注意 的问题有:在选择变量时要注意与一些专门领域的专家合作,不要认为一个回归 模型所涉及的变量越多越好,回归变量的确定工作并不能一次完成,需要反复试 算,最终找出最合适的一些变量。
t /2
0
0
1 n
( x)2 Lxx
t
/
2
)
1
可得 1的置信度为95%的置信区间为( 7.77,5.77)

统计学第六章课后题及答案解析

统计学第六章课后题及答案解析

第六章一、单项选择题1.下面的函数关系是( )A现代化水平与劳动生产率 B圆周的长度决定于它的半径C家庭的收入和消费的关系 D亩产量与施肥量2.相关系数r的取值范围( )A -∞< r <+∞B -1≤r≤+1C -1< r < +1D 0≤r≤+13.年劳动生产率x(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元 B减少70元 C增加80元 D减少80元4.若要证明两变量之间线性相关程度高,则计算出的相关系数应接近于( )A +1B -1C 0.5D 15.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关 B正相关还是负相关C完全相关还是不完全相关 D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建立线性回归方程ŷ=a+bx。

经计算,方程为ŷ=200—0.8x,该方程参数的计算( )A a值是明显不对的B b值是明显不对的C a值和b值都是不对的D a值和b值都是正确的7.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为:( )A 8B 0.32C 2D 12.58.进行相关分析,要求相关的两个变量( )A都是随机的 B都不是随机的C一个是随机的,一个不是随机的 D随机或不随机都可以9.下列关系中,属于正相关关系的有( )A合理限度内,施肥量和平均单产量之间的关系B产品产量与单位产品成本之间的关系C商品的流通费用与销售利润之间的关系D流通费用率与商品销售量之间的关系10.相关分析是研究( )A变量之间的数量关系 B变量之间的变动关系C变量之间的相互关系的密切程度 D变量之间的因果关系11.在回归直线y c=a+bx,b<0,则x与y之间的相关系数 ( )A r=0B r=lC 0< r<1D -1<r <012.当相关系数r=0时,表明( )A现象之间完全无关 B相关程度较小C现象之间完全相关 D无直线相关关系13.下列现象的相关密切程度最高的是( )A某商店的职工人数与商品销售额之间的相关系数0.87B流通费用水平与利润率之间的相关系数为-0.94C商品销售额与利润率之间的相关系数为0.51D商品销售额与流通费用水平的相关系数为-0.8114.估计标准误差是反映( )A平均数代表性的指标 B相关关系的指标C回归直线方程的代表性指标 D序时平均数代表性指标二、多项选择题1.下列哪些现象之间的关系为相关关系( )A家庭收入与消费支出关系 B圆的面积与它的半径关系C广告支出与商品销售额关系D商品价格一定,商品销售与额商品销售量关系2.相关系数表明两个变量之间的( )A因果关系 C变异程度 D相关方向 E相关的密切程度3.对于一元线性回归分析来说( )A两变量之间必须明确哪个是自变量,哪个是因变量B回归方程是据以利用自变量的给定值来估计和预测因变量的平均可能值C可能存在着y依x和x依y的两个回归方程D回归系数只有正号4.可用来判断现象线性相关方向的指标有( )A相关系数 B回归系数 C回归方程参数a D估计标准误5.单位成本(元)依产量(千件)变化的回归方程为y c=78- 2x,这表示( ) A产量为1000件时,单位成本76元B产量为1000件时,单位成本78元C产量每增加1000件时,单位成本下降2元D产量每增加1000件时,单位成本下降78元6.估计标准误的作用是表明( )A样本的变异程度 B回归方程的代表性C估计值与实际值的平均误差 D样本指标的代表性7.销售额与流通费用率,在一定条件下,存在相关关系,这种相关关系属于( ) A完全相关 B单相关 C负相关 D复相关8.在直线相关和回归分析中( )A据同一资料,相关系数只能计算一个B据同一资料,相关系数可以计算两个C据同一资料,回归方程只能配合一个D据同一资料,回归方程随自变量与因变量的确定不同,可能配合两个9.相关系数r的数值( )A可为正值 B可为负值 C可大于1 D可等于-110.从变量之间相互关系的表现形式看,相关关系可分为( )A正相关 B负相关 C直线相关 D曲线相关11.确定直线回归方程必须满足的条件是( )A现象间确实存在数量上的相互依存关系B相关系数r必须等于1C y与x必须同方向变化D现象间存在着较密切的直线相关关系12.当两个现象完全相关时,下列统计指标值可能为( )A r=1B r=0C r=-1D S y=013.在直线回归分析中,确定直线回归方程的两个变量必须是( )A一个自变量,一个因变量 B均为随机变量C对等关系 D一个是随机变量,一个是可控制变量14.配合直线回归方程是为了( )A确定两个变量之间的变动关系 B用因变量推算自变量C用自变量推算因变量 D两个变量都是随机的15.在直线回归方程中( )A在两个变量中须确定自变量和因变量 B一个回归方程只能作一种推算C要求自变量是给定的,而因变量是随机的。

《统计学概论》第八章课后练习题答案

《统计学概论》第八章课后练习题答案

《统计学概论》第八章课后练习答案一、思考题1.什么是相关系数?它与函数关系有什么不同?P237- P2382.什么是正相关、负相关、无线性相关?试举例说明。

P238- P2393.相关系数r的意义是什么?如何根据相关系数来判定变量之间的相关系数?P245 4.简述等级相关系数的含义及其作用?P2505.配合回归直线方程有什么要求?回归方程中参数a、b的经济含义是什么?P2566.回归系数b与相关系数r之间有何关系?P2587.回归分析与相关分析有什么联系与区别?P2548.什么是估计标准误差?这个指标有什么作用?P2619.估计标准误差与相关系数的关系如何?P258-P26410.解释判定系数的意义和作用。

P261二、单项选择题1.从变量之间相互关系的方向来看,相关关系可以分为()。

A.正相关和负相关B.直线关系与曲线关系C.单相关和复相关D.完全相关和不完全相关2.相关分析和回归分析相比较,对变量的要求是不同的。

回归分析中要求()。

A.因变量是随机的,自变量是给定的B.两个变量都是随机的C.两个变量都不是随机的D.以上三个答案都不对3.如果变量x与变量y之间的相关系数为-1,这说明两个变量之间是()。

A.低度相关关系B.完全相关关系C.高度相关关系D.完全不相关4.初学打字时练习的次数越多,出现错误的量就越少,这里“练习次数”与“错误量”之间的相关关系为()。

A.正相关B.高相关C.负相关D.低相关5.假设两变量呈线性关系,且两变量均为顺序变量,那么表现两变量相关关系时应选用()。

A.简单相关系数r B.等级相关系数r sC.回归系数b D.估计标准误差S yx6.变量之间的相关程度越低,则相关系数的数值()。

A.越大B.越接近0C.越接近-1 D.越接近17.下列各组中,两个变量之间的相关程度最高的是()。

A.商品销售额和商品销售量的相关系数是0.9B.商品销售额和商品利润率的相关系数是0.84C.产量与单位成本之间的相关系数为-0.94D.商品销售价格与销售量的相关系数为-0.918.相关系数r的取值范围是()。

回归分析课后习题

回归分析课后习题

第一章习题1.1变量间统计关系和函数关系的区别是什么?1.2回归分析与相关分析的区别和联系是什么?1.3回归模型中随机误差项的意义是什么?1.4线性回归模型中的基本假设是什么?1.5回归变量设置的理论依据是什么?在设置回归变量时应注意哪些问题?1.6收集、整理数据包括哪些基本内容?1.7构造回归理论模型的基本依据是什么?1.8为什么要对回归模型进行检验?1.9回归模型有哪几个方面的应用?1.10为什么强调运用回归分析研究经济问题要定性分析和定量分析相结合?第二章 习题2.1一元线性回归模型有哪些基本假定? 2.2 考虑过原点的线性回归模型1,1,,i i i y x i n βε=+=误差1,,n εε仍满足基本假定。

求1β的最小二乘估计。

2.3证明(2.27)式,10nii e==∑,10ni i i x e ==∑。

2.4回归方程01Ey x ββ=+的参数01,ββ的最小二乘估计与极大似然估计在什么条件下等价?给出证明。

2.5 证明0ˆβ是0β的无偏估计。

2.6 证明(2.42)式 ()()222021,i x Var n x x βσ⎡⎤=+⎢⎥-⎢⎥⎣⎦∑成立 2.7 证明平方和分解式SST SSR SSE =+2.8 验证三种检验的关系,即验证:(1)t ==(2)2212ˆ1ˆ2xx L SSR F t SSE n βσ===-2.9 验证(2..63)式:()()221var 1i i xx x x e n L σ⎡⎤-=--⎢⎥⎢⎥⎣⎦2.10 用第9题证明()2211ˆˆ2n i ii y y n σ==--∑是2σ的无偏估计。

2.11* 验证决定系数2r 与F 值之间的关系式 22Fr F n =+-以上表达式说明2r 与F 值是等价的,那么我们为什么要分别引入这两个统计量,而不是只使用其中的一个。

2.12* 如果把自变量观测值都乘以2,回归参数的最小二乘估计0ˆβ和1ˆβ会发生什么变化?如果把自变量观测值都加上2,回归参数的最小二乘估计0ˆβ和1ˆβ会发生什么变化? 2.13 如果回归方程01ˆˆˆy x ββ=+相应的相关系数r 很大,则用它预测时,预测误差一定较小。

应用回归分析-第3章课后习题参考答案

应用回归分析-第3章课后习题参考答案

应用回归分析-第3章课后习题参考答案一般来说,R2越接近1,即R2取值越大,说明回归拟合的效果越好。

但由于R2的大小与样本容量n和自变量个数p有关,当n与p的值接近时,R2容易接近1,说明R2中隐含着一些虚假成分。

而当样本容量n较小,自变量个数p较大时,尽管R2很大,但参数估计效果很不稳定。

所以该题中不能仅仅因为R2很大而断定回归方程很理想。

3.5 如何正确理解回归方程显著性检验拒绝H0,接受H0?答:一般来说,当接受假设H0时,认为在给定的显著性水平α之下,自变量x1,x2,…,x p对因变量y无显著性影响,则通过x1,x2,…,x p 去推断y就无多大意义。

此时,一方面可能该问题本应该用非线性模型描述,我们误用线性模型描述了,使得自变量对因变量无显著影响;另一方面可能是在考虑自变量时,由于认识上的局限性把一些影响因变量y的自变量漏掉了,这就从两个方面提醒我们去重新考虑建模问题。

当拒绝H0时,也不能过于相信该检验,认为该模型已经很完美。

其实当拒绝H时,我们只能认为该回归模型在一定程度上说明了自变量x1,x2,…,x p与因变量y的线性关系。

因为这时仍不能排除我们漏掉了一些重要自变量。

此检验只能用于辅助性的,事后验证性的目的。

(详细内容可参考课本P95~P96评注。

)3.6 数据中心化和标准化在回归分析中的意义是什么?答:原始数据由于自变量的单位往往不同,会给分析带来一定的困难;又由于设计的数据量较大,可能会以为舍入误差而使得计算结果并不理想。

中心化和标准化回归系数有利于消除由于量纲不同、数量级不同带来的影响,避免不必要的误差。

3.7 验证ˆˆ,1,2,,jj j j yy L j p L β*==证明:多元线性回归方程模型的一般形式为:01122p p y x x x ββββε=+++++其经验回归方程式为01122ˆˆˆˆˆp p y x x x ββββ=++++, 又01122ˆˆˆˆp py x x x ββββ=----, 故111222ˆˆˆˆ()()()p p py y x x x x x x βββ=+-+-++-, 中心化后,则有111222ˆˆˆˆ()()()i p p py y x x x x x x βββ-=-+-++-, 21()n yy i i L y y ==-∑ 令21(),1,2,,n jj ij j i L x x i n ==-=∑,1,2,,j p =11221122121122()ˆˆˆpp ip i i i p yy yy yy pp yyL x x L L y x x L L L L L L L βββ-=++ 样本数据标准化的公式为1,2,,i ij i jj yy x x y x y i n L L **-===,1,2,,j p =则上式可以记为112211221122ˆˆˆˆˆˆpp i i i p ip yy yy yy i i p ipL L L y x x x L L L x x x ββββββ**********=+++=⨯+⨯++⨯则有ˆˆ,1,2,,jj j j yy L j p L ββ*==3.8 验证3.9 验证决定系数R 2与F 值之间的关系式:p p n F FR /)1(2--+=3.10 验证决定系数R 2与F 值之间的关系式:pp n F F R /)1(2--+= 证明:2/,/(1)111(1)/1SSR p F SSE n p F SSE SSR p n p F SSE p SSR SSR F p F n p R F SSE SST SSR SSE F p n p F n p p p SSE n p =--⋅∴=⨯--⋅⨯⨯--∴=====⋅+⨯+--+--⨯+--。

应用回归分析-课后习题答案-何晓群

应用回归分析-课后习题答案-何晓群

(11)当广告费 x0 =万元时,销售收入 y0 28.4万元,置信度为95%的 置信区间
近似为 y 2 ,即(,)
解答:
(1) 散点图为:
(2)x 与 y 之间大致呈线性关系。
(3)设回归方程为 y 0 1 x
n
1 =
i 1 n
xi yi n x y
xi2 n(x)2
(26370 21717) (7104300 5806440)
Mahal。 距离 Cook 的距离
.894 .000
极大值
均值
.000
.00000 .000
.486
标准 偏差 N
10 10
10 10 10
.816
10
10 10 10
10
.976
10
居中杠杆值 a. 因变量: y
.099
.642
.300
.173
10
所以置信区间为(,) (10)由于 x3 的回归系数显著性检验未通过,所以居民非商品支出对货运总量 影响不大,但是回归方程整体对数据拟合较好
即为:(,)
0
N
(0
,
(
1 n
(x)2 Lxx
)
2
)
t
0 0
0 0
(
1
(
x)2
)
2
1 (x)2
n Lxx
n Lxx
服从自由度为 n-2 的 t 分布。因而
P |
0 0
1 (x)2
| t /2 (n 2) 1
n Lxx
即 p(0
1 n
(x)2 Lxx
t /2
0
0
1 n

回归分析习题及答案.doc

回归分析习题及答案.doc

1.1回归分析的基本思想及其初步应用例题:1.在画两个变量的散点图时,下面哪个叙述是正确的()(A)预报变量在x轴上,解释变量在y轴上(B)解释变量在X轴上,预报变量在y轴上(0可以选择两个变量中任意一个变量在x轴上(D)可以选择两个变量中任意一个变量在y轴上解析:通常把自变量X称为解析变量,因变量y称为预报变量.选B2,若一组观测值(xi, yi) (x2, y2) ••- (x…, y n)之间满足 y-bxi+a+e;(i=l> 2. •••!!)若巳恒为0,则仁为_____________解析:e』亘为0,说明随机误差对方贡献为0.答案:1.3.假设关于某设备的使用年限x和所支出的维修费用y (万兀),有如下的统计资料:X 2 3 4 5 6y 22 38 55 65 70若由资料可知y对x呈线性相关关系试求:(1)线性回归方程;(2)估计使用年限为10年时,维修费用是多少?解:(1)列表如下:i 1 2 3 4 5X] 2 3 4 5 622 38 55 65 70时•44 114 220 325 420X; 4 9 16 25 36_ _ 5 5x = 4, y = 5,»;=9o, »,北=112.3z'=l z'=l5 ___况一5xy干旱,仃112.3-5x4x5 …c十正方= ------------- = ------------ -- = 1.23,S,厂2 90 —5x42小「- 5x<=|a = y -bx = 5-1.23x4 = 0.08线性回归方程为:y =bx + a = 1.23x + Q.QS ( 2 )当 x=10 时,y = 1.23x10 + 0.08 = 12.38 (万兀)即估计使用10年时维修费用是1238万元课后练习:1.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7. 19x+73.93 用这个模型预测这个孩子10岁时的身高,则正确的叙述是()A.身高一定是145. 83cm;B.身高在145. 83cm以上;C.身高在145. 83cm以下;D.身I W J在 145. 83cm 左右.2.两个变量y与x的回归模型中,分别选择了 4个不同模型,它们的相关指数人2如下,其中拟合效果最好的模型是()A.模型1的相关指数人2为0. 98B.模型2的相关指数R2为。

应用回归分析_第2章课后习题参考答案.

应用回归分析_第2章课后习题参考答案.

应用回归分析_第2章课后习题参考答案1. 简答题1.1 什么是回归分析?回归分析是一种统计建模方法,用于研究自变量与因变量之间的关系。

它通过建立数学模型,根据已知的自变量和因变量数据,预测因变量与自变量之间的关系,并进行相关的推断和预测。

1.2 什么是简单线性回归和多元线性回归?简单线性回归是指只包含一个自变量和一个因变量的回归模型,通过拟合一条直线来描述两者之间的关系。

多元线性回归是指包含多个自变量和一个因变量的回归模型,通过拟合一个超平面来描述多个自变量和因变量之间的关系。

1.3 什么是残差?残差是指回归模型中,观测值与模型预测值之间的差异。

在回归分析中,我们希望最小化残差,使得模型与观测数据的拟合效果更好。

1.4 什么是拟合优度?拟合优度是用来评估回归模型对观测数据的拟合程度的指标。

一般使用R方(Coefficient of Determination)来表示拟合优度,其值范围为0到1,值越接近1表示模型拟合效果越好。

2. 计算题2.1 简单线性回归假设我们有一组数据,其中X为自变量,Y为因变量,如下所示:X Y13253749511我们想要建立一个简单线性回归模型,计算X与Y之间的线性关系。

首先,我们需要计算拟合直线的斜率和截距。

根据简单线性回归模型的公式Y = β0 + β1*X,我们可以通过最小二乘法计算出斜率和截距的估计值。

首先,计算X和Y的均值:mean_x = (1 + 2 + 3 + 4 + 5) / 5 = 3mean_y = (3 + 5 + 7 + 9 + 11) / 5 = 7然后,计算X和Y的方差:var_x = ((1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2) / 5 = 2var_y = ((3-7)^2 + (5-7)^2 + (7-7)^2 + (9-7)^2 + (11-7)^2) / 5 = 8接下来,计算X和Y的协方差:cov_xy = ((1-3) * (3-7) + (2-3) * (5-7) + (3-3) * (7-7) + (4-3) * (9-7) + (5-3) * (11-7)) / 5 = 4根据最小二乘法的公式:β1 = cov_xy / var_x = 4 / 2 = 2β0 = mean_y - β1 * mean_x = 7 - (2 * 3) = 1因此,拟合直线的方程为:Y = 1 + 2X。

曾五一《统计学导论》(第2版)配套题库【课后习题】第七章 相关与回归分析 【圣才出品】

曾五一《统计学导论》(第2版)配套题库【课后习题】第七章 相关与回归分析 【圣才出品】

X i Yi 2 Xi
X i X Yi Y Xi X 2
Xi X Xi X
Yi
2
=
2
4 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台

Xi X Xi X
ui
2
,其中 U i
Yi
1
2Xi
,令=
Xi X Xi X 2
2 的任意线性无偏估计量,必须满足下列约束条件:
at 0 ;且 at X t 1
又因为 var Yt 2 ,所以:
Var(2 ) Var atYt at 2VarYt 2 at 2
2 [at
Xt X (Xt X )2
Xt (X
X t X
)
2
]2
2
则 E ˆ2 =2 E U i =2 E U i =2 0=2
所以 ˆ2 是线性无偏估计量。接下来证明它在线性无偏估计量中具有最小方差。
设 ~2 atYt 为 2 的任意线性无偏估计量。 E(~2 ) at E(1 2 X t ut ) 1 at 2 at X t at E(ut ) 2 也即,作为
5.样本回归函数中回归系数的估计量是随机变量。 【答案】对 【解析】总体回归函数中的回归系数是有待估计的参数,因而是常数,样本回归函数中 的回归系数的估计量的取值随抽取的样本不同而变化,因此是随机变量。
6.当抽取的样本不同时,对同一总体回归模型估计的结果也有所不同。 【答案】对 【解析】因为,估计量属于随机变量,抽取的样本不同,具体的观察值也不同,尽管使 用的公式相同,估计的结果仍然不一样
2 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台

①模型本身中的误差因素所造成的误差。这一误差可以用总体随机误差项的方差来评 价。

《统计学》课后练习题答案

《统计学》课后练习题答案
3.3汇总统计表
3.4统计图的规范
3.5如何用Excel做统计图
习题
一、单项选择题
1.统计表的结构从形式上看包括()、横行标题、纵栏标题、数字资料四个部分。(知识点3.1答案:D)
A.计量单位B.附录C.指标注释D.总标题
2.如果统计表中数据的单位都一致,我们可以把单位填写在()。(知识点3.1答案:C)
A.指标B.标志C.变量D.标志值
8.以一、二、三等品来衡量产品质地的优劣,那么该产品等级是()。(知识点:1.7答案:A)
A.品质标志B.数量标志C.质量指标D.数量指标
9.()表示事物的质的特征,是不能以数值表示的。(知识点:1.7答案:A)
A.品质标志B.数量标志C.质量指标D.数量指标
10.在出勤率、废品量、劳动生产率、商品流通费用额和人均粮食生产量五个指标中,属于数量指标的有几个()。(知识点:1.7答案:B)
1.统计调查方案的主要内容是( )( )( )( )( )。(知识点2.2答案:ABCDE)
A.调查的目的B.调查对象C.调查单位D.调查时间E.调查项目
2.全国工业普查中( )( )( )( )( )。(知识点2.2答案:ABCE)
A.所有工业企业是调查对象B.每一个工业企业是调查单位C.每一个工业企业是报告单位
频数f
(棵)
频率
(%)
向上累积
向下累积
频数(棵)
频率(%)
频数(棵)
频率(%)
80-90
8
7.3
8
7.3
110
100.0
90-100
9
8.2
17
15.5
102
92.7
100-110

《应用回归分析》课后题答案解析

《应用回归分析》课后题答案解析

(8) t
1
2
/ Lxx
1
Lxx
2
其中
1 n2
n i1
ei 2
1 n2
n i1
( yi
2
yi )
0.0036 1297860 8.542 0.04801
t /2 1.895
t 8.542 t /2
接受原假设 H 0: 1 0, 认为 1 显著不为 0,因变量 y 对自变量 x 的一元线性回归成立。
( yi
2
yi )
1 n-2
n i=1
( yi
( 0 1
2
x))
=
1 3
( 10-(-1+71))2 (10-(-1+7 (20-(-1+7 4))2 (40-(-1+7
2))2 (20-(-1+7 5))2
3))2
1 16 9 0 49 36
3
110 / 3
1
330 6.1
《应用回归分析》部分课后习题答案
第一章 回归分析概述
变量间统计关系和函数关系的区别是什么 答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量 唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另 外一个变量的确定关系。
回归分析与相关分析的联系与区别是什么 答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。区别有 a. 在回归分析中,变量 y 称为因变量,处在被解释的特殊地位。在相关分析中,变 量 x 和变量 y 处于平等的地位,即研究变量 y 与变量 x 的密切程度与研究变量 x 与变量 y 的密切程度是一回事。b.相关分析中所涉及的变量 y 与变量 x 全是随机 变量。而在回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量也可以 是非随机的确定变量。C.相关分析的研究主要是为了刻画两类变量间线性相关的 密切程度。而回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归 方程进行预测和控制。

统计学课后习题答案第七章相关分析与回归分析

统计学课后习题答案第七章相关分析与回归分析

第七章相关分析与回归分析一、单项选择题1.相关分析是研究变量之间的A.数量关系B.变动关系C.因果关系D.相互关系的密切程度2.在相关分析中要求相关的两个变量A.都是随机变量B.自变量是随机变量C.都不是随机变量D.因变量是随机变量3.下列现象之间的关系哪一个属于相关关系A.播种量与粮食收获量之间关系B.圆半径与圆周长之间关系C.圆半径与圆面积之间关系D.单位产品成本与总成本之间关系4.正相关的特点是A.两个变量之间的变化方向相反B.两个变量一增一减C.两个变量之间的变化方向一致D.两个变量一减一增5.相关关系的主要特点是两个变量之间A.存在着确定的依存关系B.存在着不完全确定的关系C.存在着严重的依存关系D.存在着严格的对应关系6.当自变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系7.当变量X值增加时,变量Y值都随之下降,则变量X和Y之间存在着A.正相关关系B.直线相关关系C.负相关关系D.曲线相关关系8.当变量X值增加时,变量Y值都随之增加,则变量X和Y之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系9.判定现象之间相关关系密切程度的最主要方法是A.对现象进行定性分析B.计算相关系数C.编制相关表D.绘制相关图10.相关分析对资料的要求是A.自变量不是随机的,因变量是随机的B.两个变量均不是随机的C.自变量是随机的,因变量不是随机的D.两个变量均为随机的11.相关系数A.既适用于直线相关,又适用于曲线相关B.只适用于直线相关C.既不适用于直线相关,又不适用于曲线相关D.只适用于曲线相关12.两个变量之间的相关关系称为A.单相关B.复相关C.不相关D.负相关13.相关系数的取值范围是≤r≤1 ≤r≤0≤r≤1 D. r=014.两变量之间相关程度越强,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于115.两变量之间相关程度越弱,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于116.相关系数越接近于-1,表明两变量间A.没有相关关系B.有曲线相关关系C.负相关关系越强D.负相关关系越弱17.当相关系数r=0时,A.现象之间完全无关B.相关程度较小B.现象之间完全相关 D.无直线相关关系18.假设产品产量与产品单位成本之间的相关系数为,则说明这两个变量之间存在A.高度相关B.中度相关C.低度相关D.显着相关19.从变量之间相关的方向看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关20.从变量之间相关的表现形式看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关21.物价上涨,销售量下降,则物价与销售量之间属于A.无相关B.负相关C.正相关D.无法判断22.配合回归直线最合理的方法是A.随手画线法B.半数平均法C.最小平方法D.指数平滑法23.在回归直线方程y=a+bx中b表示A.当x增加一个单位时,y增加a的数量B.当y增加一个单位时,x增加b的数量C.当x增加一个单位时,y的平均增加量D.当y增加一个单位时, x的平均增加量24.计算估计标准误差的依据是A.因变量的数列B.因变量的总变差C.因变量的回归变差D.因变量的剩余变差25.估计标准误差是反映A.平均数代表性的指标B.相关关系程度的指标C.回归直线的代表性指标D.序时平均数代表性指标26.在回归分析中,要求对应的两个变量A.都是随机变量B.不是对等关系C.是对等关系D.都不是随机变量27.年劳动生产率(千元)和工人工资(元)之间存在回归方程y=10+70x,这意味着年劳动生产率每提高一千元时,工人工资平均A.增加70元B.减少70元C.增加80元D.减少80元28.设某种产品产量为1000件时,其生产成本为30000元,其中固定成本6000元,则总生产成本对产量的一元线性回归方程为:=6+ =6000+24x=24000+6x =24+6000x29.用来反映因变量估计值代表性高低的指标称作A.相关系数B.回归参数C.剩余变差D.估计标准误差二、多项选择题1.下列现象之间属于相关关系的有A.家庭收入与消费支出之间的关系B.农作物收获量与施肥量之间的关系C.圆的面积与圆的半径之间的关系D.身高与体重之间的关系E.年龄与血压之间的关系2.直线相关分析的特点是A.相关系数有正负号B.两个变量是对等关系C.只有一个相关系数D.因变量是随机变量E.两个变量均是随机变量3.从变量之间相互关系的表现形式看,相关关系可分为A.正相关B.负相关C.直线相关D.曲线相关E.单相关和复相关4.如果变量x与y之间没有线性相关关系,则A.相关系数r=0B.相关系数r=1C.估计标准误差等于0D.估计标准误差等于1E.回归系数b=05.设单位产品成本(元)对产量(件)的一元线性回归方程为y=,则A.单位成本与产量之间存在着负相关B.单位成本与产量之间存在着正相关C.产量每增加1千件,单位成本平均增加元D.产量为1千件时,单位成本为元E.产量每增加1千件,单位成本平均减少元6.根据变量之间相关关系的密切程度划分,可分为A.不相关B.完全相关C.不完全相关D.线性相关E.非线性相关7.判断现象之间有无相关关系的方法有A.对现象作定性分析B.编制相关表C.绘制相关图D.计算相关系数E.计算估计标准误差8.当现象之间完全相关的,相关系数为B.-1 E.-9.相关系数r =0说明两个变量之间是A.可能完全不相关B.可能是曲线相关C.肯定不线性相关D.肯定不曲线相关E.高度曲线相关10.下列现象属于正相关的有A.家庭收入愈多,其消费支出也愈多B.流通费用率随商品销售额的增加而减少C.产量随生产用固定资产价值减少而减少D.生产单位产品耗用工时,随劳动生产率的提高而减少E.工人劳动生产率越高,则创造的产值就越多11.直线回归分析的特点有A.存在两个回归方程B.回归系数有正负值C.两个变量不对等关系D.自变量是给定的,因变量是随机的E.利用一个回归方程,两个变量可以相互计算12.直线回归方程中的两个变量A.都是随机变量B.都是给定的变量C.必须确定哪个是自变量,哪个是因变量D.一个是随机变量,另一个是给定变量E.一个是自变量,另一个是因变量13.从现象间相互关系的方向划分,相关关系可以分为A.直线相关B.曲线相关C.正相关D.负相关E.单相关14.估计标准误差是A.说明平均数代表性的指标B.说明回归直线代表性指标C.因变量估计值可靠程度指标D.指标值愈小,表明估计值愈可靠E.指标值愈大,表明估计值愈可靠15.下列公式哪些是计算相关系数的公式16.用最小平方法配合的回归直线,必须满足以下条件A.?(y-y c )=最小值B.?(y-y c )=0C.?(y-y c )2=最小值D.?(y-y c )2=0E.?(y-y c )2=最大值17.方程y c =a+bx222222)()(.)()())((...))((.y y n x x n y x xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xx xy xy yy xx xy yx ∑-∑⋅∑-∑∑⋅∑-∑=-∑⋅-∑--∑===--∑=σσA.这是一个直线回归方程B.这是一个以X为自变量的回归方程C.其中a是估计的初始值D.其中b是回归系数是估计值18.直线回归方程y c=a+bx中的回归系数bA.能表明两变量间的变动程度B.不能表明两变量间的变动程度C.能说明两变量间的变动方向D.其数值大小不受计量单位的影响E. 其数值大小受计量单位的影响19.相关系数与回归系数存在以下关系A.回归系数大于零则相关系数大于零B.回归系数小于零则相关系数小于零C.回归系数等于零则相关系数等于零D.回归系数大于零则相关系数小于零E.回归系数小于零则相关系数大于零20.配合直线回归方程的目的是为了A.确定两个变量之间的变动关系B.用因变量推算自变量C.用自变量推算因变量D.两个变量相互推算E.确定两个变量之间的相关程度21.若两个变量x和y之间的相关系数r=1,则A.观察值和理论值的离差不存在的所有理论值同它的平均值一致和y是函数关系与y不相关与y是完全正相关22.直线相关分析与直线回归分析的区别在于A.相关分析中两个变量都是随机的;而回归分析中自变量是给定的数值,因变量是随机的B.回归分析中两个变量都是随机的;而相关分析中自变量是给定的数值,因变量是随机的C.相关系数有正负号;而回归系数只能取正值D.相关分析中的两个变量是对等关系;而回归分析中的两个变量不是对等关系E.相关分析中根据两个变量只能计算出一个相关系数;而回归分析中根据两个变量只能计算出一个回归系数三、填空题1.研究现象之间相关关系称作相关分析。

应用回归分析-课后习题答案-何晓群.doc

应用回归分析-课后习题答案-何晓群.doc

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。

(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=1330 6.13σ∧=≈ (5)由于211(,)xxN L σββ∧1112()/xxxxL t L ββσσ∧∧-==服从自由度为n-2的t 分布。

因而1/2()|(2)1xx L P t n αββασ∧⎡⎤-⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(xxxxp t t L L ααβββ∧∧∧∧-<<+=1α-可得11195%333333β∧的置信度为的置信区间为(7-2.353,7+2.353)即为:(2.49,11.5)2201()(,())xxx N n L ββσ-∧+00002221()1()()xxxxt x x n L n L σσ∧∧--∧∧==++服从自由度为n-2的t 分布。

因而00/22(2)11()xx P t n x n L αασ∧-∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥+⎢⎥⎣⎦即220/200/21()1()()1xxxxx x p t t n L n L βσββσα--∧∧∧∧-+<<++=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()nii nii y y r y y ∧-=-=-==≈-∑∑(7)ANOV Ax平方和df均方 F 显著性组间(组合) 9.000 2 4.500 9.000 .100 线性项加权的 8.167 1 8.167 16.333 .056 偏差.833 1 .833 1.667.326组内 1.000 2 .500总数10.0004由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。

第一章 课后习题解答(应用回归分析)

第一章 课后习题解答(应用回归分析)

1、变量间统计关系和函数关系的区别是什么?答:函数关系是一种确定性的关系,一个变量的变化能完全决定另一个变量的变化;统计关系是非确定的,尽管变量间的关系密切,但是变量不能由另一个或另一些变量唯一确定。

2、回归分析与相关分析的区别和联系是什么?答:联系:刻画变量间的密切联系;区别:一、回归分析中,变量y 称为因变量,处在被解释的地位,而在相关分析中,变量y 与x 处于平等地位;二、相关分析中y 与x 都是随机变量,而回归分析中y 是随机的,x 是非随机变量。

三、回归分析不仅可以刻画线性关系的密切程度,还可以由回归方程进行预测和控制。

3、回归模型中随机误差项ε的意义是什么?主要包括哪些因素?答:随机误差项ε的引入,才能将变量间的关系描述为一个随机方程。

主要包括:时间、费用、数据质量等的制约;数据采集过程中变量观测值的观测误差;理论模型设定的误差;其他随机误差。

4、线性回归模型的基本假设是什么?答:1、解释变量非随机;2、样本量个数要多于解释变量(自变量)个数;3、高斯-马尔科夫条件;4、随机误差项相互独立,同分布于2(0,)N σ。

5、回归变量设置的理论根据?在设置回归变量时应注意哪些问题?答:因变量与自变量之间的因果关系。

需注意问题:一、对所研究的问题背景要有足够了解;二、解释变量之间要求不相关;三、若某个重要的变量在实际中没有相应的统计数据,应考虑用相近的变量代替,或者由其他几个指标复合成一个新的指标;四、解释变量并非越多越好。

6、收集、整理数据包括哪些内容?答:一、收集数据的类型(时间序列、截面数据);二、数据应注意可比性和数据统计口径问题(统计范围);三、整理数据时要注意出现“序列相关”和“异方差”的问题;四、收集数据的样本量应大于解释变量;四、整理数据包括:拆算、差分、对数化、标准化以及提出极端值,有缺失值时的处理。

7、构造回归理论模型的基本根据是什么?答:收集到的数据变量之间的数学关系(线性、非线性)以及所研究问题背景的相关模型,例如数理经济中的投资函数、生产函数、需求函数、消费函数等。

应用回归分析课后习题参考答案

应用回归分析课后习题参考答案

第4章违背根本假设的情况思考及练习参考答案4.1 试举例说明产生异方差的原因。

答:例:截面资料下研究居民家庭的储蓄行为Y i=β0+β1X i+εi其中:Y i表示第i个家庭的储蓄额,X i表示第i个家庭的可支配收入。

由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额那么更有规律性,差异较小,所以εi的方差呈现单调递增型变化。

例4.2:以某一行业的企业为样本建立企业生产函数模型Y i=A iβ1K iβ2L iβ3eεi被解释变量:产出量Y,解释变量:资本K、劳动L、技术A,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。

由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。

这时,随机误差项ε的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。

4.2 异方差带来的后果有哪些?答:回归模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生以下不良后果:1、参数估计量非有效2、变量的显著性检验失去意义3、回归方程的应用效果极不理想总的来说,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。

4.3 简述用加权最小二乘法消除一元线性回归中异方差性的思想及方法。

答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。

其中每个平方项的权数一样,是普通最小二乘回归参数估计方法。

在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。

然而在异方差的条件下,平方和中的每一项的地位是不一样的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。

由OLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。

所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。

应用回归分析课后习题答案部分-实用回归分析

应用回归分析课后习题答案部分-实用回归分析

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。

(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑2n01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75))[]1169049363110/3=++++=6.1σ∧= (5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。

因而/2||(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)22001()(,())xxx N n L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。

因而/2|(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()nii nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。

(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈/2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

又因为
,所以
分析此式:由于第二项 的处理使之最小化。
很明显,若令
是常数,所以
只能通过第一项
可以取最小值,即
所以, βl 2 是标准一元线性回归模型中总体回归系数β2的最优线性无偏估计量。
五、计算题
1.试根据教材 P205 页表 7—8 的资料,要求:
(1)以消费为因变量,国内生产总值为自变量,拟合线性回归方程; (2)计算回归估计的标准误差和决定系数; (3)对回归系数进行显著水平为 5%的显著性检验; (4)假定 2001 年我国的国内生产总值为 104880 亿元,利用拟合的回归方程预测该年可能达到的消 费额,给出置信度为 95%的预测区间。 解:(1)设消费为Y,国内生产总值为X,则线性回归方程为:Y=β1+β2X。 步骤一:构造 Excel 工作表,见图 7—1。 步骤二:回归分析1。 选择“工具”→“数据分析”,再在“数据分析”菜单中选中“回归”,见图 7—2。
图 7—10
图 7—11
图 7—12 最终得出Cf的区间预测结果为 5.见教材 P207 页表 7—9 的资料。要求: (1)试拟合以下总成本函数: (2)根据总成本函数推导出平均成本函数,并描出平均成本函数的图形; (3)试根据以上结果推算总产量为 1550 时的单位产品平均成本。 解:(1)构造 Excel 数据表(见图 7 一 13),并以前面所述的同样步骤进行回归分析,得到相应的回 归分析结果,见图 7—14。
二、选择题
1.变量之间的关系按相关程度分可分为( BCD )。
A.正相关 B.不相关 C.完全相关 D.不完全相关
2.复相关系数的取值区间为( A )。
A.0≤R≤1 B.-1≤R≤1 C.-∞≤R≤1 D.-1≤R≤∞
3.修正自由度的决定系数( ABD )。
A.
2
R

R
2
2
B.有时小于 0 C.0≤ R ≤1
图 7—13
得到的回归方程为
图 7—14
(2)求平均成本函数: 因为平均成本 yt 与总成本 Yt 的关系为
所以, 将产量从 1 到 2000 取值,代入上式,获得 2000 个平均成本的数据点,描出平均成本函数的图形,见 图 7—15。 由图 7 一 15 可知,平均成本随着产量的增加显示下降,达到一最低值之后,又会随着产量的增加而 提高。
在 F5 中输入公式“=MMULT(MMULT(Xf,MINVERSE(MMULT(TRANsPC)SE(X),X))), TRANSPOSE(Xf))”
然后按“Ctr1+Shift 十 Enter”组合键即可。 再计算Sef在F8 中输入公式“=442.22*SQRT(1+F5)”。442.22 为回归估计标准差。 步骤六:计算置信区间上下限。 在 F9、F10 中分别输入公式“=Cf—t 临界值*Sef”和“=Cf+t 临界值*Sef”。结果见图 7—12。
图 7—5 的消费” 步骤二:进行回归分析。 选择“工具”→“数据分析”→“回归”,在该窗口中选定自变量和因变量的数据区域,最后点击“确 定”完成操作。 得到回归分析的输出结果见图 7—6。
图 7—6 因此,回归方程为Ct=466.7965+0.4471Yt+0.2640Ct-1 (2)随机误差项的标准差估计值为 S=442.2165 (3)修正自由度的决定系数:Adjusted R Squares=0.9994 (4)各回归系数的 t 统计量为 (5)整个方程的显著性检验: F 统计量为 16484.6,远远大于临界值 3.52,说明整个方程非常显著。 (6)预测: 点估计值为 使用 Excel 进行区问估计步骤如下: 步骤一:构造工作表,见图 7—7。
D.比R2更适合作为衡量回归方程拟合程度的指标
4.下列各项中,与回归预测误差的大小有关的是( ABCD )。
A.样本容量 B.自变量预测值与自变量样本平均数的离差
C.自变量预测误差 D.随机误差项的方差项的方差
三、问答题
请举一实例说明什么是单相关和偏相关,以及它们之间的差别。
答:例如夏季冷饮店冰激凌与汽水的消费量,简单地就两者之间的相关关系进行考察,就是一种单相 关,考察的结果很可能存在正相关关系,即冰激凌消费越多,汽水消费也越多。然而,如果我们仔细观察, 可以发现一般来说,消费者会在两者中选择一种消费,也就是两者之问事实上应该是负相关。两者之间的 单相关关系出现正相关是因为背后还有天气等因素的影响,天气越热,两种冷饮的消费量都越多。如果设 法将天气等因素固定不变,单纯考察冰激凌与汽水的消费量,则可能出现负相关关系。像这种假定其他影 响因素不变专门考察其中两个因素之间的关系就成为偏相关。
证明: (1)无偏性:
,证明略,参见教材 P173 页,公式 7.29 式的证明。 (2)线性:

,则
由此可见, βl 2 是Yt的一个线性函数。它是以kt为权的Yt的一个加权平均,从而 βl 2 是一个线性统计量。
(3)最小方差性:

为β2的任意线性无偏估计量。现讨论
的取值情况。
因为
也即作为β2的任意线性无偏估计量,必须满足下列约束条件:
四、证明题
1.试证明教材P171 的(7.21)式给出的S2是标准一元线性回归模型中随机误差项的方差σ2的无偏估计 量。
证明:总体回归函数为
Yt = β1 + β2 X t + ut (7.1)
求样本平均数,有
Y = β1 + β2 X + u (7.2)
(7.1)-(7.2)式,得
( ) ( ) Yt − Y = β2 Xt − X + ut − u (7.3)
(注意:由于 t=1,…,n,未必代表总体中全部的随机误差项,故 u ≠0)
样本回归函数为 (7.4)
求平均数,有 (7.5)
(注意,根据假定条件: e =0)
(7.4)-(7.5)式,得 (7.6)
将(7.6)式代入(7.3)式,经整理后可得
平方后再求和:
取上式数学期望:

则(7.7)式等于: 教材 P173 页公式 7.30 为
图 7—9 最后,采用同样方法,将 B26:D26 定义为“Xf”,将 F2:F4 定义为“B”。 步骤三:计算点预测值Cf。 在 F6 中输入公式“=MMULT(Xf,B)”,按回车键即可。 步骤四:计算 t 临界值。 在 F7 中输入公式“=TINV(1-0.95,22-3)”,按回车键即可。 步骤五:计算预测估计误差的估计值Sef。
因为国内生产总值包括三次产业,所以工业总产值、农业总产值和全部的国内生产总值为正相关关系, 同时即便某些特殊地区没有工业和农业,仍然有国内生产总值,所以β1>0。
4.利用本章计算题 1 图 7—1 中给出的我国 GDP 和消费的资料,要求: (1)拟合以下形式的消费函数:
式中,Ct是t期消费;Ct-1是t-1 期的消费,Yt是t期的GDP; (2)计算随机误差项的方差估计值; (3)计算修正自由度的 t 统计量; (4)计算各回归系数的 t 统计量; (5)对整个回归方程进行显著性检验; (6)假设 2001 年的国内生产总值为 95350 亿元,试利用拟合的消费函数预测当年的消费总额,并给 出置信度为 95%的预测区间。 解:(1)回归分析的 Excel 操作步骤如下: 步骤一:首先对原 Excel 数据表作适当修改,添加“滞后一期的消费”数据见图 7—5。
第七章 相关与回归分析
一、判断题
1.产品的单位成本随着产量增加而下降,这种现象属于函数关系。( × ) 答:错。应是相关关系。单位成本与产量间不存在确定的数值对应关系。 2.相关系数为 0 表明两个变量之间不存在任何关系。( × ) 答:错。相关系数为零,只表明两个变量之间不存在线性关系,并不意味着两者间不存在其他类型的 关系。 3.单纯依靠相关与回归分析,无法判断事物之间存在的因果关系。( √ ) 答:对。因果关系的判断还有赖于实质性科学的理论分析。 4.圆的直径越大,其周长也越大,两者之间的关系属于正相关关系。( × ) 答:错。两者是精确的函数关系。 5.总体回归函数中的回归系数是常数,样本回归函数中的回归系数的估计量是随机变量。( √ ) 答:对。 6.当抽取的样本不同时,对同一总体回归模型估计的结果也有所不同。( √ ) 答:对。因为估计量属于随机变量,抽取的样本不同,具体的观察值也不同,尽管使用的公式相同, 估计的结果仍然不一样。
所以,Yf的置信度为 95%的预测区间为
所以,区间预测为
3.讨论以下几种场合的回归方程:
中回归系数的经济意义和应取的
符号。
(1)Yt为商业利润率;X2t他为人均销售额;X3t为流通费用率; (2)Yt为粮食销售量;X2t为人口数;X3t为人均收入; (3)Yt为工业总产值;X2t为占用的固定资产;X3t为职工人数; (4)Yt为国内生产总值;X2t为工业总产值;X3t为农业总产值。 答:
所以,Yf的置信度为 95%的预测区间为:
所以,区间预测为: 2.设销售收入 X 为自变量,销售成本 Y 为因变量。现已根据某百货公司 12 个月的有关资料计算出以 下数据(单位:万元):
利用以上数据,要求: (1)拟合简单线性回归方程,并对方程中回归系数的经济意义作出解释; (2)计算决定系数和回归估计的标准误差;
构造 t 统计量: 查t分布表可知:显著性水平为 5%,自由度为 21 的双测t检验的临界值为 2.080,t值小于临界值,故 无法拒绝零假设,说明β1在 5%的显著性水平下没有通过检验。 同理,可对β2进行显著性检验: t值远大于临界值 2.080,故拒绝零假设,说明β2在 5%的显著性水平下通过了显著性检验。 (4)预测: 点估计:Xf=104880 亿元,代入回归方程,Yf=62024.16 亿元。 置信度 95%的预测区间为: 计算Sef:
相关文档
最新文档