概率论与数理统计课件3-3

合集下载

概率论与数理统计(第3版)(谢永钦)第3章 随机向量

概率论与数理统计(第3版)(谢永钦)第3章 随机向量

概率论与数理统计
定义3.7 设X和Y是两个随机变量,如果对于任意实数x和y,事
件{X≤x}与{Y≤y}相互独立,即有P{ X≤x , Y≤y }=P{X≤x}P{Y≤y},则称随 机变量X与Y相互独立。 设F(x,y)为二维随机变量(X,Y)的分布函数, (X,Y)关于X和关于Y的边缘分布 函数分别为FX(x),FY(y),则上式等价于
这正是参数为
的 分布的概率密度。
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
X
X
Y
Y
概率论与数理统计
解: (1)串联情况
X
Y
概率论与数理统计
(2)并联情况
X
Y
感谢聆听 批评指导
概率论与数理统计
二维正态分布 若(X.,Y)的概率密度为
概率论与数理统计
4. n维随机变量
设E是一个随机试验,它的样本空间是=(e).设随机变量
是定义在同一样本空间上的n个随机变量,则称向

为n维随机向量或n维随机变量。简记为
设 数
为n维随机变量
是n维随机变量,对于任意实 ,称n元函数
的联合分布函数。
设(X,Y)的一切可能值为(xi,yj),i,j=1,2,… ,且(X,Y)取各对可能值的概率为 P{X=xi,Y=yj}=pij, i,j=1,2,…
称上式为(X,Y)的(联合)概率分布或(联合)分布律.离散型随机变量(X,Y) 的联合分布律可用表3-1表示.
概率论与数理统计
(X,Y)的分布律也可用表格形式表示:
记作
或记为
.

概率论与数理统计03-第三节-条件概率与全概率公式

概率论与数理统计03-第三节-条件概率与全概率公式

第三节 条件概率与全概率公式先由一个简单的例子引入条件概率的概念.内容分布图示★ 概念引入★ 条件概率的定义 ★ 例1 ★ 例2★ 乘法公式★ 例3 ★ 例4 ★ 例5 ★ 例6★ 全概率公式 ★ 例7 ★ 例8 ★ 例9★ 贝叶斯公式 ★ 例10 ★ 例11 ★ 例12★ 例13 ★ 例14★ 内容小结 ★ 课堂练习★ 习题1-4内容要点:一、 条件概率的概念在解决许多概率问题时,往往需要在有某些附加信息(条件)下求事件的概率. 如在事件A 发生的条件下,求事件B 发生的条件概率,记作)|(A B P .定义1 设B A ,是两个事件, 且0)(>A P , 则称)()()|(A P AB P A B P = (1) 为在事件A 发生的条件下,事件B 的条件概率.相应地,把)(B P 称为无条件概率。

一般地,)|(A B P )(B P ≠.注: 1. 用维恩图表达(1)式.若事件A 已发生,则为使B 也发生,试验结果必须是既在A 中又在B 中的样本点,即此点必属于AB .因已知A 已发生,故A 成为计算条件概率)|(A B P 新的样本空间.2. 计算条件概率有两种方法:a) 在缩减的样本空间A 中求事件B 的概率,就得到)|(A B P ;b) 在样本空间S 中,先求事件)(AB P 和)(A P ,再按定义计算)|(A B P 。

二、乘法公式由条件概率的定义立即得到:)0)(()|()()(>=A P A B P A P AB P (2)注意到BA AB =, 及B A ,的对称性可得到:)0)(()|()()(>=B P B A P B P AB P (3)(2)和(3)式都称为乘法公式, 利用它们可计算两个事件同时发生的概率.三、全概率公式全概率公式是概率论中的一个基本公式。

它使一个复杂事件的概率计算问题,可化为在不同情况或不同原因或不同途径下发生的简单事件的概率的求和问题。

概率论与数理统计课件第章节

概率论与数理统计课件第章节
4
五、二维连续型随机变量
设二维随机变量 (X,Y) 旳分布函数为 F(x,y),假如存在非负旳
函数
f
(x,y)
使对于任意
x,y
有:
F
(
x,
y)
y
x
f (u,v)dudv
则称(X,Y ) 是连续型旳二维随机变量。
称 f (x,y) 为随机变量 (X, Y ) 旳概率密度,或称为随机变量 X 和
2
0.010 0.005
求在X=1时Y旳条件分布律.
P{X=1}=0.045 P{Y=0⃒X=1}=0.030 ⁄ 0.045
0.004 0.001
P{Y 1|X 1} 0.010 / 0.045 P{Y 2|X 1} 0.005 / 0.045.
用表格形式表达为:
k
0
1
2
P{Y=k|X=1} 6/9 2/9 1/9
分布函数,也称为 X 和 Y 的联合分布函数.y
(x, y)
分布函数 F(x,y) 在 (x,y)处旳函数值就是: 随机
点 (X,Y ) 落在以点 (x,y) 为顶点且位于该点左下
x
方旳无穷矩形域内旳概率。如图所示.
2
下面利用分布函数来计 算 P{x1 X x2 , y1 Y y2 }
P{x1 X x2 , y1 Y y2 } F(x2 , y2 ) F(x1, y2 ) F ( x2 , y1 ) F ( x1 , y1 )
FX (x) P{ X x} P{ X x,Y } F(x, )
同理有: FY ( y) F (, y)
二、离散型 ( X ,Y ) 的边缘分布律
FX (x) F(x, )
pij, 又 FX ( x) P{ X xi }

概率论与数理统计课件第三章

概率论与数理统计课件第三章

f
(x,
y)
1
21 2
1
2
exp
1
2(1 2 )
(x
1)2
2 1
2
(x
1)( y 1 2
2 )
(y
2)2
2 2
其中1、2、1、 2、都是常数,且1 0, 2 0,1 1.
则称(X,Y)服从参数为1、2、1、的二2、维 正态分布,
记为
(X
,Y)
~
N (1,
2
,
2 1
,
2 2
2F(x, y) f (x, y) xy
(5)若(X,Y)为二维连续型随机向量,联合概率密度为f(x,y),则
F(x,y) P{X x,Y y}
返回
X
18


例5 设二维随机变量(X,Y)的概率密度为
Ae2(x y) , x 0, y 0
f (x, y)
0, 其他
(1)确定常数A;
分别为(X,Y)关于X和Y的边缘分布函数.
返回
X
25


例1 设二维随机向量(X,Y)的联合分布函数为
(1 e2x )(1 e3y ), x 0, y 0,
F(x, y)
0, 其他.
求边缘分布 FX (x), FY ( y)
当x
0时,FX
(x)
lim (1
y
e2 x
)(1
e3 y
)
1
e2 x
返回
X
14

例3 设随机变量Y~N(0,1),令
0, X 1 1,
| Y | 1
0,
|Y
|

海南大学《概率论与数理统计》课件-第一二三四章

海南大学《概率论与数理统计》课件-第一二三四章

x2 f ( x)d x;
x1
(4) 若 f ( x) 在点 x 处连续,则有 F( x) f ( x).
注意 对于任意可能值 a ,连续型随机变量取 a 的概率等于零.即
P{ X a} 0.
10、 均匀分布 定义 设连续型随机变量X 具有概率密度
例如某无f些线( x元电) 件元 或件0b,设的1 a备寿, 的命其a寿,电它命x,力服设从b,备指的数寿分命布,. 则称动物X 的在寿区命间等(a都,b)服区从间指上数服分从布均. 匀分布, 记为 X ~ U(a,b).
代表事件 A 在试验中发生的概率,它与试验总

n 有关。若
lim
n
npn
0

lim
n
Cnk
pnk
1 pn
nk
k
k!e
8、 连续型随机变量及其概率密度
设X为 随 机 变 量,F ( x)为X 的 分 布 函 数,若 存 在 非 负 函 数f ( x),使 对 于 任 意 实 数x 有
x
F ( x) f (t)d t,
第一章 随机事件及其概率
1 了解样本空间的概念,理解随机事件的概念,重 点掌握随机事件的关系和运算。 2 理解概率和条件概率的概念,掌握概率的基本性 质,能利用古典概型和几何概型计算一些事件的 概率。 3 掌握概率的加法公式、条件概率公式、乘法公式、 全概率公式和贝叶斯公式计算过事件的概率的方 法 4 理解事件独立性的概念,会利用事件独立性进行 事件概率计算。 5 理解独立重复试验的概率,掌握利用伯努利概型 计算过事件概率的方法。
(3) F () lim F ( x) 0, F () lim F( x) 1;
x
x

【学习课件】第三章概率论与数理统计

【学习课件】第三章概率论与数理统计

解 确定随机变量的取值:
及F(2,2).
p i j P Xi,Yj
F ( x , y) = P { X x , Y y}
{ P X { X i , Y i } j } { Y { X j } i } { Y j } pij
P Y j|X iP X i
xi x yjy
为 X, Y的 分 布 函 数 , 或 X与 Y的 联 合 分 布 函 数 。
X x ,Y y X x Y y
几 何 意 义 : 分 布 函 数 Fx0,y0表 示 随 机 点 X,Y落 在 区 域
x,y,xx0,yy0
中 的 概 率 。 如 图 阴 影 部 分 所 示 :
y
x0, y0
X=xi ,Y y j
P X=xi
pij , j=1, 2, pi
为给定条件X xi时,Y的条件概率分布律。
3、条件概率分布律
给定条件Yyj时,X的条件概率分布律记作:
X|Yyj
P X=xi |Yyj
pij ,i= 1, 2, pj
X |Y yj
P X |Y y j
x1
p1 j
X , Y ~P X=xi, Y=y j pij , i, j=1, 2,
则称 P X=xi | Y y j
P X=xi ,Y y j P Y=y j
pij , i=1, 2, p j
为给定条件Y y j时,X的条件概率分布律;
P Y=y j | X=xi
P
= limPX x,Y y lim Fx, y
y
y
0, x 0; =x2, 0 x 1;
1, 1 x.
FYy PY yPX ,Y y
= limPX x,Y y limFx, y

概率论与数理统计 第三章

概率论与数理统计 第三章
x y e 2u |0 e v |0 , x 0, y 0, 其它, 0,
(1 e 2 x )(1 e y ), x 0, y 0, 其它, 0,
例2-续3
(3)求概率P{Y≤X}. 只需在概率密度f的非零 区域与事件区域 G={(x,y)|y≤x} 的交集D上积分. 由公式
0 F ( x, y) 1; ;

F ( x, y )关于x、y均单调不减右连续.
分布函数与离散型二维随机变量分布律、连 续型二维随机变量概率密度的关系[见后].
三、离散型二维随机变量
1、二维均匀分布
两种常见的二维连续型分布
设G为一个平面有界区域,其
二维均匀分布
面积为A.如果二维连续型随机变量(X,Y)的概率密
度为
1 , ( x, y ) G , f ( x, y ) A 0, 其它,
则称(X,Y)服从区域G上的均匀分布,记为(X,Y)~U(G).
2、二维正态分布
域”的概率.
分布函数具有下列基本性质:
对任意点 ( x1 , y1 ), ( x2 , y2 ), x1 x2 , y1 y2 均有:
随机向量落在矩 形区域的概率
P{x1 X x2 , y1 Y y2 }
F ( x1 , y1 ) F ( x2 , y2 ) F ( x1 , y2 ) F ( x2 , y1 ) 0;
D
x
例2-续4
2 e
0

2 x
(1 e )dx [e
x
2 x
2 3 x 2 1 e ] |0 1 . □ 3 3 3
本例是一个典型题.大家应熟练掌握分析与计算 的方法。特别是会根据不同形状的概率密度非零区域 与所求概率的事件区域G来处理这类问题。 就P.73:例3来共同考虑如何分段?应分几段?怎 样计算各段值?(板书)

西北工业大学《概率论与数理统计》课件-第3章多维随机变量及其分布

西北工业大学《概率论与数理统计》课件-第3章多维随机变量及其分布

第三章多维随机变量及其分布关键词:二维随机变量分布函数分布律概率密度边缘分布函数边缘分布律边缘概率密度条件分布函数条件分布律条件概率密度随机变量的独立性Z=X+Y的概率密度Z=Y/X及Z=XY的概率密度M=max(X,Y)及N=min(X,Y)的概率密度例:研究某一地区学龄儿童的发育情况。

仅研究身高H 的分布或仅研究体重W 的分布是不够的。

需要同时考察每个儿童的身高和体重值,研究身高和体重之间的关系,这就要引入定义在同一样本空间(即某地区全部学龄前儿童)的两个随机变量。

问题的提出实际中,某些随机试验的结果需要同时用两个或两个以上的随机变量描述例:研究某种型号炮弹的弹着点分布。

每枚炮弹的弹着点位置需要由横坐标和纵坐标来确定,而它们是定义在同一样本空间的两个随机变量。

一、二维随机变量的定义设E是一个随机试验,样本空间S={e};设X=X(e)和Y=Y(e)是定义在S上的随机变量,由它们构成的向量(X,Y)叫做二维随机向量或二维随机变量。

S ey()()(),X e Y ex(X,Y)的性质不仅与X及Y有关,还依赖于X,Y间的相互关系,需将(X,Y)作为整体研究二、二维随机变量的分布函数设(X ,Y )是二维随机变量,对于任意实数x , y ,二元函数称为二维随机变量(X ,Y )的分布函数,或称为随机变量X 和Y 的联合分布函数。

{}(,)()()(,)F x y P X x Y y P X x Y y =≤≤==≤≤ 记成1、定义:若将(X ,Y )看成平面上随机点的坐标,则F (x ,y )在(x ,y )处的函数值即为随机点落在(x ,y )左下方无穷域内的概率2、几何意义:(X ,Y )落在矩形区域[x 1<x ≤x 2, y 1<y ≤y 2]上的概率为x 1x 2yy 1y 20xy(x,y )1212(,)P x x x y y y <≤<≤()()()()22211211,,,,F x y F x y F x y F x y --+=3、性质:1212,(,)(,)y x x F x y F x y <⇒≤任意固定当x 1x 2(x 1,y )(x 2,y )yy 2xy 1(x ,y 1)(x ,y 2)1212,(,)(,)x y y F x y F x y <⇒≤任意固定0(,)1F x y ≤≤ (,)0 (,)0(,)0,(,)1y F y x F x F F -∞=-∞=-∞-∞=+∞+∞=对任意固定,对任意固定,(1) 不减性:F (x , y )关于x , y 单调不减,即(2) 有界性:且(3) 右连续性0(,)(,)lim F x y F x y εε+→+=0(,)(,)lim F x y F x y εε+→+=(),,F x y x y 关于右连续,即:()222112111212(,)(,)(,)(,),0F x y F x y F x y F x y P x X x y Y y --+=<≤<≤≥ 1x 2x 1y 2y 01212,,x x y y <<若则22211211(,)(,)(,)(,)0F x y F x y F x y F x y --+≥(4)三、二维离散型随机变量及其分布律1、定义:,,,,21m x x x X 的可能值为设,,,,21n y y y Y 的可能值为中心问题:(X ,Y )取这些可能值的概率分别为多少?若二维随机变量(X ,Y )所有可能的取值是有限对或可列无限对,则称(X ,Y )是二维离散型随机变量。

东华大学《概率论与数理统计》课件 第三章 二维随机变量

东华大学《概率论与数理统计》课件 第三章 二维随机变量

Y
X
y1
y2
yn
x1
p11
p12
p1 n
x2
p21
p22
p2n
n
pi• =
pij
j =1
p1•
p2•
xm
pm1
pm2
pmn
m
p• j =
pij
p•1
p•2
p• n
i =1
其中, pij = P( X = xi ,Y = y j ) ,
pm•
n
m
p• j = pi• = 1
j −1
( x,
y)
=
1 s
,
0,
(x, y) S (x, y) S
3.体积为v的空间区域V上
(
x,
y,
z)
=
1 v
,
0,
(x, y, z) V (x, y, z) V
基本概念:随机向量、联合分布函数。 离散型随机变量:联合概率分布、阶梯型分布函
数。 连续型随机变量:概率密度函数、连续型分布函
数。

FY
(
y)
=
F
(+,
y)
=
lim
x→+
F
(
x,
y)
F ( x) = F ( x,+)
1 = F(+,+)
0 = F(−, y) O
二维随机变量 (X ,Y) 的分布函数: F(x, y) = P(X x,Y y)
y
y
(x,y)
0
x
x
二维分布函数 F(x,y) 的性质: (1)(非降性) F(x, y) 是 x 或 y 的单调非降函数.

东华大学《概率论与数理统计》课件-第3章概率论基础

东华大学《概率论与数理统计》课件-第3章概率论基础
重复排列:从n个不同元素中取r个(可重复),考 虑先后顺序共有nr=n n …. n种不同结果。
3.5 等可能样本空间
例7 琼斯先生有10本书要放在书架上,其中有 4本数学书,3本化学书,2本历史书,还有1本 语言书。琼斯想把同一种类的书放在一起,共 有几种不同的可能结果?如果是随意放置,恰 好同一种类的书放在一起的概率多大?
分步乘法计数原理:完成一件事,需要分成几 个步骤,每一步的完成有多种不同的方法,则 完成这件事的不同方法总数是各步骤不同方法 数的乘积。
例:网上预订行程,从郑州到上海共有12种不 同选择,从上海到香港共有4种不同的选择,那 么从郑州经上海到香港共有4×12=48种不同的 选择。
3.5 等可能样本空间
解法一:宿舍是无编号的,
解法二:宿舍是有编号的,
3.5 等可能样本空间
例11 如果一个房间里有n个人,没有两个人的 生日是同一天的概率是多大?如果希望概率小 于0.5,需要多少人?
习题
P53 ex18, ex20
引例: (1)假设某人投掷一对骰子,两个骰子点数之
和为8概率多大?
(2)如果已知第一个骰子最终朝上的数字为3, 那么两个骰子点数之和为8的概率为多少?
3.3文图和事件的代数表示
3.3文图和事件的代数表示
德·摩根律
例2
掷骰子一次,A=“掷出奇数点”,B=“点数不超 过3”,C=“点数大于2”,D=“掷出5点”。求
A B, B C, AB, BD, Ac , AcC
3.4 概率论公理
集函数P(E)称为事件E的概率,如果它满足下 列三条公理
3.5 等可能样本空间
例8 概率论课程上有6个男生,4个女生。对学 生进行考试,按照成绩排名。假定没有两个学 生的成绩是一样的,

概率论与数理统计ppt课件

概率论与数理统计ppt课件

注:P( A) 0不能 A ; P( B) 1不能 B S .
2。 A1 , A2 ,...,An , Ai Aj , i j, P( P(
n n i 1
Ai ) P( Ai )
i 1
n
证:令 Ank (k 1, 2,...), Ai Aj , i j, i, j 1, 2,....

5.1 大数定律 5.2 中心极限定理

第六章 数理统计的基本概念
• • 6.1 总体和样本 6.2 常用的分布
4
第七章 参数估计
• • • 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计
第八章 假设检验
• • • • • • • 8.1 8.2 8.3 8.4 8.5 8.6 8.7 假设检验 正态总体均值的假设检验 正态总体方差的假设检验 置信区间与假设检验之间的关系 样本容量的选取 分布拟合检验 秩和检验
A B 2 A=B B A
B A
S
例: 记A={明天天晴},B={明天无雨} B A
记A={至少有10人候车},B={至少有5人候车} B
A
一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
BA
13


事件的运算
A与B的和事件,记为 A B
8
§1 随机试验
确定性现象
自然界与社会Βιβλιοθήκη 活中的两类现象不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定

例:
向上抛出的物体会掉落到地上 ——确定 ——不确定 明天天气状况 ——不确定 买了彩票会中奖

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

比如:
概率统计
比如:
1 x y 0
F( x, y) 0 x y 0
对这二元函数来验证第4条性质。
现找 4 个点如下:
( x2 , y2 ) (1, 1); ( x1, y2 ) (1, 1)
( x2 , y1 ) (1, 1); ( x1, y1 ) (1, 1)
F(1,1) F(1,1) F(1, 1) F(1, 1)
0
x 0, y 0 其它
求: (1) 分布函数 F( x, y)
(2) ( X ,Y )落在G内的概率
其中 G: x y 1 及 x 轴、y 轴所围区域
解: (1) Q
x
F(x, y)
y
f ( x, y)dxdy
当 x 0, y 0 时
xy
F( x, y)
0 dx 0
2,4,8,10,14,16,20这7个 数不能被3整除,但能
被2整除
6,12,18这3个数能被2 整除,又能被3整除
不难验证:
1 1
7473
pi j 0, 0 0 pi j 21 21 21 21 1
概率统计
故 得: (X,Y) 的 联合分布 律为:
XY
0 1
01
7
4
21 21
7
P( x1 X x2 , y1 Y y2 )
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1, y1 ) F ( x1, y2 )
如图:
y
y2 L
y1 L M
M
x
0 x1
x2
概率统计
2. 二维随机变量分布函数 F(x,y) 的性质
性质1 F(x,y) 分别对 x 和 y 单调非减, 即:

《概率论与数理统计》三

《概率论与数理统计》三
称F(x,y)为二维随机变量(X,Y)的分布函数,或称为随机变量X 和Y 的联合分布函数。
y (x,y)
y y2
y1
O
x
O x1
x2
x
P{x1 X x2, y1 Y y2} F(x2, y2 ) F(x1, y2 ) F(x2, y1) F(x1, y1)
➢ 分布函数F(x,y)的性质
设(X,Y)的所有可能取值:(xi, yj), i,j=1,2…,
P{X xi ,Y y j } ˆ pij ,( i, j 1,2,)

1 0 pij 1,

2
pij 1.
j1 i1


函 F ( x, y) pij

xi x yjy
Y X
x1 x2 xi
y1
p1 1 p21
记为
(X
,Y)
~
N (1,
2
,
2 1
,
22,
)
四、多维随机变量
(1)设E是一随机试验, 是其样本空间,X1,X2,...Xn 是定义在上的n个随机变量,则称n维向量(X1,X2,...Xn ) 为定义在 上的n维随机向量或n维随机变量.
(2)对n个任意实数,令
F(x1, x2 ,, xn ) P{X1 x1, X2 x2 ,Xn xn}
标 (X,Y)表示, 也就是 中每一元素都可用一对数来
表示, 把X, Y看成变量, X 与Y 都是随机变量, (X,Y) 共同刻化试验的结果, 这就是二维随机变量.
例2 考察某地一天的天气情况, 即同时考虑最高气温、 最低气温、气压、风力、降雨量,这就需要5个变量 来表示可能的试验结果,这就是五维随机变量.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、联合概率密度的相关性质
1.已知随机变量 X 和 Y 的联合概率密度为
ke ( x y ) , 0 x ,0 y f ( x,y ) 其它 0 ,
(1)试确定常数 k ; (2)求 ( X , Y ) 的分布函数; (3)求 P {0 X 1,0 Y 2 }; (4)求 P { X Y } 。
解: (1)
1



f (x, y)dxdy

0

0
ke( xy )dxdy k k 1
x y e-(u v) dudv (1 e-x )(1 e y ),0 x ,0 y 0 0 (2)F(x, y ) 0, 其它
-1 2
试求X+Y的分布律
P{ Z=zk } = P{ g( X,Y ) = z k } =
p , k 1,2,
ij i, j g ( xi , y j ) zk
概率
1/10
2/10
3/10
2/10 1/10 1/10
(X,Y)(-1,-1) (-1,1) (-1,2) (2,-1) (2,1) (2,2)
1 | |, 1 | y||,y y |y1| 1 f ( y) ( y dx fY (Yy ) ff( x , y ))dx 0.0. 其它 其它


1 P ( X 1 ,Y 0 ) 3 1 2 Xx x1dy ,Y2x ,0 x 1 P ( X 1 0 ) P ( 1dy 0,0 3 1 |Y 2x ) x f((xX ) 2 | Y(( 0y ) Px( Y2 0 ) ( x ff x ,, y )dy x f X X ) x ) dy P 4 0. . Y 0 ) 其它 2 P( 0 其它1 4 1 P ( X 1 ,Y 1 ) 1 1 1 2 2 P ( Y 1 | X 1 ) P ( X 2 ,Y 2 ) 1 1 P(Y 2 | X 2 ) 6 P(Y 1 ) 2 2 6 2) P( X 2


f ( z y, y )dy


由对称性,又有
f Z (z)


f ( x, z x )dx

特别,当 X 与 Y 相互独立时,有

f Z (z)


f X ( z y ) fY ( y )dy f X ( x ) fY ( z x )dx f X * fY
(b)、N min( X, Y) 的分布函数:
Fmin ( z ) P {min( X , Y ) z } 1 P {min( X , Y ) z } 1 P{ X z , Y z } 1 - P { X z }P{Y z } 1 - [1 - P { X z }][1 - P{Y z }] 1 - [1 - FX ( z )][1 - FY ( z ) ]
其中, G 为不等式 g ( x,y) z 所确定的 x 和 y 的范围, 即, G = { (x,y) | g(x,y)≤z}。
2、 Z X Y 的分布
(a)设 (X,Y ) 的概率密度为 f ( x , y ) ,则 Z X Y 的分布函数
FZ ( z ) P { X Y z }


1 | |, 1 | y||,y y |y1| 1 f ( y) ( y dx fY (Yy ) ff( x , y ))dx 0.0. 其它 其它



( 1 ) 对任意的0 x 1有 ( 1 ) 对任意的0 x 1有 1 | y | x f ( x , y ) 1 fY | X ( y | x ) ( x , y ) 2x | y | x f f (x) fY | X ( y | x ) 2x 0 , X 其它 fX ( x ) 其它 0 , 对任意的 | y | 1 对任意的 | y | 1 1 | y | x 1 f ( x , y ) 1 f X |Y ( x | y ) 1- | y || y | x 1 f ( x, y ) ) fY ( y 1- y | | f X |Y ( x | y ) 0 , 其它 fY ( y ) 其它 0 ,
( 3 )P( 0 X 1,0 Y 2 )
1 2
0 0
e
( x y )
dxdy ( 1 e )( 1 e )
1
2
( 4 )P ( X Y )

0

x
e
( x y )
1 dydx 2
二、求边缘分布
2、设随机变量 X 和 Y 的联合概率密度为
例3.5.3.设X和Y独立同正态分布N(1,4), (1)求Z=X+Y的概率密度; (2)求Z=X-Y的概率密度.
(b) ( X, Y )为离散型随机变量,则函数
Z X Y 的概率分布:
例3.5.4:设(X,Y)的分布律为:
X
Y
-1 1/10 2/10
1 2/10 1/10
2 3/10 1/10
令 x u y ,得
z f (u y, y )dudy z f (u y, y )dy du, FZ ( z )

求导,得
f Z (z)


f ( z y, y )dy
f Z (z)

x y z
f ( x, y )dxdy
z y f ( x , y )dxdy, z ,
令 x u y ,得
z z
FZ ( z ) f ( u y, y )dudy
第3.5节、两个随机变量函数的分布
1、求二维随机变量函数的分布函数:
已知二维随机变量 ( X,Y ) 的联合分布函数为 F ( x , y ) ,可 以求出其函数 Z g ( X,Y ) 的分布:
FZ ( z ) P{ Z z} P{ g ( X,Y ) z} P{( X,Y ) G}
X+Y
所以:X+Y P
-2
-2
0
0
1
1 1/2
1
3 4
3
4
1/10 2/10
1/10 1/10
例3.4.3(941)设随机变量X,Y是相互独立的, 且X,Y等可能地取 0,1 为值,求随机变量Z=max(X,Y) 的分布列。
解:
X P 0 1/2 1 1/2 Y P 0 1/2 1 1/2
(X,Y)的取值数对为(0,0),(0,1),(1,0),(1,1),k 1,2, P{ Z=zk } = P{ g( X,Y ) = z k } = pij , i, j Z=max(X,Y)的取值为:0,1 g ( x , y ) z

上式中的积分称为 f X 和 fY 的卷积。
例3.5.2
设 X 和Y 是两个相互独立的标准正态变量,
求 Z X Y 的概率密度。
解:
fZ ( z )


f X ( x ) fY ( z x )dx 1 e 2
z2 4 x2 2

1 e 2
z ( x )2 2
(a)设 ( X,Y ) 的概率密度为 f ( x , y ) ,则 Z X Y 的分布函数
FZ ( z ) P { X Y z }

x y z
f ( x, y )dxdy
z y f ( x , y )dxdy, z ,
考虑:X与Y相互独立情形
(a)、 M
max ( X, Y) 的分布函数:
由 X 和 Y 相互独立,有
P{max ( X,Y ) z} P{ X z, Y z} P{ X z}P{Y z},
即 max( X,Y ) 的分布函数为 Fmax ( z ) FX ( z )FY ( z )
2 1 x xy, 0 x 1, 0 y 2 f ( x, y ) 3 0 , 其它
求(1) X 和 Y 的联合分布函数; (2)边缘概率密度。
F( x, y )
y x 2
y


x
f ( u , v )dudv
0 , x 0 或y 0 1 1 3 1 2 2 0 0 u 3 uvdudv 3 x y 12 x y ,0 x 1,0 y 2 2 x 1 2 3 1 2 2 0 0 u 3 uvdudv 3 x 3 x ,0 x 1,y 2 y 1 1 1 1 2 2 0 0 u 3 uvdudv 3 y 12 y , x 1,0 y 2 2 1 1 u2 uvdudv 1, x 1, y 2 0 0 3
(2)f X ( x ) f ( x , y )dy x 2 1 xydy 2 x 2 2 x ,0 x 1 0
2

3
3
Байду номын сангаас
0, 其它
1 1 1 f Y ( y ) f ( x, y )dx x xydx y ,0 y 2 0 3 3 6
解:
x x1dy 2x ,0 x 1 x 1dy 2x ,0 x 1 f( x x ) ff(( x ,, y )dy x ( ) x y )dy fX X 0. . 其它 0 其它
相关文档
最新文档