2014江苏高考压轴卷 数学 Word版含答案

合集下载

2014年江苏省高考压轴卷数学

2014年江苏省高考压轴卷数学

2014年江苏省高考压轴卷数学1.设全集U=R ,A ={}1,2,3,4,5,B ={ x ∈R ︱x 2+ x -6=0},则下图中阴影表示的集合为▲ . 2. 若,32121=+-xx 则3322x x-+= ▲ .3. 设函数2()ln f x x x =-,若曲线()y f x =在点(1,(1))f 处的切线方程为y ax b =+,则=+b a ▲ .4.已知a =log 0.55,b =log 0.53,c =log 32,d =20.3,则a,b,c,d 依小到大排列为 ▲ .5.已知函数()()12321,2log 1,2x e x f x x x -⎧-<⎪=⎨-≥⎪⎩,则()()2f f = ▲ .6.函数f (x )的定义域为 ▲ .7.设定义在R 上的函数()f x ,满足(2)()0f x f x +-=,若01x <<时()f x =2x ,则21(log )48f = ▲ . 8.函数2()xf x x e =在区间(),1a a +上存在极值点,则实数a 的取值范围为 ▲ .9.已知命题p :{|||4}A x x a =-<,命题q :{|(2)(3)0}B x x x =-->,若p ⌝是q ⌝的充分条件,则a 的取值范围为 ▲ .10.已知函数3()f x x x x =+,若2(2)(3)0f x f x ++<,则实数x 的取值范围是 ▲ .11.若函数2()ln f x mx x =+在定义域内是增函数,则实数m 的取值范围是 ▲ .12.对于R 上可导的非常数函数)(x f ,若满足0)(')1(≥-x f x ,则(0)(2)2(1)f f f +与的大小关系为 ▲ .13.下列四个命题中,所有真命题的序号是 ▲ . ①,()()m m m R f x m x-+∃∈=-243使1是幂函数;②若函数()f x 满足(1)(1)f x f x +=-,则函数()f x 周期为2; ③如果10≠>a a 且,那么)(log )(log x g x f a a =的充要条件是)()(x g x f a a=;④命题“,x R x x ∀∈--≥2都有320”的否定是“,x R x x ∃∈--≤2使得320”.14.已知函数1()()2(),f x f x f x =满足当x ∈[1,3],()ln f x x =,若在区间1[,3]3内,函数()()g x f x ax =-有三个不同零点,则实数a 的取值范围是 ▲ .二.解答题: 本大题共6小题.共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)设集合21|,0,11x A y y x x x +⎧⎫==≥≠⎨⎬-⎩⎭且,集合{}22|lg (21),B x y x a x a a a R ⎡⎤==-+++∈⎣⎦.(1)求集合,A B ; (2)若AB R =,求实数a 的取值范围16.(本小题满分14分)设命题p :存在x ∈R ,使关于x 的不等式220x x m +-≤成立;命题q :关于x 的方程(4)394x x m -⋅=+有解;若命题p 与q 有且只有一个为真命题,求实数m 的取值范围.17.(本小题满分14分) 设21()log 1axf x x x -=--为奇函数,a 为常数. (1)求a 的值;(2)判断并证明函数)(x f 在),1(+∞∈x 时的单调性;(3)若对于区间[]2,3上的每一个x 值,不等式()2x f x m >+恒成立,求实数m 取值范围.18. (本小题满分16分)某国庆纪念品,每件成本为30元,每卖出一件产品需向税务部门上缴a 元(a 为常数,4≤a ≤6)的税收.设每件产品的售价为x 元,根据市场调查,当35≤x ≤40时日销售量与1e x⎛⎫⎪⎝⎭(e 为自然对数的底数)成正比.当40≤x ≤50时日销售量与2x 成反比,已知每件产品的售价为40元时,日销售量为10件.记该商品的日利润为L (x )元.(1)求L (x )关于x 的函数关系式;(2)当每件产品的售价x 为多少元时,才能使L (x )最大,并求出L (x )的最大值.19. (本小题满分16分)已知命题p :“函数()y f x =的图像关于点( )P a b 、成中心对称图形”的充要条件为“函数()y f x a b =+- 是奇函数”.(1)试判断命题p 的真假?并说明理由;(2)设函数32()3g x x x =-,求函数()g x 图像对称中心的坐标;(3)试判断“存在实数a 和b ,使得函数()y f x a b =+- 是偶函数”是“函数 ()y f x =的图像关于某直线成轴对称图像”成立的什么条件?请说明理由.20.(本小题满分16分)设函数()ln f x a x x1=+,a ∈R .(1)求函数)(x f 的单调区间;(2)当0a >时,若对任意0x >,不等式()2f x a ≥成立,求a 的取值范围; (3)当0a <时,设10x >,20x >,试比较)2(21x x f +与2)()(21x f x f +的大小并说明理由.数学加试试卷解答题(共4小题,每小题10分共40分,解答时应写出文字说明,证明过程或演算步骤) 21. 求下列函数)32(sin 2π+=x y 的导数.22. 将水注入锥形容器中,其速度为min /43m ,设锥形容器的高为m 8,顶口直径为m 6,求当水深为m 5时,水面上升的速度.23. 证明下列命题:(1)若函数f (x )可导且为周期函数,则f'(x )也为周期函数; (2)可导的奇函数的导函数是偶函数.24. 已知()()3211ln ,32f x xg x x x mx n ==+++,直线与函数()(),f x g x 的图象都相切于点()1,0 (1)求直线的方程及()g x 的解析式;(2)若()()()'h x f x g x =-(其中()'g x 是()g x 的导函数),求函数()h x 的值域.参考答案一.填空题: 本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上1.{}2 2.18 3.1 4. a <b <c <d 5. 1 6. {}2x x > 7.438. (3,2)(1,0)--⋃- 9.16a -≤≤10.(2,1)-- 11. 0m ≥ 12. (0)(2)2(1)f f f +> (≥)13.① 14. ln 31[,)3e二.解答题: 本大题共6小题.共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.解:(1)A ={}|12x x x ≤->或 …………………………………………………………5分B ={}|1x x a x a <>+或 …………………………………………………………8分(2)由AB R =得,11a +≤-或2a > …………………………………………12分即2a ≤-或 2a >,所以(](),22,a ∈-∞-+∞ ………………………………14分16.解:由命题p 为真:440m ∆=+≥,得1m ≥- ………………………………4分 由(4)394xxm -⋅=+得44303x xm ⎛⎫=-+≤ ⎪⎝⎭所以命题q 为真时,0m ≤ ………………………………8分若命题p 为真,命题q 为假,则1m ≥-且0m >得0m >若命题p 为假,命题q 为真,则1m <-且0m ≤得1m <- ………………………12分 所以实数m 的取值范围为(,1)(0,)-∞-+∞ ………………………………………14分17. 解:(1)由条件得:0)()(=+-x f x f ,2211log log 011ax axx x +-∴+=---, 化简得0)1(22=-x a ,因此1,012±==-a a ,但1=a 不符合题意,因此1-=a . ………………4分 (也可以直接根据函数定义域关于坐标原点对称,得出结果,同样给分)(2)判断函数)(x f 在),1(+∞∈x 上为单调减函数;证明如下:设121x x <<<+∞121212212222112121111()()log log log ()1111x x x x f x f x x x x x x x x x +++--=--+=⋅+----+ 121x x <<<+∞ 21120,10,10x x x x ∴->±>±> 12121212(1)(1)(1)(1)1x x x x x x x x +---+=-+-12122112()0x x x x x x --++=-> 又1212(1)(1)0,(1)(1)0x x x x +->-+>∴12121111x x x x +-⋅-+,1221211log 011x x x x +-⋅>-+,又210x x ->∴12()()0f x f x ->,即12()()f x f x > ∴函数)(x f 在),1(+∞∈x 上为单调减函数;(也可以利用导数证明,对照给分) ………………………………………………9分 (3)不等式为()2xm f x <-恒成立,min [()2]x m f x ∴<-)(x f 在[2,3]x ∈上单调递减,2x 在[2,3]x ∈上单调递增,()2x f x ∴-在[2,3]x ∈上单调递减,当3x =时取得最小值为10-,(,10)m ∴∈-∞-。

2014年高考江苏数学试题与答案(word解析版)

2014年高考江苏数学试题与答案(word解析版)

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题—第14题)、解答题(第15题第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.参考公式:圆柱的体积公式:V圆柱sh,其中s为圆柱的表面积,h为高.圆柱的侧面积公式:S圆柱=cl,其中c是圆柱底面的周长,l为母线长.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题.卡.相.应.位.置.上...(1)【2014年江苏,1,5分】已知集合A{2,1,3,4},B{1,2,3},则AB_______.【答案】{1,3}【解析】由题意得AB{1,3}.(2)【2014年江苏,2,5分】已知复数【答案】21 z(52i)(i为虚数单位),则z的实部为_______.2 2【解析】由题意22z(52i)25252i(2i)2120i,其实部为21.(3)【2014年江苏,3,5分】右图是一个算法流程图,则输出的n的值是_______.【答案】5n的最小整数解.2n20整数解为n5,因此输出的n5.【解析】本题实质上就是求不等式220(4)【2014年江苏,4,5分】从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_______.【答案】13【解析】从1,2,3,6这4个数中任取2个数共有 2C46种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为21P.63(5)【2014年江苏,5,5分】已知函数ycosx与ysin(2x)(0≤),它们的图象有一个横坐标为的3 交点,则的值是_______.【答案】6【解析】由题意cossin(2)33 ,即21sin()32,2kk(1),(kZ),因为0,所36以.6(6)【2014年江苏,6,5分】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.【答案】241【解析】由题意在抽测的60株树木中,底部周长小于100cm的株数为(0.0150.025)106024.(7)【2014年江苏,7,5分】在各项均为正数的等比数列{}a中,若na8a62a4,则a21,a的值是________.6【答案】4【解析】设公比为q,因为a21,则由a8a62a4得64224220qqa,qq,解得22q,所以4a6a2q4.(8)【2014年江苏,8,5分】设甲、乙两个圆柱的底面积分别为S,S,体积分别为12 V,V,若它们的侧面积相12等,且S1S294,则V1V2的值是_______.【答案】32【解析】设甲、乙两个圆柱的底面和高分别为r、h,r2、h2,则2r1h12r2h2,11 h r12hr21,又2Sr112Sr2294,所以r1r232,则222Vrhrhrrr11111121222Vrhrhrrr2222221232.(9)【2014年江苏,9,5分】在平面直角坐标系xOy中,直线x2y30被圆长为________.22(x2)(y1)4截得的弦【答案】2555 【解析】圆22(x2)(y1)4的圆心为C(2,1),半径为r2,点C到直线x2y30的距离为22(1)33d,所求弦长为22512 229255 l2rd24.55(10)【2014年江苏,10,5分】已知函数f(x)xmx1,若对任意x[m,m1],都有f(x)0成立,则实2数m的取值范围是________.【答案】20,2【解析】据题意22f(m)mm102f(m1)(m1)m(m1)10,解得22m0.(11)【2014年江苏,11,5分】在平面直角坐标系xOy中,若曲线2byaxx(a,b为常数)过点P(2,5),且该曲线在点P处的切线与直线7x2y30平行,则ab的值是________.【答案】3【解析】曲线yax 2bxb b过点P(2,5),则4a5①,又y'2ax22x,所以b74a②,由①②解得42ab11,所以ab2.(12)【2014年江苏,12,5分】如图,在平行四边形ABCD中,已知,AB8,AD5,CP3PD,APBP2,则ABAD的值是________.【答案】22【解析】由题意,1APADDPADAB,433BPBCCPBCCDADAB,44所以13APBP(ADAB)(ADAB)442132ADADABAB,216即1322564ADAB,解得ADAB22.216(13)【2014年江苏,13,5分】已知f(x)是定义在R上且周期为3的函数,当x[0,3)时,21f(x)x2x.2 若函数yf(x)a在区间[3,4]上有10个零点(互不相同),则实数a的取值范围是________.【答案】01,22【解析】作出函数 21 f(x)x2x,x[0,3)的图象,可见21 f(0),当x1时,21 f(x)极大, 27f ,方程f(x)a0在x[3,4]上有10个零点,即函数yf(x)和图象与直线 (3) 2ya 在[3,4]上有10个交点,由于函数f(x)的周期为3,因此直线ya 与函数21f(x)x2x,x[0,3)的应该是4个交点,则有21 a(0,). 2(14)【2014年江苏,14,5分】若ABC 的内角满足sinA2sinB2sinC ,则cosC 的最小值是_______.【答案】624【解析】由已知sinA2sinB2sinC 及正弦定理可得a2b2c , cosC a2b 222 ab() 2 222abc 2ab2ab223a2b22ab26ab22ab628ab8ab4,当且仅当 22 3a2b ,即a b 2 3时等号成立,所以cosC的最小值为 62 4. 二、解答题:本大题共6小题,共计90分.请在答.题.卡.指.定.区.域.内.作答,解答时应写出必要的文字说明、证明过程或演算步骤. (15)【2014年江苏,15,14分】已知2,,sin5 5 .(1)求sin的值;4(2)求cos2 6的值. 解:(1)∵sin5,,,∴ 25225cos1sin5, 210sinsincoscossin(cossin).444210(2)∵43 sin22sincoscos2cossin,,sin22sincoscos2cossin2255∴3314334 cos2coscos2sinsin2666252510. (16)【2014年江苏,16,14分】如图,在三棱锥PABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知 PAAC ,PA6,BC8,DF5.(1)求证:直线PA ∥平面DEF ;(2)平面BDE ⊥平面ABC . 解:(1)∵D ,E 为PC ,AC 中点∴DE ∥PA ∵PA 平面DEF ,DE 平面DEF ∴PA ∥平面DEF .(2)∵D ,E 为PC ,AC 中点,∴DE1PA3∵E ,F 为AC ,AB 中点,∴14 EFBC ,22∴DE 2EF 2DF 2,∴DEF90°,∴DE ⊥EF ,∵DE//PA ,PAAC ,∴DEAC , ∵ACEFE ,∴DE ⊥平面ABC ,∵DE 平面BDE ,∴平面BDE ⊥平面ABC .(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中, F ,F 分别是椭圆 12 22yxab的左、221(0)ab右焦点,顶点B的坐标为(0,b),连结B F并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,2连结F C.1B F22,求椭圆的方程;(1)若点C的坐标为41,,且33(2)若F CAB,求椭圆离心率e的值.13161解:(1)∵41C,,∴33 999ab22,∵2222BFbca,∴22(2)22a,∴b,21∴椭圆方程为2xy.21 2(2)设焦点F1(c,0),F2(c,0),C(x,y),∵A,C关于x轴对称,∴A(x,y),∵B,F,A三点共线,∴2bybcx,即bxcybc0①∵yb FCAB,∴11xcc ,即20xcbyc②①②联立方程组,解得xyca2bc222bc2bc22∴Cac2bc22,2222bcbcC在椭圆上,∴22ac2bc22bcbc2222ab221,化简得5ca,∴c522a5,故离心率为55.(18)【2014年江苏,18,16分】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段O A上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O正北方向60m处,点C位于点O 正东方向170m处(OC为河岸),tan4BCO.3(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?.解:解法一:(1)如图,以O为坐标原点,OC所在直线为x轴,建立平面直角坐标系x Oy.由条件知A(0,60),C(170,0),直线BC的斜率4k-tanBCO.BC3又因为AB⊥BC,所以直线AB的斜率3k.设点B的坐标为(a,b),AB4则k BC=b04a1703 ,k AB=603ba04,解得a=80,b=120.所以BC= 22(17080)(0120)150.因此新桥BC的长是150m.(2)设保护区的边界圆M的半径为rm,OM=dm,(0≤d≤60.) 由条件知,直线BC的方程为4(170)yx,即4x3y6800,3由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,即因为O和A到圆M上任意一点的距离均不少于80m,|3d680|6803d r.55所以rd≥ 80r(60d)≥80,即6803d 5 6803d5d80 ≥ (60d)80≥,解得10≤d ≤35.故当d=10时, 6803d r 最大,即圆面积最大.所以当OM=10m 时,圆形保护区的面积最大.5解法二:(1)如图,延长OA,CB 交于点F .因为tan ∠BCO=43 .所以sin ∠FCO=45 ,cos ∠FCO=3 5 .因为OA=60,OC=170,所以OF=OCtan ∠FCO=680 3.CF= OC 850cosFCO3 , 4从而500AFOFOA.因为O A⊥OC,所以cos∠AFB=sin∠FCO=3 45,又因为A B⊥BC,所以BF=AFcos∠AFB== 4003,从而BC=CF-BF=150.因此新桥B C的长是150m.(2)设保护区的边界圆M与BC的切点为D,连接M D,则MD⊥BC,且MD是圆M的半径,并设MD=rm,OM=dm(0≤d≤60.)因为O A⊥OC,所以sin∠CFO=cos∠FCO,故由(1)知,sin∠CFO= M DMDr3MFOFOM 6805d3所以6803dr.5因为O和A到圆M上任意一点的距离均不少于80m,所以rd≥80r(60d)≥80,即6803d56803d5d80≥(60d)≥80,解得10≤d≤35,故当d=10时,6803dr最大,即圆面积最大.所以当OM=10m时,圆形保护区的面积最大.5(19)【2014年江苏,19,16分】已知函数()eexxfx其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤em1在(0,)上恒成立,求实数m的取值范围;x(3)已知正数a满足:存在你的结论.x0[1,),使得3ea1与f(x)a(x3x)成立.试比较000a e1的大小,并证明解:(1)x R,f(x)eef(x),∴f(x)是R上的偶函数.xx(2)由题意,(ee)e1xxxm≤,∵x(0,),∴exex10,xxxm≤m,即(ee1)e1即e1xm≤对x(0,)恒成立.令e(1)tt,则xee1xx m1t≤对任意t(1,)恒成立.tt12∵1111tt≥,当且仅当t2时等号成立,∴1m≤.223tt1(t1)(t1)113t11t1(3)f'(x)ee,当x1时f'(x)0∴f(x)在(1,)上单调增,令xx h(x)a(x3x),h'(x)3ax(x1),33∵a0,x1,∴h'(x)0,即h(x)在x(1,)上单调减,∵存在x0[1,),使得f xaxx,∴f(1)e12a,即1e1()(3)a.3000e2e∵aaaa,设m(a)(e1)lnaa1,则m'(a)e11e1a e-1lnlnlne(e1)ln1e1a1eaaa1 ,11 ae.当2e 11eae1时,m'(a)0,m(a)单调增;当ae1时,m'(a)0,m(a)单调2e减,因此m(a)至多有两个零点,而m(1)m(e)0,∴当ae时,m(a)0,a e1ea1;当1e1ea 时,m(a)0,2ea e1e1;当ae 时,m(a)0, aae1ea1.(20)【2014年江苏,20,16分】设数列{}a 的前n 项和为S .若对任意的正整数n ,总存在正整数m ,使得 nnS a , nm则称{}a 是“H 数列”. nn(1)若数列{a}的前n 项和S2(n N ),证明:{a}是“H 数列”;nnn(2)设{a}是等差数列,其首项 na 11,公差d0.若{a }是“H 数列”,求d 的值; n (3)证明:对任意的等差数列{}a ,总存在两个“H 数列”{b}和{c},使得abc(n N )成立. nnnnnn 解:(1)当n ≥2时,nn1n1 aSS1222,当n1时,nnn a 1S 12, ∴n1时, S a ,当n ≥2时, 11 S a ,∴{a }是“H 数列”. nn1n(2) n(n1)n(n1) Snadnd ,对n N ,m N 使 n122Sa ,即 nm n(n1) nd1(m1)d , 2 5取n2得1d(m 1)d ,m21d,∵d0,∴m2,又m N ,∴m1,∴d1. (3)设{} a 的公差为d ,令 n b a1(n1)a1(2n)a1,对n N , nbba , n1n1 c (n1)(ad), n1 对n N , c cad ,则 n1n1b ca1(n1)da ,且{b},{c }为等差数列. nnnnn{b}的前n 项和 n n(n1) Tna(a),令 n112T(2m)a ,则 n1 n(n3) m2. 2 当n1时m1;当n2时m1;当n ≥3时,由于n 与n3奇偶性不同,即n(n3)非负偶数,m N . 因此对n ,都可找到m N ,使T b 成立,即{b}为“H 数列”. nmn{c }的前n项和 n n(n1) R(ad),令 n12c(m1)(ad)R ,则 n1m m n (n1) 2 1∵对n N ,n(n1)是非负偶数,∴m N ,即对n N ,都可找到m N ,使得R c 成立, nm即{}c 为“H 数列”,因此命题得证. n数学Ⅱ 注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷只有解答题,供理工方向考生使用.本试,21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必 答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定 位置. 3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚. 4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.【选做】本题包括A 、B 、C 、D 四小题,请选.定.其.中.两.题.,并.在.相.应.的.答.题.区.域.内.作.答.,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C 、D是圆O 上位于AB 异侧的两点.证明:∠OCB=∠D .解:因为B ,C 是圆O 上的两点,所以OB=OC .故∠OCB=∠B .又因为C,D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B=∠D .因此∠OCB=∠D .(21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵与变换)已知矩阵 1211 A ,B ,向量1x212 y , x ,y 为实数,若A α=B α,求x ,y 的值.解: 2y2 A ,2xy2y B α,由A α=B α得4y2y22y , 解得14x ,y .2xy4y ,2(21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为2 x1t ,2(t 为参数),直线l 与抛物线2y2t2y 24x 交于A ,B 两点,求线段A B 的长. 解:直线l :xy3代入抛物线方程24 yx 并整理得x 210x90,∴交点A(1,2),B(9,6),故|AB|82. (21-D )【2014年江苏,21-D ,10分】(选修4-5:不等式选讲)已知x0,y0,证明: 22 1xy1xy9xy .解:因为x>0,y>0,所以1+x+y 2≥33xy 20,1+x 2+y ≥ 2≥33xy 20,1+x 2+y ≥ 22222 333 3xy0,所以(1+x+y)(1+x+y)≥3xy3xy=9xy .【必做】第22、23题,每小题10分,计20分.请把答案写在.答.题.卡.的.指.定.区.域.内...完(22)【2014年江苏,22,10分】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外全相同.6(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x,x,x,随机变量X表示123 x,x,x 123中的最大数,求X的概率分布和数学期望E(X).解:(1)一次取2个球共有 2C36种可能情况,2个球颜色相同共有9222CCC10种可能情况,432∴取出的2个球颜色相同的概率105P.3618(2)X的所有可能取值为4,3,2,则C14PX;(4)4C12649CCCC133131P(X3)4536;C6339 11P(X2)1P(X3)P(X4).∴X的概率分布列为:14X234P11 14 13631126故X的数学期望()2113134120EX.14631269(23)【2014年江苏,23,10分】已知函数sinxf(x)(x0)x ,设f(x)为nf x的导数,n N.n1()(1)求2f f的值;12222(2)证明:对任意的n N,等式 2nff成立.n1n4442解:(1)由已知,得sinxcosxsinxf(x)f(x)102xxx,于是cosxsinxsinx2cosx2sinx f(x)f(x)21223xxxxx ,所以4216f(),f(),122322故2f()f()1.12222(2)由已知,得xf0(x)sinx,等式两边分别对x求导,得f0(x)xf0(x)cosx,即f0(x)xf1(x)cosxsin(x),类似可得2 2f(x)xf(x)sinxsin(x),123 3f(x)xf(x)cosxsin(x),232 4f(x)xf(x)sinxsin(x2).34下面用数学归纳法证明等式nnfxxfxx对所有的nnn1()()sin()2N*都成立.(i)当n=1时,由上可知等式成立.(ii)假设当n=k时等式成立,即kkf1(x)xf(x)sin(x).kk2因为[kf(x)xf(x)]kf(x)f(x)xf(x)(k1)f(x)f(x),k1kk1kkkk1(k1) kkk[sin(x)]cos(x)(x)sin[x],所以2222 (k1)f(x)f(x)kk1(k1)sin[x].2所以当n=k+1时,等式也成立.综合(i),(ii)可知等式nnf1(x)xf(x)sin(x)对所有的nnnN都成立.*2令x,可得4nnf1()f()sin()(nnn44442N).所以*2nff(nn1n()()4442N).*7。

2014年高考数学(江苏卷) 解析版 Word版含解析

2014年高考数学(江苏卷) 解析版 Word版含解析

2014年普通高等学校招生全国统一考试(江苏卷)答案解析数 学Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1、已知集合}4,3,1,2{A --=,}3,2,1{B -=,则B A = ▲ . 【答案】}3,1{-【解析】根据集合的交集运算,两个集合的交集就是所有既属于集合A 又属于集合B 的元素组成的集合,从所给的两个集合的元素可知,公共的元素为-1和3,所以答案为}3,1{-【点评】本题重点考查的是集合的运算,容易出错的地方是审错题目,把交集运算看成并集运算。

属于基础题,难度系数较小。

2、已知复数2)25(i z -=(i 为虚数单位),则z 的实部为 ▲ . 【答案】21【解析】根据复数的乘法运算公式,i i i i z 2021)2(2525)25(222-=+⨯⨯-=-=,实部为21,虚部为-20。

【点评】本题重点考查的是复数的乘法运算公式,容易出错的地方是计算粗心,把12-=i 算为1。

属于基础题,难度系数较小。

3、右图是一个算法流程图,则输出的n 的值是 ▲ . 【答案】5【解析】根据流程图的判断依据,本题202>n 是否成立,若不成立,则n 从1开始每次判断完后循环时,n 赋值为1+n ;若成立,则输出n 的值。

本题经过4次循环,得到203222,55>===n n ,成立,则输出的n 的值为5【点评】本题重点考查的是流程图的运算,容易出错的地方是判断循环几次时出错。

属于基础题,难度系数较小。

4、从6,3,2,1这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 ▲ . 【答案】31【解析】将随机选取2个数的所有情况“不重不漏”的列举出来:(1,2),(1,3)(1,6),(2,3),(2,6),(3,6),共6种情况,满足题目乘积为6的要求的是(1,6)和(2,3),则概率为31。

【点评】本题主要考查的知识是概率,题目很平稳,考生只需用列举法将所有情况列举出来,再将满足题目要求的情况选出来即可。

(完整word版)2014年江苏省高考数学试卷答案与解析

(完整word版)2014年江苏省高考数学试卷答案与解析

2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21.3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是5.4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.P=故答案为:.5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.的交点,可得.根据的交点,.,∴,+=.故答案为:.6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24株树木的底部周长小于100cm..7.(5分)(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是4.=8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.=,它们的侧面积相等,==故答案为:.9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.==2故答案为:10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).,,,解得﹣<,11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3.(,解方程可得答案.,(,,,,是解答的关键.12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22.=3,可得=+,﹣,=3•=3,=+,=﹣,•(+)(﹣)=||•﹣|﹣•﹣•=+,=﹣,是解答的关键.13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f (x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,).|的图象如图:由图象可知)14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.(bcosC==≥=当且仅当≤.故答案为:.二、解答题(本大题共6小题,共计90分)15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.(((.∴﹣=+=sin cos﹣+.,=,﹣=cos sin2﹣)的值为:﹣16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB 的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.DE=EF=BC=417.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.的坐标为(,,即,,)+y+(=0)()==(得.18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?CE=OP=m m PC=PQ=m=﹣﹣19.(16分)(2014•江苏)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a﹣1与a e﹣1的大小,并证明你的结论.﹣,当且仅当m﹣﹣()﹣﹣()20.(16分)(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.=,解得,,则,三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.A=B,可得方程组,即可求A=B==A=B,﹣【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.的参数方程为,化为普通方程为=8【选修4-4:不等式选讲】24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.3,两式相乘可得结论.,(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).个球共有个球颜色相同共有P==,P=26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.代入式子求值;代入所给的式子求解验证.=代入上式得,(+))x+)对任意时,=)对任意代入上式得,(+)+cos=±)(|=。

2014年江苏高考数学卷及答案

2014年江苏高考数学卷及答案

2014年普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ . 2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ . 3. 右图是一个算法流程图,则输出的n 的值是 ▲ .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的 乘积为6的概率是 ▲ .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象 有一个横坐标为3π的交点,则ϕ的值是 ▲ .6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图 所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ .8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别 为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是 ▲ .9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ .10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x , 都有0)(<x f 成立,则实数m 的取值范围是 ▲ . 11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ . 12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,3=,2=⋅BP AP ,则AD AB ⋅的值是▲ .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分) 已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)25cos(απ-的值.(第3题)100 80 90 110 120 130 底部周长/cm(第6题)(第12题)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河 岸AB 垂直;保护区的边界为圆心M 在线段OA 上 并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大? 19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(0300x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论. (第16题)P D CE F B A设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”. (1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.参考答案。

2014年高考江苏数学试题及答案(word解析版)

2014年高考江苏数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共 4 页,包含填空题(第 1 题—第14 题)、解答题(第15 题第20 题).本卷满分160 分,考试时间为120 分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5 毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.参考公式:圆柱的体积公式:V圆柱sh ,其中s为圆柱的表面积,h 为高.圆柱的侧面积公式:S圆柱=cl ,其中 c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题.卡.相.应.位.置.上...(1)【2014 年江苏,1,5 分】已知集合 A { 2 ,1,3,4} ,B { 1,2,3} ,则 A B _______ .【答案】{ 1,3}【解析】由题意得 A B { 1,3} .(2)【2014 年江苏,2,5 分】已知复数【答案】21 z(5 2i) (i 为虚数单位),则z的实部为_______. 22【解析】由题意 2 2z (5 2i) 25 2 5 2i (2i) 21 20i ,其实部为21.(3)【2014 年江苏,3,5 分】右图是一个算法流程图,则输出的n 的值是_______.【答案】 5n 的最小整数解.2n 20 整数解为n 5,因此输出的n 5 .【解析】本题实质上就是求不等式 2 20(4)【2014 年江苏,4,5 分】从1,2 ,3,6这4个数中一次随机地取 2 个数,则所取 2 个数的乘积为 6 的概率是_______.【答案】 13【解析】从1,2,3,6这4个数中任取 2 个数共有 2C4 6 种取法,其中乘积为 6 的有1,6 和2,3 两种取法,因此所求概率为 2 1P .6 3(5)【2014 年江苏,5,5 分】已知函数y cos x与y sin(2 x )(0 ≤) ,它们的图象有一个横坐标为的3 交点,则的值是_______.【答案】6【解析】由题意cos sin(2 )3 3 ,即2 1sin( )3 2,2kk ( 1) ,(k Z ) ,因为0 ,所3 6以.6(6)【2014 年江苏,6,5 分】为了了解一片经济林的生长情况,随机抽测了其中60 株树木的底部周长(单位:cm),所得数据均在区间[80 ,130] 上,其频率分布直方图如图所示,则在抽测的60 株树木中,有株树木的底部周长小于100 cm.【答案】241【解析】由题意在抽测的60 株树木中,底部周长小于100 cm 的株数为(0.015 0.025) 10 60 24 .(7)【2014 年江苏,7,5 分】在各项均为正数的等比数列{ }a 中,若na8 a6 2a4 ,则a2 1 ,a的值是________.6【答案】 4【解析】设公比为q ,因为a2 1,则由a8 a6 2a4 得 6 4 2 2 4 2 2 0q q a ,q q ,解得2 2q ,所以4a6 a2q 4 .(8)【2014 年江苏,8,5 分】设甲、乙两个圆柱的底面积分别为S,S ,体积分别为1 2 V ,V ,若它们的侧面积相1 2等,且S1S294,则V1V2的值是_______.【答案】 32【解析】设甲、乙两个圆柱的底面和高分别为r 、h ,r2、h2 ,则2 r1h1 2 r2 h2 ,1 1 h r1 2h r2 1,又2S r1 12S r2 294,所以r1r232,则2 2 2V r h r h r r r1 1 1 1 1 12 12 2 2V r h r h r r r2 2 2 2 2 2 1 232.(9)【2014 年江苏,9,5 分】在平面直角坐标系xOy 中,直线x 2 y 3 0 被圆长为________.2 2(x2) (y1) 4 截得的弦【答案】 2 555【解析】圆 2 2(x 2) (y1) 4 的圆心为 C (2, 1) ,半径为r 2 ,点C 到直线x 2y 3 0 的距离为2 2 ( 1)3 3d ,所求弦长为2 251 22 2 9 2 55l 2 r d 2 4 .5 5(10)【2014 年江苏,10,5 分】已知函数f (x) x mx 1,若对任意x [m,m 1],都有 f (x) 0 成立,则实2数m 的取值范围是________.【答案】 2 0,2【解析】据题意2 2f (m) m m 1 02f (m 1) (m 1) m(m 1) 1 0,解得22m 0 .(11)【2014 年江苏,11,5 分】在平面直角坐标系xOy 中,若曲线 2 by axx( a,b 为常数)过点P(2 ,5) ,且该曲线在点P 处的切线与直线7x 2 y 3 0 平行,则 a b 的值是________.【答案】 3【解析】曲线y ax 2 bxb b过点P(2, 5) ,则4a 5 ①,又y'2ax 22 x,所以b 74a ②,由①②解得4 2ab11,所以 a b 2 .(12)【2014 年江苏,12,5 分】如图,在平行四边形ABCD 中,已知,AB 8 ,AD 5 ,CP 3PD ,AP BP 2 ,则AB AD 的值是________.【答案】22【解析】由题意,1AP AD DP AD AB ,43 3BP BC CP BC CD AD AB ,4 4所以1 3AP BP (AD AB) (AD AB)4 42 13 2AD AD AB AB ,2 16即 1 32 25 64AD AB ,解得AD AB 22 .2 16(13)【2014 年江苏,13,5 分】已知 f (x) 是定义在R上且周期为 3 的函数,当x [0 ,3) 时, 2 1f (x) x 2x .2 若函数y f ( x) a 在区间[ 3,4] 上有10 个零点(互不相同),则实数 a 的取值范围是________.【答案】0 1,22【解析】作出函数21f(x)x2x,x[0,3)的图象,可见21f(0),当x1时,21f(x)极大,27f,方程f(x)a0在x[3,4]上有10个零点,即函数y f(x)和图象与直线(3)2y a在[3,4]上有10个交点,由于函数f(x)的周期为3,因此直线y a与函数21f(x)x2x,x[0,3)的应该是4个交点,则有21a(0,).2(14)【2014年江苏,14,5分】若ABC的内角满足sin A2sin B2sin C,则cos C的最小值是_______.【答案】624【解析】由已知sin A2sin B2sin C及正弦定理可得a2b2c,cosC222a b c2ab2ab223a2b22ab26ab22ab62 8ab8ab4,当且仅当223a2b,即ab23时等号成立,所以cos C的最小值为624.二、解答题:本大题共6小题,共计90分.请在答.题.卡.指.定.区.域.内.作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知2,,sin55.(1)求sin的值;4(2)求cos26的值.解:(1)∵sin5,,,∴25225cos1sin5,210s i n s i n c o s c o s s i n(c o s s i n).444210(2)∵43sin22sin cos cos2cos sin,,sin22sin cos cos2cos sin2255∴3314334 cos2cos cos2sin sin2666252510.(16)【2014年江苏,16,14分】如图,在三棱锥P ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA AC,PA6,BC8,DF5.(1)求证:直线PA∥平面DEF;(2)平面BDE⊥平面ABC.解:(1)∵D,E为PC,AC中点∴DE∥PA∵PA平面DEF,DE平面DEF∴PA∥平面DEF.(2)∵D,E为PC,AC中点,∴DE1PA3∵E,F为AC,AB中点,∴1 4EF BC,22∴DE2EF2DF2,∴DEF90°,∴DE⊥EF,∵DE//PA,PA AC,∴DE AC,∵AC EF E,∴DE⊥平面ABC,∵DE平面BDE,∴平面BDE⊥平面ABC.(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy中,F,F分别是椭圆1222yx a b221(0)a b的左、右焦点,顶点B的坐标为(0,b),连结B F并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,2连结F C.1(1)若点C的坐标为41,,且33B F22,求椭圆的方程;(2)若F C AB,求椭圆离心率e的值.1316 1解:(1)∵ 4 1C ,,∴3 3 9 9 9a b2 2,∵ 2 2 2 2BF b c a ,∴22 ( 2) 2 2a ,∴b,2 1∴椭圆方程为 2 x y .2 12(2)设焦点F1( c,0) ,F2 (c,0) ,C(x,y) ,∵A,C 关于x 轴对称,∴A(x ,y) ,∵B,F ,A三点共线,∴2b ybc x,即bx cy bc 0①∵y b FC AB ,∴ 1 1x c c ,即 2 0xc by c ②①②联立方程组,解得xyca2b c2 22bc2b c2 2∴Ca c 2bc2 2,2 2 2 2b c b cC 在椭圆上,∴2 2a c 2bc2 2b c b c2 2 2 2a b2 21,化简得5c a ,∴c 52 2a 5, 故离心率为55.(18)【2014 年江苏,18,16 分】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段O A 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m.经测量,点 A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),tan 4BCO .3(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?.解:解法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系x Oy.由条件知A(0, 60),C(170, 0),直线BC 的斜率 4k -tan BCO .BC3又因为AB⊥BC,所以直线AB 的斜率 3k .设点 B 的坐标为(a,b),AB4则k BC= b 0 4a 170 3 ,k AB= 60 3ba 0 4,解得a=80,b=120.所以BC= 2 2(170 80) (0 120) 150 .因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d≤60.)由条件知,直线BC 的方程为 4 ( 170)y x ,即4x 3y 680 0 ,3由于圆M 与直线BC 相切,故点M (0,d)到直线BC 的距离是r,即因为O 和A 到圆M 上任意一点的距离均不少于80 m,| 3d 680 | 680 3d r .5 5所以r d≥80r (60 d )≥80,即680 3d5680 3d5d 80≥(60 d ) 80≥,解得10 ≤ d ≤35 .故当d=10 时,680 3dr 最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.5解法二:(1)如图,延长OA, CB 交于点F.因为tan∠BCO = 43 .所以sin∠FCO = 45,cos∠FCO = 35.因为OA =60,OC=170,所以OF= O C tan∠FCO =6803 .CF=OC850cos FCO 3,4从而500AF OF OA .因为O A⊥OC,所以cos∠AFB =sin∠FCO =3 45,又因为A B⊥BC,所以BF =AFcos∠AFB == 4003,从而BC= C F-BF=150.因此新桥B C 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D,连接M D ,则MD ⊥BC,且MD 是圆M 的半径,并设MD =r m,OM =d m(0 ≤d≤60.) 因为O A⊥OC,所以sin∠CFO =cos∠FCO,故由(1)知,sin∠CFO = MD MD r 3MF OF OM 680 5d3所以680 3dr .5因为O和A 到圆M 上任意一点的距离均不少于80 m,所以r d≥80r (60 d )≥80,即680 3d5680 3d5d 80≥(60 d )≥80,解得10 ≤ d ≤35 ,故当d=10 时,680 3dr 最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.5(19)【2014 年江苏,19,16 分】已知函数( ) e ex xf x 其中e 是自然对数的底数.(1)证明: f (x) 是R上的偶函数;(2)若关于x的不等式mf (x) ≤ e m 1在(0 ,) 上恒成立,求实数m 的取值范围;x(3)已知正数 a 满足:存在你的结论.x0 [1,) ,使得 3 ea 1 与f (x ) a( x 3x ) 成立.试比较0 0 0a e 1 的大小,并证明解:(1)x R, f ( x) e e f (x) ,∴ f (x) 是R上的偶函数.x x(2)由题意,(e e ) e 1x x x m ≤,∵x (0 ,) ,∴e x e x 1 0 ,x x xm ≤m ,即(e e 1) e 1即 e 1xm ≤对x (0 ,) 恒成立.令 e ( 1)t t ,则xe e 1x x m1 t≤对任意t (1,) 恒成立.t t 12∵ 1 1 1 1t t ≥,当且仅当t 2 时等号成立,∴ 1m ≤.2 2 3t t 1 (t 1) (t 1) 1 1 3t 1 1t 1(3)f '( x) e e ,当x 1 时 f '( x) 0 ∴ f (x) 在(1,) 上单调增,令x xh(x) a( x 3x) ,h '( x) 3ax( x 1) ,33∵a 0 ,x 1,∴h '(x) 0 ,即h( x) 在x (1,) 上单调减,∵存在x0 [1,) ,使得f x a x x ,∴ f (1) e 1 2a ,即 1 e 1 ( ) ( 3 ) a .30 0 0e 2 e∵ a a a a ,设m(a) (e 1)ln a a 1 ,则m '(a ) e 1 1 e 1 a e-1ln ln ln e (e 1)ln 1e 1 a 1e a aa 1,1 1a e .当2 e 1 1e a e 1时,m '(a) 0 ,m(a) 单调增;当 a e 1 时,m '(a) 0 ,m(a ) 单调2 e减,因此m( a) 至多有两个零点,而m(1) m(e) 0 ,∴当 a e 时,m(a) 0 ,a e 1 e a 1 ;当1 e 1 ea 时,m(a) 0 ,2 e a e 1 e 1 ;当a e 时,m(a) 0 ,aa e 1 e a 1 .(20)【2014 年江苏,20,16 分】设数列{ }a 的前n 项和为S.若对任意的正整数n,总存在正整数m,使得n n S a ,n m则称{}a 是“H 数列”.nn(1)若数列{ a } 的前n 项和S 2 (n N) ,证明:{ a } 是“H 数列”;n n n(2)设{ a } 是等差数列,其首项n a1 1,公差 d 0 .若{a } 是“H 数列”,求d 的值;n(3)证明:对任意的等差数列{ }a ,总存在两个“H数列”{b } 和{c } ,使得 a b c (n N) 成立.n n n n n n解:(1)当n ≥ 2 时,n n 1 n 1a S S 1 2 2 2 ,当n 1时,n n n a1 S1 2 ,∴n 1时,S a ,当n≥2时,1 1 S a ,∴{a } 是“H 数列”.n n 1 n(2)n(n 1) n(n 1)S na d n d ,对n N,m N使n 12 2S a ,即n mn(n 1)n d 1 (m 1)d ,25取n 2 得1 d (m1)d ,m 2 1d,∵d 0 ,∴m 2 ,又m N ,∴m 1,∴d 1.(3)设{}a 的公差为d,令n b a1 (n 1)a1 (2 n) a1 ,对n N ,nb b a ,n 1 n 1c (n 1)(a d) ,n 1对n N ,c c a d ,则n 1 n 1 b c a1 (n 1)d a ,且{ b } ,{c } 为等差数列.n n n n n{ b } 的前n 项和nn(n 1)T na ( a ) ,令n 1 12T (2 m)a ,则n 1n(n 3)m 2 .2当n 1时m 1;当n 2 时m 1;当n≥3时,由于n 与n 3 奇偶性不同,即n(n 3) 非负偶数,m N .因此对n ,都可找到m N ,使T b 成立,即{b } 为“H 数列”.n m n{c } 的前n项和nn(n 1)R (a d ) ,令n 12c (m 1)(ad ) R ,则n 1 mmn(n 1)21∵对n N ,n(n 1) 是非负偶数,∴m N ,即对n N ,都可找到m N ,使得R c 成立,n m 即{ }c 为“H 数列”,因此命题得证.n数学Ⅱ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷只有解答题,供理工方向考生使用.本试,21 题有A、B、C、D 4 个小题供选做,每位考生在4 个选做题中选答 2 题.若考生选做了3题或4题,则按选做题中的前 2 题计分.第22、23 题为必答题.每小题10 分,共40 分.考试时间30 分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5 毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.【选做】本题包括A、B、C、D 四小题,请选.定.其.中.两.题.,并.在.相.应.的.答.题.区.域.内.作.答.,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.(21-A )【2014 年江苏,21-A,10 分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C、 D 是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D.解:因为B,C 是圆O 上的两点,所以OB=OC.故∠OCB =∠B.又因为C, D 是圆O 上位于AB 异侧的两点,故∠B,∠D 为同弧所对的两个圆周角,所以∠B=∠D.因此∠OCB =∠D.(21-B )【2014 年江苏,21-B,10 分】(选修4-2:矩阵与变换)已知矩阵1 2 1 1A ,B ,向量1 x2 12y,x,y为实数,若Aα= Bα,求x,y的值.解:2 y 2A ,2 xy2 yBα,由Aα= Bα得4 y2y 2 2 y,解得 1 4x ,y .2 xy 4 y, 2(21-C)【2014 年江苏,21-C,10 分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为2x 1 t ,2(t 为参数),直线l 与抛物线2y 2 t2y2 4x交于A,B 两点,求线段A B 的长.解:直线l:x y 3 代入抛物线方程 2 4y x 并整理得x2 10x 9 0 ,∴交点 A (1,2) ,B(9 ,6) ,故| AB| 8 2 .(21-D )【2014 年江苏,21-D,10 分】(选修4-5:不等式选讲)已知x 0 ,y 0 ,证明: 2 21 x y 1 x y 9xy .解:因为x>0, y>0, 所以1+ x+y 2≥33 xy2 0 ,1+x2+y≥2 2 2 2 23 3 33 x y 0 ,所以(1+ x+y )( 1+x +y) ≥3 xy 3 x y =9 xy.2≥33 xy2 0 ,1+x2+y≥【必做】第22、23 题,每小题10 分,计20 分.请把答案写在.答.题.卡.的.指.定.区.域.内...(22)【2014 年江苏,22,10 分】盒中共有9 个球,其中有 4 个红球, 3 个黄球和 2 个绿球,这些球除颜色外完全相同.6(1)从盒中一次随机取出 2 个球,求取出的 2 个球颜色相同的概率P;(2)从盒中一次随机取出 4 个球,其中红球、黄球、绿球的个数分别记为x,x ,x ,随机变量X 表示1 2 3 x ,x ,x 1 2 3中的最大数,求X 的概率分布和数学期望E(X ) .解:(1)一次取 2 个球共有 2C 36 种可能情况, 2 个球颜色相同共有92 2 2C C C 10 种可能情况,4 3 2∴取出的 2 个球颜色相同的概率10 5P .36 18(2)X 的所有可能取值为4,3,2 ,则C 14P X ;( 4) 4C 12649C C C C 133 1 3 1P( X 3) 4 5 3 6 ;C 633911P( X 2) 1 P(X 3) P(X 4) .∴X 的概率分布列为:14X 2 3 4P 1114 13631126故X 的数学期望( ) 2 11 3 13 4 1 20E X .14 63 126 9(23)【2014 年江苏,23,10 分】已知函数sin xf (x) (x 0)x ,设 f (x) 为nf x 的导数,n N.n1 ( )(1)求2f f 的值;1 22 2 2(2)证明:对任意的n N,等式 2nf f 成立.n 1 n4 4 4 2解:(1)由已知,得sin x cosx sin xf (x) f (x)1 0 2x x x,于是cosx sin x sin x 2cos x 2sin xf (x) f (x)2 1 2 2 3x x x x x ,所以 4 2 16f ( ) , f ( ) ,1 2 2 32 2故2 f ( ) f ( ) 1 .1 22 2 2(2)由已知,得xf0 (x) sin x, 等式两边分别对x 求导,得 f 0 (x) xf0 (x) cos x ,即f0 ( x) xf1 (x) cos x sin(x ) ,类似可得2 2 f (x) xf (x) sin x sin( x ) ,1 233 f (x) xf (x) cos x sin( x ) ,2 32 4 f (x) xf (x) sin x sin( x 2 ) .3 4下面用数学归纳法证明等式nnf x xf x x 对所有的nn n1 ( ) ( ) sin( )2N*都成立.(i)当n=1 时,由上可知等式成立.(ii)假设当n=k 时等式成立, 即kkf 1 (x) xf (x) sin( x ) .k k2因为[kf ( x) xf (x )] kf (x) f (x) xf (x) (k 1) f (x) f ( x),k 1 k k 1 k k k k 1(k1)k k k[sin( x )] cos(x ) (x) sin[ x ] ,所以2 2 2 2 (k 1) f ( x) f (x)k k 1(k 1)sin[ x ] .2所以当n=k +1 时,等式也成立.综合(i),(ii) 可知等式nnf 1 ( x) xf (x) sin( x ) 对所有的nn n2 N都成立.*令x ,可得4nnf 1 ( ) f ( ) sin( ) ( nn n4 4 4 4 2N).所以*2nf f ( nn 1 n( ) ( )4 4 4 2N).*7。

2014年江苏省高考数学试卷(含答案)

2014年江苏省高考数学试卷(含答案)

2014年江苏省高考数学试卷解析参考版答案仅供参考一、填空题(每题5分,满分70分,将答案填在答题纸上).【答案】{1,3}- 【解析】由题意得{1,3}A B =-.【考点】集合的运算【答案】21【解析】由题意22(52)25252(2)2120z i i i i =+=+⨯⨯+=+,其实部为21. 【考点】复数的概念.【答案】5【解析】本题实质上就是求不等式220n>的最小整数解.220n>整数解为5n ≥,因此输出的5n =【考点】程序框图.【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==. 【考点】古典概型.【答案】6π 【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.【考点】三角函数图象的交点与已知三角函数值求角.6。

【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=. 【考点】频率分布直方图.【答案】4【解析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==.【考点】等比数列的通项公式.【答案】32【解析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222r h r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==.【考点】圆柱的侧面积与体积.【答案】2555【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为2222(1)33512d +⨯--==+,所求弦长为22925522455l r d =-=-=.【考点】直线与圆相交的弦长问题.【答案】2(2-【解析】据题意222()10,(1)(1)(1)10,f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩解得202m -<<. 【考点】二次函数的性质.【答案】2-【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得1,1,a b =-⎧⎨=-⎩所以b=—2,a+b=-3.【考点】导数与切线斜率.【答案】22【解析】由题意,14AP AD DP AD AB =+=+,3344BP BC CP BC CD AD AB =+=+=-, 所以13()()44AP BP AD AB AD AB ⋅=+⋅-2213216AD AD AB AB =-⋅-, 即1322564216AD AB =-⋅-⨯,解得22AD AB ⋅=. 【考点】向量的线性运算与数量积.【答案】1(0,)2【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大,7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象与直线y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈.【考点】函数的零点,周期函数的性质,函数图象的交点问题.62- 【解析】由已知sin 22sin A B C =及正弦定理可得22a b c +=,2222222(2cos 22a b a b a b cC abab++-+-==223222262262a b ab ab ab +---=≥=,当且仅当2232a b =即23a b =时等号成立,所以cos C 62- 【考点】正弦定理与余弦定理.二、解答题 (本大题共6小题,共90分。

2014年江苏高考数学卷及答案

2014年江苏高考数学卷及答案

6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图 所示,则在抽测的 60 株树木中,有 ▲ 株树木的底部周长小于 100cm.
n n1
2n 20 N Y
输出 n
7. 在各项均为正数的等比数列{a n} 中, a 2 1, a 8 a 6 2a 4 ,则 a 6的值是 ▲ .
0.015 0.010
都有 f (x) 0 成立,则实数 m 的取值范围是 ▲ .
11. 在平面直角坐标系 xOy 中,若曲线 y ax2 b (a,b x
80 90 100 110 120 130 底部周长/cm
(第 6 题)
为常数)过点 P(2, 5) ,且该曲线在点 P 处的切线与直线 7x 2 y 3 0 平行,则 a b 的值是 ▲ .
并与 BC 相切的圆.且古桥两端 O 和 A 到该圆上 任意一点的距离均不少于 80m. 经测量,点 A 位
于点 O 正北方向 60m 处, 点 C 位于点 O 正东方向 170m 处(OC 为河岸), tan BCO 4 .
3 (1)求新桥 BC 的长; (2)当 OM 多长时,圆形保护区的面积最大?
BC 8, DF 5.
求证: (1)直线 PA// 平面 DEF ;
P
(2)平面 BDE 平面 ABC .
D
A
E
C
F
B
17.(本小题满分 14 分)
第 第 16第 第
如图,在平面直角坐标系
xOy
中,
F1
,
F2
分别是椭圆
x a
2 2

y3 b2
1(a b 0) 的左、右焦点,顶点 B 的坐
标为 (0,b) ,连结 BF2并延长交椭圆于点 A,过点 A 作 x 轴的垂线交椭圆于另一点 C,连结 F1C .

2014年高考数学压轴题

2014年高考数学压轴题

1.(2014新课标1)已知A (0,-2),椭圆E :2222y x a b+=1(a>b>0),F 是椭圆的焦点,直线AF的斜率为3,O 为坐标原点。

(1)求E 的方程;(2)设过点A 的直线l 与E 相交于P 、Q 两点,当ΔOPQ 的面积最大时,求l 的方程。

2.(2014新课标2)设1F、2F分别是椭圆C :2222yx a b+=1(a>b>0)的左右焦点,M 是C上一点,且M2F与x 轴垂直,M1F与C 的另一个交点为N 。

(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且MN =51NF ,求a,b 的值。

3.(2014辽宁卷)圆22yx +=4的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图)。

双曲线1C:22x a -22y b=1过点P(1)求1C的方程; (2)椭圆2C过点P 且与1C有相同的焦点,直线l 过2C的右焦点且与2C交与A 、B 两点。

若以线段AB 为直径的圆过点P,求直线l 的方程。

4.(2014上海卷)在平面直角坐标系xoy 中,对于直线l:ax+by+c=0和点1P (1x ,1y),2P (2x,2y),记η=(a1x +b 1y+c)(a2x+b2y+c).若η<0,则称点1P、2P被直线l 分割。

若曲线C 与l 没有公共点,且曲线C 上存在点1P、2P被直线l 分割,则称直线l 为曲线C 的一条分割线。

(1)求证:点A (1,2),B (-1,0)被直线x+y-1=0分割;(2)若直线y=kx 是曲线2x-42y=1的分割线,求实数k 的取值范围;(3)动点M 到点Q(0,2)的距离与到y 轴的距离之积为1,设点M 的轨迹为曲线E 。

求证:通过原点的直线中,有且仅有一条直线是E 的分割线。

5.(2014)已知椭圆C :2222y x a b+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形。

2014年江苏高考数学卷及答案

2014年江苏高考数学卷及答案

2014年普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相....应位置上..... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A I▲ .2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ .3. 右图是一个算法流程图,则输出的n 的值是 ▲ .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取乘积为6的概率是 ▲ .5.已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 ▲ .6.设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ . 8. 设甲、乙两个圆柱的底面分别为1S ,2S为1V ,2V ,若它们的侧面积相等,且4921=S S 的值是 ▲ .底部周9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ .10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x , 都有0)(<x f 成立,则实数m 的取值范围是 ▲ .11. 在平面直角坐标系xOy 中,若曲线xb ax y +=2(a ,b为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ .12. 如图,在平行四边形ABCD中,已知8=AB ,5=AD ,PD CP 3=,2=⋅BP AP ,则ADAB ⋅的值是 ▲ .当13. 已知)(x f 是定义在R 上且周期为3的函数,)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知),2(ππα∈,55sin =α.AB(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥ABCP -中,D,E ,F 分别为棱ABAC PC ,,的中点.已知AC PA ⊥,,6=PA求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by ax 的左、右焦点,于点顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.程;(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向 170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”. (1)若数列}{n a 的前n 项和n nS 2=(∈n N *),证明: }{n a 是“H数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.参考答案15.(1)∵α∈(,π),=∴=∴=+=(2)=12=,=2==+=+()=16. (1)∵D,E,分别为PC,AC,的中点∴DE ∥PA又∵DE ⊂平面PAC ,PA ⊄平面PAC∴直线PA ∥平面DEF(2)∵E,F 分别为棱AC,AB 的中点,且BC=8,由中位线知EF=4∵D,E,分别为PC,AC,的中点,且PA=6,由中位线知DE=3,又∵DF=5∴DF2=EF2+DE2=25,∴DE ⊥EF ,又∵DE ∥PA ,∴PA ⊥EF ,又∵PA ⊥AC ,又∵AC ⋂ EF=E ,AC ⊂平面ABC ,EF ⊂平面ABC ,∴PA ⊥平面ABC ,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC17.(1)∵BF 2 =,将点C (,)代入椭圆22221(0)x y a b a b+=>>,∴221611(0)99a b a b +=>>,且c2+b2=a2∴a=,b=1, ∴椭圆方程为2212x y +=(2)直线BA 方程为y=x+b,与椭圆22221(0)x y a b a b+=>>联立得x2x=0. ∴点A (,),∴点C (,),F 1()直线CF 1 斜率k= ,又∵F 1C ⊥AB ,∴·=∴=1,∴e=18. (1)过点B 作BE ⊥OC 于点E ,过点A 作AD ⊥BE 于点F 。

2014年高考数学江苏卷【word版-含答案】

2014年高考数学江苏卷【word版-含答案】

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:圆柱的侧面积公式: S圆柱侧cl ,其中c 是圆柱底面的周长, l 为母线长.圆柱的体积公式:V 圆柱 Sh,其中S 是圆柱的底面积,h 为高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置 .......上..1. 已知集合A={2, 1,3,4 },B{1,2,3},则A B . 2. 已知复数z(52i)2(i 为虚数单位),则z 的实部为. 3. 右图是一个算法流程图 ,则输出的n 的值是 .4. 从1,2,3,6这4个数中一次随机地取 2个数,则所取2个数的乘积为6的概率是 .5. 已知函数ycosx 与y sin(2x )(0≤ ),它们的图象有一个横坐标为 的交3 点,则的值是. 6. 设抽测的树木的底部周长均在区间 [80,130] 上,其频率分布直方图如图所示 ,则在抽 测的60株树木中,有株树木的底部周长小于频率100cm.组距开始 n 0n n 1 nN2 20 输出n 结束(第3题)7. 在各项均为正数的等比数列{a n }0.030中,a 21,a 8a 62a 4,则a 6的值是 . 0.025 0.0200.0158. 设甲、乙两个圆柱的底面分别为S 1,S 2,体积分别为 0.010V 1,V 2 ,若它们的侧面积相等,S 1 9 ,则 V 1的且4V 2 80 90100110120130底部周长/cmS 2 值是. (第6题)9.在平面直角坐标系xOy 中,直线x2y30 被圆(x2)2(y1)24截得的弦长为.10. 已知函数f(x) x 2mx1,若对于任意 x [m,m 1] ,都有f(x) 0成立,则实数m 的取值范围是.11. 在平面直角坐标系 xOy 中,若曲线yax 2b(a ,b 为常数)过点P(2,5),且该曲线在x点P处的切线与直线7x2y30平行,则a b的值是.12.如图,在平行四边形ABCD中,已知AB 8,AD 5,CP 3PD,APBP2,则AB AD的值是.13. 已知f(x)是定义在 R 上且周期为 3 的函数,当x[0,3)时,f(x)|x 22x 1|.若函数 2 yf(x)a 在区间[ 3,4]上有10个零点(互不相同),则实数a 的取值范围是 . 14. 若△ABC 的内角满足 sinA2sinB 2sinC,则cosC 的最小值是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说.......明、证明过程或演算步骤. 15.(本小题满分 14分)已知(,),sin5. 25(1)求sin()的值;(2)求cos(52)的值.4616.(本小题满分14分)如图,在三棱锥P ABC 中,,E ,F 分别为棱PC,AC,AB 的中点.已知PAAC,PA6, DBC8,DF5.求证:(1)直线PA//平面DEF ;P(2)平面BDE 平面ABC.DACEFB(第16题)17. (本小题满分14分)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆y x 2 y 30) 的左、右焦点,顶点B 的坐标为 Ba 21(abb 2C (0,b),连结BF2并延长交椭圆于点 A ,过点A 作x 轴的垂线交椭圆于另一点C,连结F1C.(1)若点C的坐标为( 4, 1),且BF22,求椭圆的方程;F1O F2 x3 3(2)若F1C AB,求椭圆离心率e的值.A(第17题)18.(本小题满分16分)如图,为了保护河上古桥OA,规划建一座新桥桥BC与河岸AB垂直;保护区的边界为圆心端O和A到该圆上任意一点的距离均不少于BC,同时设立一个圆形保护区 .规划要求:新M在线段OA上并与BC相切的圆.且古桥两80m.经测量,点A位于点O正北方向60m处, 点C位于点O正东方向170m处(OC为河岸),tan BCO 4.3(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?北BA170 60东MO(第18题)C19. (本小题满分16分)已知函数 f(x) x xe e ,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e x m1在(0, )上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0[1, ),使得f(x )a(x33x)成立.试比较e a1与a e10 0的大小,并证明你的结论 .20. (本小题满分16分)设数列{an} 的前n项和为Sn.若对任意正整数n,总存在正整数m,使得Sn am,则称{an}是“H数列”.(1)若数列{a n}的前n项和S n2 n (n N),证明:{an} 是“H数列”;(2)设{a n}是等差数列,其首项a11,公差d0.若{a n} 是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n b n c n(n N)成立.数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内...................作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤...A .[选修4-1:几何证明选讲](本小题满分10分) 如图,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点.证明:OCB=D . B .[选修4-2:矩阵与变换](本小题满分 10分)1 21 12,x ,y 为实数.已知矩阵Ax ,B-1 ,向量a12 y若 Aa=Ba , 求 x+y 的值.C .[选修4-4:坐标系与参数方程 ](本小题满分 10分)x1 2t在平面直角坐标系 xOy 中,已知直线l 的参数方程为2 (t 为参数),直线l与 2y 2 t2抛物线y 24x 相交于A ,B 两点,求线段 AB 的长.D .[选修4-5:不等式选讲](本小题满分10分) 已知x>0,y>0,证明:(1xy 2)(1x 2y)9xy .【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)盒中共有 9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同.(l) 从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2) 从盒中一次随机取出4个球其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).23.(本小题满分10分)已知函数f0(x) sinx(x0),设f n(x)为f n1(x)的导数,nN.x(1)求2f1f2的值;2 2 2(2 )证明:对任意的n N,等式nf n14 4f n42都成立.22014年江苏高考数学试题参考答案数学Ⅰ试题一、填空题1、{1,3}2、213、54、15、66、24 7 、4 8、 33 22 55 2, 11、312、22 13、 1 14、 6 29、 10、 0 ,5 2 0 2 4二、解答题15.本小题主要考查三角函数的基本关系式、 两角和与差及二倍角的公式, 考查运算求解能力 .满分14分.(1)∵ 2 ,,sin 5 ,5 ∴cos 1 si n 2 2 5 5sin sin cos cos sin2(cos sin )10;4 4 4210(2)∵sin2 2sin cos4,cos2 cos 2 sin 235 5∴cos 6 2 cos cos2 sin 6 sin2 3 3 1 4 3 3 4.6 2 5 25 10 16. 本小题主要考查直线与直线、 直线与平面以及平面与平面的位置关系,考查空间想象能 力和推理论证能力.满分14 分. (1)∵D ,E 为PC ,AC 中点∴DE ∥PA∵PA 平面DEF ,DE 平面DEF ∴PA ∥平面DEF(2)∵D ,E 为PC ,AC 中点 ∴ 1DE 2PA 3∵E ,F 为AC ,AB 中点∴EF 1BC 4 2∴ 2 EF 2 DF 2 DEF 90°DE ∴,∴DE ⊥EF∵DE//PA ,PA AC ,∴DE AC∵AC EF E ∴DE ⊥平面ABC∵DE 平面BDE ,∴平面BDE ⊥平面ABC .17. 本小题主要考查椭圆的标准方程与几何性质、 直线与直线的位置关系等基础知识, 考查 运算求解能力. 满分14 分.4 1 161(1)∵C∴ 9 9 9 3 ,, 2 b 23a∵BF22b2c2a2,∴a2( 2)2 2 ,∴b2 1 ∴椭圆方程为x2y2 12(2)设焦点F1(c,0),F2(c,0),C(x,y)∵A,C关于x轴对称,∴A(x,y)∵B,F2,A三点共线,∴b b y,即bx cy bc 0①c x∵FC1AB,∴y b1,即xc by c20②xc cxca2①②联立方程组,解得b2c2∴Ca2c,2bc2 2bc2b22 2c2 yc bb2c222bc22a2c∵C在椭圆上,∴b2c2b2 c 2,a2b2 1化简得5c2a2,∴c5,故离心率为 5a 5 518. 本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力.满分16分.解法一:(1) 如图,以 O为坐标原点,OC所在直线为x轴,建立平面直角坐标系xOy.由条件知 A(0,60),C(170,0),4直线BC的斜率kBC=-tan∠BCO=-.33又因为AB⊥BC,所以直线AB的斜率k AB=.4设点B的坐标为(a,b),则k BC= b 0 4,kAB=b60 3,a 170 3a 0 4解得a=80,b=120.所以BC= (17080)2(0120)2150.因此新桥 BC的长是150m.(2)设保护区的边界圆M的半径为rm,OM=dm,(0≤d≤60).由条件知,直线BC的方程为y 4(x170),即4x3y68003由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,|3d680|680 3d即r5 5.因为O和A到圆M上任意一点的距离均不少于80m,6803dr d≥80 5d≥80即解得10≤d≤35所以(606803dr d)≥80d)≥805 (60故当d=10时,r 680 3d最大,即圆面积最大. 5所以当OM=10m时,圆形保护区的面积最大.解法二:(1)如图,延长OA,CB交于点F.因为tan∠BCO=4.所以sin∠FCO=4,cos∠FCO=3.3 5 5因为OA=60,OC=170,所以OF=OCtan∠FCO=680.3OC 850 500.CF= ,从而AF OFOAcosFCO 3 34因为OA⊥OC,所以cos∠AFB=sin∠FCO== ,400又因为AB⊥BC,所以BF=AFcos∠AFB== ,从而BC=CF-BF=150.因此新桥BC的长是150m.(2)设保护区的边界圆M与BC的切点为D,连接MD,则MD⊥BC,且MD是圆M的半径,并设MD=rm,OM=dm(0≤d≤60).因为OA⊥OC,所以sin∠CFO=cos∠FCO,故由(1)知,sin∠CFO=MD MD r3,所以r 6803d .MF OF OM680d5 53因为O和A到圆M上任意一点的距离均不少于80m,680 3d≥80r d≥80 5d即解得10≤d≤35所以(60 680 3dr d)≥80d)≥805(60故当d=10时,r 680 3d最大,即圆面积最大.5所以当OM=10m时,圆形保护区的面积最大.19.本小题主要考查初等函数的基本性质、导数的应用等基础知识,考查综合运用数学思想方法分析与解决问题的能力.满分16分.(1)x R,f( x) e x e x f(x),∴f(x)是R上的偶函数(2)由题意,m(e x e x)≤e x m1,即m(e x e x1)≤e x1∵x (0,xex1 0,即m≤ex1对x(0,)恒成立),∴e xex1e令tx(t1) ≤1 t对任意t (1,)恒成立e,则m t2t 1∵1t(t1)2t 1 1 ≥1,当且仅当t2时等号成立t2t1 (t1)1t1 113 t 1∴m≤13(3)f'(x) e x e x,当x 1时f'(x) 0,∴f(x)在(1,)上单调增令h(x) a(x33x) ,h'(x) 3ax(x 1)∵a 0,x1,∴h'(x)0,即h(x)在x (1,)上单调减∵存在x0[1,),使得f(x0) a( x033x0),∴f(1)e 1 2a,即a 1e 1e 2 ee-1∵ln a a1lna e1lne a1(e1)lnaa1e设m(a) (e1)lna a 1,则m'(a) e 1 1e1a,a 1 e 1a a 2 e当1e 1a e1时,m'(a) 0,m(a)单调增;2 e当a e 1时,m'(a) 0,m(a)单调减因此m(a)至多有两个零点,而m(1) m(e) 0∴当a e时,m(a) 0,a e1e a1;当1e 1 ae时,m(a) 0,a e1e a1;2 e当a e时,m(a) 0,a e1e a1.20. 本小题主要考查数列的概念、等差数列等基础知识,考查探究能力及推理论证能力,满分16分.(1)当n≥2时,a n S n S n12n2n12n1 当n 1时,a1S1 2∴n 1时,1 1 n n1∴{an}是“H数列”S a,当n≥2 时,S a(2)S n na1n(n 1)d n n(n 1)d2 2对n N,m N使S n a m,即n n(n1)d1(m1)d2取n 2得1d (m1)d,m21d∵d0,∴m 2,又m N,∴m1,∴d1(3)设{a n}的公差为d 令b n a1(n 1)a1(2 n)a1,对n N,b n1b n a1c n(n1)(a1d),对n N,cn1c n a1d则b cna (n 1)d an,且{b},{c}为等差数列n 1 n n{b n} n 1 n(n 1) 1 T n(2 m)a1,则m n(n 3)的前n项和Tna2 ( a),令 22当n1时m1;当n 2时m1;当n≥3时,由于n与n 3奇偶性不同,即n(n 3)非负偶数,m N 因此对n,都可找到m N,使T n b m成立,即{b n}为“H数列”.n 的前n项和Rn n(n1)(a1d),令n 1 m,则m n(n1) 1{c} c (m1)(ad) R22∵对n N,n(n 1)是非负偶数,∴m N即对n N,都可找到m N,使得R n c m成立,即{c n}为“H数列”因此命题得证.数学Ⅱ(附加题)参考答案21.【选做题】A.【选修4-1:几何证明选讲】本小题主要考查圆的基本性质,考查推理论证能力证明:∵B,C是圆O上的两点,∴OB=OC. .满分10分.故∠OCB=∠B.又∵C,D是圆O上位于AB异侧的两点,故∠B,∠D为同弧所对的两个圆周角,∴∠B=∠D.∴∠OCB=∠D.B.【选修4-2:矩阵与变换】本小题主要考查矩阵的乘法等基础知识,考查运算求解能力.满分10 分.A2y2 ,Bα 2 y ,由Aα=Bα得2y2 2,1,y4 y解得x2 xy 4 y 2xy 4 y, 2C.【选修4-4:坐标系与参数方程】满分10分.本小题主要考查直线的参数方程、抛物线的标准方程等基础知识,考查运算求解能力. 直线l:xy 3代入抛物线方程y24x并整理得x210x9 0∴交点A(1,2),B(9,6),故|AB| 8 2D.【选修4-5:不等式选讲】本小题主要考查算术一几何平均不等式.考查推理论证能力.满分10分.证明:因为x>0,y>0,所以1+x+y2≥33xy20,1+x2+y≥33x2y0,所以(1+x+y2)(1+x2+y)≥33xy233x2y=9xy.22.【必做题】本小题主要考查排列与组合、离散型随机变量的均值等基础知识,考查运算求解能力.满分10分.(1)一次取2个球有C9236种可能情况,2个球颜色相同共有C42C32C2210种可能情况∴取出的2个球颜色相同的概率P10536 18(2)X的所有可能取值为4,3,2,则4 13 1 3 1 P(X4) C4 P(X 3) C4C5 C3C613C 94126C 9363P(X 2) 1 P(X3) P(X 4) 1114 ∴X 的概率分布列为X 23 4 P 1113 1 14 63126故X 的数学期望E(X) 211 3 13 4 1 201914 63 126 923.【必做题】本题主要考查简单的复合函数的导数,考查探究能力及运用数学归纳法的推理论证能力.满分10分.(1)解:由已知,得f 1(x) f 0(x) sinxcosx sinx x xx 2,于是f 2(x) f 1(x) cosx sinx sinx2cosx 2sinx ,x x 2x x 2x 3所以f 1() 42,f 2() 2 163, 故2f 1 () f 2()1.22 2 2 2(2)证明:由已知,得xf 0(x ) sinx,等式两边分别对 x 求导,得f0(x) xf 0(x) cosx ,即f 0(x) xf 1(x)cosx sin(x ) ,类似可得 2f 1(x) xf 2(x) sinx sin(x), 23f 2(x)xf 3(x) cosx sin(x 3 ), 4f 3(x) xf 4(x) sinx sin(x 2 ). 2下面用数学归纳法证明等式 nf n1(x) xf n (x) sin(x n )对所有的n N *都成立. 2(i)当n=1时,由上可知等式成立.(ii)假设当n=k 时等式成立,即kf k1(x) xf k (x) sin(x k). 2因为[kf k1(x) xf k (x)] kf k 1(x) f k (x) xf k (x) (k 1)f k (x) f k1(x), [sin(x k)] cos(x k )(x k ) (k 1) ],sin[x 2 2 2 2所以(k 1)f k (x) f k1(x) sin[x (k 1) ]. 所以当n=k+1时,等式也成立.2综合(i),(ii)可知等式 n *n f n1 (x) n (x ) sin(x 2)对所有的n N 都成立.xf令x,可得nf n1( ) 4 f n ( ) sin( 4n)(n N *). 4 4 4 2所以nf n1()f n ()2(n N *).4 4 42。

2014江苏数学试题及标准答案(word解析版)

2014江苏数学试题及标准答案(word解析版)

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ圆柱的体积公式:V sh =圆柱,其中s 为圆柱的表面积,h 为高.圆柱的侧面积公式:=S cl 圆柱,其中c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2014年江苏,1,5分】已知集合{2134}A =--,,,,{123}B =-,,,则A B =_______.【答案】{13}-,【解析】由题意得{1,3}A B =-.(2)【2014年江苏,2,5分】已知复数2(52i)z =+(i 为虚数单位),则z 的实部为_______. 【答案】21【解析】由题意22(52i)25252i (2i)2120i z =+=+⨯⨯+=+,其实部为21. (3)【2014年江苏,3,5分】右图是一个算法流程图,则输出的n 的值是_______. 【答案】5【解析】本题实质上就是求不等式220n >的最小整数解.220n >整数解为5n ≥,因此输出的5n =. (4)【2014年江苏,4,5分】从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_______. 【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==.(5)【2014年江苏,5,5分】已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为3π的交点,则ϕ的值是_______. 【答案】6π【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.(6)【2014年江苏,6,5分】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.(7)【2014年江苏,7,5分】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是________. 【答案】4【解析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==.(8)【2014年江苏,8,5分】设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12VV 的值是_______. 【答案】32【解析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222r h r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==.(9)【2014年江苏,9,5分】在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为________.【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为d ==,所求弦长为l =. (10)【2014年江苏,10,5分】已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是________.【答案】0⎛⎫ ⎪⎝⎭【解析】据题意222()10(1)(1)(1)10f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩,解得02m <<. (11)【2014年江苏,11,5分】在平面直角坐标系xOy 中,若曲线2b y ax x=+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是________. 【答案】3-【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得11a b =-⎧⎨=-⎩,所以2a b +=-.(12)【2014年江苏,12,5分】如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,,则AB AD ⋅的值是________.【答案】22【解析】由题意,14AP AD DP AD AB =+=+,3344BP BC CP BC CD AD AB =+=+=-, 所以13()()44AP BP AD AB AD AB ⋅=+⋅-2213216AD AD AB AB =-⋅-,即1322564216AD AB =-⋅-⨯,解得22AD AB ⋅=.(13)【2014年江苏,13,5分】已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是________. 【答案】()102,【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大, 7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象与直线 y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数 21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈. (14)【2014年江苏,14,5分】若ABC ∆的内角满足sin 2sin A B C =,则cos C 的最小值是_______.【解析】由已知sin 2sin A B C =及正弦定理可得2a c =,2222222cos 22a b a b c C ab ab +-+-==22328a b ab +-=,当且仅当2232a b =,即a b =所以cos C二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知()2απ∈π,,sin α=. (1)求()sin 4απ+的值;(2)求()cos 26α5π-的值.解:(1)∵()sin 2ααπ∈π=,,,∴cos α==, ()s i n s i n c o s c o s (c o s )4440αααααπππ+=++. (2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,, ∴()()314cos 2cos cos2sin sin 2666525ααα5π5π5π-=+=+⨯-=.(16)【2014年江苏,16,14分】如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,, 的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC . 解:(1)∵D E ,为PC AC ,中点∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF .(2)∵D E ,为PC AC ,中点,∴132DE PA ==∵E F ,为AC AB ,中点,∴142EF BC ==,∴222DE EF DF +=,∴90DEF ∠=°,∴DE ⊥EF ,∵//DE PA PA AC ⊥,,∴DE AC ⊥, ∵AC EF E =,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC .(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且2BF = (2)若1FC AB ⊥,求椭圆离心率e 的值.解:(1)∵()4133C ,,∴22161999a b+=,∵22222BF b c a =+=,∴222a ==,∴21b =,∴椭圆方程为2212x y +=. (2)设焦点12(0)(0)()F c F c C x y -,,,,,,∵A C ,关于x 轴对称,∴()A x y -,,∵2B F A ,,三点共线,∴b yb c x +=--,即0bx cy bc --=①∵1FC AB ⊥,∴1yb xc c⋅=-+-,即20xc by c -+=② ①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩ ∴()2222222a c bc C b c b c --, C 在椭圆上,∴()()222222222221a c bc b c b c a b--+=,化简得225c a =,∴c a =. (18)【2014年江苏,18,16分】如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?. 解:解法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0),直线BC 的斜率43BC k tan BCO =∠=--.又因为AB ⊥BC ,所以直线AB 的斜率34AB k =.设点B 的坐标为(a ,b ),则k BC =041703b a -=--, k AB =60304b a -=-,解得a =80,b=120.所以BC150=.因此新桥BC 的长是150 m . (2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60).由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-=,由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤.故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803.CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=.因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO =45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m . (2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO ,故由(1)知,sin ∠CFO =368053MD MD r MF OF OM d ===--所以68035dr -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤,故当d =10时,68035dr -=最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.(19)【2014年江苏,19,16分】已知函数()e e x x f x -=+其中e 是自然对数的底数. (1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明 你的结论.解:(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数.(2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤,∵(0)x ∈+∞,,∴e e 10x x -+->,即e 1e e 1x x xm ---+-≤对(0)x ∈+∞,恒成立.令e (1)x t t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立. ∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立,∴13m -≤. (3)'()e e x xf x -=-,当1x >时'()0f x >∴()f x 在(1)+∞,上单调增,令3()(3)h x a x x =-+,'()3(1)h x ax x =--,∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减,∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2ef a =+<,即()11e 2e a >+. ∵e-1e 111ln ln ln e (e 1)ln 1e a a a a a a ---=-=--+,设()(e 1)ln 1m a a a =--+,则e 1e 1'()1a m a a a---=-=,()11e 2e a >+.当()11e e 12ea +<<-时,'()0m a >,()m a 单调增;当e 1a >-时,'()0m a <,()m a 单调减,因此()m a 至多有两个零点,而(1)(e)0m m ==,∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2ea +<<时,()0m a <,e 11e a a -->;当e a =时,()0m a =,e 11e a a --=. (20)【2014年江苏,20,16分】设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立. 解:(1)当2n ≥时,111222n n n n n n a S S ---=-=-=,当1n =时,112a S ==,∴1n =时,11S a =,当2n ≥时,1n n S a +=,∴{}n a 是“H 数列”.(2)1(1)(1)22n n n n n S na d n d --=+=+,对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+-,取2n =得1(1)d m d +=-,12m d=+,∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-.(3)设{}n a 的公差为d ,令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=-,1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+,则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列. {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+. 当1n =时1m =;当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N .因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N ,即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立, 即{}n c 为“H 数列”,因此命题得证.数学Ⅱ..................的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C 、 D是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .解:因为B ,C 是圆O 上的两点,所以OB =OC .故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B =∠D .因此∠OCB =∠D .(21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵与变换)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α, x y ,为实数,若A α=B α,求x y ,的值.解:222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=,. (21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为12x y ⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 与抛物线24y x =交于A B ,两点,求线段AB 的长.解:直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+=,∴交点(12)A ,,(96)B -,,故||8AB = (21-D )【2014年江苏,21-D ,10分】(选修4-5:不等式选讲)已知0x >,0y >,证明:()()22119x y x y xy ++++≥. 解:因为x >0, y >0, 所以1+x +y 2≥0>,1+x 2+y ≥0,所以(1+x +y 2)( 1+x 2+y )≥=9xy . 【必做】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ (22)【2014年江苏,22,10分】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,, 中的最大数,求X 的概率分布和数学期望()E X .解:(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况,∴取出的2个球颜色相同的概率1053618P ==.(2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X ===;3131453639C C C C 13(3)C 63P X +===; 11(2)1(3)(4)14P X P X P X ==-=-==.∴X 的概率分布列为:故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=.(23)【2014年江苏,23,10分】已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()1444n n nf f -πππ+=成立.解:(1)由已知,得102sin cos sin ()()x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭, 于是21223cos sin sin 2cos 2sin ()()x x x x xf x f x x x x x x ''⎛⎫⎛⎫'==-=--+⎪ ⎪⎝⎭⎝⎭,所以12234216(),()22f f πππππ=-=-+, 故122()()1222f f πππ+=-.(2)由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=,即01()()cos sin()2f x xf x x x π+==+,类似可得122()()sin sin()f x xf x x x π+=-=+, 2333()()cos sin()2f x xf x x x π+=-=+,344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. (i )当n =1时,由上可知等式成立.(ii )假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+.因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+,所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. 令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以1()()444n n nf f πππ-+n ∈*N ).。

2014年江苏高考数学卷及答案

2014年江苏高考数学卷及答案

2014年普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ . 2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ . 3. 右图是一个算法流程图,则输出的n 的值是 ▲ .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的 乘积为6的概率是 ▲ .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象 有一个横坐标为3π的交点,则ϕ的值是 ▲ .6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图 所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ .8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别 为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是 ▲ .9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ .10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x , 都有0)(<x f 成立,则实数m 的取值范围是 ▲ . 11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ . 12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,3=,2=⋅BP AP ,则AD AB ⋅的值是▲ .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分) 已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.(第3题)100 80 90 110 120 130 底部周长/cm(第6题)(第12题)16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC , 同时设立一个圆形保护区.规划要求:新桥BC 与河 岸AB 垂直;保护区的边界为圆心M 在线段OA 上 并与BC 相切的圆.且古桥两端O 和A 到该圆上 任意一点的距离均不少于80m. 经测量,点A 位 于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大? 19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(0300x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(第16题)PDCEFBA(∈n N *)成立.参考答案15.(1)∵α∈(,π),=∴=∴=+=(2)=12=,=2==+=+()=16. (1)∵D,E,分别为PC,AC,的中点 ∴DE ∥PA 又∵DE⊂平面PAC ,PA ⊄平面PAC∴直线PA ∥平面DEF(2)∵E,F 分别为棱AC,AB 的中点,且 BC=8,由中位线知EF=4∵D,E,分别为PC,AC,的中点,且PA=6,由中位线知DE=3,又∵DF=5∴DF ²=EF ²+DE ²=25,∴DE ⊥EF ,又∵DE ∥PA ,∴PA ⊥EF ,又∵PA ⊥AC ,又∵AC ⋂ EF=E ,AC ⊂平面ABC ,EF ⊂平面ABC ,∴PA ⊥平面ABC ,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC17.(1)∵BF 2 =,将点C (,)代入椭圆22221(0)x y a b a b+=>>,∴221611(0)99a b a b+=>>,且c ²+b ²=a ²∴a= ,b=1, ∴椭圆方程为2212x y +=(2)直线BA 方程为y=x+b,与椭圆22221(0)x y a b a b+=>>联立得x ²x=0. ∴点A (,),∴点C (,),F 1()直线CF 1 斜率k= ,又∵F 1C ⊥AB ,∴·=∴=1,∴e=18. (1)过点B 作BE ⊥OC 于点E ,过点A 作AD ⊥BE 于点F 。

2014年江苏省高考数学压轴试卷(文科)

2014年江苏省高考数学压轴试卷(文科)

2014年江苏省高考数学压轴试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、填空题(本大题共14小题,共70.0分)1.设全集U=R,A={1,2,3,4,5},B={x∈R|x2+x-6=0},则如图中阴影表示的集合为______ .【答案】{2}【解析】解:由图象可知,阴影部分的元素是由属于集合B,属于集合A的元素构成,则对应的集合为A∩B.B={x|x2+x-6=0}={x|x=-3或x=2}={-3,2},则A∩B={1,2,3,4,5}∩{-3,2}={2}.故答案为:{2}根据阴影部分集合元素的特点确定集合的关系.本题主要考查集合关系的判断,利用V enn图是解决此类问题的基本方法,比较基础.2.若x+x=3,则= ______ .【答案】18【解析】解:=(x+x)(x-1+x-1)=(x+x)[(x+x)2-3]=3(9-3)=18.故答案为18.利用立方和公式与完全平方差将用x+x表示出来即可求值.本题考查指数计算及立方和公式,完全平方和公式,这是正确计算本题的关键.3.设函数f(x)=x2-lnx,若曲线y=f(x)在点(1,f(1))处的切线方程为y=ax+b,则a+b= ______ .【答案】1【解析】解:∵f(x)=x2-lnx∴f(1)=12-ln1=1,即切点为(1,1)而f′(x)=2x-,则f′(1)=2-1=1,即切线的斜率为1∴曲线y=f(x)在点(1,f(1))处的切线方程为y-1=x-1,即y=x,即a=1,b=0∴a+b=1故答案为:1.本题主要考查了利用导数研究曲线上某点切线方程,解题的关键是求切线的斜率,属于基础题.4.已知a=log0.55,b=log0.53,c=log32,d=20.3,则a,b,c,d依小到大排列为______ .【答案】a<b<c<d【解析】解:∵a=log0.55<b=log0.53<log0.51=0,0<c=log32<1,d=20.3>20=1,∴a<b<c<d.故答案为:a<b<c<d.利用对数函数的性质与指数函数的性质可分析得到a,b,c,d与0与1的大小关系,从而可得答案.本题考查对数值大小的比较,掌握对数函数的性质与指数函数的性质是关键,属于基础题.5.已知函数f(x)=,<,,则f(f(2))= ______ .【答案】1【解析】解:f(2)=,f(1)=2e1-1-1=2-1=1,故f(f(2))=f(1)=1,故答案为:1根据分段函数的表达式直接代入求解即可.本题主要考查函数值的计算,利用分段函数的表达式直接求解即可,注意变量的取值范围.6.函数的定义域为______ .【答案】(2,+∞)【解析】解:要使原函数有意义,则,即>且,解 得:x≤-2或x≥2,解 得:x>1且x≠2.所以,x>2.综上,函数的定义域为(2,+∞).故答案为(2,+∞).由给出的分式函数的分子上根式内部的代数式大于等于0,分母的对数式不等于0,分别求解出x的取值集合后取交集.本题属于以函数的定义为平台,求集合的交集的基础题,也是高考常会考的题型,解答时注意对数式的真数大于0.7.设定义在R上的函数f(x),满足f(x+2)-f(x)=0,若0<x<1时f(x)=2x,则f(log2)= ______ .【答案】【解析】解:由于定义在R上的函数f(x),满足f(x+2)-f(x)=0,即f(x+2)=f(x),则函数f(x)为周期为2的函数,则f(log2)=f(-log248)=f(6-log248)=f(log2),由于0<x<1时f(x)=2x,又0<log2<1,则f(log2)==.故答案为:由于f(x+2)-f(x)=0,得到函数f(x)为周期为2的函数,f(log2)可化为f(log2),再由0<x<1时f(x)=2x,和对数恒等式,即可得到答案.本题考查函数的周期性及运用,考查对数的运算和对数恒等式的运用,属于中档题.8.函数f(x)=x2e x在区间(a,a+1)上存在极值点,则实数a的取值范围为______ .【答案】(-3,-2)∪(-1,0)【解析】解:函数f(x)=x2e x的导数为y′=2xe x+x2e x=xe x(x+2),令y′=0,则x=0或-2,-2<x<0上单调递减,(-∞,-2),(0,+∞)上单调递增,∴0或-2是函数的极值点,∵函数f(x)=x2e x在区间(a,a+1)上存在极值点,∴a<-2<a+1或a<0<a+1,∴-3<a<-2或-1<a<0.故答案为:(-3,-2)∪(-1,0).求导函数,求出函数的极值点,利用函数f(x)=x2e x在区间(a,a+1)上存在极值点,建立不等式,即可求实数a的取值范围.本题主要考查利用导数研究函数的单调性,考查函数的极值,考查学生的计算能力,属于中档题.9.已知p:A={x||x-a|<4},q:B={x|(x-2)(3-x)>0},若¬p是¬q的充分条件,则a 的取值范围为______ .【答案】[-1,6]【解析】解:由题意可知:(x-2)(3-x)>0,解得:2<x<3,-4<x-a<4,-4+a<x<4+a,非P:x≥4+a或x≤a-4,a+4≥3且a-4≤2,解得-1≤a≤6.故答案为:[-1,6].由题意可知:非P:x≥4+a或x≤a-4,非q:x≥3或x≤2.由非p是非q的充分条件,知非P是非q的子集,即a+4≥3且a-4≤2,由此能求出a的取值范围.本题考查必要条件、充分条件、充要条件的判断和应用,解题时要注意集合性质的应用.10.已知函数f(x)=x3+x|x|,若f(x2+2)+f(3x)<0,则实数x的取值范围是______ .【答案】(-2,-1)【解析】解:由于函数y=x3与y=x|x|都是增函数,可得f(x)=x3+x|x|是增函数.又f(-x)=-x3-x|x|=-(x3+x|x|)=-f(x),所以f(x)是奇函数.故f(x2+2)+f(3x)<0可变为f(x2+2)<f(-3x),由单调性可得x2+2<-3x,解得-2<x<-1故答案为:(-2,-1).由题,可先用单调性的判断规则判断出单调性,利用奇偶性定义得出函数的奇偶性,由此将不等式f(x2+2)+f(3x)<0转化为x2+2<-3x,解不等式即可得出所求.本题考查单调必与奇偶性的判断及利用单调性解抽象不等式,奇偶性与单调性的结合是考试中的热点问题,注意总结此类题的答题规律.11.若函数f(x)=mx2+lnx在定义域内是增函数,则实数m的取值范围是______ .【答案】m≥0【解析】解:求导函数,可得f′(x)=2mx+,x>0,因为函数f(x)=mx2+lnx在定义域内是增函数,所以f′(x)≥0成立,所以2mx+≥0,x>0时恒成立,所以2m≥-,所以2m≥0,所以m≥0时,函数f(x)在定义域内是增函数.故答案为:m≥0.求出f′(x)=2mx+,x>0,因为函数在定义域内是增函数,即要说明f′(x)大于等于0,分离参数求最值,即可得到m的范围.考查学生利用导数研究函数单调性的能力,会找函数单调时自变量的取值范围,属于基础题.12.对于R上可导的函数f(x),若(x-1)f′(x)>0,则f(0)+f(2)与2f(1)的大小关系为______ .【答案】>【解析】当x<1时,f′(x)<0,此时函数单调递减,∴f(2)>f(1),f(0)>f(1),∴f(0)+f(2)>2f(1).故答案为:>.由条件分别判断函数的单调性,利用函数的单调性进行比较大小.本题主要考查函数的单调性与导数之间的关系,利用条件不等式判断函数的单调性是解决本题的关键.13.下列四个命题中,所有真命题的序号是______ .∃m∈R,使f(x)=(m-1)x是幂函数;若函数f(x)满足f(x+1)=f(x-1),则函数f(x)周期为2;③如果a>0且a≠1,那么log a f(x)=log a g(x)的充要条件是a f(x)=a g(x);④命题“∀x∈R,都有x2-3x-2≥0”的否定是“∃x∈R,使得x2-3x-2≤0”【答案】【解析】解:对于 ,由m-1=1,得m=2,此时m2-4m+3=22-4×2+3=-1,函数f(x)=x-1是幂函数,∴命题 为真命题;对于 ,由f(x+1)=f(x-1),得f(x)=f(x+2),∴函数f(x)是周期为2的周期函数,∴命题 为真命题;对于③,a>0且a≠1,由a f(x)=a g(x)得到f(x)=g(x),当f(x)<0时log a f(x)=log a g(x)不成立.由log a f(x)=log a g(x),得到f(x)=g(x),此时a f(x)=a g(x)成立.∴a f(x)=a g(x)是log a f(x)=log a g(x)的必要不充分条件.∴命题③为假命题;对于④,命题“∀x∈R,都有x2-3x-2≥0”的否定是“∃x∈R,使得x2-3x-2<0”.∴命题④为假命题.故答案为: .对于 ,由m-1=1求出m的值,代入指数判断不等于0说明 是真命题;对于 ,取x=x-1,得到f(x)=f(x+2),由此判断 是真命题;对于③,由充分条件、必要条件的概念加以判断;对于④,直接写出全程命题的否定加以判断.本题考查命题的真假判断与应用,考查了函数周期性的求法,训练了充分条件和必要条件的判断方法,是中档题.14.已知函数f(x)满足f(x)=2f(),且f(x)≠0,当x∈[1,3],f(x)=lnx,若在区间[,3]内,函数g(x)=f(x)-ax有三个不同零点,则实数a的取值范围是______ .【答案】≤a<【解析】解:在区间[3]内,函数g(x)=f(x)-ax,有三个不同的零点,g′(x)=-a=,若g′(x)<0,可得x>,g(x)为减函数,若g′(x)>0,可得x<,g(x)为增函数,此时g(x)必须在[1,3]上有两个交点,∴>,解得,≤a<设<x<1,可得1<<3,∴f(x)=2f()=2ln,此时g(x)=-2lnx-ax,g′(x)=-,若g′(x)>0,可得x<-<0,g(x)为增函数若g′(x)<0,可得x>-,g(x)为减函数,在[,1]上有一个交点,则,解得0<a≤6ln3综上 可得≤a<;若a<0,对于x∈[1,3]时,g(x)=lnx-ax>0,没有零点,不满足在区间[,3]内,函数g(x)=f(x)-ax,有三个不同的零点,③a=0,显然只有一解,舍去综上:≤a<.故答案为:≤a<.可以根据函数f(x)满足f(x)=2f(),求出x在[,1]上的解析式,已知在区间[,3]内,函数g(x)=f(x)-ax,有三个不同的零点,对g(x)进行求导,利用导数研究其单调性,从而求出a的范围.此题充分利用了分类讨论的思想,是一道综合题,难度比较大,需要排除a<0时的情况,注意解方程的计算量比较大,注意学会如何分类讨论.二、解答题(本大题共10小题,共134.0分)15.设集合A={y|y=,x≥0,且x≠1},集合B={x|y=lg[x2-(2a+1)x+a2+a],a∈R}.(1)求集合A,B;(2)若A∪B=R,求实数a的取值范围.【答案】解:(1)A={y|y=,x≥0,且x≠1}=A={y|y==2+,x≥0,且x≠1}={y|y≤-1或x>2,B={x|y=lg[x2-(2a+1)x+a2+a],a∈R}={x|y=x2-(2a+1)x+a2+a>0}={x|x<a或x >a+1}(2)由A∪B=R得,a+1≤-1或a>2,即a≤-2或a>2,所以a∈(-∞,-2]∪(2,+∞).【解析】(1)根据不等式的解法,即可求出集合A,B.(2)根据集合A∪B=R,建立不等式关系即可得到结论.本题主要考查集合的基本运算,利用不等式的解法是解决本题的关键.16.设命题p:存在x∈R,使关于x的不等式x2+2x-m≤0成立;命题q:关于x的方程(4-m)•3x=9x+4有解;若命题p与q有且只有一个为真命题,求实数m的取值范围.【答案】解:由命题p为真:△=4+4m≥0,得m≥-1.对于命题q:由(4-m)•3x=9x+4得,∴命题q为真时,m≤0.若命题p为真,命题q为假,则m≥-1且m>0得m>0;若命题p为假,命题q为真,则m<-1且m≤0得m<-1;综上可得:实数m的取值范围为(-∞,-1)∪(0,+∞).【解析】分别化简得出命题p,q;分类讨论:命题p为真,命题q为假;命题p为假,命题q 为真,即可得出.本题考查了简易逻辑的有关知识、分类讨论思想方法,属于基础题.17.设f(x)=log2-x为奇函数,a为常数.(1)求a的值;(2)判断并证明函数f(x)在x∈(1,+∞)时的单调性;(3)若对于区间[2,3]上的每一个x值,不等式f(x)>2x+m恒成立,求实数m取值范围.【答案】解:(1)由条件得:f(-x)+f(x)=0,∴,化简得(a2-1)x2=0,因此a2-1=0,a=±1,当a=1时,<,不符合题意,因此a=-1.…(4分)(也可以直接根据函数定义域关于坐标原点对称,得出结果,同样给分)(2)判断函数f(x)在x∈(1,+∞)上为单调减函数;证明如下:设1<x1<x2<+∞,,∵1<x1<x2<+∞,∴x2-x1>0,x1±1>0,x2±1>0,∵(x1+1)(x2-1)-(x1-1)(x2+1)=x1x2-x1+x2-1-x1x2-x1+x2+1=2(x2-x1)>0,又∵(x1+1)(x2-1)>0,(x1-1)(x2+1)>0,∴,>,又x2-x1>0,∴f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数f(x)在x∈(1,+∞)上为单调减函数;(也可以利用导数证明,对照给分)…(9分)(3)不等式为m<f(x)-2x恒成立,∴m<[f(x)-2x]min∵f(x)在x∈[2,3]上单调递减,2x在x∈[2,3]上单调递增,∴f(x)-2x在x∈[2,3]上单调递减,当x=3时取得最小值为-10,∴m∈(-∞,-10)…(14分)【解析】(1)由f(x)=log2-x为奇函数,满足f(-x)+f(x)=0,代入可得a的值;(2)设1<x1<x2<+∞,结合对数运算性质,判断f(x1)-f(x2)的符号,进而可得函数f(x)在x∈(1,+∞)时的单调性;(3)若对于区间[2,3]上的每一个x值,不等式f(x)>2x+m恒成立,m<[f(x)-2x]min,分析f(x)-2x的单调性并求出最值,可得实数m取值范围.本题考查的知识点是对数函数的图象与性质,恒成立问题,奇函数,是函数图象和性质的综合应用,难度中档.18.某国庆纪念品,每件成本为30元,每卖出一件产品需向税务部门上缴a元(a为常数,4≤a≤6)的税收.设每件产品的售价为x元,根据市场调查,当35≤x≤40时日销售量与()x(e为自然对数的底数)成正比.当40≤x≤50时日销售量与x2成反比,(2)当每件产品的售价x为多少元时,才能使L(x)最大,并求出L(x)的最大值.【答案】解:(1)当35≤x≤40时,由题意得日销售量为k1,售价为40元时,日销售量为10件,故k1=10,k1=10e40当40≤x≤50时,由题意日销售量为售价为40元时,日销售量为10件,故=10,k2=16000所以该商品的日利润L(x)=,<,<.(2)当35≤x≤40时,′,4≤a≤6,35≤31+a≤37,因为35≤x≤40,令L'(x)=0得x=a+31当35≤x≤a+31时L'(x)>0当a+31≤x≤40时L'(x)<0故L max(x)=L(a+31)=10e9-a当40≤x≤50时,显然L(x)在40≤x≤50时,′==>所以L(x)在40≤x≤50时为增函数故40≤x≤50时L max(x)=L(50)又L(a+31)=10e9-a≥10e3,故L(a+31)>L(50)于是每件产品的售价x为a+31时才能使L(x)最大,L(x)的最大值为10e9-a【解析】(1)设出35≤x≤40时,日销售量为k1,40≤x≤50时,日销售量为,再由条件求出比例系数,从而得到该商品的日利润L(x);(2)运用导数分别求出35≤x≤40时,40≤x≤50时函数的最大值,再加以比较,即可得到所求的最大值.本题考查分段函数的运用,考查函数的解析式的求法,考查运用导数求函数的最值,属于中档题.19.已知命题p:“函数y=f(x)的图象关于点P(a、b)成中心对称图形”的充要条件(2)设函数g(x)=x3-3x2,求函数g(x)图象对称中心的坐标;(3)试判断“存在实数a和b,使得函数y=f(x+a)-b是偶函数”是“函数y=f(x)的图象关于某直线成轴对称图象”成立的什么条件?请说明理由.【答案】解:(1)命题p为真命题;充分性:若y=f(x+a)-b为奇函数,则f(a-x)-b=-f(a+x)+b即f(a-x)+f(a+x)=2b设M(x,y)为f(x)图象上任一点,则M关于(a,b)的对称点为N(2a-x,2b-y),∵f(2a-x)=f(a+(a-x))=2b-f(a-(a-x)),∴N在y=f(x)图象上,即f(x)的图象上,即f(x)的图象关于(a,b)对称必要性:若y=f(x)的图象关于(a,b)设M(x,y)为f(x)图象上任一点,则由上知:f(2a-x)=2b-f(x)令x取x+a,则f(a-x)+f(a+x)=2b即f(-x+a)-b=-f(a+x)+b∴y=f(x+a)-b为奇函数综上命题为真.(2)设函数f(x)=g(x+a)-b为奇函数,则f(x)=(x+a)3-3(x+a)2-b=x3+(3a-3)x2+(3a2-6a)x+a3-3a2-b∵f(x)=g(x+a)-b为奇函数,则,即由命题p为真命题,则函数g(x)=x3-3x2的图象对称中心为(1,-2),(3)若存在实数a和b,使得函数y=f(x+a)-b是偶函数,则可以通过上下平移和左右平移,即可得到y=f(x)的图象,此时“函数y=f(x)的图象关于某直线成轴对称图象”成立,若函数y=f(x)的图象关于y=x成轴对称图象,则无论怎么平移都无法平移到关于y轴对称,即必要性不成立,故“存在实数a和b,使得函数y=f(x+a)-b是偶函数”是“函数y=f(x)的图象关于某直线成轴对称图象”成立的充分不必要条件条件.【解析】(1)根据函数对称性和奇偶性的定义即可判断命题p的真假;(2)根据(1)的结论,即可求函数g(x)图象对称中心的坐标;(3)根据函数奇偶性的定义以及充分条件和必要条件的关系即可进行判断.本题主要考查函数奇偶性和对称性是应用,以及命题的真假判断,综合性较强,有一定的难度.20.设函数f(x)=alnx+,a∈R.(1)求函数f(x)的单调区间;(2)当a>0时,若对任意x>0,不等式f(x)≥2a成立,求a的取值范围;(3)当a<0时,设x1>0,x2>0,试比较f()与的大小并说明理由.【答案】解:函数f(x)的定义域为(0,+∞).…(1分)(Ⅰ)由题意x>0,′,…(2分)(1)当a>0时,由′<0,解得x<,函数f(x)的单调递减区间是(0,);由′>0,解得x>,函数f(x)的单调递增区间是(,+∞).…(4分)(2)当a≤0时,由于x>0,所以′<恒成立,函数f(x)的在区间(0,+∞)上单调递减.…(5分)(Ⅱ)因为对于任意正实数x,不等式f(x)≥2a成立,即恒成立.因为a>0,由(Ⅰ)可知当x=时,函数有最小值f()==a-alna.…(7分)所以2a≤a-alna,解得<.故所求实数a的取值范围是,.…(9分)(Ⅲ)因为,=.…(10分)所以=.(1)显然,当x1=x2时,.…(11分)(2)当x1≠x2时,因为x1>0,x2>0,且a<0,所以x1+x2>2,所以>1,<0.…(12分)又<,所以<所以f()-<0,即f()<.综上所述,当x1=x2时,;当x1≠x2时,f()<.…(14分)【解析】(I)由已知先出函数的定义域,及导函数,进而对a值进行分类讨论,分析出导函数的符号,即可得到函数f(x)的单调区间;(Ⅱ)由(I)的结论,我们可以求出x>0时f(x)的最小值,进而将恒成立问题转化为函数最小值不小于2a,构造关于a的不等式,可得a的取值范围;(Ⅲ)由(I)的结论,我们二次求导,分析出函数的凸凹性,进而可以分析出f()与的大小.本题考查的知识点是导数法求函数单调性及函数的最值,函数恒成立问题,基本不等式,其中熟练掌握导数在求函数单调区间及最值时的步骤及方法要点是解答的关键.21.求函数y=sin2(2x+)的导数.【答案】解:法一:′′′=…(10分)法二:∵…(5分)∴′′…(10分)【解析】法一:利用复合函数的求导公式直接求导;法二:先用二倍角公式降幂,再利用复合函数的导数公式求导.本题考查复合函数的导数及二倍角公式,属于基本计算题,对相应的运算规则要熟练掌握22.将水注入锥形容器中,其速度为4m3/min,设锥形容器的高为8m,顶口直径为6m,求当水深为5m时,水面上升的速度.【答案】解:设注入水tmin后,水深为hm,由相似三角形对应边成比例可得水面直径为,这时水的体积为…(4分)由于水面高度h随时间t而变化,因而h是t的函数h=h(t)由此可得水的体积关于时间t的导数为′′′′′′由假设,注水速度为4m3/min,∴′所以当h=5时,h t'=,当水深为5m时,水面上升的速度.…(10分)法(2)设t时刻水面的高度为hm则…(4分)′…(6分)由=5…(8分)∴′…(10分)【解析】由题,依据图形得出V关于高度h的函数及高度h关于t的函数,利用导数研究其变化规律即可得出水面上升的速度.本题考查建立函数模型及利用导数研究实际问题中事物变化的规律,导数在实际问题中有着广泛的运用23.证明下列命题:(1)若函数f(x)可导且为周期函数,则f′(x)也为周期函数;(2)可导的奇函数的导函数是偶函数.【答案】证明:(1)设f(x)的周期为T,则f(x)=f(x+T).∴f′(x)=[f(x+T)]′=f′(x+T)•(x+T)′=f′(x+T),即f′(x)为周期函数且周期与f(x)的周期相同.…(5分)(2)∵f(x)为奇函数,∴f(-x)=-f(x).∴[f(-x)]′=[-f(x)]′.∴f′(-x)•(-x)′=-f′(x).∴f′(-x)=f′(x),即f′(x)为偶函数…(10分)【解析】(1)利用复合函数导数公式及周期性定义即可证明;(2)利用复合函数导数公式及奇偶性定义即可证明;本题考查复合函数的求导公式及周期性及奇偶性的证明,有一定的综合性24.已知f(x)=lnx,g(x)=+mx+n,直线l与函数f(x),g(x)的图象都相切于点(1,0)(1)求直线l的方程及g(x)的解析式;(2)若h(x)=f(x)-g′(x)(其中g′(x)是g(x)的导函数),求函数h(x)的值域.【答案】解:(1)直线l是函数f(x)=lnx在点(1,0)处的切线,故其斜率k=f′(1)=1,所以直线l的方程为y=x-1.(2分)又因为直线l与g(x)的图象相切,所以在点(1,0)的导函数值为1.′所以(6分)(2)因为h(x)=f(x)-g′(x)=lnx-x2-x+1(x>0)(7分)所以′(9分)当<<时,h′(x)>0;当>时,h′(x)<0(11分)因此,当时,h(x)取得最大值(12分)所以函数h(x)的值域是∞,.(13分)【解析】(1)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成斜截式即可,再根据直线l与g(x)的图象相切,所以g (x)在点(1,0)的导函数值为1,建立方程组,解之即可求出g(x)的解析式;(2)先利用导数研究出函数h(x)在(0,+∞)的单调性,连续函数在区间(0,+∞)内只有一个极值,那么极大值就是最大值.本题主要考查了利用导数研究曲线上某点切线方程,以及恒成立问题,同时考查了转化与划归的思想,属于基础题.。

2014年江苏高考数学试题及详细答案(含附加题)

2014年江苏高考数学试题及详细答案(含附加题)

2014年江苏高考数学试题数学Ⅰ试题参考公式:圆柱的侧面积公式:S 圆柱=cl , 其中c 是圆柱底面的周长,l 为母线长. 圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高。

一、填空题:本大题共14小题,每小题5分,共计70分。

请把答案填写在答题卡相应位置上........。

1.已知集合{2134}A =--,,,,{123}B =-,,,则A B = .【答案】{13}-,2.已知复数2(52)z i =+(i 为虚数单位),则z 的实部为 . 【答案】213.右图是一个算法流程图,则输出的n 的值是 . 【答案】54.从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的 概率是 . 【答案】135.已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为 3π的交点,则ϕ的值是 . 【答案】6π 6.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】247.在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+, 则6a 的值是 . 【答案】48.设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12V V 的值是 . 【答案】329.在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为 . 25510.已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是 . 【答案】20⎛⎫ ⎪⎝⎭11.在平面直角坐标系xOy 中,若曲线2by ax x=+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是 . 【答案】3-12.如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,,则AB AD ⋅的 值是 . 【答案】2213.已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是 . 【答案】()102,14.若ABC ∆的内角满足sin 22sin A B C +=,则cos C 的最小值是 .624- 二、解答题:本大题共6小题, 共计90 分。

2014年江苏高考数学试题及详细答案(含附加题)

2014年江苏高考数学试题及详细答案(含附加题)

2014年江苏高考数学试题数学Ⅰ试题参考公式:圆柱的侧面积公式:S 圆柱=cl , 其中c 是圆柱底面的周长,l 为母线长. 圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{2134}A =--,,,,{123}B =-,,,则A B = .【答案】{13}-,2.已知复数2(52)z i =+(i 为虚数单位),则z 的实部为 . 【答案】213.右图是一个算法流程图,则输出的n 的值是 . 【答案】54.从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的 概率是 . 【答案】135.已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为 3π的交点,则ϕ的值是 .【答案】6π6.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】247.在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+, 则6a 的值是 . 【答案】48.设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12V V 的值是 . 【答案】329.在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为 . 【答案】255510.已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是 . 【答案】202⎛⎫-⎪⎝⎭, 11.在平面直角坐标系xOy 中,若曲线2b y ax x=+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是 . 【答案】3-12.如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,,则AB AD ⋅的值是 . 【答案】2213.已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a=-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是 . 【答案】()102, 14.若ABC ∆的内角满足sin 2sin 2sin A B C +=,则cos C 的最小值是 .【答案】624-二、解答题:本大题共6小题, 共计90 分. 请在答题卡指定区域内........作答, 解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14 分)已知()2απ∈π,,5sin 5α=.(1)求()sin 4απ+的值;(2)求()cos 26α5π-的值.【答案】本小题主要考查三角函数的基本关系式、两角和与差及二倍角的公式,考查运算求解能 力. 满分14分.(1)∵()5sin 25ααπ∈π=,,,∴225cos 1sin 5αα=--=-()210sin sin cos cos sin (cos sin )444210αααααπππ+=+=+=-;(2)∵2243sin 22sin cos cos2cos sin 55αααααα==-=-=,∴()()3314334cos 2cos cos2sin sin 2666252510ααα5π5π5π+-=+=-⨯+⨯-=-.16.(本小题满分14 分)如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,,的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC .【答案】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系, 考查空间想象能力和推理论证能力.满分14分. (1)∵D E ,为PC AC ,中点 ∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF (2)∵D E ,为PC AC ,中点 ∴132DE PA == ∵E F ,为AC AB ,中点 ∴142EF BC == ∴222DE EF DF += ∴90DEF ∠=°,∴DE ⊥EF∵//DE PA PA AC ⊥,,∴DE AC ⊥ ∵AC EF E = ∴DE ⊥平面ABC∵DE ⊂平面BDE , ∴平面BDE ⊥平面ABC .17.(本小题满分14 分)如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b+=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且22BF =,求椭圆的方程;(2)若1FC AB ⊥,求椭圆离心率e 的值.【答案】本小题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运 算求解能力. 满分14分.(1)∵()4133C ,,∴22161999a b += ∵22222BF b c a =+=,∴22(2)2a ==,∴21b =∴椭圆方程为2212x y += (2)设焦点12(0)(0)()F c F c C x y -,,,,, ∵A C ,关于x 轴对称,∴()A x y -, ∵2B F A ,,三点共线,∴b yb c x +=--,即0bx cy bc --=①∵1FC AB ⊥,∴1yb xc c ⋅=-+-,即20xc by c -+=② ①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩∴()2222222a c bc C b c b c --, ∵C 在椭圆上,∴()()222222222221a cbc b c b c a b --+=,化简得225c a =,∴55c a =, 故离心率为5518.(本小题满分16分)如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?解:本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力.满分16分. 解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0),直线BC 的斜率k BC =-tan ∠BCO =-43. 又因为AB ⊥BC ,所以直线AB 的斜率k AB =34. 设点B 的坐标为(a ,b ),则k BC =04,1703b a -=--k AB =603,04b a -=- 解得a =80,b=120. 所以BC =22(17080)(0120)150-+-=.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60). 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-= 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r , 即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F . 因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35. 因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803. CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=.因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45, 又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半 径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO , 故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--所以68035d r -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.19.(本小题满分16分)已知函数()e e x x f x -=+其中e 是自然对数的底数. (1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围; (3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明你的结论.【答案】本小题主要考查初等函数的基本性质、导数的应用等基础知识,考查综合运用数学思想 方法分析与解决问题的能力.满分16分.(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数 (2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤∵(0)x ∈+∞,,∴e e 10xx-+->,即e 1e e 1xx x m ---+-≤对(0)x ∈+∞,恒成立 令e (1)x t t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立 ∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立 ∴13m -≤(3)'()e e x x f x -=-,当1x >时'()0f x >,∴()f x 在(1)+∞,上单调增 令3()(3)h x a x x =-+,'()3(1)h x ax x =--∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减 ∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2e f a =+<,即()11e 2e a >+∵e-1e 111ln ln ln e (e 1)ln 1ea a a a a a ---=-=--+设()(e 1)ln 1m a a a =--+,则()e 1e 111'()1e 2e a m a a a a ---=-=>+,当()11e e 12e a +<<-时,'()0m a >,()m a 单调增;当e 1a >-时,'()0m a <,()m a 单调减 因此()m a 至多有两个零点,而(1)(e)0m m == ∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2e a +<<时,()0m a <,e 11e a a -->; 当e a =时,()0m a =,e 11e a a --=.20.(本小题满分16分)设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立.【答案】本小题主要考查数列的概念、等差数列等基础知识,考查探究能力及推理论证能力, 满分16分.(1)当2n ≥时,111222n n n n n n a S S ---=-=-=当1n =时,112a S ==∴1n =时,11S a =,当2n ≥时,1n n S a += ∴{}n a 是“H 数列” (2)1(1)(1)22n n n n n S na d n d --=+=+ 对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+- 取2n =得1(1)d m d +=-,12m d=+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =- (3)设{}n a 的公差为d令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=- 1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列 {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N 因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”. {}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立,即{}n c 为“H 数列” 因此命题得证.数学Ⅱ(附加题)21.【选做题】本题包括A, B,C,D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.【选修4-1:几何证明选讲】(本小题满分10分)如图,AB 是圆O 的直径,C 、 D 是圆O 上位于AB 异侧的两点 证明:∠OCB =∠D .本小题主要考查圆的基本性质,考查推理论证能力.满分10分. 证明:因为B , C 是圆O 上的两点,所以OB =OC . 故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点, 故∠B ,∠D 为同弧所对的两个圆周角, 所以∠B =∠D . 因此∠OCB =∠D .B.【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α,x y ,为实数,若A α=B α,求x y ,的值. 【答案】本小题主要考查矩阵的乘法等基础知识,考查运算求解能力.满分10分. 222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=, C.【选修4-4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为212222x t y t ⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 与抛物线24y x =交于A B ,两点,求线段AB 的长. 【答案】本小题主要考查直线的参数方程、抛物线的标准方程等基础知识,考查运算求解能力.满分10分.直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+= ∴交点(12)A ,,(96)B -,,故||82AB = D.【选修4-5:不等式选讲】(本小题满分10分) 已知x >0, y >0,证明:(1+x +y 2)( 1+x 2+y )≥9xy.本小题主要考查算术一几何平均不等式.考查推理论证能力.满分10分.证明:因为x >0, y >0, 所以1+x +y 2≥2330xy >,1+x 2+y ≥2330x y >,所以(1+x +y 2)( 1+x 2+y )≥223333xy x y ⋅=9xy.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,,中的最大数,求X 的概率分布和数学期望()E X . 22.【必做题】本小题主要考查排列与组合、离散型随机变量的均值等基础知识,考查运算求解能力.满分10分.(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况∴取出的2个球颜色相同的概率1053618P ==(2)X 的所有可能取值为432,,,则 4449C 1(4)C 126P X === 3131453639C C C C 13(3)C 63P X +=== 11(2)1(3)(4)14P X P X P X ==-=-==∴X 的概率分布列为X 2 3 4 P111413631126故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=23.(本小题满分10分)已知函数0sin ()(0)x f x x x =>,设()n f x 为1()n f x -的导数,n *∈N . (1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()124442n n nf f -πππ+=成立.23.【必做题】本题主要考查简单的复合函数的导数,考查探究能力及运用数学归纳法的推理论证能力.满分10分.(1)解:由已知,得102sin cos sin ()(),x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭于是21223cos sin sin 2cos 2sin ()(),x x x x x f x f x x x x x x ''⎛⎫⎛⎫'==-=--+ ⎪ ⎪⎝⎭⎝⎭所以12234216(),(),22f f πππππ=-=-+ 故122()() 1.222f f πππ+=- (2)证明:由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=, 即01()()cos sin()2f x xf x x x π+==+,类似可得 122()()sin sin()f x xf x x x π+=-=+,2333()()cos sin()2f x xf x x x π+=-=+, 344()()sin sin(2)f x xf x x x π+==+. 下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. (i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+. 因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+, 所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. 令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ). 所以12()()4442n n nf f πππ-+=(n ∈*N ).。

2014江苏高考数学试卷含答案(校正精确版)

2014江苏高考数学试卷含答案(校正精确版)

2014年江苏省高考数学试卷标准答案一、填空题1已知集合A ={-2,-1,,3,4},B ={-1,2,3},则A ∩B = 【解析】由题意得{1,3}A B =-I .2.已知复数z =(5+2i )2 (i 为虚数单位),则z 的实部为【解析】由题意22(52)25252(2)2120z i i i i =+=+⨯⨯+=+,其实部为21. 3.右图是一个算法流程图,则输出的n 的值是(图略)【解析】本题实质上就是求不等式220n >的最小整数解.220n>整数解为5n ≥,故输出的5n = 4.从1,,2,3,6这4个数字中一次随机地取2个数,则所取2个数的乘机为6的概率是【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,故所求概率为2163P ==. 5.已知函数y =cosx 与y =sin(2x +φ)(0≤φ<л),他们的图象有一个横坐标为л/3的交点,则φ的值是 【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因0ϕπ≤<,故6πϕ=.6.莫种树木的底部周长的频率分布直方图如图所示,则在抽测的60株树木中,有()株树木的底部周长小于100cm【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.7.在各项均值为正数的等比数列{a n }中,若a 2=1,8642a a a =+,则624a a q ==的值是 【解析】设公比为q ,因21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,故4624a a q ==.8设甲,乙两个圆柱的底面积分别为S1,S2,体积分别为V1V1.若它的侧面积比为21122294S r S r ππ==21122294S r S r ππ==,则 222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==的值为 【解析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222r h r h ππ=,1221h r h r =,又21122294S r S r ππ==,故1232r r =,则9.在平面直角坐标系中xOy中,直线x +2y -3=0被圆22(2)(1)4x y -++=截得弦长为 【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为22512d ==+,所求弦长为22925522455l r d =-=-=.10已知函数2()1f x x mx =+-,若对于任意[,1]x m m ∈+,都有()0f x <成立,则实数m 的取值范围是【解析】据题意222()10,(1)(1)(1)10f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩,解得202m -<<. 11.在平面直角坐标系xOy 中,若曲线2by ax x=+(a ,b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是 【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,故7442b a -=-②,由①②解得1,1a b =-⎧⎨=-⎩故b =-2,a +b =-3.12如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是 【解】由题图可得,AP →=AD →+DP →=AD →+14AB →,BP →=BC →+CP →=BC →+34CD →=AD→-34AB →.∴AP →·BP →=⎝⎛⎭⎫AD →+14AB →·⎝⎛⎭⎫AD →-34AB →=AD →2-12AD →·AB →-316AB →2=2,故有2=25-12AD →·AB →-316×64,解得AD →·AB →=22.13.已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.【解析】作出函数y =f (x )在[-3,4]上的图象,f (-3)=f (-2)=f (-1)=f (0)=f (1)=f (2)=f (3)=f (4)=12,观察图象可得0<a <12.14.若三角形ABC 的内角满足sin 2sin 2sin A B C +=,则cos C 的最小值是【解析】由已知sin 2sin 2sin A B C +=及正弦定理可得22a b c +=,2222222()2cos 22a b a b a b cC abab++-+-==2232222622628a b ab ab ab ab +---=≥=,当且仅当2232a b =即23a b =时等号成立,故cos C 的最小值为624-. 二、解答题15.已知(,)2παπ∈,5sin 5α=. ⑴.求2252510sin()sin cos cos sin ()444252510πππααα+=+=⨯-+⨯=-的值; ⑵.求5553314334cos(2)cos cos 2sin sin 2()666252510πππααα+-=+=-⨯+⨯-=-的值. 【解析】⑴.由题意2525cos 1()5α=--=-, 故2252510sin()sincos cossin ()444πππααα+=+=⨯-+⨯=-. ⑵.由⑴得,4sin 22sin cos 5ααα==-,23cos 22cos 15αα=-=,故5553314334cos(2)cos cos 2sin sin 2()666525πππααα+-=+=-⨯+⨯-=-. 16如图,在三棱锥P -ABC 中,D ,E ,F ,分别为棱PC ,AC ,AB 的中点.已知PA AC ⊥,PA =6,BC =8,DF =5.求证:⑴.直线//PA DEF 平面; ⑵.平面BDE ⊥平面ABC【解析】⑴.由于,D E 分别是,PC AC 的中点,则有//PA DE ,又PA DEF ⊄平面,DE DEF ⊂平面,故//PA DEF 平面.⑵.由⑴.//PA DE ,又PA AC ⊥,故PE AC ⊥,又F 是AB 中点,故132DE PA ==,142EF BC ==,又5DF =,故222DE EF DF +=,故DE EF ⊥,,EF AC 是平面ABC 内两条相交直线,故DE ABC ⊥平面,又DE ⊂平面BDE ,故平面BDE ⊥平面ABC .17.如图,在平面直角坐标系xOy 中,1F ,2F 分别是椭圆22221(0)x y a b a b+=>>的左,右焦点,顶点B 的坐标为(0,)b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1F C .⑴.若点C 的坐标为41(,)33C ,且22BF =,求椭圆的方程;⑵.若1F C AB ⊥,求椭圆离心率e 的值. 【解】⑴.由题意,2(,0)F c ,(0,)B b ,222||2BF b c a =+==,又41(,)33C ,故22241()()3312b +=,解得1b =.故椭圆方程为2212x y +=.⑵.直线2BF 方程为1x yc b +=,与椭圆方程22221x y a b +=联立方程组,解得A 点坐标为2322222(,)a c b a c a c -++,则C 点坐标为2322222(,)a c b a c a c++,133222232223F C b b a c k a c a c cc a c +==+++,又ABb k c=-,由1F C AB ⊥得,323()13b b a c c c ⋅-=-+,即42243b a c c =+,故222222()()3b c b c a c -+=,即224b c =,化简得5c e a ==. 18.如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),4tan 3BCO ∠=. ⑴.求新桥BC 的长.⑵.当OM 多长时,圆形保护区的面积最大?图1-6【解】⑴.【法一】如图所示,以O 为坐标原点,OC 所在直线为 x 轴,建立平面直角坐标系xOy .由条件知,(0,60)A ,(170,0)C ,直线BC 的斜率4tan 3BC k BCO =-∠=-.又AB BC ⊥,故直线AB 的斜率34AB k =.设点B 的坐标为(,)a b ,则43BC k =-,34AB k =,解得80a =,120b =,故150BC =.故新桥BC 的长是150 m .【法二】过点B 作BE OC ⊥于点E ,过点A 作AD BE ⊥于点F .因4tan 3BCO ∠=,设5BC x =,3CE x =,4BE x =,故1703OE x =-,1703AF x =-,60EF AO ==,460BF x =-,又AB BC ⊥,且2BAF ABF π∠+∠=,2CBE BOC π∠+∠=,故2ABF CBE π∠+∠=,故2CBE BAF π∠+∠=,故3460tan 41703BF x BAF AF x-∠===-,故30x =,5150BC x ==m ,故新桥BC 的长为150m .【法三】如图所示,延长 OA ,BC 交于点F .因 tan ∠FCO =43,故sin ∠FCO =45,cos ∠FCO =35.因OA =60,OC =170,故OF =OC tan ∠FCO =6803,CF =OC cos ∠FCO =8503,从而AF =OF -OA =5003.因OA ⊥OC ,故cos ∠AFB =sin ∠FCO =45.又AB ⊥BC ,故BF =AF cos ∠AFB =4003,从而BC =CF-BF =150.故新桥BC 的长是150 m .⑵.【法一】设保护区的边界圆M 的半径为r m ,OM =d m (0≤d ≤60).由条件知,直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d5.因O 和A 到圆M 上任意一点的距离均不少于80m ,故⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680 - 3d 5-(60-d )≥80,解得10≤d ≤35.故当d =10时,r =680 - 3d5最大,即圆面积最大,故当OM =10 m 时,圆形保护区的面积最大. 【法二】设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因OA ⊥OC ,故sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35,故r =680-3d 5.因O 和A 到圆M 上任意一点的距离均不少于80 m ,故⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680-3d 5-(60-d )≥80,解得10≤d ≤35.故当d =10时,r =680 - 3d5最大,即圆面积最大,故当OM =10 m 时,圆形保护区的面积最大. 【法三】以OC 方向为x 轴,OA 为y 轴建立直角坐标系.设点(0,)M m ,点(0,60)A ,(80,120)B ,(170,0)C ,直线BC 方程为4(170)3y x =--,即436800x y +-=,故半径68035m R -=,又古桥两端O 和A 到该圆上任意一点的距离均不少于80m ,故80R AM -≥且80R OM -≥,故6803(60)805m m ---≥,6803805m m --≥,故1035m ≤≤,故68031305mR -=≤,此时圆面积最大.故当10OM =时圆形保护区面积最大.19.已知函数f (x )=e x +e -x ,其中e 是自然对数的底数.(1)证明:f (x )是R 上的偶函数;(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e-1的大小,并证明你的结论.(1)证明 因为对任意x ∈R ,都有f (-x )=e -x +e-(-x )=e -x +e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令t =e x (x >0),则t >1,所以m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立.因为t -1+1t -1+1≥2(t -1)·1t -1+1=3,所以-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln 2时等号成立.因此实数m 的取值范围是(-∞,-13].(3)令函数g (x )=e x +1e x -a (-x 3+3x ),则g ′(x )=e x -1e x +3a (x 2-1).当x ≥1时,e x -1e x >0,x 2-1≥0,又a >0,故g ′(x )>0.所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e-x0-a (-x 30+3x 0)<0成立,当且仅当最小值g (1)<0.故e +e -1-2a <0,即a >e +e -12.令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1x .令h ′(x )=0,得x =e -1,当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调增函数.所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0.当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. ①当a ∈⎝⎛⎭⎫e +e -12,e ⊆(1,e)时,h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a-1>a e -1.20.设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.⑴.若数列{}n a 的前n 项和*2()n n S n N =∈,证明{}n a 是“H 数列”;⑵.设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值; ⑶.证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c .使得n n n a b c =+,*n N ∈成立.【解析】⑴.首先112a S ==,当2n ≥时,111222n n n n n n a S S ---=-=-=,故12,1,2,2,n n n a n -=⎧=⎨≥⎩,故对任意的*n N ∈,2n n S =是数列{}n a 中的1n +项,故数列{}n a 是“H 数列”.⑵.由题意1(1)n a n d =+-,(1)2n n n S n d -=+,数列{}n a 是“H 数列”,则存在*k N ∈,使(1)1(1)2n n n d k d -+=+-,1(1)12n n n k d --=++,由于*(1)2n n N -∈,又*k N ∈,则1n Zd-∈对一切正整数n 都成立,故1d =-.⑶.首先,若n d bn =(b 是常数),则数列{}n d 前n 项和为(1)2n n n S b -=是数列{}n d 中的第(1)2n n -项,故{}n d 是“H 数列”,对任意的等差数列{}n a ,1(1)n a a n d =+-(d 是公差),设1n b na =,1()(1)n c d a n =--,则n n n a b c =+,而数列{}n b ,{}n c 都是“H 数列”,证毕.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014江苏省高考压轴卷数 学一、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1.设全集U=R ,A ={}1,2,3,4,5,B ={ x ∈R ︱x 2+ x -6=0},则下图中阴影表示的集合为 ▲ . 2. 若,32121=+-xx 则3322x x-+= ▲ .3. 设函数2()ln f x x x =-,若曲线()y f x =在点(1,(1))f 处的切线方程为y ax b =+,则=+b a ▲ .4.已知a =log 0.55,b =log 0.53,c =log 32,d =20.3,则a,b,c,d 依小到大排列为 ▲ .5.已知函数()()12321,2log 1,2x e x f x x x -⎧-<⎪=⎨-≥⎪⎩,则()()2f f = ▲ .6.函数f (x )2的定义域为 ▲ .7.设定义在R 上的函数()f x ,满足(2)()0f x f x +-=,若01x <<时()f x =2x ,则21(log )48f = ▲ . 8.函数2()xf x x e =在区间(),1a a +上存在极值点,则实数a 的取值范围为 ▲ .9.已知命题p :{|||4}A x x a =-<,命题q :{|(2)(3)0}B x x x =-->,若p ⌝是q ⌝的充分条件,则a 的取值范围为 ▲ .10.已知函数3()f x x x x =+,若2(2)(3)0f x f x ++<,则实数x 的取值范围是 ▲ . 11.若函数2()ln f x mx x =+在定义域内是增函数,则实数m 的取值范围是 ▲ .12.对于R 上可导的非常数函数)(x f ,若满足0)(')1(≥-x f x ,则(0)(2)2(1)f f f +与的大小关系为 ▲ .13.下列四个命题中,所有真命题的序号是 ▲ . ①,()()m m m R f x m x-+∃∈=-243使1是幂函数;②若函数()f x 满足(1)(1)f x f x +=-,则函数()f x 周期为2;③如果10≠>a a 且,那么)(log )(log x g x f a a =的充要条件是)()(x g x f a a =; ④命题“,x R x x ∀∈--≥2都有320”的否定是“,x R x x ∃∈--≤2使得320”.14.已知函数1()()2(),f x f x f x =满足当x ∈[1,3],()ln f x x =,若在区间1[,3]3内,函数()()g x f x ax=-有三个不同零点,则实数a 的取值范围是 ▲ .二.解答题: 本大题共6小题.共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)设集合21|,0,11x A y y x x x +⎧⎫==≥≠⎨⎬-⎩⎭且, 集合{}22|lg (21),B x y x a x a a a R ⎡⎤==-+++∈⎣⎦.(1)求集合,A B ; (2)若AB R =,求实数a 的取值范围16.(本小题满分14分)设命题p :存在x ∈R ,使关于x 的不等式220x x m +-≤成立;命题q :关于x 的方程(4)394x xm -⋅=+有解;若命题p 与q 有且只有一个为真命题,求实数m 的取值范围.17.(本小题满分14分)设21()log 1axf x x x -=--为奇函数,a 为常数. (1)求a 的值; (2)判断并证明函数)(x f 在),1(+∞∈x 时的单调性;(3)若对于区间[]2,3上的每一个x 值,不等式()2x f x m >+恒成立,求实数m 取值范围.18. (本小题满分16分)某国庆纪念品,每件成本为30元,每卖出一件产品需向税务部门上缴a 元(a 为常数,4≤a ≤6)的税收.设每件产品的售价为x 元,根据市场调查,当35≤x ≤40时日销售量与1e x⎛⎫⎪⎝⎭(e 为自然对数的底数)成正比.当40≤x ≤50时日销售量与2x 成反比,已知每件产品的售价为40元时,日销售量为10件.记该商品的日利润为L (x )元. (1)求L (x )关于x 的函数关系式;(2)当每件产品的售价x 为多少元时,才能使L (x )最大,并求出L (x )的最大值.19. (本小题满分16分)已知命题p :“函数()y f x =的图像关于点( )P a b 、成中心对称图形”的充要条件为“函数()y f x a b =+- 是奇函数”.(1)试判断命题p 的真假?并说明理由;(2)设函数32()3g x x x =-,求函数()g x 图像对称中心的坐标;(3)试判断“存在实数a 和b ,使得函数()y f x a b =+- 是偶函数”是“函数 ()y f x =的图像关于某直线成轴对称图像”成立的什么条件?请说明理由.20.(本小题满分16分) 设函数()ln f x a x x1=+,a ∈R . (1)求函数)(x f 的单调区间;(2)当0a >时,若对任意0x >,不等式()2f x a ≥成立,求a 的取值范围; (3)当0a <时,设10x >,20x >,试比较)2(21x x f +与2)()(21x f x f +的大小并说明理由.高三数学(加试) 第1页(共1页)数学加试试卷解答题(共4小题,每小题10分共40分,解答时应写出文字说明,证明过程或演算步骤) 21. 求下列函数)32(sin 2π+=x y 的导数.22. 将水注入锥形容器中,其速度为min /43m ,设锥形容器的高为m 8,顶口直径为m 6,求当水深为m 5时,水面上升的速度.23. 证明下列命题:(1)若函数f (x )可导且为周期函数,则f'(x )也为周期函数; (2)可导的奇函数的导函数是偶函数.24. 已知()()3211ln ,32f x xg x x x mx n ==+++,直线l 与函数()(),f x g x 的图象都相切于点()1,0(1)求直线l 的方程及()g x 的解析式;(2)若()()()'h x f x g x =-(其中()'g x 是()g x 的导函数),求函数()h x 的值域.参考答案一.填空题: 本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上1.{}2 2.18 3.1 4. a <b <c <d 5. 1 6. {}2x x > 7.438. (3,2)(1,0)--⋃- 9.16a -≤≤10.(2,1)-- 11. 0m ≥ 12. (0)(2)2(1)f f f +> (≥)13.① 14.ln 31[,)3e二.解答题: 本大题共6小题.共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.解:(1)A ={}|12x x x ≤->或 …………………………………………………………5分B ={}|1x x a x a <>+或 …………………………………………………………8分(2)由AB R =得,11a +≤-或2a > …………………………………………12分即2a ≤-或2a >,所以(](),22,a ∈-∞-+∞ ………………………………14分16.解:由命题p为真:44m ∆=+≥,得1m ≥- ………………………………4分由(4)394xxm -⋅=+得44303xx m ⎛⎫=-+≤ ⎪⎝⎭ 所以命题q为真时,0m ≤ ………………………………8分若命题p 为真,命题q 为假,则1m ≥-且0m >得0m >若命题p 为假,命题q 为真,则1m <-且0m ≤得1m <- ………………………12分所以实数m的取值范围为(,1)(0,)-∞-+∞ ………………………………………14分17. 解:(1)由条件得:0)()(=+-x f x f ,2211log log 011ax axx x +-∴+=---,化简得0)1(22=-x a ,因此1,012±==-a a ,但1=a 不符合题意,因此1-=a . ………………4分(也可以直接根据函数定义域关于坐标原点对称,得出结果,同样给分)(2)判断函数)(x f 在),1(+∞∈x 上为单调减函数;证明如下:设121x x <<<+∞121212212222112121111()()log log log ()1111x x x x f x f x x x x x x x x x +++--=--+=⋅+----+ 121x x <<<+∞ 21120,10,10x x x x ∴->±>±>12121212(1)(1)(1)(1)1x x x x x x x x +---+=-+-12122112()0x x x x x x --++=->又1212(1)(1)0,(1)(1)0x x x x +->-+>∴12121111x x x x +-⋅-+,1221211log 011x x x x +-⋅>-+,又210x x ->∴12()()0f x f x ->,即12()()f x f x > ∴函数)(x f 在),1(+∞∈x 上为单调减函数;(也可以利用导数证明,对照给分) ………………………………………………9分 (3)不等式为()2xm f x <-恒成立,min [()2]x m f x ∴<-)(x f 在[2,3]x ∈上单调递减,2x 在[2,3]x ∈上单调递增,()2x f x ∴-在[2,3]x ∈上单调递减,当3x =时取得最小值为10-,(,10)m ∴∈-∞-。

………………………………14分18. 解:(1)当35≤x ≤40时,由题意日销售量为1k 1e x⎛⎫⎪⎝⎭售价为40元时,日销售量为10件,故1k 401e ⎛⎫ ⎪⎝⎭=10,1k =4010e ………………3分当40≤x ≤50时,由题意日销售量为22k x 售价为40元时,日销售量为10件,故21600k =10,216000k = ………………6分所以该商品的日利润40210(30)3540()16000(30)4050x e x a x e L x x a x x ⎧--≤<⎪⎪=⎨⎪--≤≤⎪⎩………………8分(2)当35≤x ≤40时, 4010()(30)x e L x x a e=--4031()10xa xL x e e +-'=,4≤a ≤6,353137a ≤+≤,因为35≤x ≤40,令()0L x '=得31x a =+ 当3531x a ≤≤+时()0L x '> 当3140a x +≤≤时()0L x '<故max ()(31)L x L a =+910a e -= ………………………………………………………11分当4050x ≤≤时,216000()(30)L x x a x =-- 显然()L x 在4050x ≤≤时2416000((30)2)()x x a x L x x ---'= 2416000((602))x a x x -++=316000(602)0a x x +-=>所以()L x 在4050x ≤≤时为增函数故4050x ≤≤时max ()(50)L x L = ……………………………………………………13分又93(31)1010a L a e e -+=≥323216(50)(20)55L a ⨯=-≤故(31)(50)L a L +> ……………………………………………………15分于是每件产品的售价x 为31a +时才能使L (x )最大, L (x )的最大值为910a e - ………16分19. 解:(1)命题p 为真命题;充分性:若()y f x a b =+-为奇函数,则()()f a x b f a x b --=-++ 即()()2f a x f a x b -++=设(,)M x y 为()f x 图像上任一点,则M 关于(,)a b 的对称点为(2,2)N a x b y -- (2)(())2(())f a x f a a x b f a a x -=+-=---N ∴在()y f x =图像上,即()f x 的图像上,即()f x 的图像关于(,)a b 对称 必要性:若()y f x =的图像关于(,)a b设(,)M x y 为()f x 图像上任一点,则由上知:(2)2()f a x b f x -=- 令x 取x a +,则()()2f a x f a x b -++= 即()()f x a b f a x b -+-=-++ ()y f x a b ∴=+-为奇函数综上命题为真 …………………………………………5分 (2)设函数()()f x g x a b =+-为奇函数, 则32()()3()f x x a x a b =+-+-32232(33)(36)3x a x a a x a a b =+-+-+--∵()()f x g x a b =+-为奇函数,则3233030a a a b -=⎧⎨--=⎩,即12a b =⎧⎨=-⎩ 由命题p 为真命题,则函数32()3g x x x =-的图像对称中心为(1,2)- ……………10分(3)ⅰ.当:l x a =时“存在实数a 和b ,使得函数()y f x a b =+-是偶函数”是“函数()y f x =的图像关于直线l 成轴对称图形”的充要条件;(证明方法参考(1))ⅱ. 当l 不为x a =时“存在实数a 和b ,使得函数()y f x a b =+-是偶函数”是“函数()y f x =的图像关于直线l 成轴对称图形”的充分不必要条件 …………………………………16分20. 函数()f x 的定义域为(0.)+∞ Ⅰ)由题意x >,21()a f x x x '=- ………………………………………………2分 (1)当0a >时,由()0f x '<得1x a<所以()f x 的递减区间1(0,)a由()0f x '>得1x a>()f x ∴的递增区间为1(,)a+∞ ………………………………………………4分 (2)当0a ≤时由于0x >,21()0a f x x x '∴=-<恒成立 ()f x ∴的递减区间为(0,)+∞ ………………………………………………6分 Ⅱ)对任意正实数x ,成立即12ln a a x x≤+恒成立 …………………………………7分 因为0a >由Ⅰ可知 当1x a =时,函数1()ln f x a x x=+有最小值11()ln ln f a a a a a a a =+=- ………………………………………………9分 所以min 2()ln a f x a a a ≤=- 解之得:10a e <≤故所求实数a 的取值范围是10,e ⎛⎤⎥⎝⎦………………………………………………11分 Ⅲ)1212122()ln 22x x x x f a x x ++=++121212()()22f x f x x x a x x ++=21212121212()()()()222()x x f x f x x x f a x x x x ++-∴-=+ ………………………12分 (1)显然当12x x =时,12()2x x f +=12()()2f x f x + ………………………13分 (2)当12x x ≠时,因为120,0x x >>且0a< 12x x +>1> 0a ∴<又2121212()02()x x x x x x --<+ 1212()()()022x x f x f x f ++∴-< 1212()()()22x x f x f x f ++∴<………………………15分综上:当12x x =时12()2x x f +=12()()2f x f x + 当12x x ≠时1212()()()22x x f x f x f ++<………………………………16分数学(加试)参考答案21. 解:法一:'2sin(2)[sin(2)]'2sin(2)cos(2)(2)'33333y x x x x x πππππ=+⋅+=++⋅+22sin(4)3x π=+ ………………………………………………10分 法二:221co3si n32x y x ππ-+=+=……………………………………5分2'2sin(4)3y x π∴=+………………………………………………10分 22.解:设注入水min t 后,水深为hm ,由相似三角形对应边成比例可得水面直径为hm 43,这时水的体积为32643)83(31h h h V ππ=⋅= ………………………………4分由于水面高度h 随时间t 而变化,因而h 是t 的函数)(t h h =由此可得水的体积关于时间t 的导数为t t t h t h h h h h V V '⋅='⋅'='⋅'='23649)643(ππ 由假设,注水速度为min /43m ,33464t h π= 294'64t h h π∴=⋅所以当5h =时,'t h =256/min 225m π, 当水深为5m 时,水面上升的速度256/min 225m π。

相关文档
最新文档