七年级数学二元一次方程组综合检测题1
最新人教版初中数学七年级下册第8章《二元一次方程组》单元综合练习卷(含答案解析)(1)
人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。
1.已知下列方程组:(1)3{ 2x y y ==-,(2)32{ 24x y y +=-=,(3)1+3{ 10x y x y =--=,(4)1+3{ 10x y x y=-=,其中属于二元一次方程组的个数为( )A. 1B. 2C. 3D. 4 2.已知方程组54{58x y x y +=+=,则x ﹣y 的值为( )A. 2B. ﹣1C. 12D. ﹣43.用一根绳子环绕一棵大树,若环绕大树3周,绳子还多4尺,若环绕大树4周,绳子又少了3尺,则环绕大树一周需要绳子( )A. 5尺B. 6尺C. 7尺D. 8尺4.甲、乙、丙、丁四人到文具店购买同一种笔记本和计算器,购买的数量及总价分别如下表所示.若其中一人的总价算错了,则此人是( )A.甲B .乙C .丙D .丁5.如果是方程组 的解,那么下列各式中成立的是( )A. a +4c =2B. 4a +c =2C. 4a +c +2=0D. a +4c +2=06.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能计算出x ,y 的是( )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 7.二元一次方程组的正整数解有( )组解A. 0B. 3C. 4D. 6 8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. B. C. D.9.解方程组2{78ax by cx y +=-=时,一学生把c 看错得2{ 2x y =-=,已知方程组的正确解是3{2x y ==-,则a 、b 、c 的值是( )A. a 、b 不能确定,c=-2B. a 、b 、c 不能确定C. a=4,b=7,c=2D. a=4,b=5,c=-210.一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为( )A. 46B. 64C. 57D. 75 二、填空题(每小题3分,共15分)1.若2x a +1-3y b -2=10是一个二元一次方程,则a -b =________.2.若方程组⎩⎪⎨⎪⎧2x +y =*,3x -y =3的解为⎩⎨⎧x =2,y =#,则“*”“#”的值分别为________.象限.3.已知等式y =kx +b ,当x =1时,y =2;当x =2时,y =-3.若x =-1,则y =________.4.若m ,n 为实数,且|2m+n ﹣,则(m+n )2018的值为________ .5.若235,{ 323x y x y +=-=-则2(2x +3y)+3(3x -2y)=________.6.对于X 、Y 定义一种新运算“*”:X*Y=aX+bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=__________ . 三、解答题 1.解方程组:(1)(2);2.解关于x 、y 的方程组时,甲正确地解得方程组的解为,乙因为把c抄错了,在计算无误的情况下解得方程组的解为,求a、b、c的值.3.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?4.已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物请用含有b的式子表示a,并帮该物流公司设计租车方案;(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.5.某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.参考答案一、选择题。
最新人教版初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案解析)(1)
人教版七年级数学下册第 8 章《二元一次方程组》单元检测题人教版七年级下册第八章二元一次方程组单元检测题考试时间: 100 分钟; 满分: 120 分班级:姓名:学号:分数:一、选择题(本题共 10 个小题,每题 3 分,共 30 分) 1.以下各式是二元一次方程的是()A .1b2 B . 2m3n5C . 2x+3=5D . xy3a2.若x2是方程 ax -3y=2 的一个解,则 a 为 ()y 7A .8B. 23C.-23D .-192223.解方程组 4x 3 y 7时,较为简单的方法是()4x3y 5A .代入法B.加减法 C .试值法 D .没法确立4.方程组2xy的解为x2,则被掩盖的两个数分别为()x y3yA .1,2 B.1,3C .5,1(D) 2,4 5.以下方程组,解为x1是()y2A . x y 1B . x y 1C . x y 3D .x y33x y53x y53xy 1 3x y56.买钢笔和铅笔共 30 支,此中钢笔的数目比铅笔数目的 2 倍少 3 支.若设买钢笔 x 支,铅笔 y 支,依据题意,可得方程组()A . x y 30B . x y 30C . x y 30D .x y 30 y 2x 3y 2x 3x 2 y 3x 2 y 37.已知 x 、y 知足方程组x 2y8,则 x +y 的值是( )2x y 7A .3B .5C .7D .98.已知 3x m n y m n 与- 9x 7-m y 1+n 的和是单项式,则 m ,n 的值分别是()5A .m=- 1, n=-7B .m=3,n=1C .m=29, n=6D.m=5,n=- 210 549.依据图中供给的信息,可知一个杯子的价钱是( )A .51 元B .35元C .8 元D .7.5 元10.已知二元一次方程 3x +y =0 的一个解是xa,此中 a ≠ 0,那么( )y bA.b>0B.b=0C.b< 0D. 以上都不对aaa二、填空题(本题共 6 个小题,每题 4 分,共 24 分)11.请你写出一个有一解为的二元一次方程:.12.已知方程 3x +5y - 3=0,用含 x 的代数式表示 y ,则 y=________..若 x a-b-2-2y a + b是二元一次方程,则 a=________ , b=________.13 =314.方程 4x +3y =20 的全部非负整数解为:.15.某商品成本价为 t 元,商品上架前订价为 s 元,按订价的 8 折销售后赢利 45元。
精选初中数学七年级下册第8章《二元一次方程组》单元检测试卷(含答案解析)
人教版七年级数学下册 第八章 二元一次方程组 单元综合测试卷(1)一、选择题(本大题共10小题,,共30分)1.下列方程组中,是二元一次方程组的是( )A.⎩⎨⎧=-=+53262z y y xB.⎪⎩⎪⎨⎧=-=+1221y x y xC.⎩⎨⎧==+34y y xD.⎩⎨⎧==+34xy y x 2.已知方程组⎩⎨⎧-=+=-4272y x y x 的解是( ) A .⎩⎨⎧=-=23y x B .⎩⎨⎧-==32y x C .⎩⎨⎧==51y x D .⎩⎨⎧-==20y x 3.⎩⎨⎧==72y x 是方程ax -3y=2的一个解,则a 为( )A.8B.223C.-223 D.-219 4.若0)23(22=++-y x ,则y x )1(+的值是( )A. ﹣1B. ﹣2C. ﹣3D. 23 5.如果2x-7y=8,那么用含y 的代数式表示x 正确的是( )A .827x y -=B .287x y +=C .872y x +=D .872y x -= 6.已知是方程组的解,则a+b+c 的值是( )A .3B .2C .1D .无法确定 7.已知方程组54{ 58x y x y +=+=,则x ﹣y 的值为( ) A. 2 B. ﹣1 C. 12 D. ﹣48.如图,宽为50的大长方形图案由10个完全相同的小长方形拼成,其中一个小长方形的面积为( )A. 400B. 500C. 600D. 40009.成渝路内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇.相遇时,小汽车比小客车多行驶20千米.设小汽车和客车的平均速度分别为x 千米/小时和y 千米/小时,则下列方程组正确的是( )A.207717066x y x y +=+=⎧⎪⎨⎪⎩B.207717066x y x y -=+=⎧⎪⎨⎪⎩C.207717066x y x y +=-=⎧⎪⎨⎪⎩D.7717066772066x y x y +=-=⎧⎪⎪⎨⎪⎪⎩10.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分,不答记0分,已知李刚不答的题比答错的题多2题,他的总分为74分,则他答对了( )A .19题B .18题C .20题D .21题二、填空题(本大题共8小题,共24分)11.二元一次方程4x +y =11的所有自然数解是______ .12.已知,则x 与y 的关系式为______ .13.三元一次方程组的解是______ . 14.如果1032162312=--+--b a b a y x 是一个二元一次方程,那么数a =___, b =__。
最新人教版初中数学七年级下册第8章《二元一次方程组》单元综合练习卷(解析版)(1)
人教版数学七年级下册单元测试卷: 第8章 二元一次方程组一、选择题(本大题共8小题,每小题4分,共32分。
) 1.表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y x D 、⎩⎨⎧+=-+=222,11xy x x y x 2.已知2 x b +5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为( ) A .2 B .-2 C .1 D .-13.若关于x 、y 的方程组⎩⎨⎧=-=+k y x ky x 73的解满足方程2x +3y =6,那么k 的值为( )A .-23B .23C .-32D .-234.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm2C .600 cm 2D .4 000 cm 25.方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、16.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =m ,x -y =4m的解为3x +2y =14的一个解,那么m 的值为( ).A .1B .-1C .2D .-27.六年前,A 的年龄是B 的年龄的3倍,现在A 的年龄是B 的年龄的2倍,A 现在的年龄是( ).A .12岁B .18岁C .24岁D .30岁8.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131yx y x , 其中属于二元一次方程组的个数为( ) A .1 B .2 C .3 D .4二、填空题(本大题共8小题,共32分) 9.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________. 10.方程mx -2y=x+5是二元一次方程时,则m________. 11.若2x 2a -5b+y a-3b=0是二元一次方程,则a=______,b=______.12.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+ay -b=7的一个解,则代数式(x+y )2-1•的值是_________ 13.若2x 5a y b+4与-x 1-2by 2a 是同类项,则b=________.14.已知都是ax+by=7的解,则a=_______,b=______.15.甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程为______________. 16.在等式y =kx +b 中,当x =1时,y =1;当x =2时,y =4,则k =__________,b =__________. 三、解答题(本大题共6小题,共36分)17.(1)⎩⎨⎧=+=-5253y x y x (2)⎩⎨⎧=--=523x y x y (3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 45133218.若12x y =⎧⎨=⎩是关于x ,y 的二元一次方程3x -y +a=0的一个解,求a 的值.19.小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组31122x yx y+=⎧⎨+=-⎩中第一个方程y的系数和第二个方程x的系数看不到了,现在已知小丽的结果是12xy=⎧⎨=⎩,你能由此求出原来的方程组吗?20.某纸品加工厂为了制作甲、乙两种无盖的长方体小盒,利用边角余料裁出正方形和长方形两种硬纸片,长方形的宽和正方形的边长相等,现将150张正方形硬纸片和300张长方形硬纸片全部用来制作这两种小盒,可以制作甲、乙两种小盒各多少个?人教版数学七年级下册第八章《二元一次方程组》测试题一、选择题(每小题只有一个正确答案)1.下列各方程组中,属于二元一次方程组的是( )A. B. C. D.2.下列各组数中,方程2x-y=3和3x+4y=10的公共解是( )A. B. C. D.3.用代入法解方程组有以下步骤:①由(1),得y=(3);②由(3)代入(1),得7x-2×=3;③整理得3=3;④∴x可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是( )A.① B.② C.③ D.④4.一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则x,y的值为( )A. B. C. D.5.|3x-y-4|+|4x+y-3|=0,那么x与y的值分别为( )A. B. C. D.6.从方程组中求x与y的关系是( )A.x+y=-1 B.x+y=1 C. 2x-y=7 D.x+y=97.如果ax+2y=1是关于x,y的二元一次方程,那么a的值应满足( )A.a是有理数 B.a≠0 C.a=0 D.a是正有理数8.已知甲数的60%加乙数的80%等于这两个数的和的72%,若设甲数为x,乙数为y,则下列方程中符合题意的是( )A. 60%x+80%y=x+72%y B. 60%x+80%y=60%x+yC. 60%x+80%y=72%(x+y) D. 60%x+80%y=x+y9.下列各组数中,不是方程2x+y=10的解是( )A. B. C. D.10.如图所示,宽为50 cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A.400 cm2B.500 cm2 C.600 cm2D.4 000 cm211.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨,3辆大车与5辆小车一次可以运货为(单位:吨)( ) A . 25.5 B . 24.5 C . 26.5 D . 27.512.一文具店的装订机的价格比文具盒的价格的3倍少1元,购买2把装订机和6个文具盒共需70元,问装订机与文具盒价格各是多少元?设文具盒的价格为x 元,装订机的价格为y 元,依题意可列方程组为( )A .B .C .D . 二、填空题 13.在括号内填写一个二元一次方程,使其与二元一次方程5x -2y =1组成方程组的解是 你所填写的方程为______________.14.已知方程3x -2y =5的一个解中,y 的值比x 的值大1,则这个方程的这个解是________. 15.已知方程组则x -y =______,x +y =______.16.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,所列方程组为______. 17.已知方程2x 2n -1-3y3m -n+1=0是二元一次方程,则m =______,n =______.三、解答题18、用代入消元法解方程组 20.用加减消元法解方程组19、用适当的方法解下列方程组(1)20328x y x y -=⎧⎨+=⎩ (2)23533x yx y -⎧=⎪⎪⎨+⎪=⎪⎩⎩⎨⎧-=-=+54032y x y x 3410,490;x y x y +=⎧⎨+-=⎩20.甲、乙两人共同解方程组⎩⎨⎧-=-=+ ②by x ①y ax 24155,由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧-=-=13y x人教版七年级数学下册第八章二元一次方程组复习检测试题一、选择题。
第六章 二元一次方程组综合检测2022-2023学年冀教版七年级数学下册
第六章 二元一次方程组综合检测(满分100分,限时60分钟)一、选择题(每小题3分,共36分) 1.下列方程是二元一次方程的是 ( )A.2x +3y =zB.4x +y =5C.y =12(x +8) D.12x 2+y =02.下列方程组:①{x +y =−2,y +z =3,②{2x +1y =1,x −3y =0,③{3x −y =4,y =4−x,其中是二元一次方程组的是( )A.①②B.②③C.①③D.③ 3.将3x -2y =1变形,用含x 的代数式表示y ,正确的是 ( )A.x =1+2y 3B.y =3x−12C.y =1−3x2D.x =1−2y 34.根据“x 减去y 的差的8倍等于8”的数量关系列方程为 ( )A.x -8y =8B.8(x -y )=8C.8x -y =8D.x -y =8×85.用加减消元法解方程组{3x −y =5①,ax −3y =1②时,若①-②可消去x ,从而求出y 的值,则a 和y 的值分别为 ( )A.a =3,y =2B.a =3,y =-2C.a =-3,y =2D.a =-3,y =-26.方程组{2x +y +z =4,x −y =0,x −z =0的解是( )A.{x =2y =2z =1B.{x =2y =1z =1C.{x =1y =1z =1D.{x =2y =2z =2 7.四名学生在解二元一次方程组{3x −4y =5①,x −2y =3②时提出了四种不同的解法,其中解法不正确的是 ( )A.由①得x =5+4y 3,代入②B.由①得y =3x−54,代入②C.由②得y =-x−32,代入①D.由②得x =3+2y ,代入①8.小明在解关于x ,y 的二元一次方程组{x +⊗y =3,3x −⊗y =1时,得到了正确的结果{x =⊕,y =1,后来发现“⊗”“ ⊕”处被墨水污损了,则⊗,⊕处的值分别是( )A.1,1B.2,1C.1,2D.2,29.《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折后再量这根木,长木还剩余1尺,问木长为多少尺?设绳子长为x 尺,木长为y 尺,所列方程组正确的是( ) A.{x −y =4.52x +1=y B.{y −x =4.52x −1=yC.{x −y =4.512x +1=y D.{y −x =4.512x −1=y10. 2022年2月6日女足亚洲杯决赛,在逆境中,铿锵玫瑰没有放弃,逆转夺冠!某学校掀起一股足球热,举行了班级联赛,某班开局11场保持不败,积23分,按比赛规则,胜一场得3分,平一场得1分,则该班获胜的场数为 ( )A.4B.5C.6D.711.要把一张面值10元的人民币换成零钱,现有足够的面值为1元和5元的人民币,则换法有( ) A.1种 B.2种 C.3种 D.4种12.某船往返两地,顺流时每小时航行18千米,逆流时每小时航行14千米,则水流速度是( )A.3.5千米/时B.2.5千米/时C.2千米/时D.3千米/时 二、填空题(每小题4分,共16分)13.已知{x =m +1,y =−m +3,用含x 的代数式表示y ,则y = .14.已知方程组{x +2y =k,2x +y =1的解满足x +y =3,则k 的值为 .15.若|2x -3y +5|与(2x +3y -13)2互为相反数,则2x -y 的值为 . 16.用白铁皮制作罐头盒,每张铁皮可制盒身16个或盒底48个,一个盒身与两个盒底配成一个罐头盒,现有150张铁皮,用 张铁皮制作盒身,正好使得这150张铁皮制作出来的盒身和盒底全部配套. 三、解答题(共48分)17. (10分)按要求解二元一次方程组: (1){2x +y =5,3x −4y =2;(用代入消元法解)(2){4x +3y =3,3x −2y =15.(用加减消元法解)18.(12分)如图,在大长方形ABCD 中,放入8个相同的小长方形(空白部分).(1)每个小长方形的长和宽分别是多少厘米? (2)图中阴影部分的面积为多少平方厘米?19. (12分)甲、乙、丙三位同学在探讨“已知x ,y 满足x +2y =5,且{3x +7y =5m −3,2x +3y =8,求m 的值”的解题思路时,甲同学说:“可以先解关于x ,y 的方程组{3x +7y =5m −3,2x +3y =8,再求m 的值.”乙、丙同学听了甲同学的说法后,都认为自己的解题思路比甲同学的简单,乙、丙同学的解题思路如下. 乙同学:先将方程组{3x +7y =5m −3,2x +3y =8中的两个方程相加,再求m 的值;丙同学:先解方程组{x +2y =5,2x +3y =8,再求m 的值.你最欣赏乙、丙哪位同学的解题思路?先根据你最欣赏的思路解答此题,再简要说明你选择这种思路的理由.20.(14分)打折前,在某商场买6件A商品和3件B商品共用108元,买5件A商品和1件B商品共用84元.该商场做活动打折后,买50件A商品和50件B商品共用960元.(1)打折前,一件A商品和一件B商品分别多少元?(2)做活动时,该商场商品打几折?(3)做活动时买100件A商品和100件B商品比不做活动时少花多少元?答案1.C 根据二元一次方程的定义进行判断即可.2.D ①{x +y =−2,y +z =3是三元一次方程组,故错误;②{2x +1y =1,x −3y =0中的第一个方程不是整式方程,故错误;③{3x −y =4,y =4−x 符合二元一次方程组的定义,故正确.故选D.3.B 由3x -2y =1,可得2y =3x -1,所以y =3x−12,故选B.4.B 根据x 减去y 的差的8倍等于8,得方程8(x -y )=8.故选B.5.A ①-②,可得3x -ax -y +3y =4,即(3-a )x +2y =4,因为①-②可消去x ,所以a =3,2y =4,解得y =2,故选A .6.C 由方程组易知x =y =z ,结合2x +y +z =4,得{x =1,y =1,z =1.故选C .7.C A 正确,符合等式的性质;B 正确,符合等式的性质;C 错误,应该是由②得y =x−32,代入①;D 正确,符合等式的性质.故选C.8.B 利用加减消元法求得x =⊕=1,将{x =1,y =1代入x +⊗y =3,可得⊗=2.故选B.9.C ∵用一根绳子去量一根木材,绳子还剩余4.5尺,∴x -y =4.5;∵将绳子对折后再量这根木材,绳子差1尺,∴12x +1=y.∴所列方程组为{x −y =4.5,12x +1=y.故选C.10.C 设该班获胜的场数为x ,平的场数为y ,由题意得{x +y =11,3x +y =23,解得{x =6,y =5,即该班获胜的场数为6,故选C.11.C 设1元的有x 张,5元的有y 张,则x +5y =10,且x ,y 都是自然数. 解得{x =0,y =2或{x =5,y =1或{x =10,y =0,故有3种换法,故选C. 12.C 设该船在静水中的速度是x 千米/时,水流速度是y 千米/时,根据顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度,列出方程组为{x +y =18,x −y =14,解得{x =16,y =2,故水流速度是2千米/时,故选C.13.答案 4-x解析 {x =m +1①,y =−m +3②,①+②,得x +y =4,∴y =4-x.14.答案 8解析 解方程组{2x +y =1①,x +y =3②,①-②,得x =-2,把x =-2代入②,得-2+y =3,解得y =5,故方程组的解是{x =−2,y =5,将其代入x +2y =k ,得-2+10=k ,所以k =8.15.答案 1解析 ∵|2x -3y +5|≥0,(2x +3y -13)2≥0, 且|2x -3y +5|与(2x +3y -13)2互为相反数, ∴|2x -3y +5|=0,(2x +3y -13)2=0.∴{2x −3y +5=0,2x +3y −13=0,解得{x =2,y =3.∴2x -y =2×2-3=1.16.答案 90解析 设用x 张铁皮制作盒身,y 张铁皮制作盒底,正好使得这150张铁皮制作出来的盒身和盒底全部配套. 依题意,得{x +y =150,2×16x =48y,解得{x =90,y =60,故用90张铁皮制作盒身,60张铁皮制作盒底,正好使得这150张铁皮制作出来的盒身和盒底全部配套. 17.解析 (1){2x +y =5,①3x −4y =2,②由①得y =5-2x ,③把③代入②,得3x -4(5-2x )=2,解得x =2, 把x =2代入③,得y =5-2×2=1, ∴原方程组的解为{x =2,y =1.(2){4x +3y =3,①3x −2y =15,②①×2,得8x +6y =6,③ ②×3,得9x -6y =45,④ ③+④,得17x =51,解得x =3,把x =3代入①,得12+3y =3,解得y =-3, ∴原方程组的解为{x =3,y =−3.18.解析 (1)设小长方形的长为x 厘米,宽为y 厘米,依题意,得{x +4y =15,x +2y =9+y,解得{x =7,y =2. 答:每个小长方形的长和宽分别是7厘米、2厘米. (2)∵每个小长方形的长和宽分别是7厘米、2厘米, ∴题图中阴影部分的面积为15×(9+2)-8×7×2=53(平方厘米). 答:题图中阴影部分的面积为53平方厘米.19.解析 答案不唯一.例如:我最欣赏乙同学的解法,{3x +7y =5m −3,①2x +3y =8,②①+②,得5x +10y =5m +5,整理,得x +2y =m +1,将x +2y =m +1代入x +2y =5,得m +1=5,解得m =4. 选择这种思路的理由:这样解题采用了整体代入的思想,简化了运算. 20.解析 (1)设打折前,一件A 商品x 元,一件B 商品y 元, 由题意,得{6x +3y =108,5x +y =84,解得{x =16,y =4,答:打折前,一件A 商品16元,一件B 商品4元. (2)设做活动时,商场商品打m 折, 由题意,得50×16×0.1m +50×4×0.1m =960, 解得m =9.6.答:做活动时,商场商品打9.6折.(3)100×16+100×4-100×16×0.96-100×4×0.96=80(元),答:做活动时买100件A商品和100件B商品比不做活动时少花80元.。
人教版七年级数学下册第八章二元一次方程组单元测试卷(附答案)(1)
一、选择题(共 10 小题,每小题 3 分,共 30 分) 温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来!
x1
1.若
是关于 x、 y 的方程 2x y 2a 0 的一个解,则常数 a 为( ) .
y2
A. 1
B. 2
x y 3,
2. 方程组
的解是
xy 1
23、(本题 8 分) 某校初三学生在上实验课时, 要把 2000 克质量分数为 80%的酒精溶液配制 成质量分数为 60%的酒精溶液,某同学未经考虑先加了 500 克的水。
( 1)试通过计算说明该学生加水是否过量?
( 2)如果加水不过量,则还应加入质量分数为
20%的酒精溶液多少克?
24、(本题 10 分)古运河是杭州的母亲河, 为打造古运河风光带, 现有一段长为 180 米的河
y6
b,而得到方程组的解为
方程组的正确解。
x1
求出原
y 12
21、(本题 8 分)一列快车长 70 米,慢车长 80 米。若两车同向而行,快车从追上慢车到完全 离开慢车所用的时间为 20 秒;若两车相向而行, 则两车从相遇到离开所用的时间为 4 秒。 求两车每小时各行多少千米?
22、(本题 8 分).甲、乙两从 A 地出发到 B 地,甲步行、乙骑车。若甲走 6 千米,则在乙 出发 45 分钟后两人同时到达 B 地;若甲先走 1 小时,则乙出发后半小时追上甲,求 A、 B 两地的距离。
ax by 2
2x 3y 4
与
的解相同,
ax by 4
4x 5y 6
22解设甲的速度为 x千米 / 时,乙的速度为 y千米 / 时
3
【3套精选】人教版初中数学七年级下册第8章《二元一次方程组》单元综合练习题(含答案)(1)
人教版七年级数学下册第八章 二元一次方程组单元检测试题(有答案)一、选择题1 . 下列各方程组中,属于二元一次方程组的是( )A .B .C .D .2 .将方程 2 x + y =3 写成用含 x 的式子表示 y 的形式,正确的是 ( ) A . y = 2 x - 3 B . y = 3 - 2 x C . x = 2y-3D . x =3-2y3 .若方程组 的解为 ,则被 “☆” 、 “ K ” 遮住的两个数分别是 ( )A . 10 , 3B . 3 , 10C . 4 , 10D . 10 , 44 .已知 x , y 满足方程组 则 x + y 的值为 ( )A . 9B . 7C . 5D . 35 .已知甲、乙两数的和是 7 ,甲数是乙数的 2 倍,设甲数为 x ,乙数为 y ,根据题意,列方程组正确的是 ( )A. B. C. D.6 .按如图所示的运算程序,能使输出结果为 5 的 x , y 的值是 ( )A . x = 5 , y =- 5B . x =- 1 , y = 1C . x = 2 , y = 1D . x = 3 , y = 27.若2310x y z ++=,43215x y z ++=,则x y z ++的值为( ) A .5 B .4 C .3 D .28.若方程组431(1)3x yax a y+=⎧⎨+-=⎩的解x与y相等,则a的值等于()A.4 B.10 C.11 D.129. 两个水池共储水40吨,如果甲池注进水4吨,乙池注进水8吨,甲池水的吨数就与乙池水的吨数相等.甲、乙水池原来各储水的吨数是()A.甲池21吨,乙池19吨B.甲池22吨,乙池18吨C. 甲池23吨,乙池17吨D.甲池24吨,乙池16吨10.某校七年级(2)班40表格中捐款2元和32元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( )A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩二、填空题1.方程组的解是________ .2.已知关于x ,y 的二元一次方程2 x +■ y =7 中,y 的系数已经模糊不清,但已知是这个方程的一个解,那么原方程是________ .3.某旅行社组织甲、乙两个旅游团分别到庐山、婺源旅游,已知这两个旅游团共有55 人,甲旅游团的人数比乙旅游团的人数的2 倍少5 人,问甲、乙两个旅游团各有多少人?设甲、乙两个旅游团分别有x 人、y 人,根据题意可列方程组为__________ .4.已知+( x +2 y -5) 2 =0 ,则x +y =________ .5.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票________张,儿童票___ _ 张.三、计算题1.解方程组:(1) (2)2.已知与都是方程kx -b =y 的解,求k 和b 的值.3.已知方程组小马由于看错了方程① 中的m ,得到方程组的解为小虎由于看错了方程② 中的n ,得到方程组的解为请你根据上述条件求原方程组的解.4.请你根据王老师所给的内容,完成下列各小题.(1) 若x =-5 ,2 ◎ 4 =-18 ,求y 的值;(2) 若1 ◎ 1 =8 ,4 ◎ 2 =20 ,求x ,y 的值.5. “ 六一” 儿童节有一投球入盆的游戏,深受同学们的喜爱,游戏规则如下:如图,在一大盆里放一小茶盅( 叫幸运区) 和小茶盅外大盆内( 环形区) 分别得不同的分数,投到大盆外不得分;每人各投 6 个球,总得分不低于30 分得奖券一张.现统计小刚、小明、小红三人的得分情况如下图.(1) 每投中“ 幸运区” 和“ 环形区” 一次,分别得多少分?(2) 根据这种得分规则,小红能否得到一张奖券?请说明理由.6.数学方法:解方程组若设x +y =A ,x -y =B ,则原方程组可变形为解方程组得所以解方程组得我们把某个式子看成一个整体,用一个字母去代替它,这种解方程组的方法叫作换元法.(1) 请用这种方法解方程组(2) 已知关于x ,y 的二元一次方程组的解为那么关于m ,n 的二元一次方程组的解为________ ;(3) 已知关于x ,y 的二元一次方程组的解为则关于x ,y 的方程组的解为________ .答案与解析一、选择题。
浙教版七年级下数学第二 章二元一次方程组综合测评卷及答案
浙教版七年级下数学第二章综合测评卷一、选择题(每题3分,共30分)1.下列各方程组中,属于二元一次方程组的是( ).2.二元一次方程组⎩⎨⎧==+0,2x-y y x 的解是( ).3.已知⎩⎨⎧==21y ,-x 是二元一次方程组⎩⎨⎧==+123nx-y m,y x 的解,则m-n 的值是( ).A.1B.2C.3D.44.一种饮料有大盒与小盒两种包装.5大盒、4小盒共装148瓶饮料,2大盒、5小盒共装100瓶饮料,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组( ).5.小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如表所示:若小丽需要购买3个商品A 和2个商品B ,则她要花费( ). A.64元 B.65元 C.66元 D.67元6.用加减法解方程组⎩⎨⎧=+=+,823,132y x y x 下列四种变形中,正确的是( ).A.①②B.③④C.①③D.②④7.若关于x ,y 的二元一次方程组⎩⎨⎧==+k x-y k,y x 95的解也是二元一次方程2x+3y=6的解,则k 的值为( ).A. 43B.- 43C. 34D.- 348.已知三角形中两个角之比是4∶5,而第三个角比这两个角的和的31还小12°,则此三角形的三个内角的度数分别为( ).A.90°,70°,20°B.64°,80°,36°C.70°,48°,62°D.78°,64°,38°9.宜宾市某化工厂,现有A 种原料52kg ,B 种原料64kg ,现用这些原料生产甲、乙两种产品.已知生产1件甲种产品需要A 种原料3kg ,B 种原料2kg ;生产1件乙种产品需要A 种原料2kg ,B 种原料4kg.则A ,B 两种原料恰好用完时可生产甲、乙两种产品的总数为( ). A.19件 B.20件 C.21件 D.22件 10.如图所示,三个天平的托盘中形状相同的物体质量相等,图1、图2所示的两个天平处于平衡状态,要使第三个天平也保持平衡,可在它的右盘中放置( ).图1 图2 图3(第10题)A.3个○B.4个○C.5个○D.6个○ 二、填空题(每题4分,共24分)11.在等式3x-2y =1中,若用含x 的代数式表示y ,结果是 y = ;若用含y 的代数式表示x ,结果是 x = .12.若方程组⎩⎨⎧==+,-y x-,y x 3537则3(x+y)-(3x-5y)的值是 .13.若x ∶y ∶z =2∶3∶4,且x +y +z =18,则xyz = .14.已知方程组⎩⎨⎧+=+=1322m x y m,x y-的解x ,y 满足x +3y =3,则m 的值是 .15.有甲、乙、丙三件商品,购买甲商品3件、乙商品2件、丙商品1件共需315元;购买甲商品1件、乙商品2件、丙商品3件共需285元.那么购买甲、乙、丙商品各1件时共需 元. 16.对于任意非零实数x ,y,定义新运算“○×”:x ○×y=ax-by.若2○×3=2,3○×5=2,则3○×4= . 三、解答题(共66分) 17.(8分)解方程组:(1) ⎩⎨⎧=+=++.y x x y 83,02125 (2)⎩⎨⎧=+=+.y x ,y x 76543218.(6分)若关于x,y 的方程组⎩⎨⎧=+=+3)32234y (m-mx ,y x 的解满足x =2y ,求m 的值.19.(8分)已知方程组由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧==.-y -x 1,3乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧==.y x 2,5试求出a ,b 的值.20.(10分)计算:(1)已知a-3b=2a+b-15=1,求代数式a 2-4ab+b 2+3的值.(2)已知方程组⎩⎨⎧=+=+-b y x ,ay x 26432有无数多组解,求a,b 的值.21.(10分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房. (1)问该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数增多.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按八折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?22.(12分)某校举办八年级数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原.每个项目得分都按一定百分比折算后计入总分.下表为甲、乙、丙三位同学的得分情况(单位:分):(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算后计入总分,根据猜测,求出甲的总分.(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分、80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分.问:甲能否获得这次比赛的一等奖?23.(12分)下表为某主题公园的几种门票价格.李老师家用1600元作为购买门票的资金.(1)李老师若用全部资金购买“指定日普通票”和“夜票”共10张,则“指定日普通票”和“夜票”各买多少张?(2)李老师若想用全部资金购买“指定日普通票”“平日普通票”和“夜票”共10张(每种至少一张),他的想法能实现吗?请说明理由.参考答案一、选择题(每题3分,共30分)1.下列各方程组中,属于二元一次方程组的是(D).2.二元一次方程组⎩⎨⎧==+0,2x-y y x 的解是(C).3.已知⎩⎨⎧==21y ,-x 是二元一次方程组⎩⎨⎧==+123nx-y m,y x 的解,则m-n 的值是(D).A.1B.2C.3D.44.一种饮料有大盒与小盒两种包装.5大盒、4小盒共装148瓶饮料,2大盒、5小盒共装100瓶饮料,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组(A).5.小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如表所示:若小丽需要购买3个商品A 和2个商品B ,则她要花费(C). A.64元 B.65元 C.66元 D.67元 6.用加减法解方程组⎩⎨⎧=+=+,823,132y x y x 下列四种变形中,正确的是(B).A.①②B.③④C.①③D.②④ 7.若关于x ,y 的二元一次方程组⎩⎨⎧==+kx-y k,y x 95的解也是二元一次方程2x+3y=6的解,则k 的值为(A).A.43 B.- 43 C. 34 D.- 34 8.已知三角形中两个角之比是4∶5,而第三个角比这两个角的和的31还小12°,则此三角形的三个内角的度数分别为(B).A.90°,70°,20°B.64°,80°,36°C.70°,48°,62°D.78°,64°,38°9.宜宾市某化工厂,现有A 种原料52kg ,B 种原料64kg ,现用这些原料生产甲、乙两种产品.已知生产1件甲种产品需要A 种原料3kg ,B 种原料2kg ;生产1件乙种产品需要A 种原料2kg ,B 种原料4kg.则A ,B 两种原料恰好用完时可生产甲、乙两种产品的总数为(C). A.19件 B.20件 C.21件 D.22件10.如图所示,三个天平的托盘中形状相同的物体质量相等,图1、图2所示的两个天平处于平衡状态,要使第三个天平也保持平衡,可在它的右盘中放置(C).图1 图2 图3(第10题)A.3个○B.4个○C.5个○D.6个○ 二、填空题(每题4分,共24分)11.在等式3x-2y =1中,若用含x 的代数式表示y ,结果是 y =213-x ;若用含y 的代数式表示x ,结果是 x =312+y . 12.若方程组⎩⎨⎧==+,-y x-,y x 3537则3(x+y)-(3x-5y)的值是 24 .13.若x ∶y ∶z =2∶3∶4,且x +y +z =18,则xyz = 192 .14.已知方程组⎩⎨⎧+=+=1322m x y m,x y-的解x ,y 满足x +3y =3,则m 的值是 1 .15.有甲、乙、丙三件商品,购买甲商品3件、乙商品2件、丙商品1件共需315元;购买甲商品1件、乙商品2件、丙商品3件共需285元.那么购买甲、乙、丙商品各1件时共需 150 元. 16.对于任意非零实数x ,y,定义新运算“○×”:x ○×y=ax-by.若2○×3=2,3○×5=2,则3○×4= 4 . 三、解答题(共66分) 17.(8分)解方程组: (1) ⎩⎨⎧=+=++.y x x y 83,02125 (2) ⎩⎨⎧=+=+.y x ,y x 765432【答案】(1) ⎩⎨⎧==.y -x 37,103 【答案】⎩⎨⎧==.y ,-x 2118.(6分)若关于x,y 的方程组⎩⎨⎧=+=+3)32234y (m-mx ,y x 的解满足x =2y ,求m 的值.【答案】∵x =2y ,∴8y +3y =22.∴y =2.∴x =4. ∴4m +(m-3)×2=3.∴m =23.19.(8分)已知方程组由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧==.-y -x 1,3乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧==.y x 2,5试求出a ,b 的值.【答案】由题意得⎩⎨⎧=⨯+=⨯⨯,a ,-)(-)-b (-152552134解得⎩⎨⎧==.b ,a 10120.(10分)计算:(1)已知a-3b=2a+b-15=1,求代数式a 2-4ab+b 2+3的值. (2)已知方程组⎩⎨⎧=+=+-by x ,ay x 26432有无数多组解,求a,b 的值.21.(10分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房. (1)问该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数增多.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按八折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?【答案】(1)设该店有客房x 间,房客y 人.∴该店有客房8间,房客63人.(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱; 若一次性订客房18间,则需付费20×18×0.8=288钱<320钱;∴诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.22.(12分)某校举办八年级数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原.每个项目得分都按一定百分比折算后计入总分.下表为甲、乙、丙三位同学的得分情况(单位:分):(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算后计入总分,根据猜测,求出甲的总分.(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分、80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分.问:甲能否获得这次比赛的一等奖?【答案】(1)66×10%+89×40%+86×20%+68×30%=79.8(分).(2)设趣题巧解所占的百分比为x,数学应用所占的百分比为y.∴甲的总分:20+89×0.3+86×0.4=81.1>80.∴甲能获一等奖.23.(12分)下表为某主题公园的几种门票价格.李老师家用1600元作为购买门票的资金.(1)李老师若用全部资金购买“指定日普通票”和“夜票”共10张,则“指定日普通票”和“夜票”各买多少张?(2)李老师若想用全部资金购买“指定日普通票”“平日普通票”和“夜票”共10张(每种至少一张),他的想法能实现吗?请说明理由.【答案】(1)设买“指定日普通票”x张,“夜票”y张.∴“指定日普通票”买6张,“夜票”买4张.(2)能,理由如下:设李老师买“指定日普通票”x张,“平日普通票”y张,则“夜票”为(10-x-y)张.由题意得200x+160y+100(10-x-y)=1600.整理得5x+3y=30,∵x,y均为正整数,且每种至少一张,∴当x=3,y=5,10-x-y=2时,李老师的想法能实现.。
七年级数学二元一次方程组综合检测题
数学:第8章二元一次方程组综合检测题B (人教新课标七年级下) 一、填空题(每小题2分,共20分) 1.已知x a y b =⎧⎨=⎩,是方程20x y +=的一个解,则63 2 a b ++= . 2.方程1mx ny +=的两个解是12x y =-⎧⎨=⎩,,13x y =⎧⎨=⎩,,,则m = ,n = .3.写出一个以23x y =⎧⎨=-⎩,为解的一个二元一次方程组 .4.若2|327|(521)0a b a b +++-+=,则a b += .5.若方程123x y -=的解中,x 、y 互为相反数,则x = ,y = .6.已知关于x ,y 的方程组59x y m x y m+=⎧⎨-=⎩,的解满足239x y -=,则m =.7.如图1,已知函数y ax b =+和y kx =的图象交于点P , 则根据图象可得,关于y ax b y kx=+⎧⎨=⎩,的二元一次方程组的解是 .8.一个两位数的数字之和是8,十位数字与个位数字互换后,所得新数比原数小18,则原两位数是 .9.学生问老师:“你今年多大?”老师风趣地说:“我像你这样大时,你才出生,你到我这么大时,我已经36岁了”.则老师年龄为 岁,学生年龄为 岁.10.甲、乙两人在400m 的环形跑道上同一起点同时背向起跑,25秒后相遇,若甲先从起跑点出发,半分钟后,乙也从该点同向出发追赶甲,再过3分钟后乙追上甲,设甲、乙二人的速度分别为x m/s ,y m/s ,则根据题意列方程为. 二、选择题(每小题2分,共20分)1.下列方程组中,是二元一次方程组的是( ) A .35237x y x y +=⎧⎨-=⎩,B .2312163m n m n ⎧+=⎪⎨+=⎪⎩ C .56m n mn +=⎧⎨=⎩D .2310156x y y x +=⎧⎪⎨-=⎪⎩2.(08白银市)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与2个球体相等质量的正方体的个数为( )A .5B .4C .3D .23.同时满足方程21132x y +=与325x y +=的解是( ) A .23x y ==,B .34x y =-=,C .32x y ==-,D .32x y =-=-, 4.已知方程组42ax by ax by -=⎧⎨+=⎩,的解为21x y =⎧⎨=⎩,,则23a b -的值为( )A .4B .6C .6-D .4-5.把一张面值50元的人民币换成10元、5元的人民币,共有( )A .4种换法B .5种换法C .6种换法D .7种换法6.已知方程组321432x y x y +=⎧⎨-=⎩,下列变形正确的是( )A .12811292x y x y +=⎧⎨-=⎩,B .361462x y x y +=⎧⎨-=⎩,C .126412126x y x y +=⎧⎨-=⎩,D .963864x y x y +=⎧⎨-=⎩,7.代数式2x ax b ++,当2x =时,其值是3,当3x =-时,其值是4,则代数式a b -的值是( ) A .415-- B .435-C .185D .2358.若方程组431(1)3x y kx k y +=⎧⎨+-=⎩,的解x 和y 的值相等,则k 的值等于( )A .4B .10C .11D .129.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分,不答记0分,已知李刚不答的题比答错的题多2题,他的总分为74分,则他答对了( ) A .19题B .18题C .20题D .21题10.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图3-1、图3-2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图3-1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x y x y +=⎧⎨+=⎩,类似地,图3-2所示的算筹图我们可以表述为( )A .2114327x y x y +=⎧⎨+=⎩, B .2114422x y x y +=⎧⎨+=⎩, C .3219423x y x y +=⎧⎨+=⎩, D .264327x y x y +=⎧⎨+=⎩,三、解答题(本大题共56分) 1.(本题8分)解下列方程组:(1)382101187x y x y +=⎧⎨-=⎩,;(2)233511x y x y +=⎧⎨-=⎩,.2.(本题8分)若方程组37x y ax y b -=⎧⎨+=⎩,和方程组28x by a x y +=⎧⎨+=⎩,有相同的解,求a ,b 的值.3.(本题10分)解方程组278ax by cx y +=⎧⎨-=⎩,时,本应解出32x y =⎧⎨=-⎩,由于看错了系数c ,而得到解22x y =-⎧⎨=⎩,,求 a b c ++的值.4.(本题10分)在同一直角坐标系内作出一次函数3122y x =--和2733y x =--的图象,直线3122y x =--与直线2733y x =--的交点坐标是多少?你能据此求出方程组321237x y x y +=-⎧⎨+=-⎩,的解吗?5.(本题10分)扬子江药业集团生产的某种药品包装盒的侧面展开图如图4所示.如果长方体盒子的长比宽多4 ,求这种药品包装盒的体积.6.(本题10分)七年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?四、拓广探索(本大题共24分)1.(本题12分)小明家准备装修一套新住房,若甲、乙两个装饰公司,合作需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司,还是乙公司?请你说明理由.2.(本题12分)如图5,在大连到烟台160千米的航线上,某轮船公司每天上午8点(在x轴上0小时处)到下午16点每隔2小时有一只轮船从大连开往烟台,同时也有一只轮船从烟台开往大连,轮船在途中花费8小时.求:今天上午8点从大连开往烟台的轮船在航行途中(不包括大连和烟台)遇到几只从对面开来的本公司轮船,在遇到第三只从对面开来的本公司轮船的时间及离大连距离.参考答案:一、1.2 2.15-,25 3.15.x y x y +=-⎧⎨-=⎩,.(答案不惟一)4.3- 5.19,19- 6.920m =7.42x y =-⎧⎨=-⎩, 8.53 9.24,12(提示:设老师今年x 岁,学生今年y 岁,则可列方程组为23620x y y x -=⎧⎨-=⎩,)10.25()400180()30x y y x x+=⎧⎨-=⎩,二、1.A 2A 3.C 4.B5.C (提示:设换成10元、5元的人民币分别为x 张,y 张,则可列二元一次方程为10x+5y=50)6.D 7.D 8.C 9.A 10.A 三、1.(1)2313x y =⎧⎨=⎩,;(2)21.x y =⎧⎨=-⎩,2.解:因为两个方程组同解,所以解必然适合每个方程,方程组可以重新配组,得3728x y x y -=⎧⎨+=⎩,和ax y b x by a +=⎧⎨+=⎩,,解方程组3728x y x y -=⎧⎨+=⎩,,得32x y =⎧⎨=⎩,,把32x y =⎧⎨=⎩,代入方程组ax y b x by a +=⎧⎨+=⎩,中,得3232a b b a+=⎧⎨+=⎩,,解这个方程组,得7511.5a b ⎧=-⎪⎪⎨⎪=-⎪⎩, 3.7a b c ++=.(提示:由题意,可得方程组322222a b a b -=⎧⎨-+=⎩,.解得45.a b =⎧⎨=⎩,.再将32x y =⎧⎨=-⎩,代入78cx y -=解得2c =-.) 4.交点坐标是(115,195-),图略.方程组321237x y x y +=-⎧⎨+=-⎩,的解是11519.5x y ⎧=⎪⎪⎨⎪=-⎪⎩,5.解:设长方体盒子的宽为x cm ,高为y cm ,则长为(4)x +cm .据题意,得22144213x y x y +=⎧⎨++=⎩,.解得52x y =⎧⎨=⎩,.故长为9cm ,宽为5cm ,高为2cm .则体积为V =9×5×2=90cm 3.6.解:设钢笔每支为x 元,笔记本每本y 元,据题意,得210151005x y x y =+⎧⎨+=-⎩,.解方程组,得53.x y =⎧⎨=⎩,答:钢笔每支5元,笔记本每本3元.四、1.解:设甲、乙两公司每周完成工程的x 和y ,则16491x y x y ⎧+=⎪⎨⎪+=⎩,.得110115x y ⎧=⎪⎪⎨⎪=⎪⎩,.故111010÷=(周),111515÷=(周).即甲、乙完成这项工程分别需10周,15周.又设需付甲、乙每周的工钱分别为a 万元,b万元,则66 5.249 4.8a b a b +=⎧⎨+=⎩,.解得35415a b ⎧=⎪⎪⎨⎪=⎪⎩,.此时106154a b =⎧⎨=⎩,.比较知,从节约开支的角度考虑,选乙公司划算.2.解:由图象可知,今天上午8点从大连开往烟台的轮船在航行中遇到4只从对面开来的本公司轮船;由图象(如图)可知,A 点坐标为(8,160),B 点坐标为(4,160),C 点坐标为(12,0).设直线OA 的解析式为y kx =,所以1608k =,所以20k =,所以直线OA 的解析式为20y x =,设直线BC 的解析式为y mx n =+,所以1604012m n m n =+⎧⎨=+⎩,.所以20240m n =-⎧⎨=⎩,.所以20240y x =-+.所以2020240y x y x =⎧⎨=-+⎩,所以6120x y =⎧⎨=⎩,.所以今天上午8时从大连开往烟台的轮船在航行中遇到第三只从对面开来的本公司轮船的时间和离大连的距离分别为14点和120千米.。
新人教版初中数学七年级下册第8章《二元一次方程组》检测试题(含答案)(1)
人教版七年级数学下册第八章 二元一次方程组复习检测试题一、选择题1.以下各式,属于二元一次方程的个数有()① xy+2x - y=7; ②4x+1=x - y ;③ 1 +y=5; ④ x=y ;⑤ x 2- y 2=2x⑥ 6x -2y⑦x+y+z=1⑧ y ( y - 1) =2y 2- y 2+x A . 1B .2C . 3D .4x + y =★,x = 6,()2.假如方程组的解为那么被“★”“■”遮住的两个数分别是2x + y =16y =■,A . 10, 4B . 4,10C . 3,10D . 10,33. 已知二元一次方程3x y0 的一个解是x a 0 ,那么(y ,此中 a)bA.bB.bC.bD.以上都不对aaa4.若知足方程组的 x 与 y 互为相反数,则m 的值为()A .1B .﹣ 1C .﹣ 11D . 115 今年学校举行足球联赛,共赛 17 轮(即每队均需参赛 17 场),记分方法是:胜 1场得 3分,平 1 场得 1 分,负1 场得 0 分.在此次足球竞赛中,小虎足球队得16 分,且踢平场数是踢负场数的整数倍,则小虎足球队踢负场数的状况有( )A .2 种B .3种C .4 种D .5 种5x y 3 x 2 y 56. 已知方程组5 y和5x by 有相同的解,则 a , b 的值为 ( )ax 41a 1B.a 4a 6a14A.2b6C.2D.2b bb7. 某文具店一本练习本和一支水笔的单价共计为 3 元,小妮在该店买了20 本练习本和 10支水笔,共花了 36 元.假如设练习本每本为 x 元,水笔每支为y 元,那么依据题意,以下方程组中,正确的选项是 ( )x - y = 3B.x + y = 3A.20x + 10y = 3620x + 10y =36 y - x = 3D.x + y = 3C.10x + 20y = 3620x + 10y =368.某年级学生共有 246 人,此中男生人数y 比女生人数 x 的 2 倍少 2 人, ?则下边所列的方程组中切合题意的有()x y 246x y246x y 216x y 246 A. B. C. D.2 y x 22x y 2y 2x 2 2 y x 29.某商铺有两进价不一样的耳机都卖64元,此中一个盈余 60%,另一个赔本 20%,在此次买卖中,这家商铺()A、赔 8元B、赚 32 元C、不赔不赚D、赚 8元10.如图,宽为 50cm 的长方形图案由10个相同的小长方形拼成,此中一个小长方形的面积为()A .400cm2B .500cm2C. 600cm2D. 300cm2二、填空题1.将方程3y﹣ x= 2 变形成用含y 的代数式表示x,则 x=2.为了展开“阳光体育”活动,某班计划购置甲、乙两种体育用品此中甲种体育用品每件20 元,乙种体育用品每件30 元,共用去.( 每种体育用品都购置) ,150 元,请你设计一下,共有____ 种购置方案.3.已知│x- 1│ +( 2y+1)2=0,且2x-ky=4,则k=_____.4.《孙子算经》是中国古代重要的数学著作,此中有一段文字的粗心是:甲、乙两人各有若干钱.假如甲获取乙所有钱的一半,那么甲共有钱48 文;假如乙获取甲所有钱的,那么乙也共有钱48 文.甲、乙两人本来各有多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组是.三、解答题1.解方程组:2.定义一个非零常数的运算,规定:a*b= ax+by,比如: 2*3 = 2x+3y,若1*1 =8, 4*3 =27,求 x、 y 的值.3.甲、乙两位同学在解方程组时,甲把字母a 看错了获取方程组的解为;乙把字母 b 看错了获取方程组的解为.(1)求 a, b 的正确值;(2)求原方程组的解.4.某工厂第一季度生产甲、乙两种机器共550 台,经市场检查决定调整两种机器的产量,计划第二季度生产这两种机器共536 台,此中甲种机器产量要比第一季度增产12%,乙种机器产量要比第一季度减产20%.该厂第一季度生产甲、乙两种机器各多少台?5.某校准备去楠溪江某景点春游,旅游社面向学生推出的收费标准以下:人数 m0<m≤ 100100< m≤ 200m> 200/收费标准(元人)908070已知该校七年级参加春游学生人数多于100 人,八年级参加春游学生人数少于100 人.经核算,若两个年级分别组团共需花销17700 元,若两个年级结合组团只要花销14700 元.( 1)两个年级参加春游学生人数之和超出200 人吗?为何?( 2)两个年级参加春游学生各有多少人?3 6.某商场第一次用4600 元购进甲、乙两种商品,此中甲商品件数的 2 倍比乙商品件数的倍少 40 件,甲、乙两种商品的进价和售价以下表(收益=售价﹣进价):甲乙进价(元/件)2230售价(元/件)2840(1)该商场第一次购进甲、乙两种商品的件数分别是多少?(2)该商场将第一次购进的甲、乙两种商品所有卖出后一共可获取多少收益?( 3)该商场第二次以相同的进价又购进甲、乙两种商品.此中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完此后获取的收益比第一次获取的收益多280 元,则第二次乙商品是按原价打几折销售的?参照答案一.选择题1.B.2. A.3.B.4.D.5.B.6.B.7.B.8.B.9.C.10. A.二.填空题1. 3y﹣ 22.两 3. k=1.4..三.解答题1.解:原方程组可整理得:,②﹣①得: 2x= 4,解得: x= 2,把 x= 2 代入①得:2﹣ 2y=﹣ 3,解得: y=,即原方程组的解为:.2.解:∵ a* b= ax+by∴1*1 = 8,即为 x+y= 8,4*3 =27 即为 4x+3y= 27;解方程组① ×3﹣②,得﹣x=﹣3,解得 x=3,将 x= 3 代入①,得y= 5.3.解:( 1)依据题意得:,解得: a= 2, b=﹣ 3,( 2)方程组为,解得.4.解:设某工厂第一季度人教版七年级数学下册第八章二元一次方程组的解法研究专题x+ y= 6,①一.典例解说 : 解方程组:2x- y= 9. ②解:①+②,得3x= 15. ∴ x= 5.将 x=5 代入①,得 5+ y= 6. ∴ y= 1.x=5,∴原方程组的解为y=1.二.对应训练 :x-2y = 3,①1. 解方程组:3x+4y=- 1. ②x+0.4y = 40,①2.解方程组:0.5x + 0.7y = 35. ②5x+ 4y= 6,①3.解方程组:2x+ 3y= 1. ②种类 3选择适合的方法解二元一次方程组y- 5一.典例解说:解方程组:x=2,①4x+ 3y= 65. ②y- 5解:把①代入②,得 4×+ 3y =65.2解得 y= 15.15- 5把 y=15 代入①,得 x== 5.2x=5,∴原方程组的解为y=15.二.对应训练:3x+ 5y= 19,①1.解方程组:8x- 3y= 67. ②yx-2= 9,①2.解方程组:x y-=7. ②3 2x y3.解方程组:2=3,①3x +4y= 18. ②x y14.解方程组:4+3= 3,3(x- 4)= 4( y+ 2) .2y+ 1x+=4(x-1),5.解方程组:23x-2( 2y + 1)= 4.2x-y= 5,①6.解方程组:1x- 1=2( 2y-1) . ②种类 4利用“整体代换法”解二元一次方程组一.典例解说 :2x+5y= 3,①阅读资料:擅长思虑的小军在解方程组时,采纳了一种“整体代换” 的解法:4x+ 11y= 5②解:将方程②变形:4x+10y + y=5,即 2(2x + 5y) +y= 5,③把方程①代入③,得 2×3+ y= 5. ∴ y=- 1.把 y=- 1 代入①,得 x=4.x=4,∴原方程组的解为y=- 1.一.对应训练:请你解决以下问题:3x- 2y=5,①(1) 模拟小军的“整体代换法”解方程组:9x- 4y=19;②(2)已知 x, y 知足方程组3x2- 2xy+12y2=47,①2x2+ xy+ 8y2= 36,②人教版七年级下册第 8 章 二元一次方程能力提高测试人教版七年级下册第八章二元一次方程组单元检测题能力提高测试一.选择题:(此题共10 小题,每题 3 分,共 30 分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1. 方程 2x y8 的正整数解的个数是()A. 4B. 3C. 2D. 12. 设方程组ax by 1,x 1,a 3 x 3by的解是y那么 a, b 的值分别为()4.1.A.2,3B.3, 2C.2, 3D.3,2x m 4 3.已知 x , y 知足方程组5,则不论 m 取何值, x ,y 恒相关系式是()y mA . x+y=1B . x+y=- 1C . x+y=9D .x+y=-94.已知x 1y3的一个解,那么 k 的值是 ()y 是方程 kx4A . 7B . 1C.- 1 D.- 75.假如 x y 1 和 2 2x y2互为相反数,那么 x , y 的值为()3x 1 x1 x2 D .x 2 A .2B .2C .1y1yyy6. 已知方程组x y 3 和ax by 9 a, b 的值分别为 ()ax by3x y 的解相同,则77a 1 B a 1A .2.2bba 1 a 1C .2D .2bb7. 甲、乙两人练习跑步,假如乙先跑10 米,则甲跑 5 秒便可追上乙;假如乙先跑 2 秒,则甲跑 4 秒便可追上乙 . 若设甲的速度为x 米 / 秒,乙的速度为 y 米 / 秒,则以下方程组中正确的是()A. B. C. D.8.从甲地到乙地有一段上坡与一段平路.假如保持上坡每小时走3km ,平路每小时走 4km ,下坡每小时走 5km ,那么从甲地到乙地需54min ,从乙地到甲地需42min .设从甲地到乙地 上坡与平路分别为 xkm , ykm ,依题意,所列方程组正确的选项是( )A .D .x y 54 3 4 60 x y 42 54 60x y543 4 x y424 5xy 54 B.34 60 xy 4245 60x y54 C.3 4xy425 4x 2 y 3x 2.2a 2018 2b 2019 39. 若方程组4 y 5的解是,则方程组3 a2018 4 b2019的解3x y0.4 5为()a 2.2 a 2020.2 a 2015.8 a 2020.2A.B.b2018.6C.2018.6D.2018.4b0.4bb 10.滴滴快车是一种便利的出行工具,计价规则以下表:计费项目里程费 时长费 远途费单价1.8 元/ 公里0.3 元/ 分0.8 元 / 公里注:车资由里程费、 时长费、 远途费三部分组成,此中里程费按行车的实质里程计算;时长费按行车的实质时间计算;远途费的收取方式为:行车里程 7 公里之内 ( 含 7 公里 ) 不收远途费,超出7公里的,高出部分每公里收0.8 元.小王与小张各自乘坐滴滴快车,行车里程分别为 6 公里与 8.5 公里.假以下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A .10 分钟B .13 分钟C.15 分钟D. 19 分钟二.填空题(此题共 6 小题,每题 4 分,共 24 分)温馨提示:填空题一定是最简短最正确的答案!11. 方程组2x 3 y 6 3x y,则 5x 2 y _______2a 1是对于 a , b 的二元一次方程ax+ay - b=7 的一个解,则代数式x y 21?12. 若2b的值是 ____13.如图是由截面为同一种长方形的墙砖粘贴的部分墙面,此中三块横放的墙砖比一块竖放的墙砖高10cm ,两块横放的墙砖比两块竖放的墙砖低40cm ,则每块墙砖的截面面积是________14.对于 x ,y 的二元一次方程组x y1 mx 或 y 相等,则x 3y5 中, m 与方程组的解中的 3mm 的值为 _______________________15.已知ab c,且 3a 2b 4c9 ,则 a b c __________3 5716.已知对于 x ,y 的二元一次方程组ax by 7 x 2bx ay的解为y,那么对于 m ,n 的二元一83a m nb m n 7 次方程组na m n的解为b m 8三.解答题(共 6 题,共 66 分)温馨提示: 解答题应将必需的解答过程体现出来!17(此题 6 分)解以下方程组:3x2 y xy x y 921(1)3y( 2)32x7y 5 x y 2x18(此题 8 分)已知二元一次方程组 的解为 且 m +n=2 ,求 k的值.19(此题 8 分)解对于ax by 9x 2x ,y 的方程组cy时,甲正确地解出y乙由于把 c3x 24x 4 求 a,b, c 的值.抄错了,误会为y120(此题 10 分)( 1)已知对于7x 9 y mx , y 的方程组y的解也是二元一次方程 2x3x 29 0+y =- 6 的解,求 m 的值.x2 y 6m3 m 的值.(2)已知对于 x , y 的方程组y 2m的解互为相反数,求 2x121(此题 10 分)某水果店购进苹果与提子共 60 千克进行销售, 这两种水果的进价、 标价以下表所示, 假如店东将这些水果按标价的 8 折所有售出后, 可赢利 210 元,求该水果店购进苹果和提子分别是多少千克?进价(元 / 千克)标价(元 / 千克)苹果38提子41022(此题12 分)“重百”、“沃尔玛”两家商场销售相同的保温壶和水杯,保温壶和水杯在两家商场的售价分别相同.已知买 1 个保温壶和 1 个水杯要花销60 元,买 2 个保温壶和3 个水杯要花销130 元.( 1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家商场都在搞促销活动,“重百”商场规定:这两种商品都打九折;“沃尔玛”商场规定:买一个保温壶赠予一个水杯.若某单位想要买 4 个保温壶和 15 个水杯,假如只好在一家商场购置,请问选择哪家商场购置更合算?请说明原因.23.(此题 12 分)小丽购置学惯用品的收条如表:因污损致使部分数据没法辨别,依据下表,解决以下问题:(1) 小丽购置自动铅笔、记号笔各几支?(2) 若小丽再次购置软皮笔录本和自动铅笔两种学惯用品,共花销15元,则有哪几种不一样的购置方案?商品名单价(元)数目(个)金额(元)署名笔326自动铅笔 1.5●●记号笔4●●软皮笔录本●29圆规 3.51●共计828答案一.选择题:1.答案: B 分析:方程 2xy 8 变形为: y 8 2x ,x 1x 2 x 3 ∴正整数解为:6,4,共 3 组,应选择 By yy22.答案: Aax by 1,x 1,分析:∵方程组3 x 3by 4.的解是,a y1.a b 1a 2∴3b7解得:3 a b应选择 A3. 答案: Cx m4 xm 4分析:方程组y5m变形为:y m5。
精选人教版初中数学七年级下册第8章《二元一次方程组》单元测试(解析版)(1)
人教版七年级数学下册第八章二元一次方程组单元综合测试卷含答案一、选择题 (本大题共 10小题,,共 30 分 )1.已知方程 2 m6x |n |1n2y m 2 80是二元一次方程,则m+n 的值()A.1B. 2C.-3D.32.用代入法解方程组2y- 3x= 1,() x=y- 1,下边的变形正确的选项是A . 2y- 3y+ 3= 1B. 2y- 3y- 3= 1C. 2y- 3y + 1= 1D .2y- 3y- 1= 13.以下方程组,解为x1y 是().2A.x y 1B.x y 1x y 3x y3 3x y53x y5C.y1D.53x3x y4.已知 x,y 知足方程组x m4y5,则 x, y 的关系式是()mA. x+y=1B. x+y=- 1C. x+y=9D.x+y=9 5.依据图中供给的信息,可知一个杯子的价钱是()A.51 元 B. 35 元C.8 元D.7.5 元6.已知x2ax by5b 的值是(y是方程组bx ay的解,则 a)11A. -1B. 2C.3D. 47.在等式y x2mx n 中,当x2时, y5; x3时, y 5.则 x3时,y()。
A.23B.-13C.-5D.138.方程组2x y 53x 2 y ,消去 y 后获得的方程是()8A. 3x4x100B.3x4x58C.3x2(52x)8D.3x4x1089.已知是方程组的解,则a+b+c 的值是()A.3B. 2C. 1D.没法确立10.甲、乙两人练习跑步,假如乙先跑10 米,则甲跑 5 秒便可追上乙;假如乙先跑 2 秒,则甲跑 4 秒便可追上乙,若设甲的速度为x 米/ 秒,乙的速度为y 米 / 秒,可列方程组正确的选项是()5x5y10B.5x5y105x+105y5x 5 y10A.4y 2 y4x 2 y C.4x 4 y2D.2 4 y4x4y4x 二、填空题 (本大题共 6 小题,每题 4 分,共24 分)11.写出一个解为x1的二元一次方程组 __________.y212.方程4 xy7中,用含 x 的式子表示y,则y=13.若 2x 5a b+41- 2b2a是同类项,则 a+b=________.y与- x ya1是对于 a, b 的二元一次方程 ax+by- b=7 的一个解,则代数式2x- 4y+1?的14.若b2值是 _________.15.在△ ABC中,∠ B-∠ A= 45°,∠ A+∠ B= 135 °.则∠ C=____16.今年甲和乙的年纪和为24, 6 年后甲的年纪就是乙的年纪的 2 倍,则甲今年的年纪是_________岁 .三、解答题 (本大题共 6 小题,,共 66 分 )17.解方程组(每题 5 分,共 20 分)4x3y5( 2)3x 5 y10(1)y22x 3 y62x人教版七年级数学下册第八章二元一次方程组复习检测试题一、选择题。
最新人教版初中数学七年级下册第8章《二元一次方程组》单元综合练习题(解析版)(1)
人教版七年级下册第八章二元一次方程组检测题一、填空题(每题3分,共24分)1、解一次方程组的基本思想是 ,基本方法是 和 。
2、二元一次方程52=+x y 在正整数范围内的解是 。
3、5+=x y 中,若3-=x 则=y _______。
4、由==--y y x y x 得表示用,,06911_______,=x x y 得表示,_______。
5、如果方程组⎩⎨⎧-=-=+1242a by x b y ax 的解是⎩⎨⎧-==11y x ,则=a ,=b 。
6、7、甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,设甲、乙的速度分别为每分钟X 米,每分钟Y 米,则可列方程组 {___________________.8、已知:10=+b a ,20=-b a ,则2b a -的值是 。
二、选择题:(每题3分,共21分)9、下列方程组中,属于二元一次方程组的是 [ ] A 、⎩⎨⎧==+725xy y x B 、⎪⎩⎪⎨⎧=-=+043112y x y xC 、⎪⎩⎪⎨⎧=+=343453y x y xD 、⎩⎨⎧=+=-12382y x y x 10、若3243y x b a +与b a yx -634是同类项,则=+b a[ ]A 、-3B 、0C 、3D 、6 11A 、 是这方程的唯一解B 、不是这方程的一个解C 、是这方程的一个解D 、以上结论都不对12、在方程4x-3y=12中,若x=0,那么对应的y值应为: [ ]A 、4B 、-4C 、3D 、-313、甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,列方程组 [ ]正确的个数为:A.1个B.2个C.3个D.4个14、下列说法正确的 [ ]A.二元一次方程2x+3y=17的正整数解有2组人教版七年级下册第8章二元一次方程组综合素质检测卷(解析版)人教版七年级下册第八章二元一次方程组单元检测题综合素质检测卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
人教版数学七年级下册 第8章 8.1二元一次方程组同步测试试题(一)
二元一次方程组同步测试试题(一)一.选择题1.方程4x+5y=98的正整数解的个数是()A.4B.5C.6D.72.已知是方程ax﹣5y=15的一个解,则a的值为()A.a=5B.a=﹣5C.a=10D.a=﹣103.已知关于x,y的二元一次方程3mx﹣y=﹣1有一组解是,则m的值是()A.1B.0C.2D.﹣14.x=﹣1是下列哪个方程的解()A.x﹣1=0B.(x+1)2=0C.=﹣2D.2x+y=15.下列方程中,是二元一次方程的是()A.x﹣4=0B.2x﹣y=0C.3xy﹣5=0D.+y=6.下列方程组是二元一次方程组的是()A.B.C.D.7.已知和都是方程ax+b﹣y=0的解,则a的值是()A.a=1B.a=﹣1C.a=2D.a=﹣28.下列等式:①2x+y=4;②3xy=7;③x2+2y=0;④﹣2=y;⑤2x+y+z=1,二元一次方程的个数是()A.1B.2C.3D.49.方程x+y=4与2x﹣3y=3的公共解是()A.B.C.D.10.下列方程组中不是二元一次方程组的是()A.B.C.D.二.填空题11.﹣x+y﹣1=﹣x﹣().12.若2x a+2b﹣3﹣y a+b=3是关于x、y的二元一次方程,则(a+b)2020=.13.已知方程5x+3y=1,改写成用含x的式子表示y的形式.14.如果是方程2x﹣3ay=16的一组解,则a=.15.若是方程mx﹣y=3的解,则m=.三.解答题16.求方程5x+3y=22的所有正整数解.17.已知关于x、y的二元一次方程y=kx+b(k、b为常数)的部分解如下表所示:y=kx+b x﹣1.503y85﹣1(1)求k和b的值;(2)求出此二元一次方程的所有正整数解(x,y都是正整数).18.把x=ax+b(其中a、b是常数,x是未知数)这样的方程称为“中雅一元一次方程”,其中“中雅一元一次方程x=ax+b”的x的值称为“中雅一元一次方程”的“卓越值”.例如:“中雅一元一次方程”x=2x﹣1,其“卓越值”为x=1.(1)x=2是“中雅一元一次方程”x=3x﹣k的“卓越值”,求k的值;(2)“中雅一元一次方程”x=sx+t﹣1(s,t为常数)存在“卓越值”吗?若存在,请求出其“卓越值”,若不存在,请说明理由;(3)若关于x的“中雅一元一次方程”x=2x﹣mn+(6﹣m)的“卓越值”是关于x 的方程3x﹣mn=﹣5(6﹣m)的解,求此时符合要求的正整数m,n的值.19.在平面直角坐标系中,我们不妨把横纵坐标相等的点称为“梦之点”,如(﹣1,﹣1),(0,0),(,)…都是梦之点.(1)若点P(32x+4,27x)是“梦之点”,请求出x的值;(2)若n为正整数,点M(x4n,4)是“梦之点”,求(x3n)2﹣4(x2)5n的值;(3)若点A(x,y)的坐标满足方程y=3kx+s﹣1(k,s是常数),请问点A能否成为“梦之点”若能,请求出此时点A的坐标,若不能,请说明理由.参考答案与试题解析一.选择题1.【解答】解:方程4x+5y=98,解得:y=,当x=2时,y=18;当x=7时,y=14;当x=12时,y=10;当x=17时,y=6;当x =22时,y=2;则方程的正整数解有5对.故选:B.2.【解答】解:把代入方程ax﹣5y=15,得2a+5=15,解得a=5.故选:A.3.【解答】解:把代入方程3mx﹣y=﹣1中得:3m+2=﹣1,解得:m=﹣1.故选:D.4.【解答】解:将x=﹣1分别代入A、B、C、D四个选项中A、左边=﹣2≠0=右边,故本选项不合题意;B、左边=0=右边,故本选项符合题意;C、左边=2≠﹣2=右边,故本选项不合题意;D、左边﹣2+y≠1=右边,故本选项不合题意;故选:B.5.【解答】解:A.x﹣4=0属于一元一次方程,不合题意;B.2x﹣y=0属于二元一次方程,符合题意;C.3xy﹣5=0属于二元二次方程,不合题意;D.不是整式方程,属于分式方程,不合题意;故选:B.6.【解答】解:A.是三元一次方程组,不是二元一次方程组,故本选项不符合题意;B.是二元二次方程组,不是二元一次方程组,故本选项不符合题意;C.是分式方程组,不是二元一次方程组,故本选项不符合题意;D.是二元一次方程组,故本选项符合题意;故选:D.7.【解答】解:∵和都是方程ax+b﹣y=0的解,∴,解得:a=1,故选:A.8.【解答】解:①2x+y=4是二元一次方程;②3xy=7是二元二次方程;③x2+2y=0是二元二次方程;④﹣2=y是分式方程;⑤2x+y+z=1是三元一次方程,故选:A.9.【解答】解:联立得:,①×3+②得:5x=15,解得:x=3,把x=3代入①得:y=1,则方程组的解为.故选:B.10.【解答】解:A.符合二元一次方程组的定义,故本选项不合题意;B.不符合二元一次方程组的定义,故本选项符合题意;C.符合二元一次方程组的定义,故本选项不合题意;D.符合二元一次方程组的定义,故本选项不合题意;故选:B.二.填空题(共5小题)11.【解答】解:﹣x+y﹣1=﹣x﹣(﹣y+1),故答案为﹣y+1.12.【解答】解:∵2x a+2b﹣3﹣y a+b=3是关于x、y的二元一次方程,∴,解得:a=﹣2,b=3,∴(a+b)2020=(﹣2+3)2020=1,故答案为:1.13.【解答】解:5x+3y=1,3y=1﹣5x,y=.故答案为:y=.14.【解答】解:把代入方程得:6﹣6a=16,解得:a=﹣.故答案为:﹣.15.【解答】解:∵是二元一次方程mx﹣y=3的一个解,∴m﹣(﹣1)=3,解得:m=2.故答案为:2.三.解答题(共4小题)16.【解答】解:(1)方程13x+30y=4,解得:x==﹣2y,设=k,则y=﹣13k+1,所以x=30k﹣2,所以(k为整数)是方程组的解;(2)方程5x+3y=22,解得y==7﹣x+,所方程5x+3y=22的正整数解为x=2,y=4.17.【解答】解:(1)根据表格中的数据,把(0,5)和(3,﹣1)代入y=kx+b得:,解得:;(2)此二元一次方程为y=﹣2x+5,当x=1时,y=3;x=2时,y=1,则方程的正整数解为,.18.【解答】解:(1)∵x=2是“中雅一元一次方程”x=3x﹣k的“卓越值”,∴2=3×2﹣k,解得k=4;(2)由x=sx+t﹣1,得x=,∴①当s≠1时,中雅一元一次方程”x=sx+t﹣1(s,t为常数)存在“卓越值”,②当s=1时,x=无意义,所以中雅一元一次方程”x=sx+t﹣1(s,t为常数)不存在“卓越值”;(3)由x=2x﹣mn+(6﹣m),得x=,由3x﹣mn=﹣5(6﹣m),得x=﹣10++,由题意可得,=﹣10,解得:m=,∵m>0,n>0,∴n+2>0,∴n=1,m=4;n=2,m=3;n=4,m=2;n=10,m=1.19.【解答】解:(1)根据题意得:32x+4=27x,∴32x+4=33x,∴2x+4=3x,解得,x=4;(2)∵点M(x4n,4)是“梦之点”,∴x4n=4,即(x2n)2=4,∵n是正整数,∴2n是偶数,∴x2n=2,∴(x3n)2﹣4(x2)5n=(x2n)3﹣4(x2n)5,=23﹣4×25=8﹣128=﹣120;(3)假设函数y=3kx+s﹣1(k,s是常数)的图象上存在“梦之点”(x,x),则有y=3kx+s﹣1,整理,得(3k﹣1)x=1﹣s,当3k﹣1≠0,即k≠时,解得x=;∴A(,);当3k﹣1=0,1﹣s=0,即k=,s=1时,x有无穷多解;当3k﹣1=0,1﹣s≠0,即k=,s≠1时,x无解;综上所述,当k≠时,“梦之点”的坐标为A(,);当k=,s=1时,“梦之点”有无数个;当k=,s≠1时,不存在“梦之点”.。
新初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案解析)(1)
人教版数学七年级下册第八章 二元一次方程组 能力提升检测卷一.选择题(共10小题)1.下列方程是二元一次方程的是( )A .2x-4=xB .x-2y=6C .x+ 2y =3D .xy=52.以方程组 ⎩⎨⎧x +y =102x +y =6的解为坐标的点(x,y)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.在方程组 = =中,代入消元可得( ) A .3y-1-y=7 B .y-1-y=7 C .3y-3=7 D .3y-3-y=74.若2x |k|+(k-1)y=3是关于x ,y 的二元一次方程,则k 的值为( )A .-1B .1C .1或-1D .05.若关于x ,y 的二元一次方程组 = = 的解为 = =,则a+4b 的值为( ) A .17 B .197 C .1 D .36.如果方程x-y=3与下面的方程组成的方程组的解为 = =,那么这一个方程可以是( ) A .2(x-y)=6y B .3x-4y=16 C .14x+2y =5D .12x+3y =8 7.某加工厂有工人50名,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,能使生产出的螺栓和螺母刚好配套?设应安排x 人生产螺栓,y 人生产螺母,则所列方程组为( )A . = =B . = =C . = =D .= =8.关于x ,y 的方程组 = = 的解是 = = ,其中y 的值被盖住了,不过仍能求出p ,则p 的值是( )A.- 12B.12C.-14D.149.A、B两地相距900km,一列快车以200km/h的速度从A地匀速驶往B地,到达B地后立刻原路返回A地,一列慢车以75km/h的速度从B地匀速驶往A地.两车同时出发,截止到它们都到达终点时,两车恰好相距200km的次数是()A.5 B.4 C.3 D.210.如图所示是最近微信朋友圈常被用来“醒醒盹,动动脑”的图片,请你一定认真观察,动动脑子想一想,图中的?表示什么数()A.25 B.15 C.12 D.14二.填空题(共5小题)11.把方程5x+y=3改写为用含x的式子表示y的形式是.12.已知==是方程ax+by=3的一组解(a≠0,b≠0),任写出一组符合题意的a、b值,则a= ,b= .13.已知方程组==和==的解相同,则2m-n= .14.小明,小丽,小刚到同一个文具店买文具,小明买了2支钢笔,2本作业本,3个文件袋共花了20元;小丽买了1支钢笔,2个文件袋共花了10元;那么小刚买了5支钢笔,4本作业本,8个文件袋共花了元.15.甲乙二人分别从相距20km的A,B两地出发,相向而行.如图是小华绘制的甲乙二人运动两次的情形,设甲的速度是xkm/h,乙的速度是ykm/h,根据题意所列的方程组是.三.解答题(共10小题)16.解下列方程(组)(1)==(2)==(3)===17.已知==,==都是关于x,y的二元一次方程y=x+b的解,且m-n=b2+2b-4,求b的值.18.甲、乙两人同求方程ax-by=7的整数解,甲求出一组解为==,而乙把ax-by=7中的7错看成1,求得一组解为==,试求a、b的值.19.阅读下列解方程组的部分过程,回答下列问题解方程组=,①=,②现有两位同学的解法如下:解法一;由①,得x=2y+5,③把③代入②,得3(2y+5)-2y=3.……解法二:①-②,得-2x=2.……(1)解法一使用的具体方法是,解法二使用的具体方法是,以上两种方法的共同点是.(2)请你任选一种解法,把完整的解题过程写出来20.某人沿着相同的路径上山、下山共用了2h.如果上山速度为3km/h,下山速度为5km/h,那么这条山路长是多少?21.我校准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买1个足球和1个篮球共需130元.求购买足球、篮球的单价各是多少元?22.【方法体验】已知方程组=①=②求4037x+y的值.小明同学发现解此方程组代入求值很麻烦!后来他将两个方程直接相加便迅速解决了问题.请你体验一下这种快捷思路,写出具体解题过程:【方法迁移】根据上面的体验,填空:已知方程组==则3x+y-z=.【探究升级】已知方程组==求-2x+y+4z的值.小明凑出"-2x+y+4z=2﹒(x+2y+3z)+(-1)﹒(4x+3y+2z)=20-15=5“,虽然问题获得解决,但他觉得凑数字很辛苦!他问数学老师丁老师有没有不用凑数字的方法,丁老师提示道:假设-2x+y+4z=m﹒(x+2y+3z)+n﹒(4x+3y+2z),对照方程两边各项的系数可列出方程组===,它的解就是你凑的数!根据丁老师的提示,填空:2x+5y+8z=(x+2y+3z)+(4x+3y+2z)【巩固运用】已知2a-b+kc=4,且a+3b+2c=-2,当k为时,8a+3b-2c为定值,此定值是.(直接写出结果)23.《孙子算经》是中国古代重要的数学著作,其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的23,那么乙也共有钱48文,问甲,乙二人原来各有多少钱?”24.【阅读材料】南京市地铁公司规定:自2019年3月31日起,普通成人持储值卡乘坐地铁出行,每个自然月内,达到规定消费累计金额后的乘次,享受相应的折扣优惠(见图).地铁出行消费累计金额月底清零,次月重新累计.比如:李老师二月份无储值卡消费260元,若采用新规持储值卡消费,则需付费150×0.95+50×0.9+60×0.8=235.5元.【解决问题】甲、乙两个成人二月份无储值卡乘坐地铁消费金额合计300元(甲消费金额超过150元,但不超过200元).若两人采用新规持储值卡消费,则共需付费283.5元.求甲、乙二月份乘坐地铁的消费金额各是多少元?答案:1.B2.B3.D4.A5.D6.A7.B8.A9.B10.B11. y=-5x+312.1,113.514.5015.16.解:(1) = ①= ② ,①+②×5,得:13x=26,x=2,将x=2代入②,得:4-y=3,y=1,所以方程组的解为 == ;(2)将方程组整理成一般式为 = ①= ②,①+②,得:6x=14,x=73,将x=73代入①,得:7-2y=8,y=- 12,所以方程组的解为(3)= ①= ② = ③, ①+②,得:3x+4y=24 ④,③+②,得:6x-3y=人教版 七年级下册-第八章 二元一次方程组 专题练习一、单选题1.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有( )A. 6个B. 5个C. 3个D. 无数个2.下列各组数中① ; ② ;③ ;④ 是方程 的解的有( )A. 1个B. 2个C. 3个D. 4个3.下列方程中,是二元一次方程的是( )A. -y=6B. +=1C. 3x-y 2=0D. 4xy=34.二元一次方程组 的解为( )A. B. C. D.5.已知方程组, 则x ﹣y 的值为( )A. -1B. 0C. 2D. 36.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支,作业本5本,圆珠笔2支共需( )A. 4.5元B. 5元C. 6元D. 6.5元7.下列方程组中,是二元一次方程组的是( )A. B. C. D.8.笼中有x 只鸡y 只兔,共有36只脚,能表示题中数量关系的方程是( )A. x+y=18B. x+y=36C. 4x+2y=36D. 2x+4y=369.二元一次方程x+2y=5在实数范围内的解()A. 只有1个B. 只有2个C. 只有3个D. 有无数个二、填空题10.请写出一个你所喜欢的二元一次方程组________11.若+(2a+3b﹣13)2=0,则a+b= ________.12.已知,则a+b等于________.13.若关于x、y的二元一次方程组的解满足x+y=1,则a的值为 ________.14.请构造一个二元一次方程组,使它的解为.这个方程组是 ________.15.已知|x﹣y+2|+(2x+y+4)2=0.则x y=________.16.将方程5x﹣y=1变形成用含x的代数式表示y,则y=________.17.方程组的解是________.三、计算题18.解方程组:.19.解下列二元一次方程组:(1)(2)20.解下列方程组:(1)(2)四、综合题21.已知y=kx+b,当x=1时,y=﹣2;当x=﹣1时,y=4.(1)求k、b的值;(2)当x取何值时,y的值小于10?答案一、单选题1.【答案】A【解析】【解答】解:设两位数的个位数为x,十位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选:A.【分析】可以设两位数的个位数为x,十位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.2.【答案】B【解析】【解答】解:把① 代入得左边=10=右边;把② 代入得左边=9≠10;把③ 代入得左边=6≠10;把④ 代入得左边=10=右边;所以方程的解有①④2个.故答案为:B【分析】能使二元一次方程的左边和右边相等的未知数的值就是二元一次方程的解,二元一次方程有无数个解,根据定义将每一对x,y的值分别代入方程的左边算出答案再与右边的10比较,若果相等,x,y的值就是该方程的解,反之就不是该方程的解。
七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)
七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)一、选择题(本大题共10小题,共30分)1. 二元一次方程x −2y =1有无数多个解,下列四组值中不是该方程的解的是( )A. {x =0y =−12B. {x =1y =1C. {x =1y =0D. {x =−1y =−12. 若(k -2)x |k|−1-3y =2是关于x ,y 的二元一次方程,则k 2-3k -2的值为( )A. 8B. 8或−4C. −8D. −43. 方程组{2x +y =4,x −y =−1的解是( )A. {x =1y =2B. {x =−3y =−2C. {x =2y =0D. {x =3y =−14. 《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )A. 160钱B. 155钱C. 150钱D. 145钱5. 我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米.根据题意,所列方程组正确的是( )A. {x =y −22x +3y =400 B. {x =y −22x +3(x +y)=400−50 C. {x =y +22x +3y =400−50D. {x =y +22x +3(x +y)=400−506. 用代入法解方程组时,比较容易的变形是( )A. 由 ①,得x =y+12B. 由 ①,得y =2x −1C. 由 ②,得y =3x+56D. 由 ②,得x =6y−537. 为做好防疫消毒工作,某单位制作日常消毒液.将浓度分别为90%和60%的甲、乙两种酒精溶液,配制成浓度是75%的消毒酒精溶液500g ,设甲种酒精溶液为xg ,乙种酒精溶液为yg ,则()A. {x =300y =200B. {x =250y =200C. {x =250y =250D. {x =200y =3008. 在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图,则x ,y 的值是( )A. x =1,y =−1B. x =−1,y =1C. x =2,y =−1D. x =−2,y =19. 两位同学在解方程组时,甲同学由{ax +by =2,cx −y =−4正确地解出{x =3,y =−2;乙同学因把c 写错了解得{x =−2,y =2,则a +b +c 的值为( )A. 3B. 0C. 1D. 710. 若点P (x ,y )的坐标满足方程组{x +y =k,x −y =6−3k,则点P 不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共4小题,共12分)11. 已知方程组{3x +2y =m −22x +3y =m的解适合x +y =2,则m 的值为______.12. 当m ,n 满足关系 时,关于x ,y 的方程组{x −5y =2m,2x +3y =m −n 的解互为相反数.13. 已知乙组人数是甲组人数的一半,若将乙组人数的13调入甲组,则甲组比乙组多15人,甲、乙两组的人数分别为__________.14. 已知2x -y -z =0,3x +4y -2z =0,则x−y+zx+y+z =________________.三、计算题(本大题共2小题,共12分) 15. 解方程组:(1{3x −2y +20=0,2x +15y −3=0;(2){1.5(20x +10y)=15000,1.2(110x +120y)=97200.16. 若方程组{ax +by =32ax +by =4与方程组{2x +y =3x −y =0有相同的解,求a 、b 的值.四、解答题(本大题共5小题,共46分)17. 某两位数,两个数位上的数之和为11.这个两位数加上45,得到的两位数恰好等于原两位数的两个数字交换位置所表示的数,求原两位数. (1)列一元一次方程求解.(2)如果设原两位数的十位数字为x ,个位数字为y ,列二元一次方程组. (3)检验(1)中求得的结果是否满足(2)中的方程组.18. 一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?19.某新长途客运站准备在国庆前建成营运.后期工程若请甲乙两个工程队同时施工,8天可以完工,需付两工程队施工费用7040元;若先请甲工程队单独施工6天,再请乙工程队单独施工12天也可以完工,需付两工程队施工费用6960元.问甲、乙两工程队施工一天,应各付施工费用多少元?20.已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案(即A、B两种型号的车各租几辆,有几种租车方案).21. 先阅读材料,然后解方程组.材料:解方程组{x −y −1=0,①4(x −y)−y =5.②由①,得x -y =1.③把③代入②,得4×1-y =5,解得y =-1. 把y =-1代入③,得x =0. ∴原方程组的解为{x =0,y =−1. 这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用整体代入法解方程组:{2x −3y −2=0,①2x−3y+57+2y =9.②参考答案1.【答案】B【解析】 【分析】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.将x 、y 的值分别代入x -2y 中,看结果是否等于1,判断x 、y 的值是否为方程x -2y =1的解. 【解答】解:A 、当x =0,y =-12时,x -2y =0-2×(-12)=1,是方程的解; B 、当x =1,y =1时,x -2y =1-2×1=-1,不是方程的解; C 、当x =1,y =0时,x -2y =1-2×0=1,是方程的解; D 、当x =-1,y =-1时,x -2y =-1-2×(-1)=1,是方程的解. 故选B .2.【答案】A【解析】 【分析】本题主要考查了二元一次方程的概念,代数式求值,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程; 根据二元一次方程满足的条件列式求出k 的值,即可得解. 【解答】解:根据题意得:{k −2≠0|k |−1=1,解得:k =-2,∴k 2-3k -2=(-2)2-3×(-2)-2=4+6-2=8. 故选:A .3.【答案】A【解析】 【分析】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.方程组利用加减消元法求出解即可. 【解答】 解:,①+②得:3x =3, 解得:x =1,把x =1代入①得:y =2, 则方程组的解为{x =1y =2.故选:A .4.【答案】C【解析】解:设共有x 人合伙买羊,羊价为y 钱, 依题意,得:{5x +45=y7x +3=y ,解得:{x =21y =150.故选:C .设共有x 人合伙买羊,羊价为y 钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.【答案】D【解析】解:由题意可得, {x =y +22x +3(x +y)=400−50, 故选:D .根据甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程和甲工程队每天比乙工程队多施工2米,可以列出相应的二元一次方程组,本题得以解决. 本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.6.【答案】B【解析】观察方程组的特点可知,B 中的变形比较容易,7.【答案】C【解析】根据题意,得{x +y =500,90%x +60%y =500×75%,解得{x =250,y =250,故选C .8.【答案】B【解析】 【分析】本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,根据题意列出方程组,难度一般. 根据每行每列及对角线上三个方格中的数字和都相等,可得出方程组,解出即可. 【解答】解:由题意,得{2x +3+2=2−3+4y,2−3+4y =2x +y +4y, 解得{x =−1,y =1. 故选B .9.【答案】D【解析】把{x =3,y =−2代入方程组得把{x =−2,y =2代入ax +by =2得-2a +2b =2,即-a +b =1,联立得{3a −2b =2,−a +b =1,解得{a =4,b =5,由得c =-2,则a +b +c =4+5-2=7.故选D .10.【答案】C【解析】略11.【答案】6【解析】解:两个方程相加,得 5x +5y =2m -2, 即5(x +y )=2m -2, 即x +y =2m−25=2.解得m =6.方程组中的两个方程相加,即可用m 表示出x +y ,即可解得m 的值.注意到两个方程的系数之间的关系,而采用方程相加的方法解决本题是解题的关键.12.【答案】m =34n【解析】由题可知x =-y ,代入方程组,得{−6y =2m,y =m −n,则-6m +6n =2m ,所以m =34n .13.【答案】甲组18人,乙组9人【解析】 【分析】此题主要考查了二元一次方程组的应用,找准等量关系是解决应用题的关键,特别注意第二个等量关系的理解.等量关系有:①乙组人数是甲组人数的一半;②乙组人数的三分之一调入甲组,即甲组现有(x +13y)人,乙组现有人数23y 人,此时甲组比乙组多15人,据此列方程组求解即可. 【解答】解:设甲组有x 人,乙组有y 人,根据乙组人数是甲组人数的一半,则y =12x ; 根据乙组人数的三分之一调入甲组时甲组比乙组多15人,得方程x +13y =23y +15, 可列方程组为:{y =12x x +13y =23y +15, 解得:{ x =18 y =9.所以甲组人数为18人,乙组人数为9人, 故答案是甲组18人,乙组9人.14.【答案】89【解析】【分析】此题考查的是解三元一次方程组,需将三元一次方程组中的一个未知数当做已知数来处理,转化为二元一次方程组来解.将x 、y 写成用z 表示的代数式然后代入即可得到答案. 【解答】 解:{2x −y −z =0①3x +4y −2z =0②①×4+②得, 11x −4z −2z =0, 解得x =6z11,将x =6z 11代入①得,12z11−y −z =0, 解得y =z11, ∴原式=6z 11−z 11+z 6z 11+z 11+z =1618=89.故答案为89.15.【答案】(1)方程组整理得×15+×2得49x =-294,解得x =-6,把x =-6代入得-12+15y =3,解得y =1, ∴方程组的解为{x =−6,y =1.(2)方程组整理得 ×12-得13x =3900,解得x =300,把x =300代入得600+y =1000,解得y =400, ∴方程组的解为{x =300,y =400.【解析】略16.【答案】解:,解得该方程组的解为{x =1y =1,由题意该方程组的解也是方程组{ax +by =32ax +by =4的解,代入ax +by =3可得a +b =3③,代入2ax +by =4可得2a +b =4④,④-③可得a =1,代入③可得b =2,∴a =1,b =2.【解析】先求出第二个方程组的解,再代入第一个方程组即可求出a 、b 的值.本题主要考查二元一次方程组的解,解答此题的关键是要弄清题意,正确求出第二个方程组的解.17.【答案】解:(1)设原两位数的个位数字为m ,则十位数字为(11-m ),依题意,得:10×(11-m )+m +45=10m +(11-m ),解得:m =8,∴11-m =3.答:原两位数为38.(2)设原两位数的十位数字为x ,个位数字为y ,依题意,得:{x +y =1110x +y +45=10y +x. (3)结合(1),可知:x =3,y =8,∴x +y =11,10x +y +45=83=10y +x ,∴(1)中求得的结果满足(2)中的方程组.【解析】(1)设原两位数的个位数字为m ,则十位数字为(11-m ),根据原两位数+45等于原两位数的两个数字交换位置所表示的数,即可得出关于m 的一元一次方程,解之即可得出结论;(2)设原两位数的十位数字为x ,个位数字为y ,根据原两位数两个数位上的数之和为11及原两位数+45等于原两位数的两个数字交换位置所表示的数,即可得出关于x ,y 的二元一次方程组,此问得解;(3)由(1)的结论可得出x ,y 的值,再将其代入(2)的方程组中验证后即可得出结论. 本题考查了一元一次方程的应用以及由实际问题抽象出二元一次方程组,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)将(1)的结论代入方程组中验证方程组是否正确.18.【答案】解:(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,依题意,得:{6(x +y)=90(6+4)(x −y)=90,解得:{x =12y =3. 答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时;(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,依题意,得:a 12+3=90−a 12−3,解得:a =2254.答:甲、丙两地相距2254千米.【解析】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程. (1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,根据路程=速度×时间,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,根据时间=路程÷速度,即可得出关于a 的一元一次方程,解之即可得出结论.19.【答案】解:设甲工程队每天需费用x 元,乙工程队每天需费用y 元,由题意得,{8x +8y =70406x +12y =6960, 解得:{x =600y =280. 答:甲工程队每天需费用600元,乙工程队每天需费用280元.【解析】设甲工程队每天需费用x 元,乙工程队每天需费用y 元,根据题意可得:甲乙合作8天完工,需付两工程队施工费用7040元;甲队单独施工6天,再请乙工程队单独施工12天完工,需付两工程队施工费用6960元,列方程组求解.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.20.【答案】解:(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据题意得:{2x +y =10x +2y =11, 解得:{x =3y =4. 答:1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨,4吨.(2)由题意可得:3a +4b =31,∴b =31−3a 4.∵a ,b 均为正整数,∴有{a =1b =7、{a =5b =4和{a =9b =1三种情况. 故共有三种租车方案,分别为:①A 型车1辆,B 型车7辆;②A 型车5辆,B 型车4辆;③A 型车9辆,B 型车1辆.【解析】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)根据等量关系,列出关于x 、y 的二元一次方程组;(2)由(1)的结论结合共运货31吨,找出3a +4b =31.(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据“用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)由(1)的结论结合某物流公司现有31吨货物,即可得出3a +4b =31,即b =31−3a 4,由a 、b 均为正整数即可得出各租车方案.21.【答案】解:由①,得2x -3y =2.③把③代入②,得2+57+2y =9,解得y =4.把y =4代入③,得2x -3×4=2, 解得x =7.∴原方程组的解为{x =7,y =4.【解析】略。
七年级下册二元一次方程组数学综合测试卷及答案(一)
一、选择题1.已知方程组5354x yax y+=⎧⎨+=⎩和2551x yx by-=⎧⎨+=⎩有相同的解,则2a b-的值为()A.15B.14C.10D.82.小王沿街匀速行走,发现每隔12分钟从背后驶过一辆8路公交车,每隔4分钟从迎面驶来一辆8路公交车.假设每辆8路公交车行驶速度相同,而且8路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A.3分钟B.4分钟C.5分钟D.6分钟3.请阅读下面的诗句:“栖树一群鸦,鸦树不知数.三只栖一树,五只没处去.五只栖一树,闲了一棵树.请你仔细数,鸦树各几何?”若设鸦有x只,树有y棵,则可列方程组为()A.3551x yy x-=⎧⎨-=⎩B.3551x yy x-=⎧⎨-=⎩C.3555x yy x-=⎧⎨-=⎩D.3555x yy x-=⎧⎨-=⎩4.某超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元,聪明的小方发现这四天中有一天的记录有误,其中记录有误的是()A.第1天B.第2天C.第3天D.第4天5.已知关于x,y的方程组34,53,x y ax y a+=-⎧⎨-=⎩给出下列结论:①4,1xy=⎧⎨=-⎩是方程组的解;②无论a取何值,x,y的值都不可能互为相反数;③当1a=时,方程组的解也是方程4x y a+=-的解;④x,y的都为自然数的解有4对.其中正确的是()A.②③B.③④C.①②D.①②③④6.我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.10033100x yx y+=⎧⎨+=⎩B.1003100x yx y+=⎧⎨+=⎩C .1003100x y x y +=⎧⎨+=⎩D .100131003x y x y +=⎧⎪⎨+=⎪⎩7.若关于x 、y 的方程组2{44x y ax y a+=-=的解是方程3x 2y 10+=的一个解,则a 的值为( )A .2B .-2C .1D .-18.甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一个解为11x y =⎧⎨=-⎩,乙把ax -by =7看成ax -by =1,求得一个解为12x y =⎧⎨=⎩,则a ,b 的值分别为( )A .25a b =⎧⎨=⎩B .52a b =⎧⎨=⎩C .35a b =⎧⎨=⎩D .53a b =⎧⎨=⎩9.已知点(),P a b 的坐标满足二元一次方程组52?934?8a b a b +=-⎧⎨-=-⎩,则点P 所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限10.如果32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解,则a 2008+2b 2008的值为( )A .1B .2C .3D .4二、填空题11.有一片开心农场,蔬菜每天都在匀速生长,如果每天有20名游客摘菜,6天就能摘完;如果每天有17名游客摘菜,9天就能摘完(规定每名游客每天摘菜量相同),那么每天有14名游客摘菜,___天就能摘完.12.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有 种.13.若方程组2232x y k x y k +=-⎧⎨+=⎩的解适合x+y=2,则k 的值为_____.14.若210x y z ++=,312x y z ++=,则x y z ++=__________.15.某年级有学生367人,其中男生比女生人数的2倍少20人,问男女学生各多少人?设女生人数为x 人,男生人数为y 人,可列方程组为 __________________.16.关于x 的方程(m 2﹣4)x 2+(m +2)x +(m +1)y =m +5,当m ______时,是一元一次方程;关于,x y 的方程(m 2﹣4)x 2+(m +2)x +(m +1)y =m +5,当m ______时,它是二元一次方程.17.某商场地下停车场有5个出口,5个入口,每天早晨7点开始对外停车且此时车位空置率为80%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个入口和2个出口,8小时车库恰好停满;如果开放4个入口和2个出口,1.6小时车库恰好停满.2021年五一节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,又因为车库改造,只能开放3个入口和2个出口,则从早晨7点开始经过______小时车库恰好停满.18.已知x ,y 满足方程组22331x y kx y k +=⎧⎨+=-⎩.给出下列结论:①若方程组的解也是23x y +=的解,则2k =;②若方程组的解满足2xy=-,则0k =;③无论k 为何值,282x y ⋅=;④若()()0x y x y +-=,则12k =.正确的是________.(填序号) 19.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.20.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.三、解答题21.对a ,b 定义一种新运算T ,规定:T (a ,b )=(a +2b )(ax +by )(其中x ,y 均为非零实数).例如:T (1,1)=3x +3y .(1)已知T (1,﹣1)=0,T (0,2)=8,求x ,y 的值;(2)已知关于x ,y 的方程组()()113028T a T a ⎧-=-⎪⎨=⎪⎩,,,若a ≥﹣2,求x +y 的取值范围;(3)在(2)的条件下,已知平面直角坐标系上的点A (x ,y )落在坐标轴上,将线段OA 沿x 轴向右平移2个单位,得线段O ′A ′,坐标轴上有一点B 满足三角形BOA ′的面积为9,请直接写出点B 的坐标.22.如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为()1A m n -,,B 点的坐标为()0n -,,其中,m n 是二元一次方程组2202m n m n +=⎧⎨-=-⎩的解,过点A 作x 轴的平行线交y 轴于点C .(1)求点,A B 的坐标;(2)动点P 从点B 出发,以每秒4个单位长度的速度沿射线BO 的方向运动,连接PC ,设点P 的运动时间为t 秒,三角形OPC 的面积为()0S S ≠,请用含t 的式子表示S (不用写出相应的t 的取值范围);(3)在(2)的条件下,在动点P 从点B 出发的同时,动点Q 从点C 出发以每秒1个单位长度的速度沿线段CA 的方向运动.过点O 作直线PC 的垂线,点G 为垂足;过点Q 作直线PC 的垂线,点H 为垂足.当2OG QH =时,求t 的值.23.如图,平面直角坐标系中,已知点A (a ,0),B (0,b ),其中a ,b 满足323390a b a b ----=.将点B 向右平移24个单位长度得到点C .点D ,E 分别为线段BC ,OA 上一动点,点D 从点C 以2个单位长度/秒的速度向点B 运动,同时点E 从点O 以3个单位长度/秒的速度向点A 运动,在D ,E 运动的过程中,DE 交四边形BOAC 的对角线OC 于点F .设运动的时间为t 秒(0<t <10),四边形BOED 的面积记为S 四边形BOED (以下面积的表示方式相同). (1)求点A 和点C 的坐标;(2)若S 四边形BOED ≥32S 四边形ACDE ,求t 的取值范围;(3)求证:在D ,E 运动的过程中,S △OEF >S △DCF 总成立.24.在平面直角坐标系中,若点P (x ,y )的坐标满足x ﹣2y +3=0,则我们称点P 为“健康点”:若点Q (x ,y )的坐标满足x +y ﹣6=0,则我们称点Q 为“快乐点”. (1)若点A 既是“健康点”又是“快乐点”,则点A 的坐标为 ;(2)在(1)的条件下,若B 是x 轴上的“健康点”,C 是y 轴上的“快乐点”,求△ABC 的面积;(3)在(2)的条件下,若P 为x 轴上一点,且△BPC 与△ABC 面积相等,直接写出点P 的坐标.25.对于不为0的一位数m 和一个两位数n ,将数m 放置于两位数之前,或者将数m 放置于两位数的十位数字与个位数字之间就可以得到两个新的三位数,将较大三位数减去较小三位数的差与15的商记为(),F m n .例如:当1m =,68n =时,可以得到168,618.较大三位数减去较小三位数的差为618168450-=,而4501530÷=,所以()1,6830F =. (1)计算:()2,17F .(2)若a 是一位数,b 是两位数,b 的十位数字为x (18x ≤≤,x 为自然数),个位数字为8,当()()11,509,862F a F b +=时,求出所有可能的a ,b 的值.26.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨15吨及以下a超过15吨但不超过25吨的部分b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费___________元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a,b的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.27.如图,已知∠a和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD//EF,AC AE⊥.(1)分别求∠a和β∠的度数;(2)请判断AB与CD的位置关系,并说明理由;(3)求C∠的度数.28.某校规划在一块长AD为18 m、宽AB为13 m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?29.某工厂接受了20天内生产1200台GH 型电子产品的总任务.已知每台GH 型产品由4个G 型装置和3个H 型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G 型装置或3个H 型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G 、H 型装置数量正好全部配套组成GH 型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH 型电子产品?请列出二元一次方程组解答此问题.(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G 型装置.设原来每天安排x 名工人生产G 型装置,后来补充m 名新工人,求x 的值(用含m 的代数式表示)30.判断下面方程组325231x y x y -=⎧⎨+=-⎩①②的解法是否正确,如果全部正确,判断即可;如果有错误,请写出正确的解题过程. 解:①×2-②×3,得52y =,解得25y =, 把25y =代入方程①,得23255x -⨯=,解得2915x =. ∴原方程组的解为291525x y ⎧=⎪⎪⎨⎪=⎪⎩【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】联立不含a 与b 的方程组成方程组,求出方程组的解得到x 与y 的值,进而求出a 与b 的值,代入原式计算即可求出值. 【详解】 解:根据题意,则5325x y x y +=⎧⎨-=⎩①②, 由①×2+②得:11x =11, 解得:x =1,把x =1代入①得:5+y =3, 解得:y =-2;把x =1,y =-2代入5451ax y x by +=⎧⎨+=⎩,则104521a b -=⎧⎨-=⎩,解得:142a b =⎧⎨=⎩,∴2142210a b -=-⨯=. 故选:C . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.2.D解析:D 【分析】首先设同向行驶的相邻两车的距离及车、小王的速度为未知数,根据等量关系把相关数值代入可得到同向行驶的相邻两车的距离及车的速度关系式,相除即可得所求时间. 【详解】解:设8路公交车的速度为x 米/分,小王行走的速度为y 米/分,同向行驶的相邻两车的间距为s 米.每隔12分钟从背后驶过一辆8路公交车,则 1212x y s -=①每隔4分钟从迎面驶来一辆8路公交车,则 44x y s +=②由①+②可得6s x =, 所以6sx=, 即8路公交车总站发车间隔时间是6分钟. 故选:D . 【点睛】本题考查了二元一次方程组的应用,根据追及问题和相遇问题得到两个等量关系是解题的关键.3.D解析:D 【分析】设诗句中谈到的鸦为x 只,树为y 棵,利用“三只栖一树,五只没去处,五只栖一树,闲了一棵树”分别得出方程:x -5=3y ,x =5(y -1)进而求出即可. 【详解】解:设诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为:3555x y y x -=⎧⎨-=⎩ 故选:D .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,据题意列出等量关系式是完成本题的关键.4.C解析:C 【分析】设牙刷的单价为x 元,牙膏的单价为y 元,当第1天、第2天的记录无误时,利用总价=单价×数量,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再代入第3天及第4天的数据中验证即可得出结论(若3,4天的结果均不对,则1,2天中的数据有误,以3,4天的数据列出方程组求出牙刷和牙膏的单价,再代入1,2天的数据中验证即可). 【详解】解:设牙刷的单价为x 元,牙膏的单价为y 元, 当第1天、第2天的记录无误时,依题意得:1371441811219x y x y +=⎧⎨+=⎩,解得:315x y =⎧⎨=⎩, ∴23x+20y=23×3+20×15=369(元),17x+11y=17×3+11×15=216(元). 又∵369≠368, ∴第3天的记录有误. 故选:C . 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.D解析:D 【分析】①将x =4,y =-1代入检验即可做出判断;②将x 和y 分别用a 表示出来,然后求出x +y =3来判断; ③将a =1代入方程组求出方程组的解,代入方程中检验即可; ④有x +y =3得到x 、y 都为自然数的解有4对. 【详解】解:①将4,1x y =⎧⎨=-⎩代入34,53,x y a x y a +=-⎧⎨-=⎩,解得3a =;且满足题意,故①正确;②解方程3453x y a x y a +=-⎧⎨-=⎩①② -①②得:8y =4-4a解得:12ay -=,将y 的值代入①得:52a x +=, 所以x +y =3,故无论a 取何值,x 、y 的值都不可能互为相反数,故②正确. ③将a =1代入方程组得:3353x y x y +=⎧⎨-=⎩, 解此方程得:30x y =⎧⎨=⎩,将x =3,y =0代入方程x +y =3,方程左边=3=右边,是方程的解,故③正确. ④因为x +y =3,所以x 、y 都为自然数的解有30x y =⎧⎨=⎩,21x y =⎧⎨=⎩,12x y =⎧⎨=⎩,03x y =⎧⎨=⎩.故④正确. 则正确的选项有①②③④. 故选:D . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.6.D解析:D 【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可. 【详解】解:设大马有x 匹,小马有y 匹,由题意得: 100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:D . 【点睛】本题考查列二元一次方程组解决实际问题,是中考的常考题型,正确找到等量关系是关键7.A解析:A 【详解】(1)−(2)得:6y=−3a , ∴y=−2a ,代入(1)得:x=2a ,把y=−2a,x=2a 代入方程3x+2y=10,得:6a−a=10,即a=2. 故选A.8.B解析:B 【解析】把甲的解代入ax -by =7可得a +b =7,把乙的解代入可得a -2b =1,由它们构成方程组可得721a b a b +=⎧⎨-=⎩,解方程组得52a b =⎧⎨=⎩,故选B . 9.B解析:B 【分析】解方程组求出a 、b 的值,再根据各象限内点的坐标特征即可得到答案. 【详解】解:529348a b a b +=-⎧⎨-=-⎩①②,①2⨯得:10418a b +=-③, ②+③得:1326a =-,2a ∴=-,把2a =-代入①得:1029b -+=-,12b ∴=, ∴方程组的解为212a b =-⎧⎪⎨=⎪⎩,∴点P 的坐标为1(2,)2-, ∴点P 在第二象限,故选:B . 【点睛】本题考查了二元一次方程组的解法,各象限内点的坐标特征,正确求出方程组的解是解决本题的关键.10.C解析:C 【分析】将方程组的解代入方程组可得关于a 、b 的二元一次方程组321325a b a b -=⎧⎨+=⎩,再求解方程组即可求解. 【详解】解:∵32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解, ∴321325a b a b -=⎧⎨+=⎩①②, ①+②得,a =1,将a =1代入①得,b =1,∴a 2008+2b 2008=1+2=3,故选:C .【点睛】本题考查了二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.二、填空题11.18【分析】首先设原有蔬菜量为a ,每天生长的蔬菜量为b ,每名游客每天摘菜量为c ,有14名游客摘菜x 天就能摘完.根据“原蔬菜量+每天生长的蔬菜量×采摘天数=每名游客每天摘菜量×人数×天数”列出方程解析:18【分析】首先设原有蔬菜量为a ,每天生长的蔬菜量为b ,每名游客每天摘菜量为c ,有14名游客摘菜x 天就能摘完.根据“原蔬菜量+每天生长的蔬菜量×采摘天数=每名游客每天摘菜量×人数×天数”列出方程组6206917914a b c a b c a bx cx +=⨯⎧⎪+=⨯⎨⎪+=⎩①②③,可解得x 的值即为所求. 【详解】解:首先设原有蔬菜量为a ,每天生长的蔬菜量为b ,每名游客每天摘菜量为c ,有14名游客摘菜x 天就能摘完,依题意得 6206917914a b c a b c a bx cx +=⨯⎧⎪+=⨯⎨⎪+=⎩①②③, 由②﹣①得:11b c =④ 由③﹣②得:()()914153xb xc ﹣=﹣⑤ 将④代入⑤得:()()91114153xc x c ⨯﹣=﹣, 解得:18x =故答案是:18.【点睛】本题考查方程组的应用,有些应用题,它所涉及到的量比较多,量与量之间的关系也不明显,需增设一些表知数辅助建立方程,辅助表知数的引入,在已知条件与所求结论之间架起了一座“桥梁”,对这种辅助未知量,并不能或不需求出,可以在解题中相消或相约,这就是我们常说的“设而不求.”12.6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设8解析:6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得3202x y=-,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设80分的邮票购买x张,120分的邮票购买y张,0.8x+1.2y=16,解得3202x y =-,∵x、y都是正整数,∴当y=2、4、6、8、10、12时,x=17、14、11、8、5、2,∴共有6种购买方案,故答案为:6.【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题. 13.3【详解】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为3.解析:3【详解】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.14.8【分析】首先用减法消元,将两式相减,得出,再将代入第一个方程,即可求出的值.【详解】解:将两式相减得,,即,∴,即,故答案为:8.【点睛】本题主要考查加减消元法,解题关键是熟练解析:8【分析】首先用减法消元,将两式相减,得出2x =,再将2x =代入第一个方程,即可求出x y z ++的值.【详解】解:将两式相减得,2x -=-,即2x =,∴2210x y z x y z x x y z ++=+++=+++=,即8x y z ++=,故答案为:8.【点睛】本题主要考查加减消元法,解题关键是熟练掌握加减消元法和整体思想的应用. 15.【分析】设女生人数为x 人,男生人数为y 人,根据“该年级有学生367人,且男生比女生人数的2倍少20人”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】解:设女生人数为x 人,男生人数为解析:367220x y y x +=⎧⎨=-⎩【分析】设女生人数为x人,男生人数为y人,根据“该年级有学生367人,且男生比女生人数的2倍少20人”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设女生人数为x人,男生人数为y人,∵该年级有学生367人,∴x+y=367;∵男生比女生人数的2倍少20人,∴y=2x﹣20.联立两方程组成方程组367220x yy x+=⎧⎨=-⎩.故答案为:367220x yy x+=⎧⎨=-⎩.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.16.=﹣2 =2【分析】根据一元一次方程的定义可得m2﹣4=0且m+2=0,且m+1≠0,即可得m的值;根据二元一次方程的定义可得m2﹣4=0且m+2≠0,m+1≠0,解可得m的值.解析:=﹣2 =2【分析】根据一元一次方程的定义可得m2﹣4=0且m+2=0,且m+1≠0,即可得m的值;根据二元一次方程的定义可得m2﹣4=0且m+2≠0,m+1≠0,解可得m的值.【详解】解:∵关于x的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,是一元一次方程,∴m2﹣4=0且m+2=0,且m+1≠0,解得:m=﹣2;∵关于x的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,是二元一次方程,∴m2﹣4=0且m+2≠0,m+1≠0,解得:m=2.故答案为:=﹣2;=2.【点睛】此题主要考查了二元一次方程和一元一次方程的定义,关键是掌握一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.17.2【分析】设1个进口1小时开进辆车,1个出口1小时开出辆,根据题意列出方程组求得、,进一步代入求得答案即可.【详解】设1个进口1小时开进辆车,1个出口1小时开出辆,车位总数为,由题意得,解解析:2【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据题意列出方程组求得x 、y ,进一步代入求得答案即可.【详解】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,由题意得()8(22)80%1.64280%x y a x y a -=⎧⎨-=⎩, 解得:5320a x a y ⎧=⎪⎪⎨⎪=⎪⎩, 则360%322520a a a ⎛⎫÷⨯-⨯= ⎪⎝⎭小时, 答:从早晨7点开始经过2小时车库恰好停满.故答案为:2.【点睛】此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键. 18.②③【分析】利用二元一次一次方程组的解法表示出方程组的解,进而分别分析得出答案.【详解】解:,①×3-②得,∵方程组的解也是x+2y=3的解,∴,解得:,∴k=3,故①错误;∵方程解析:②③【分析】利用二元一次一次方程组的解法表示出方程组的解,进而分别分析得出答案.【详解】解:22331x y k x y k +=⎧⎨+=-⎩①②, ①×3-②得31x y +=,∵方程组的解也是x +2y =3的解,∴3123x y x y +=⎧⎨+=⎩,解得:72x y =⎧⎨=-⎩, ∴k =3,故①错误;∵方程组的解满足2x y=-, ∴2x y =-,∴20x y k +==,故②正确;∵由①可得:31x y +=,∴()33328222222y x y x x y x y +⋅=⋅=⋅==,故③正确; ∵()()0x y x y +-=,∴x +y =0或x -y =0,∴y =-x 或x =y ,则()()22331x x k x x k ⎧+⨯-=⎪⎨+⨯-=-⎪⎩或22331x x k x x k +=⎧⎨+=-⎩, 解得:1212x k ⎧=-⎪⎪⎨⎪=⎪⎩或1434x k ⎧=⎪⎪⎨⎪=⎪⎩,故④错误; 故答案为:②③.【点睛】本题主要考查解二元一次方程组的能力,熟练掌握解二元一次方程组的方法和二元一次方程的解的定义.19.【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)解析:11x y =-⎧⎨=⎩【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0, 因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩, 解得:11x y =-⎧⎨=⎩. 故答案为:11x y =-⎧⎨=⎩. 【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.20.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。
七年级数学上册二元一次方程综合练习题
七年级数学上册二元一次方程综合练习题二元一次方程是初中数学中的重要知识点,通过综合练习题的训练,可以帮助学生巩固和加深对这一知识的理解与运用。
本文将提供一些适合七年级学生的综合练习题,以帮助他们提高解决二元一次方程的能力。
练习题一:1. 解方程组:$\begin{cases} 2x + y = 7 \\ x - 3y = -1 \end{cases}$2. 解方程组:$\begin{cases} 3x + 2y = 14 \\ x - y = 3 \end{cases}$3. 解方程组:$\begin{cases} 4x + 5y = 10 \\ 2x - y = 5 \end{cases}$4. 解方程组:$\begin{cases} 2x - y = 1 \\ 3x + 2y = 12 \end{cases}$练习题二:1. 解方程组:$\begin{cases} 3x + 4y = 9 \\ x + 2y = 3 \end{cases}$2. 解方程组:$\begin{cases} 2x - y = 5 \\ 3x + 4y = 19 \end{cases}$$\begin{cases} x + y = 4 \\ 2x - 3y = -1 \end{cases}$ 4. 解方程组:$\begin{cases} x + 3y = 6 \\ 2x - y = 4 \end{cases}$练习题三:1. 解方程组:$\begin{cases} 3x - 4y = -5 \\ 2x + 3y = -1 \end{cases}$ 2. 解方程组:$\begin{cases} 4x - 2y = 6 \\ x + y = 4 \end{cases}$ 3. 解方程组:$\begin{cases} 3x + y = 5 \\ x - 2y = -6 \end{cases}$ 4. 解方程组:$\begin{cases} 5x + 3y = 1 \\ 2x + y = -2 \end{cases}$练习题四:1. 解方程组:$\begin{cases} x + 2y = 7 \\ 3x - y = 9 \end{cases}$ 2. 解方程组:$\begin{cases} 2x - y = 3 \\ x + 4y = -2 \end{cases}$$\begin{cases} 3x + y = 7 \\ 2x - 3y = 5 \end{cases}$4. 解方程组:$\begin{cases} x + y = 4 \\ 2x + y = 7 \end{cases}$通过以上练习题,希望同学们能够熟练掌握解决二元一次方程的方法与步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学:第8章二元一次方程组综合检测题A (人教新课标七年级下) 一、选择题(每题3分,共30分)
1.下列各方程是二元一次方程的是( ) (A )8x+3y=y (B )2xy=3(C )2239x y -=(D )
1
3x y
=+ 2.如果单项式2222m n n m a b +-+与57a b 是同类项,那么m n 的值是( ) (A)-3(B)-1(C)13
(D)3 3.关于x 、y 的二元一次方程组59x y k
x y k
+=⎧⎨-=⎩的解也是二元一次方程
2x+3y=6的解, 则k 的
值是( )
(A)34k =-(B)34k =(C)43k =(D)4
3k =-
4.方程kx+3y=5有一组解2
1x y =⎧⎨=⎩
,则k 的值是( )
(A)1(B)-1(C)0(D)2 5.如果4
(1)6x y x m y +=⎧⎨
--=⎩
中的解x 、y 相同,则m 的值是( )
(A)1(B)-1(C)2(D)-2
6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )
(A)3场(B)4场(C)5场(D)6场
7.方程组
⎩⎨⎧=
=y x 2 ,则被遮盖的两个数分别为( )
⎩⎨⎧=+=
+32y x y x ⎩⎨⎧=++32y x y x
(A)1,2(B)1,3(C)2,3(D)2,4 8.方程组1
3
x y x y -=⎧⎨
+=⎩的解是( )
A、21x y =⎧⎨=⎩ B、12x y =-⎧⎨=-⎩
C、32x y =⎧⎨=⎩ D、12x y =⎧⎨=⎩
9.方程组7
12
x y xy +=⎧⎨=⎩的一个解是( )
(A )25x y =⎧⎨
=⎩ (B )62x y =⎧⎨=⎩
(C )43x y =⎧⎨=⎩ (D )3
4x y =-⎧⎨=-⎩ 10.为了改善住房条件,小亮的父母考察了某小区的A B 、两套楼房,
A 套楼房在第3层楼,
B 套楼房在第5层楼,B 套楼房的面积比A 套楼
房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,根据以上信息列出了下列方程组.其中正确的是( ).
A .⎩⎨⎧=-=24
1.19.0x y y x B . 1.10.924x y
x y =⎧⎨-=⎩
C .0.9 1.124x y x y =⎧⎨
-=⎩ D . 1.10.924
x y
y x =⎧⎨-=⎩
二、填空题(每题3分,共30分) 1.2
1
x y =⎧⎨
=-⎩是二元一次方程2x+by=-2的一个解,则b 的值等于 2.写出二元一次方程3x+y=9的所有正整数解是 3.(08河北省)如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是 g .
4.已知方程组11
2
35
mx ny mx ny ⎧
+=⎪⎨⎪+=⎩的解是32x y =⎧⎨=-⎩,则m= ,n= 5.若x+3y=3x+2y=7,则x= ,y=
6.若一个二元一次方程的一个解为⎩⎨⎧-==1
2
y x ,则这个方程可以是:
7.如下图,正方形是由k 个相同的矩形组成,
上下各有2个水平放置的矩形,中间竖放若干个矩形,则k= . 8.已知31x y =⎧⎨
=⎩和2
11
x y =-⎧⎨=⎩都是ax+by=7,则a= ,b= 9.已知方程3x+y=12有很多解,请你随意写出互为相反数的一组解 10.若函数y=-x+a 和y=x+b 的图象交点坐标为(m ,8),则a+b=
三、解答题(共40分)
1.(1)(本题5分)解方程组⎩
⎨⎧=-=+.82,
7y x y x
(2)(本题5分)解方程组 ⎩⎨
⎧+=-+=-)
5(3)1(55
)1(3x y y x
2.(本题10分)列方程或方程组解应用题:
夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施。
某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度。
求只将温度调高1℃后两种空调每天各节电多少度?
3.(本题10分)用图象法解方程组 ⎩
⎨⎧=+=+63442y x y x
4.(本题10分)列方程解决实际问题: 某景点的门票价格规定如下表:
我校初二(1),(2)两
个班共104人准备利用假期去游览该景点,其中(1)班人数较少,不到50人,(2)班人数较多,有50多人,经估算,如果两班都以班为单位分别购票,则一共应付1240元,问两班各有多少名学生? 你认为还有没有好的方法去节省门票的费用?若有,请按照你的方法计算一下能省多少钱?
①
四、拓广探索(共20分)
1.(本题10分)经营户小熊在蔬菜批发市场上了解到以下信息内容:
他共用116元钱从市场上批发了红辣椒和西红柿共44公斤到菜市场去卖,当天卖完。
请你计算出小熊能赚多少钱?解:设小熊在市场上批发了红辣椒x 千克,西红柿y千克。
2.(本题10分)商场销售A B
,两种品牌的衬衣,单价分别为每件30元,50元,一周内共销售出300件;为扩大衬衣的销售量,商场决定调整衬衣的价格,将A种衬衣降价20%出售,B种衬衣按原价出售,调整后,一周内A种衬衣的销售量增加了20件,B种衬衣销售量没有变,这周内销售额为12880元,求调整前两种品牌的衬衣一周内各销售多少件?
参考答案
一、选择题
ACBAB CAACD 二、填空题 1.6;2.12,63x x y y ==⎧⎧⎨
⎨
==⎩⎩;3.20 4.1,2;5.1,2;6.1
3x y x y +=⎧⎨-=⎩
; 7.8;8.2,1;9.6
6
x y =⎧⎨=-⎩;10.16; 三、解答题
1.(1)5
2x y =⎧⎨=⎩ (2)原方程组的解为⎩
⎨⎧==75y x
2.解:设只将温度调高1℃后,甲种空调每天节电x 度,乙种空调每天节电y 度
依题意,得:x y x y -=+=⎧⎨⎩
2711405. 解得:x y ==⎧⎨⎩207
180
答:只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度。
3.由2x+y=4,得y= -2x+4。
由4x+3y=6,得y=23
4+-x 。
在同一坐标系内作出一次函数y= -2x+4的图象和y=23
4+-x 的图象,如图(1),观察图象的交点坐标为(3,-2),∴方程组⎩⎨⎧=+=+6
3442y x y x 的解是⎩⎨
⎧-==2
3
y x 。
4. ⎩⎨
⎧=+=+1240
1113104
y x y x ⎩⎨
⎧==56
48y x 四、1.根据题意,得444 1.6116x y x y +=⎧⎨+=⎩
,解这个方程组,得19,25x y ==
25219511629⨯+⨯-=(元),答:他卖完这些西红柿和红辣椒能赚
29
元。
2.解:设A 种品牌的衬衣有x 件,B 种品牌的衬衣有y 件. 依题意可得,30030(120%)(20)5012880.x y x y +=⎧⎨
⨯-++=⎩,,解得,100200.x y =⎧⎨=⎩
,
答:A 种品牌的衬衣有100件,B 种品牌的衬衣有200件.。