二元一次方程组及其解

合集下载

初一 二元一次方程组及其解法(学生版)

初一 二元一次方程组及其解法(学生版)

3.二元一次方程组:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.注意:组成方程组的两个方程不必同时含有两个未知数,例如 也是二元一次方程组.4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 注意:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成的形式.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组的解有无数个.题型1:二元一次方程【例1-1】已知下列方程,其中是二元一次方程的有________. (1)2x-5=y ; (2)x-1=4; (3)xy =3; (4)x+y =6; (5)2x-4y =7; (6);(7);(8);(9);(10).举一反三:下列各方程中,是二元一次方程的是( ) A .=y+5x B .3x+2y=2x+2y C .x=y 2+1 D .题型2:二元一次方程的解【例2-1】下列数组中,是二元一次方程x+y=7的解的是( ) A .B .C .D .【例2-2】已知二元一次方程. ⎩⎨⎧=-=+52013y x x x ay b =⎧⎨=⎩2526x y x y +=⎧⎨+=⎩1222x y x y +=-⎧⎨+=-⎩102x +=251x y+=132x y +=280x y -=462x y +=3142x y +=(1)用含有x 的代数式表示y ;(2)用含有y 的代数式表示x ; (3)用适当的数填空,使是方程的解.举一反三:1、若方程的一个解是,则a= .2、已知:2x +3y =7,用关于y 的代数式表示x ,用关于x 的代数式表示y .题型3:二元一次方程组及方程组的解【例3-1】下列各方程组中,属于二元一次方程组的是( ) A .B .C .D .【例3-2】判断下列各组数是否是二元一次方程组的解.(1) (2)举一反三:2_______x y =-⎧⎨=⎩24ax y -=21x y =⎧⎨=⎩4221x y x y +=⎧⎨+=-⎩①②35x y =⎧⎨=-⎩21x y =-⎧⎨=⎩1、写出解为的二元一次方程组.知识点二:代入消元法1、消元法消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.消元的基本思路:未知数由多变少.消元的基本方法:把二元一次方程组转化为一元一次方程. 2、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的. (2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便; ③若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便.题型1:用代入法解二元一次方程组 【例1-1】用代入法解方程组:的解为 .12x y =⎧⎨=-⎩【例1-2】用代入法解二元一次方程组:举一反三:1、若方程y =1-x 的解也是方程3x +2y =5的解,则x =____,y =____.2、与方程组有完全相同的解的是( )A .x+y -2=0B .x+2y=0C .(x+y -2)(x+2y)=0D .3、若∣x-2y +1∣+(x +y -5)2=0,则 x= , y= .题型2:由解确定方程组中的相关量 【例2-1】已知关于x ,y 的二元一次方程组的解互为相反数,求k 的值.【例2-1】若方程组的解为,试求的值.举一反三:524050x y x y --=⎧⎨+-=⎩①②2020x y x y +-=⎧⎨+=⎩22(2)0x y x y +-++=ax+by=11(5-a)x-2by+14=0⎧⎨⎩14x y =⎧⎨=⎩a b 、1、已知是二元一次方程组的解,则m﹣n的值是.知识点三:加减消元法1、加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.2、选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.题型1:加减法解二元一次方程组【例1-1】直接加减:已知21xy=⎧⎨=⎩是二元一次方程组21mx nynx my+=⎧⎨-=⎩的解,则3m n+的值为.【例1-2】先变系数后加减:2521 4323x yx y-=-⎧⎨+=⎩①②【例1-3】建立新方程组后巧加减:解方程组2511 524x yx y+=⎧⎨+=-⎩①②【例1-4】先化简再加减:解方程组0.10.3 1.3123x yx y+=⎧⎪⎨-=⎪⎩①②举一反三:1、已知关于x,y的二元一次方程组的解满足x﹣y=a,求该方程组的解.题型2:用适当方法解二元一次方程组【例2-1】(1)323112x yx y-=⎧⎨=-⎩(2)5(1)2(3)2(1)3(3)m nm n-=+⎧⎨+=-⎩举一反三:1、用两种方法解方程组29(1) 321(2) x yx y+=⎧⎨-=-⎩三、课堂练习一、选择题1.下列方程组是二元一次方程组的是()A.53x yz x+=⎧⎨+=⎩B.1113xxyx⎧+=⎪⎪⎨⎪-=⎪⎩C.434x y xyx y-+=⎧⎨-=⎩D.12132112(2)32x yx y x y⎧-=⎪⎪⎨⎪-=-⎪⎩2. 是方程ax﹣y=3的解,则a的取值是()A.5 B.﹣5 C.2 D.13. 方程组233x yx y-=⎧⎨+=⎩的解是()A .12x y =⎧⎨=⎩ B .21x y =⎧⎨=⎩ C .11x y =⎧⎨=⎩ D .23x y =⎧⎨=⎩4.已知二元一次方程组6511327,x y y x +=⎧⎨-=⎩, ①②,下列说法正确的是()A.适合②的,x y 的值是方程组的解①②B.适合①的,x y 的值是方程组的解C.同时适合①和②的,x y 的值不一定是方程组的解D.同时适合①和②的,x y 的值是方程组的解5.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为( ) A .4和6 B .6和4C .2和8D .8和﹣26.对于方程3x-2y-1=0,用含y 的代数式表示x ,应是( ). A .1(31)2y x =- B .312x y += C .1(21)3x y =- D .213y x += 7.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解.则a-b 的值为( ).A .-1B .1C .2D .38.已知2|21|(27)0x y x y --++-=,则3x y -的值是( ) A .3 B .1 C .﹣6 D .8 9.用加减消元法解二元一次方程组231543x y x y +=⎧⎨-=⎩①②,下列步骤可以消去未知数x 的是( )A .①×4+②×3B .①×2-②×5C .①×5+②×2D .①×5-②×2 10.解方程组①3759y x x y =-⎧⎨+=-⎩,②3512,215 6.x y x y +=⎧⎨-=-⎩比较简便的方法是( )A .均用代入法B .均用加减法C .①用代入法,②用加减法D .①用加减法,②用代入法 二、填空题11.已知方程2x+y ﹣5=0用含y 的代数式表示x 为:x= .12.在二元一次方程组423x y x m y -=⎧⎨=-⎩中,有6x =,则_____,______.y m ==13.若(a ﹣3)x+y |a|﹣2=1是关于x 、y 的二元一次方程,则a 的值是 .14.解方程组523,61,x y x y +=⎧⎨-=⎩①②若用代入法解,最好是对方程________变形,用含_______的代数式表示________.15.若方程3x-13y =12的解也是x-3y =2的解,则x =________,y =_______. 16.方程组的解是 .17.用加减法解方程组3634x y x y -=⎧⎨+=-⎩①②时,①+②得________,即________;②-①得________,即________,所以原方程组的解为________. 18.若522325m n x y ++与632134m n x y ---的和是单项式,则m =_______,n =_______. 19.已知关于x ,y 的方程组271x y x y +=⎧⎨-=-⎩满足3x y +=,则k = .三、解答题20.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组. (1)甲数的13比乙数的2倍少7;(2)摩托车的时速是货车的32倍,它们的速度之和是200km/h ;(3)某种时装的价格是某种皮装价格的1.4倍,5件皮装比3件时装贵700元.21.用代入法解下列方程组:一、选择题1.下列各方程中,是二元一次方程的是()A.=y+5x B.3x+1=2xy C.x=y2+1 D.x+y=12. 关于,m n的两个方程23321m n m n-=+=与的公共解是()A.3mn=⎧⎨=-⎩B.11mn=⎧⎨=-⎩C.12mn=⎧⎪⎨=⎪⎩D.122mn⎧=⎪⎨⎪=-⎩3.利用代入消元法解方程组,下列做法正确的是()A.由①得x= B.由①得y=C.由②得y= D.由②得y=4.已知x+3y=0,则3232y xy x+-的值为().A.13B.13- C.3 D.-35.一副三角板按如图摆放,∠1的度数比∠2的度数大50°,若设,,则可得到方程组为( ) .A. B. C. D.6.用加减消元法解二元一次方程组时,必须使这两个方程中()A.某个未知数的系数是1 B.同一个未知数的系数相等C.同一个未知数的系数互为相反数 D.某一个未知数的系数的绝对值相等7.方程组231498x yx y+=-⎧⎨-=⎩的解是()A.13xy=⎧⎪⎨=-⎪⎩B.2xy=⎧⎨=⎩C.1223xy⎧=⎪⎪⎨⎪=-⎪⎩D.1223xy⎧=-⎪⎪⎨⎪=-⎪⎩8.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.﹣B.C.D.﹣二、填空题9.若是二元一次方程的一个解,则的值是__________.10.已知,且,则___________.11.若方程ax-2y=4的一个解是21xy=⎧⎨=⎩,则a的值是 .12.二元一次方程组的解是.13.方程组525x yx y=+⎧⎨-=⎩的解满足方程x+y-a=0,那么a的值是________.14.已知二元一次方程组2728x yx y+=⎧⎨+=⎩,则x-y=________,x+y=________.三、解答题15.若方程组是二元一次方程组,求a的值.16.小明在解方程组时,遇到了困难,你能根据他的解题过程,帮他找出原因吗?并求出原方程组的解.。

二元一次方程组怎么解

二元一次方程组怎么解

二元一次方程组怎么解二元一次方程组是高中数学中的一种基础知识,也是解决实际问题的重要工具。

它由两个包含两个未知数的方程组成,通常可以用代数方法或图形方法求解。

在本文中,我们将讨论二元一次方程组的求解方法,以帮助读者更好地理解和应用这一概念。

1. 代数解法代数解法是求解二元一次方程组的传统方法。

它的基本思想是通过等式的转化将两个方程中的某一个未知数消去,从而得到只包含另一个未知数的方程,再通过解这个方程得到另一个未知数的值。

最后,再将这个值带入原来的方程中,求出另一个未知数的值。

下面以一个典型的例子来说明。

例1:求解方程组 2x + y = 7 x + y = 4解:观察这两个方程,我们可以发现它们含有相同的未知数y,因此我们可以通过消去y的方法来求解。

为此,我们将第二个方程的等式两边都减去y,得到如下方程:x = 4 - y现在,我们将这个x的值代入第一个方程,得到:2(4 - y) + y = 7化简这个方程,得到:8 - y + y = 7因此,y的值为1。

然后,我们将这个y的值代入第二个方程,得到:x + 1 = 4因此,x的值为3。

因此,这个方程组的解为(x,y)=(3,1)。

2. 图形解法图形解法是另一种求解二元一次方程组的方法,它的基本思想是将两个方程表示成直线的形式,然后通过解直线方程的交点来求解方程组。

具体来说,我们可以将两个方程表示成如下形式:y = -2x + 7 y = -x + 4利用直线的斜率和截距,我们可以画出这两条直线。

这两条直线的交点就是方程组的解。

下图是这两条直线的图像。

从图中可以看出,这两条直线在(3,1)这个点相交。

因此,这个方程组的解为(x,y)=(3,1)。

3. 矩阵解法矩阵解法是一种更为简便和通用的求解二元一次方程组的方法。

它的基本思想是将方程组表示成矩阵的形式,然后通过矩阵的运算求解。

具体来说,我们可以将方程组表示成如下矩阵形式:Ax = b其中,A是一个2×2的矩阵,x和b都是2×1的列向量,分别表示未知数和方程组的常数项。

二元一次方程组的解的情况及应用-二元一次方程组的应用讲解

二元一次方程组的解的情况及应用-二元一次方程组的应用讲解

知识点一:二元一次方程的理解 知识点二:二元一次方程组的解的情况 知识点三:自己的解 知识点四:与别人同解 知识点五:借用别人的解 知识点六:非负数与二元一次方程组结合 知识点七:同类项的概念与二元一次方程组结合 知识点八:求错的解 知识点九:给出关系的解
巩固练习 1
已知关于x、y的二元一次方程组
3、当
a1 b1
a2
b2
时 方程组有唯一的解
知识点一:二元一次方程的理解 知识点二:二元一次方程组的解的情况 知识点三:自己的解 知识点四:与别人同解 知识点五:借用别人的解 知识点六:非负数与二元一次方程组结合 知识点七:同类项的概念与二元一次方程组结合 知识点八:求错的解 知识点九:给出关系的解
x 2y 1 2x 4y 2
1 2 唯一的解 12
1 2 1 2 4 3
无解
1 2 1 无数多解 2 4 2
练习1:下列方程组中,只有一组解(C )
(A)3xxy3y1 0
(B)3xxy3y
0
3
(C)3xxy3y1 3 (D)3xxy3y1 3
知识点一:二元一次方程的理解
已知方程(k2-1)x2+(k+1)x+(k-7)y=k+2
(1)当k= -1 时,方程为一元一次 方程;
(2)当k= 1 时,方程为二元一次方
程。
知识点二:二元一次方程组的解的情况
x 2y 1 x 2y 3
x 2y 1 2x 4y 3
x y 5k x y 9k
的解也是二元一次方
程2x+3y=6的解,求k的值。
有相同的解,求a、b的值。
知识点四:与别人同解

二元一次方程组及其解法

二元一次方程组及其解法
(2)二元一次方程组的解:二元一次方程组中两个方程的公共解,叫做二元一次方程组的解.
对二元一次方程组的理解应注意:
①方程组各方程中,相同的字母必须代表同一数量,否则不能将两个方程合在一起.
②怎样检验一组数值是不是某个二元一次方程组的解,常用的方法如下:将这组数值分别代入方程组中的每个方程,只有当这组数值满足其中的所有方程时,才能说这组数值是此方程组的解,否则,如果这组数值不满足其中任一个方程,那么它就不是此方程组的解.
例8.解方程组
一、选择题
1.下列各式中,是二元一次方程的是()
A.4x-2π=5B.3x+5yC.2x-5y=0D.2x-5=y2
2.如果5x3m-2n-2yn-m+11=0是二元一次方程,则()
A.m=1,n=2B.m=2,n=1 C.m=-1,n=2D.m=3,n=4
3.如果是方程3x-ay=7的一个解,那么a=()
二元一次方程组及其解法
知识要点
1.二元一次方程
(1)概念:含有两个未知数,并且含有未知数的项的次数都是1的方程,叫做二元一次方程.
你能区分这些方程吗?(1)5x+3y=75;(2)3x+1=8x;(3)+y=2;(4)2xy=9.
对二元一次方程概念的理解应注意以下几点:
①等号两边的代数式是整式;
②在方程中“元”是指未知数,二元是指方程中含有两个未知数;
解法2:
由①设x=k,y=2k,z=7k,并代入②,得k=1.
把k=1,代入x=k,得x=1;
把k=1,代入y=2k,得y=2;
把k=1,代入z=7k,得z=7.
因此三元一次方程组的解为
小结:遇比例式找关系式,采用设元解法.
例4、解方程组
分析:

二元一次方程的定义 解二元一次方程组

二元一次方程的定义     解二元一次方程组
2.用这个式子代替另一个方程中相应的未知数,得到一个一元 一次方程,即“代”.
3.把这个未知数的值代入上面的式子,求得另一个未知数的值, 即“求”.
4.写出方程的解,即“写”. 注意:用带入消元法解二元一次方程组时,尽量选取一个未知数的 系数是1或-1的方程进行变形.
二、加减消元法 定义:通过两式相加或相减消去其中一个未知数,这种解二元一次 方程的方法叫做加减消元法. 步骤:1、方程组的两个方程中,如果同一个未知数的系数既不相 等也不互为相反数,就要用适当的数去乘方程的两边,使某一个未 知数的系数相等或互为相反数.“乘” 2、当同一个未知数的系数互为相反数时,用加法消去这个未知数, 得到关于另一个未知数的一元一次方程;当同一个未知数的系数相 等时,用减法消去这个未知数,得到.关于另一个未知数的一元一次 方程.“加减” 3、解这个一元一次方程,求得一个未知数的值,即“解” 4、将这个求得的未知数的值代入原方程组中任意一个方程中,求 出另一个未知数的值即“回代”. 5、把求得的两个未知数的值用{联立起来,即“联”.
(2) (4)
解:
解:方程组整得:
②①解把则×得方﹣ y=:程4③得﹣组得y=1:的:代4﹣解1x入11-为y, ②8=y得=﹣1:61x1=,③2,①②③把则-y××方④=23程得得得﹣组:::2的466﹣代解xxyy入++为=89=②yy2﹣==4得11264:484,x=③ ④60,
方程组可化为
在代数ax2+bx中,当x=1时,其值为13;
当x=2时,其值为18,求当x=−2时,这个
代数式的值为多少?
解答: 由题意可得方程组{a+b=13
4a+2b=18, 解得{a=−4
b=17. 原式=ax2+bx=−4x2+17x, 把x=−2代入,得−4×(−2)2+17×(−2)

《二元一次方程组》知识讲解及例题解析

《二元一次方程组》知识讲解及例题解析

《二元一次方程组》知识讲解及例题解析◆知识讲解1.二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.2.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.3.二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.◆例题解析例1 已知21xy=⎧⎨=⎩是方程组2(1)21x m ynx y+-=⎧⎨+=⎩的解,求(m+n)的值.【分析】由方程组的解的定义可知21xy=⎧⎨=⎩,同时满足方程组中的两个方程,将21xy=⎧⎨=⎩代入两个方程,分别解二元一次方程,即得m 和n 的值,从而求出代数式的值.【解答】把x=2,y=1代入方程组2(1)21x m y nx y +-=⎧⎨+=⎩中,得22(1)12211m n ⨯+-⨯=⎧⎨+=⎩ 由①得m=-1,由②得n=0.所以当m=-1,n=0时,(m+n )=(-1+0)=-1.【点评】如果是方程组的解,那么它们就能满足这个方程组中的每一个方程. 例2 “5.12”汶川大地震后,灾区急需大量帐篷.•某服装厂原有4条成衣生产线和5条童装生产,工厂决定转产,计划用3天时间赶制1000•顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;•若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?【解答】(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x ,y 顶,则210523178x y x y +=⎧⎨+=⎩ 解得:x=41;y=32答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3×(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,也不能如期完成任务.可以从加班生产,改进技术等方面进一步挖掘生产潜力,或者动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.例3 某商场正在热销2008年北京奥运会吉祥物“福娃”和徽章两种奥运商品,根据下图提供的信息,•求一盒“福娃”玩具和一枚徽章的价格各是多少元?【分析】本题以图文形式提供了部分信息,主要考查学生运用二元一次方程组解决实际问题的能力.【解答】设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得214523280x y x y +=⎧⎨+=⎩解这个方程组,得12510x y =⎧⎨=⎩ 故一盒“福娃”玩具的价格为125元,一枚徽章的价格为10元.例4 为满足用水量不断增长的需求,昆明市最近新建甲,乙,•丙三个水厂,这三个水厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A 型,B •型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5次,可把土石运完;或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)【分析】(1)可设甲水厂的日供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3,由三个水厂的日供水量总和为11.8万m 3,可列方程x+3x+12x+1=11.8; (2)设每辆A 型汽车每次运土石xt ,B 型车每辆每次运土石yt ,•依题意可列方程组30206001530600x y x y +=⎧⎨+=⎩解方程后可求解.【解答】(1)设甲水厂的供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3. 由题意得:x+3x+12x+1=11.8,解得x=2.4. 则3x=7.2,x+1=2.2.答:甲水厂日供水量是2.4万m 3,乙水厂日供水量是7.2万m 3,•丙水厂日供水量是2.2万m 3.(2)设每辆A 型汽车每次运土石xt ,每辆B 型汽车每次运土石yt ,由题意得: 30206001530600x y x y +=⎧⎨+=⎩ ∴1015x y =⎧⎨=⎩答:每辆A型汽车每次运土石10t,每辆B型汽车每次运土石15t.【点评】本例系统地考查了一元一次方程和二元一次方程组这两个重要内容,在同一背景下提供不同的动作方案是近年中考应用题的发展方法.。

二元一次方程组及其解法(培优)

二元一次方程组及其解法(培优)

二元一次方程组及其解法(培优)二元一次方程组及其解法在研究二元一次方程组之前,需要先了解二元一次方程的概念。

二元一次方程必须同时具备三个条件:(1)这个方程中有且只有两个未知数;(2)含未知数的次数是1;(3)对未知数而言,构成方程的代数式是整式。

解二元一次方程的解和二元一次方程组的解的意义是相同的,都是指方程的解集。

熟练掌握二元一次方程组的解法,可以用来解决许多实际问题。

例如,已知下列方程2xm1+3yn3=5是二元一次方程,则m+n=0.根据二元一次方程的概念可知:m-1=1,n+3=1,解得m=2,n=-2,故m+n=0.除了解二元一次方程组的基本方法外,还有加减消元法、代入法等解法。

在解题时需要根据具体情况选择最合适的方法。

变式题组:01.请判断下列各方程中,哪些是二元一次方程,哪些不是,并说明理由。

⑴2x+5y=16 - 是二元一次方程,符合三个条件。

⑵2x+y+z=3 - 不是二元一次方程,因为含有三个未知数z。

02.若方程2xa1+3=y2b+(-5/1)+y=21(4)x2+2x+1=(5)2x+10xy=5x是二元一次方程,则a=,b=。

根据二元一次方程的定义,2xa1+3=y2b+(-5/1)+y=21(4)x2+2x+1=(5)2x+10xy=5x不是二元一次方程,因为含有x的二次项。

03.在下列四个方程组①{4x+3y=10.2x-4y=9},②{4x+y=12.7xy=29},③{1/x-2y=-45.2x+3y=4},④{7x+8y=5.x-4y=1}中,是二元一次方程组的有()只有①和③是二元一次方程组,因为它们都符合三个条件。

例2:(十堰中考)二元一次方程组{3x-2y=7.x+2y=5}的解是()解法:二元一次方程组的解,就是它的两个方程的公共解。

根据此概念,此类题有两种解法:(1)若方程组较难解,则将每个解中的两未知数分别带入方程组,若使方程组都成立,则为该方程组的解,若使其中任一方程不成立,则不是该方程组的解;(2)若方程组较易解,则直接解方程组可得答案。

二元一次方程组及其解法

二元一次方程组及其解法

二元一次方程组及其解法 一、学法指引:本专题主要学习二元一次方程(组)的定义及其解法,理解二元一次方程的解的意义,二元一次方程组的解的意义,以及二元一次方程组的解的三种情况,形如,ax+by=c 的方程叫二元一次方程,它有无数个解,由几个二元一次方程够成,叫二元一次方程组,解有三种情况:1)唯一解,2)无数解,3)无解。

解方程组的思想是消元,但在解方程组时,要根据方程组的数据特点来确定解法 二、探究与思考1)探究二元一次方程的有关概念形如ax+by=c (a b ≠0)方程叫二元一次方程,满足方程的解有无数个。

例1、下列方程中,是二元一次方程的是( )(A )1=xy (B )21=+yx (C )13-=x y (D )032=--x x 例2、已知关于x,y 的方程(a -2)x |a -1|+(b+3)y|b+4|=6是二元一次方程,求a ,b讲中练下列各组数中①⎩⎨⎧==22y x ②⎩⎨⎧==12y x ③⎩⎨⎧-==22y x ④⎩⎨⎧==61y x 是方程104=+y x 的解的有( ) A.1个 B.2个 C.3个 D.4个2)探究二元一次方程组的定义及其解法 形如 a 1x+b 1y=c 1的方程组叫二元一次方程组 a 2x+b 2y=c 2①代入消元法例3、用代入法解下列方程组(1)⎩⎨⎧=+-=18050y x y x (2)⎩⎨⎧=-=+173x y y x (3)233511x y x y +=⎧⎨-=⎩归纳:用代入消元法解方程组时,首先将其中一个方程变形,用含一个未知数的代数式来表示另一个未知数,然后代入另一个方程。

讲中练用代入法解下列(1)⎩⎨⎧=+=+7222y x y x (2) (3)②加减消元法例4、用加减法解下列方程组:(1)⎩⎨⎧=-=+534734y x y x (2)3216,31;m n m n +=⎧⎨-=⎩ (3)234,443;x y x y +=⎧⎨-=⎩归纳:用加减法解方程组时,首先将方程组中的某个未知数的系数化相等或互为相反数,然后将两个方程相加或相减。

二元一次方程组的解的性质

二元一次方程组的解的性质

二元一次方程组的解的性质二元一次方程组是由两个未知数的一次方程组成的,一般的形式可以表示为:ax + by = cdx + ey = f其中,a、b、c、d、e和f均为已知常数。

解的存在性:对于给定的常数a、b、c、d、e和f,二元一次方程组可能有零个、一个或者无穷多个解。

下面将分别讨论这几种情况。

1. 无解的情况:当二元一次方程组没有解时,表示两个方程所对应的直线在平面上没有交点。

这意味着两个方程所表示的直线是平行的,且不重合。

在这种情况下,方程组被称为是矛盾的。

2. 一个解的情况:当二元一次方程组有且仅有一个解时,表示两个方程所对应的直线在平面上相交于一个点。

在这种情况下,方程组被称为是相容的。

解的求解可以通过消元法、代入法、Cramer法则等方法得到。

3. 无穷多个解的情况:当二元一次方程组有无穷多个解时,表示两个方程所对应的直线在平面上重合,完全重合的部分是无穷多个解。

在这种情况下,方程组被称为是相关的。

解的求解通常可以通过将其中一个未知数表示为另一个未知数的函数来得到。

解的特性:1. 独立性:当二元一次方程组有且仅有一个解时,这个解是唯一的。

也就是说,确定了方程的系数和常数后,方程组的解将是确定的,不会存在多个不同的解。

2. 相容性:当二元一次方程组有无穷多个解时,其中任意一组解都可以满足方程组的要求。

这是因为两个方程所表示的直线是完全重合的,因而与其中一个方程相交的任意一点都是方程组的解。

3. 矛盾性:当二元一次方程组无解时,表示两个方程所对应的直线是平行的,且不重合。

在这种情况下,方程组的解将为空集,即不存在满足方程组要求的解。

总结:二元一次方程组的解的性质取决于方程组的系数和常数。

根据解的存在性,方程组可以分为无解、一个解和无穷多个解三种情况。

而解的特性则表现为独立性、相容性和矛盾性,分别对应于方程组的解的唯一性、解的满足性和解的不存在性。

准确理解和应用二元一次方程组的解的性质,对于解方程组和解决实际问题具有重要意义。

二元一次方程组及其解法

二元一次方程组及其解法

二元一次方程组及其解法
二元一次方程组是由两个含有两个未知数的等式组成的方程组,通常的一般式表示为:
ax + by = c
dx + ey = f
其中,a、b、c、d、e、f 都是已知数,x、y 都是未知数。

解法有以下几种:
1. 消元法:通过变换方程式将一个未知数消去,再代入另一个方程求解。

2. 代入法:选择其中一个方程,将其中一个未知数表示成另一个未知数的函数,代入另一个方程中求解。

3. 公式法:利用二元一次方程组的公式解法求解。

4. 矩阵法:用矩阵运算的方法求解方程组。

以上四种方法都可以求得二元一次方程组的解,一般解的形式为一个有序二元组 (x, y)。

二元一次方程组及其解法优秀教案

二元一次方程组及其解法优秀教案

二元一次方程组及其解法【课时安排】3课时【第一课时】【教学目标】一、知识与技能理解二元一次方程、二元一次方程组和它们的解的含义,并会检验一对数是不是某个二元一次方程组的解。

二、过程与方法经历认识二元一次方程和二元一次方程组的过程,感受类比的学习方法在数学学习过程中的作用。

三、情感、态度与价值观学会用类比的方法迁移知识,体验二元一次方程组在处理实际问题中的优越性,感受学习数学的乐趣。

【教学重难点】重点:理解二元一次方程组的解的意义。

难点:求二元一次方程的正整数解。

【教学过程】一、创设情境,引入新课(一)古老的“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足。

问鸡、兔各几何?”教师描述:这是我国古代数学著作《孙子算经》中记载的数学名题。

它曾在好几个世纪里引起过人们的兴趣,这个问题也一定会使在座的各位同学感兴趣。

怎样来解答这个问题呢?学生思考并自行解答,教师巡视。

最后,在学生动手动脑的基础上,集体讨论并给出各个解决方案。

(二)教师展示幻灯片:方法1:算筹解法。

(孙子算经,用算筹研究代数。

)方法2:图形解法。

(尚不成熟的符号语言,但很直观。

)方法3:算术解法。

兔数:(94÷2)-35=12鸡数:35-12=23方法4:一元一次方程的解法。

解:设鸡有x只,则兔有(35-x)只,则可列方程:2x+4(35-x)=94;解得:x=23。

则鸡有23只,兔有12只。

请同学们自己思考。

教师不失时机地复习一元一次方程的有关概念,“元”是指什么?“次”是指什么?二、尝试活动,探索新知(一)讨论二元一次方程、二元一次方程组的概念。

1.教师提问:上面的问题可以用一元一次方程来解,那么还有其他方法吗?方法6:设有x只鸡,y只兔,依题意得:x+y=35①2x+4y=94②针对学生列出的这两个方程,教师提出如下问题:(1)你能给这两个方程起个名字吗?(2)为什么叫二元一次方程呢?(3)什么样的方程叫二元一次方程呢?2.教师结合学生的回答,板书定义1:含有两个未知数,并且未知数的指数都是1的方程,叫做二元一次方程。

专题07 二元一次方程组(归纳与讲解)(原卷版)

专题07 二元一次方程组(归纳与讲解)(原卷版)

专题07 二元一次方程组【专题目录】技巧1:二元一次方程组的五种特殊解法技巧2:二元一次方程组中六种类型数学思想的应用 技巧3:二元一次方程(组)的解的五种常见应用 【题型】一、二元一次方程组的有关概念 【题型】二、用代入法解二元一次方程组 【题型】三、用加减法解二元一次方程组 【题型】四、用整体消元法解二元一次方程组 【题型】五、同解方程组 【题型】六、列二元一次方程组 【考纲要求】1、了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。

【考点总结】一、二元一次方程组(1)概念:具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.(2)一般形式:⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2(a 1,a 2,b 1,b 2均不为零).(3)二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.【注意】1.解二元一次方程组的步骤(1)代入消元法① 变:将其一个方程化为y=ax+b或者为x=ay+b的形式① 代:将y=ax+b或者为x=ay+b代入另一个方程① 解:解消元后的一元一次方程① 求:将求得的未知数值代入y=ax+b或x=ay+b,求另一个未知数的值① 答:写出答案(2)加减消元法① 化:将原方程组化成有一个未知数的系数相等(互为相反数)的形式,① 加减:将变形后的方程组通过加减消去一个未知数① 解:解消元后的一元一次方程① 求:将求得的知数的值代入方程组中任意一个方程求另一个未知数的值2.解二元一次方程组的方法选择(1)当方程组中某一个未知数的系数是1或者-1时,选用代入消元法;(2)当方程组中某一个方程的常数项为0时,选用代入消元法;(3)方程组中同一个知数的数相同或互为相反数时,选用加减消无法(4)当两个方程中同一个未知数的系数成整数倍关系时,选用加减消元法 【技巧归纳】技巧1:二元一次方程组的五种特殊解法 【类型】一、引入参数法解二元一次方程组 1.用代入法解方程组: ⎩⎪⎨⎪⎧x 5+y 6=0,①3(x -y )-4(3y +x )=85.①【类型】二、特殊消元法解二元一次方程组 题型1:方程组中两未知数系数之差的绝对值相等2.解方程组:⎩⎪⎨⎪⎧2 015x +2 016y =2 017,①2 016x +2 017y =2 018.①题型2:方程组中两未知数系数之和的绝对值相等3.解方程组:⎩⎪⎨⎪⎧13x +14y =40,①14x +13y =41.②【类型】三、利用换元法解二元一次方程组 4.解方程组⎩⎪⎨⎪⎧3(x +y )+4(x -y )=20,x +y 4-x -y 2=0.【类型】四、同解交换法解二元一次方程组5.已知关于x ,y 的方程组⎩⎪⎨⎪⎧ax -by =4,3x -y =5与方程组⎩⎪⎨⎪⎧ax +by =16,4x -7y =1的解相同,求(a -b)2 018的值. 【类型】五、运用主元法解二元一次方程组6.已知⎩⎪⎨⎪⎧4x -3y -3z =0,x -3y -z =0(x ,y ,z 均不为0),求xy +2yzx 2+y 2-z 2的值.技巧2:二元一次方程组中六种类型数学思想的应用 【类型】一、整体思想 1.先阅读,然后解方程组.解方程组⎩⎪⎨⎪⎧x -y -1=0,①4(x -y )-y =5②时,由①,得x -y =1,③然后再将③代入②,得4×1-y =5,解得y =-1,从而进一步求得x =0.所以方程组的解为⎩⎪⎨⎪⎧x =0,y =-1.这种方法被称为“整体代入法”.请用这样的方法解下面的方程组:⎩⎪⎨⎪⎧2x -3y -2=0,2x -3y +57+2y =9. 2.若x +2y +3z =10,4x +3y +2z =15,求x +y +z 的值. 【类型】二、化繁为简思想3.阅读下面解方程组的方法,然后解决问题:解方程组⎩⎪⎨⎪⎧19x +18y =17,①17x +16y =15②时,我们如果直接考虑消元,会很繁琐,而采用下面的解法则是轻而易举的.解:①-②,得2x +2y =2,所以x +y =1.③ ③×16,得16x +16y =16,④②-④,得x =-1,将x =-1代入③,得y =2.所以原方程组的解是⎩⎪⎨⎪⎧x =-1,y =2.请用上述方法解方程组⎩⎪⎨⎪⎧2 018x +2 017y =2 016,2 016x +2 015y =2 014.【类型】三、方程思想4.已知(5x -2y -3)2+|2x -3y +1|=0,求x +y 的值. 5.若3x 2m+5n +9+4y 4m-2n -7=2是二元一次方程,求(n +1)m+2 018的值.【类型】四、换元思想6.解方程组⎩⎪⎨⎪⎧x +y 2+x -y 3=6,4(x +y )-5(x -y )=2.【类型】五、数形结合思想7.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知,买5束鲜花和5个礼盒共需多少元?【类型】六、分类组合思想8.若方程组⎩⎪⎨⎪⎧4x -y =5,ax +by =-1与⎩⎪⎨⎪⎧3x +y =9,3ax -4by =18有公共解,求a ,b 的值.技巧3:二元一次方程(组)的解的五种常见应用 【类型】一、已知方程(组)的解求字母的值1.若关于x ,y 的方程组⎩⎪⎨⎪⎧2x -y =m ,x +my =n 的解是⎩⎪⎨⎪⎧x =2,y =1,则|m -n|的值为( ) A .1 B .3 C .5 D .22.已知⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-4,y =2是关于x ,y 的二元一次方程2ax -by =2的两组解,求a ,b 的值.【类型】二、已知二元一次方程组与二元一次方程同解求字母的值3.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =3m ,x -y =9m 的解也是方程3x +2y =17的解,求m 的值.【类型】三、已知二元一次方程组的解满足某一关系求字母的值4.已知m ,n 互为相反数,关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =60,3x -y =8的解也互为相反数,求m ,n 的值.【类型】四、已知两个二元一次方程组共解求字母的值5.关于x ,y 的方程组⎩⎪⎨⎪⎧2x +5y =-6,ax -by =-4与⎩⎪⎨⎪⎧3x -5y =16,bx +ay =-8有相同的解,求(2a +b)2 018的值.【类型】五、已知二元一次方程组的误解求字母的值6.在解方程组⎩⎪⎨⎪⎧2ax +y =5,2x -by =13时,由于粗心,甲看错了方程组中的a ,得解为⎩⎪⎨⎪⎧x =72,y =-2;乙看错了方程组中的b ,得解为⎩⎪⎨⎪⎧x =3,y =-7.(1)甲把a 错看成了什么?乙把b 错看成了什么? (2)求出原方程组的正解. 【题型讲解】【题型】一、二元一次方程组的有关概念例1、若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的算术平方根为( )A .3B .3,-3CD【题型】二、用代入法解二元一次方程组例2、二元一次方程组224x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.31xy=⎧⎨=-⎩D.11xy=⎧⎨=⎩【题型】三、用加减法解二元一次方程组例3、由方程组+=43x my m⎧⎨-=⎩可得出x与y之间的关系是().A.x+y=1B.x+y=-1C.x+y=7D.x+y=-7【题型】四、用整体消元法解二元一次方程组例4、若方程组237351m nm n-=⎧⎨+=⎩的解是21mn=⎧⎨=-⎩,则方程组()()()()2132731521x yx y⎧+--=⎪⎨++-=⎪⎩的解是()A.11xy=⎧⎨=⎩B.11xy=⎧⎨=-⎩C.31xy=⎧⎨=⎩D.33xy=⎧⎨=-⎩【题型】五、同解方程组例5、已知关于x①y的方程组2342x yax by-=⎧⎨+=⎩,与3564x ybx ay-=⎧⎨+=-⎩,有相同的解,则a①b的值为① ①A.21ab=-⎧⎨=⎩B.12ab=⎧⎨=-⎩C.12ab=⎧⎨=⎩D.12ab=-⎧⎨=-⎩【题型】六、列二元一次方程组例6、《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为()A.2392xyxy⎧=+⎪⎪⎨⎪+=⎪⎩B.2392xyxy⎧=-⎪⎪⎨-⎪=⎪⎩C.2392xyxy⎧=+⎪⎪⎨-⎪=⎪⎩D.2392xyxy⎧=-⎪⎪⎨⎪-=⎪⎩二元一次方程组(达标训练)一、单选题1.(2022·广东·深圳外国语学校模拟预测)“绿水青山就是金山银山”,某地准备购买一些松树和柏树绿化荒山,已知购买2棵松树和3棵柏树需要120元,购买2棵松树比1棵柏树多20元,设每棵松树x 元,每棵柏树y 元,则列出的方程组正确的是( )A .23120220x y x y +=⎧⎨-=⎩B .23120220x y x y +=⎧⎨+=⎩C .23120220x y y x +=⎧⎨-=⎩D .32120220x y x y +=⎧⎨+=⎩2.(2022·天津河北·一模)方程组282x y x y+=⎧⎨=⎩的解是( )A .21x y =⎧⎨=⎩B .42x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .24x y =⎧⎨=⎩3.(2022·天津红桥·三模)方程组21230x y y x +=-⎧⎨+=⎩的解是( ).A .11x y =-⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .23x y =-⎧⎨=⎩D .23x y =⎧⎨=-⎩4.(2022·上海杨浦·二模)下列方程中,二元一次方程的是( ) A .1xy =B .210x -=C .1x y -=D .11x y+= 5.(2022·山东威海·一模)已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则2a b-的值是( ) A .2- B .2C .3D .3-二、填空题6.(2022·湖南娄底·二模)我国明代数学读本《算法统宗》一书中有这样道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果一托为5尺,那么索长与竿子长之和为______尺.7.(2022·江苏无锡·二模)已知方程组26221x y x y +=⎧⎨+=⎩,则x y +的值为______.三、解答题8.(2022·广东·广州市第一二三中学模拟预测)阅读材料:善于思考的小军在解方程组()1045x y x y y --=⎧⎪⎨--=⎪⎩①②时,采用了一种“整体代入”的解法: 解:由①得x ﹣y =1①将①代入①得:4×1﹣y =5,即y =﹣1把y=﹣1代入①得x=0,①方程组的解为1 xy=⎧⎨=-⎩请你模仿小军的“整体代入”法解方程组,解方程232235297x yx yy-=⎧⎪-+⎨+=⎪⎩.二元一次方程组(提升测评)一、单选题1.(2022·广东·江门市新会东方红中学模拟预测)若最简二次根式3a则a、b的值分别是()A.2和1B.1和2C.2和2D.1和12.(2022·福建·平潭翰英中学一模)已知12xy=⎧⎨=⎩是二元一次方程组{mx−ny=8nx+my=1的解,则43m n+的立方根为()A.±1BC.±D.1-3.(2022··二模)我们知道二元一次方程组233345x yx y-=⎧⎨-=⎩的解是31xy=⎧⎨=⎩.现给出另一个二元一次方程组2(21)3(31)33(21)4(31)5x yx y+--=⎧⎨+--=⎩,它的解是()A.123xy=-⎧⎪⎨=⎪⎩B.123xy=-⎧⎪⎨=-⎪⎩C.123xy=⎧⎪⎨=⎪⎩D.123xy=⎧⎪⎨=-⎪⎩4.(2022·福建宁德·二模)《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有二人共车九人步;三人共车,二车空.问:人与车各几何?译文:若每辆车都坐2人,则9需要步行:若每辆车都坐3人,则两辆车是空的,问:车与人各多少?设有x辆车,y人,根据题意,列方程组是()A.2932y xy x=+⎧⎨=-⎩B.293(2)y xy x=+⎧⎨=-⎩C.2932y xy x=-⎧⎨=-⎩D.()2932y xy x=-⎧⎨=-⎩5.(2022·广东·揭阳市实验中学模拟预测)如果关于x,y的方程组436626x yx my-=⎧⎨+=⎩的解是整数,那么整数m的值为()A .4,4-,5-,13B .4,4-,5-,13-C .4,4-,5,13D .4-,5,5-,13二、填空题6.(2022·江苏南通·二模)我国古代数学名著《孙子算经》中记载了一道题,原文:今有人盗库绢,不知所失几何.但闻草中分绢,人得六匹,盈六匹;人得七匹,不足七匹.问人、绢各几何?注释:(娟)纺织品的统称;(人得)每人分得;(匹)量词,用于纺织品等,(盈):剩下.若设贼有x 人,库绢有y 匹,则可列方程组为______.三、解答题7.(2022·广东·华南师大附中三模)解下列方程组: (1)1223334m nm n ⎧+=⎪⎪⎨⎪-=⎪⎩;(2)6234()5()2x y x yx y x y +-⎧+=⎪⎨⎪+--=⎩; (3)0.10.3 1.3123x y x y+=⎧⎪⎨-=⎪⎩; (4)23433x y x y ⎧=⎪⎨⎪-=⎩. 8.(2022·浙江温州·二模)为促进学生体育活动,学校计划采购一批球类器材,当每班购进5个排球和6个篮球时花费360元;购进10个排球和2个篮球时花费270元. (1)求排球和篮球的单价.(2)为扩充器材室储备,现还需购买120个排球和篮球,其中排球的数量不少于篮球数量的23,如何购买总费用最少.(3)经调查,为满足不同学生的需要,学校准备新增购进进价为每个60元的足球,篮球和排球的仍按需购进,进价不变,排球是篮球的4倍,共花费9000元,则学校至少可以购进多少个球类器材?。

二元一次方程组的概念及解法

二元一次方程组的概念及解法

二元一次方程组的概念及解法二元一次方程组是含有两个未知数,且未知数的指数都是1的方程。

当把两个二元一次方程合在一起时,就组成了一个二元一次方程组。

方程组的解是使得两个方程的未知数相等的值。

公共解是指两个方程的解都相同的值。

例如,在方程组中,是一个二元一次方程组的例子。

另外,已知二元一次方程2x-y=1,当x=2时,y=3;当y=1时,x=3.消元解法是解二元一次方程组的一种方法。

代入消元法是将一个方程中的一个未知数表示为另一个未知数的函数,然后代入另一个方程中进行消元。

加减消元法是将两个方程相加或相减,消去一个未知数,然后解出另一个未知数。

例如,方程2x-y-5=0可以表示为x=(y+5)/2,y=2x-5.另外,方程组可以用消元解法来解,例如,方程组(2x+3y=40.x-y=-5)可以用加减消元法解出x=11,y=6.举例来说,如果有一个两位数,其个位和十位数字之和为11,将其个位数字和十位数字对调后得到的数比原数大63,那么可以用代数式表示原数为(10y+x),对调后的数为(10x+y),则可以列出方程组(10y+x+63=10x+y。

x+y=11)。

解方程组可以得到x=8,y=3,因此原数为83.鸡兔同笼”问题是另一个例子,可以用二元一次方程组表示。

题目中给出了总共30个头和94只脚,因此可以列出方程组(2x+4y=30.2x+2y=94),其中x表示鸡的数量,y表示兔的数量。

解方程组可以得到x=12,y=9,因此鸡的数量为12,兔的数量为9.综上所述,二元一次方程组是含有两个未知数和未知数的指数都是1的方程组。

解二元一次方程组可以使用消元解法,包括代入消元法和加减消元法。

实际问题可以用二元一次方程组来表示,然后解方程组得出答案。

1.在方程y=-3x-2中,若x=2,则y=-8.若y=2,则x=-4.2.若方程2x-y=3写成用含x的式子表示y的形式:y=2x-3;写成用含y的式子表示x的形式:x=(y+3)/2.3.已知43=2x-3y+1,4x-15y-17=0,6x-25y-23=0,则x=3,y=-2.4.二元一次方程3x-my=4和mx+ny=3有一个公共解,则m=-4,n=3.5.已知|a-b+2|+(b-3)^2=1,那么ab=-1.6.对于方程组(1){xy= -10.x+y=-2},是二次方程组;(2){x-y=1.x/y=3/4},是一次方程组;(3){x+y=5.xy=3},是二次方程组;(4){x+y=3.x=2y},是一次方程组。

二元一次方程组求解计算x和y的解

二元一次方程组求解计算x和y的解

二元一次方程组求解计算x和y的解在数学中,二元一次方程组是由两个形如ax + by = c的方程组成的。

求解二元一次方程组的目的是找出同时满足这两个方程的x和y的值。

下面,我们将介绍一种常见的方法,即消元法,来解决二元一次方程组。

首先,我们假设有以下的二元一次方程组:方程一:ax + by = c方程二:dx + ey = f为了简化计算,我们将方程一与方程二进行数乘,使得方程一的系数与方程二的系数相等。

具体步骤如下:Step 1: 选中一个方程,用该方程的系数与另一个方程中同一变量的系数消去该变量。

Step 2: 重复Step 1,直到一个变量的系数在两个方程中相等。

Step 3: 将两个方程相减,消去该变量并求解另一个变量的值。

Step 4: 将求得的变量值代入其中一个方程,求解另一个变量的值。

假设我们选中方程一,通过数乘与方程二的系数相等,我们可以得到:a(dx + ey) = adx + aey = acc(dx + ey) = cdx + cey = cf然后,我们将方程一与方程二相减,消去x这一变量:adxy + aey^2 - cdx - cey = ac - cf(ad - cd)x + (ae - ce)y = ac - cf现在,我们得到了一个只包含y的一次方程:(ad - cd)x + (ae - ce)y= ac - cf接下来,我们将解这个一次方程,求解y的值。

假设(ad - cd) ≠ 0,则可求得:y = (ac - cf) / (ad - cd)一旦求得y的值,我们可以将其代入方程一或方程二,求解x的值。

假设(ad - cd) ≠ 0,并代入方程一,我们可以得到:ax + by = cax + b[(ac - cf) / (ad - cd)] = cax(ad - cd) + b(ac - cf) = c(ad - cd)a^2dx - acdx + acby - bcf = cad - c^2da^2dx - acdx = cad - c^2d - acby + bcfx(ad - ac) = cad - c^2d - acby + bcfx = (cad - c^2d - acby + bcf) / (ad - ac)现在,我们已经求得了x和y的解。

二元一次方程组及其解法第4课时 解有分母、小数的二元一次方程组(安徽)

二元一次方程组及其解法第4课时 解有分母、小数的二元一次方程组(安徽)
解:yx==3208,
3x4-2+2y- 5 1=2,① (4)3x4+6-2y+ 5 4=1.②
解:yx==32,
9.对于任意有理数x,y,定义新运算:x※y=ax+by-3(其中a,b是常
数).已知1※2=9,(-3)※3=6,则a+b的值为(
)B
A.3 B.7 C.11 D.15
10.如果方程组axx=+3b,y=5的解与方程组byx=+4, ay=2的解相同,则 a,
沪科版
第3章 一次方程与方程组
3.3 二元一次方程组及其解法
第4课时 解有分母、小数的二元一次方程组
知识点❶:用适当的方法解二元一次方程组[0考/8年]
1.解二元一次方程组的基本思路是(
)C
A.代入法 B.加减法
C.化“二元”为“一元” D.代入法或加减法
2.解方程组①y7=x+x-5y3=,9,②33xx-+155yy==1-2,6,比较简便的方法是
(C )
A.都用代入法 B.都用加减法 C.①用代入法,②用加减法 D.①用加减法,②用代入法
3.解方程组2xx++y= y=1106,若用代入法解可把第一个方程变为 ____y_=__10_-__x__ __或__x_=__1_0-__y______代入第二个方程中消元;若用加减 法解方程组,可直接把两个方程__相__减__ __消去__y____,无论哪种方法,总 能得到该方程组的解是 x=6,
14.甲、乙两人同时解方程组2mxx-+nyy==51,3,①②甲解题看错了①中

m,解得x=72, 乙解题时看错②中的 y=-2,
n,解得xy==-3,7,试求原
方程组的解.
解:(1)把xy==- 72,2代入②得:7+2n=13,解得:n=3,把yx==-3,7代入
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设樟树苗为x棵,白杨树苗为y棵, 根据两种树苗的总数为45棵,得
x y 45
等量关系:树苗的总棵树

又根据购买树苗的总费用是60元,得
2x y 60

等量关系:购买树苗的总费用
活动二 牛刀小试:
抢答题:它们是二元一次方程吗? (1) 3-2x =1 (3) 3x 1 不是
解:设60分的邮票买了x枚,80分的邮票买了y枚. 根据两种邮票的总数为10枚,得
x y 10
60x 80y 720
由联立起来,可得

又根据购买邮票的总费用为7元2角,得
x y 10
60x 80y 720
1、如图,已知等腰三角形ABC,其周长为12;设AB =x, BC=y; A B C
作业的布置:习题3.3 第1题、第
2题、第3题、第4题
“一切问题都可以转化为数学问题, 一切数学问题都可以转化为代数问题,而 一切代数问题又都可以转化为方程问题, 因此,一旦解决了方程问题,一切问题将 迎刃而解!” ------笛卡儿[Descartes, Rene du Perron, 1596-1650 ]

等量关系:购买树苗的总费用
这里的x、y既要满足树苗总棵树关系①,又要满足购 买树苗总费用关系②,就是说未知数x,y必须同时满 足上面①②两个关系.因此,我们用大括号将这两个 方程联立起来,即
由两个一次方程组成的含两个未知数的方 程组叫作二元一次方程组.
活动三
1.小华买了60分与80分的邮票共10枚,花 了7元2角,那么,60分和80分的邮票各买 了多少枚?
2
2 (2) x y 0 不是
y 不是 (4)
1 y x 2
不是
x y (5) 2y 0 是 3
(6) 2x+y+z=1 不是
解:设樟树苗为x棵,白杨树苗为y棵,根 据两种树苗的总数为45棵,得
x y 45
等量关系:树苗的总棵树

又根据购买树苗的总费用是60元,得
2x y 60
求:列出关于x、y的二元一次方程.
( 4)3、已知二元一次方程 3x+y=10.
(1)用关于x的代数式表示y. (2)用关于y的代数式表示x.
解:移项,得3x =10 - y

x=
10 - y 3
• 课堂小结
活动五
• 通过这节课,我们学习了哪些数学知识?运用 了哪些方法?有什么心得体会?
3.3.1 二元一次方程组及其解
鸡兔同笼
今有鸡兔同笼, 上有三十五头, 下有九十四足, 问鸡兔各几何?
鸡兔同笼
这个实际问题中一共含有哪些等量关系?
鸡头+兔头=35 鸡脚+兔脚=94
二元一次方程的定义: 含有两个未知数,且含有未知 数的项的次数都是一次的整式 方程叫做二元一次方程。
活动一
某班同学在植树节时植樟树和白杨树共45棵,已知樟 树苗每棵2元,白杨树苗每棵1元,购买这些树苗用了 60元.问樟树苗、白杨树苗各买了多少棵?
相关文档
最新文档