按力的作用效果分解

合集下载

《力的分解》 导学案

《力的分解》 导学案

《力的分解》导学案一、学习目标1、理解力的分解的概念,知道力的分解是力的合成的逆运算。

2、掌握力的分解遵循的平行四边形定则。

3、能够根据实际情况,按照力的作用效果确定分力的方向。

4、会用直角三角形知识求解分力的大小。

二、学习重难点1、重点(1)理解力的分解的概念和遵循的定则。

(2)掌握根据力的作用效果确定分力方向的方法。

2、难点(1)力的分解具有多解性的分析。

(2)实际问题中力的分解的应用。

三、知识链接1、力的合成:求几个力的合力的过程叫做力的合成。

力的合成遵循平行四边形定则。

2、平行四边形定则:以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向。

四、学习过程(一)力的分解的概念1、引入观察生活中的一些现象,比如用绳子斜拉物体、用扁担挑重物等,思考一个力可以产生不同的效果,从而引出力的分解的概念。

2、定义已知一个力求它的分力的过程叫做力的分解。

3、力的分解与力的合成的关系力的分解是力的合成的逆运算,同样遵循平行四边形定则。

(二)力的分解的方法1、按力的作用效果分解(1)分析实例例如,放在斜面上的物体,受到重力的作用,重力产生两个作用效果:一是使物体沿斜面下滑,二是使物体压紧斜面。

(2)确定分力方向根据力的作用效果,确定分力的方向。

对于放在斜面上的物体,下滑分力的方向沿斜面向下,压紧斜面分力的方向垂直于斜面向下。

(3)作出平行四边形以已知力为对角线,根据分力方向作出平行四边形。

(4)求解分力大小利用数学知识(如三角函数)求解分力的大小。

2、正交分解法(1)概念将一个力分解为相互垂直的两个分力的方法。

(2)步骤①建立直角坐标系:通常以物体的运动方向或受力方向为坐标轴。

②把力沿坐标轴分解:分别求出力在两个坐标轴上的分力。

(三)力的分解的多解性1、已知合力和两个分力的方向,有唯一解。

2、已知合力和一个分力的大小和方向,有唯一解。

3、已知合力和一个分力的大小及另一个分力的方向,可能有两解、一解或无解。

力的分解与正交分解

力的分解与正交分解

F2
F
sin
θ
F1
NEXT

第五节
力的分解
2、具体实例
例3:按力的作用效果分解并根据图示求分力的大小。
60
o
30
o
F2 F1
sin 30
o
G1 G G2 G
G1 G sin 30
o
G 2
F1
G1
30
o
G2
cos 30
o
G 2 G cos 30
o
3 2
F


Fx F cos
x
物体处于平衡态满足方程为:
F y合 0
Fx合 0
NEXT

第五节
力的分解
4、正交分解法
(2)例1:如图,重为500N的人通过滑轮的轻绳牵引重200N的物 体,当绳与水平成60o角时,物体静止,不计滑轮与绳子的摩擦, 求地面对人的支持力和摩擦力。
y
FT 1 FT cos 100 N FT 2 FT sin 100 3 N FT
NEXT

第五节
力的分解
2、具体实例
例题1.把一个物体放在倾角为θ 的斜面上,物体并没有在 重力作用下竖直下落,从力的作用效果看,应怎样将重力分解 ?两个分力的大小与倾角有什么关系?
G1
sin
G1 G G2 G
G1 G sin G 2 G cos

G
G2
cos
NEXT

第五节
力的分解
2、具体实例
例1:按力的作用效果分解并根据图示求分力的大小。
sin cos

三力平衡的求解方法

三力平衡的求解方法
将重力G按效果分解图丙中所示的两分力G1和G2 解三角形可得: FN1=G1=mgtan α 球对挡板的压力FN1′=FN1=mgtan α.
解法四:(三角形法则):
所受三个力经平移首尾顺次相接,一定能
构成封闭三角形.
由三角形解得: FN1=mgtan α,
挡板受压力FN1′=FN1=mgtan α.
力的三角 形法
题型:三力平衡问题 例1.如图所示,在倾角为α 的斜面上, 放一质量为m的小球,小球被竖直 的木板挡住,不计摩擦,则球对挡板 的压力是( A.mgcos α C. mg
cosα
) B.mgtan α D.mg

【思路点拨】先对小球进行正确的受力分析,并画出 受力示意图,然后将某些力分解或合成,最后列平衡 方程求解.
三力平衡的几种求解方法

解决三共点力平衡问题常用的方法
方法 正交分解 法 合成法 分解法 内容 将处于平衡状态的物体所受的力,分解为相互正 交的两组,每一组的力都满足二力平衡条件 物体受三个力的作用,任意两个力的合力与第三 个平衡 . 将某一个力按力的效果进行分解,则其分力和其 它力在所分解的方向上满足平衡条件. 物体受三个力作用,将这三个力的矢量箭头首尾 相接,构成一个闭合三角形,利用三角形定则, 根据正弦定理、余弦定理或矢量三角形与几何三 角形相似等数学知识可求解。
解法一:(正交分解法): 列平衡方程为FN1=FN2sin α mg=FN2cos α 可得:球对挡板的压力FN1′=FN1=mgtanα,所以B正确.
解法二:(力的合成法): FN1 =mgtan α, 球对挡板的压力FN1′=FN1=mgtan α.所以B正确.
解法三:(按力的作用效果分解):

力的合成与分解 三力平衡的几种典型解法

力的合成与分解 三力平衡的几种典型解法
• 课题:
力的合成与分解 三力平衡的几种典型解法



一、力的合成: 1.合力、分力、共点力、力的合成的概念 2.合力与分力的关系是等效替代的关系。 3.力的合成的运算法则是平行四边形定则或者 三角形定则 4.其它矢量的运算也遵守平行四边形定则或者 三角形定则
思考: 1.生活中人们常说这样一句话“大家要心往一处 想,劲往一处使,形成合力”,在这句话中的 “合力”与我们物理语言中的“合力”意义一 样吗? 2.物理语言中的“合力”一定比“分力”大吗? 为什么要进行力的合成或分解?


• 力的分解类型:
(1)已知合力和两个分力的方向,求两个分力 的大小.有1组解。 (2)已知合力和一个分力的大小和方向,求另 一个分力的大小和方向.有1组解。
(3)已知合力、一个分力的方向和另一分力的 大小,这时则有如下的几种可能情况: ①第一种情况是F≥F2>Fsinα ,则有两组解. ②第二种情况是F2=Fsinα 时,则有一组解. ③第三种情况是F2<Fsinα 时,则无解,因为 此时按所给的条件无法组成力的三角形. ④第四种情况是F2>F时,则有一组解.
例题2(学生版32页 3.): 两个共点力的合力为F,如果它们之间的夹角 θ固定不变,使其中一个力增大,则 ( ) A.合力F一定增大 B.合力F的大小可能不变 C.合力F可能增大,也可能减小 D.当0<θ<90°时,合力F一定减小
如右图所示,质量均为 m 的小球 A、B 用两根不可伸长的 轻绳连接后悬挂于 O 点,在外力 F 的作用下,小球 A、B 处于 静止状态.若要使两小球处于静止状态且悬线 OA 与竖直方向 的夹角 θ 保持 30° 不变,则外力 F 的大小 ( )
力的合成与分解方法的选择: 力的合成法、力的效果分解法、正交分解法都 是常见的解题方法。 一般情况下,物体只受三个力时,采用力的合 成法、力的效果分解法解题较为简单,可以利用 力的三角形中的几何关系或三角形相似求解;而 物体受三个以上力时多数采用正交分解法. 三力平衡的情况下,常采用以下3种典型解法: 解析法、图解法、相似形法。若三力中两力的大 小相等或方向垂直,一般采用正交分解法较为简 捷。

三力平衡的求解方法

三力平衡的求解方法
挡板受压力FN1′=FN1=mgtan α.
以上有不当之处,请大家给与批评指正, 谢谢大家!
9
力的三角 形法
物体受三个力作用,将这三个力的矢量箭头首尾 相接,构成一个闭合三角形,利用三角形定则, 根据正弦定理、余弦定理或矢量三角形与几何三 角形相似等数学知识可求解。
题型:三力平衡问题
例1.如图所示,在倾角为α的斜面上,
放一质量为m的小球,小球被竖直
的木板挡住,不计摩擦,则球N1 =mgtan α,
球对挡板的压力FN1′=FN1=mgtan α.所以B正确.
解法三:(按力的作用效果分解):
将重力G按效果分解图丙中所示的两分力G1和G2 解三角形可得: FN1=G1=mgtan α
球对挡板的压力FN1′=FN1=mgtan α.
解法四:(三角形法则): 所受三个力经平移首尾顺次相接,一定能 构成封闭三角形. 由三角形解得: FN1=mgtan α,
A.mgcos α
B.mgtan α
C. mg
D.mg
cosα
【思路点拨】先对小球进行正确的受力分析,并画出 受力示意图,然后将某些力分解或合成,最后列平衡 方程求解.
解法一:(正交分解法): 列平衡方程为FN1=FN2sin α mg=FN2cos α
可得:球对挡板的压力FN1′=FN1=mgtanα,所以B正确.
三力平衡的几种求解方法

解决三共点力平衡问题常用的方法
方法 正交分解
法 合成法
分解法
内容
将处于平衡状态的物体所受的力,分解为相互正 交的两组,每一组的力都满足二力平衡条件
物体受三个力的作用,任意两个力的合力与第三 个平衡 .
将某一个力按力的效果进行分解,则其分力和其 它力在所分解的方向上满足平衡条件.

力的分解教案(精选7篇)

力的分解教案(精选7篇)

力的分解教案(精选7篇)力的分解教案第1篇一、课标要求通过观察与体验认识力的作用效果,学会根据力的作用效果对力进行分解,会用力的分解分析解决生活中的实际问题。

二、教学分析在教材中的地位和作用在学此节内容之前学生已经学习了力的概念、力的表示及分类、力学中的三种力、力的合成。

力的分解是等效思想的具体应用,等效思想是物理学重要的思想方法之一,学习力的合成时学生已有所了解,本节教学要注意让学生进一步了解和运用等效思想。

矢量是完全不同于标量的一类物理量,它的运算遵循平行四边形定则。

通过力的合成与分解掌握力的平行四边形定则,为位移、速度、加速度、电场强度、磁感应强度等矢量的学习、为牛顿定律乃至整个高中物理的学习奠定了基础。

应用数学知识解决物理问题的能力是高中物理要求的五种基本能力之一,本节内容要求学生要会运用平行四边形、直角三角形、菱形等数学知识计算分力的大小,因此教学中要有意识的培养学生的知识迁移能力。

综上所述,本节内容是本章的重点也是难点,也是整个高中物理的基础之一。

学生情况分析学生通过前几节的学习已经对力的基本概念和表示方法、力学中常见的三种力、合力与分力的等效替代关系有了一定的认识,形成了一定的认知结构,并通过力的合成方法认识了力的平行四边形定则,初步学会了应用几何知识解决力学问题,为本节课的学习奠定了基础。

三、设计思想课时安排考虑到学生的认知基础及本节内容的重要性和认知难度,笔者将本节内容分两课时处理,把“根据力的作用效果分解力”作为该节的第一课时内容。

两类知识及教学策略按照现代认知派关于知识的分类,笔者将本课时的新授知识和需要用到的原有知识分类如下:陈述性知识:力的作用效果──改变物体的运动状态,使物体发生形变。

力的平行四边形定则。

力的分解的概念──已知合力求分力。

其中力的分解的概念是新授课的陈述性知识。

对于陈述性知识,笔者采用的教学策略主要是:根据维果茨基的最邻近发展区理论,学生原有知识越多就可能学得越多,新学知识与原有知识之间的差异就是学生的最近发展区,为了让学生高效地掌握新授知识必须在新授知识与原有知识之间架设好桥梁。

高中物理必修1:3.5.2力的分解原则方法及其应用

高中物理必修1:3.5.2力的分解原则方法及其应用
重力分解为: 使物体拉紧AO线、BO线的分力F1、F2, 大小相等,F1=F2=mg/(2sinα)
拉力分解为: 拉伸AB的分力F1=Ftanα 压缩BC的分力F2=mg/cosα
力的分解的原则和方法
1. 具体问题中将一个力分解为两个分力,一般根据这个力在该问题 中的实际效果,这就要求在力的分解之前必须搞清楚力的效果,也 就搞清了分力的方向,而搞清了分力的方向后,分解将是唯一的.
A. Fsinα B. Fcosα C. Ftanα D. F/tanα
B
例2 人们短途出行、购物的简便双轮小车如图所示,若小车在匀速
行驶的过程中支架与水平方向的夹角保持不变,不计货物与小车间
的摩擦力,则货物对杆A、B的压力大小之比FA:FB为 ( )
A. 1: 3 C. 2:1
B. 3 :1 D. 1:2
C. F3
D. F4
G
B
解析: 鸟沿虚线斜向上加速飞行,加速度沿着虚线向上,故合力F沿着虚线向 上。鸟受重力和空气对它的作用力,根据三角形定则作图如图所示,可 知选项B正确。
练习 水平横梁一端插在墙壁内,另一端装小滑轮B.轻绳的一端C固
定于墙壁上,另一端跨过滑轮后悬挂一质量m=10kg的重物,
∠CBA=30°,则滑轮受到绳子的作用力大小为(g取10 m/s2)( )
F1
F
F2
力的分解的原则和方法
2. 力的分解问题的关键是根据力的作用效果,画出力的平行四边形, 接下来就转化为一个根据已知边角关系求解的几何问题.分解时尽 量出现直角、等力的条件,这样可以简化计算.
例1 如图所示,拖拉机拉着耙耕地、拉力F与水平方向成α角,若 将该力沿水平和竖直方向分解,则它的水平分力为( )

4-2 力的分解(解析版)

4-2  力的分解(解析版)

4.2 力的分解考点精讲考点1:分力力的分解1.力的分解原则(1)一个力分解为两个力,从理论上讲有无数组解.因为同一条对角线可以构成的平行四边形有无穷多个(如图所示).(2)把一个力分解成两个分力,仅是一种等效替代关系,不能认为在这两个分力方向有两个施力物体(或受力物体).(3)也不能错误地认为F2就是物体对斜面的压力,因为F2不是斜面受到的力,且性质与压力不同,仅在数值上等于物体对斜面的压力.(4)实际分解时,按力的作用效果可分解为两个确定的分力.2.按实际效果分解的几个实例(1)重力的两个效果:①使球压紧竖直墙壁的分力F1①使球拉紧悬线的分力F2(2)分力大小:F1=mg tan α,F2=mgcos α(1)重力的两个效果:①对OA的拉力F1①对OB的拉力F2(2)分力大小:F1=mg tan α,F2=mgcos α(1)重力的两个效果:①拉伸AB的分力F1①压缩BC的分力F2(2)分力大小:F1=mg tan α,F2=mgcos α【例1】将一个有确定方向的力F=10 N分解成两个分力,已知一个分力F1有确定的方向,与F成30°夹角,另一个分力F2的大小为6 N,则在分解时()A.有无数组解B.有两组解C.有唯一解D.无解【解析】B由已知条件可得F sin 30°=5 N,又5 N<F2<10 N,即F sin 30°<F2<F,所以F1、F2和F可构成如图所示的两个三角形,故此时有两组解,选项B正确.【例2】如图所示,光滑斜面的倾角为θ,有两个相同的小球分别用光滑挡板A、B挡住,挡板A沿竖直方向,挡板B垂直于斜面,则两挡板受到小球的压力大小之比为多大?斜面受到两小球的压力大小之比为多大?【解析】对小球1所受的重力来说,其效果有二:第一,使小球沿水平方向挤压挡板;第二,使小球垂直压紧斜面.因此,力的分解如图甲所示,由此可得两个分力的大小分别为F1=G tan θ,F2=Gcos θ.对小球2所受的重力G来说,其效果有二:第一,使小球垂直挤压挡板;第二,使小球垂直压紧斜面.因此,力的分解如图乙所示,由此可得两个分力的大小分别为F3=G sin θ,F4=G cos θ.由力的相互性可知,挡板A、B受到小球的压力之比为F1①F3=1①cos θ,斜面受到两小球的压力之比为F2①F4=1①cos2θ.甲 乙【技巧与方法】力的分解的原理与步骤1. 原理:若两个力共同作用的效果与某一个力作用时的效果完全相同,则可用这两个力“替代”这一个力.2. 步骤① 根据已知力的实际效果确定两个分力的方向.① 根据两个分力的方向作出力的平行四边形,确定表示分力的有向线段. ① 利用数学知识解平行四边形或三角形,计算分力的大小和方向. 【针对训练】1.(多选)一根长为L 的易断的均匀细绳,两端固定在天花板上的A 、B 两点.若在细绳的C 处悬挂一重物,已知AC >CB ,如图所示,则下列说法中正确的是( )A .增加重物的重力,BC 段先断B .增加重物的重力,AC 段先断 C .将A 端往左移比往右移时绳子容易断D .将A 端往右移比往左移时绳子容易断【解析】AC 研究C 点,C 点受重物的拉力,其大小等于重物的重力,即T =G .将重物对C 点的拉力分解为对AC 和BC 两段绳的拉力,其力的平行四边形如图所示.因为AC >CB ,得F BC >F AC .当增加重物的重力G 时,按比例F BC 增大得较多,所以BC 段绳先断,因此A 项正确,B 项错误.将A 端往左移时,F BC 与F AC 两力夹角变大,合力T 一定,则两分力F BC 与F AC 都增大.将A 端向右移时两分力夹角变小,两分力也变小,由此可知C 项正确,D 项错误.故选A 、C.2.甲、乙两人用绳子拉船,使船沿OO ′方向航行,甲用1 000 N 的力拉绳子,方向如图所示,要使船沿OO ′方向航行,乙的拉力最小值为( )A .500 3 NB .500 NC .1 000 ND .400 N【解析】B 要使船沿OO ′方向航行,甲和乙的拉力的合力方向必须沿OO ′方向.如图所示,作平行四边形可知,当乙拉船的力的方向垂直于OO ′时,乙的拉力F 乙最小,其最小值为F 乙min =F 甲sin 30°=1 000×12N =500 N ,故B 正确.考点2:力的正交分解1.正交分解的适用情况:适用于计算三个或三个以上共点力的合成.2.正交分解的目的:将力的合成化简为同向、反向或垂直方向的分力,便于运用普通代数运算公式解决矢量的运算,“分”的目的是为了更好地“合”.3.力的正交分解的依据:分力与合力的等效性. 4.正交分解的基本步骤(1)建立坐标系:以共点力的作用点为坐标原点,直角坐标系x 轴和y 轴的选择应使尽量多的力落在坐标轴上.(2)正交分解各力:将每一个不在坐标轴上的力分解到x 轴和y 轴上,并求出各分力的大小,如图所示.(3)分别求出x 轴、y 轴上各分力的合力,即: F x =F 1x +F 2x +… F y =F 1y +F 2y +…(4)求共点力的合力: 合力大小F =F 2x +F 2y ,合力的方向与x 轴的夹角为α,则tan α=F yF x,即α=arctanF yF x. 【例3】 在同一平面内共点的四个力F 1、F 2、F 3、F 4的大小依次为19 N 、40 N 、30 N 和15 N ,方向如图所示,求它们的合力.(sin 37°=0.6,cos 37°=0.8)【分析】当物体受多个力作用时,一般采用正交分解法求解,可按以下思路: 建立坐标系→分解各力→求F x 、F y →求F 合【解析】如图甲,建立直角坐标系,把各个力分解到这两个坐标轴上,并求出x 轴和y 轴上的合力F x和F y ,有甲F x =F 1+F 2cos 37°-F 3cos 37°=27 N , F y =F 2sin 37°+F 3sin 37°-F 4=27 N.因此,如图乙所示,合力:乙F =F 2x +F 2y≈38.2 N ,tan φ=F y F x=1. 即合力的大小约为38.2 N ,方向与F 1夹角为45°斜向右上. 【答案】38.2 N ,方向与F 1夹角为45°斜向右上【技巧与方法】正交分解时坐标系的选取原则与方法(1)原则:用正交分解法建立坐标系时,通常以共点力作用线的交点为原点,并尽量使较多的力落在坐标轴上,以少分解力为原则.(2)方法:应用正交分解法时,常按以下方法建立坐标轴. ① 研究水平面上的物体时,通常沿水平方向和竖直方向建立坐标轴. ① 研究斜面上的物体时,通常沿斜面方向和垂直斜面方向建立坐标轴.① 研究物体在杆或绳的作用下转动时,通常沿杆(或绳)方向和垂直杆(或绳)的方向建立坐标轴. 【针对训练】3.如图所示,一物块置于水平地面上,当用与水平方向成60°角的力F 1拉物块时,物块做匀速直线运动;当改用与水平方向成30°角的力F 2推物块时,物块仍做匀速直线运动.若F 1和F 2的大小相等,则物块与地面之间的动摩擦因数为( )A.3-1 B .2-3 C.32-12D .1-32【解析】B 将两种情况下的力沿水平方向和竖直方向正交分解,因为两种情况下物块均做匀速直线运动,故有F 1cos 60°=μ(mg -F 1sin 60°),F 2cos 30°=μ(mg +F 2sin 30°),再由F 1=F 2,解得μ=2-3,故B 正确.4.大小均为F 的三个力共同作用在O 点,如图所示,F 1、F 3与F 2之间的夹角均为60°,求它们的合力.【解析】 以O 点为原点、F 1的方向为x 轴正方向建立直角坐标系.分别把各个力分解到两个坐标轴上,如图所示.F 1x =F 1,F 1y =0,F 2x =F 2cos 60°,F 2y =F 2sin 60°,F 3x =-F 3cos 60°,F 3y =F 3sin 60°,x 轴和y 轴上的合力分别为F x =F 1x +F 2x +F 3x =F 1+F 2cos 60°-F 3cos 60°=F ,F y =F 1y +F 2y +F 3y =0+F 2sin 60°+F 3sin 60°=3F ,求出F x 和F y 的合力即是所求的三个力的合力,如图所示.F 合=F 2x +F 2y ,代入数据得F 合=2F ,tan θ=F yF x =3,所以θ=60°,即合力F 合与F 2的方向相同. 【答案】 2F ,与F 2的方向相同考点达标一、选择题1.关于共点力,下列说法中不正确的是( )A .作用在一个物体上的两个力,如果大小相等,方向相反,这两个力是共点力B .作用在一个物体上的两个力,如果是一对平衡力,则这两个力是共点力C .作用在一个物体上的几个力,如果它们的作用点在同一点上,则这几个力是共点力D .作用在一个物体上的几个力,如果它们的作用线交于同一点,则这几个力是共点力【解析】A 共点力是几个力作用于同一点或力的作用线相交于同一点的力.若受两个力平衡的物体,则物体所受的必定是共点力,所以A 错,B 、C 、D 对.2.如图所示,F 1、F 2为两个相互垂直的共点力,F 是它们的合力,已知F 1的大小为6 N ,F 的大小等于10 N ,若改变F 1、F 2的夹角,则它们的合力大小还可能是( )A.0B.8 NC.16 N D.18 N【解析】B F1、F2为两个相互垂直的共点力,合力F的大小等于10 N,所以根据勾股定理可得,F2=F2-F21=102-62N=8 N,两力合成时,合力范围为:|F1-F2|≤F≤F1+F2,故2 N≤F≤14 N,所以还可能是B选项.3.下列图中,F1、F2、F3恰好构成封闭的直角三角形,这三个力的合力最大的是()A B C D【解析】C由矢量合成法则可知A图的合力为2F3,B图的合力为0,C图的合力为2F2,D图的合力为2F3,因F2为直角三角形的斜边,故这三个力的合力最大的为C图.4.有三个力,大小分别为13 N、3 N、29 N.那么这三个力的合力最大值和最小值应该是()A.29 N,3 N B.45 N,0 NC.45 N,13 N D.29 N,13 N【解析】C当三个力同方向时,合力最大,为45 N;任取其中两个力,如取13 N、3 N两个力,其合力范围为10 N≤F≤16 N,29 N不在该范围之内,故合力不能为零,当13 N、3 N的两个力同向,与29 N的力反向时,合力最小,最小值为13 N,则C正确,A、B、D错误.5.如图所示的水平面上,橡皮绳一端固定,另一端连接两根弹簧,F1、F2和F3三个力的合力为零.下列判断正确的是()A.F1>F2>F3B.F3>F1>F2C.F2>F3>F1D.F3>F2>F1【解析】B三个力的合力为零,即F1、F2的合力F3′与F3等大反向,三力构成的平行四边形如图所示,由数学知识可知F3>F1>F2,B正确.6.如图所示为两个共点力的合力F的大小随两分力的夹角θ变化的图像,则这两个分力的大小分别为()A .1 N 和4 NB .2 N 和3 NC .1 N 和5 ND .2 N 和4 N【解析】B 由题图知,两力方向相同时,合力为5 N .即F 1+F 2=5 N ;方向相反时,合力为1 N ,即|F 1-F 2|=1 N .故F 1=3 N ,F 2=2 N ,或F 1=2 N ,F 2=3 N ,B 正确.二、非选择题7.如图所示,有五个力作用于同一点O ,表示这五个力的有向线段恰分别构成一个正六边形的两邻边和三条对角线.已知F 1=10 N ,则这五个力的合力大小为多少?【解析】 方法一:巧用对角线特性.如图甲所示,根据正六边形的特点及平行四边形定则知:F 2与F 5的合力恰好与F 1重合;F 3与F 4的合力也恰好与F 1重合;故五个力的合力大小为3F 1=30 N.甲 乙方法二:利用对称法.如图乙所示,由于对称性,F 2和F 3的夹角为120°,它们的大小相等,合力在其夹角的平分线上,故力F 2和F 3的合力F 23=2F 2cos 60°=2(F 1cos 60°)cos 60°=F 12=5 N .同理,F 4和F 5的合力也在其角平分线上,由图中几何关系可知:F 45=2F 4cos 30°=2(F 1cos 30°)cos 30°=32F 1=15 N .故这五个力的合力F =F 1+F 23+F 45=30 N.巩固提升一、选择题1.某物体所受n 个共点力的合力为零,若把其中一个力F 1的方向沿顺时针方向转过90°,并保持其大小不变,其余力保持不变,则此时物体所受的合力大小为 ( )A .F 1 B.2F 1 C .2F 1D .0【解析】B 物体所受n 个力的合力为零,则其中n -1个力的合力一定与剩下来的那个力等大反向,故除F 1以外的其他各力的合力的大小也为F 1,且与F 1反向,故当F 1转过90°时,合力应为2F 1,B 正确.2.一根细绳能承受的最大拉力是G,现把一重为G的物体系在绳的中点,分别握住绳的两端,先并拢,然后缓慢地左右对称地分开,若要求绳不断,则两绳间的夹角不能超过()A.45° B.60°C.120° D.135°【解析】C由于细绳是对称分开的,因而两绳的拉力相等,为保证绳不断,两绳拉力的合力大小等于G,随着两绳夹角的增大,两绳中的拉力增大,当两绳的夹角为120°时,绳中拉力刚好等于G.故C正确,A、B、D错误.3.如图所示,物体M在斜向右下方的推力F作用下,在水平地面上恰好做匀速运动,则推力F和物体M受到的摩擦力的合力方向()A.竖直向下B.竖直向上C.斜向下偏左D.斜向下偏右【解析】A物体M受四个力作用(如图所示),支持力F N和重力G的合力一定在竖直方向上,由平衡条件知,摩擦力F f和推力F的合力与支持力F N和重力G的合力必定等大反向,故F f与F的合力方向竖直向下.4.手握轻杆,杆的另一端安装有一个轻质小滑轮C,支撑着悬挂重物的绳子,如图所示,现保持滑轮C的位置不变,使杆向下转动一个角度,则杆对滑轮C的作用力将()A.变大B.不变C.变小D.无法确定【解析】B物体的重力不变,那么绳子的拉力大小仍然等于物体的重力,保持滑轮C的位置不变,即两段绳子间的夹角不变,所以两绳子拉力的合力不变,轻质滑轮的重力不计,所以两绳子拉力的合力与杆对滑轮C的作用力等大反向,所以杆对滑轮C的作用力不变,故选B.二、非选择题5.如图所示,一条小船在河中向正东方向行驶,船上挂起一风帆,帆受侧向风作用,风力大小F1为100 N,方向为东偏南30°,为了使船受到的合力能恰沿正东方向,岸上一人用一根绳子拉船,绳子取向与河岸垂直,求出风力和绳子拉力的合力大小及绳子拉力F2的大小.【解析】如图所示,以F 1、F 2为邻边作平行四边形,使合力F 沿正东方向, 则F =F 1cos 30°=100×32N =50 3 N. F 2=F 1sin 30°=100×12N =50 N.6.(13分)如图所示,两根相同的橡皮条OA 、OB ,开始时夹角为0°,在O 点处打结吊一重50 N 的物体后,结点O 刚好位于圆心.现将A 、B 分别沿圆周向两边移到A ′、B ′,使①AOA ′=①BOB ′=60°.欲使结点仍为圆心处,则此时结点处应挂多重的物体?【解析】根据在原位置时物体静止,求出橡皮条的拉力.由于变化位置后结点位置不变,因此每根橡皮条的拉力大小不变,但是方向变化.设OA 、OB 并排吊起重物时,橡皮条产生的弹力均为F ,则它们产生的合力为2F ,且与G 1平衡,所以F =G 12=502 N =25 N .当A ′O 、B ′O 夹角为120°时,橡皮条伸长不变,橡皮条产生的弹力仍为25 N ,两根橡皮条互成120°角,所以合力的大小为25 N ,即应挂的重物重25 N.。

对“按力的实际效果分解”说法的质疑

对“按力的实际效果分解”说法的质疑

对“按力的实际效果分解”说法的质疑高考物理一、问题的缘起在处理《相互作用》一章“力的分解”问题时,几乎所有教辅资料和绝大多数教师都提到过一种说法——“力可以按实际产生的效果来分解”,并且除了举下图所示两个基本例子之外,①②还举了如下一些重力分解的实例——而从教学效果来说,这些分解方式学生接受和掌握的情况并不好,因此很多老师除了在该节讲过这种分解方式之后,就几乎再也不用它了,而是用的正交分解或者闭合矢量三角形处理相关问题。

③④⑤⑥上述分解方式的难点在于,学生很难想象出重力的两个所谓的“实际效果”,即便老师进行了如第三幅图一样的实验,拿到新的问题时,学生还是束手无策——实际上,学生很难接受重力产生了这样的两个“实际效果”,尤其是竖直方向的重力如何产生水平方向的效果!其实,更根本的问题时,重力真的产生了这样的“实际效果”了吗?所谓“按力的实际效果分解”这个说法真的就科学吗?二、效果都是想象出来的笔者认为,分力的效果和分运动的效果,都是想象出来的,都是根据研究问题的需要或者个人思维习惯想象出来的。

下面以前述③④的两个例子来说明我的看法。

【例1】如右图所示,物块受到三个力的作用而静止在斜面上,有些老师喜欢按前述方式分解,并认为是重力产生了使物体挤压挡板和挤压斜面的两个效果。

但实际上,我们也可以水平、竖直分解F N 1和F N 2,并认为,重力的效果就是使物体竖直下落,但是F N 1和F N 2的竖直分量平衡了重力的这种效果,而F N 1和F N 2的水平分量彼此平衡。

很显然,后一种想象,学生好理解的多,不过计算上是稍复杂点儿。

另外,如右图所示,本题还通常将力往平行斜面和垂直斜面方向分解;这时,我们也能说出明显的效果——重力G 平行斜面向下的分量使物体有下滑趋势,此时挡板挡住了物体,给物体一个弹力F N 2,其平行斜面分量与重力平行斜面分量平衡。

而重力G 和F N 2垂直斜面分量均使物体压向斜面,从而使斜面向下形变而给物体一个支持力F N 1。

力的分解教案(5篇)

力的分解教案(5篇)

力的分解教案(5篇)高一物理力的分解教案篇一知识目标1、能够运用力的平行四边形定则求解一个已知力的分力;2、会用三角形法则求解;能力目标1、熟练掌握物体的受力分析;2、能够根据力的作用效果进行分解;情感目标培养分析观察能力,物理思维能力和科学的研究态度。

高一物理力的分解教案篇二一、引入:1、问题1:什么是分力?什么是力的合成?力的合成遵循什么定则?2、问题2:力产生的效果是什么?教师总结:如果几个力产生的效果跟原来的一个力产生的效果相同,这几个力就叫做原来那个力的分力。

求几个力的合力叫做力的合成;力的合成遵循力的平行四边形定则。

反之,求一个已知力的分力叫做。

引出课程内容。

二、授课过程1、是力的合成的逆运算,也遵循力的平行四边形定则。

教师讲解:是力的合成的逆过程,所以平行四边形法则同样适用于。

如果没有其它限制,对于同一条对角线,可以作出无数个不同的平行四边形(如图).这就是说一个已知的力可以分解成无数对不同的共点力,而不像力的合成那样,一对已知力的合成只有一个确定的结果。

一个力究竟该怎样分解呢?(停顿)尽管没有确定的结果,但在解决具体的物理问题时,一般都按力的作用效果来分解。

下面我们便来分析两个实例。

2、按照力的作用效果来分解。

例题1:放在水平面上的物体受到一个斜向上的拉力的作用,该力与水平方向夹角为,这个力产生两个效果:水平向前拉物体,同时竖直向上提物体,,因此力可以分解为沿水平方向的分力、和沿着竖直方向的分力,力和力的大小为:例题2:放在斜面上的物体,常把它所受的重力分解为平行于斜面的分量和垂直于斜面的分量(如图),使物体下滑(故有时称为“下滑力”),使物体压紧斜面。

3、练习(学生实验):(1)学生实验1:观察图示,分析F力的作用效果,学生可以利用手边的工具(橡皮筋、铅笔、细绳、橡皮、三角板)按图组装仪器、分组讨论力产生的效果,并作出力(细绳对铅笔的拉力)的分解示意图。

实验过程:将橡皮筋套在中指上,将铅笔与橡皮筋连接,铅笔尖端卡在手心处,体会一下铅笔的重力产生的效果,在铅笔上挂接上橡皮,思考拉力产生的效果?教师总结并分析:图中重物拉铅笔的力常被分解成和,压缩铅笔,拉伸橡皮筋。

2022-2022学年高一物理人教版必修一学案与检测:3.8 力的分解 Word版含解析

2022-2022学年高一物理人教版必修一学案与检测:3.8 力的分解 Word版含解析

学案8力的分解[目标定位] 1.知道什么是力的分解,知道力的分解同样遵守平行四边形定则.2.理解力的分解原则,并会用作图法和计算法求分力.3.知道力的三角形定则,会区分矢量和标量.4.会用正交分解法求合力.一、力的分解[问题设计]王昊同学假期里去旅游,他正拖着行李箱去检票,如图1所示.王昊对箱子有一个斜向上的拉力,这个力对箱子产生了什么效果?图1答案王昊对箱子斜向上的拉力产生了两个效果:水平方向使箱子前进,竖直方向将箱子向上提起.[要点提炼]1.力的分解(1)定义:已知一个力求它的分力的过程叫做力的分解.(2)分解法则:力的分解是力的合成的逆运算,遵守力的平行四边形定则.2.对一个已知力的分解可依据力的实际效果来确定:(1)依据力的实际作用效果确定两个分力的方向.(2)依据两个分力的方向作出力的平行四边形.(3)利用数学学问解三角形,分析、计算分力的大小.3.力的分解的争辩(1)假如没有限制,一个力可分解为很多对大小、方向不同的分力.(2)有限制条件的力的分解①已知合力和两个分力的方向时,有唯一解.(如图2所示)图2②已知合力和一个分力的大小和方向时,有唯一解.(如图3所示)图3(3)已知合力F以及一个分力F1的方向和另一个分力F2的大小时,若F与F1的夹角为α,有下面几种可能:图4①当F sin α<F2<F时,有两解,如图4甲所示.②当F2=F sin α时,有唯一解,如图乙所示.③当F2<F sin α时,无解,如图丙所示.④当F2>F时,有唯一解,如图丁所示.二、力的正交分解法1.正交分解的目的:当物体受到多个力作用,并且这几个力只共面不共线时,其合力用平行四边形定则求解很不便利,为此先将各力正交分解,然后再合成.2.正交分解法求合力的步骤(1)建立坐标系:以共点力的作用点为坐标原点建立直角坐标系,直角坐标系x轴和y轴的选择应使尽量多的力在坐标轴上.(2)正交分解各力,即将每一个不在坐标轴上的力分解到x轴和y轴上,并求出各分力的大小,如图5所示.图5(3)分别求出x轴、y轴上各分力的矢量和,即:F x=F1x+F2x+F3x+…F y =F 1y +F 2y +F 3y +…(4)求共点力的合力:合力大小F =F 2x +F 2y ,合力的方向与x 轴的夹角为α,则tan α=F yF x . 三、矢量相加的法则 1.三角形定则(1)内容:如图6所示,把两个矢量首尾相接,从第一个矢量的始端指向其次个矢量的末端的有向线段就表示合矢量的大小和方向,这就是矢量相加的三角形定则.图6(2)实质:平行四边形定则的简化.(如图7所示)图72.矢量和标量(1)矢量既有大小又有方向,相加时遵从平行四边形定则(或三角形定则). (2)标量只有大小,没有方向,相加时依据算术法则. 留意 矢量和标量的最本质的区分是运算法则不同.一、按力的作用效果分解例1 如图8甲所示,在一个直角木支架上,用塑料垫板作斜面,将一用橡皮筋拉着的小车放在斜面上(如图乙),观看塑料垫板和橡皮筋的形变.图8(1)小车重力对斜面和橡皮筋产生了哪些作用效果?假如没有小车重力的作用,还会有这些作用效果吗?(2)请依据重力产生的两个效果将重力分解,并求两分力的大小.答案 (1)斜面上小车重力产生了两个效果:一是使小车压紧斜面,二是使小车沿斜面下滑,拉伸橡皮筋.不会.(2)重力的分解如图所示设斜面的倾角为θ(忽视斜面的形变).由几何关系知∠DOE=θ.由三角函数可得:F1=mg sin α,F2=mg cos α.针对训练如图9所示,轻杆与柱子之间用铰链连接,杆的末端吊着一个重为30 N的物体,轻绳与水平轻杆之间的夹角为θ=30°,求轻绳和轻杆各受多大的力?图9答案60 N52 N解析重物对O点的拉力F=G,产生两个作用效果:一个是沿绳方向拉轻绳,一个是沿杆方向压杆(因轻杆处于静止时杆所受的弹力肯定沿着杆,否则会引起杆的转动),作平行四边形如图所示,由几何关系解得F1=Gsin θ=60 NF2=Gtan θ≈52 N二、有限制条件的力的分解例2按下列两种状况把一个竖直向下的180 N的力分解为两个分力.图10(1)一个分力在水平方向上,并等于240 N,求另一个分力的大小和方向.(2)一个分力在水平方向上,另一个分力与竖直方向的夹角为30°斜向下(如图10所示),求两个分力的大小.解析(1)力的分解如图所示.F 2=F 2+F 21=300 N设F 2与F 的夹角为θ,则 tan θ=F 1F =43,解得θ=53°(2)力的分解如图所示. F 1=F tan 30°=180×33N =60 3 N F 2=F cos 30°=18032N =120 3 N答案 (1)300 N 与竖直方向夹角为53° (2)水平方向分力的大小为60 3 N ,斜向下的分力的大小为120 3 N 三、力的正交分解法例3 如图11所示,水平地面上有一重60 N 的物体,在与水平方向成30°角斜向上、大小为20 N 的拉力F 作用下匀速运动,求地面对物体的支持力和摩擦力的大小.图11解析 对物体进行受力分析,如图所示,物体受重力G 、支持力F N 、拉力F 、摩擦力F f .建立直角坐标系, 对力进行正交分解得: y 方向: F N +F sin 30°-G =0① x 方向:F f -F cos 30°=0② 由①②得:F N =50 N ,F f =10 3 N. 答案 50 N 10 3 N1.力的分解:已知一个力求它的分力的过程.力的分解遵循平行四边形定则. 2.力的分解有唯一解的条件 (1)已知两个分力的方向.(2)已知一个分力的大小和方向. 3.力的分解方法(1)按力的实际作用效果分解. (2)正交分解法以共点力的作用点为原点建立直角坐标系(让尽量多的力在坐标轴上),把不在坐标轴上的力分解到x 轴、y 轴上,然后分别求出x 轴和y 轴上的合力F x 和F y ,则共点力的合力大小F =F 2x +F 2y ,合力方向与x 轴夹角为α,tan α=F yF x . 4.矢量相加的法则平行四边形定则、三角形定则.1.(按力的作用效果分解)在图12中,AB 、AC 两光滑斜面相互垂直,AC 与水平面成30°.假如把球O 的重力G 依据其作用效果分解,则两个分力的大小分别为( )图12A.12G ,32G B.33G ,3G C.23G ,22G D.22G ,32G 答案 A解析 对球所受重力进行分解如图所示,由几何关系得F 1=G sin 60°=32G ,F 2=G sin 30°=12G ,A 正确.2.(有限制条件的力的分解)甲、乙两人用绳子拉船,使船沿OO ′方向航行,甲用1 000 N 的力拉绳子,方向如图13所示,要使船沿OO ′方向航行,乙的拉力最小值为( )图13A.500 3 N B.500 NC.1 000 N D.400 N答案B解析要使船沿OO′方向航行,甲和乙的拉力的合力方向必需沿OO′方向.如图所示,作平行四边形可知,当乙拉船的力的方向垂直于OO′时,乙的拉力F乙最小,其最小值为F乙min=F甲sin 30°=1 000×12N=500 N,故B正确.3.(正交分解法)如图14所示,放在水平面上的物体A用轻绳通过光滑定滑轮连接另一物体B,并静止,这时A受到水平面的支持力为F N,摩擦力为F f,若把A向右移动一些后,A 仍静止,则()图14A.F N将增大B.F f将增大C.轻绳拉力将减小D.物体A所受合力将增大答案AB解析物体A受力分析如图,系统处于静止状态,绳子的拉力不变,始终等于B的重力,即F=m B g,A所受合力为零,故C、D均错;当A向右移动时,θ角减小,F N=m A g-F sin θ,F f=F cos θ,由此可得,F N、F f均增大,所以A、B正确.题组一对力的分解的理解1.若将一个力F分解为两个力F1、F2,则下列说法正确的是()A.F是物体实际受到的力B.F1、F2不是物体实际受到的力C.物体同时受到F、F1、F2三个力的作用D.F1、F2共同作用的效果与F相同答案ABD2.把一个力分解为两个力时()A.一个分力变大时,另一个分力肯定要变小B.两个分力不能同时变大C.无论如何分解,两个分力不能同时小于这个力的一半D.无论如何分解,两个分力不能同时大于这个力的2倍答案C解析设把一个力F分解为F1、F2两个分力,当F1、F2在一条直线上且方向相反时,则有F=|F1-F2|,当F1变大时,F2也变大,A、B错.F1、F2可以同时大于F的2倍,D错.当将F沿一条直线分解为两个方向相同的力F1、F2时,则有F=F1+F2,可知F1、F2不行能同时小于12F,C对.3.下列说法中正确的是()A.一个2 N的力能分解为7 N和4 N的两个分力B.一个2 N的力能分解为7 N和9 N的两个分力C.一个6 N的力能分解为3 N和4 N的两个分力D.一个8 N的力能分解为4 N和3 N的两个分力答案BC题组二有限制条件的力的分解4.下列说法正确的是()A.已知合力大小、方向,则其分力必为确定值B.已知合力大小、方向和一个分力的大小、方向,则另一个分力必为确定值C.分力数目确定后,若已知各分力大小、方向,可依据平行四边形定则求出总的合力D.若合力为确定值,两分力方向已知,依据平行四边形定则肯定可以求出这两个分力的大小答案BCD解析已知合力大小、方向,其分力有很多组,A错.若已知合力大小、方向和一个分力的大小、方向,则依据平行四边形定则,另一分力为确定值,B对.若分力确定后,可依据平行四边形定则,求出总的合力,C 对.合力为确定值,两分力的方向已知,则两分力是唯一的.5.将一个有确定方向的力F =10 N 分解成两个分力,已知一个分力有确定的方向,与F 成30°夹角,另一个分力的大小为6 N ,则在分解时( ) A .有很多组解 B .有两组解 C .有唯一解 D .无解答案 B解析 由三角形定则作图如图所示,由几何学问知另一分力的最小值F 2′=F sin 30°=10×12 N =5 N ,而题中分力的大小为6 N ,大于最小值5 N ,小于F =10 N ,所以有两组解. 题组三 按力的作用效果分解6.如图1为某同学设计的一个小试验.他将细绳的一端系在手指上(B 处),绳的另一端系在直杆的A 端,杆的另一端C 顶在掌心上,组成一个“三角支架”.在杆的A 端悬挂不同重物,并保持静止.通过试验会感受到( )图1A .绳子是被拉伸的,杆是被压缩的B .杆对手掌施加作用力的方向沿杆由C 指向A C .绳对手指施加作用力的方向沿绳由B 指向AD .所挂重物质量越大,绳和杆对手的作用力也越大 答案 ACD解析 重物重力的作用效果,一方面拉紧绳,另一方面使杆压紧手掌,所以重力可以分解为沿绳方向的力F 1和垂直于掌心方向的力F 2,如图所示.由几何学问得F 1=Gcos θ,F 2=G tan θ,若所挂重物质量变大,则F 1、F 2都变大,选项A 、C 、D 正确.7.如图2所示,将绳子的一端系在汽车上,另一端系在等高的树干上,两端点间绳长为10 m .用300 N 的拉力把水平绳子的中点往下拉离原位置0.5 m ,不考虑绳子的重力和绳子的伸长量,则绳子作用在汽车上的力的大小为( )图2 A.1 500 N B.6 000 N C.300 N D.1 500 3 N 答案A解析由题意可知绳子与水平方向的夹角正弦值为sin α=0.5 5=0.1,所以绳子的作用力为F绳=F2sin α=1 500 N,A项正确,B、C、D项错误.8.如图3所示,三段不行伸长的细绳,OA、OB、OC能承受的最大拉力相同,它们共同悬挂一重物,其中OB是水平的,A端、B端固定在水平天花板上和竖直墙上.若渐渐增加C 端所挂重物的质量,则最先断的绳是()图3A.必定是OA B.必定是OBC.必定是OC D.可能是OB,也可能是OC答案A解析OC下悬挂重物,它对O点的拉力等于重物的重力G.OC绳的拉力产生两个效果:使OB在O点受到水平向左的力F1,使OA在O点受到沿绳子方向斜向下的力F2,F1、F2是G的两个分力.由平行四边形定则可作出力的分解图如图所示,当渐渐增大所挂物体的质量时,哪根绳受的拉力最大则哪根最先断.从图中可知:表示F2的有向线段最长,F2分力最大,故OA绳最先断.题组四力的正交分解9.如图4所示,质量为m的等边三棱柱静止在水平放置的斜面上.已知三棱柱与斜面之间的动摩擦因数为μ,斜面的倾角为30°,则斜面对三棱柱的支持力与摩擦力的大小分别为()图4 A.32mg 和12mg B.12mg 和32mg C.12mg 和12μmg D.32mg 和32mg 答案 A解析 依据重力mg 的作用效果,可分解为沿斜面对下的分力F 1和使三棱柱压紧斜面的力F 2,依据几何关系得F 1=mg sin 30°=12mg , F 2=mg cos 30°=32mg , 由于,F 1与三棱柱所受静摩擦力大小相等,F 2与斜面对三棱柱的支持力大小相等,因此,选项A 正确.10.如图5所示,甲、乙、丙三个物体质量相同,与地面的动摩擦因数相同,受到三个大小相同的作用力F ,当它们滑动时,受到的摩擦力大小是( )图5A .甲、乙、丙所受摩擦力相同B .甲受到的摩擦力最大C .乙受到的摩擦力最大D .丙受到的摩擦力最大答案 C解析 题图中三个物体对地面的压力分别为F N 甲=mg -F sin θ,F N 乙=mg +F sin θ,F N 丙=mg ,因它们均相对地面滑动,由F f =μF N 知,F f 乙>F f 丙>F f 甲,故C 正确.11.如图6所示,质量为m 的物块与水平面之间的动摩擦因数为μ,现用斜向下与竖直方向夹角为θ的推力作用在物块上,使物块在水平面上匀速移动,求推力的大小.(重力加速度为g )图6答案 μmg cos θ-μsin θ解析 对物块受力分析如图所示将物块受到的力沿水平和竖直方向分解,依据平衡条件有水平方向:F cos θ=F f ①竖直方向:F N =mg +F sin θ②F f =μF N ③由①②③得F =μmg cos θ-μsin θ12.如图7所示,物体的质量m =4.4 kg ,用与竖直方向成θ=37°的斜向右上方的推力把该物体压在竖直墙壁上,并使它沿墙壁在竖直方向上做匀速直线运动.物体与墙壁间的动摩擦因数μ=0.5,取重力加速度g =10 N/kg ,求推力F 的大小.(sin 37°=0.6,cos 37°=0.8)图7答案 88 N 或40 N解析 若物体向上做匀速直线运动,则受力分析如图甲所示.F cos θ=mg +F fF sin θ=F NF f =μF N故推力F =mg cos θ-μsin θ= 4.4×100.8-0.5×0.6N =88 N若物体向下做匀速直线运动,受力分析如图乙所示. F cos θ+F f =mgF sin θ=F NF f =μF N故推力F =mg cos θ+μsin θ= 4.4×100.8+0.5×0.6 N =40 N。

力的分解

力的分解

(1)定义
把两个矢量首尾相接从而求出合矢 笔 量的方法叫做三角形定则 记
F1
F
F1 F
F2
平行四边形定则
F2
三角形定则
四、矢量相加的法则
1.三角形定则 (2)说明 ①三角形定则与平行四边形定则 实质一样 ②所有矢量(如:速度、位移) 相加都满足三角形定则 合矢量 x
x2 分矢量2 x1 分矢量1
四、矢量相加的法则
当F乙垂直于OO'时, F乙最小 F乙max=F甲sin30°=500N
F甲 30° F乙F1 乙2 F乙3
F1 F2 F3
作业
新课程导学 第39页 课堂达标 第3题
新课程导学 第39页 课堂达标 第3题
作业:一个木箱质量m=60kg,静止在水平 地面上,工人推木箱,若动摩擦因数为μ=0.3, 最大静摩擦力等于滑动摩擦力。求: (sin37°=0.6,cos37°=0.8,g取10m/s2 )
之间放有一个重为G=20N的光滑圆球,如图所示,试求这个球对斜面的
压力和对挡板的压力.(sin37°=0.6,cos37°=0.8)
解:重力G的两个作用效
果分别是:
G1
①压斜面,②压挡板 沿这两个方向分解重力
θ θ
G2跟G方向的夹角为θ 由数学知识有:
G2 G
tanq = G1
G
球对档板的压力N1=G1 G tanq
F
30°
例解4:木箱重500 N,放在水平地面上,一个人用大小为200 N与 水平方向成30°向上的力拉木箱,木箱沿地平面匀速运动,求木 箱受到的摩擦力和地面所受的压力。
解:画出物体受力图,如图所示。 y
建立合适的直角坐标系

力的分解

力的分解
个力可以用几个力来代替
F
力的分解
几个力的作用可以用一个力来等效代换,这 是力的合成。相反,一个力的作用也可以用几个 力的共同作用来等效代替,这几个力称为那一个 力的分力。求一个已知力的分力叫做力的分解。
二、力分解的方法
分力、
力的合成 力的分解
合力
、力的分解是力的合成的逆运算
注意:几个分力与原来那个力是等效的,它们可以互相替代。
.已知力分解为两个不为零的力,下列情况具有唯一解的
是(
)
.已知两个分力的方向,并且不在同一直线上
.已知一个分力的大小和方向
.已知一个分力的大小和另一个分力的方向
.已知两个分力的大小
生活中的力的分解 把陷在泥坑里的汽车拉出来
F
平行四边形法则
拱桥
我们取石拱桥上面的石块A进行分析,就会发现拱桥上面物体的 重力压在A上对A施加向下压力.由于A是楔形不能向下移动,只能 挤压相邻的B、C。
A
B
C
四、力的正交分解
实际对力进行分解时,为便于计算,常常采用正交 分解法
定义:把一个已知力沿着两个互相垂直的方向进行分解
力的分解
(二)按正交分解法分解
分解步骤: ①建立平面直角坐标系(以共点 力作用点为坐标原点,并尽 可能使较多的力落在坐标轴上) ②正交分解(将不在坐标轴上的力 分解到沿轴和轴上,得、)
大小.【坡度越小,行车越安全,牵引力小】
拖拉机斜向上拉耙
拖拉机对耙的拉力,同时产生两个效果: ①使耙克服水平阻力前进 ②把耙上提 可用两个力和同时作用来代替,效果相同。
练习:
.将一个力分解为两个不为零的力,下列哪种分解方法是
可能的(
)
.分力之一垂直

第三章 4 第2课时 力的效果分解法和力的正交分解法

第三章 4 第2课时 力的效果分解法和力的正交分解法

第2课时力的效果分解法和力的正交分解法[学习目标] 1.学会根据力的效果分解力.2.初步理解力的正交分解法.3.会根据不同给定条件分解力.一、按效果分解力导学探究1.如果不受限制,分解同一个力能作出多少平行四边形?有多少组解?答案无数个无数组2.已知合力F和两分力的方向(如图1),利用平行四边形定则,能作多少平行四边形?两分力有几组解?图1答案1个1组3.如图2甲所示,小明用斜向上的力拉行李箱,其简化图如图乙所示,拉力会产生两个效果,如何分解拉力,写出两个分力大小.图2答案如图所示,F1=F cos θ,F2=F sin θ4.如图3,将一质量为m的木块放在倾角为θ的斜面上,木块的重力产生哪两个效果,如何分解重力,写出两个分力的大小.图3答案一个效果使木块沿斜面下滑,另一个效果使木块压紧斜面.G1=mg sin θ,G2=mg cos θ知识深化1.按效果分解(1)分解原则:根据力的作用效果确定分力的方向,然后再画出力的平行四边形.(2)基本思路2.两种常见典型力的分解实例实例分析地面上物体受到斜向上的拉力F可分解为水平向前的力F1和竖直向上的力F2,F1=F cos θ,F2=F sin θ放在斜面上的物体的重力产生两个效果:一是使物体具有沿斜面下滑的趋势;二是使物体压紧斜面;F1=mg sin α,F2=mg cos α如图4所示,一质量分布均匀的小球静止在固定斜面和竖直挡板之间,各接触面均光滑,小球质量为m=100 g,按照力的效果作出重力及其两个分力的示意图,并求出各分力的大小.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)图4答案见解析图0.75 N 1.25 N解析把球的重力沿垂直于斜面和垂直于挡板的方向分解为力G1和G2,如图所示:G 1=G tan 37°=100×10-3×10×0.75 N =0.75 N ; G 2=G cos 37°=100×10-3×100.8N =1.25 N.在日常生活中,力的分解有着广泛的应用,如图5甲用斧子把木桩劈开,已知两个侧面之间的夹角为2θ,斧子对木桩施加一个向下的力F 时,产生了大小相等的两个侧向分力F 1、F 2,由图乙可得下列关系正确的是( )图5A .F 1=F 2=F 2sin θB .F 1=F 2=F2cos θC .F 1=F 2=F2sin 2θD .F 1=F 2=F2cos 2θ答案 A解析 根据力的平行四边形定则,力F 与它的两个分力如图所示,由几何关系知F 1=F 2=F2sin θ,故A 正确.二、力的正交分解法 1.力的正交分解法把力沿着两个经选定的互相垂直的方向分解的方法叫力的正交分解法. 如图6所示,将力F 沿x 轴和y 轴两个方向分解,则图6F x=F cos αF y=F sin α2.正交分解法求合力(1)建立直角坐标系:以共点力的作用点为坐标原点,直角坐标系x轴和y轴的选择应使尽量多的力在坐标轴上.图7(2)正交分解各力:将每一个不在坐标轴上的力分解到x轴和y轴上,并求出各分力的大小,如图7所示.(3)分别求出x轴、y轴上各分力的矢量和,即:F x=F1x+F2x+…,F y=F1y+F2y+….(4)求共点力的合力:合力大小F=F2x+F2y,设合力的方向与x轴的夹角为α则tan α=F y F x.在同一平面内的三个力F1、F2、F3的大小依次为18 N、40 N、24 N,方向如图8所示,求它们的合力.(sin 37°=0.6,cos 37°=0.8)图8答案50 N,方向与F1相同解析建立直角坐标系,把F2分解F2x=F2cos 37°=32 NF2y=F2sin 37°=24 NF y=F2y-F3=0F x=F2x+F1=50 N所以合力F=F x=50 N,方向与F1相同.如图9所示,甲、乙、丙三个物体质量相同,与地面间的动摩擦因数均相同,受到三个大小相同的作用力F,当它们滑动时,下列说法正确的是()图9A.甲、乙、丙所受摩擦力相同B.甲受到的摩擦力最大C.乙受到的摩擦力最大D.丙受到的摩擦力最大答案 C解析将甲、乙图中的F沿水平方向和竖直方向正交分解,则三个物体对地面的压力分别为F N甲=mg-F sin θ,F N乙=mg+F sin θ,F N丙=mg,因它们均相对地面滑动,由F f=μF N知,F f乙>F f丙>F f甲,故C正确.三、力的分解中定解条件讨论把力按照题中给定的条件分解.若代表合力的对角线与给定的代表分力的有向线段能构成平行四边形(或三角形),说明合力可以分解成给定的分力,即有解;若不能,则无解.常见的有几种情况.已知条件分解示意图解的情况已知两个分力的方向唯一解已知一个分力的大小和方向唯一解已知一个分力(F2)的大小和另一个分力(F1)的方向①F2<F sin θ无解②F2=F sin θ唯一解③F sin θ<F2<F 两解④F 2≥F唯一解一个成人与一个小孩分别在河的两岸拉一条船,船沿河岸前进,成人的拉力为F 1=400 N ,方向如图10所示(未画出小孩的拉力方向),要使船在河流中平行于河岸行驶.求小孩对船施加的最小力F 2的大小和方向.图10答案 200 N 方向垂直于河岸解析 为使船在河流中平行于河岸行驶,必须使成人与小孩的合力平行于河岸方向,根据三角形定则,将F 2的起点与F 1的“箭头”相连,只要F 1的起点与F 2的“箭头”的连线落在平行于河岸的方向上,F 1、F 2的合力F 的方向就与河岸平行,如图所示,当F 2垂直于河岸时,F 2最小,得F 2min =F 1sin 30°=400×12N =200 N.即小孩对船施加的最小力F 2的大小为200 N ,方向垂直于河岸.1.(力的效果分解)将处于静止状态的物体所受重力按力的效果进行分解,图中错误的是( )答案 C解析 图C 中重力的两个效果分别是使物体挤压斜面和竖直面,两分力应分别垂直于斜面和竖直面.2.(力的效果分解)如图11所示,小明在倾斜的地面上使用一台没有故障的体重秤,那么测出来的体重示数比他实际体重( )图11A .偏大B .偏小C .准确D .不准确,但无法判断偏大还是偏小 答案 B解析 在倾斜的地面上使用一台体重秤测体重,该情景可简化为斜面模型,人站在斜面上,受到的支持力大小等于重力G 垂直于斜面的分力,为G cos θ(θ为斜面的倾角),故人对体重秤的压力大小等于G cos θ,该力小于重力,即测出的体重比实际体重小,选项B 正确. 3.(力的正交分解)如图12所示,重为30 N 的物体A 放于水平桌面上,现用大小为20 N 、方向与水平方向成30°角的力拉物体A ,物体A 仍保持静止,则物体A 对桌面的压力大小为( )图12A .30 NB .20 NC .10 ND .0 答案 B解析 将拉力F 沿水平方向和竖直方向分解,如图所示,则F 2=F sin 30°=20×12N =10 N ,故桌面对A 的支持力大小F N =G -F 2=20 N , 由牛顿第三定律知F N ′=F N =20 N ,B 项正确.4.(力的分解的讨论)已知两个共点力的合力大小为50 N ,分力F 1的方向与合力F 的方向成30°角,分力F 2的大小为30 N ,则( ) A .F 1的大小是唯一的 B .F 2的方向是唯一的 C .F 2有两个可能的方向 D .F 2可取任意方向答案 C解析如图所示,以F的“箭头”为圆心,以F2的大小30 N为半径画一个圆弧,与F1所在直线有两个交点,因此F2有两个可能的方向,F1的大小有两个可能的值,C正确.考点一按效果分解力1.如图1,将F沿水平和竖直方向分解,则其竖直方向的分力为()图1A.F sin θB.F cos θC.Fsin θ D.Fcos θ答案 A解析将F按作用效果分解为水平方向和竖直方向的分力,根据平行四边形定则,竖直方向上的分力为F sin θ,故A正确,B、C、D错误.2.如图2,静止在斜面上的重物的重力可以分解为沿斜面方向向下的分力F1和垂直于斜面方向的分力F2,关于这两个分力,下列说法正确的是()图2A.F1作用在物体上,F2作用在斜面上B.F2的性质是弹力C.F2就是物体对斜面的正压力D.F1和F2是与物体的重力等效的力,实际存在的就是重力答案 D解析物体受重力、支持力与摩擦力.而F1、F2是重力的两个分力,实际不存在,物体实际受到的就是重力,作用在物体上,所以A错误,D正确;F2是使物体紧压斜面的分力,不是物体对斜面的正压力,根据平衡条件,F2与斜面对物体的支持力相等,所以B、C错误.3.小明想推动家里的衣橱,但使出了很大力气也推不动,他便想了个妙招,如图3所示,用A、B两块木板,搭成一个底角较小的人字形架,然后往中央一站,衣橱居然被推动了!下列说法正确的是()图3A.这是不可能的,因为小明根本没有用力去推衣橱B.这是不可能的,因为无论如何小明的力气也没那么大C.这有可能,A板对衣橱的推力有可能大于小明的重力D.这有可能,但A板对衣橱的推力不可能大于小明的重力答案 C解析由小明所受重力产生的效果分解,小明的重力可分解为沿两个木板方向的分力,由于两个木板夹角接近180°,根据平行四边形定则,可知分力远大于小明的重力,选项C正确.4.(2019·沈阳市期中)如图4所示为斧头劈柴的剖面图,BC边为斧头背,AB、AC边为斧头的两刃面.要使斧头更容易劈开木柴,需要()图4A.BC边短一些,AB边也短一些B.BC边长一些,AB边短一些C.BC边短一些,AB边长一些D.BC边长一些,AB边也长一些答案 C解析如图所示,斧头对木柴的作用力按力的作用效果可分解为对木柴两端的两个压力,两压力大小相等、与斧头的AB、AC边相互垂直,由几何关系可知,当BC边短一些,AB边长一些时,两力之间的夹角更大,则在合力不变的情况下两分力更大,即斧头更容易劈开木柴,C正确,A、B、D错误.考点二力的正交分解5.如图5所示,物块m静止于一斜面上,斜面固定.若将斜面的倾角θ稍微增大一些,物块m仍静止在斜面上,则()图5A.斜面对物块的摩擦力变小B.斜面对物块的摩擦力变大C.斜面对物块的支持力变大D.物块所受的合外力变大答案 B解析物块m静止不动,受力平衡,可对物块受力分析:重力mg、支持力F N和摩擦力F f,将重力G沿平行斜面方向和垂直斜面方向分解,由平衡条件得知:F N=mg cos θF f=mg sin θ则知,θ稍微增大一些,F N变小,F f变大,故A、C错误,B正确;物块m始终静止在斜面上,合力始终为零,故D错误.6.(多选)如图6所示,质量为m的物体放在水平桌面上,在与水平方向成θ角的拉力F作用下保持静止,已知物体与桌面间的动摩擦因数为μ,下列判断正确的是()图6A.物体对地面的压力为mgB.物体受到地面的支持力为mg-F sin θC.物体受到的摩擦力为FD.物体受到的摩擦力为F cos θ答案BD解析对物体受力分析,如图所示:物体对地面的压力与地面对物体的支持力是作用力与反作用力,而支持力F N=mg-F·sin θ,故A错误,B正确;物体受到的摩擦力为F f=F cos θ,故C错误,D正确.考点三力的分解的讨论7.如图7所示,将一个已知力F分解为F1和F2,已知F=10 N,F1与F的夹角为37°,则F2的大小不可能是(sin 37°=0.6,cos 37°=0.8)()图7A.4 N B.6 NC.10 N D.100 N答案 A解析根据力的合成与分解,只有当F2与F1垂直时,F2最小,此时F2=F sin 37°=10×0.6 N =6 N,所以不可能是4 N,故选A.8.将力F分解成F1和F2,若已知F1的大小以及F2与F的夹角θ(θ为锐角),则错误的是() A.当F1<F sin θ时,无解B.当F1=F sin θ时,有一解C.当F<F1时,有一解D.当F1>F sin θ时,有两解答案 D解析F1<F sin θ时,分力和合力不能构成三角形,无解,故A正确.当F1=F sin θ时,两分力和合力恰好构成三角形,有唯一解,故B正确.当F>F1>F sin θ时,根据平行四边形定则,有两组解;若F1>F,只有一组解,故C正确,D 错误.9.如图8所示,轻杆OB左端用铰链与墙连接,与竖直方向的夹角为θ,右端用轻绳与墙连接,轻绳OA水平,质量为m的物体悬挂在O点,设轻绳OA和轻杆OB作用于O点的弹力分别为F1和F2,以下结果正确的是()图8A.F1=mg sin θB.F1=mgsin θC.F2=mg cos θD.F2=mgcos θ答案 D解析mg可分解为沿绳向外的分力和沿杆斜向下的分力,如图所示,则F 1=mg tan θ,F 2=mgcos θ,故选D.10.如图9所示,将绳子的一端系在汽车上,另一端系在等高的树干上,两端点间绳长为10 m .用300 N 的拉力把水平绳子的中点往下拉离原位置0.5 m ,不考虑绳子的重力和绳子的伸长量,则绳子作用在汽车上的力的大小为( )图9A .1 500 NB .6 000 NC .300 ND .1 500 3 N答案 A解析 由题意可知绳子与水平方向夹角的正弦值为sin α=0.55=0.1,所以绳子的作用力为F 绳=F2sin α=1 500 N ,A 项正确,B 、C 、D 项错误.11.如图10所示,用绳AB 和BC 吊起一重物P 处于静止状态,AB 绳与水平面间的夹角为53°,BC 绳与水平面的夹角为37°.求:当所挂重物质量为10 kg 时,AB 绳、BC 绳上的拉力各为多大?(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8).图10答案 80 N 60 N解析 结点B 受到三根绳子的拉力处于平衡状态,BP 绳的拉力等于重物的重力mg ,如图所示,根据力的分解可得:F AB=mg cos 37°=10×10×0.8 N=80 NF BC=mg sin 37°=10×10×0.6 N=60 N.12.如图11所示,在水平地面上用绳子拉一质量m=46 kg的箱子,绳子与地面的夹角为37°,拉力F=100 N时箱子恰好匀速移动.g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:图11(1)箱子所受的摩擦力大小;(2)地面和箱子之间的动摩擦因数.答案(1)80 N(2)0.2解析(1)以箱子为研究对象,受力分析如图,水平方向所受合力为零:F cos 37°-F f=0代入数据解得:F f=80 N(2)竖直方向所受合力为零:F N+F sin 37°-mg=0代入数据解得:F N=400 N由F f=μF N可得:μ=F fF N=0.2.13.(2019·西安一中模拟)如图12所示是扩张机的原理示意图,A、B为活动铰链,C为固定铰链,在A处作用一水平力F,滑块就以比F大得多的压力向上顶物体D,已知图中2l=1.0 m,b=0.05 m,F=400 N,滑块与左壁接触,接触面光滑,则D受到向上顶的力为(滑块和杆的重力不计)()图12A .3 000 NB .2 000 NC .1 000 ND .500 N 答案 B解析 将力F 按作用效果沿AB 和AC 两个方向进行分解,作出力的分解图如图甲所示. 则有2F 1cos α=F ,则得F 1=F 2=F2cos α再将F 1按作用效果分解为F N 和F N ′,作出力的分解图如图乙所示. 则有F N =F 1sin α, 联立得F N =F tan α2根据几何知识得tan α=lb=10得F N =5F =2 000 N ,故选项B 正确.。

【高中物理】2023-2024学年人教版必修第一册力的效果分解法和正交分解法第3课时课件

【高中物理】2023-2024学年人教版必修第一册力的效果分解法和正交分解法第3课时课件

已知一个分 力(F2)的大 小和另一个
②F2=Fsin θ
分力(F1)的 ③Fsin θ<F2<F 方向
④F2≥F
无解 唯一解且为最小值
两解 唯一解
课时对点练
基础对点练
考点一 力的效果分解 1.(2022·哈尔滨市第162中学高一期末)如图所示,将光滑斜面上的物体的 重力mg分解为F1、F2两个力,下列结论正确的是 A.F2是弹力 B.物体受mg、FN、F1、F2四个力作用
D.飞机水平前进的动力为Ftan θ
将F正交分解成沿水平方向和竖直方向的分力,飞机沿水平方向向前飞行 时,竖直方向受力平衡,则G=Fcos θ,在水平方向有F′=Fsin θ,所以 飞机水平前进的动力为Fsin θ,所以A、B、D错误,C正确。
1 2 3 4 5 6 7 第3课时 力的效果分解法和正交分解法
学习目标
1.会按力的作用效果分解力(重点)。 2.知道正交分解的目的和原则,会根据实际情况建立 合适的直角坐标系将力进行正交分解(重点)。
内容索引
一、力的效果分解 二、力的正交分解 三、力的分解中的定解问题
力的效果分解
1.车在水平面和坡面上时,重力产生的作用效果分别是 什么? 设坡面水平面的夹角为α,车的重力为G,分析坡面上 重力的作用效果,并按力的作用效果求出两分力的大小。
√C.图丙中质点所受的合外力大小是8 N,方向竖直向上
D.图丁中质点所受的合外力大小等于5 N
1 2 3 4 5 6 7 8 9 10 11 12
对图甲根据三力的图示,知F1、F2在竖直方向分力的大小均为3个单 位,方向相反,在水平方向的分力分别为6个单位和2个单位,方向与 F3方向相同。根据正交分解法知,3个力的合力为12个单位,即F合= 12 N,方向水平向右,故A错误; 对图乙,F3与F2的合力与F1大小相等,方向相同,所以3个力的合力 为6个单位,即F合=6 N,方向水平向右,故B错误;

第三节 力的分解

第三节 力的分解

第三节力的分解【知识点的认识】1.力的分解(1)力的分解定义:已知一个力求它的分力的过程叫力的分解.(2)力的分解法则:满足平行四边形定则.2.分解力的方法(1)按实际作用效果分解力分解的步骤:①分析力的作用效果②据力的作用效果定分力的方向;(画两个分力的方向)③用平行四边形定则定分力的大小;④据数学知识求分力的大小和方向(2)正交分解法:将一个力(矢量)分解成互相垂直的两个分力(分矢量),即在直角坐标系中将一个力(矢量)沿着两轴方向分解,如果图中F分解成F x和F y,它们之间的关系为:Fx=F•cosφ,①Fy=F•sinφ,②F=,③tanφ=,④正交分解法是研究矢量常见而有用的方法,应用时要明确两点,①x轴、y轴的方位可以任意选择,不会影响研究的结果,但若方位选择的合理,则解题较为方便:②正交分解后,F x在y轴上无作用效果,F y在x轴上无作用效果,因此F x和F y不能再分解.(3)图解法:根据平行四边形定则,利用邻边及其夹角跟对角线长短的关系分析力的大小变化情况的方法,通常叫作图解法.也可将平行四边形定则简化成三角形定则处理,更简单.图解法具有直观、简便的特点,多用于定性研究,应用图解法时应注意正确判断某个分力方向的变化情况及其空间范围.【知识点的应用及延伸】分解﹣个力的可能情况(1)已知两分力求合力有唯一解,而求一个力的两个分力,如不限制条件有无数组解,如图(a)所示,力F可在不同方向上进行分解.要得到唯一确定的解应附加一些条件:①已知合力和两个分力的方向,可求得两个分力的大小.图(b)所示把已知合力F分解成沿OA、OB方向的两个分力,可从F的矢端作OA、OB 的平行线,画出力的平行四边形得两分力F1、F2.②已知合力和一个分力的大小、方向,可求得另一个分力的大小和方向.如图(c)已知合力F、分力F1,则连接合力F和分力F1的矢端,即可作出力的平行四边形得另一分力F2.③已知合力、一个分力F1的方向与另一分力F2的大小,求F1的大小和F2的方向(无解、有一组解或两组解).如上图所示,已知力F、α(F1与F的夹角)和F2的大小,这时有四种情况,下面采用图示法和三角形知识进行分析,从力F的端点O作出分力F1的方向,以F的矢端为圆心,用分力F2的大小为半径作圆.a.当F2<Fsinα时,圆与F1无交点,说明此时无解,如图(a)所示.b.当F2=Fsinα时,圆与F1相切,此时有一解,如图(b)所示.c.当F≥F2>Fsinα时,圆与F1有两个交点,此时有两解,如图(c)所示.d.当F2>F时,圆与F1作用线只有一个交点,此时只有一解,如图(d)所示.(2)在实际问题中,一般根据力的作用效果或处理问题的方便及需要进行分解.【命题方向】(1)第一类常考题型是考查对力的分解的理解:如图所示,拖拉机拉着耙耕地,拉力F与水平方向成α角,若将该力沿水平和竖直方向分解,则它的水平分力为()A.Fsinα B.Fcosα C.Ftanα D.Fcotα分析:利用力的平行四边形定则将力F分解后,根据几何关系求解.解答:将力F沿水平和竖直方向正交分解,如图根据几何关系,可知F1=Fcosα故选B.点评:本题关键将力正交分解后,根据几何关系求解.(2)第二类常考题型是结合其他知识点对力的分解应用的考查:如图,用绳AC和BC吊起一个重50N的物体,两绳与竖直方向的夹角分别为30°和45°,求绳AC和BC对物体的拉力.分析:对结点C受力分析,受重力和两个拉力,根据共点力平衡条件并运用正交分解法列方程求解即可.解:对悬点C受力分析,因为C点平衡,所以有F AC cos30°+F BC cos45°=GF AC sin30°=F BC sin45°解得:F AC=50(﹣1)NF BC=25(﹣)N答:绳AC和BC对物体的拉力为50(﹣1)N和25(﹣)N.点评:本题关键受力分析后运用共点力平衡条件列式求解;注意三力平衡通常用合成法,四力平衡通常用正交分解法.【课堂检测】一.选择题(共12小题)1.如图轻质支架,A、B固定在竖直墙上,C点通过细绳悬挂一重物,则重物对C点的拉力按效果分解正确的是()A.B.C.D.2.小明想推动家里的衣橱,但使足了力气也推不动,他便想了个妙招,如图所示,用A、B两块木板,搭成一个人字形架,然后往中央一站,衣橱居然被推动了,下列说法中正确的是()A.A板对衣橱的推力一定小于小明的重力B.人字形架的底角越大,越容易推动衣橱C.人字形架的底角越小,越容易推动衣橱D.A板对衣橱的推力大小与人字形架的底角大小无关3.如图所示,被轻绳系住静止在光滑斜面上的小球.若按力的实际作用效果来分解小球受到的重力G,则G的两个分力的方向分别是图中的()A.1和4B.3和4C.2和4D.3和24.关于力的分解,下列说法正确的是()A.一个2N的力可以分解为8N和8N的两个分力B.一个3N的力可以分解为8N和4N的两个分力C.一个7N的力可以分解为5N和1N的两个分力D.一个8N的力可以分解为4N和3N的两个分力5.将一个有确定方向的力F=10N分解成两个分力,已知一个分力有确定的方向,与F成30°夹角,另一个分力的大小为6N,则在分解时()A.有无数组解B.有两组解C.有唯一解D.无解6.已知力F的大小为10N,要把它分解成两个力,以下关于两分力大小不可能的是()A.6N,6N B.3N,4N C.100N,100N D.428N,419N 7.如图所示,物体P静止在倾角为α的斜面上,其所受的重力可分解成平行于斜面的F1和垂直于斜面的F2,则()A.P受到重力、F1、F2、支持力和摩擦力的作用B.P受到重力、支持力和摩擦力的作用C.当α增大时,F2也随着增大D.当α减小时,F1却逐渐增大8.如图所示,分解一个水平向右的力F,F=6N,已知一个分力F1=4N和另一个分力F2与F的夹角为30°,以下说法正确的是()A.只有唯一解B.一定有两组解C.可能有无数解D.可能有两组解9.下图中按力的作用效果分解正确的是()A.B.C.D.10.将一个力F分解为两个分力F1和F2时,以下情况中不可能的是()A.F1与F2的大小都大于FB.F1、F2与F都在同一直线上C.F1与F2的大小都等于FD.F1与F2的大小、方向都于F相同11.分解一个确定大小和方向的力,在下列给出的四种附加条件中,能得到唯一确定解的情况,正确的说法是()①已知两个分力的方向,求两个分力的大小②已知两个分力的大小,求两个分力的方向③已知一个分力的大小和方向,求另一个分力的大小和方向④已知一个分力的大小和另一个分力的方向,求第一个分力的方向和另一个分力的大小.A.①和②B.①和③C.②和④D.③和④12.如图所示,小球静止时对斜面的压力为N,小球所受的重力G,可根据它产生的作用效果分解成()A.垂直于斜面的分力和水平方向的分力,且N=B.垂直于斜面的分力和水平方向的分力,且N=GcosθC.垂直于斜面的分力和平行于斜面的分力,且N=D.垂直于斜面的分力和平行于斜面的分力,且N=Gcosθ二.填空题(共4小题)13.如图所示,斜面的倾角为θ,圆柱体质量为m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档