实验三比例求和运算电路
集成运放放大电路实验报告
集成运放放大电路实验报告一实验目的:用运算放大器等元件构成反相比例放大器,同相比例放大器,反相求和电路,同相求和电路,通过实验测试和分析,进一步掌握它们的主要特征和性能及输出电压与输入电压的函数关系。
二仪器设备:i SXJ-3B型模拟学习机ii 数字万用表iii 示波器三实验内容:每个比例求和运算电路实验,都应进行以下三项:(1)按电路图接好后,仔细检查,确保无误。
(2)调零:各输入端接地调节调零电位器,使输出电压为零(用万用表200mV档测量,输出电压绝对值不超过0.5mv)。
A. 反相比例放大器实验电路如图所示R1=10k Rf=100k R’=10k输出电压:Vo=-(Rf/R1)V1实验记录:将电路输入端接学习机上的直流信号源的OUTPUT,调节换档开关置于合适位置,并调节电位器,使V1分别为表中所列各值,(用万用表测量)分析输出电压值,填在表内。
实际测量V0的值填在表内。
B 同相比例放大器R1=10k, Rf=100k R'=10k输出电压:V0=(1+Rf/R1)V1别为表中所列各值,(用万用表测量)分析输出电压值,填在表内。
E 电压跟随器实验电路:四思考题1 在反相比例放大器和加法器中,同相输入端必须配置一适当的接地电阻,其作用是什么?阻值大小的选择原则怎样考虑?此电阻也称之为平衡电阻,使输入端对地的静态电阻相等,减少输入失调电流或对电路的影响。
2分析实验数据与理论值产生的误差原因。
(1)运放输入阻抗不是无穷大。
(2)运放增益不是无穷大。
(3)运放带宽不是无穷大。
(4)运放实际存在输入、温漂等等。
比例求和运算电路实验
比例求和运算电路实验1.实验目的(1)掌握用集成运算放大器组成比例、求和电路的特点及性能。
(2)掌握上述电路的测试和分析方法。
2.实验仪器(1)数字万用表。
(2)示波器。
(3)信号发生器。
(4)集成运算放大电路模块。
3.预习要求(1)计算表5.6.1中的V 0和A f 。
(2)估算表5.6.3的理论值。
(3)估算表5.6.4、表5.6.5中的理论值。
(4)计算表5.6.4中的V 0值。
(5)计算表5.6.7中的V 0值。
4.实验原理(1)比例运算放大电路包括反相比例,同相比例运算电路,是其他各种运算电路的基础,我们在此把它们的公式列出。
反相比例放大器 1Fi 0f R R V V A -== 1R r if =同相比例放大器 1Fi 0f R R V V A +==1 ()id od r F A r +≈1式中Od A 为开环电压放大倍数,F11R R R F +=,id r 为差模输入电阻。
当0F =R 或∞=1R 时,0f =A 这种电路称为电压跟随器。
(2)求和电路的输出量反映多个模拟输入量相加的结果,用运算放大器实现求和运算时,既可采用反相输入方式,也可采用同相输入或双端输入的方式,下面列出它们的计算公式。
反相求和电路 )V R 1V R 1(R V i22i11F 0⋅+⋅-= 双端输入求和电路 ⎪⎪⎭⎫⎝⎛-'=i11Σi22ΣΣF0V R R V R R R R V 式中,F 1Σ//R R R =,32Σ//R R R ='5.实验内容(1)电压跟随器。
实验电路如图5.6.1所示。
图5.6.1 电压跟随器按表5.6.1内容进行实验,测量并记录相关数据。
表5.6.1(2)反相比例放大器。
实验电路如图5.6.2所示。
图5.6.2 反相比例放大器① 按表5.6.2内容进行实验,测量并记录相关数据。
表5.6.2② 按表5.6.3内容进行实验,测量并记录相关数据。
电子技术实验课件-比例求和运算电路
实验结果分析
1
实验数据记录
记录实验过程中得到的数据,包括输入
计算结果总结
2
信号、输出信号和电流电压数值。
根据实验数据进行计算,并对比例求和
电路的性能进行评估和总结。
3
比例求和电路应用案例
介绍比例求和电路在实际应用中的案例, 包括信号处理、自动控制等领域。
实验总结
1 实验感想和收获
分享您在实验过程中的感想和对比例求和电路的理解。
电子技术实验课件-比例求和运 算电路
在本课程中,我们将介绍比例求和运算电路的原理、作用和应用。通过实验 过程和实验结果分析,您将深入了解此电路的设计和调试方法,并了解其在 实际应用中的效果。
引言
比例求和运算电路是一种重要的电子电路,它能够对输入信号进行线性变换 和求和运算。本节将介绍比例求和运算电路的定义、作用和应用领域。
理论知识
1
比例求和电路原理
比例求和电路基于电压与电流之间的线性关系,通过合理的配置电阻和电流源实现信号的比 例变换和求和运算。
2
比例求和电路公式
பைடு நூலகம்
比例求和电路的公式和计算方法将在本节详细介绍,将帮助您更好地理解电路的工作原理。
实验过程
实验器材
收集所需实验器材,包括电阻、电流源、示波器等。
实验步骤
根据电路图设计、元器件连接和电路调试进行实验。
2 实验中遇到的问题及解决方法
描述在实验中遇到的问题,并分享您是如何解决它们的。
3 实验中需要注意的事项
提醒实验者在进行比例求和运算电路实验时需要注意的事项和注意事项。
参考文献
相关电子技术实验教材
推荐一些关于比例求和电路的电子技术实验教 材,以供进一步学习和参考。
模电实验报告 比例求和运算及微积分电路
实验六 比例求和运算及微积分电路一、实验目的1、掌握集成运算放大器的特点,性能及使用方法。
2、掌握比例求和电路的测试及分析方法。
3、掌握各电路的功能工作原理和计算方法。
二、实验仪器 1、数字万用表 2、信号发生器 3、示波器4、交流毫伏表5、直流稳压电源 三、实验内容 1、电压跟随器验证电压跟随器的电压跟随特性。
(此电路经常用于多级放大器的第一级,起阻抗匹配作用)经测量Ui=Uo=14.142mV2、反相比例电路验证反相比例运算电路的输入与输出的关系为:i ifo U R R U -= 电路图如下:经验证Uo=10Ui=141.406mV3、同相比例放大器验证同相比例放大电路输入与输出之间的关系:Ui R Rf U o ⎪⎪⎭⎫⎝⎛+=11 电路图如下:测得Ui=14.142mV Uo=155.546mV Uo=101Ui4、反相求和电路验证反相求和电路的输入与输出之间的关系式:)2211(U Ui R Rf Ui R Rf o +-=电路图如下图所示:由图可知:Ui1=6.955mV, Ui2=2.303mV, Uo=92.564mV验证92.564mV = -【(R3/R4)6.955+(R3/R1)2.303】mV5、加减运算放大电路验证其输入输出之间的关系式:)12(1Ui Ui R RfUo -=电路图如下图所示:实验测得:Ui1=6.978mV Ui2=2.318mV Uo=46.655mV 可验证Uo=10(6.978-2.318)6、积分电路连接积分电路,检查无误之后接通12±V 直流电源。
①取Ui=-1V ,用示波器观察波形Uo ,并且测量运放输出电压的正向饱和电压值。
②取Ui=1V ,测量运放的负向饱和电压值③将电路中的积分电容改为0.1微法,Ui 分别输入1KHz 幅值为2V 的方波和正弦信号,观察Ui 和Uo 的大小及相位关系,并记录波形,计算电路的有效积分时间。
比例及加减运算电路实验报告
竭诚为您提供优质文档/双击可除比例及加减运算电路实验报告篇一:实验四比例求和运算电路实验报告实验四比例求和运算电路一、实验目的1.掌握用集成运算放大器组成比例、求和电路的特点及性能。
2.学会上述电路的测试和分析方法。
二、实验仪器1.数字万用表2.信号发生器3.双踪示波器其中,模拟电子线路实验箱用到直流稳压电源模块,元器件模组以及“比例求和运算电路”模板。
三、实验原理(一)、比例运算电路1.工作原理a.反相比例运算,最小输入信号uimin等条件来选择运算放大器和确定外围电路元件参数。
如下图所示。
10kΩ输入电压ui经电阻R1加到集成运放的反相输入端,其同相输入端经电阻R2接地。
输出电压uo经RF接回到反相输入端。
通常有:R2=R1//RF由于虚断,有I+=0,则u+=-I+R2=0。
又因虚短,可得:u-=u+=0由于I-=0,则有i1=if,可得:ui?u?u??uo?R1RFuoRF?AufuR1i由此可求得反相比例运算电路的电压放大倍数为:??u?Rif?i?R1?ii?反相比例运算电路的输出电阻为:Rof=0输入电阻为:Rif=R1b.同相比例运算10kΩ输入电压ui接至同相输入端,输出电压uo通过电阻RF 仍接到反相输入端。
R2的阻值应为R2=R1//RF。
根据虚短和虚断的特点,可知I-=I+=0,则有u??且u-=u+=ui,可得:R1?uo?uiR1?RFAuf?R1?uoR1?RFuoR?1?FuiR1同相比例运算电路输入电阻为:Rif?输出电阻:Rof=0ui??ii以上比例运算电路可以是交流运算,也可以是直流运算。
输入信号如果是直流,则需加调零电路。
如果是交流信号输入,则输入、输出端要加隔直电容,而调零电路可省略。
(二)求和运算电路1.反相求和根据“虚短”、“虚断”的概念RRui1ui2uouo??(Fui1?Fui2)R1R2R1R2RF当R1=R2=R,则uo??RF(ui1?ui2)R四、实验内容及步骤1、.电压跟随电路实验电路如图1所示。
2013_4_比例求和运算电路
实验四比例求和运算电路一、实验目的1、掌握用集成运算放大电路组成比例、求和电路的特点及性能。
2、学会上述电路的测试和分析方法。
二、实验仪器1、数字万用表2、信号发生器3、双踪示波器三、预习要求1、计算表1中的V o和A f。
2、估算表3、表4、表5中的理论值。
3、计算表6、表7中的V o值。
四、实验内容1、电压跟随电路实验电路如图1所示。
按表1内容进行实验测量并记录。
图1:电压跟随电路图2:反相比例放大电路表1:电压跟随电路 直流输入电压 V i (V ) −2 −0.5 0 +0.5 1 输出电压V o (V )R L =∞R L =5.1k Ω2、反相比例放大器 实验电路如图2所示。
⑴、按表2内容进行实验测量并记录。
表2:反相比例放大电路⑴ 直流输入电压 V i (mV )30 100 300 1000 3000 输出电压 V o (mV )理论估算实际值 误差⑵、按表3要求进行实验测量并记录。
表3:反相比例放大电路⑵测试条件被测量 理论估算值实测值R L =∞,直流输入信号V i 从0变为800mV ΔV oΔV AA ΔV R1 ΔV R2V i =800mV ,R L 从开路变为5.1k ΩΔV OL⑶*、测量图2电路的上限截止频率f H 。
3、同相比例放大电路 实验电路如图3所示。
⑴、按表4和表5内容进行实验测量并记录。
图3:同相比例放大电路表4:同相比例放大电路⑴ 直流输入电压V i (mV ) 30 100 300 1000 3000 输出电压 V o (mV )理论估算实际值 误差表5:同相比例放大电路⑵测试条件被测量 理论估算值实测值R L =∞,直流输入信号V i 从0变为800mV ΔV oΔV AA ΔV R1 ΔV R2V i =800mV ,R L 从开路变为5.1k ΩΔV OL⑵*、测出图3所示电路的上限截止频率f H 。
4、反相求和放大电路实验电路如图4所示。
电子技术实验课件-比例求和运算电路
比例求和运算电路的应用与展望
应用领域
比例求和运算电路在模拟电路、控制系统、信号处理等领域有广泛应用。例如, 在自动控制系统中的调节器、执行器等部件中,比例求和运算电路用于实现比 例、积分和微分控制。
发展趋势
随着电子技术的不断发展,比例求和运算电路将朝着更高精度、更小体积、更 低功耗的方向发展。未来,比例求和运算电路将更加集成化、智能化,能够实 现更复杂的功能和控制。
验证比例求和运算电路的输出结果
学生将通过对比实际测量结果与理论计算结果,来验证比例求和运算电路的功能 是否正确实现。这将帮助他们发现并纠正实验中的错误,提高他们的实验技能和 理论水平。
02
实验设备
电源
01
02
03
电源类型
提供稳定的直流电源,通 常采用线性电源或开关电 源。
电源电压
根据电路需求选择适当的 电源电压,如±5V、 ±12V等。
电源容量
根据电路的电流消耗选择 合适的电源容量,以确保 电源的稳定性和可靠性。
电阻器
电阻类型
根据需要选择不同类型的 电阻,如碳膜电阻、金属 膜电阻等。
电阻值
根据电路需求选择适当的 电阻值,以满足比例求和 运算电路的阻抗匹配和信 号处理要求。
功率
根据电路的电流消耗选择 适当的电阻功率,以确保 电阻的可靠性和稳定性。
分析输出信号与输入信号之间的 关系,理解比例求和运算电路的
工作原理。
分析实验结果并验证理论
根据实验数据和观察结果,分析比例 求和运算电路的性能指标。
总结实验结论,指出实验中存在的问 题和改进方向。
将实验结果与理论值进行比较,验证 理论的正确性。
04
实验结果与讨论
实验数据记录
比例求和运算电路实验总结
毕业设计---(比例求和运算电路实验总结)在做比例求和运算电路的实验前,我们小组成员都以为不会很难做,就像以前做物理实验一样,做完实验,然后两下子就将实验报告做完.直到做完测试实验时,我们才知道其实并不容易做,毕竟我们小组选择了这个实验电路----(比例求和运算电路),但学到的知识与难度成正比,使我们受益匪浅.
在做实验前,一定要将网上搜的知识以及老师给予的知识给吃透,因为这是做实验的基础,否则,在做实验时就容易出现错误的接线,这将使你在做实验时的难度加大,浪费做实验的宝贵时间.比如接电压跟随器里面的电路实验,你要清楚各种电路接法,如果你不清楚,在做实验时才去摸索,这将使你极大地浪费时间,使你事倍功半.做实验时,一定要亲力亲为,务必要将每个步骤,每个细节弄清楚,弄明白,实验后,还要复习,思考,这样,你的印象才深刻,记得才牢固,否则,过后不久你就会忘得一干二净,这还不如不做.做实验时,老师还会根据自己的亲身体会,将一些课本上没有的知识教给我们,拓宽我们的眼界,使我们认识到这门课程在生活中的应用是那么的广泛.。
比例运算电路实验总结
比例运算电路实验总结
一、实验目的
本实验的目的是通过实验学习比例运算电路的基本原理、结构和工作原理,了解比例运算电路的应用场景和特点,掌握比例运算电路的设计方法和调试技巧。
二、实验原理
比例运算电路是一种基本的电子电路,它的主要作用是将输入信号的幅值按照一定比例放大或缩小,并输出到下一级电路中。
比例运算电路通常由运算放大器、反馈电阻和输入电阻组成,其中运算放大器是比例运算电路的核心部件,它具有高增益、高输入阻抗和低输出阻抗等特点,可以实现信号的放大、滤波、积分、微分等功能。
三、实验步骤
1. 按照电路图连接电路,注意电路的接线正确性和稳定性。
2. 调节电源电压和电阻值,使得电路工作在合适的工作区间内。
3. 测量电路的输入电压和输出电压,并记录数据。
4. 根据测量结果计算电路的放大倍数和增益,分析电路的工作特点和性能。
5. 调试电路,优化电路的性能和稳定性,使得电路工作更加稳定和可靠。
四、实验结果
在实验中,我们成功地搭建了比例运算电路,测量了电路的输入电压和输出电压,并计算了电路的放大倍数和增益。
通过实验,我们深入了解了比例运算电路的原理和结构,掌握了比例运算电路的设计方法和调试技巧,为今后的学习和实践奠定了基础。
五、实验心得
通过本次实验,我深刻认识到比例运算电路在电子电路中的重要作用和应用价值,掌握了比例运算电路的基本原理和设计方法,提高了自己的实验能力和实践能力。
在今后的学习和实践中,我将继续深入研究比例运算电路的相关知识,不断提高自己的电子技术水平和创新能力。
实验四-比例求和运算电路实验报告
实验四 比例求和运算电路一、实验目的1.掌握用集成运算放大器组成比例、求和电路的特点及性能。
2.学会上述电路的测试和分析方法。
二、实验仪器1.数字万用表2.信号发生器3.双踪示波器其中,模拟电子线路实验箱用到直流稳压电源模块,元器件模组以及“比例求和运算电路”模板。
三、实验原理(一)、比例运算电路 1.工作原理a .反相比例运算,最小输入信号min i U 等条件来选择运算放大器和确定外围电路元件参数。
如下图所示。
10k Ω输入电压i U 经电阻R 1加到集成运放的反相输入端,其同相输入端经电阻R 2接地。
输出电压O U 经R F 接回到反相输入端。
通常有: R 2=R 1//R F 由于虚断,有 I +=0 ,则u +=-I +R 2=0。
又因虚短,可得:u -=u +=0由于I -=0,则有i 1=i f ,可得:Fo1i R u u R u u -=---由此可求得反相比例运算电路的电压放大倍数为: ⎪⎪⎩⎪⎪⎨⎧==-==1i i if 1F i o uf R i uR R R u u A反相比例运算电路的输出电阻为:R of =0输入电阻为:R if =R 1b .同相比例运算10k Ω输入电压i U 接至同相输入端,输出电压O U 通过电阻R F 仍接到反相输入端。
R 2的阻值应为R 2=R 1//R F 。
根据虚短和虚断的特点,可知I -=I +=0,则有 o Fu R R R u ⋅+=-11且 u -=u +=u i ,可得:i o Fu u R R R =⋅+111F i o uf R R 1u u A +==同相比例运算电路输入电阻为: ∞==iiif i u R 输出电阻: R of =0以上比例运算电路可以是交流运算,也可以是直流运算。
输入信号如果是直流,则需加调零电路。
如果是交流信号输入,则输入、输出端要加隔直电容,而调零电路可省略。
(二)求和运算电路 1.反相求和根据“虚短”、“虚断”的概念1212i i o Fu u uR R R +=- 1212()F F o i i R R u u u R R =-+当R 1=R 2=R ,则 12()F o i i R u u u R=-+四、实验内容及步骤1、.电压跟随电路实验电路如图1所示。
(精品word)--比例求和运算电路实验报告
(精品word)--比例求和运算电路试验报告
比例求和运算电路试验报告
一、试验目的
①把握用集成运算放大器组成比例\求和电路的特点和性能;
②学会用集成运算放大电路的测试和分析方法。
二、试验仪器
①数字万用表;②示波器;③信号发生器。
三、试验内容
Ⅰ.电压跟随器
试验电路如图6-1所示:
理论值:U i=U+=U-=U
图6-1 电压跟随器
发奋识遍天下字,立志读尽人间书
按表6-1内容试验并记录。
V
i(
V)-2-0.50+0.51
V O(V)R L=∞-2.18
-0.67
1
-0.1
7
+0.3
3
0.8
3 R L=5K1-2.18
-0.67
1
-0.1
7
+0.3
3
0.8
3
表6-1
Ⅱ.反相比例放大电路
试验电路如图6-2所示:
理论值:(U i-U-)/10K=(U--U O)/100K且U+=U-=0故U O=-10U i
图6-2 反相比例放大器
1)按表6-2内容试验并测量记录:
直流输入电压U i(mV)3010030010003000输出电压理论估算(mV)-300-1000-3000-1000-3000
发奋识遍天下字,立志读尽人间书
表6-2
2
Ⅲ.同相比例放大器
电路如图6-3所示。
理论值:U i/10K=(U i-U O)/100K故U O=11U i 发奋识遍天下字,立志读尽人间书。
实验3 比例求和运算电路2013
一、实验目的
1.掌握用集成运算放大电路组成比例、求和电路的特点及性能。
2.学会上述电路的测试和分析方法。
二、实验仪器
1.数字万用表
2.示波器
3.信号发生器
三、预习要求
1.计算表6.1中的Vo和Af
2.估算表6.3的理论值
3.估算表6.4、表6.5中的理论值
4.计算表6.6中的Vo值
5.计算表6.7中的Vo值
四、实验内容
1.电压跟随电路
实验电路如图6.1所示。
图6.1 电压跟随电路
按表6.1内容实验并测量记录。
2.反相比例放大器
实验电路如图6.2所示。
图6.2 反相比例放大电路
(2)按表6.3要求实验并测量记录。
(3)测量图6.2电路的上限截止频率。
3.同相比例放大电路
电路如图6.3所示
(1)按表6.4和6.5实验测量并记录。
图6.3 同相比例放大电路
4.反相求和放大电路。
实验电路如图6.4所示。
按表6.6内容进行实验测量,并与预习计算比较。
图6.4反相求和放大电路表6.6
实验电路为图6.5所示。
图6.5 双端输入求和电路
按表6.7要求实验并测量记录。
五、实验报告
1.总结本实验中5种运算电路的特点及性能。
2。
电子技术实验课件-比例求和运算电路
02
实验原理
比例运算电路
01
02
03
比例运算电路
通过改变输入信号的幅度, 以一定的比例输出信号的 电路。
放大器
实现比例运算的电子器件, 通过改变输入信号的电压 或电流,以一定的比例放 大或缩小输出信号。
应用前景
比例求和运算电路在物联网、智能家居、医疗电子等领域具有广泛的应用前景。随着人工智能和机器 学习技术的不断发展,比例求和运算电路在信号处理和模式识别等领域的应用也将得到进一步拓展。
THANKS FOR WATCHING
感谢您的观看
缺点
由于电路中存在模拟元件,其性能会受到温度、湿度等因素的影响,导致电路性 能不稳定。此外,电路的精度和线性度也受到元件参数分散性的影响,需要进行 精确的调整和校准。
展望比例求和运算电路未来的发展趋势和应用前景
发展趋势
随着电子技术的不断进步和应用需求的不断提高,比例求和运算电路将朝着高精度、高稳定性、智能 化等方向发展。新型的集成电路技术和数字化控制技术将为比例求和运算电路的发展提供有力支持。
合理的电路布局可以减小电路 的不对称性,从而减小误差。
提高测量设备精度
采用高精度的测量设备,可以 更准确地测量电路元件的参数
和电路的输出结果。
05
实验总结与展望
总结实验收获与不足
总结实验收获
通过本次实验,我们深入了解了比例求和运算电路的工作原理和实现方式,掌 握了电路的设计和搭建技巧,增强了动手实践能力和解决问题的能力。
搭建比例求和运算电路
根据实验要求,将各个元件按照正确的顺序连接起来,构成比例求和运算电路。 注意检查连接是否正确,确保没有短路或断路现象。
比例求和运算1
实验八比例求和运算电路
姓名: 王荫东学号:2009118126 班级:电工二班
试验时间:2011年10月28日
一.实验目的:1.掌握集成运算放大器的特点、性能及使用方法。
2.掌握比例求和电路的测试和分析方法。
3.掌握各电路的工作原理和理论计算方法。
二.实验仪器:数字万用表直流稳压电源双踪示波器
交流信号发生器交流毫伏表
三.实验原理与测量方法:
1.uA741外管脚意义1、5——运放调零器2——反相输入端3——同相输入端
4、7——电源负端和负端,通常为12V和—12V 5——运放输出端6——运放输出端
.uA741的供电电路及调零电路
2.电压跟随器电路图:
3.反相比例电路:
输出输入的运算关系为:4. 同相比例放大器:
输出输入的运算关系为:5.反相求和放大器:
输出输入的运算关系为:6.加减运算电路:
输出输入的运算关系为:
上述各电路在测量输出与输入电压值时,注意集成运算放大器始终保持工作状态。
四.实验内容及步骤
1.搭接电压跟随器并验证其跟随特性。
跟随波形:
2.测量反相比例电路的比例系数。
波形如下:
3.测量同相比例放大器的比例系数及上限截止频率。
4.测量反相求和电路的求和特性。
5.验证双端输入求和电路的运算特性。
电子技术实验课件2-比例求和运算电路
以上实验内容与1、2相似,参考实验讲义。
返回
五、思考题
⒈ 总结:本实验中5种运算电路的 特点及性能。
⒉ 分析:理论计算与实验结果误 差的原因。
返回
图26-1 同相比例 放大电路
直流电压Vi
测电压Vo
+12V
-12V
3.反相比例放大器 4.反相求和放大电路 5. 差动放大电路
uo RF Au ui R1
RF RF uo ( ui1 ui 2 ) R1 R2
R3 RF RF uo (1 ) ui 2 ui1 R1 R2 R3 R1
2. 信号发生器
3. 数字万用表
返回
三、预习要求
1.
2. 3. 4. 5.
计算表1中的V0和Af
估算表3的理论值 估算表4、表5中的理论值 计算表6中的V0值 计算表7中的V0值
返回
四、实验内容与步骤
1. 电压跟随电路,如图26-1所示。
表 1 Vi(V) V0(V) RL=∞ RL=5K1 相对误差 -2 -2 -0.5 0 +0.5 +1 -2.00
-2
uo u u ui26-1 电压跟随电路
直流电压Vi
测电压Vo
+12V
-12V
2. 同相比例放大器 实验电路如图26-2所示。
R3 RF uo (1 ) ui R1 R2 R3
按表2内容测量并 记录实验数据。
实验电路板的连接如下。
实验 比例求和运算电路
电子技术实验
河北工业大学 电气与自动化学院
电工电子教学中心
实验
比例求和运算电路
一、实验目的 二、实验仪器 三、预习要求 四、实验内容与步骤
比例及加减运算电路实验报告
竭诚为您提供优质文档/双击可除比例及加减运算电路实验报告篇一:实验四比例求和运算电路实验报告实验四比例求和运算电路一、实验目的1.掌握用集成运算放大器组成比例、求和电路的特点及性能。
2.学会上述电路的测试和分析方法。
二、实验仪器1.数字万用表2.信号发生器3.双踪示波器其中,模拟电子线路实验箱用到直流稳压电源模块,元器件模组以及“比例求和运算电路”模板。
三、实验原理(一)、比例运算电路1.工作原理a.反相比例运算,最小输入信号uimin等条件来选择运算放大器和确定外围电路元件参数。
如下图所示。
10kΩ输入电压ui经电阻R1加到集成运放的反相输入端,其同相输入端经电阻R2接地。
输出电压uo经RF接回到反相输入端。
通常有:R2=R1//RF由于虚断,有I+=0,则u+=-I+R2=0。
又因虚短,可得:u-=u+=0由于I-=0,则有i1=if,可得:ui?u?u??uo?R1RFuoRF?AufuR1i由此可求得反相比例运算电路的电压放大倍数为:??u?Rif?i?R1?ii?反相比例运算电路的输出电阻为:Rof=0输入电阻为:Rif=R1b.同相比例运算10kΩ输入电压ui接至同相输入端,输出电压uo通过电阻RF 仍接到反相输入端。
R2的阻值应为R2=R1//RF。
根据虚短和虚断的特点,可知I-=I+=0,则有u??且u-=u+=ui,可得:R1?uo?uiR1?RFAuf?R1?uoR1?RFuoR?1?FuiR1同相比例运算电路输入电阻为:Rif?输出电阻:Rof=0ui??ii以上比例运算电路可以是交流运算,也可以是直流运算。
输入信号如果是直流,则需加调零电路。
如果是交流信号输入,则输入、输出端要加隔直电容,而调零电路可省略。
(二)求和运算电路1.反相求和根据“虚短”、“虚断”的概念RRui1ui2uouo??(Fui1?Fui2)R1R2R1R2RF当R1=R2=R,则uo??RF(ui1?ui2)R四、实验内容及步骤1、.电压跟随电路实验电路如图1所示。
实验三 集成运放运算电路实验
实验三 集成运放运算电路实验1.实验目的加深对运算放大器特性和运算电路的理解。
1)熟悉、掌握比例运算电路的原理和应用;2)熟悉、掌握加法运算电路的原理和应用;3)熟悉、掌握减法运算电路的原理和应用;4)熟悉、掌握积分微分运算电路的原理和应用。
2.实验原理集成运算放大器是一种直接耦合多级放大电路,它具有高增益、高输入电阻、低输出电阻、共模抑制比大的特点。
当外加不同反馈网络时,可灵活实现输入输出信号间多种特性的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分等运算电路;在非线性应用方面,可组成比较器等。
比例、加法、减法运算电路的原理图如图4.1.6所示。
图4.1.6 比例、加法、减法运算电路的原理图1)图中开关B 、C 向下扳,开关A 向上扳,电路为反相比例运算电路。
输出电压与输入电压的关系为: 11fo i R u u R =- 2)开关A 、B 向下扳,开关C 向上扳,电路为同相比例运算电路。
输出电压与输入电压的关系为:31(1)f o i R u u R =+3)开关A 、B 向上扳,开关C 向下扳,电路为加法运算电路。
输出电压与输入电压的关系为:1212()ff o i i R R u u u R R =-+4)开关A 、C 向上扳,开关B 向下扳,电路为减法运算电路。
输出电压与输入电压的关系为:4311341(1)f f o i i R R R u u u R R R R =+-+积分、微分运算电路的原理图如图4.1.7所示。
图4.1.7 积分、微分运算电路的原理图5)图中开关A 向上扳,电路为积分运算电路。
输出电压与输入电压的关系为: 1o i fu u dt RC =-⎰ 6)图中开关A 向下扳,电路为微分运算电路。
输出电压与输入电压的关系为:i o f du u R Cdt =- 3.实验器材五端理想运算放大器1个;电阻: 10k Ω1个;可调电阻:100k Ω3个、20k Ω2个;电容:5.1μF1个, 200nF1个;开关:3个;测试仪器仪表:交流电压源3台;信号发生器、示波器各1台;电压表1只。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比例求和运算电路
一、实验目的
1.掌握用集成运算放大器组成比例、求和电路。
2.掌握比例、求和运算电路的特点及性能。
3.学会上述电路的测试和分析方法。
4.掌握各电路的工作原理。
二、实验仪器 1.数字万用表; 2.示波器; 3.信号发生器
三、实验原理及参考电路
比例运算电路 1.工作原理
比例运算(反相比例运算与同相比例运算)是应用最广泛的一种基本运算电路。
反相比例运算,最小输入信号m i n i U 等条件来选择运算放大器和确定外围电路元件参数。
如图所示。
F
10k Ω
输入电压i U 经电阻R 1加到集成运放的反相输入端,其同相输入端经电阻R 2接地。
输出电压O U 经R F 接回到反相输入端。
通常有: R 2=R 1//R F
由于虚断,有 I +=0 ,则u +=-I +R 2=0。
又因虚短,可得:u -=u +=0 由于I -=0,则有i 1=i f ,可得:
F
o
1i R u u R u u -=
---
由此可求得反相比例运算电路的电压放大倍数为:
⎪⎪⎩
⎪⎪⎨⎧
==-==1i i if 1F i o uf R i u
R R R u u A
反相比例运算电路的输出电阻为:R of =0
输入电阻为:R if =R 1
同相比例运算
10k Ω
输入电压i U 接至同相输入端,输出电压O U 通过电阻R F 仍接到反相输入端。
R 2的阻值应为R 2=R 1//R F 。
根据虚短和虚断的特点,可知I -=I +=0,
有
o F
u R R R u ⋅+=-11
且 u -=u +=u i ,可得:
i o F
u u R R R =⋅+11
1
F i o uf R R 1u u A +==
同相比例运算电路输入电阻为: ∞==i
i
if i u R 输出电阻: R of =0
以上比例运算电路可以是交流运算,也可以是直流运算。
输入信号如果是直流,则需加调零电路。
如果是交流信号输入,则输入、输出端要加隔直电容,而调零电路可省略。
选择集成运算放大器时,首先应查阅手册,了解运放主要参数,一般为了减小闭环增益误差,提高放大电路的工作稳定性,应尽量选用失调温漂小,开环电压增益高,输入电阻高,输出电阻低的运算放大器。
特别是在交流放大时,为减小放大电路的频率失真和相位失真(动态误差),集成运算放大器的增益——带宽积G ·B ω和转换速度SR 必须满足以下关系:
f
B A B G uf ωω⋅>⋅
max max 2o R U f S ⋅>π
式中f max 为输入信号最高工作频率,U omax 为最大输出电压幅值
对于同相比例电路运算电路,还要特别注意存在共模输入信号的问题,也就是说,要求集成运算放大器允许的共模输入电压范围必须大于实际的共模输入信号幅值。
并要求有很高的共模抑制比。
求和运算电路
1.反相求和 基本电路如下图所示
R
U U 0
U U
V R 1
V
12////F R R R R '=
根据“虚短”、“虚断”的概念
1212i i o F
u u u
R R R +=- 1212()F F o i i R R u u u R R =
-+
当R 1=R 2=R ,则 12()F
o i i R u u u R
=-+ 2.同相求和 由读者自己分析。
四、实验内容
1.电压跟随电路
实验电路如图1所示,接好线之后,接12V 的直流电源。
V i
V o
Ω
图1 电压跟随器
按表1内容实验并测量记录。
2.反相比例放大器
实验电路如图2所示。
接好电路后,接12v 的直流电源。
10k Ω
图2 反相比例放大器
按表3内容实验并测量记录。
表8.3
3.同相比例放大器 电路如图3所示。
(1)按表6实验测量并记录。
10k Ω
图3同相比例放大器
表
6
(2)测出电路的上限截止频率
4.反相求和放大电路 实验电路如图4所示。
按表8内容进行实验测量,并与预习计算比较。
V F
R 1
V
图4反相求和放大电路
5.双端输入求和放大电路 实验电路如图5所示。
按表9要求实验并测量记录。
表9
V F
V
图5 双端输入求和电路
五.实验总结:。